xref: /freebsd/sys/net/bpf.c (revision 78b9f0095b4af3aca6c931b2c7b009ddb8a05125)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from the Stanford/CMU enet packet filter,
8  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
9  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
10  * Berkeley Laboratory.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_bpf.h"
43 #include "opt_ddb.h"
44 #include "opt_netgraph.h"
45 
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/lock.h>
49 #include <sys/rwlock.h>
50 #include <sys/systm.h>
51 #include <sys/conf.h>
52 #include <sys/fcntl.h>
53 #include <sys/jail.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/time.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/signalvar.h>
60 #include <sys/filio.h>
61 #include <sys/sockio.h>
62 #include <sys/ttycom.h>
63 #include <sys/uio.h>
64 #include <sys/sysent.h>
65 
66 #include <sys/event.h>
67 #include <sys/file.h>
68 #include <sys/poll.h>
69 #include <sys/proc.h>
70 
71 #include <sys/socket.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <net/if.h>
78 #include <net/if_var.h>
79 #include <net/if_dl.h>
80 #include <net/bpf.h>
81 #include <net/bpf_buffer.h>
82 #ifdef BPF_JITTER
83 #include <net/bpf_jitter.h>
84 #endif
85 #include <net/bpf_zerocopy.h>
86 #include <net/bpfdesc.h>
87 #include <net/route.h>
88 #include <net/vnet.h>
89 
90 #include <netinet/in.h>
91 #include <netinet/if_ether.h>
92 #include <sys/kernel.h>
93 #include <sys/sysctl.h>
94 
95 #include <net80211/ieee80211_freebsd.h>
96 
97 #include <security/mac/mac_framework.h>
98 
99 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
100 
101 static struct bpf_if_ext dead_bpf_if = {
102 	.bif_dlist = LIST_HEAD_INITIALIZER()
103 };
104 
105 struct bpf_if {
106 #define	bif_next	bif_ext.bif_next
107 #define	bif_dlist	bif_ext.bif_dlist
108 	struct bpf_if_ext bif_ext;	/* public members */
109 	u_int		bif_dlt;	/* link layer type */
110 	u_int		bif_hdrlen;	/* length of link header */
111 	struct ifnet	*bif_ifp;	/* corresponding interface */
112 	struct rwlock	bif_lock;	/* interface lock */
113 	LIST_HEAD(, bpf_d) bif_wlist;	/* writer-only list */
114 	int		bif_flags;	/* Interface flags */
115 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
116 };
117 
118 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
119 
120 #define BPFIF_RLOCK(bif)	rw_rlock(&(bif)->bif_lock)
121 #define BPFIF_RUNLOCK(bif)	rw_runlock(&(bif)->bif_lock)
122 #define BPFIF_WLOCK(bif)	rw_wlock(&(bif)->bif_lock)
123 #define BPFIF_WUNLOCK(bif)	rw_wunlock(&(bif)->bif_lock)
124 
125 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
126 
127 #define PRINET  26			/* interruptible */
128 
129 #define	SIZEOF_BPF_HDR(type)	\
130     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
131 
132 #ifdef COMPAT_FREEBSD32
133 #include <sys/mount.h>
134 #include <compat/freebsd32/freebsd32.h>
135 #define BPF_ALIGNMENT32 sizeof(int32_t)
136 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
137 
138 #ifndef BURN_BRIDGES
139 /*
140  * 32-bit version of structure prepended to each packet.  We use this header
141  * instead of the standard one for 32-bit streams.  We mark the a stream as
142  * 32-bit the first time we see a 32-bit compat ioctl request.
143  */
144 struct bpf_hdr32 {
145 	struct timeval32 bh_tstamp;	/* time stamp */
146 	uint32_t	bh_caplen;	/* length of captured portion */
147 	uint32_t	bh_datalen;	/* original length of packet */
148 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
149 					   plus alignment padding) */
150 };
151 #endif
152 
153 struct bpf_program32 {
154 	u_int bf_len;
155 	uint32_t bf_insns;
156 };
157 
158 struct bpf_dltlist32 {
159 	u_int	bfl_len;
160 	u_int	bfl_list;
161 };
162 
163 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
164 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
165 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
166 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
167 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
168 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
169 #endif
170 
171 #define BPF_LOCK()	   sx_xlock(&bpf_sx)
172 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
173 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
174 /*
175  * bpf_iflist is a list of BPF interface structures, each corresponding to a
176  * specific DLT.  The same network interface might have several BPF interface
177  * structures registered by different layers in the stack (i.e., 802.11
178  * frames, ethernet frames, etc).
179  */
180 static LIST_HEAD(, bpf_if)	bpf_iflist, bpf_freelist;
181 static struct sx	bpf_sx;		/* bpf global lock */
182 static int		bpf_bpfd_cnt;
183 
184 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
185 static void	bpf_detachd(struct bpf_d *);
186 static void	bpf_detachd_locked(struct bpf_d *);
187 static void	bpf_freed(struct bpf_d *);
188 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
189 		    struct sockaddr *, int *, struct bpf_d *);
190 static int	bpf_setif(struct bpf_d *, struct ifreq *);
191 static void	bpf_timed_out(void *);
192 static __inline void
193 		bpf_wakeup(struct bpf_d *);
194 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
195 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
196 		    struct bintime *);
197 static void	reset_d(struct bpf_d *);
198 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
199 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
200 static int	bpf_setdlt(struct bpf_d *, u_int);
201 static void	filt_bpfdetach(struct knote *);
202 static int	filt_bpfread(struct knote *, long);
203 static void	bpf_drvinit(void *);
204 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
205 
206 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl");
207 int bpf_maxinsns = BPF_MAXINSNS;
208 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
209     &bpf_maxinsns, 0, "Maximum bpf program instructions");
210 static int bpf_zerocopy_enable = 0;
211 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
212     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
213 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
214     bpf_stats_sysctl, "bpf statistics portal");
215 
216 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
217 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
218 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RW,
219     &VNET_NAME(bpf_optimize_writers), 0,
220     "Do not send packets until BPF program is set");
221 
222 static	d_open_t	bpfopen;
223 static	d_read_t	bpfread;
224 static	d_write_t	bpfwrite;
225 static	d_ioctl_t	bpfioctl;
226 static	d_poll_t	bpfpoll;
227 static	d_kqfilter_t	bpfkqfilter;
228 
229 static struct cdevsw bpf_cdevsw = {
230 	.d_version =	D_VERSION,
231 	.d_open =	bpfopen,
232 	.d_read =	bpfread,
233 	.d_write =	bpfwrite,
234 	.d_ioctl =	bpfioctl,
235 	.d_poll =	bpfpoll,
236 	.d_name =	"bpf",
237 	.d_kqfilter =	bpfkqfilter,
238 };
239 
240 static struct filterops bpfread_filtops = {
241 	.f_isfd = 1,
242 	.f_detach = filt_bpfdetach,
243 	.f_event = filt_bpfread,
244 };
245 
246 eventhandler_tag	bpf_ifdetach_cookie = NULL;
247 
248 /*
249  * LOCKING MODEL USED BY BPF:
250  * Locks:
251  * 1) global lock (BPF_LOCK). Mutex, used to protect interface addition/removal,
252  * some global counters and every bpf_if reference.
253  * 2) Interface lock. Rwlock, used to protect list of BPF descriptors and their filters.
254  * 3) Descriptor lock. Mutex, used to protect BPF buffers and various structure fields
255  *   used by bpf_mtap code.
256  *
257  * Lock order:
258  *
259  * Global lock, interface lock, descriptor lock
260  *
261  * We have to acquire interface lock before descriptor main lock due to BPF_MTAP[2]
262  * working model. In many places (like bpf_detachd) we start with BPF descriptor
263  * (and we need to at least rlock it to get reliable interface pointer). This
264  * gives us potential LOR. As a result, we use global lock to protect from bpf_if
265  * change in every such place.
266  *
267  * Changing d->bd_bif is protected by 1) global lock, 2) interface lock and
268  * 3) descriptor main wlock.
269  * Reading bd_bif can be protected by any of these locks, typically global lock.
270  *
271  * Changing read/write BPF filter is protected by the same three locks,
272  * the same applies for reading.
273  *
274  * Sleeping in global lock is not allowed due to bpfdetach() using it.
275  */
276 
277 /*
278  * Wrapper functions for various buffering methods.  If the set of buffer
279  * modes expands, we will probably want to introduce a switch data structure
280  * similar to protosw, et.
281  */
282 static void
283 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
284     u_int len)
285 {
286 
287 	BPFD_LOCK_ASSERT(d);
288 
289 	switch (d->bd_bufmode) {
290 	case BPF_BUFMODE_BUFFER:
291 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
292 
293 	case BPF_BUFMODE_ZBUF:
294 		counter_u64_add(d->bd_zcopy, 1);
295 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
296 
297 	default:
298 		panic("bpf_buf_append_bytes");
299 	}
300 }
301 
302 static void
303 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
304     u_int len)
305 {
306 
307 	BPFD_LOCK_ASSERT(d);
308 
309 	switch (d->bd_bufmode) {
310 	case BPF_BUFMODE_BUFFER:
311 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
312 
313 	case BPF_BUFMODE_ZBUF:
314 		counter_u64_add(d->bd_zcopy, 1);
315 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
316 
317 	default:
318 		panic("bpf_buf_append_mbuf");
319 	}
320 }
321 
322 /*
323  * This function gets called when the free buffer is re-assigned.
324  */
325 static void
326 bpf_buf_reclaimed(struct bpf_d *d)
327 {
328 
329 	BPFD_LOCK_ASSERT(d);
330 
331 	switch (d->bd_bufmode) {
332 	case BPF_BUFMODE_BUFFER:
333 		return;
334 
335 	case BPF_BUFMODE_ZBUF:
336 		bpf_zerocopy_buf_reclaimed(d);
337 		return;
338 
339 	default:
340 		panic("bpf_buf_reclaimed");
341 	}
342 }
343 
344 /*
345  * If the buffer mechanism has a way to decide that a held buffer can be made
346  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
347  * returned if the buffer can be discarded, (0) is returned if it cannot.
348  */
349 static int
350 bpf_canfreebuf(struct bpf_d *d)
351 {
352 
353 	BPFD_LOCK_ASSERT(d);
354 
355 	switch (d->bd_bufmode) {
356 	case BPF_BUFMODE_ZBUF:
357 		return (bpf_zerocopy_canfreebuf(d));
358 	}
359 	return (0);
360 }
361 
362 /*
363  * Allow the buffer model to indicate that the current store buffer is
364  * immutable, regardless of the appearance of space.  Return (1) if the
365  * buffer is writable, and (0) if not.
366  */
367 static int
368 bpf_canwritebuf(struct bpf_d *d)
369 {
370 	BPFD_LOCK_ASSERT(d);
371 
372 	switch (d->bd_bufmode) {
373 	case BPF_BUFMODE_ZBUF:
374 		return (bpf_zerocopy_canwritebuf(d));
375 	}
376 	return (1);
377 }
378 
379 /*
380  * Notify buffer model that an attempt to write to the store buffer has
381  * resulted in a dropped packet, in which case the buffer may be considered
382  * full.
383  */
384 static void
385 bpf_buffull(struct bpf_d *d)
386 {
387 
388 	BPFD_LOCK_ASSERT(d);
389 
390 	switch (d->bd_bufmode) {
391 	case BPF_BUFMODE_ZBUF:
392 		bpf_zerocopy_buffull(d);
393 		break;
394 	}
395 }
396 
397 /*
398  * Notify the buffer model that a buffer has moved into the hold position.
