xref: /freebsd/sys/net/bpf_zerocopy.c (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2007 Seccuris Inc.
5  * All rights reserved.
6  *
7  * This software was developed by Robert N. M. Watson under contract to
8  * Seccuris Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_bpf.h"
36 
37 #include <sys/param.h>
38 #include <sys/lock.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/sf_buf.h>
44 #include <sys/socket.h>
45 #include <sys/uio.h>
46 
47 #include <machine/atomic.h>
48 
49 #include <net/if.h>
50 #include <net/bpf.h>
51 #include <net/bpf_zerocopy.h>
52 #include <net/bpfdesc.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_param.h>
56 #include <vm/pmap.h>
57 #include <vm/vm_extern.h>
58 #include <vm/vm_map.h>
59 #include <vm/vm_page.h>
60 
61 /*
62  * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
63  * are mapped into the kernel address space using sf_bufs and used directly
64  * by BPF.  Memory is wired since page faults cannot be tolerated in the
65  * contexts where the buffers are copied to (locks held, interrupt context,
66  * etc).  Access to shared memory buffers is synchronized using a header on
67  * each buffer, allowing the number of system calls to go to zero as BPF
68  * reaches saturation (buffers filled as fast as they can be drained by the
69  * user process).  Full details of the protocol for communicating between the
70  * user process and BPF may be found in bpf(4).
71  */
72 
73 /*
74  * Maximum number of pages per buffer.  Since all BPF devices use two, the
75  * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
76  * sf_bufs may be an issue, so do not set this too high.  On older systems,
77  * kernel address space limits may also be an issue.
78  */
79 #define	BPF_MAX_PAGES	512
80 
81 /*
82  * struct zbuf describes a memory buffer loaned by a user process to the
83  * kernel.  We represent this as a series of pages managed using an array of
84  * sf_bufs.  Even though the memory is contiguous in user space, it may not
85  * be mapped contiguously in the kernel (i.e., a set of physically
86  * non-contiguous pages in the direct map region) so we must implement
87  * scatter-gather copying.  One significant mitigating factor is that on
88  * systems with a direct memory map, we can avoid TLB misses.
89  *
90  * At the front of the shared memory region is a bpf_zbuf_header, which
91  * contains shared control data to allow user space and the kernel to
92  * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
93  * knows that the space is not available.
94  */
95 struct zbuf {
96 	vm_offset_t	 zb_uaddr;	/* User address at time of setup. */
97 	size_t		 zb_size;	/* Size of buffer, incl. header. */
98 	u_int		 zb_numpages;	/* Number of pages. */
99 	int		 zb_flags;	/* Flags on zbuf. */
100 	struct sf_buf	**zb_pages;	/* Pages themselves. */
101 	struct bpf_zbuf_header	*zb_header;	/* Shared header. */
102 };
103 
104 /*
105  * When a buffer has been assigned to userspace, flag it as such, as the
106  * buffer may remain in the store position as a result of the user process
107  * not yet having acknowledged the buffer in the hold position yet.
108  */
109 #define	ZBUF_FLAG_ASSIGNED	0x00000001	/* Set when owned by user. */
110 
111 /*
112  * Release a page we've previously wired.
113  */
114 static void
115 zbuf_page_free(vm_page_t pp)
116 {
117 
118 	vm_page_unwire(pp, PQ_INACTIVE);
119 }
120 
121 /*
122  * Free an sf_buf with attached page.
123  */
124 static void
125 zbuf_sfbuf_free(struct sf_buf *sf)
126 {
127 	vm_page_t pp;
128 
129 	pp = sf_buf_page(sf);
130 	sf_buf_free(sf);
131 	zbuf_page_free(pp);
132 }
133 
134 /*
135  * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
136  * allocated zbufs to be freed so that it may be used even during a zbuf
137  * setup.
138  */
139 static void
140 zbuf_free(struct zbuf *zb)
141 {
142 	int i;
143 
144 	for (i = 0; i < zb->zb_numpages; i++) {
145 		if (zb->zb_pages[i] != NULL)
146 			zbuf_sfbuf_free(zb->zb_pages[i]);
147 	}
148 	free(zb->zb_pages, M_BPF);
149 	free(zb, M_BPF);
150 }
151 
152 /*
153  * Given a user pointer to a page of user memory, return an sf_buf for the
154  * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
155  * deadlock and use SFB_NOWAIT.
