1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007 Seccuris Inc. 5 * All rights reserved. 6 * 7 * This software was developed by Robert N. M. Watson under contract to 8 * Seccuris Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_bpf.h" 34 35 #include <sys/param.h> 36 #include <sys/lock.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/sf_buf.h> 42 #include <sys/socket.h> 43 #include <sys/uio.h> 44 45 #include <machine/atomic.h> 46 47 #include <net/if.h> 48 #include <net/bpf.h> 49 #include <net/bpf_zerocopy.h> 50 #include <net/bpfdesc.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_param.h> 54 #include <vm/pmap.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_map.h> 57 #include <vm/vm_page.h> 58 59 /* 60 * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which 61 * are mapped into the kernel address space using sf_bufs and used directly 62 * by BPF. Memory is wired since page faults cannot be tolerated in the 63 * contexts where the buffers are copied to (locks held, interrupt context, 64 * etc). Access to shared memory buffers is synchronized using a header on 65 * each buffer, allowing the number of system calls to go to zero as BPF 66 * reaches saturation (buffers filled as fast as they can be drained by the 67 * user process). Full details of the protocol for communicating between the 68 * user process and BPF may be found in bpf(4). 69 */ 70 71 /* 72 * Maximum number of pages per buffer. Since all BPF devices use two, the 73 * maximum per device is 2*BPF_MAX_PAGES. Resource limits on the number of 74 * sf_bufs may be an issue, so do not set this too high. On older systems, 75 * kernel address space limits may also be an issue. 76 */ 77 #define BPF_MAX_PAGES 512 78 79 /* 80 * struct zbuf describes a memory buffer loaned by a user process to the 81 * kernel. We represent this as a series of pages managed using an array of 82 * sf_bufs. Even though the memory is contiguous in user space, it may not 83 * be mapped contiguously in the kernel (i.e., a set of physically 84 * non-contiguous pages in the direct map region) so we must implement 85 * scatter-gather copying. One significant mitigating factor is that on 86 * systems with a direct memory map, we can avoid TLB misses. 87 * 88 * At the front of the shared memory region is a bpf_zbuf_header, which 89 * contains shared control data to allow user space and the kernel to 90 * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF 91 * knows that the space is not available. 92 */ 93 struct zbuf { 94 vm_offset_t zb_uaddr; /* User address at time of setup. */ 95 size_t zb_size; /* Size of buffer, incl. header. */ 96 u_int zb_numpages; /* Number of pages. */ 97 int zb_flags; /* Flags on zbuf. */ 98 struct sf_buf **zb_pages; /* Pages themselves. */ 99 struct bpf_zbuf_header *zb_header; /* Shared header. */ 100 }; 101 102 /* 103 * When a buffer has been assigned to userspace, flag it as such, as the 104 * buffer may remain in the store position as a result of the user process 105 * not yet having acknowledged the buffer in the hold position yet. 106 */ 107 #define ZBUF_FLAG_ASSIGNED 0x00000001 /* Set when owned by user. */ 108 109 /* 110 * Release a page we've previously wired. 111 */ 112 static void 113 zbuf_page_free(vm_page_t pp) 114 { 115 116 vm_page_unwire(pp, PQ_INACTIVE); 117 } 118 119 /* 120 * Free an sf_buf with attached page. 121 */ 122 static void 123 zbuf_sfbuf_free(struct sf_buf *sf) 124 { 125 vm_page_t pp; 126 127 pp = sf_buf_page(sf); 128 sf_buf_free(sf); 129 zbuf_page_free(pp); 130 } 131 132 /* 133 * Free a zbuf, including its page array, sbufs, and pages. Allow partially 134 * allocated zbufs to be freed so that it may be used even during a zbuf 135 * setup. 136 */ 137 static void 138 zbuf_free(struct zbuf *zb) 139 { 140 int i; 141 142 for (i = 0; i < zb->zb_numpages; i++) { 143 if (zb->zb_pages[i] != NULL) 144 zbuf_sfbuf_free(zb->zb_pages[i]); 145 } 146 free(zb->zb_pages, M_BPF); 147 free(zb, M_BPF); 148 } 149 150 /* 151 * Given a user pointer to a page of user memory, return an sf_buf for the 152 * page. Because we may be requesting quite a few sf_bufs, prefer failure to 153 * deadlock and use SFB_NOWAIT. 