399  */
400 void
401 bpf_bufheld(struct bpf_d *d)
402 {
403 
404 	BPFD_LOCK_ASSERT(d);
405 
406 	switch (d->bd_bufmode) {
407 	case BPF_BUFMODE_ZBUF:
408 		bpf_zerocopy_bufheld(d);
409 		break;
410 	}
411 }
412 
413 static void
414 bpf_free(struct bpf_d *d)
415 {
416 
417 	switch (d->bd_bufmode) {
418 	case BPF_BUFMODE_BUFFER:
419 		return (bpf_buffer_free(d));
420 
421 	case BPF_BUFMODE_ZBUF:
422 		return (bpf_zerocopy_free(d));
423 
424 	default:
425 		panic("bpf_buf_free");
426 	}
427 }
428 
429 static int
430 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
431 {
432 
433 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
434 		return (EOPNOTSUPP);
435 	return (bpf_buffer_uiomove(d, buf, len, uio));
436 }
437 
438 static int
439 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
440 {
441 
442 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
443 		return (EOPNOTSUPP);
444 	return (bpf_buffer_ioctl_sblen(d, i));
445 }
446 
447 static int
448 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
449 {
450 
451 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
452 		return (EOPNOTSUPP);
453 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
454 }
455 
456 static int
457 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
458 {
459 
460 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
461 		return (EOPNOTSUPP);
462 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
463 }
464 
465 static int
466 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
467 {
468 
469 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
470 		return (EOPNOTSUPP);
471 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
472 }
473 
474 /*
475  * General BPF functions.
476  */
477 static int
478 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
479     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
480 {
481 	const struct ieee80211_bpf_params *p;
482 	struct ether_header *eh;
483 	struct mbuf *m;
484 	int error;
485 	int len;
486 	int hlen;
487 	int slen;
488 
489 	/*
490 	 * Build a sockaddr based on the data link layer type.
491 	 * We do this at this level because the ethernet header
492 	 * is copied directly into the data field of the sockaddr.
493 	 * In the case of SLIP, there is no header and the packet
494 	 * is forwarded as is.
495 	 * Also, we are careful to leave room at the front of the mbuf
496 	 * for the link level header.
497 	 */
498 	switch (linktype) {
499 
500 	case DLT_SLIP:
501 		sockp->sa_family = AF_INET;
502 		hlen = 0;
503 		break;
504 
505 	case DLT_EN10MB:
506 		sockp->sa_family = AF_UNSPEC;
507 		/* XXX Would MAXLINKHDR be better? */
508 		hlen = ETHER_HDR_LEN;
509 		break;
510 
511 	case DLT_FDDI:
512 		sockp->sa_family = AF_IMPLINK;
513 		hlen = 0;
514 		break;
515 
516 	case DLT_RAW:
517 		sockp->sa_family = AF_UNSPEC;
518 		hlen = 0;
519 		break;
520 
521 	case DLT_NULL:
522 		/*
523 		 * null interface types require a 4 byte pseudo header which
524 		 * corresponds to the address family of the packet.
525 		 */
526 		sockp->sa_family = AF_UNSPEC;
527 		hlen = 4;
528 		break;
529 
530 	case DLT_ATM_RFC1483:
531 		/*
532 		 * en atm driver requires 4-byte atm pseudo header.
533 		 * though it isn't standard, vpi:vci needs to be
534 		 * specified anyway.
535 		 */
536 		sockp->sa_family = AF_UNSPEC;
537 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
538 		break;
539 
540 	case DLT_PPP:
541 		sockp->sa_family = AF_UNSPEC;
542 		hlen = 4;	/* This should match PPP_HDRLEN */
543 		break;
544 
545 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
546 		sockp->sa_family = AF_IEEE80211;
547 		hlen = 0;
548 		break;
549 
550 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
551 		sockp->sa_family = AF_IEEE80211;
552 		sockp->sa_len = 12;	/* XXX != 0 */
553 		hlen = sizeof(struct ieee80211_bpf_params);
554 		break;
555 
556 	default:
557 		return (EIO);
558 	}
559 
560 	len = uio->uio_resid;
561 	if (len < hlen || len - hlen > ifp->if_mtu)
562 		return (EMSGSIZE);
563 
564 	m = m_get2(len, M_WAITOK, MT_DATA, M_PKTHDR);
565 	if (m == NULL)
566 		return (EIO);
567 	m->m_pkthdr.len = m->m_len = len;
568 	*mp = m;
569 
570 	error = uiomove(mtod(m, u_char *), len, uio);
571 	if (error)
572 		goto bad;
573 
574 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
575 	if (slen == 0) {
576 		error = EPERM;
577 		goto bad;
578 	}
579 
580 	/* Check for multicast destination */
581 	switch (linktype) {
582 	case DLT_EN10MB:
583 		eh = mtod(m, struct ether_header *);
584 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
585 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
586 			    ETHER_ADDR_LEN) == 0)
587 				m->m_flags |= M_BCAST;
588 			else
589 				m->m_flags |= M_MCAST;
590 		}
591 		if (d->bd_hdrcmplt == 0) {
592 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
593 			    sizeof(eh->ether_shost));
594 		}
595 		break;
596 	}
597 
598 	/*
599 	 * Make room for link header, and copy it to sockaddr
600 	 */
601 	if (hlen != 0) {
602 		if (sockp->sa_family == AF_IEEE80211) {
603 			/*
604 			 * Collect true length from the parameter header
605 			 * NB: sockp is known to be zero'd so if we do a
606 			 *     short copy unspecified parameters will be
607 			 *     zero.
608 			 * NB: packet may not be aligned after stripping
609 			 *     bpf params
610 			 * XXX check ibp_vers
611 			 */
612 			p = mtod(m, const struct ieee80211_bpf_params *);
613 			hlen = p->ibp_len;
614 			if (hlen > sizeof(sockp->sa_data)) {
615 				error = EINVAL;
616 				goto bad;
617 			}
618 		}
619 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
620 	}
621 	*hdrlen = hlen;
622 
623 	return (0);
624 bad:
625 	m_freem(m);
626 	return (error);
627 }
628 
629 /*
630  * Attach file to the bpf interface, i.e. make d listen on bp.
631  */
632 static void
633 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
634 {
635 	int op_w;
636 
637 	BPF_LOCK_ASSERT();
638 
639 	/*
640 	 * Save sysctl value to protect from sysctl change
641 	 * between reads
642 	 */
643 	op_w = V_bpf_optimize_writers || d->bd_writer;
644 
645 	if (d->bd_bif != NULL)
646 		bpf_detachd_locked(d);
647 	/*
648 	 * Point d at bp, and add d to the interface's list.
649 	 * Since there are many applications using BPF for
650 	 * sending raw packets only (dhcpd, cdpd are good examples)
651 	 * we can delay adding d to the list of active listeners until
652 	 * some filter is configured.
653 	 */
654 
655 	BPFIF_WLOCK(bp);
656 	BPFD_LOCK(d);
657 
658 	d->bd_bif = bp;
659 
660 	if (op_w != 0) {
661 		/* Add to writers-only list */
662 		LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
663 		/*
664 		 * We decrement bd_writer on every filter set operation.
665 		 * First BIOCSETF is done by pcap_open_live() to set up
666 		 * snap length. After that appliation usually sets its own filter
667 		 */
668 		d->bd_writer = 2;
669 	} else
670 		LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
671 
672 	BPFD_UNLOCK(d);
673 	BPFIF_WUNLOCK(bp);
674 
675 	bpf_bpfd_cnt++;
676 
677 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
678 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
679 
680 	if (op_w == 0)
681 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
682 }
683 
684 /*
685  * Check if we need to upgrade our descriptor @d from write-only mode.
686  */
687 static int
688 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode, int flen)
689 {
690 	int is_snap, need_upgrade;
691 
692 	/*
693 	 * Check if we've already upgraded or new filter is empty.
694 	 */
695 	if (d->bd_writer == 0 || fcode == NULL)
696 		return (0);
697 
698 	need_upgrade = 0;
699 
700 	/*
701 	 * Check if cmd looks like snaplen setting from
702 	 * pcap_bpf.c:pcap_open_live().
703 	 * Note we're not checking .k value here:
704 	 * while pcap_open_live() definitely sets to non-zero value,
705 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
706 	 * do not consider upgrading immediately
707 	 */
708 	if (cmd == BIOCSETF && flen == 1 && fcode[0].code == (BPF_RET | BPF_K))
709 		is_snap = 1;
710 	else
711 		is_snap = 0;
712 
713 	if (is_snap == 0) {
714 		/*
715 		 * We're setting first filter and it doesn't look like
716 		 * setting snaplen.  We're probably using bpf directly.
717 		 * Upgrade immediately.
718 		 */
719 		need_upgrade = 1;
720 	} else {
721 		/*
722 		 * Do not require upgrade by first BIOCSETF
723 		 * (used to set snaplen) by pcap_open_live().
724 		 */
725 
726 		if (--d->bd_writer == 0) {
727 			/*
728 			 * First snaplen filter has already
729 			 * been set. This is probably catch-all
730 			 * filter
731 			 */
732 			need_upgrade = 1;
733 		}
734 	}
735 
736 	CTR5(KTR_NET,
737 	    "%s: filter function set by pid %d, "
738 	    "bd_writer counter %d, snap %d upgrade %d",
739 	    __func__, d->bd_pid, d->bd_writer,
740 	    is_snap, need_upgrade);
741 
742 	return (need_upgrade);
743 }
744 
745 /*
746  * Add d to the list of active bp filters.
747  * Requires bpf_attachd() to be called before.
748  */
749 static void
750 bpf_upgraded(struct bpf_d *d)
751 {
752 	struct bpf_if *bp;
753 
754 	BPF_LOCK_ASSERT();
755 
756 	bp = d->bd_bif;
757 
758 	/*
759 	 * Filter can be set several times without specifying interface.
760 	 * Mark d as reader and exit.
761 	 */
762 	if (bp == NULL) {
763 		BPFD_LOCK(d);
764 		d->bd_writer = 0;
765 		BPFD_UNLOCK(d);
766 		return;
767 	}
768 
769 	BPFIF_WLOCK(bp);
770 	BPFD_LOCK(d);
771 
772 	/* Remove from writers-only list */
773 	LIST_REMOVE(d, bd_next);
774 	LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
775 	/* Mark d as reader */
776 	d->bd_writer = 0;
777 
778 	BPFD_UNLOCK(d);
779 	BPFIF_WUNLOCK(bp);
780 
781 	CTR2(KTR_NET, "%s: upgrade required by pid %d", __func__, d->bd_pid);
782 
783 	EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
784 }
785 
786 /*
787  * Detach a file from its interface.
788  */
789 static void
790 bpf_detachd(struct bpf_d *d)
791 {
792 	BPF_LOCK();
793 	bpf_detachd_locked(d);
794 	BPF_UNLOCK();
795 }
796 
797 static void
798 bpf_detachd_locked(struct bpf_d *d)
799 {
800 	int error;
801 	struct bpf_if *bp;
802 	struct ifnet *ifp;
803 
804 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
805 
806 	BPF_LOCK_ASSERT();
807 
808 	/* Check if descriptor is attached */
809 	if ((bp = d->bd_bif) == NULL)
810 		return;
811 
812 	BPFIF_WLOCK(bp);
813 	BPFD_LOCK(d);
814 
815 	/* Save bd_writer value */
816 	error = d->bd_writer;
817 
818 	/*
819 	 * Remove d from the interface's descriptor list.
