xref: /freebsd/sys/net/bpf.c (revision d9a42747950146bf03cda7f6e25d219253f8a57a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7  *
8  * This code is derived from the Stanford/CMU enet packet filter,
9  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11  * Berkeley Laboratory.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_bpf.h"
44 #include "opt_ddb.h"
45 #include "opt_netgraph.h"
46 
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/jail.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/time.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/signalvar.h>
61 #include <sys/filio.h>
62 #include <sys/sockio.h>
63 #include <sys/ttycom.h>
64 #include <sys/uio.h>
65 #include <sys/sysent.h>
66 #include <sys/systm.h>
67 
68 #include <sys/event.h>
69 #include <sys/file.h>
70 #include <sys/poll.h>
71 #include <sys/proc.h>
72 
73 #include <sys/socket.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 #include <net/if.h>
80 #include <net/if_var.h>
81 #include <net/if_private.h>
82 #include <net/if_vlan_var.h>
83 #include <net/if_dl.h>
84 #include <net/bpf.h>
85 #include <net/bpf_buffer.h>
86 #ifdef BPF_JITTER
87 #include <net/bpf_jitter.h>
88 #endif
89 #include <net/bpf_zerocopy.h>
90 #include <net/bpfdesc.h>
91 #include <net/route.h>
92 #include <net/vnet.h>
93 
94 #include <netinet/in.h>
95 #include <netinet/if_ether.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 
99 #include <net80211/ieee80211_freebsd.h>
100 
101 #include <security/mac/mac_framework.h>
102 
103 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
104 
105 static struct bpf_if_ext dead_bpf_if = {
106 	.bif_dlist = CK_LIST_HEAD_INITIALIZER()
107 };
108 
109 struct bpf_if {
110 #define	bif_next	bif_ext.bif_next
111 #define	bif_dlist	bif_ext.bif_dlist
112 	struct bpf_if_ext bif_ext;	/* public members */
113 	u_int		bif_dlt;	/* link layer type */
114 	u_int		bif_hdrlen;	/* length of link header */
115 	struct bpfd_list bif_wlist;	/* writer-only list */
116 	struct ifnet	*bif_ifp;	/* corresponding interface */
117 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
118 	volatile u_int	bif_refcnt;
119 	struct epoch_context epoch_ctx;
120 };
121 
122 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
123 
124 struct bpf_program_buffer {
125 	struct epoch_context	epoch_ctx;
126 #ifdef BPF_JITTER
127 	bpf_jit_filter		*func;
128 #endif
129 	void			*buffer[0];
130 };
131 
132 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
133 
134 #define PRINET  26			/* interruptible */
135 #define BPF_PRIO_MAX	7
136 
137 #define	SIZEOF_BPF_HDR(type)	\
138     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
139 
140 #ifdef COMPAT_FREEBSD32
141 #include <sys/mount.h>
142 #include <compat/freebsd32/freebsd32.h>
143 #define BPF_ALIGNMENT32 sizeof(int32_t)
144 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
145 
146 #ifndef BURN_BRIDGES
147 /*
148  * 32-bit version of structure prepended to each packet.  We use this header
149  * instead of the standard one for 32-bit streams.  We mark the a stream as
150  * 32-bit the first time we see a 32-bit compat ioctl request.
151  */
152 struct bpf_hdr32 {
153 	struct timeval32 bh_tstamp;	/* time stamp */
154 	uint32_t	bh_caplen;	/* length of captured portion */
155 	uint32_t	bh_datalen;	/* original length of packet */
156 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
157 					   plus alignment padding) */
158 };
159 #endif
160 
161 struct bpf_program32 {
162 	u_int bf_len;
163 	uint32_t bf_insns;
164 };
165 
166 struct bpf_dltlist32 {
167 	u_int	bfl_len;
168 	u_int	bfl_list;
169 };
170 
171 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
172 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
173 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
174 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
175 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
176 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
177 #endif
178 
179 #define BPF_LOCK()	   sx_xlock(&bpf_sx)
180 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
181 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
182 /*
183  * bpf_iflist is a list of BPF interface structures, each corresponding to a
184  * specific DLT. The same network interface might have several BPF interface
185  * structures registered by different layers in the stack (i.e., 802.11
186  * frames, ethernet frames, etc).
187  */
188 CK_LIST_HEAD(bpf_iflist, bpf_if);
189 static struct bpf_iflist bpf_iflist;
190 static struct sx	bpf_sx;		/* bpf global lock */
191 static int		bpf_bpfd_cnt;
192 
193 static void	bpfif_ref(struct bpf_if *);
194 static void	bpfif_rele(struct bpf_if *);
195 
196 static void	bpfd_ref(struct bpf_d *);
197 static void	bpfd_rele(struct bpf_d *);
198 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
199 static void	bpf_detachd(struct bpf_d *);
200 static void	bpf_detachd_locked(struct bpf_d *, bool);
201 static void	bpfd_free(epoch_context_t);
202 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
203 		    struct sockaddr *, int *, struct bpf_d *);
204 static int	bpf_setif(struct bpf_d *, struct ifreq *);
205 static void	bpf_timed_out(void *);
206 static __inline void
207 		bpf_wakeup(struct bpf_d *);
208 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
209 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
210 		    struct bintime *);
211 static void	reset_d(struct bpf_d *);
212 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
213 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
214 static int	bpf_setdlt(struct bpf_d *, u_int);
215 static void	filt_bpfdetach(struct knote *);
216 static int	filt_bpfread(struct knote *, long);
217 static int	filt_bpfwrite(struct knote *, long);
218 static void	bpf_drvinit(void *);
219 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
220 
221 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
222     "bpf sysctl");
223 int bpf_maxinsns = BPF_MAXINSNS;
224 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
225     &bpf_maxinsns, 0, "Maximum bpf program instructions");
226 static int bpf_zerocopy_enable = 0;
227 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
228     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
229 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
230     bpf_stats_sysctl, "bpf statistics portal");
231 
232 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
233 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
234 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
235     &VNET_NAME(bpf_optimize_writers), 0,
236     "Do not send packets until BPF program is set");
237 
238 static	d_open_t	bpfopen;
239 static	d_read_t	bpfread;
240 static	d_write_t	bpfwrite;
241 static	d_ioctl_t	bpfioctl;
242 static	d_poll_t	bpfpoll;
243 static	d_kqfilter_t	bpfkqfilter;
244 
245 static struct cdevsw bpf_cdevsw = {
246 	.d_version =	D_VERSION,
247 	.d_open =	bpfopen,
248 	.d_read =	bpfread,
249 	.d_write =	bpfwrite,
250 	.d_ioctl =	bpfioctl,
251 	.d_poll =	bpfpoll,
252 	.d_name =	"bpf",
253 	.d_kqfilter =	bpfkqfilter,
254 };
255 
256 static struct filterops bpfread_filtops = {
257 	.f_isfd = 1,
258 	.f_detach = filt_bpfdetach,
259 	.f_event = filt_bpfread,
260 };
261 
262 static struct filterops bpfwrite_filtops = {
263 	.f_isfd = 1,
264 	.f_detach = filt_bpfdetach,
265 	.f_event = filt_bpfwrite,
266 };
267 
268 /*
269  * LOCKING MODEL USED BY BPF
270  *
271  * Locks:
272  * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
273  * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
274  * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
275  * structure fields used by bpf_*tap* code.
276  *
277  * Lock order: global lock, then descriptor lock.
278  *
279  * There are several possible consumers:
280  *
281  * 1. The kernel registers interface pointer with bpfattach().
282  * Each call allocates new bpf_if structure, references ifnet pointer
283  * and links bpf_if into bpf_iflist chain. This is protected with global
284  * lock.
285  *
286  * 2. An userland application uses ioctl() call to bpf_d descriptor.
287  * All such call are serialized with global lock. BPF filters can be
288  * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
289  * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
290  * filter pointers, even if change will happen during bpf_tap execution.
291  * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
292  *
293  * 3. An userland application can write packets into bpf_d descriptor.
294  * There we need to be sure, that ifnet won't disappear during bpfwrite().
295  *
296  * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
297  * bif_dlist is protected with net_epoch_preempt section. So, it should
298  * be safe to make access to bpf_d descriptor inside the section.
299  *
300  * 5. The kernel invokes bpfdetach() on interface destroying. All lists
301  * are modified with global lock held and actual free() is done using
302  * NET_EPOCH_CALL().
303  */
304 
305 static void
306 bpfif_free(epoch_context_t ctx)
307 {
308 	struct bpf_if *bp;
309 
310 	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
311 	if_rele(bp->bif_ifp);
312 	free(bp, M_BPF);
313 }
314 
315 static void
316 bpfif_ref(struct bpf_if *bp)
317 {
318 
319 	refcount_acquire(&bp->bif_refcnt);
320 }
321 
322 static void
323 bpfif_rele(struct bpf_if *bp)
324 {
325 
326 	if (!refcount_release(&bp->bif_refcnt))
327 		return;
328 	NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
329 }
330 
331 static void
332 bpfd_ref(struct bpf_d *d)
333 {
334 
335 	refcount_acquire(&d->bd_refcnt);
336 }
337 
338 static void
339 bpfd_rele(struct bpf_d *d)
340 {
341 
342 	if (!refcount_release(&d->bd_refcnt))
343 		return;
344 	NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
345 }
346 
347 static struct bpf_program_buffer*
348 bpf_program_buffer_alloc(size_t size, int flags)
349 {
350 
351 	return (malloc(sizeof(struct bpf_program_buffer) + size,
352 	    M_BPF, flags));
353 }
354 
355 static void
356 bpf_program_buffer_free(epoch_context_t ctx)
357 {
358 	struct bpf_program_buffer *ptr;
359 
360 	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
361 #ifdef BPF_JITTER
362 	if (ptr->func != NULL)
363 		bpf_destroy_jit_filter(ptr->func);
364 #endif
365 	free(ptr, M_BPF);
366 }
367 
368 /*
369  * Wrapper functions for various buffering methods.  If the set of buffer
370  * modes expands, we will probably want to introduce a switch data structure
371  * similar to protosw, et.
372  */
373 static void
374 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
375     u_int len)
376 {
377 
378 	BPFD_LOCK_ASSERT(d);
379 
380 	switch (d->bd_bufmode) {
381 	case BPF_BUFMODE_BUFFER:
382 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
383 
384 	case BPF_BUFMODE_ZBUF:
385 		counter_u64_add(d->bd_zcopy, 1);
386 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
387 
388 	default:
389 		panic("bpf_buf_append_bytes");
390 	}
391 }
392 
393 static void
394 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
395     u_int len)
396 {
397 
398 	BPFD_LOCK_ASSERT(d);
399 
400 	switch (d->bd_bufmode) {
401 	case BPF_BUFMODE_BUFFER:
402 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
403 
404 	case BPF_BUFMODE_ZBUF:
405 		counter_u64_add(d->bd_zcopy, 1);
406 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
407 
408 	default:
409 		panic("bpf_buf_append_mbuf");
410 	}
411 }
412 
413 /*
414  * This function gets called when the free buffer is re-assigned.
415  */
416 static void
417 bpf_buf_reclaimed(struct bpf_d *d)
418 {
419 
420 	BPFD_LOCK_ASSERT(d);
421 
422 	switch (d->bd_bufmode) {
423 	case BPF_BUFMODE_BUFFER:
424 		return;
425 
426 	case BPF_BUFMODE_ZBUF:
427 		bpf_zerocopy_buf_reclaimed(d);
428 		return;
429 
430 	default:
431 		panic("bpf_buf_reclaimed");
432 	}
433 }
434 
435 /*
436  * If the buffer mechanism has a way to decide that a held buffer can be made
437  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
438  * returned if the buffer can be discarded, (0) is returned if it cannot.
439  */
440 static int
441 bpf_canfreebuf(struct bpf_d *d)
442 {
443 
444 	BPFD_LOCK_ASSERT(d);
445 
446 	switch (d->bd_bufmode) {
447 	case BPF_BUFMODE_ZBUF:
448 		return (bpf_zerocopy_canfreebuf(d));
449 	}
450 	return (0);
451 }
452 
453 /*
454  * Allow the buffer model to indicate that the current store buffer is
455  * immutable, regardless of the appearance of space.  Return (1) if the
456  * buffer is writable, and (0) if not.