154 */ 155 static struct sf_buf * 156 zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr) 157 { 158 struct sf_buf *sf; 159 vm_page_t pp; 160 161 if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ | 162 VM_PROT_WRITE, &pp, 1) < 0) 163 return (NULL); 164 sf = sf_buf_alloc(pp, SFB_NOWAIT); 165 if (sf == NULL) { 166 zbuf_page_free(pp); 167 return (NULL); 168 } 169 return (sf); 170 } 171 172 /* 173 * Create a zbuf describing a range of user address space memory. Validate 174 * page alignment, size requirements, etc. 175 */ 176 static int 177 zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len, 178 struct zbuf **zbp) 179 { 180 struct zbuf *zb; 181 struct vm_map *map; 182 int error, i; 183 184 *zbp = NULL; 185 186 /* 187 * User address must be page-aligned. 188 */ 189 if (uaddr & PAGE_MASK) 190 return (EINVAL); 191 192 /* 193 * Length must be an integer number of full pages. 194 */ 195 if (len & PAGE_MASK) 196 return (EINVAL); 197 198 /* 199 * Length must not exceed per-buffer resource limit. 200 */ 201 if ((len / PAGE_SIZE) > BPF_MAX_PAGES) 202 return (EINVAL); 203 204 /* 205 * Allocate the buffer and set up each page with is own sf_buf. 206 */ 207 error = 0; 208 zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK); 209 zb->zb_uaddr = uaddr; 210 zb->zb_size = len; 211 zb->zb_numpages = len / PAGE_SIZE; 212 zb->zb_pages = malloc(sizeof(struct sf_buf *) * 213 zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK); 214 map = &td->td_proc->p_vmspace->vm_map; 215 for (i = 0; i < zb->zb_numpages; i++) { 216 zb->zb_pages[i] = zbuf_sfbuf_get(map, 217 uaddr + (i * PAGE_SIZE)); 218 if (zb->zb_pages[i] == NULL) { 219 error = EFAULT; 220 goto error; 221 } 222 } 223 zb->zb_header = 224 (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]); 225 bzero(zb->zb_header, sizeof(*zb->zb_header)); 226 *zbp = zb; 227 return (0); 228 229 error: 230 zbuf_free(zb); 231 return (error); 232 } 233 234 /* 235 * Copy bytes from a source into the specified zbuf. The caller is 236 * responsible for performing bounds checking, etc. 237 */ 238 void 239 bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, 240 void *src, u_int len) 241 { 242 u_int count, page, poffset; 243 u_char *src_bytes; 244 struct zbuf *zb; 245 246 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 247 ("bpf_zerocopy_append_bytes: not in zbuf mode")); 248 KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf")); 249 250 src_bytes = (u_char *)src; 251 zb = (struct zbuf *)buf; 252 253 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 254 ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED")); 255 256 /* 257 * Scatter-gather copy to user pages mapped into kernel address space 258 * using sf_bufs: copy up to a page at a time. 259 */ 260 offset += sizeof(struct bpf_zbuf_header); 261 page = offset / PAGE_SIZE; 262 poffset = offset % PAGE_SIZE; 263 while (len > 0) { 264 KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:" 265 " page overflow (%d p %d np)\n", page, zb->zb_numpages)); 266 267 count = min(len, PAGE_SIZE - poffset); 268 bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) + 269 poffset, count); 270 poffset += count; 271 if (poffset == PAGE_SIZE) { 272 poffset = 0; 273 page++; 274 } 275 KASSERT(poffset < PAGE_SIZE, 276 ("bpf_zerocopy_append_bytes: page offset overflow (%d)", 277 poffset)); 278 len -= count; 279 src_bytes += count; 280 } 281 } 282 283 /* 284 * Copy bytes from an mbuf chain to the specified zbuf: copying will be 285 * scatter-gather both from mbufs, which may be fragmented over memory, and 286 * to pages, which may not be contiguously mapped in kernel address space. 287 * As with bpf_zerocopy_append_bytes(), the caller is responsible for 288 * checking that this will not exceed the buffer limit. 