820 	 */
821 	LIST_REMOVE(d, bd_next);
822 
823 	ifp = bp->bif_ifp;
824 	d->bd_bif = NULL;
825 	BPFD_UNLOCK(d);
826 	BPFIF_WUNLOCK(bp);
827 
828 	bpf_bpfd_cnt--;
829 
830 	/* Call event handler iff d is attached */
831 	if (error == 0)
832 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
833 
834 	/*
835 	 * Check if this descriptor had requested promiscuous mode.
836 	 * If so, turn it off.
837 	 */
838 	if (d->bd_promisc) {
839 		d->bd_promisc = 0;
840 		CURVNET_SET(ifp->if_vnet);
841 		error = ifpromisc(ifp, 0);
842 		CURVNET_RESTORE();
843 		if (error != 0 && error != ENXIO) {
844 			/*
845 			 * ENXIO can happen if a pccard is unplugged
846 			 * Something is really wrong if we were able to put
847 			 * the driver into promiscuous mode, but can't
848 			 * take it out.
849 			 */
850 			if_printf(bp->bif_ifp,
851 				"bpf_detach: ifpromisc failed (%d)\n", error);
852 		}
853 	}
854 }
855 
856 /*
857  * Close the descriptor by detaching it from its interface,
858  * deallocating its buffers, and marking it free.
859  */
860 static void
861 bpf_dtor(void *data)
862 {
863 	struct bpf_d *d = data;
864 
865 	BPFD_LOCK(d);
866 	if (d->bd_state == BPF_WAITING)
867 		callout_stop(&d->bd_callout);
868 	d->bd_state = BPF_IDLE;
869 	BPFD_UNLOCK(d);
870 	funsetown(&d->bd_sigio);
871 	bpf_detachd(d);
872 #ifdef MAC
873 	mac_bpfdesc_destroy(d);
874 #endif /* MAC */
875 	seldrain(&d->bd_sel);
876 	knlist_destroy(&d->bd_sel.si_note);
877 	callout_drain(&d->bd_callout);
878 	bpf_freed(d);
879 	free(d, M_BPF);
880 }
881 
882 /*
883  * Open ethernet device.  Returns ENXIO for illegal minor device number,
884  * EBUSY if file is open by another process.
885  */
886 /* ARGSUSED */
887 static	int
888 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
889 {
890 	struct bpf_d *d;
891 	int error;
892 
893 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
894 	error = devfs_set_cdevpriv(d, bpf_dtor);
895 	if (error != 0) {
896 		free(d, M_BPF);
897 		return (error);
898 	}
899 
900 	/* Setup counters */
901 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
902 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
903 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
904 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
905 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
906 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
907 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
908 
909 	/*
910 	 * For historical reasons, perform a one-time initialization call to
911 	 * the buffer routines, even though we're not yet committed to a
912 	 * particular buffer method.
913 	 */
914 	bpf_buffer_init(d);
915 	if ((flags & FREAD) == 0)
916 		d->bd_writer = 2;
917 	d->bd_hbuf_in_use = 0;
918 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
919 	d->bd_sig = SIGIO;
920 	d->bd_direction = BPF_D_INOUT;
921 	BPF_PID_REFRESH(d, td);
922 #ifdef MAC
923 	mac_bpfdesc_init(d);
924 	mac_bpfdesc_create(td->td_ucred, d);
925 #endif
926 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
927 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
928 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
929 
930 	return (0);
931 }
932 
933 /*
934  *  bpfread - read next chunk of packets from buffers
935  */
936 static	int
937 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
938 {
939 	struct bpf_d *d;
940 	int error;
941 	int non_block;
942 	int timed_out;
943 
944 	error = devfs_get_cdevpriv((void **)&d);
945 	if (error != 0)
946 		return (error);
947 
948 	/*
949 	 * Restrict application to use a buffer the same size as
950 	 * as kernel buffers.
951 	 */
952 	if (uio->uio_resid != d->bd_bufsize)
953 		return (EINVAL);
954 
955 	non_block = ((ioflag & O_NONBLOCK) != 0);
956 
957 	BPFD_LOCK(d);
958 	BPF_PID_REFRESH_CUR(d);
959 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
960 		BPFD_UNLOCK(d);
961 		return (EOPNOTSUPP);
962 	}
963 	if (d->bd_state == BPF_WAITING)
964 		callout_stop(&d->bd_callout);
965 	timed_out = (d->bd_state == BPF_TIMED_OUT);
966 	d->bd_state = BPF_IDLE;
967 	while (d->bd_hbuf_in_use) {
968 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
969 		    PRINET|PCATCH, "bd_hbuf", 0);
970 		if (error != 0) {
971 			BPFD_UNLOCK(d);
972 			return (error);
973 		}
974 	}
975 	/*
976 	 * If the hold buffer is empty, then do a timed sleep, which
977 	 * ends when the timeout expires or when enough packets
978 	 * have arrived to fill the store buffer.
979 	 */
980 	while (d->bd_hbuf == NULL) {
981 		if (d->bd_slen != 0) {
982 			/*
983 			 * A packet(s) either arrived since the previous
984 			 * read or arrived while we were asleep.
985 			 */
986 			if (d->bd_immediate || non_block || timed_out) {
987 				/*
988 				 * Rotate the buffers and return what's here
989 				 * if we are in immediate mode, non-blocking
990 				 * flag is set, or this descriptor timed out.
991 				 */
992 				ROTATE_BUFFERS(d);
993 				break;
994 			}
995 		}
996 
997 		/*
998 		 * No data is available, check to see if the bpf device
999 		 * is still pointed at a real interface.  If not, return
1000 		 * ENXIO so that the userland process knows to rebind
1001 		 * it before using it again.
1002 		 */
1003 		if (d->bd_bif == NULL) {
1004 			BPFD_UNLOCK(d);
1005 			return (ENXIO);
1006 		}
1007 
1008 		if (non_block) {
1009 			BPFD_UNLOCK(d);
1010 			return (EWOULDBLOCK);
1011 		}
1012 		error = msleep(d, &d->bd_lock, PRINET|PCATCH,
1013 		     "bpf", d->bd_rtout);
1014 		if (error == EINTR || error == ERESTART) {
1015 			BPFD_UNLOCK(d);
1016 			return (error);
1017 		}
1018 		if (error == EWOULDBLOCK) {
1019 			/*
1020 			 * On a timeout, return what's in the buffer,
1021 			 * which may be nothing.  If there is something
1022 			 * in the store buffer, we can rotate the buffers.
1023 			 */
1024 			if (d->bd_hbuf)
1025 				/*
1026 				 * We filled up the buffer in between
1027 				 * getting the timeout and arriving
1028 				 * here, so we don't need to rotate.
1029 				 */
1030 				break;
1031 
1032 			if (d->bd_slen == 0) {
1033 				BPFD_UNLOCK(d);
1034 				return (0);
1035 			}
1036 			ROTATE_BUFFERS(d);
1037 			break;
1038 		}
1039 	}
1040 	/*
1041 	 * At this point, we know we have something in the hold slot.
1042 	 */
1043 	d->bd_hbuf_in_use = 1;
1044 	BPFD_UNLOCK(d);
1045 
1046 	/*
1047 	 * Move data from hold buffer into user space.
1048 	 * We know the entire buffer is transferred since
1049 	 * we checked above that the read buffer is bpf_bufsize bytes.
1050   	 *
1051 	 * We do not have to worry about simultaneous reads because
1052 	 * we waited for sole access to the hold buffer above.
1053 	 */
1054 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1055 
1056 	BPFD_LOCK(d);
1057 	KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1058 	d->bd_fbuf = d->bd_hbuf;
1059 	d->bd_hbuf = NULL;
1060 	d->bd_hlen = 0;
1061 	bpf_buf_reclaimed(d);
1062 	d->bd_hbuf_in_use = 0;
1063 	wakeup(&d->bd_hbuf_in_use);
1064 	BPFD_UNLOCK(d);
1065 
1066 	return (error);
1067 }
1068 
1069 /*
1070  * If there are processes sleeping on this descriptor, wake them up.
1071  */
1072 static __inline void
1073 bpf_wakeup(struct bpf_d *d)
1074 {
1075 
1076 	BPFD_LOCK_ASSERT(d);
1077 	if (d->bd_state == BPF_WAITING) {
1078 		callout_stop(&d->bd_callout);
1079 		d->bd_state = BPF_IDLE;
1080 	}
1081 	wakeup(d);
1082 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1083 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1084 
1085 	selwakeuppri(&d->bd_sel, PRINET);
1086 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1087 }
1088 
1089 static void
1090 bpf_timed_out(void *arg)
1091 {
1092 	struct bpf_d *d = (struct bpf_d *)arg;
1093 
1094 	BPFD_LOCK_ASSERT(d);
1095 
1096 	if (callout_pending(&d->bd_callout) || !callout_active(&d->bd_callout))
1097 		return;
1098 	if (d->bd_state == BPF_WAITING) {
1099 		d->bd_state = BPF_TIMED_OUT;
1100 		if (d->bd_slen != 0)
1101 			bpf_wakeup(d);
1102 	}
1103 }
1104 
1105 static int
1106 bpf_ready(struct bpf_d *d)
1107 {
1108 
1109 	BPFD_LOCK_ASSERT(d);
1110 
1111 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1112 		return (1);
1113 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1114 	    d->bd_slen != 0)
1115 		return (1);
1116 	return (0);
1117 }
1118 
1119 static int
1120 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1121 {
1122 	struct bpf_d *d;
1123 	struct ifnet *ifp;
1124 	struct mbuf *m, *mc;
1125 	struct sockaddr dst;
1126 	struct route ro;
1127 	int error, hlen;
1128 
1129 	error = devfs_get_cdevpriv((void **)&d);
1130 	if (error != 0)
1131 		return (error);
1132 
1133 	BPF_PID_REFRESH_CUR(d);
1134 	counter_u64_add(d->bd_wcount, 1);
1135 	/* XXX: locking required */
1136 	if (d->bd_bif == NULL) {
1137 		counter_u64_add(d->bd_wdcount, 1);
1138 		return (ENXIO);
1139 	}
1140 
1141 	ifp = d->bd_bif->bif_ifp;
1142 
1143 	if ((ifp->if_flags & IFF_UP) == 0) {
1144 		counter_u64_add(d->bd_wdcount, 1);
1145 		return (ENETDOWN);
1146 	}
1147 
1148 	if (uio->uio_resid == 0) {
1149 		counter_u64_add(d->bd_wdcount, 1);
1150 		return (0);
1151 	}
1152 
1153 	bzero(&dst, sizeof(dst));
1154 	m = NULL;
1155 	hlen = 0;
1156 	/* XXX: bpf_movein() can sleep */
1157 	error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp,
1158 	    &m, &dst, &hlen, d);
1159 	if (error) {
1160 		counter_u64_add(d->bd_wdcount, 1);
1161 		return (error);
1162 	}
1163 	counter_u64_add(d->bd_wfcount, 1);
1164 	if (d->bd_hdrcmplt)
1165 		dst.sa_family = pseudo_AF_HDRCMPLT;
1166 
1167 	if (d->bd_feedback) {
1168 		mc = m_dup(m, M_NOWAIT);
1169 		if (mc != NULL)
1170 			mc->m_pkthdr.rcvif = ifp;
1171 		/* Set M_PROMISC for outgoing packets to be discarded. */
1172 		if (d->bd_direction == BPF_D_INOUT)
1173 			m->m_flags |= M_PROMISC;
1174 	} else
1175 		mc = NULL;
1176 
1177 	m->m_pkthdr.len -= hlen;
1178 	m->m_len -= hlen;
1179 	m->m_data += hlen;	/* XXX */
1180 
1181 	CURVNET_SET(ifp->if_vnet);
1182 #ifdef MAC
1183 	BPFD_LOCK(d);
1184 	mac_bpfdesc_create_mbuf(d, m);
1185 	if (mc != NULL)
1186 		mac_bpfdesc_create_mbuf(d, mc);
1187 	BPFD_UNLOCK(d);
1188 #endif
1189 
1190 	bzero(&ro, sizeof(ro));
1191 	if (hlen != 0) {
1192 		ro.ro_prepend = (u_char *)&dst.sa_data;
1193 		ro.ro_plen = hlen;
1194 		ro.ro_flags = RT_HAS_HEADER;
1195 	}
1196 
1197 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1198 	if (error)
1199 		counter_u64_add(d->bd_wdcount, 1);
1200 
1201 	if (mc != NULL) {
1202 		if (error == 0)
1203 			(*ifp->if_input)(ifp, mc);
1204 		else
1205 			m_freem(mc);
1206 	}
1207 	CURVNET_RESTORE();
1208 
1209 	return (error);
1210 }
1211 
1212 /*
1213  * Reset a descriptor by flushing its packet buffer and clearing the receive
1214  * and drop counts.  This is doable for kernel-only buffers, but with
1215  * zero-copy buffers, we can't write to (or rotate) buffers that are
1216  * currently owned by userspace.  It would be nice if we could encapsulate
1217  * this logic in the buffer code rather than here.