457  */
458 static int
459 bpf_canwritebuf(struct bpf_d *d)
460 {
461 	BPFD_LOCK_ASSERT(d);
462 
463 	switch (d->bd_bufmode) {
464 	case BPF_BUFMODE_ZBUF:
465 		return (bpf_zerocopy_canwritebuf(d));
466 	}
467 	return (1);
468 }
469 
470 /*
471  * Notify buffer model that an attempt to write to the store buffer has
472  * resulted in a dropped packet, in which case the buffer may be considered
473  * full.
474  */
475 static void
476 bpf_buffull(struct bpf_d *d)
477 {
478 
479 	BPFD_LOCK_ASSERT(d);
480 
481 	switch (d->bd_bufmode) {
482 	case BPF_BUFMODE_ZBUF:
483 		bpf_zerocopy_buffull(d);
484 		break;
485 	}
486 }
487 
488 /*
489  * Notify the buffer model that a buffer has moved into the hold position.
490  */
491 void
492 bpf_bufheld(struct bpf_d *d)
493 {
494 
495 	BPFD_LOCK_ASSERT(d);
496 
497 	switch (d->bd_bufmode) {
498 	case BPF_BUFMODE_ZBUF:
499 		bpf_zerocopy_bufheld(d);
500 		break;
501 	}
502 }
503 
504 static void
505 bpf_free(struct bpf_d *d)
506 {
507 
508 	switch (d->bd_bufmode) {
509 	case BPF_BUFMODE_BUFFER:
510 		return (bpf_buffer_free(d));
511 
512 	case BPF_BUFMODE_ZBUF:
513 		return (bpf_zerocopy_free(d));
514 
515 	default:
516 		panic("bpf_buf_free");
517 	}
518 }
519 
520 static int
521 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
522 {
523 
524 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
525 		return (EOPNOTSUPP);
526 	return (bpf_buffer_uiomove(d, buf, len, uio));
527 }
528 
529 static int
530 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
531 {
532 
533 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
534 		return (EOPNOTSUPP);
535 	return (bpf_buffer_ioctl_sblen(d, i));
536 }
537 
538 static int
539 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
540 {
541 
542 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
543 		return (EOPNOTSUPP);
544 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
545 }
546 
547 static int
548 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
549 {
550 
551 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
552 		return (EOPNOTSUPP);
553 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
554 }
555 
556 static int
557 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
558 {
559 
560 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
561 		return (EOPNOTSUPP);
562 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
563 }
564 
565 /*
566  * General BPF functions.
567  */
568 static int
569 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
570     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
571 {
572 	const struct ieee80211_bpf_params *p;
573 	struct ether_header *eh;
574 	struct mbuf *m;
575 	int error;
576 	int len;
577 	int hlen;
578 	int slen;
579 
580 	/*
581 	 * Build a sockaddr based on the data link layer type.
582 	 * We do this at this level because the ethernet header
583 	 * is copied directly into the data field of the sockaddr.
584 	 * In the case of SLIP, there is no header and the packet
585 	 * is forwarded as is.
586 	 * Also, we are careful to leave room at the front of the mbuf
587 	 * for the link level header.
588 	 */
589 	switch (linktype) {
590 	case DLT_SLIP:
591 		sockp->sa_family = AF_INET;
592 		hlen = 0;
593 		break;
594 
595 	case DLT_EN10MB:
596 		sockp->sa_family = AF_UNSPEC;
597 		/* XXX Would MAXLINKHDR be better? */
598 		hlen = ETHER_HDR_LEN;
599 		break;
600 
601 	case DLT_FDDI:
602 		sockp->sa_family = AF_IMPLINK;
603 		hlen = 0;
604 		break;
605 
606 	case DLT_RAW:
607 		sockp->sa_family = AF_UNSPEC;
608 		hlen = 0;
609 		break;
610 
611 	case DLT_NULL:
612 		/*
613 		 * null interface types require a 4 byte pseudo header which
614 		 * corresponds to the address family of the packet.
615 		 */
616 		sockp->sa_family = AF_UNSPEC;
617 		hlen = 4;
618 		break;
619 
620 	case DLT_ATM_RFC1483:
621 		/*
622 		 * en atm driver requires 4-byte atm pseudo header.
623 		 * though it isn't standard, vpi:vci needs to be
624 		 * specified anyway.
625 		 */
626 		sockp->sa_family = AF_UNSPEC;
627 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
628 		break;
629 
630 	case DLT_PPP:
631 		sockp->sa_family = AF_UNSPEC;
632 		hlen = 4;	/* This should match PPP_HDRLEN */
633 		break;
634 
635 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
636 		sockp->sa_family = AF_IEEE80211;
637 		hlen = 0;
638 		break;
639 
640 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
641 		sockp->sa_family = AF_IEEE80211;
642 		sockp->sa_len = 12;	/* XXX != 0 */
643 		hlen = sizeof(struct ieee80211_bpf_params);
644 		break;
645 
646 	default:
647 		return (EIO);
648 	}
649 
650 	len = uio->uio_resid;
651 	if (len < hlen || len - hlen > ifp->if_mtu)
652 		return (EMSGSIZE);
653 
654 	/* Allocate a mbuf for our write, since m_get2 fails if len >= to MJUMPAGESIZE, use m_getjcl for bigger buffers */
655 	m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
656 	if (m == NULL)
657 		return (EIO);
658 	m->m_pkthdr.len = m->m_len = len;
659 	*mp = m;
660 
661 	error = uiomove(mtod(m, u_char *), len, uio);
662 	if (error)
663 		goto bad;
664 
665 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
666 	if (slen == 0) {
667 		error = EPERM;
668 		goto bad;
669 	}
670 
671 	/* Check for multicast destination */
672 	switch (linktype) {
673 	case DLT_EN10MB:
674 		eh = mtod(m, struct ether_header *);
675 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
676 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
677 			    ETHER_ADDR_LEN) == 0)
678 				m->m_flags |= M_BCAST;
679 			else
680 				m->m_flags |= M_MCAST;
681 		}
682 		if (d->bd_hdrcmplt == 0) {
683 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
684 			    sizeof(eh->ether_shost));
685 		}
686 		break;
687 	}
688 
689 	/*
690 	 * Make room for link header, and copy it to sockaddr
691 	 */
692 	if (hlen != 0) {
693 		if (sockp->sa_family == AF_IEEE80211) {
694 			/*
695 			 * Collect true length from the parameter header
696 			 * NB: sockp is known to be zero'd so if we do a
697 			 *     short copy unspecified parameters will be
698 			 *     zero.
699 			 * NB: packet may not be aligned after stripping
700 			 *     bpf params
701 			 * XXX check ibp_vers
702 			 */
703 			p = mtod(m, const struct ieee80211_bpf_params *);
704 			hlen = p->ibp_len;
705 			if (hlen > sizeof(sockp->sa_data)) {
706 				error = EINVAL;
707 				goto bad;
708 			}
709 		}
710 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
711 	}
712 	*hdrlen = hlen;
713 
714 	return (0);
715 bad:
716 	m_freem(m);
717 	return (error);
718 }
719 
720 /*
721  * Attach descriptor to the bpf interface, i.e. make d listen on bp,
722  * then reset its buffers and counters with reset_d().
723  */
724 static void
725 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
726 {
727 	int op_w;
728 
729 	BPF_LOCK_ASSERT();
730 
731 	/*
732 	 * Save sysctl value to protect from sysctl change
733 	 * between reads
734 	 */
735 	op_w = V_bpf_optimize_writers || d->bd_writer;
736 
737 	if (d->bd_bif != NULL)
738 		bpf_detachd_locked(d, false);
739 	/*
740 	 * Point d at bp, and add d to the interface's list.
741 	 * Since there are many applications using BPF for
742 	 * sending raw packets only (dhcpd, cdpd are good examples)
743 	 * we can delay adding d to the list of active listeners until
744 	 * some filter is configured.
745 	 */
746 
747 	BPFD_LOCK(d);
748 	/*
749 	 * Hold reference to bpif while descriptor uses this interface.
750 	 */
751 	bpfif_ref(bp);
752 	d->bd_bif = bp;
753 	if (op_w != 0) {
754 		/* Add to writers-only list */
755 		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
756 		/*
757 		 * We decrement bd_writer on every filter set operation.
758 		 * First BIOCSETF is done by pcap_open_live() to set up
759 		 * snap length. After that appliation usually sets its own
760 		 * filter.
761 		 */
762 		d->bd_writer = 2;
763 	} else
764 		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
765 
766 	reset_d(d);
767 
768 	/* Trigger EVFILT_WRITE events. */
769 	bpf_wakeup(d);
770 
771 	BPFD_UNLOCK(d);
772 	bpf_bpfd_cnt++;
773 
774 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
775 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
776 
777 	if (op_w == 0)
778 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
779 }
780 
781 /*
782  * Check if we need to upgrade our descriptor @d from write-only mode.
783  */
784 static int
785 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
786     int flen)
787 {
788 	int is_snap, need_upgrade;
789 
790 	/*
791 	 * Check if we've already upgraded or new filter is empty.
792 	 */
793 	if (d->bd_writer == 0 || fcode == NULL)
794 		return (0);
795 
796 	need_upgrade = 0;
797 
798 	/*
799 	 * Check if cmd looks like snaplen setting from
800 	 * pcap_bpf.c:pcap_open_live().
801 	 * Note we're not checking .k value here:
802 	 * while pcap_open_live() definitely sets to non-zero value,
803 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
804 	 * do not consider upgrading immediately
805 	 */
806 	if (cmd == BIOCSETF && flen == 1 &&
807 	    fcode[0].code == (BPF_RET | BPF_K))
808 		is_snap = 1;
809 	else
810 		is_snap = 0;
811 
812 	if (is_snap == 0) {
813 		/*
814 		 * We're setting first filter and it doesn't look like
815 		 * setting snaplen.  We're probably using bpf directly.
816 		 * Upgrade immediately.
817 		 */
818 		need_upgrade = 1;
819 	} else {
820 		/*
821 		 * Do not require upgrade by first BIOCSETF
822 		 * (used to set snaplen) by pcap_open_live().
823 		 */
824 
825 		if (--d->bd_writer == 0) {
826 			/*
827 			 * First snaplen filter has already
828 			 * been set. This is probably catch-all
829 			 * filter
830 			 */
831 			need_upgrade = 1;
832 		}
833 	}
834 
835 	CTR5(KTR_NET,
836 	    "%s: filter function set by pid %d, "
837 	    "bd_writer counter %d, snap %d upgrade %d",
838 	    __func__, d->bd_pid, d->bd_writer,
839 	    is_snap, need_upgrade);
840 
841 	return (need_upgrade);
842 }
843 
844 /*
845  * Detach a file from its interface.
846  */
847 static void
848 bpf_detachd(struct bpf_d *d)
849 {
850 	BPF_LOCK();
851 	bpf_detachd_locked(d, false);
852 	BPF_UNLOCK();
853 }
854 
855 static void
856 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
857 {
858 	struct bpf_if *bp;
859 	struct ifnet *ifp;
860 	int error;
861 
862 	BPF_LOCK_ASSERT();
863 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
864 
865 	/* Check if descriptor is attached */
866 	if ((bp = d->bd_bif) == NULL)
867 		return;
868 
869 	BPFD_LOCK(d);
870 	/* Remove d from the interface's descriptor list. */
871 	CK_LIST_REMOVE(d, bd_next);
872 	/* Save bd_writer value */
873 	error = d->bd_writer;
874 	ifp = bp->bif_ifp;
875 	d->bd_bif = NULL;
876 	if (detached_ifp) {
877 		/*
878 		 * Notify descriptor as it's detached, so that any
879 		 * sleepers wake up and get ENXIO.
880 		 */
881 		bpf_wakeup(d);
882 	}
883 	BPFD_UNLOCK(d);
884 	bpf_bpfd_cnt--;
885 
886 	/* Call event handler iff d is attached */
887 	if (error == 0)
888 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
889 
890 	/*
891 	 * Check if this descriptor had requested promiscuous mode.
892 	 * If so and ifnet is not detached, turn it off.
893 	 */
894 	if (d->bd_promisc && !detached_ifp) {
895 		d->bd_promisc = 0;
896 		CURVNET_SET(ifp->if_vnet);
897 		error = ifpromisc(ifp, 0);
898 		CURVNET_RESTORE();
899 		if (error != 0 && error != ENXIO) {
900 			/*
901 			 * ENXIO can happen if a pccard is unplugged
902 			 * Something is really wrong if we were able to put
903 			 * the driver into promiscuous mode, but can't
904 			 * take it out.