289 */ 290 void 291 bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, 292 void *src, u_int len) 293 { 294 u_int count, moffset, page, poffset; 295 const struct mbuf *m; 296 struct zbuf *zb; 297 298 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 299 ("bpf_zerocopy_append_mbuf not in zbuf mode")); 300 KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf")); 301 302 m = (struct mbuf *)src; 303 zb = (struct zbuf *)buf; 304 305 KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0, 306 ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED")); 307 308 /* 309 * Scatter gather both from an mbuf chain and to a user page set 310 * mapped into kernel address space using sf_bufs. If we're lucky, 311 * each mbuf requires one copy operation, but if page alignment and 312 * mbuf alignment work out less well, we'll be doing two copies per 313 * mbuf. 314 */ 315 offset += sizeof(struct bpf_zbuf_header); 316 page = offset / PAGE_SIZE; 317 poffset = offset % PAGE_SIZE; 318 moffset = 0; 319 while (len > 0) { 320 KASSERT(page < zb->zb_numpages, 321 ("bpf_zerocopy_append_mbuf: page overflow (%d p %d " 322 "np)\n", page, zb->zb_numpages)); 323 KASSERT(m != NULL, 324 ("bpf_zerocopy_append_mbuf: end of mbuf chain")); 325 326 count = min(m->m_len - moffset, len); 327 count = min(count, PAGE_SIZE - poffset); 328 bcopy(mtod(m, u_char *) + moffset, 329 ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset, 330 count); 331 poffset += count; 332 if (poffset == PAGE_SIZE) { 333 poffset = 0; 334 page++; 335 } 336 KASSERT(poffset < PAGE_SIZE, 337 ("bpf_zerocopy_append_mbuf: page offset overflow (%d)", 338 poffset)); 339 moffset += count; 340 if (moffset == m->m_len) { 341 m = m->m_next; 342 moffset = 0; 343 } 344 len -= count; 345 } 346 } 347 348 /* 349 * Notification from the BPF framework that a buffer in the store position is 350 * rejecting packets and may be considered full. We mark the buffer as 351 * immutable and assign to userspace so that it is immediately available for 352 * the user process to access. 353 */ 354 void 355 bpf_zerocopy_buffull(struct bpf_d *d) 356 { 357 struct zbuf *zb; 358 359 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 360 ("bpf_zerocopy_buffull: not in zbuf mode")); 361 362 zb = (struct zbuf *)d->bd_sbuf; 363 KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL")); 364 365 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 366 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 367 zb->zb_header->bzh_kernel_len = d->bd_slen; 368 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 369 } 370 } 371 372 /* 373 * Notification from the BPF framework that a buffer has moved into the held 374 * slot on a descriptor. Zero-copy BPF will update the shared page to let 375 * the user process know and flag the buffer as assigned if it hasn't already 376 * been marked assigned due to filling while it was in the store position. 377 * 378 * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate 379 * on bd_hbuf and bd_hlen. 380 */ 381 void 382 bpf_zerocopy_bufheld(struct bpf_d *d) 383 { 384 struct zbuf *zb; 385 386 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 387 ("bpf_zerocopy_bufheld: not in zbuf mode")); 388 389 zb = (struct zbuf *)d->bd_hbuf; 390 KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL")); 391 392 if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) { 393 zb->zb_flags |= ZBUF_FLAG_ASSIGNED; 394 zb->zb_header->bzh_kernel_len = d->bd_hlen; 395 atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1); 396 } 397 } 398 399 /* 400 * Notification from the BPF framework that the free buffer has been been 401 * rotated out of the held position to the free position. This happens when 402 * the user acknowledges the held buffer. 403 */ 404 void 405 bpf_zerocopy_buf_reclaimed(struct bpf_d *d) 406 { 407 struct zbuf *zb; 408 409 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 410 ("bpf_zerocopy_reclaim_buf: not in zbuf mode")); 411 412 KASSERT(d->bd_fbuf != NULL, 413 ("bpf_zerocopy_buf_reclaimed: NULL free buf")); 414 zb = (struct zbuf *)d->bd_fbuf; 415 zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED; 416 } 417 418 /* 419 * Query from the BPF framework regarding whether the buffer currently in the 420 * held position can be moved to the free position, which can be indicated by 421 * the user process making their generation number equal to the kernel 422 * generation number. 