1218  */
1219 static void
1220 reset_d(struct bpf_d *d)
1221 {
1222 
1223 	BPFD_LOCK_ASSERT(d);
1224 
1225 	while (d->bd_hbuf_in_use)
1226 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1227 		    "bd_hbuf", 0);
1228 	if ((d->bd_hbuf != NULL) &&
1229 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1230 		/* Free the hold buffer. */
1231 		d->bd_fbuf = d->bd_hbuf;
1232 		d->bd_hbuf = NULL;
1233 		d->bd_hlen = 0;
1234 		bpf_buf_reclaimed(d);
1235 	}
1236 	if (bpf_canwritebuf(d))
1237 		d->bd_slen = 0;
1238 	counter_u64_zero(d->bd_rcount);
1239 	counter_u64_zero(d->bd_dcount);
1240 	counter_u64_zero(d->bd_fcount);
1241 	counter_u64_zero(d->bd_wcount);
1242 	counter_u64_zero(d->bd_wfcount);
1243 	counter_u64_zero(d->bd_wdcount);
1244 	counter_u64_zero(d->bd_zcopy);
1245 }
1246 
1247 /*
1248  *  FIONREAD		Check for read packet available.
1249  *  BIOCGBLEN		Get buffer len [for read()].
1250  *  BIOCSETF		Set read filter.
1251  *  BIOCSETFNR		Set read filter without resetting descriptor.
1252  *  BIOCSETWF		Set write filter.
1253  *  BIOCFLUSH		Flush read packet buffer.
1254  *  BIOCPROMISC		Put interface into promiscuous mode.
1255  *  BIOCGDLT		Get link layer type.
1256  *  BIOCGETIF		Get interface name.
1257  *  BIOCSETIF		Set interface.
1258  *  BIOCSRTIMEOUT	Set read timeout.
1259  *  BIOCGRTIMEOUT	Get read timeout.
1260  *  BIOCGSTATS		Get packet stats.
1261  *  BIOCIMMEDIATE	Set immediate mode.
1262  *  BIOCVERSION		Get filter language version.
1263  *  BIOCGHDRCMPLT	Get "header already complete" flag
1264  *  BIOCSHDRCMPLT	Set "header already complete" flag
1265  *  BIOCGDIRECTION	Get packet direction flag
1266  *  BIOCSDIRECTION	Set packet direction flag
1267  *  BIOCGTSTAMP		Get time stamp format and resolution.
1268  *  BIOCSTSTAMP		Set time stamp format and resolution.
1269  *  BIOCLOCK		Set "locked" flag
1270  *  BIOCFEEDBACK	Set packet feedback mode.
1271  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1272  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1273  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1274  *  BIOCSETBUFMODE	Set buffer mode.
1275  *  BIOCGETBUFMODE	Get current buffer mode.
1276  */
1277 /* ARGSUSED */
1278 static	int
1279 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1280     struct thread *td)
1281 {
1282 	struct bpf_d *d;
1283 	int error;
1284 
1285 	error = devfs_get_cdevpriv((void **)&d);
1286 	if (error != 0)
1287 		return (error);
1288 
1289 	/*
1290 	 * Refresh PID associated with this descriptor.
1291 	 */
1292 	BPFD_LOCK(d);
1293 	BPF_PID_REFRESH(d, td);
1294 	if (d->bd_state == BPF_WAITING)
1295 		callout_stop(&d->bd_callout);
1296 	d->bd_state = BPF_IDLE;
1297 	BPFD_UNLOCK(d);
1298 
1299 	if (d->bd_locked == 1) {
1300 		switch (cmd) {
1301 		case BIOCGBLEN:
1302 		case BIOCFLUSH:
1303 		case BIOCGDLT:
1304 		case BIOCGDLTLIST:
1305 #ifdef COMPAT_FREEBSD32
1306 		case BIOCGDLTLIST32:
1307 #endif
1308 		case BIOCGETIF:
1309 		case BIOCGRTIMEOUT:
1310 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1311 		case BIOCGRTIMEOUT32:
1312 #endif
1313 		case BIOCGSTATS:
1314 		case BIOCVERSION:
1315 		case BIOCGRSIG:
1316 		case BIOCGHDRCMPLT:
1317 		case BIOCSTSTAMP:
1318 		case BIOCFEEDBACK:
1319 		case FIONREAD:
1320 		case BIOCLOCK:
1321 		case BIOCSRTIMEOUT:
1322 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1323 		case BIOCSRTIMEOUT32:
1324 #endif
1325 		case BIOCIMMEDIATE:
1326 		case TIOCGPGRP:
1327 		case BIOCROTZBUF:
1328 			break;
1329 		default:
1330 			return (EPERM);
1331 		}
1332 	}
1333 #ifdef COMPAT_FREEBSD32
1334 	/*
1335 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1336 	 * that it will get 32-bit packet headers.
1337 	 */
1338 	switch (cmd) {
1339 	case BIOCSETF32:
1340 	case BIOCSETFNR32:
1341 	case BIOCSETWF32:
1342 	case BIOCGDLTLIST32:
1343 	case BIOCGRTIMEOUT32:
1344 	case BIOCSRTIMEOUT32:
1345 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1346 			BPFD_LOCK(d);
1347 			d->bd_compat32 = 1;
1348 			BPFD_UNLOCK(d);
1349 		}
1350 	}
1351 #endif
1352 
1353 	CURVNET_SET(TD_TO_VNET(td));
1354 	switch (cmd) {
1355 
1356 	default:
1357 		error = EINVAL;
1358 		break;
1359 
1360 	/*
1361 	 * Check for read packet available.
1362 	 */
1363 	case FIONREAD:
1364 		{
1365 			int n;
1366 
1367 			BPFD_LOCK(d);
1368 			n = d->bd_slen;
1369 			while (d->bd_hbuf_in_use)
1370 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1371 				    PRINET, "bd_hbuf", 0);
1372 			if (d->bd_hbuf)
1373 				n += d->bd_hlen;
1374 			BPFD_UNLOCK(d);
1375 
1376 			*(int *)addr = n;
1377 			break;
1378 		}
1379 
1380 	/*
1381 	 * Get buffer len [for read()].
1382 	 */
1383 	case BIOCGBLEN:
1384 		BPFD_LOCK(d);
1385 		*(u_int *)addr = d->bd_bufsize;
1386 		BPFD_UNLOCK(d);
1387 		break;
1388 
1389 	/*
1390 	 * Set buffer length.
1391 	 */
1392 	case BIOCSBLEN:
1393 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1394 		break;
1395 
1396 	/*
1397 	 * Set link layer read filter.
1398 	 */
1399 	case BIOCSETF:
1400 	case BIOCSETFNR:
1401 	case BIOCSETWF:
1402 #ifdef COMPAT_FREEBSD32
1403 	case BIOCSETF32:
1404 	case BIOCSETFNR32:
1405 	case BIOCSETWF32:
1406 #endif
1407 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1408 		break;
1409 
1410 	/*
1411 	 * Flush read packet buffer.
1412 	 */
1413 	case BIOCFLUSH:
1414 		BPFD_LOCK(d);
1415 		reset_d(d);
1416 		BPFD_UNLOCK(d);
1417 		break;
1418 
1419 	/*
1420 	 * Put interface into promiscuous mode.
1421 	 */
1422 	case BIOCPROMISC:
1423 		if (d->bd_bif == NULL) {
1424 			/*
1425 			 * No interface attached yet.
1426 			 */
1427 			error = EINVAL;
1428 			break;
1429 		}
1430 		if (d->bd_promisc == 0) {
1431 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1432 			if (error == 0)
1433 				d->bd_promisc = 1;
1434 		}
1435 		break;
1436 
1437 	/*
1438 	 * Get current data link type.
1439 	 */
1440 	case BIOCGDLT:
1441 		BPF_LOCK();
1442 		if (d->bd_bif == NULL)
1443 			error = EINVAL;
1444 		else
1445 			*(u_int *)addr = d->bd_bif->bif_dlt;
1446 		BPF_UNLOCK();
1447 		break;
1448 
1449 	/*
1450 	 * Get a list of supported data link types.
1451 	 */
1452 #ifdef COMPAT_FREEBSD32
1453 	case BIOCGDLTLIST32:
1454 		{
1455 			struct bpf_dltlist32 *list32;
1456 			struct bpf_dltlist dltlist;
1457 
1458 			list32 = (struct bpf_dltlist32 *)addr;
1459 			dltlist.bfl_len = list32->bfl_len;
1460 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1461 			BPF_LOCK();
1462 			if (d->bd_bif == NULL)
1463 				error = EINVAL;
1464 			else {
1465 				error = bpf_getdltlist(d, &dltlist);
1466 				if (error == 0)
1467 					list32->bfl_len = dltlist.bfl_len;
1468 			}
1469 			BPF_UNLOCK();
1470 			break;
1471 		}
1472 #endif
1473 
1474 	case BIOCGDLTLIST:
1475 		BPF_LOCK();
1476 		if (d->bd_bif == NULL)
1477 			error = EINVAL;
1478 		else
1479 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1480 		BPF_UNLOCK();
1481 		break;
1482 
1483 	/*
1484 	 * Set data link type.
1485 	 */
1486 	case BIOCSDLT:
1487 		BPF_LOCK();
1488 		if (d->bd_bif == NULL)
1489 			error = EINVAL;
1490 		else
1491 			error = bpf_setdlt(d, *(u_int *)addr);
1492 		BPF_UNLOCK();
1493 		break;
1494 
1495 	/*
1496 	 * Get interface name.