156  */
157 static struct sf_buf *
158 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
159 {
160 	struct sf_buf *sf;
161 	vm_page_t pp;
162 
163 	if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
164 	    VM_PROT_WRITE, &pp, 1) < 0)
165 		return (NULL);
166 	sf = sf_buf_alloc(pp, SFB_NOWAIT);
167 	if (sf == NULL) {
168 		zbuf_page_free(pp);
169 		return (NULL);
170 	}
171 	return (sf);
172 }
173 
174 /*
175  * Create a zbuf describing a range of user address space memory.  Validate
176  * page alignment, size requirements, etc.
177  */
178 static int
179 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
180     struct zbuf **zbp)
181 {
182 	struct zbuf *zb;
183 	struct vm_map *map;
184 	int error, i;
185 
186 	*zbp = NULL;
187 
188 	/*
189 	 * User address must be page-aligned.
190 	 */
191 	if (uaddr & PAGE_MASK)
192 		return (EINVAL);
193 
194 	/*
195 	 * Length must be an integer number of full pages.
196 	 */
197 	if (len & PAGE_MASK)
198 		return (EINVAL);
199 
200 	/*
201 	 * Length must not exceed per-buffer resource limit.
202 	 */
203 	if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
204 		return (EINVAL);
205 
206 	/*
207 	 * Allocate the buffer and set up each page with is own sf_buf.
208 	 */
209 	error = 0;
210 	zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
211 	zb->zb_uaddr = uaddr;
212 	zb->zb_size = len;
213 	zb->zb_numpages = len / PAGE_SIZE;
214 	zb->zb_pages = malloc(sizeof(struct sf_buf *) *
215 	    zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
216 	map = &td->td_proc->p_vmspace->vm_map;
217 	for (i = 0; i < zb->zb_numpages; i++) {
218 		zb->zb_pages[i] = zbuf_sfbuf_get(map,
219 		    uaddr + (i * PAGE_SIZE));
220 		if (zb->zb_pages[i] == NULL) {
221 			error = EFAULT;
222 			goto error;
223 		}
224 	}
225 	zb->zb_header =
226 	    (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
227 	bzero(zb->zb_header, sizeof(*zb->zb_header));
228 	*zbp = zb;
229 	return (0);
230 
231 error:
232 	zbuf_free(zb);
233 	return (error);
234 }
235 
236 /*
237  * Copy bytes from a source into the specified zbuf.  The caller is
238  * responsible for performing bounds checking, etc.
239  */
240 void
241 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
242     void *src, u_int len)
243 {
244 	u_int count, page, poffset;
245 	u_char *src_bytes;
246 	struct zbuf *zb;
247 
248 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
249 	    ("bpf_zerocopy_append_bytes: not in zbuf mode"));
250 	KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
251 
252 	src_bytes = (u_char *)src;
253 	zb = (struct zbuf *)buf;
254 
255 	KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
256 	    ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
257 
258 	/*
259 	 * Scatter-gather copy to user pages mapped into kernel address space
260 	 * using sf_bufs: copy up to a page at a time.
261 	 */
262 	offset += sizeof(struct bpf_zbuf_header);
263 	page = offset / PAGE_SIZE;
264 	poffset = offset % PAGE_SIZE;
265 	while (len > 0) {
266 		KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
267 		   " page overflow (%d p %d np)\n", page, zb->zb_numpages));
268 
269 		count = min(len, PAGE_SIZE - poffset);
270 		bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
271 		    poffset, count);
272 		poffset += count;
273 		if (poffset == PAGE_SIZE) {
274 			poffset = 0;
275 			page++;
276 		}
277 		KASSERT(poffset < PAGE_SIZE,
278 		    ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
279 		    poffset));
280 		len -= count;
281 		src_bytes += count;
282 	}
283 }
284 
285 /*
286  * Copy bytes from an mbuf chain to the specified zbuf: copying will be
287  * scatter-gather both from mbufs, which may be fragmented over memory, and
288  * to pages, which may not be contiguously mapped in kernel address space.
289  * As with bpf_zerocopy_append_bytes(), the caller is responsible for
290  * checking that this will not exceed the buffer limit.