905 			 */
906 			if_printf(bp->bif_ifp,
907 				"bpf_detach: ifpromisc failed (%d)\n", error);
908 		}
909 	}
910 	bpfif_rele(bp);
911 }
912 
913 /*
914  * Close the descriptor by detaching it from its interface,
915  * deallocating its buffers, and marking it free.
916  */
917 static void
918 bpf_dtor(void *data)
919 {
920 	struct bpf_d *d = data;
921 
922 	BPFD_LOCK(d);
923 	if (d->bd_state == BPF_WAITING)
924 		callout_stop(&d->bd_callout);
925 	d->bd_state = BPF_IDLE;
926 	BPFD_UNLOCK(d);
927 	funsetown(&d->bd_sigio);
928 	bpf_detachd(d);
929 #ifdef MAC
930 	mac_bpfdesc_destroy(d);
931 #endif /* MAC */
932 	seldrain(&d->bd_sel);
933 	knlist_destroy(&d->bd_sel.si_note);
934 	callout_drain(&d->bd_callout);
935 	bpfd_rele(d);
936 }
937 
938 /*
939  * Open ethernet device.  Returns ENXIO for illegal minor device number,
940  * EBUSY if file is open by another process.
941  */
942 /* ARGSUSED */
943 static	int
944 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
945 {
946 	struct bpf_d *d;
947 	int error;
948 
949 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
950 	error = devfs_set_cdevpriv(d, bpf_dtor);
951 	if (error != 0) {
952 		free(d, M_BPF);
953 		return (error);
954 	}
955 
956 	/* Setup counters */
957 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
958 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
959 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
960 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
961 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
962 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
963 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
964 
965 	/*
966 	 * For historical reasons, perform a one-time initialization call to
967 	 * the buffer routines, even though we're not yet committed to a
968 	 * particular buffer method.
969 	 */
970 	bpf_buffer_init(d);
971 	if ((flags & FREAD) == 0)
972 		d->bd_writer = 2;
973 	d->bd_hbuf_in_use = 0;
974 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
975 	d->bd_sig = SIGIO;
976 	d->bd_direction = BPF_D_INOUT;
977 	refcount_init(&d->bd_refcnt, 1);
978 	BPF_PID_REFRESH(d, td);
979 #ifdef MAC
980 	mac_bpfdesc_init(d);
981 	mac_bpfdesc_create(td->td_ucred, d);
982 #endif
983 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
984 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
985 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
986 
987 	/* Disable VLAN pcp tagging. */
988 	d->bd_pcp = 0;
989 
990 	return (0);
991 }
992 
993 /*
994  *  bpfread - read next chunk of packets from buffers
995  */
996 static	int
997 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
998 {
999 	struct bpf_d *d;
1000 	int error;
1001 	int non_block;
1002 	int timed_out;
1003 
1004 	error = devfs_get_cdevpriv((void **)&d);
1005 	if (error != 0)
1006 		return (error);
1007 
1008 	/*
1009 	 * Restrict application to use a buffer the same size as
1010 	 * as kernel buffers.
1011 	 */
1012 	if (uio->uio_resid != d->bd_bufsize)
1013 		return (EINVAL);
1014 
1015 	non_block = ((ioflag & O_NONBLOCK) != 0);
1016 
1017 	BPFD_LOCK(d);
1018 	BPF_PID_REFRESH_CUR(d);
1019 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1020 		BPFD_UNLOCK(d);
1021 		return (EOPNOTSUPP);
1022 	}
1023 	if (d->bd_state == BPF_WAITING)
1024 		callout_stop(&d->bd_callout);
1025 	timed_out = (d->bd_state == BPF_TIMED_OUT);
1026 	d->bd_state = BPF_IDLE;
1027 	while (d->bd_hbuf_in_use) {
1028 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1029 		    PRINET|PCATCH, "bd_hbuf", 0);
1030 		if (error != 0) {
1031 			BPFD_UNLOCK(d);
1032 			return (error);
1033 		}
1034 	}
1035 	/*
1036 	 * If the hold buffer is empty, then do a timed sleep, which
1037 	 * ends when the timeout expires or when enough packets
1038 	 * have arrived to fill the store buffer.
1039 	 */
1040 	while (d->bd_hbuf == NULL) {
1041 		if (d->bd_slen != 0) {
1042 			/*
1043 			 * A packet(s) either arrived since the previous
1044 			 * read or arrived while we were asleep.
1045 			 */
1046 			if (d->bd_immediate || non_block || timed_out) {
1047 				/*
1048 				 * Rotate the buffers and return what's here
1049 				 * if we are in immediate mode, non-blocking
1050 				 * flag is set, or this descriptor timed out.
1051 				 */
1052 				ROTATE_BUFFERS(d);
1053 				break;
1054 			}
1055 		}
1056 
1057 		/*
1058 		 * No data is available, check to see if the bpf device
1059 		 * is still pointed at a real interface.  If not, return
1060 		 * ENXIO so that the userland process knows to rebind
1061 		 * it before using it again.
1062 		 */
1063 		if (d->bd_bif == NULL) {
1064 			BPFD_UNLOCK(d);
1065 			return (ENXIO);
1066 		}
1067 
1068 		if (non_block) {
1069 			BPFD_UNLOCK(d);
1070 			return (EWOULDBLOCK);
1071 		}
1072 		error = msleep(d, &d->bd_lock, PRINET|PCATCH,
1073 		     "bpf", d->bd_rtout);
1074 		if (error == EINTR || error == ERESTART) {
1075 			BPFD_UNLOCK(d);
1076 			return (error);
1077 		}
1078 		if (error == EWOULDBLOCK) {
1079 			/*
1080 			 * On a timeout, return what's in the buffer,
1081 			 * which may be nothing.  If there is something
1082 			 * in the store buffer, we can rotate the buffers.
1083 			 */
1084 			if (d->bd_hbuf)
1085 				/*
1086 				 * We filled up the buffer in between
1087 				 * getting the timeout and arriving
1088 				 * here, so we don't need to rotate.
1089 				 */
1090 				break;
1091 
1092 			if (d->bd_slen == 0) {
1093 				BPFD_UNLOCK(d);
1094 				return (0);
1095 			}
1096 			ROTATE_BUFFERS(d);
1097 			break;
1098 		}
1099 	}
1100 	/*
1101 	 * At this point, we know we have something in the hold slot.
1102 	 */
1103 	d->bd_hbuf_in_use = 1;
1104 	BPFD_UNLOCK(d);
1105 
1106 	/*
1107 	 * Move data from hold buffer into user space.
1108 	 * We know the entire buffer is transferred since
1109 	 * we checked above that the read buffer is bpf_bufsize bytes.
1110   	 *
1111 	 * We do not have to worry about simultaneous reads because
1112 	 * we waited for sole access to the hold buffer above.
1113 	 */
1114 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1115 
1116 	BPFD_LOCK(d);
1117 	KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1118 	d->bd_fbuf = d->bd_hbuf;
1119 	d->bd_hbuf = NULL;
1120 	d->bd_hlen = 0;
1121 	bpf_buf_reclaimed(d);
1122 	d->bd_hbuf_in_use = 0;
1123 	wakeup(&d->bd_hbuf_in_use);
1124 	BPFD_UNLOCK(d);
1125 
1126 	return (error);
1127 }
1128 
1129 /*
1130  * If there are processes sleeping on this descriptor, wake them up.
1131  */
1132 static __inline void
1133 bpf_wakeup(struct bpf_d *d)
1134 {
1135 
1136 	BPFD_LOCK_ASSERT(d);
1137 	if (d->bd_state == BPF_WAITING) {
1138 		callout_stop(&d->bd_callout);
1139 		d->bd_state = BPF_IDLE;
1140 	}
1141 	wakeup(d);
1142 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1143 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1144 
1145 	selwakeuppri(&d->bd_sel, PRINET);
1146 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1147 }
1148 
1149 static void
1150 bpf_timed_out(void *arg)
1151 {
1152 	struct bpf_d *d = (struct bpf_d *)arg;
1153 
1154 	BPFD_LOCK_ASSERT(d);
1155 
1156 	if (callout_pending(&d->bd_callout) ||
1157 	    !callout_active(&d->bd_callout))
1158 		return;
1159 	if (d->bd_state == BPF_WAITING) {
1160 		d->bd_state = BPF_TIMED_OUT;
1161 		if (d->bd_slen != 0)
1162 			bpf_wakeup(d);
1163 	}
1164 }
1165 
1166 static int
1167 bpf_ready(struct bpf_d *d)
1168 {
1169 
1170 	BPFD_LOCK_ASSERT(d);
1171 
1172 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1173 		return (1);
1174 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1175 	    d->bd_slen != 0)
1176 		return (1);
1177 	return (0);
1178 }
1179 
1180 static int
1181 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1182 {
1183 	struct route ro;
1184 	struct sockaddr dst;
1185 	struct epoch_tracker et;
1186 	struct bpf_if *bp;
1187 	struct bpf_d *d;
1188 	struct ifnet *ifp;
1189 	struct mbuf *m, *mc;
1190 	int error, hlen;
1191 
1192 	error = devfs_get_cdevpriv((void **)&d);
1193 	if (error != 0)
1194 		return (error);
1195 
1196 	NET_EPOCH_ENTER(et);
1197 	BPFD_LOCK(d);
1198 	BPF_PID_REFRESH_CUR(d);
1199 	counter_u64_add(d->bd_wcount, 1);
1200 	if ((bp = d->bd_bif) == NULL) {
1201 		error = ENXIO;
1202 		goto out_locked;
1203 	}
1204 
1205 	ifp = bp->bif_ifp;
1206 	if ((ifp->if_flags & IFF_UP) == 0) {
1207 		error = ENETDOWN;
1208 		goto out_locked;
1209 	}
1210 
1211 	if (uio->uio_resid == 0)
1212 		goto out_locked;
1213 
1214 	bzero(&dst, sizeof(dst));
1215 	m = NULL;
1216 	hlen = 0;
1217 
1218 	/*
1219 	 * Take extra reference, unlock d and exit from epoch section,
1220 	 * since bpf_movein() can sleep.
1221 	 */
1222 	bpfd_ref(d);
1223 	NET_EPOCH_EXIT(et);
1224 	BPFD_UNLOCK(d);
1225 
1226 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1227 	    &m, &dst, &hlen, d);
1228 
1229 	if (error != 0) {
1230 		counter_u64_add(d->bd_wdcount, 1);
1231 		bpfd_rele(d);
1232 		return (error);
1233 	}
1234 
1235 	BPFD_LOCK(d);
1236 	/*
1237 	 * Check that descriptor is still attached to the interface.
1238 	 * This can happen on bpfdetach(). To avoid access to detached
1239 	 * ifnet, free mbuf and return ENXIO.