1497 	 */
1498 	case BIOCGETIF:
1499 		BPF_LOCK();
1500 		if (d->bd_bif == NULL)
1501 			error = EINVAL;
1502 		else {
1503 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1504 			struct ifreq *const ifr = (struct ifreq *)addr;
1505 
1506 			strlcpy(ifr->ifr_name, ifp->if_xname,
1507 			    sizeof(ifr->ifr_name));
1508 		}
1509 		BPF_UNLOCK();
1510 		break;
1511 
1512 	/*
1513 	 * Set interface.
1514 	 */
1515 	case BIOCSETIF:
1516 		{
1517 			int alloc_buf, size;
1518 
1519 			/*
1520 			 * Behavior here depends on the buffering model.  If
1521 			 * we're using kernel memory buffers, then we can
1522 			 * allocate them here.  If we're using zero-copy,
1523 			 * then the user process must have registered buffers
1524 			 * by the time we get here.
1525 			 */
1526 			alloc_buf = 0;
1527 			BPFD_LOCK(d);
1528 			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1529 			    d->bd_sbuf == NULL)
1530 				alloc_buf = 1;
1531 			BPFD_UNLOCK(d);
1532 			if (alloc_buf) {
1533 				size = d->bd_bufsize;
1534 				error = bpf_buffer_ioctl_sblen(d, &size);
1535 				if (error != 0)
1536 					break;
1537 			}
1538 			BPF_LOCK();
1539 			error = bpf_setif(d, (struct ifreq *)addr);
1540 			BPF_UNLOCK();
1541 			break;
1542 		}
1543 
1544 	/*
1545 	 * Set read timeout.
1546 	 */
1547 	case BIOCSRTIMEOUT:
1548 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1549 	case BIOCSRTIMEOUT32:
1550 #endif
1551 		{
1552 			struct timeval *tv = (struct timeval *)addr;
1553 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1554 			struct timeval32 *tv32;
1555 			struct timeval tv64;
1556 
1557 			if (cmd == BIOCSRTIMEOUT32) {
1558 				tv32 = (struct timeval32 *)addr;
1559 				tv = &tv64;
1560 				tv->tv_sec = tv32->tv_sec;
1561 				tv->tv_usec = tv32->tv_usec;
1562 			} else
1563 #endif
1564 				tv = (struct timeval *)addr;
1565 
1566 			/*
1567 			 * Subtract 1 tick from tvtohz() since this isn't
1568 			 * a one-shot timer.
1569 			 */
1570 			if ((error = itimerfix(tv)) == 0)
1571 				d->bd_rtout = tvtohz(tv) - 1;
1572 			break;
1573 		}
1574 
1575 	/*
1576 	 * Get read timeout.
1577 	 */
1578 	case BIOCGRTIMEOUT:
1579 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1580 	case BIOCGRTIMEOUT32:
1581 #endif
1582 		{
1583 			struct timeval *tv;
1584 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1585 			struct timeval32 *tv32;
1586 			struct timeval tv64;
1587 
1588 			if (cmd == BIOCGRTIMEOUT32)
1589 				tv = &tv64;
1590 			else
1591 #endif
1592 				tv = (struct timeval *)addr;
1593 
1594 			tv->tv_sec = d->bd_rtout / hz;
1595 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1596 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1597 			if (cmd == BIOCGRTIMEOUT32) {
1598 				tv32 = (struct timeval32 *)addr;
1599 				tv32->tv_sec = tv->tv_sec;
1600 				tv32->tv_usec = tv->tv_usec;
1601 			}
1602 #endif
1603 
1604 			break;
1605 		}
1606 
1607 	/*
1608 	 * Get packet stats.
1609 	 */
1610 	case BIOCGSTATS:
1611 		{
1612 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1613 
1614 			/* XXXCSJP overflow */
1615 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1616 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1617 			break;
1618 		}
1619 
1620 	/*
1621 	 * Set immediate mode.
1622 	 */
1623 	case BIOCIMMEDIATE:
1624 		BPFD_LOCK(d);
1625 		d->bd_immediate = *(u_int *)addr;
1626 		BPFD_UNLOCK(d);
1627 		break;
1628 
1629 	case BIOCVERSION:
1630 		{
1631 			struct bpf_version *bv = (struct bpf_version *)addr;
1632 
1633 			bv->bv_major = BPF_MAJOR_VERSION;
1634 			bv->bv_minor = BPF_MINOR_VERSION;
1635 			break;
1636 		}
1637 
1638 	/*
1639 	 * Get "header already complete" flag
1640 	 */
1641 	case BIOCGHDRCMPLT:
1642 		BPFD_LOCK(d);
1643 		*(u_int *)addr = d->bd_hdrcmplt;
1644 		BPFD_UNLOCK(d);
1645 		break;
1646 
1647 	/*
1648 	 * Set "header already complete" flag
1649 	 */
1650 	case BIOCSHDRCMPLT:
1651 		BPFD_LOCK(d);
1652 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1653 		BPFD_UNLOCK(d);
1654 		break;
1655 
1656 	/*
1657 	 * Get packet direction flag
1658 	 */
1659 	case BIOCGDIRECTION:
1660 		BPFD_LOCK(d);
1661 		*(u_int *)addr = d->bd_direction;
1662 		BPFD_UNLOCK(d);
1663 		break;
1664 
1665 	/*
1666 	 * Set packet direction flag
1667 	 */
1668 	case BIOCSDIRECTION:
1669 		{
1670 			u_int	direction;
1671 
1672 			direction = *(u_int *)addr;
1673 			switch (direction) {
1674 			case BPF_D_IN:
1675 			case BPF_D_INOUT:
1676 			case BPF_D_OUT:
1677 				BPFD_LOCK(d);
1678 				d->bd_direction = direction;
1679 				BPFD_UNLOCK(d);
1680 				break;
1681 			default:
1682 				error = EINVAL;
1683 			}
1684 		}
1685 		break;
1686 
1687 	/*
1688 	 * Get packet timestamp format and resolution.
1689 	 */
1690 	case BIOCGTSTAMP:
1691 		BPFD_LOCK(d);
1692 		*(u_int *)addr = d->bd_tstamp;
1693 		BPFD_UNLOCK(d);
1694 		break;
1695 
1696 	/*
1697 	 * Set packet timestamp format and resolution.
1698 	 */
1699 	case BIOCSTSTAMP:
1700 		{
1701 			u_int	func;
1702 
1703 			func = *(u_int *)addr;
1704 			if (BPF_T_VALID(func))
1705 				d->bd_tstamp = func;
1706 			else
1707 				error = EINVAL;
1708 		}
1709 		break;
1710 
1711 	case BIOCFEEDBACK:
1712 		BPFD_LOCK(d);
1713 		d->bd_feedback = *(u_int *)addr;
1714 		BPFD_UNLOCK(d);
1715 		break;
1716 
1717 	case BIOCLOCK:
1718 		BPFD_LOCK(d);
1719 		d->bd_locked = 1;
1720 		BPFD_UNLOCK(d);
1721 		break;
1722 
1723 	case FIONBIO:		/* Non-blocking I/O */
1724 		break;
1725 
1726 	case FIOASYNC:		/* Send signal on receive packets */
1727 		BPFD_LOCK(d);
1728 		d->bd_async = *(int *)addr;
1729 		BPFD_UNLOCK(d);
1730 		break;
1731 
1732 	case FIOSETOWN:
1733 		/*
1734 		 * XXX: Add some sort of locking here?
1735 		 * fsetown() can sleep.
1736 		 */
1737 		error = fsetown(*(int *)addr, &d->bd_sigio);
1738 		break;
1739 
1740 	case FIOGETOWN:
1741 		BPFD_LOCK(d);
1742 		*(int *)addr = fgetown(&d->bd_sigio);
1743 		BPFD_UNLOCK(d);
1744 		break;
1745 
1746 	/* This is deprecated, FIOSETOWN should be used instead. */
1747 	case TIOCSPGRP:
1748 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1749 		break;
1750 
1751 	/* This is deprecated, FIOGETOWN should be used instead. */
1752 	case TIOCGPGRP:
1753 		*(int *)addr = -fgetown(&d->bd_sigio);
1754 		break;
1755 
1756 	case BIOCSRSIG:		/* Set receive signal */
1757 		{
1758 			u_int sig;
1759 
1760 			sig = *(u_int *)addr;
1761 
1762 			if (sig >= NSIG)
1763 				error = EINVAL;
1764 			else {
1765 				BPFD_LOCK(d);
1766 				d->bd_sig = sig;
1767 				BPFD_UNLOCK(d);
1768 			}
1769 			break;
1770 		}
1771 	case BIOCGRSIG:
1772 		BPFD_LOCK(d);
1773 		*(u_int *)addr = d->bd_sig;
1774 		BPFD_UNLOCK(d);
1775 		break;
1776 
1777 	case BIOCGETBUFMODE:
1778 		BPFD_LOCK(d);
1779 		*(u_int *)addr = d->bd_bufmode;
1780 		BPFD_UNLOCK(d);
1781 		break;
1782 
1783 	case BIOCSETBUFMODE:
1784 		/*
1785 		 * Allow the buffering mode to be changed as long as we
1786 		 * haven't yet committed to a particular mode.  Our
1787 		 * definition of commitment, for now, is whether or not a
1788 		 * buffer has been allocated or an interface attached, since
1789 		 * that's the point where things get tricky.
1790 		 */
1791 		switch (*(u_int *)addr) {
1792 		case BPF_BUFMODE_BUFFER:
1793 			break;
1794 
1795 		case BPF_BUFMODE_ZBUF:
1796 			if (bpf_zerocopy_enable)
1797 				break;
1798 			/* FALLSTHROUGH */
1799 
1800 		default:
1801 			CURVNET_RESTORE();
1802 			return (EINVAL);
1803 		}
1804 
1805 		BPFD_LOCK(d);
1806 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1807 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1808 			BPFD_UNLOCK(d);
1809 			CURVNET_RESTORE();
1810 			return (EBUSY);
1811 		}
1812 		d->bd_bufmode = *(u_int *)addr;
1813 		BPFD_UNLOCK(d);
1814 		break;
1815 
1816 	case BIOCGETZMAX:
1817 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1818 		break;
1819 
1820 	case BIOCSETZBUF:
1821 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1822 		break;
1823 
1824 	case BIOCROTZBUF:
1825 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1826 		break;
1827 	}
1828 	CURVNET_RESTORE();
1829 	return (error);
1830 }
1831 
1832 /*
1833  * Set d's packet filter program to fp.  If this file already has a filter,
1834  * free it and replace it.  Returns EINVAL for bogus requests.
1835  *
1836  * Note we need global lock here to serialize bpf_setf() and bpf_setif() calls
1837  * since reading d->bd_bif can't be protected by d or interface lock due to
1838  * lock order.
1839  *
1840  * Additionally, we have to acquire interface write lock due to bpf_mtap() uses
1841  * interface read lock to read all filers.