291  */
292 void
293 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
294     void *src, u_int len)
295 {
296 	u_int count, moffset, page, poffset;
297 	const struct mbuf *m;
298 	struct zbuf *zb;
299 
300 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
301 	    ("bpf_zerocopy_append_mbuf not in zbuf mode"));
302 	KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
303 
304 	m = (struct mbuf *)src;
305 	zb = (struct zbuf *)buf;
306 
307 	KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
308 	    ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
309 
310 	/*
311 	 * Scatter gather both from an mbuf chain and to a user page set
312 	 * mapped into kernel address space using sf_bufs.  If we're lucky,
313 	 * each mbuf requires one copy operation, but if page alignment and
314 	 * mbuf alignment work out less well, we'll be doing two copies per
315 	 * mbuf.
316 	 */
317 	offset += sizeof(struct bpf_zbuf_header);
318 	page = offset / PAGE_SIZE;
319 	poffset = offset % PAGE_SIZE;
320 	moffset = 0;
321 	while (len > 0) {
322 		KASSERT(page < zb->zb_numpages,
323 		    ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
324 		    "np)\n", page, zb->zb_numpages));
325 		KASSERT(m != NULL,
326 		    ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
327 
328 		count = min(m->m_len - moffset, len);
329 		count = min(count, PAGE_SIZE - poffset);
330 		bcopy(mtod(m, u_char *) + moffset,
331 		    ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
332 		    count);
333 		poffset += count;
334 		if (poffset == PAGE_SIZE) {
335 			poffset = 0;
336 			page++;
337 		}
338 		KASSERT(poffset < PAGE_SIZE,
339 		    ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
340 		    poffset));
341 		moffset += count;
342 		if (moffset == m->m_len) {
343 			m = m->m_next;
344 			moffset = 0;
345 		}
346 		len -= count;
347 	}
348 }
349 
350 /*
351  * Notification from the BPF framework that a buffer in the store position is
352  * rejecting packets and may be considered full.  We mark the buffer as
353  * immutable and assign to userspace so that it is immediately available for
354  * the user process to access.
355  */
356 void
357 bpf_zerocopy_buffull(struct bpf_d *d)
358 {
359 	struct zbuf *zb;
360 
361 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
362 	    ("bpf_zerocopy_buffull: not in zbuf mode"));
363 
364 	zb = (struct zbuf *)d->bd_sbuf;
365 	KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
366 
367 	if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
368 		zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
369 		zb->zb_header->bzh_kernel_len = d->bd_slen;
370 		atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
371 	}
372 }
373 
374 /*
375  * Notification from the BPF framework that a buffer has moved into the held
376  * slot on a descriptor.  Zero-copy BPF will update the shared page to let
377  * the user process know and flag the buffer as assigned if it hasn't already
378  * been marked assigned due to filling while it was in the store position.
379  *
380  * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
381  * on bd_hbuf and bd_hlen.
382  */
383 void
384 bpf_zerocopy_bufheld(struct bpf_d *d)
385 {
386 	struct zbuf *zb;
387 
388 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
389 	    ("bpf_zerocopy_bufheld: not in zbuf mode"));
390 
391 	zb = (struct zbuf *)d->bd_hbuf;
392 	KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
393 
394 	if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
395 		zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
396 		zb->zb_header->bzh_kernel_len = d->bd_hlen;
397 		atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
398 	}
399 }
400 
401 /*
402  * Notification from the BPF framework that the free buffer has been been
403  * rotated out of the held position to the free position.  This happens when
404  * the user acknowledges the held buffer.
405  */
406 void
407 bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
408 {
409 	struct zbuf *zb;
410 
411 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
412 	    ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
413 
414 	KASSERT(d->bd_fbuf != NULL,
415 	    ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
416 	zb = (struct zbuf *)d->bd_fbuf;
417 	zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
418 }
419 
420 /*
421  * Query from the BPF framework regarding whether the buffer currently in the
422  * held position can be moved to the free position, which can be indicated by
423  * the user process making their generation number equal to the kernel
424  * generation number.
425  */
426 int
427 bpf_zerocopy_canfreebuf(struct bpf_d *d)
428 {
429 	struct zbuf *zb;
430 
431 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
432 	    ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
433 
434 	zb = (struct zbuf *)d->bd_hbuf;
435 	if (zb == NULL)
436 		return (0);
437 	if (zb->zb_header->bzh_kernel_gen ==
438 	    atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
439 		return (1);
440 	return (0);
441 }
442 
443 /*
444  * Query from the BPF framework as to whether or not the buffer current in
445  * the store position can actually be written to.  This may return false if
446  * the store buffer is assigned to userspace before the hold buffer is
447  * acknowledged.