1240 	 */
1241 	if (d->bd_bif == NULL) {
1242 		counter_u64_add(d->bd_wdcount, 1);
1243 		BPFD_UNLOCK(d);
1244 		bpfd_rele(d);
1245 		m_freem(m);
1246 		return (ENXIO);
1247 	}
1248 	counter_u64_add(d->bd_wfcount, 1);
1249 	if (d->bd_hdrcmplt)
1250 		dst.sa_family = pseudo_AF_HDRCMPLT;
1251 
1252 	if (d->bd_feedback) {
1253 		mc = m_dup(m, M_NOWAIT);
1254 		if (mc != NULL)
1255 			mc->m_pkthdr.rcvif = ifp;
1256 		/* Set M_PROMISC for outgoing packets to be discarded. */
1257 		if (d->bd_direction == BPF_D_INOUT)
1258 			m->m_flags |= M_PROMISC;
1259 	} else
1260 		mc = NULL;
1261 
1262 	m->m_pkthdr.len -= hlen;
1263 	m->m_len -= hlen;
1264 	m->m_data += hlen;	/* XXX */
1265 
1266 	CURVNET_SET(ifp->if_vnet);
1267 #ifdef MAC
1268 	mac_bpfdesc_create_mbuf(d, m);
1269 	if (mc != NULL)
1270 		mac_bpfdesc_create_mbuf(d, mc);
1271 #endif
1272 
1273 	bzero(&ro, sizeof(ro));
1274 	if (hlen != 0) {
1275 		ro.ro_prepend = (u_char *)&dst.sa_data;
1276 		ro.ro_plen = hlen;
1277 		ro.ro_flags = RT_HAS_HEADER;
1278 	}
1279 
1280 	if (d->bd_pcp != 0)
1281 		vlan_set_pcp(m, d->bd_pcp);
1282 
1283 	/* Avoid possible recursion on BPFD_LOCK(). */
1284 	NET_EPOCH_ENTER(et);
1285 	BPFD_UNLOCK(d);
1286 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1287 	if (error)
1288 		counter_u64_add(d->bd_wdcount, 1);
1289 
1290 	if (mc != NULL) {
1291 		if (error == 0)
1292 			(*ifp->if_input)(ifp, mc);
1293 		else
1294 			m_freem(mc);
1295 	}
1296 	NET_EPOCH_EXIT(et);
1297 	CURVNET_RESTORE();
1298 	bpfd_rele(d);
1299 	return (error);
1300 
1301 out_locked:
1302 	counter_u64_add(d->bd_wdcount, 1);
1303 	NET_EPOCH_EXIT(et);
1304 	BPFD_UNLOCK(d);
1305 	return (error);
1306 }
1307 
1308 /*
1309  * Reset a descriptor by flushing its packet buffer and clearing the receive
1310  * and drop counts.  This is doable for kernel-only buffers, but with
1311  * zero-copy buffers, we can't write to (or rotate) buffers that are
1312  * currently owned by userspace.  It would be nice if we could encapsulate
1313  * this logic in the buffer code rather than here.
1314  */
1315 static void
1316 reset_d(struct bpf_d *d)
1317 {
1318 
1319 	BPFD_LOCK_ASSERT(d);
1320 
1321 	while (d->bd_hbuf_in_use)
1322 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1323 		    "bd_hbuf", 0);
1324 	if ((d->bd_hbuf != NULL) &&
1325 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1326 		/* Free the hold buffer. */
1327 		d->bd_fbuf = d->bd_hbuf;
1328 		d->bd_hbuf = NULL;
1329 		d->bd_hlen = 0;
1330 		bpf_buf_reclaimed(d);
1331 	}
1332 	if (bpf_canwritebuf(d))
1333 		d->bd_slen = 0;
1334 	counter_u64_zero(d->bd_rcount);
1335 	counter_u64_zero(d->bd_dcount);
1336 	counter_u64_zero(d->bd_fcount);
1337 	counter_u64_zero(d->bd_wcount);
1338 	counter_u64_zero(d->bd_wfcount);
1339 	counter_u64_zero(d->bd_wdcount);
1340 	counter_u64_zero(d->bd_zcopy);
1341 }
1342 
1343 /*
1344  *  FIONREAD		Check for read packet available.
1345  *  BIOCGBLEN		Get buffer len [for read()].
1346  *  BIOCSETF		Set read filter.
1347  *  BIOCSETFNR		Set read filter without resetting descriptor.
1348  *  BIOCSETWF		Set write filter.
1349  *  BIOCFLUSH		Flush read packet buffer.
1350  *  BIOCPROMISC		Put interface into promiscuous mode.
1351  *  BIOCGDLT		Get link layer type.
1352  *  BIOCGETIF		Get interface name.
1353  *  BIOCSETIF		Set interface.
1354  *  BIOCSRTIMEOUT	Set read timeout.
1355  *  BIOCGRTIMEOUT	Get read timeout.
1356  *  BIOCGSTATS		Get packet stats.
1357  *  BIOCIMMEDIATE	Set immediate mode.
1358  *  BIOCVERSION		Get filter language version.
1359  *  BIOCGHDRCMPLT	Get "header already complete" flag
1360  *  BIOCSHDRCMPLT	Set "header already complete" flag
1361  *  BIOCGDIRECTION	Get packet direction flag
1362  *  BIOCSDIRECTION	Set packet direction flag
1363  *  BIOCGTSTAMP		Get time stamp format and resolution.
1364  *  BIOCSTSTAMP		Set time stamp format and resolution.
1365  *  BIOCLOCK		Set "locked" flag
1366  *  BIOCFEEDBACK	Set packet feedback mode.
1367  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1368  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1369  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1370  *  BIOCSETBUFMODE	Set buffer mode.
1371  *  BIOCGETBUFMODE	Get current buffer mode.
1372  *  BIOCSETVLANPCP	Set VLAN PCP tag.
1373  */
1374 /* ARGSUSED */
1375 static	int
1376 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1377     struct thread *td)
1378 {
1379 	struct bpf_d *d;
1380 	int error;
1381 
1382 	error = devfs_get_cdevpriv((void **)&d);
1383 	if (error != 0)
1384 		return (error);
1385 
1386 	/*
1387 	 * Refresh PID associated with this descriptor.
1388 	 */
1389 	BPFD_LOCK(d);
1390 	BPF_PID_REFRESH(d, td);
1391 	if (d->bd_state == BPF_WAITING)
1392 		callout_stop(&d->bd_callout);
1393 	d->bd_state = BPF_IDLE;
1394 	BPFD_UNLOCK(d);
1395 
1396 	if (d->bd_locked == 1) {
1397 		switch (cmd) {
1398 		case BIOCGBLEN:
1399 		case BIOCFLUSH:
1400 		case BIOCGDLT:
1401 		case BIOCGDLTLIST:
1402 #ifdef COMPAT_FREEBSD32
1403 		case BIOCGDLTLIST32:
1404 #endif
1405 		case BIOCGETIF:
1406 		case BIOCGRTIMEOUT:
1407 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1408 		case BIOCGRTIMEOUT32:
1409 #endif
1410 		case BIOCGSTATS:
1411 		case BIOCVERSION:
1412 		case BIOCGRSIG:
1413 		case BIOCGHDRCMPLT:
1414 		case BIOCSTSTAMP:
1415 		case BIOCFEEDBACK:
1416 		case FIONREAD:
1417 		case BIOCLOCK:
1418 		case BIOCSRTIMEOUT:
1419 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1420 		case BIOCSRTIMEOUT32:
1421 #endif
1422 		case BIOCIMMEDIATE:
1423 		case TIOCGPGRP:
1424 		case BIOCROTZBUF:
1425 			break;
1426 		default:
1427 			return (EPERM);
1428 		}
1429 	}
1430 #ifdef COMPAT_FREEBSD32
1431 	/*
1432 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1433 	 * that it will get 32-bit packet headers.
1434 	 */
1435 	switch (cmd) {
1436 	case BIOCSETF32:
1437 	case BIOCSETFNR32:
1438 	case BIOCSETWF32:
1439 	case BIOCGDLTLIST32:
1440 	case BIOCGRTIMEOUT32:
1441 	case BIOCSRTIMEOUT32:
1442 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1443 			BPFD_LOCK(d);
1444 			d->bd_compat32 = 1;
1445 			BPFD_UNLOCK(d);
1446 		}
1447 	}
1448 #endif
1449 
1450 	CURVNET_SET(TD_TO_VNET(td));
1451 	switch (cmd) {
1452 	default:
1453 		error = EINVAL;
1454 		break;
1455 
1456 	/*
1457 	 * Check for read packet available.
1458 	 */
1459 	case FIONREAD:
1460 		{
1461 			int n;
1462 
1463 			BPFD_LOCK(d);
1464 			n = d->bd_slen;
1465 			while (d->bd_hbuf_in_use)
1466 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1467 				    PRINET, "bd_hbuf", 0);
1468 			if (d->bd_hbuf)
1469 				n += d->bd_hlen;
1470 			BPFD_UNLOCK(d);
1471 
1472 			*(int *)addr = n;
1473 			break;
1474 		}
1475 
1476 	/*
1477 	 * Get buffer len [for read()].
1478 	 */
1479 	case BIOCGBLEN:
1480 		BPFD_LOCK(d);
1481 		*(u_int *)addr = d->bd_bufsize;
1482 		BPFD_UNLOCK(d);
1483 		break;
1484 
1485 	/*
1486 	 * Set buffer length.
1487 	 */
1488 	case BIOCSBLEN:
1489 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1490 		break;
1491 
1492 	/*
1493 	 * Set link layer read filter.
1494 	 */
1495 	case BIOCSETF:
1496 	case BIOCSETFNR:
1497 	case BIOCSETWF:
1498 #ifdef COMPAT_FREEBSD32
1499 	case BIOCSETF32:
1500 	case BIOCSETFNR32:
1501 	case BIOCSETWF32:
1502 #endif
1503 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1504 		break;
1505 
1506 	/*
1507 	 * Flush read packet buffer.
1508 	 */
1509 	case BIOCFLUSH:
1510 		BPFD_LOCK(d);
1511 		reset_d(d);
1512 		BPFD_UNLOCK(d);
1513 		break;
1514 
1515 	/*
1516 	 * Put interface into promiscuous mode.
1517 	 */
1518 	case BIOCPROMISC:
1519 		BPF_LOCK();
1520 		if (d->bd_bif == NULL) {
1521 			/*
1522 			 * No interface attached yet.
1523 			 */
1524 			error = EINVAL;
1525 		} else if (d->bd_promisc == 0) {
1526 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1527 			if (error == 0)
1528 				d->bd_promisc = 1;
1529 		}
1530 		BPF_UNLOCK();
1531 		break;
1532 
1533 	/*
1534 	 * Get current data link type.
1535 	 */
1536 	case BIOCGDLT:
1537 		BPF_LOCK();
1538 		if (d->bd_bif == NULL)
1539 			error = EINVAL;
1540 		else
1541 			*(u_int *)addr = d->bd_bif->bif_dlt;
1542 		BPF_UNLOCK();
1543 		break;
1544 
1545 	/*
1546 	 * Get a list of supported data link types.
1547 	 */
1548 #ifdef COMPAT_FREEBSD32
1549 	case BIOCGDLTLIST32:
1550 		{
1551 			struct bpf_dltlist32 *list32;
1552 			struct bpf_dltlist dltlist;
1553 
1554 			list32 = (struct bpf_dltlist32 *)addr;
1555 			dltlist.bfl_len = list32->bfl_len;
1556 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1557 			BPF_LOCK();
1558 			if (d->bd_bif == NULL)
1559 				error = EINVAL;
1560 			else {
1561 				error = bpf_getdltlist(d, &dltlist);
1562 				if (error == 0)
1563 					list32->bfl_len = dltlist.bfl_len;
1564 			}
1565 			BPF_UNLOCK();
1566 			break;
1567 		}
1568 #endif
1569 
1570 	case BIOCGDLTLIST:
1571 		BPF_LOCK();
1572 		if (d->bd_bif == NULL)
1573 			error = EINVAL;
1574 		else
1575 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1576 		BPF_UNLOCK();
1577 		break;
1578 
1579 	/*
1580 	 * Set data link type.
1581 	 */
1582 	case BIOCSDLT:
1583 		BPF_LOCK();
1584 		if (d->bd_bif == NULL)
1585 			error = EINVAL;
1586 		else
1587 			error = bpf_setdlt(d, *(u_int *)addr);
1588 		BPF_UNLOCK();
1589 		break;
1590 
1591 	/*
1592 	 * Get interface name.
1593 	 */
1594 	case BIOCGETIF:
1595 		BPF_LOCK();
1596 		if (d->bd_bif == NULL)
1597 			error = EINVAL;
1598 		else {
1599 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1600 			struct ifreq *const ifr = (struct ifreq *)addr;
1601 
1602 			strlcpy(ifr->ifr_name, ifp->if_xname,
1603 			    sizeof(ifr->ifr_name));
1604 		}
1605 		BPF_UNLOCK();
1606 		break;
1607 
1608 	/*
1609 	 * Set interface.
1610 	 */
1611 	case BIOCSETIF:
1612 		{
1613 			int alloc_buf, size;
1614 
1615 			/*
1616 			 * Behavior here depends on the buffering model.  If
1617 			 * we're using kernel memory buffers, then we can
1618 			 * allocate them here.  If we're using zero-copy,
1619 			 * then the user process must have registered buffers
1620 			 * by the time we get here.