1842  *
1843  */
1844 static int
1845 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1846 {
1847 #ifdef COMPAT_FREEBSD32
1848 	struct bpf_program fp_swab;
1849 	struct bpf_program32 *fp32;
1850 #endif
1851 	struct bpf_insn *fcode, *old;
1852 #ifdef BPF_JITTER
1853 	bpf_jit_filter *jfunc, *ofunc;
1854 #endif
1855 	size_t size;
1856 	u_int flen;
1857 	int need_upgrade;
1858 
1859 #ifdef COMPAT_FREEBSD32
1860 	switch (cmd) {
1861 	case BIOCSETF32:
1862 	case BIOCSETWF32:
1863 	case BIOCSETFNR32:
1864 		fp32 = (struct bpf_program32 *)fp;
1865 		fp_swab.bf_len = fp32->bf_len;
1866 		fp_swab.bf_insns = (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1867 		fp = &fp_swab;
1868 		switch (cmd) {
1869 		case BIOCSETF32:
1870 			cmd = BIOCSETF;
1871 			break;
1872 		case BIOCSETWF32:
1873 			cmd = BIOCSETWF;
1874 			break;
1875 		}
1876 		break;
1877 	}
1878 #endif
1879 
1880 	fcode = NULL;
1881 #ifdef BPF_JITTER
1882 	jfunc = ofunc = NULL;
1883 #endif
1884 	need_upgrade = 0;
1885 
1886 	/*
1887 	 * Check new filter validness before acquiring any locks.
1888 	 * Allocate memory for new filter, if needed.
1889 	 */
1890 	flen = fp->bf_len;
1891 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1892 		return (EINVAL);
1893 	size = flen * sizeof(*fp->bf_insns);
1894 	if (size > 0) {
1895 		/* We're setting up new filter.  Copy and check actual data. */
1896 		fcode = malloc(size, M_BPF, M_WAITOK);
1897 		if (copyin(fp->bf_insns, fcode, size) != 0 ||
1898 		    !bpf_validate(fcode, flen)) {
1899 			free(fcode, M_BPF);
1900 			return (EINVAL);
1901 		}
1902 #ifdef BPF_JITTER
1903 		if (cmd != BIOCSETWF) {
1904 			/*
1905 			 * Filter is copied inside fcode and is
1906 			 * perfectly valid.
1907 			 */
1908 			jfunc = bpf_jitter(fcode, flen);
1909 		}
1910 #endif
1911 	}
1912 
1913 	BPF_LOCK();
1914 
1915 	/*
1916 	 * Set up new filter.
1917 	 * Protect filter change by interface lock.
1918 	 * Additionally, we are protected by global lock here.
1919 	 */
1920 	if (d->bd_bif != NULL)
1921 		BPFIF_WLOCK(d->bd_bif);
1922 	BPFD_LOCK(d);
1923 	if (cmd == BIOCSETWF) {
1924 		old = d->bd_wfilter;
1925 		d->bd_wfilter = fcode;
1926 	} else {
1927 		old = d->bd_rfilter;
1928 		d->bd_rfilter = fcode;
1929 #ifdef BPF_JITTER
1930 		ofunc = d->bd_bfilter;
1931 		d->bd_bfilter = jfunc;
1932 #endif
1933 		if (cmd == BIOCSETF)
1934 			reset_d(d);
1935 
1936 		need_upgrade = bpf_check_upgrade(cmd, d, fcode, flen);
1937 	}
1938 	BPFD_UNLOCK(d);
1939 	if (d->bd_bif != NULL)
1940 		BPFIF_WUNLOCK(d->bd_bif);
1941 	if (old != NULL)
1942 		free(old, M_BPF);
1943 #ifdef BPF_JITTER
1944 	if (ofunc != NULL)
1945 		bpf_destroy_jit_filter(ofunc);
1946 #endif
1947 
1948 	/* Move d to active readers list. */
1949 	if (need_upgrade != 0)
1950 		bpf_upgraded(d);
1951 
1952 	BPF_UNLOCK();
1953 	return (0);
1954 }
1955 
1956 /*
1957  * Detach a file from its current interface (if attached at all) and attach
1958  * to the interface indicated by the name stored in ifr.
1959  * Return an errno or 0.
1960  */
1961 static int
1962 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1963 {
1964 	struct bpf_if *bp;
1965 	struct ifnet *theywant;
1966 
1967 	BPF_LOCK_ASSERT();
1968 
1969 	theywant = ifunit(ifr->ifr_name);
1970 	if (theywant == NULL || theywant->if_bpf == NULL)
1971 		return (ENXIO);
1972 
1973 	bp = theywant->if_bpf;
1974 
1975 	/* Check if interface is not being detached from BPF */
1976 	BPFIF_RLOCK(bp);
1977 	if (bp->bif_flags & BPFIF_FLAG_DYING) {
1978 		BPFIF_RUNLOCK(bp);
1979 		return (ENXIO);
1980 	}
1981 	BPFIF_RUNLOCK(bp);
1982 
1983 	/*
1984 	 * At this point, we expect the buffer is already allocated.  If not,
1985 	 * return an error.
1986 	 */
1987 	switch (d->bd_bufmode) {
1988 	case BPF_BUFMODE_BUFFER:
1989 	case BPF_BUFMODE_ZBUF:
1990 		if (d->bd_sbuf == NULL)
1991 			return (EINVAL);
1992 		break;
1993 
1994 	default:
1995 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
1996 	}
1997 	if (bp != d->bd_bif)
1998 		bpf_attachd(d, bp);
1999 	BPFD_LOCK(d);
2000 	reset_d(d);
2001 	BPFD_UNLOCK(d);
2002 	return (0);
2003 }
2004 
2005 /*
2006  * Support for select() and poll() system calls
2007  *
2008  * Return true iff the specific operation will not block indefinitely.
2009  * Otherwise, return false but make a note that a selwakeup() must be done.
2010  */
2011 static int
2012 bpfpoll(struct cdev *dev, int events, struct thread *td)
2013 {
2014 	struct bpf_d *d;
2015 	int revents;
2016 
2017 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2018 		return (events &
2019 		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
2020 
2021 	/*
2022 	 * Refresh PID associated with this descriptor.
2023 	 */
2024 	revents = events & (POLLOUT | POLLWRNORM);
2025 	BPFD_LOCK(d);
2026 	BPF_PID_REFRESH(d, td);
2027 	if (events & (POLLIN | POLLRDNORM)) {
2028 		if (bpf_ready(d))
2029 			revents |= events & (POLLIN | POLLRDNORM);
2030 		else {
2031 			selrecord(td, &d->bd_sel);
2032 			/* Start the read timeout if necessary. */
2033 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2034 				callout_reset(&d->bd_callout, d->bd_rtout,
2035 				    bpf_timed_out, d);
2036 				d->bd_state = BPF_WAITING;
2037 			}
2038 		}
2039 	}
2040 	BPFD_UNLOCK(d);
2041 	return (revents);
2042 }
2043 
2044 /*
2045  * Support for kevent() system call.  Register EVFILT_READ filters and
2046  * reject all others.
2047  */
2048 int
2049 bpfkqfilter(struct cdev *dev, struct knote *kn)
2050 {
2051 	struct bpf_d *d;
2052 
2053 	if (devfs_get_cdevpriv((void **)&d) != 0 ||
2054 	    kn->kn_filter != EVFILT_READ)
2055 		return (1);
2056 
2057 	/*
2058 	 * Refresh PID associated with this descriptor.
2059 	 */
2060 	BPFD_LOCK(d);
2061 	BPF_PID_REFRESH_CUR(d);
2062 	kn->kn_fop = &bpfread_filtops;
2063 	kn->kn_hook = d;
2064 	knlist_add(&d->bd_sel.si_note, kn, 1);
2065 	BPFD_UNLOCK(d);
2066 
2067 	return (0);
2068 }
2069 
2070 static void
2071 filt_bpfdetach(struct knote *kn)
2072 {
2073 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2074 
2075 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2076 }
2077 
2078 static int
2079 filt_bpfread(struct knote *kn, long hint)
2080 {
2081 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2082 	int ready;
2083 
2084 	BPFD_LOCK_ASSERT(d);
2085 	ready = bpf_ready(d);
2086 	if (ready) {
2087 		kn->kn_data = d->bd_slen;
2088 		/*
2089 		 * Ignore the hold buffer if it is being copied to user space.
2090 		 */
2091 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2092 			kn->kn_data += d->bd_hlen;
2093 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2094 		callout_reset(&d->bd_callout, d->bd_rtout,
2095 		    bpf_timed_out, d);
2096 		d->bd_state = BPF_WAITING;
2097 	}
2098 
2099 	return (ready);
2100 }
2101 
2102 #define	BPF_TSTAMP_NONE		0
2103 #define	BPF_TSTAMP_FAST		1
2104 #define	BPF_TSTAMP_NORMAL	2
2105 #define	BPF_TSTAMP_EXTERN	3
2106 
2107 static int
2108 bpf_ts_quality(int tstype)
2109 {
2110 
2111 	if (tstype == BPF_T_NONE)
2112 		return (BPF_TSTAMP_NONE);
2113 	if ((tstype & BPF_T_FAST) != 0)
2114 		return (BPF_TSTAMP_FAST);
2115 
2116 	return (BPF_TSTAMP_NORMAL);
2117 }
2118 
2119 static int
2120 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2121 {
2122 	struct m_tag *tag;
2123 	int quality;
2124 
2125 	quality = bpf_ts_quality(tstype);
2126 	if (quality == BPF_TSTAMP_NONE)
2127 		return (quality);
2128 
2129 	if (m != NULL) {
2130 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2131 		if (tag != NULL) {
2132 			*bt = *(struct bintime *)(tag + 1);
2133 			return (BPF_TSTAMP_EXTERN);
2134 		}
2135 	}
2136 	if (quality == BPF_TSTAMP_NORMAL)
2137 		binuptime(bt);
2138 	else
2139 		getbinuptime(bt);
2140 
2141 	return (quality);
2142 }
2143 
2144 /*
2145  * Incoming linkage from device drivers.  Process the packet pkt, of length
2146  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2147  * by each process' filter, and if accepted, stashed into the corresponding
2148  * buffer.
2149  */
2150 void
2151 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2152 {
2153 	struct bintime bt;
2154 	struct bpf_d *d;
2155 #ifdef BPF_JITTER
2156 	bpf_jit_filter *bf;
2157 #endif
2158 	u_int slen;
2159 	int gottime;
2160 
2161 	gottime = BPF_TSTAMP_NONE;
2162 
2163 	BPFIF_RLOCK(bp);
2164 
2165 	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2166 		/*
2167 		 * We are not using any locks for d here because:
2168 		 * 1) any filter change is protected by interface
2169 		 * write lock
2170 		 * 2) destroying/detaching d is protected by interface
2171 		 * write lock, too
2172 		 */
2173 
2174 		counter_u64_add(d->bd_rcount, 1);
2175 		/*
2176 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there is no
2177 		 * way for the caller to indiciate to us whether this packet
2178 		 * is inbound or outbound.  In the bpf_mtap() routines, we use
2179 		 * the interface pointers on the mbuf to figure it out.
2180 		 */
2181 #ifdef BPF_JITTER
2182 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2183 		if (bf != NULL)
2184 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2185 		else
2186 #endif
2187 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2188 		if (slen != 0) {
2189 			/*
2190 			 * Filter matches. Let's to acquire write lock.
2191 			 */
2192 			BPFD_LOCK(d);
2193 
2194 			counter_u64_add(d->bd_fcount, 1);
2195 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2196 				gottime = bpf_gettime(&bt, d->bd_tstamp, NULL);
2197 #ifdef MAC
2198 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2199 #endif
2200 				catchpacket(d, pkt, pktlen, slen,
2201 				    bpf_append_bytes, &bt);
2202 			BPFD_UNLOCK(d);
2203 		}
2204 	}
2205 	BPFIF_RUNLOCK(bp);
2206 }
2207 
2208 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2209 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2210 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2211 
2212 /*
2213  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2214  * Locking model is explained in bpf_tap().