448  */
449 int
450 bpf_zerocopy_canwritebuf(struct bpf_d *d)
451 {
452 	struct zbuf *zb;
453 
454 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
455 	    ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
456 
457 	zb = (struct zbuf *)d->bd_sbuf;
458 	KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
459 
460 	if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
461 		return (0);
462 	return (1);
463 }
464 
465 /*
466  * Free zero copy buffers at request of descriptor.
467  */
468 void
469 bpf_zerocopy_free(struct bpf_d *d)
470 {
471 	struct zbuf *zb;
472 
473 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
474 	    ("bpf_zerocopy_free: not in zbuf mode"));
475 
476 	zb = (struct zbuf *)d->bd_sbuf;
477 	if (zb != NULL)
478 		zbuf_free(zb);
479 	zb = (struct zbuf *)d->bd_hbuf;
480 	if (zb != NULL)
481 		zbuf_free(zb);
482 	zb = (struct zbuf *)d->bd_fbuf;
483 	if (zb != NULL)
484 		zbuf_free(zb);
485 }
486 
487 /*
488  * Ioctl to return the maximum buffer size.
489  */
490 int
491 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
492 {
493 
494 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
495 	    ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
496 
497 	*i = BPF_MAX_PAGES * PAGE_SIZE;
498 	return (0);
499 }
500 
501 /*
502  * Ioctl to force rotation of the two buffers, if there's any data available.
503  * This can be used by user space to implement timeouts when waiting for a
504  * buffer to fill.
505  */
506 int
507 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
508     struct bpf_zbuf *bz)
509 {
510 	struct zbuf *bzh;
511 
512 	bzero(bz, sizeof(*bz));
513 	BPFD_LOCK(d);
514 	if (d->bd_hbuf == NULL && d->bd_slen != 0) {
515 		ROTATE_BUFFERS(d);
516 		bzh = (struct zbuf *)d->bd_hbuf;
517 		bz->bz_bufa = (void *)bzh->zb_uaddr;
518 		bz->bz_buflen = d->bd_hlen;
519 	}
520 	BPFD_UNLOCK(d);
521 	return (0);
522 }
523 
524 /*
525  * Ioctl to configure zero-copy buffers -- may be done only once.
526  */
527 int
528 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
529     struct bpf_zbuf *bz)
530 {
531 	struct zbuf *zba, *zbb;
532 	int error;
533 
534 	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
535 	    ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
536 
537 	/*
538 	 * Must set both buffers.  Cannot clear them.
539 	 */
540 	if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
541 		return (EINVAL);
542 
543 	/*
544 	 * Buffers must have a size greater than 0.  Alignment and other size
545 	 * validity checking is done in zbuf_setup().
546 	 */
547 	if (bz->bz_buflen == 0)
548 		return (EINVAL);
549 
550 	/*
551 	 * Allocate new buffers.
552 	 */
553 	error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
554 	    &zba);
555 	if (error)
556 		return (error);
557 	error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
558 	    &zbb);
559 	if (error) {
560 		zbuf_free(zba);
561 		return (error);
562 	}
563 
564 	/*
565 	 * We only allow buffers to be installed once, so atomically check
566 	 * that no buffers are currently installed and install new buffers.
567 	 */
568 	BPFD_LOCK(d);
569 	if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
570 	    d->bd_bif != NULL) {
571 		BPFD_UNLOCK(d);
572 		zbuf_free(zba);
573 		zbuf_free(zbb);
574 		return (EINVAL);
575 	}
576 
577 	/*
578 	 * Point BPF descriptor at buffers; initialize sbuf as zba so that
579 	 * it is always filled first in the sequence, per bpf(4).
580 	 */
581 	d->bd_fbuf = (caddr_t)zbb;
582 	d->bd_sbuf = (caddr_t)zba;
583 	d->bd_slen = 0;
584 	d->bd_hlen = 0;
585 
586 	/*
587 	 * We expose only the space left in the buffer after the size of the
588 	 * shared management region.
589 	 */
590 	d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
591 	BPFD_UNLOCK(d);
592 	return (0);
593 }
594