423 */ 424 int 425 bpf_zerocopy_canfreebuf(struct bpf_d *d) 426 { 427 struct zbuf *zb; 428 429 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 430 ("bpf_zerocopy_canfreebuf: not in zbuf mode")); 431 432 zb = (struct zbuf *)d->bd_hbuf; 433 if (zb == NULL) 434 return (0); 435 if (zb->zb_header->bzh_kernel_gen == 436 atomic_load_acq_int(&zb->zb_header->bzh_user_gen)) 437 return (1); 438 return (0); 439 } 440 441 /* 442 * Query from the BPF framework as to whether or not the buffer current in 443 * the store position can actually be written to. This may return false if 444 * the store buffer is assigned to userspace before the hold buffer is 445 * acknowledged. 446 */ 447 int 448 bpf_zerocopy_canwritebuf(struct bpf_d *d) 449 { 450 struct zbuf *zb; 451 452 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 453 ("bpf_zerocopy_canwritebuf: not in zbuf mode")); 454 455 zb = (struct zbuf *)d->bd_sbuf; 456 KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL")); 457 458 if (zb->zb_flags & ZBUF_FLAG_ASSIGNED) 459 return (0); 460 return (1); 461 } 462 463 /* 464 * Free zero copy buffers at request of descriptor. 465 */ 466 void 467 bpf_zerocopy_free(struct bpf_d *d) 468 { 469 struct zbuf *zb; 470 471 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 472 ("bpf_zerocopy_free: not in zbuf mode")); 473 474 zb = (struct zbuf *)d->bd_sbuf; 475 if (zb != NULL) 476 zbuf_free(zb); 477 zb = (struct zbuf *)d->bd_hbuf; 478 if (zb != NULL) 479 zbuf_free(zb); 480 zb = (struct zbuf *)d->bd_fbuf; 481 if (zb != NULL) 482 zbuf_free(zb); 483 } 484 485 /* 486 * Ioctl to return the maximum buffer size. 487 */ 488 int 489 bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i) 490 { 491 492 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 493 ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode")); 494 495 *i = BPF_MAX_PAGES * PAGE_SIZE; 496 return (0); 497 } 498 499 /* 500 * Ioctl to force rotation of the two buffers, if there's any data available. 501 * This can be used by user space to implement timeouts when waiting for a 502 * buffer to fill. 503 */ 504 int 505 bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, 506 struct bpf_zbuf *bz) 507 { 508 struct zbuf *bzh; 509 510 bzero(bz, sizeof(*bz)); 511 BPFD_LOCK(d); 512 if (d->bd_hbuf == NULL && d->bd_slen != 0) { 513 ROTATE_BUFFERS(d); 514 bzh = (struct zbuf *)d->bd_hbuf; 515 bz->bz_bufa = (void *)bzh->zb_uaddr; 516 bz->bz_buflen = d->bd_hlen; 517 } 518 BPFD_UNLOCK(d); 519 return (0); 520 } 521 522 /* 523 * Ioctl to configure zero-copy buffers -- may be done only once. 524 */ 525 int 526 bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d, 527 struct bpf_zbuf *bz) 528 { 529 struct zbuf *zba, *zbb; 530 int error; 531 532 KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF, 533 ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode")); 534 535 /* 536 * Must set both buffers. Cannot clear them. 537 */ 538 if (bz->bz_bufa == NULL || bz->bz_bufb == NULL) 539 return (EINVAL); 540 541 /* 542 * Buffers must have a size greater than 0. Alignment and other size 543 * validity checking is done in zbuf_setup(). 544 */ 545 if (bz->bz_buflen == 0) 546 return (EINVAL); 547 548 /* 549 * Allocate new buffers. 550 */ 551 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen, 552 &zba); 553 if (error) 554 return (error); 555 error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen, 556 &zbb); 557 if (error) { 558 zbuf_free(zba); 559 return (error); 560 } 561 562 /* 563 * We only allow buffers to be installed once, so atomically check 564 * that no buffers are currently installed and install new buffers. 565 */ 566 BPFD_LOCK(d); 567 if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL || 568 d->bd_bif != NULL) { 569 BPFD_UNLOCK(d); 570 zbuf_free(zba); 571 zbuf_free(zbb); 572 return (EINVAL); 573 } 574 575 /* 576 * Point BPF descriptor at buffers; initialize sbuf as zba so that 577 * it is always filled first in the sequence, per bpf(4). 578 */ 579 d->bd_fbuf = (caddr_t)zbb; 580 d->bd_sbuf = (caddr_t)zba; 581 d->bd_slen = 0; 582 d->bd_hlen = 0; 583 584 /* 585 * We expose only the space left in the buffer after the size of the 586 * shared management region. 587 */ 588 d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header); 589 BPFD_UNLOCK(d); 590 return (0); 591 } 592