2215  */
2216 void
2217 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2218 {
2219 	struct bintime bt;
2220 	struct bpf_d *d;
2221 #ifdef BPF_JITTER
2222 	bpf_jit_filter *bf;
2223 #endif
2224 	u_int pktlen, slen;
2225 	int gottime;
2226 
2227 	/* Skip outgoing duplicate packets. */
2228 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2229 		m->m_flags &= ~M_PROMISC;
2230 		return;
2231 	}
2232 
2233 	pktlen = m_length(m, NULL);
2234 	gottime = BPF_TSTAMP_NONE;
2235 
2236 	BPFIF_RLOCK(bp);
2237 
2238 	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2239 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2240 			continue;
2241 		counter_u64_add(d->bd_rcount, 1);
2242 #ifdef BPF_JITTER
2243 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2244 		/* XXX We cannot handle multiple mbufs. */
2245 		if (bf != NULL && m->m_next == NULL)
2246 			slen = (*(bf->func))(mtod(m, u_char *), pktlen, pktlen);
2247 		else
2248 #endif
2249 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2250 		if (slen != 0) {
2251 			BPFD_LOCK(d);
2252 
2253 			counter_u64_add(d->bd_fcount, 1);
2254 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2255 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2256 #ifdef MAC
2257 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2258 #endif
2259 				catchpacket(d, (u_char *)m, pktlen, slen,
2260 				    bpf_append_mbuf, &bt);
2261 			BPFD_UNLOCK(d);
2262 		}
2263 	}
2264 	BPFIF_RUNLOCK(bp);
2265 }
2266 
2267 /*
2268  * Incoming linkage from device drivers, when packet is in
2269  * an mbuf chain and to be prepended by a contiguous header.
2270  */
2271 void
2272 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2273 {
2274 	struct bintime bt;
2275 	struct mbuf mb;
2276 	struct bpf_d *d;
2277 	u_int pktlen, slen;
2278 	int gottime;
2279 
2280 	/* Skip outgoing duplicate packets. */
2281 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2282 		m->m_flags &= ~M_PROMISC;
2283 		return;
2284 	}
2285 
2286 	pktlen = m_length(m, NULL);
2287 	/*
2288 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2289 	 * Note that we cut corners here; we only setup what's
2290 	 * absolutely needed--this mbuf should never go anywhere else.
2291 	 */
2292 	mb.m_next = m;
2293 	mb.m_data = data;
2294 	mb.m_len = dlen;
2295 	pktlen += dlen;
2296 
2297 	gottime = BPF_TSTAMP_NONE;
2298 
2299 	BPFIF_RLOCK(bp);
2300 
2301 	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2302 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2303 			continue;
2304 		counter_u64_add(d->bd_rcount, 1);
2305 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2306 		if (slen != 0) {
2307 			BPFD_LOCK(d);
2308 
2309 			counter_u64_add(d->bd_fcount, 1);
2310 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2311 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2312 #ifdef MAC
2313 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2314 #endif
2315 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2316 				    bpf_append_mbuf, &bt);
2317 			BPFD_UNLOCK(d);
2318 		}
2319 	}
2320 	BPFIF_RUNLOCK(bp);
2321 }
2322 
2323 #undef	BPF_CHECK_DIRECTION
2324 
2325 #undef	BPF_TSTAMP_NONE
2326 #undef	BPF_TSTAMP_FAST
2327 #undef	BPF_TSTAMP_NORMAL
2328 #undef	BPF_TSTAMP_EXTERN
2329 
2330 static int
2331 bpf_hdrlen(struct bpf_d *d)
2332 {
2333 	int hdrlen;
2334 
2335 	hdrlen = d->bd_bif->bif_hdrlen;
2336 #ifndef BURN_BRIDGES
2337 	if (d->bd_tstamp == BPF_T_NONE ||
2338 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2339 #ifdef COMPAT_FREEBSD32
2340 		if (d->bd_compat32)
2341 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2342 		else
2343 #endif
2344 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2345 	else
2346 #endif
2347 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2348 #ifdef COMPAT_FREEBSD32
2349 	if (d->bd_compat32)
2350 		hdrlen = BPF_WORDALIGN32(hdrlen);
2351 	else
2352 #endif
2353 		hdrlen = BPF_WORDALIGN(hdrlen);
2354 
2355 	return (hdrlen - d->bd_bif->bif_hdrlen);
2356 }
2357 
2358 static void
2359 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2360 {
2361 	struct bintime bt2, boottimebin;
2362 	struct timeval tsm;
2363 	struct timespec tsn;
2364 
2365 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2366 		bt2 = *bt;
2367 		getboottimebin(&boottimebin);
2368 		bintime_add(&bt2, &boottimebin);
2369 		bt = &bt2;
2370 	}
2371 	switch (BPF_T_FORMAT(tstype)) {
2372 	case BPF_T_MICROTIME:
2373 		bintime2timeval(bt, &tsm);
2374 		ts->bt_sec = tsm.tv_sec;
2375 		ts->bt_frac = tsm.tv_usec;
2376 		break;
2377 	case BPF_T_NANOTIME:
2378 		bintime2timespec(bt, &tsn);
2379 		ts->bt_sec = tsn.tv_sec;
2380 		ts->bt_frac = tsn.tv_nsec;
2381 		break;
2382 	case BPF_T_BINTIME:
2383 		ts->bt_sec = bt->sec;
2384 		ts->bt_frac = bt->frac;
2385 		break;
2386 	}
2387 }
2388 
2389 /*
2390  * Move the packet data from interface memory (pkt) into the
2391  * store buffer.  "cpfn" is the routine called to do the actual data
2392  * transfer.  bcopy is passed in to copy contiguous chunks, while
2393  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2394  * pkt is really an mbuf.
2395  */
2396 static void
2397 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2398     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2399     struct bintime *bt)
2400 {
2401 	struct bpf_xhdr hdr;
2402 #ifndef BURN_BRIDGES
2403 	struct bpf_hdr hdr_old;
2404 #ifdef COMPAT_FREEBSD32
2405 	struct bpf_hdr32 hdr32_old;
2406 #endif
2407 #endif
2408 	int caplen, curlen, hdrlen, totlen;
2409 	int do_wakeup = 0;
2410 	int do_timestamp;
2411 	int tstype;
2412 
2413 	BPFD_LOCK_ASSERT(d);
2414 
2415 	/*
2416 	 * Detect whether user space has released a buffer back to us, and if
2417 	 * so, move it from being a hold buffer to a free buffer.  This may
2418 	 * not be the best place to do it (for example, we might only want to
2419 	 * run this check if we need the space), but for now it's a reliable
2420 	 * spot to do it.
2421 	 */
2422 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2423 		d->bd_fbuf = d->bd_hbuf;
2424 		d->bd_hbuf = NULL;
2425 		d->bd_hlen = 0;
2426 		bpf_buf_reclaimed(d);
2427 	}
2428 
2429 	/*
2430 	 * Figure out how many bytes to move.  If the packet is
2431 	 * greater or equal to the snapshot length, transfer that
2432 	 * much.  Otherwise, transfer the whole packet (unless
2433 	 * we hit the buffer size limit).
2434 	 */
2435 	hdrlen = bpf_hdrlen(d);
2436 	totlen = hdrlen + min(snaplen, pktlen);
2437 	if (totlen > d->bd_bufsize)
2438 		totlen = d->bd_bufsize;
2439 
2440 	/*
2441 	 * Round up the end of the previous packet to the next longword.
2442 	 *
2443 	 * Drop the packet if there's no room and no hope of room
2444 	 * If the packet would overflow the storage buffer or the storage
2445 	 * buffer is considered immutable by the buffer model, try to rotate
2446 	 * the buffer and wakeup pending processes.
2447 	 */
2448 #ifdef COMPAT_FREEBSD32
2449 	if (d->bd_compat32)
2450 		curlen = BPF_WORDALIGN32(d->bd_slen);
2451 	else
2452 #endif
2453 		curlen = BPF_WORDALIGN(d->bd_slen);
2454 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2455 		if (d->bd_fbuf == NULL) {
2456 			/*
2457 			 * There's no room in the store buffer, and no
2458 			 * prospect of room, so drop the packet.  Notify the
2459 			 * buffer model.
2460 			 */
2461 			bpf_buffull(d);
2462 			counter_u64_add(d->bd_dcount, 1);
2463 			return;
2464 		}
2465 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2466 		ROTATE_BUFFERS(d);
2467 		do_wakeup = 1;
2468 		curlen = 0;
2469 	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
2470 		/*
2471 		 * Immediate mode is set, or the read timeout has already
2472 		 * expired during a select call.  A packet arrived, so the
2473 		 * reader should be woken up.
2474 		 */
2475 		do_wakeup = 1;
2476 	caplen = totlen - hdrlen;
2477 	tstype = d->bd_tstamp;
2478 	do_timestamp = tstype != BPF_T_NONE;
2479 #ifndef BURN_BRIDGES
2480 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2481 		struct bpf_ts ts;
2482 		if (do_timestamp)
2483 			bpf_bintime2ts(bt, &ts, tstype);
2484 #ifdef COMPAT_FREEBSD32
2485 		if (d->bd_compat32) {
2486 			bzero(&hdr32_old, sizeof(hdr32_old));
2487 			if (do_timestamp) {
2488 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2489 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2490 			}
2491 			hdr32_old.bh_datalen = pktlen;
2492 			hdr32_old.bh_hdrlen = hdrlen;
2493 			hdr32_old.bh_caplen = caplen;
2494 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2495 			    sizeof(hdr32_old));
2496 			goto copy;
2497 		}
2498 #endif
2499 		bzero(&hdr_old, sizeof(hdr_old));
2500 		if (do_timestamp) {
2501 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2502 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2503 		}
2504 		hdr_old.bh_datalen = pktlen;
2505 		hdr_old.bh_hdrlen = hdrlen;
2506 		hdr_old.bh_caplen = caplen;
2507 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2508 		    sizeof(hdr_old));
2509 		goto copy;
2510 	}
2511 #endif
2512 
2513 	/*
2514 	 * Append the bpf header.  Note we append the actual header size, but
2515 	 * move forward the length of the header plus padding.
2516 	 */
2517 	bzero(&hdr, sizeof(hdr));
2518 	if (do_timestamp)
2519 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2520 	hdr.bh_datalen = pktlen;
2521 	hdr.bh_hdrlen = hdrlen;
2522 	hdr.bh_caplen = caplen;
2523 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2524 
2525 	/*
2526 	 * Copy the packet data into the store buffer and update its length.
2527 	 */
2528 #ifndef BURN_BRIDGES
2529 copy:
2530 #endif
2531 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2532 	d->bd_slen = curlen + totlen;
2533 
2534 	if (do_wakeup)
2535 		bpf_wakeup(d);
2536 }
2537 
2538 /*
2539  * Free buffers currently in use by a descriptor.
2540  * Called on close.
2541  */
2542 static void
2543 bpf_freed(struct bpf_d *d)
2544 {
2545 
2546 	/*
2547 	 * We don't need to lock out interrupts since this descriptor has
2548 	 * been detached from its interface and it yet hasn't been marked
2549 	 * free.