1621 			 */
1622 			alloc_buf = 0;
1623 			BPFD_LOCK(d);
1624 			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1625 			    d->bd_sbuf == NULL)
1626 				alloc_buf = 1;
1627 			BPFD_UNLOCK(d);
1628 			if (alloc_buf) {
1629 				size = d->bd_bufsize;
1630 				error = bpf_buffer_ioctl_sblen(d, &size);
1631 				if (error != 0)
1632 					break;
1633 			}
1634 			BPF_LOCK();
1635 			error = bpf_setif(d, (struct ifreq *)addr);
1636 			BPF_UNLOCK();
1637 			break;
1638 		}
1639 
1640 	/*
1641 	 * Set read timeout.
1642 	 */
1643 	case BIOCSRTIMEOUT:
1644 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1645 	case BIOCSRTIMEOUT32:
1646 #endif
1647 		{
1648 			struct timeval *tv = (struct timeval *)addr;
1649 #if defined(COMPAT_FREEBSD32)
1650 			struct timeval32 *tv32;
1651 			struct timeval tv64;
1652 
1653 			if (cmd == BIOCSRTIMEOUT32) {
1654 				tv32 = (struct timeval32 *)addr;
1655 				tv = &tv64;
1656 				tv->tv_sec = tv32->tv_sec;
1657 				tv->tv_usec = tv32->tv_usec;
1658 			} else
1659 #endif
1660 				tv = (struct timeval *)addr;
1661 
1662 			/*
1663 			 * Subtract 1 tick from tvtohz() since this isn't
1664 			 * a one-shot timer.
1665 			 */
1666 			if ((error = itimerfix(tv)) == 0)
1667 				d->bd_rtout = tvtohz(tv) - 1;
1668 			break;
1669 		}
1670 
1671 	/*
1672 	 * Get read timeout.
1673 	 */
1674 	case BIOCGRTIMEOUT:
1675 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1676 	case BIOCGRTIMEOUT32:
1677 #endif
1678 		{
1679 			struct timeval *tv;
1680 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1681 			struct timeval32 *tv32;
1682 			struct timeval tv64;
1683 
1684 			if (cmd == BIOCGRTIMEOUT32)
1685 				tv = &tv64;
1686 			else
1687 #endif
1688 				tv = (struct timeval *)addr;
1689 
1690 			tv->tv_sec = d->bd_rtout / hz;
1691 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1692 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1693 			if (cmd == BIOCGRTIMEOUT32) {
1694 				tv32 = (struct timeval32 *)addr;
1695 				tv32->tv_sec = tv->tv_sec;
1696 				tv32->tv_usec = tv->tv_usec;
1697 			}
1698 #endif
1699 
1700 			break;
1701 		}
1702 
1703 	/*
1704 	 * Get packet stats.
1705 	 */
1706 	case BIOCGSTATS:
1707 		{
1708 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1709 
1710 			/* XXXCSJP overflow */
1711 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1712 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1713 			break;
1714 		}
1715 
1716 	/*
1717 	 * Set immediate mode.
1718 	 */
1719 	case BIOCIMMEDIATE:
1720 		BPFD_LOCK(d);
1721 		d->bd_immediate = *(u_int *)addr;
1722 		BPFD_UNLOCK(d);
1723 		break;
1724 
1725 	case BIOCVERSION:
1726 		{
1727 			struct bpf_version *bv = (struct bpf_version *)addr;
1728 
1729 			bv->bv_major = BPF_MAJOR_VERSION;
1730 			bv->bv_minor = BPF_MINOR_VERSION;
1731 			break;
1732 		}
1733 
1734 	/*
1735 	 * Get "header already complete" flag
1736 	 */
1737 	case BIOCGHDRCMPLT:
1738 		BPFD_LOCK(d);
1739 		*(u_int *)addr = d->bd_hdrcmplt;
1740 		BPFD_UNLOCK(d);
1741 		break;
1742 
1743 	/*
1744 	 * Set "header already complete" flag
1745 	 */
1746 	case BIOCSHDRCMPLT:
1747 		BPFD_LOCK(d);
1748 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1749 		BPFD_UNLOCK(d);
1750 		break;
1751 
1752 	/*
1753 	 * Get packet direction flag
1754 	 */
1755 	case BIOCGDIRECTION:
1756 		BPFD_LOCK(d);
1757 		*(u_int *)addr = d->bd_direction;
1758 		BPFD_UNLOCK(d);
1759 		break;
1760 
1761 	/*
1762 	 * Set packet direction flag
1763 	 */
1764 	case BIOCSDIRECTION:
1765 		{
1766 			u_int	direction;
1767 
1768 			direction = *(u_int *)addr;
1769 			switch (direction) {
1770 			case BPF_D_IN:
1771 			case BPF_D_INOUT:
1772 			case BPF_D_OUT:
1773 				BPFD_LOCK(d);
1774 				d->bd_direction = direction;
1775 				BPFD_UNLOCK(d);
1776 				break;
1777 			default:
1778 				error = EINVAL;
1779 			}
1780 		}
1781 		break;
1782 
1783 	/*
1784 	 * Get packet timestamp format and resolution.
1785 	 */
1786 	case BIOCGTSTAMP:
1787 		BPFD_LOCK(d);
1788 		*(u_int *)addr = d->bd_tstamp;
1789 		BPFD_UNLOCK(d);
1790 		break;
1791 
1792 	/*
1793 	 * Set packet timestamp format and resolution.
1794 	 */
1795 	case BIOCSTSTAMP:
1796 		{
1797 			u_int	func;
1798 
1799 			func = *(u_int *)addr;
1800 			if (BPF_T_VALID(func))
1801 				d->bd_tstamp = func;
1802 			else
1803 				error = EINVAL;
1804 		}
1805 		break;
1806 
1807 	case BIOCFEEDBACK:
1808 		BPFD_LOCK(d);
1809 		d->bd_feedback = *(u_int *)addr;
1810 		BPFD_UNLOCK(d);
1811 		break;
1812 
1813 	case BIOCLOCK:
1814 		BPFD_LOCK(d);
1815 		d->bd_locked = 1;
1816 		BPFD_UNLOCK(d);
1817 		break;
1818 
1819 	case FIONBIO:		/* Non-blocking I/O */
1820 		break;
1821 
1822 	case FIOASYNC:		/* Send signal on receive packets */
1823 		BPFD_LOCK(d);
1824 		d->bd_async = *(int *)addr;
1825 		BPFD_UNLOCK(d);
1826 		break;
1827 
1828 	case FIOSETOWN:
1829 		/*
1830 		 * XXX: Add some sort of locking here?
1831 		 * fsetown() can sleep.
1832 		 */
1833 		error = fsetown(*(int *)addr, &d->bd_sigio);
1834 		break;
1835 
1836 	case FIOGETOWN:
1837 		BPFD_LOCK(d);
1838 		*(int *)addr = fgetown(&d->bd_sigio);
1839 		BPFD_UNLOCK(d);
1840 		break;
1841 
1842 	/* This is deprecated, FIOSETOWN should be used instead. */
1843 	case TIOCSPGRP:
1844 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1845 		break;
1846 
1847 	/* This is deprecated, FIOGETOWN should be used instead. */
1848 	case TIOCGPGRP:
1849 		*(int *)addr = -fgetown(&d->bd_sigio);
1850 		break;
1851 
1852 	case BIOCSRSIG:		/* Set receive signal */
1853 		{
1854 			u_int sig;
1855 
1856 			sig = *(u_int *)addr;
1857 
1858 			if (sig >= NSIG)
1859 				error = EINVAL;
1860 			else {
1861 				BPFD_LOCK(d);
1862 				d->bd_sig = sig;
1863 				BPFD_UNLOCK(d);
1864 			}
1865 			break;
1866 		}
1867 	case BIOCGRSIG:
1868 		BPFD_LOCK(d);
1869 		*(u_int *)addr = d->bd_sig;
1870 		BPFD_UNLOCK(d);
1871 		break;
1872 
1873 	case BIOCGETBUFMODE:
1874 		BPFD_LOCK(d);
1875 		*(u_int *)addr = d->bd_bufmode;
1876 		BPFD_UNLOCK(d);
1877 		break;
1878 
1879 	case BIOCSETBUFMODE:
1880 		/*
1881 		 * Allow the buffering mode to be changed as long as we
1882 		 * haven't yet committed to a particular mode.  Our
1883 		 * definition of commitment, for now, is whether or not a
1884 		 * buffer has been allocated or an interface attached, since
1885 		 * that's the point where things get tricky.
1886 		 */
1887 		switch (*(u_int *)addr) {
1888 		case BPF_BUFMODE_BUFFER:
1889 			break;
1890 
1891 		case BPF_BUFMODE_ZBUF:
1892 			if (bpf_zerocopy_enable)
1893 				break;
1894 			/* FALLSTHROUGH */
1895 
1896 		default:
1897 			CURVNET_RESTORE();
1898 			return (EINVAL);
1899 		}
1900 
1901 		BPFD_LOCK(d);
1902 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1903 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1904 			BPFD_UNLOCK(d);
1905 			CURVNET_RESTORE();
1906 			return (EBUSY);
1907 		}
1908 		d->bd_bufmode = *(u_int *)addr;
1909 		BPFD_UNLOCK(d);
1910 		break;
1911 
1912 	case BIOCGETZMAX:
1913 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1914 		break;
1915 
1916 	case BIOCSETZBUF:
1917 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1918 		break;
1919 
1920 	case BIOCROTZBUF:
1921 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1922 		break;
1923 
1924 	case BIOCSETVLANPCP:
1925 		{
1926 			u_int pcp;
1927 
1928 			pcp = *(u_int *)addr;
1929 			if (pcp > BPF_PRIO_MAX || pcp < 0) {
1930 				error = EINVAL;
1931 				break;
1932 			}
1933 			d->bd_pcp = pcp;
1934 			break;
1935 		}
1936 	}
1937 	CURVNET_RESTORE();
1938 	return (error);
1939 }
1940 
1941 /*
1942  * Set d's packet filter program to fp. If this file already has a filter,
1943  * free it and replace it. Returns EINVAL for bogus requests.
1944  *
1945  * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1946  * calls.
1947  */
1948 static int
1949 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1950 {
1951 #ifdef COMPAT_FREEBSD32
1952 	struct bpf_program fp_swab;
1953 	struct bpf_program32 *fp32;
1954 #endif
1955 	struct bpf_program_buffer *fcode;
1956 	struct bpf_insn *filter;
1957 #ifdef BPF_JITTER
1958 	bpf_jit_filter *jfunc;
1959 #endif
1960 	size_t size;
1961 	u_int flen;
1962 	bool track_event;
1963 
1964 #ifdef COMPAT_FREEBSD32
1965 	switch (cmd) {
1966 	case BIOCSETF32:
1967 	case BIOCSETWF32:
1968 	case BIOCSETFNR32:
1969 		fp32 = (struct bpf_program32 *)fp;
1970 		fp_swab.bf_len = fp32->bf_len;
1971 		fp_swab.bf_insns =
1972 		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1973 		fp = &fp_swab;
1974 		switch (cmd) {
1975 		case BIOCSETF32:
1976 			cmd = BIOCSETF;
1977 			break;
1978 		case BIOCSETWF32:
1979 			cmd = BIOCSETWF;
1980 			break;
1981 		}
1982 		break;
1983 	}
1984 #endif
1985 
1986 	filter = NULL;
1987 #ifdef BPF_JITTER
1988 	jfunc = NULL;
1989 #endif
1990 	/*
1991 	 * Check new filter validness before acquiring any locks.
1992 	 * Allocate memory for new filter, if needed.
1993 	 */
1994 	flen = fp->bf_len;
1995 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1996 		return (EINVAL);
1997 	size = flen * sizeof(*fp->bf_insns);
1998 	if (size > 0) {
1999 		/* We're setting up new filter. Copy and check actual data. */
2000 		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
2001 		filter = (struct bpf_insn *)fcode->buffer;
2002 		if (copyin(fp->bf_insns, filter, size) != 0 ||
2003 		    !bpf_validate(filter, flen)) {
2004 			free(fcode, M_BPF);
2005 			return (EINVAL);
2006 		}
2007 #ifdef BPF_JITTER
2008 		if (cmd != BIOCSETWF) {
2009 			/*
2010 			 * Filter is copied inside fcode and is
2011 			 * perfectly valid.
2012 			 */
2013 			jfunc = bpf_jitter(filter, flen);
2014 		}
2015 #endif
2016 	}
2017 
2018 	track_event = false;
2019 	fcode = NULL;
2020 
2021 	BPF_LOCK();
2022 	BPFD_LOCK(d);
2023 	/* Set up new filter. */
2024 	if (cmd == BIOCSETWF) {
2025 		if (d->bd_wfilter != NULL) {
2026 			fcode = __containerof((void *)d->bd_wfilter,
2027 			    struct bpf_program_buffer, buffer);
2028 #ifdef BPF_JITTER
2029 			fcode->func = NULL;
2030 #endif
2031 		}
2032 		d->bd_wfilter = filter;
2033 	} else {
2034 		if (d->bd_rfilter != NULL) {
2035 			fcode = __containerof((void *)d->bd_rfilter,
2036 			    struct bpf_program_buffer, buffer);
2037 #ifdef BPF_JITTER
2038 			fcode->func = d->bd_bfilter;
2039 #endif
2040 		}
2041 		d->bd_rfilter = filter;
2042 #ifdef BPF_JITTER
2043 		d->bd_bfilter = jfunc;
2044 #endif
2045 		if (cmd == BIOCSETF)
2046 			reset_d(d);
2047 
2048 		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2049 			/*
2050 			 * Filter can be set several times without
2051 			 * specifying interface. In this case just mark d
2052 			 * as reader.
2053 			 */
2054 			d->bd_writer = 0;
2055 			if (d->bd_bif != NULL) {
2056 				/*
2057 				 * Remove descriptor from writers-only list
2058 				 * and add it to active readers list.
2059 				 */
2060 				CK_LIST_REMOVE(d, bd_next);
2061 				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2062 				    d, bd_next);
2063 				CTR2(KTR_NET,
2064 				    "%s: upgrade required by pid %d",
2065 				    __func__, d->bd_pid);
2066 				track_event = true;
2067 			}
2068 		}
2069 	}
2070 	BPFD_UNLOCK(d);
2071 
2072 	if (fcode != NULL)
2073 		NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2074 
2075 	if (track_event)
2076 		EVENTHANDLER_INVOKE(bpf_track,
2077 		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2078 
2079 	BPF_UNLOCK();
2080 	return (0);
2081 }
2082 
2083 /*
2084  * Detach a file from its current interface (if attached at all) and attach
2085  * to the interface indicated by the name stored in ifr.
2086  * Return an errno or 0.
2087  */
2088 static int
2089 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2090 {
2091 	struct bpf_if *bp;
2092 	struct ifnet *theywant;
2093 
2094 	BPF_LOCK_ASSERT();
2095 
2096 	theywant = ifunit(ifr->ifr_name);
2097 	if (theywant == NULL || theywant->if_bpf == NULL)
2098 		return (ENXIO);
2099 
2100 	bp = theywant->if_bpf;
2101 	/*
2102 	 * At this point, we expect the buffer is already allocated.  If not,
2103 	 * return an error.
2104 	 */
2105 	switch (d->bd_bufmode) {
2106 	case BPF_BUFMODE_BUFFER:
2107 	case BPF_BUFMODE_ZBUF:
2108 		if (d->bd_sbuf == NULL)
2109 			return (EINVAL);
2110 		break;
2111 
2112 	default:
2113 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2114 	}
2115 	if (bp != d->bd_bif)
2116 		bpf_attachd(d, bp);
2117 	else {
2118 		BPFD_LOCK(d);
2119 		reset_d(d);
2120 		BPFD_UNLOCK(d);
2121 	}
2122 	return (0);
2123 }
2124 
2125 /*
2126  * Support for select() and poll() system calls
2127  *
2128  * Return true iff the specific operation will not block indefinitely.
2129  * Otherwise, return false but make a note that a selwakeup() must be done.
2130  */
2131 static int
2132 bpfpoll(struct cdev *dev, int events, struct thread *td)
2133 {
2134 	struct bpf_d *d;
2135 	int revents;
2136 
2137 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2138 		return (events &
2139 		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
2140 
2141 	/*
2142 	 * Refresh PID associated with this descriptor.
2143 	 */
2144 	revents = events & (POLLOUT | POLLWRNORM);
2145 	BPFD_LOCK(d);
2146 	BPF_PID_REFRESH(d, td);
2147 	if (events & (POLLIN | POLLRDNORM)) {
2148 		if (bpf_ready(d))
2149 			revents |= events & (POLLIN | POLLRDNORM);
2150 		else {
2151 			selrecord(td, &d->bd_sel);
2152 			/* Start the read timeout if necessary. */
2153 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2154 				callout_reset(&d->bd_callout, d->bd_rtout,
2155 				    bpf_timed_out, d);
2156 				d->bd_state = BPF_WAITING;
2157 			}
2158 		}
2159 	}
2160 	BPFD_UNLOCK(d);
2161 	return (revents);
2162 }
2163 
2164 /*
2165  * Support for kevent() system call.  Register EVFILT_READ filters and
2166  * reject all others.
2167  */
2168 int
2169 bpfkqfilter(struct cdev *dev, struct knote *kn)
2170 {
2171 	struct bpf_d *d;
2172 
2173 	if (devfs_get_cdevpriv((void **)&d) != 0)
2174 		return (1);
2175 
2176 	switch (kn->kn_filter) {
2177 	case EVFILT_READ:
2178 		kn->kn_fop = &bpfread_filtops;
2179 		break;
2180 
2181 	case EVFILT_WRITE:
2182 		kn->kn_fop = &bpfwrite_filtops;
2183 		break;
2184 
2185 	default:
2186 		return (1);
2187 	}
2188 
2189 	/*
2190 	 * Refresh PID associated with this descriptor.
2191 	 */
2192 	BPFD_LOCK(d);
2193 	BPF_PID_REFRESH_CUR(d);
2194 	kn->kn_hook = d;
2195 	knlist_add(&d->bd_sel.si_note, kn, 1);
2196 	BPFD_UNLOCK(d);
2197 
2198 	return (0);
2199 }
2200 
2201 static void
2202 filt_bpfdetach(struct knote *kn)
2203 {
2204 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2205 
2206 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2207 }
2208 
2209 static int
2210 filt_bpfread(struct knote *kn, long hint)
2211 {
2212 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2213 	int ready;
2214 
2215 	BPFD_LOCK_ASSERT(d);
2216 	ready = bpf_ready(d);
2217 	if (ready) {
2218 		kn->kn_data = d->bd_slen;
2219 		/*
2220 		 * Ignore the hold buffer if it is being copied to user space.
2221 		 */
2222 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2223 			kn->kn_data += d->bd_hlen;
2224 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2225 		callout_reset(&d->bd_callout, d->bd_rtout,
2226 		    bpf_timed_out, d);
2227 		d->bd_state = BPF_WAITING;
2228 	}
2229 
2230 	return (ready);
2231 }
2232 
2233 static int
2234 filt_bpfwrite(struct knote *kn, long hint)
2235 {
2236 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2237 
2238 	BPFD_LOCK_ASSERT(d);
2239 
2240 	if (d->bd_bif == NULL) {
2241 		kn->kn_data = 0;
2242 		return (0);
2243 	} else {
2244 		kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2245 		return (1);
2246 	}
2247 }
2248 
2249 #define	BPF_TSTAMP_NONE		0
2250 #define	BPF_TSTAMP_FAST		1
2251 #define	BPF_TSTAMP_NORMAL	2
2252 #define	BPF_TSTAMP_EXTERN	3
2253 
2254 static int
2255 bpf_ts_quality(int tstype)
2256 {
2257 
2258 	if (tstype == BPF_T_NONE)
2259 		return (BPF_TSTAMP_NONE);
2260 	if ((tstype & BPF_T_FAST) != 0)
2261 		return (BPF_TSTAMP_FAST);
2262 
2263 	return (BPF_TSTAMP_NORMAL);
2264 }
2265 
2266 static int
2267 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2268 {
2269 	struct timespec ts;
2270 	struct m_tag *tag;
2271 	int quality;
2272 
2273 	quality = bpf_ts_quality(tstype);
2274 	if (quality == BPF_TSTAMP_NONE)
2275 		return (quality);
2276 
2277 	if (m != NULL) {
2278 		if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2279 			mbuf_tstmp2timespec(m, &ts);
2280 			timespec2bintime(&ts, bt);
2281 			return (BPF_TSTAMP_EXTERN);
2282 		}
2283 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2284 		if (tag != NULL) {
2285 			*bt = *(struct bintime *)(tag + 1);
2286 			return (BPF_TSTAMP_EXTERN);
2287 		}
2288 	}
2289 	if (quality == BPF_TSTAMP_NORMAL)
2290 		binuptime(bt);
2291 	else
2292 		getbinuptime(bt);
2293 
2294 	return (quality);
2295 }
2296 
2297 /*
2298  * Incoming linkage from device drivers.  Process the packet pkt, of length
2299  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2300  * by each process' filter, and if accepted, stashed into the corresponding
2301  * buffer.
2302  */
2303 void
2304 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2305 {
2306 	struct epoch_tracker et;
2307 	struct bintime bt;
2308 	struct bpf_d *d;
2309 #ifdef BPF_JITTER
2310 	bpf_jit_filter *bf;
2311 #endif
2312 	u_int slen;
2313 	int gottime;
2314 
2315 	gottime = BPF_TSTAMP_NONE;
2316 	NET_EPOCH_ENTER(et);
2317 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2318 		counter_u64_add(d->bd_rcount, 1);
2319 		/*
2320 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2321 		 * is no way for the caller to indiciate to us whether this
2322 		 * packet is inbound or outbound. In the bpf_mtap() routines,
2323 		 * we use the interface pointers on the mbuf to figure it out.
2324 		 */
2325 #ifdef BPF_JITTER
2326 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2327 		if (bf != NULL)
2328 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2329 		else
2330 #endif
2331 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2332 		if (slen != 0) {
2333 			/*
2334 			 * Filter matches. Let's to acquire write lock.
2335 			 */
2336 			BPFD_LOCK(d);
2337 			counter_u64_add(d->bd_fcount, 1);
2338 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2339 				gottime = bpf_gettime(&bt, d->bd_tstamp,
2340 				    NULL);
2341 #ifdef MAC
2342 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2343 #endif
2344 				catchpacket(d, pkt, pktlen, slen,
2345 				    bpf_append_bytes, &bt);
2346 			BPFD_UNLOCK(d);
2347 		}
2348 	}
2349 	NET_EPOCH_EXIT(et);
2350 }
2351 
2352 void
2353 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2354 {
2355 	if (bpf_peers_present(ifp->if_bpf))
2356 		bpf_tap(ifp->if_bpf, pkt, pktlen);
2357 }
2358 
2359 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2360 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2361 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2362 
2363 /*
2364  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2365  * Locking model is explained in bpf_tap().
2366  */
2367 void
2368 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2369 {
2370 	struct epoch_tracker et;
2371 	struct bintime bt;
2372 	struct bpf_d *d;
2373 #ifdef BPF_JITTER
2374 	bpf_jit_filter *bf;
2375 #endif
2376 	u_int pktlen, slen;
2377 	int gottime;
2378 
2379 	/* Skip outgoing duplicate packets. */
2380 	if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2381 		m->m_flags &= ~M_PROMISC;
2382 		return;
2383 	}
2384 
2385 	pktlen = m_length(m, NULL);
2386 	gottime = BPF_TSTAMP_NONE;
2387 
2388 	NET_EPOCH_ENTER(et);
2389 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2390 		if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2391 			continue;
2392 		counter_u64_add(d->bd_rcount, 1);
2393 #ifdef BPF_JITTER
2394 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2395 		/* XXX We cannot handle multiple mbufs. */
2396 		if (bf != NULL && m->m_next == NULL)
2397 			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2398 			    pktlen);
2399 		else
2400 #endif
2401 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2402 		if (slen != 0) {
2403 			BPFD_LOCK(d);
2404 
2405 			counter_u64_add(d->bd_fcount, 1);
2406 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2407 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2408 #ifdef MAC
2409 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2410 #endif
2411 				catchpacket(d, (u_char *)m, pktlen, slen,
2412 				    bpf_append_mbuf, &bt);
2413 			BPFD_UNLOCK(d);
2414 		}
2415 	}
2416 	NET_EPOCH_EXIT(et);
2417 }
2418 
2419 void
2420 bpf_mtap_if(if_t ifp, struct mbuf *m)
2421 {
2422 	if (bpf_peers_present(ifp->if_bpf)) {
2423 		M_ASSERTVALID(m);
2424 		bpf_mtap(ifp->if_bpf, m);
2425 	}
2426 }
2427 
2428 /*
2429  * Incoming linkage from device drivers, when packet is in
2430  * an mbuf chain and to be prepended by a contiguous header.
2431  */
2432 void
2433 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2434 {
2435 	struct epoch_tracker et;
2436 	struct bintime bt;
2437 	struct mbuf mb;
2438 	struct bpf_d *d;
2439 	u_int pktlen, slen;
2440 	int gottime;
2441 
2442 	/* Skip outgoing duplicate packets. */
2443 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2444 		m->m_flags &= ~M_PROMISC;
2445 		return;
2446 	}
2447 
2448 	pktlen = m_length(m, NULL);
2449 	/*
2450 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2451 	 * Note that we cut corners here; we only setup what's
2452 	 * absolutely needed--this mbuf should never go anywhere else.
2453 	 */
2454 	mb.m_flags = 0;
2455 	mb.m_next = m;
2456 	mb.m_data = data;
2457 	mb.m_len = dlen;
2458 	pktlen += dlen;
2459 
2460 	gottime = BPF_TSTAMP_NONE;
2461 
2462 	NET_EPOCH_ENTER(et);
2463 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2464 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2465 			continue;
2466 		counter_u64_add(d->bd_rcount, 1);
2467 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2468 		if (slen != 0) {
2469 			BPFD_LOCK(d);
2470 
2471 			counter_u64_add(d->bd_fcount, 1);
2472 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2473 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2474 #ifdef MAC
2475 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2476 #endif
2477 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2478 				    bpf_append_mbuf, &bt);
2479 			BPFD_UNLOCK(d);
2480 		}
2481 	}
2482 	NET_EPOCH_EXIT(et);
2483 }
2484 
2485 void
2486 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2487 {
2488 	if (bpf_peers_present(ifp->if_bpf)) {
2489 		M_ASSERTVALID(m);
2490 		bpf_mtap2(ifp->if_bpf, data, dlen, m);
2491 	}
2492 }
2493 
2494 #undef	BPF_CHECK_DIRECTION
2495 #undef	BPF_TSTAMP_NONE
2496 #undef	BPF_TSTAMP_FAST
2497 #undef	BPF_TSTAMP_NORMAL
2498 #undef	BPF_TSTAMP_EXTERN
2499 
2500 static int
2501 bpf_hdrlen(struct bpf_d *d)
2502 {
2503 	int hdrlen;
2504 
2505 	hdrlen = d->bd_bif->bif_hdrlen;
2506 #ifndef BURN_BRIDGES
2507 	if (d->bd_tstamp == BPF_T_NONE ||
2508 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2509 #ifdef COMPAT_FREEBSD32
2510 		if (d->bd_compat32)
2511 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2512 		else
2513 #endif
2514 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2515 	else
2516 #endif
2517 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2518 #ifdef COMPAT_FREEBSD32
2519 	if (d->bd_compat32)
2520 		hdrlen = BPF_WORDALIGN32(hdrlen);
2521 	else
2522 #endif
2523 		hdrlen = BPF_WORDALIGN(hdrlen);
2524 
2525 	return (hdrlen - d->bd_bif->bif_hdrlen);
2526 }
2527 
2528 static void
2529 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2530 {
2531 	struct bintime bt2, boottimebin;
2532 	struct timeval tsm;
2533 	struct timespec tsn;
2534 
2535 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2536 		bt2 = *bt;
2537 		getboottimebin(&boottimebin);
2538 		bintime_add(&bt2, &boottimebin);
2539 		bt = &bt2;
2540 	}
2541 	switch (BPF_T_FORMAT(tstype)) {
2542 	case BPF_T_MICROTIME:
2543 		bintime2timeval(bt, &tsm);
2544 		ts->bt_sec = tsm.tv_sec;
2545 		ts->bt_frac = tsm.tv_usec;
2546 		break;
2547 	case BPF_T_NANOTIME:
2548 		bintime2timespec(bt, &tsn);
2549 		ts->bt_sec = tsn.tv_sec;
2550 		ts->bt_frac = tsn.tv_nsec;
2551 		break;
2552 	case BPF_T_BINTIME:
2553 		ts->bt_sec = bt->sec;
2554 		ts->bt_frac = bt->frac;
2555 		break;
2556 	}
2557 }
2558 
2559 /*
2560  * Move the packet data from interface memory (pkt) into the
2561  * store buffer.  "cpfn" is the routine called to do the actual data
2562  * transfer.  bcopy is passed in to copy contiguous chunks, while
2563  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2564  * pkt is really an mbuf.
2565  */
2566 static void
2567 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2568     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2569     struct bintime *bt)
2570 {
2571 	static char zeroes[BPF_ALIGNMENT];
2572 	struct bpf_xhdr hdr;
2573 #ifndef BURN_BRIDGES
2574 	struct bpf_hdr hdr_old;
2575 #ifdef COMPAT_FREEBSD32
2576 	struct bpf_hdr32 hdr32_old;
2577 #endif
2578 #endif
2579 	int caplen, curlen, hdrlen, pad, totlen;
2580 	int do_wakeup = 0;
2581 	int do_timestamp;
2582 	int tstype;
2583 
2584 	BPFD_LOCK_ASSERT(d);
2585 	if (d->bd_bif == NULL) {
2586 		/* Descriptor was detached in concurrent thread */
2587 		counter_u64_add(d->bd_dcount, 1);
2588 		return;
2589 	}
2590 
2591 	/*
2592 	 * Detect whether user space has released a buffer back to us, and if
2593 	 * so, move it from being a hold buffer to a free buffer.  This may
2594 	 * not be the best place to do it (for example, we might only want to
2595 	 * run this check if we need the space), but for now it's a reliable
2596 	 * spot to do it.
2597 	 */
2598 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2599 		d->bd_fbuf = d->bd_hbuf;
2600 		d->bd_hbuf = NULL;
2601 		d->bd_hlen = 0;
2602 		bpf_buf_reclaimed(d);
2603 	}
2604 
2605 	/*
2606 	 * Figure out how many bytes to move.  If the packet is
2607 	 * greater or equal to the snapshot length, transfer that
2608 	 * much.  Otherwise, transfer the whole packet (unless
2609 	 * we hit the buffer size limit).
2610 	 */
2611 	hdrlen = bpf_hdrlen(d);
2612 	totlen = hdrlen + min(snaplen, pktlen);
2613 	if (totlen > d->bd_bufsize)
2614 		totlen = d->bd_bufsize;
2615 
2616 	/*
2617 	 * Round up the end of the previous packet to the next longword.
2618 	 *
2619 	 * Drop the packet if there's no room and no hope of room
2620 	 * If the packet would overflow the storage buffer or the storage
2621 	 * buffer is considered immutable by the buffer model, try to rotate
2622 	 * the buffer and wakeup pending processes.
2623 	 */
2624 #ifdef COMPAT_FREEBSD32
2625 	if (d->bd_compat32)
2626 		curlen = BPF_WORDALIGN32(d->bd_slen);
2627 	else
2628 #endif
2629 		curlen = BPF_WORDALIGN(d->bd_slen);
2630 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2631 		if (d->bd_fbuf == NULL) {
2632 			/*
2633 			 * There's no room in the store buffer, and no
2634 			 * prospect of room, so drop the packet.  Notify the
2635 			 * buffer model.
2636 			 */
2637 			bpf_buffull(d);
2638 			counter_u64_add(d->bd_dcount, 1);
2639 			return;
2640 		}
2641 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2642 		ROTATE_BUFFERS(d);
2643 		do_wakeup = 1;
2644 		curlen = 0;
2645 	} else {
2646 		if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2647 			/*
2648 			 * Immediate mode is set, or the read timeout has
2649 			 * already expired during a select call.  A packet
2650 			 * arrived, so the reader should be woken up.
2651 			 */
2652 			do_wakeup = 1;
2653 		}
2654 		pad = curlen - d->bd_slen;
2655 		KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2656 		    ("%s: invalid pad byte count %d", __func__, pad));
2657 		if (pad > 0) {
2658 			/* Zero pad bytes. */
2659 			bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2660 			    pad);
2661 		}
2662 	}
2663 
2664 	caplen = totlen - hdrlen;
2665 	tstype = d->bd_tstamp;
2666 	do_timestamp = tstype != BPF_T_NONE;
2667 #ifndef BURN_BRIDGES
2668 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2669 		struct bpf_ts ts;
2670 		if (do_timestamp)
2671 			bpf_bintime2ts(bt, &ts, tstype);
2672 #ifdef COMPAT_FREEBSD32
2673 		if (d->bd_compat32) {
2674 			bzero(&hdr32_old, sizeof(hdr32_old));
2675 			if (do_timestamp) {
2676 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2677 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2678 			}
2679 			hdr32_old.bh_datalen = pktlen;
2680 			hdr32_old.bh_hdrlen = hdrlen;
2681 			hdr32_old.bh_caplen = caplen;
2682 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2683 			    sizeof(hdr32_old));
2684 			goto copy;
2685 		}
2686 #endif
2687 		bzero(&hdr_old, sizeof(hdr_old));
2688 		if (do_timestamp) {
2689 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2690 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2691 		}
2692 		hdr_old.bh_datalen = pktlen;
2693 		hdr_old.bh_hdrlen = hdrlen;
2694 		hdr_old.bh_caplen = caplen;
2695 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2696 		    sizeof(hdr_old));
2697 		goto copy;
2698 	}
2699 #endif
2700 
2701 	/*
2702 	 * Append the bpf header.  Note we append the actual header size, but
2703 	 * move forward the length of the header plus padding.
2704 	 */
2705 	bzero(&hdr, sizeof(hdr));
2706 	if (do_timestamp)
2707 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2708 	hdr.bh_datalen = pktlen;
2709 	hdr.bh_hdrlen = hdrlen;
2710 	hdr.bh_caplen = caplen;
2711 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2712 
2713 	/*
2714 	 * Copy the packet data into the store buffer and update its length.
2715 	 */
2716 #ifndef BURN_BRIDGES
2717 copy:
2718 #endif
2719 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2720 	d->bd_slen = curlen + totlen;
2721 
2722 	if (do_wakeup)
2723 		bpf_wakeup(d);
2724 }
2725 
2726 /*
2727  * Free buffers currently in use by a descriptor.
2728  * Called on close.
2729  */
2730 static void
2731 bpfd_free(epoch_context_t ctx)
2732 {
2733 	struct bpf_d *d;
2734 	struct bpf_program_buffer *p;
2735 
2736 	/*
2737 	 * We don't need to lock out interrupts since this descriptor has
2738 	 * been detached from its interface and it yet hasn't been marked
2739 	 * free.
2740 	 */
2741 	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2742 	bpf_free(d);
2743 	if (d->bd_rfilter != NULL) {
2744 		p = __containerof((void *)d->bd_rfilter,
2745 		    struct bpf_program_buffer, buffer);
2746 #ifdef BPF_JITTER
2747 		p->func = d->bd_bfilter;
2748 #endif
2749 		bpf_program_buffer_free(&p->epoch_ctx);
2750 	}
2751 	if (d->bd_wfilter != NULL) {
2752 		p = __containerof((void *)d->bd_wfilter,
2753 		    struct bpf_program_buffer, buffer);
2754 #ifdef BPF_JITTER
2755 		p->func = NULL;
2756 #endif
2757 		bpf_program_buffer_free(&p->epoch_ctx);
2758 	}
2759 
2760 	mtx_destroy(&d->bd_lock);
2761 	counter_u64_free(d->bd_rcount);
2762 	counter_u64_free(d->bd_dcount);
2763 	counter_u64_free(d->bd_fcount);
2764 	counter_u64_free(d->bd_wcount);
2765 	counter_u64_free(d->bd_wfcount);
2766 	counter_u64_free(d->bd_wdcount);
2767 	counter_u64_free(d->bd_zcopy);
2768 	free(d, M_BPF);
2769 }
2770 
2771 /*
2772  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2773  * fixed size of the link header (variable length headers not yet supported).
2774  */
2775 void
2776 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2777 {
2778 
2779 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2780 }
2781 
2782 /*
2783  * Attach an interface to bpf.  ifp is a pointer to the structure
2784  * defining the interface to be attached, dlt is the link layer type,
2785  * and hdrlen is the fixed size of the link header (variable length
2786  * headers are not yet supporrted).
2787  */
2788 void
2789 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2790     struct bpf_if **driverp)
2791 {
2792 	struct bpf_if *bp;
2793 
2794 	KASSERT(*driverp == NULL,
2795 	    ("bpfattach2: driverp already initialized"));
2796 
2797 	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2798 
2799 	CK_LIST_INIT(&bp->bif_dlist);
2800 	CK_LIST_INIT(&bp->bif_wlist);
2801 	bp->bif_ifp = ifp;
2802 	bp->bif_dlt = dlt;
2803 	bp->bif_hdrlen = hdrlen;
2804 	bp->bif_bpf = driverp;
2805 	refcount_init(&bp->bif_refcnt, 1);
2806 	*driverp = bp;
2807 	/*
2808 	 * Reference ifnet pointer, so it won't freed until
2809 	 * we release it.
2810 	 */
2811 	if_ref(ifp);
2812 	BPF_LOCK();
2813 	CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2814 	BPF_UNLOCK();
2815 
2816 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2817 		if_printf(ifp, "bpf attached\n");
2818 }
2819 
2820 #ifdef VIMAGE
2821 /*
2822  * When moving interfaces between vnet instances we need a way to
2823  * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2824  * after the vmove.  We unfortunately have no device driver infrastructure
2825  * to query the interface for these values after creation/attach, thus
2826  * add this as a workaround.
2827  */
2828 int
2829 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2830 {
2831 
2832 	if (bp == NULL)
2833 		return (ENXIO);
2834 	if (bif_dlt == NULL && bif_hdrlen == NULL)
2835 		return (0);
2836 
2837 	if (bif_dlt != NULL)
2838 		*bif_dlt = bp->bif_dlt;
2839 	if (bif_hdrlen != NULL)
2840 		*bif_hdrlen = bp->bif_hdrlen;
2841 
2842 	return (0);
2843 }
2844 #endif
2845 
2846 /*
2847  * Detach bpf from an interface. This involves detaching each descriptor
2848  * associated with the interface. Notify each descriptor as it's detached
2849  * so that any sleepers wake up and get ENXIO.
2850  */
2851 void
2852 bpfdetach(struct ifnet *ifp)
2853 {
2854 	struct bpf_if *bp, *bp_temp;
2855 	struct bpf_d *d;
2856 
2857 	BPF_LOCK();
2858 	/* Find all bpf_if struct's which reference ifp and detach them. */
2859 	CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2860 		if (ifp != bp->bif_ifp)
2861 			continue;
2862 
2863 		CK_LIST_REMOVE(bp, bif_next);
2864 		*bp->bif_bpf = (struct bpf_if *)&dead_bpf_if;
2865 
2866 		CTR4(KTR_NET,
2867 		    "%s: sheduling free for encap %d (%p) for if %p",
2868 		    __func__, bp->bif_dlt, bp, ifp);
2869 
2870 		/* Detach common descriptors */
2871 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2872 			bpf_detachd_locked(d, true);
2873 		}
2874 
2875 		/* Detach writer-only descriptors */
2876 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2877 			bpf_detachd_locked(d, true);
2878 		}
2879 		bpfif_rele(bp);
2880 	}
2881 	BPF_UNLOCK();
2882 }
2883 
2884 /*
2885  * Get a list of available data link type of the interface.
2886  */
2887 static int
2888 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2889 {
2890 	struct ifnet *ifp;
2891 	struct bpf_if *bp;
2892 	u_int *lst;
2893 	int error, n, n1;
2894 
2895 	BPF_LOCK_ASSERT();
2896 
2897 	ifp = d->bd_bif->bif_ifp;
2898 	n1 = 0;
2899 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2900 		if (bp->bif_ifp == ifp)
2901 			n1++;
2902 	}
2903 	if (bfl->bfl_list == NULL) {
2904 		bfl->bfl_len = n1;
2905 		return (0);
2906 	}
2907 	if (n1 > bfl->bfl_len)
2908 		return (ENOMEM);
2909 
2910 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2911 	n = 0;
2912 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2913 		if (bp->bif_ifp != ifp)
2914 			continue;
2915 		lst[n++] = bp->bif_dlt;
2916 	}
2917 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2918 	free(lst, M_TEMP);
2919 	bfl->bfl_len = n;
2920 	return (error);
2921 }
2922 
2923 /*
2924  * Set the data link type of a BPF instance.
2925  */
2926 static int
2927 bpf_setdlt(struct bpf_d *d, u_int dlt)
2928 {
2929 	int error, opromisc;
2930 	struct ifnet *ifp;
2931 	struct bpf_if *bp;
2932 
2933 	BPF_LOCK_ASSERT();
2934 	MPASS(d->bd_bif != NULL);
2935 
2936 	/*
2937 	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2938 	 * changed while we hold global lock.
2939 	 */
2940 	if (d->bd_bif->bif_dlt == dlt)
2941 		return (0);
2942 
2943 	ifp = d->bd_bif->bif_ifp;
2944 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2945 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2946 			break;
2947 	}
2948 	if (bp == NULL)
2949 		return (EINVAL);
2950 
2951 	opromisc = d->bd_promisc;
2952 	bpf_attachd(d, bp);
2953 	if (opromisc) {
2954 		error = ifpromisc(bp->bif_ifp, 1);
2955 		if (error)
2956 			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2957 			    __func__, error);
2958 		else
2959 			d->bd_promisc = 1;
2960 	}
2961 	return (0);
2962 }
2963 
2964 static void
2965 bpf_drvinit(void *unused)
2966 {
2967 	struct cdev *dev;
2968 
2969 	sx_init(&bpf_sx, "bpf global lock");
2970 	CK_LIST_INIT(&bpf_iflist);
2971 
2972 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2973 	/* For compatibility */
2974 	make_dev_alias(dev, "bpf0");
2975 }
2976 
2977 /*
2978  * Zero out the various packet counters associated with all of the bpf
2979  * descriptors.  At some point, we will probably want to get a bit more
2980  * granular and allow the user to specify descriptors to be zeroed.
2981  */
2982 static void
2983 bpf_zero_counters(void)
2984 {
2985 	struct bpf_if *bp;
2986 	struct bpf_d *bd;
2987 
2988 	BPF_LOCK();
2989 	/*
2990 	 * We are protected by global lock here, interfaces and
2991 	 * descriptors can not be deleted while we hold it.
2992 	 */
2993 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2994 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2995 			counter_u64_zero(bd->bd_rcount);
2996 			counter_u64_zero(bd->bd_dcount);
2997 			counter_u64_zero(bd->bd_fcount);
2998 			counter_u64_zero(bd->bd_wcount);
2999 			counter_u64_zero(bd->bd_wfcount);
3000 			counter_u64_zero(bd->bd_zcopy);
3001 		}
3002 	}
3003 	BPF_UNLOCK();
3004 }
3005 
3006 /*
3007  * Fill filter statistics
3008  */
3009 static void
3010 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3011 {
3012 
3013 	BPF_LOCK_ASSERT();
3014 	bzero(d, sizeof(*d));
3015 	d->bd_structsize = sizeof(*d);
3016 	d->bd_immediate = bd->bd_immediate;
3017 	d->bd_promisc = bd->bd_promisc;
3018 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
3019 	d->bd_direction = bd->bd_direction;
3020 	d->bd_feedback = bd->bd_feedback;
3021 	d->bd_async = bd->bd_async;
3022 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3023 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3024 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3025 	d->bd_sig = bd->bd_sig;
3026 	d->bd_slen = bd->bd_slen;
3027 	d->bd_hlen = bd->bd_hlen;
3028 	d->bd_bufsize = bd->bd_bufsize;
3029 	d->bd_pid = bd->bd_pid;
3030 	strlcpy(d->bd_ifname,
3031 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3032 	d->bd_locked = bd->bd_locked;
3033 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3034 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3035 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3036 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3037 	d->bd_bufmode = bd->bd_bufmode;
3038 }
3039 
3040 /*
3041  * Handle `netstat -B' stats request
3042  */
3043 static int
3044 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3045 {
3046 	static const struct xbpf_d zerostats;
3047 	struct xbpf_d *xbdbuf, *xbd, tempstats;
3048 	int index, error;
3049 	struct bpf_if *bp;
3050 	struct bpf_d *bd;
3051 
3052 	/*
3053 	 * XXX This is not technically correct. It is possible for non
3054 	 * privileged users to open bpf devices. It would make sense
3055 	 * if the users who opened the devices were able to retrieve
3056 	 * the statistics for them, too.
3057 	 */
3058 	error = priv_check(req->td, PRIV_NET_BPF);
3059 	if (error)
3060 		return (error);
3061 	/*
3062 	 * Check to see if the user is requesting that the counters be
3063 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
3064 	 * as we aren't allowing the user to set the counters currently.
3065 	 */
3066 	if (req->newptr != NULL) {
3067 		if (req->newlen != sizeof(tempstats))
3068 			return (EINVAL);
3069 		memset(&tempstats, 0, sizeof(tempstats));
3070 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3071 		if (error)
3072 			return (error);
3073 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3074 			return (EINVAL);
3075 		bpf_zero_counters();
3076 		return (0);
3077 	}
3078 	if (req->oldptr == NULL)
3079 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
3080 	if (bpf_bpfd_cnt == 0)
3081 		return (SYSCTL_OUT(req, 0, 0));
3082 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3083 	BPF_LOCK();
3084 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3085 		BPF_UNLOCK();
3086 		free(xbdbuf, M_BPF);
3087 		return (ENOMEM);
3088 	}
3089 	index = 0;
3090 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3091 		/* Send writers-only first */
3092 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3093 			xbd = &xbdbuf[index++];
3094 			bpfstats_fill_xbpf(xbd, bd);
3095 		}
3096 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3097 			xbd = &xbdbuf[index++];
3098 			bpfstats_fill_xbpf(xbd, bd);
3099 		}
3100 	}
3101 	BPF_UNLOCK();
3102 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3103 	free(xbdbuf, M_BPF);
3104 	return (error);
3105 }
3106 
3107 SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
3108 
3109 #else /* !DEV_BPF && !NETGRAPH_BPF */
3110 
3111 /*
3112  * NOP stubs to allow bpf-using drivers to load and function.
3113  *
3114  * A 'better' implementation would allow the core bpf functionality
3115  * to be loaded at runtime.
3116  */
3117 
3118 void
3119 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3120 {
3121 }
3122 
3123 void
3124 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3125 {
3126 }
3127 
3128 void
3129 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3130 {
3131 }
3132 
3133 void
3134 bpf_mtap_if(if_t ifp, struct mbuf *m)
3135 {
3136 }
3137 
3138 void
3139 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3140 {
3141 }
3142 
3143 void
3144 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3145 {
3146 }
3147 
3148 void
3149 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3150 {
3151 
3152 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3153 }
3154 
3155 void
3156 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3157 {
3158 
3159 	*driverp = (struct bpf_if *)&dead_bpf_if;
3160 }
3161 
3162 void
3163 bpfdetach(struct ifnet *ifp)
3164 {
3165 }
3166 
3167 u_int
3168 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3169 {
3170 	return -1;	/* "no filter" behaviour */
3171 }
3172 
3173 int
3174 bpf_validate(const struct bpf_insn *f, int len)
3175 {
3176 	return 0;		/* false */
3177 }
3178 
3179 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3180 
3181 #ifdef DDB
3182 static void
3183 bpf_show_bpf_if(struct bpf_if *bpf_if)
3184 {
3185 
3186 	if (bpf_if == NULL)
3187 		return;
3188 	db_printf("%p:\n", bpf_if);
3189 #define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3190 #define	BPF_DB_PRINTF_RAW(f, e)	db_printf("   %s = " f "\n", #e, e);
3191 	/* bif_ext.bif_next */
3192 	/* bif_ext.bif_dlist */
3193 	BPF_DB_PRINTF("%#x", bif_dlt);
3194 	BPF_DB_PRINTF("%u", bif_hdrlen);
3195 	/* bif_wlist */
3196 	BPF_DB_PRINTF("%p", bif_ifp);
3197 	BPF_DB_PRINTF("%p", bif_bpf);
3198 	BPF_DB_PRINTF_RAW("%u", refcount_load(&bpf_if->bif_refcnt));
3199 }
3200 
3201 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3202 {
3203 
3204 	if (!have_addr) {
3205 		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3206 		return;
3207 	}
3208 
3209 	bpf_show_bpf_if((struct bpf_if *)addr);
3210 }
3211 #endif
3212