2550 	 */
2551 	bpf_free(d);
2552 	if (d->bd_rfilter != NULL) {
2553 		free((caddr_t)d->bd_rfilter, M_BPF);
2554 #ifdef BPF_JITTER
2555 		if (d->bd_bfilter != NULL)
2556 			bpf_destroy_jit_filter(d->bd_bfilter);
2557 #endif
2558 	}
2559 	if (d->bd_wfilter != NULL)
2560 		free((caddr_t)d->bd_wfilter, M_BPF);
2561 	mtx_destroy(&d->bd_lock);
2562 
2563 	counter_u64_free(d->bd_rcount);
2564 	counter_u64_free(d->bd_dcount);
2565 	counter_u64_free(d->bd_fcount);
2566 	counter_u64_free(d->bd_wcount);
2567 	counter_u64_free(d->bd_wfcount);
2568 	counter_u64_free(d->bd_wdcount);
2569 	counter_u64_free(d->bd_zcopy);
2570 
2571 }
2572 
2573 /*
2574  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2575  * fixed size of the link header (variable length headers not yet supported).
2576  */
2577 void
2578 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2579 {
2580 
2581 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2582 }
2583 
2584 /*
2585  * Attach an interface to bpf.  ifp is a pointer to the structure
2586  * defining the interface to be attached, dlt is the link layer type,
2587  * and hdrlen is the fixed size of the link header (variable length
2588  * headers are not yet supporrted).
2589  */
2590 void
2591 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2592 {
2593 	struct bpf_if *bp;
2594 
2595 	bp = malloc(sizeof(*bp), M_BPF, M_NOWAIT | M_ZERO);
2596 	if (bp == NULL)
2597 		panic("bpfattach");
2598 
2599 	LIST_INIT(&bp->bif_dlist);
2600 	LIST_INIT(&bp->bif_wlist);
2601 	bp->bif_ifp = ifp;
2602 	bp->bif_dlt = dlt;
2603 	rw_init(&bp->bif_lock, "bpf interface lock");
2604 	KASSERT(*driverp == NULL, ("bpfattach2: driverp already initialized"));
2605 	bp->bif_bpf = driverp;
2606 	*driverp = bp;
2607 
2608 	BPF_LOCK();
2609 	LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2610 	BPF_UNLOCK();
2611 
2612 	bp->bif_hdrlen = hdrlen;
2613 
2614 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2615 		if_printf(ifp, "bpf attached\n");
2616 }
2617 
2618 #ifdef VIMAGE
2619 /*
2620  * When moving interfaces between vnet instances we need a way to
2621  * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2622  * after the vmove.  We unfortunately have no device driver infrastructure
2623  * to query the interface for these values after creation/attach, thus
2624  * add this as a workaround.
2625  */
2626 int
2627 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2628 {
2629 
2630 	if (bp == NULL)
2631 		return (ENXIO);
2632 	if (bif_dlt == NULL && bif_hdrlen == NULL)
2633 		return (0);
2634 
2635 	if (bif_dlt != NULL)
2636 		*bif_dlt = bp->bif_dlt;
2637 	if (bif_hdrlen != NULL)
2638 		*bif_hdrlen = bp->bif_hdrlen;
2639 
2640 	return (0);
2641 }
2642 #endif
2643 
2644 /*
2645  * Detach bpf from an interface. This involves detaching each descriptor
2646  * associated with the interface. Notify each descriptor as it's detached
2647  * so that any sleepers wake up and get ENXIO.
2648  */
2649 void
2650 bpfdetach(struct ifnet *ifp)
2651 {
2652 	struct bpf_if	*bp, *bp_temp;
2653 	struct bpf_d	*d;
2654 	int ndetached;
2655 
2656 	ndetached = 0;
2657 
2658 	BPF_LOCK();
2659 	/* Find all bpf_if struct's which reference ifp and detach them. */
2660 	LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2661 		if (ifp != bp->bif_ifp)
2662 			continue;
2663 
2664 		LIST_REMOVE(bp, bif_next);
2665 		/* Add to to-be-freed list */
2666 		LIST_INSERT_HEAD(&bpf_freelist, bp, bif_next);
2667 
2668 		ndetached++;
2669 		/*
2670 		 * Delay freeing bp till interface is detached
2671 		 * and all routes through this interface are removed.
2672 		 * Mark bp as detached to restrict new consumers.
2673 		 */
2674 		BPFIF_WLOCK(bp);
2675 		bp->bif_flags |= BPFIF_FLAG_DYING;
2676 		*bp->bif_bpf = (struct bpf_if *)&dead_bpf_if;
2677 		BPFIF_WUNLOCK(bp);
2678 
2679 		CTR4(KTR_NET, "%s: sheduling free for encap %d (%p) for if %p",
2680 		    __func__, bp->bif_dlt, bp, ifp);
2681 
2682 		/* Free common descriptors */
2683 		while ((d = LIST_FIRST(&bp->bif_dlist)) != NULL) {
2684 			bpf_detachd_locked(d);
2685 			BPFD_LOCK(d);
2686 			bpf_wakeup(d);
2687 			BPFD_UNLOCK(d);
2688 		}
2689 
2690 		/* Free writer-only descriptors */
2691 		while ((d = LIST_FIRST(&bp->bif_wlist)) != NULL) {
2692 			bpf_detachd_locked(d);
2693 			BPFD_LOCK(d);
2694 			bpf_wakeup(d);
2695 			BPFD_UNLOCK(d);
2696 		}
2697 	}
2698 	BPF_UNLOCK();
2699 
2700 #ifdef INVARIANTS
2701 	if (ndetached == 0)
2702 		printf("bpfdetach: %s was not attached\n", ifp->if_xname);
2703 #endif
2704 }
2705 
2706 /*
2707  * Interface departure handler.
2708  * Note departure event does not guarantee interface is going down.
2709  * Interface renaming is currently done via departure/arrival event set.
2710  *
2711  * Departure handled is called after all routes pointing to
2712  * given interface are removed and interface is in down state
2713  * restricting any packets to be sent/received. We assume it is now safe
2714  * to free data allocated by BPF.
2715  */
2716 static void
2717 bpf_ifdetach(void *arg __unused, struct ifnet *ifp)
2718 {
2719 	struct bpf_if *bp, *bp_temp;
2720 	int nmatched = 0;
2721 
2722 	/* Ignore ifnet renaming. */
2723 	if (ifp->if_flags & IFF_RENAMING)
2724 		return;
2725 
2726 	BPF_LOCK();
2727 	/*
2728 	 * Find matching entries in free list.
2729 	 * Nothing should be found if bpfdetach() was not called.
2730 	 */
2731 	LIST_FOREACH_SAFE(bp, &bpf_freelist, bif_next, bp_temp) {
2732 		if (ifp != bp->bif_ifp)
2733 			continue;
2734 
2735 		CTR3(KTR_NET, "%s: freeing BPF instance %p for interface %p",
2736 		    __func__, bp, ifp);
2737 
2738 		LIST_REMOVE(bp, bif_next);
2739 
2740 		rw_destroy(&bp->bif_lock);
2741 		free(bp, M_BPF);
2742 
2743 		nmatched++;
2744 	}
2745 	BPF_UNLOCK();
2746 }
2747 
2748 /*
2749  * Get a list of available data link type of the interface.
2750  */
2751 static int
2752 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2753 {
2754 	struct ifnet *ifp;
2755 	struct bpf_if *bp;
2756 	u_int *lst;
2757 	int error, n, n1;
2758 
2759 	BPF_LOCK_ASSERT();
2760 
2761 	ifp = d->bd_bif->bif_ifp;
2762 again:
2763 	n1 = 0;
2764 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2765 		if (bp->bif_ifp == ifp)
2766 			n1++;
2767 	}
2768 	if (bfl->bfl_list == NULL) {
2769 		bfl->bfl_len = n1;
2770 		return (0);
2771 	}
2772 	if (n1 > bfl->bfl_len)
2773 		return (ENOMEM);
2774 	BPF_UNLOCK();
2775 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2776 	n = 0;
2777 	BPF_LOCK();
2778 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2779 		if (bp->bif_ifp != ifp)
2780 			continue;
2781 		if (n >= n1) {
2782 			free(lst, M_TEMP);
2783 			goto again;
2784 		}
2785 		lst[n] = bp->bif_dlt;
2786 		n++;
2787 	}
2788 	BPF_UNLOCK();
2789 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2790 	free(lst, M_TEMP);
2791 	BPF_LOCK();
2792 	bfl->bfl_len = n;
2793 	return (error);
2794 }
2795 
2796 /*
2797  * Set the data link type of a BPF instance.
2798  */
2799 static int
2800 bpf_setdlt(struct bpf_d *d, u_int dlt)
2801 {
2802 	int error, opromisc;
2803 	struct ifnet *ifp;
2804 	struct bpf_if *bp;
2805 
2806 	BPF_LOCK_ASSERT();
2807 
2808 	if (d->bd_bif->bif_dlt == dlt)
2809 		return (0);
2810 	ifp = d->bd_bif->bif_ifp;
2811 
2812 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2813 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2814 			break;
2815 	}
2816 
2817 	if (bp != NULL) {
2818 		opromisc = d->bd_promisc;
2819 		bpf_attachd(d, bp);
2820 		BPFD_LOCK(d);
2821 		reset_d(d);
2822 		BPFD_UNLOCK(d);
2823 		if (opromisc) {
2824 			error = ifpromisc(bp->bif_ifp, 1);
2825 			if (error)
2826 				if_printf(bp->bif_ifp,
2827 					"bpf_setdlt: ifpromisc failed (%d)\n",
2828 					error);
2829 			else
2830 				d->bd_promisc = 1;
2831 		}
2832 	}
2833 	return (bp == NULL ? EINVAL : 0);
2834 }
2835 
2836 static void
2837 bpf_drvinit(void *unused)
2838 {
2839 	struct cdev *dev;
2840 
2841 	sx_init(&bpf_sx, "bpf global lock");
2842 	LIST_INIT(&bpf_iflist);
2843 	LIST_INIT(&bpf_freelist);
2844 
2845 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2846 	/* For compatibility */
2847 	make_dev_alias(dev, "bpf0");
2848 
2849 	/* Register interface departure handler */
2850 	bpf_ifdetach_cookie = EVENTHANDLER_REGISTER(
2851 		    ifnet_departure_event, bpf_ifdetach, NULL,
2852 		    EVENTHANDLER_PRI_ANY);
2853 }
2854 
2855 /*
2856  * Zero out the various packet counters associated with all of the bpf
2857  * descriptors.  At some point, we will probably want to get a bit more
2858  * granular and allow the user to specify descriptors to be zeroed.
2859  */
2860 static void
2861 bpf_zero_counters(void)
2862 {
2863 	struct bpf_if *bp;
2864 	struct bpf_d *bd;
2865 
2866 	BPF_LOCK();
2867 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2868 		BPFIF_RLOCK(bp);
2869 		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2870 			BPFD_LOCK(bd);
2871 			counter_u64_zero(bd->bd_rcount);
2872 			counter_u64_zero(bd->bd_dcount);
2873 			counter_u64_zero(bd->bd_fcount);
2874 			counter_u64_zero(bd->bd_wcount);
2875 			counter_u64_zero(bd->bd_wfcount);
2876 			counter_u64_zero(bd->bd_zcopy);
2877 			BPFD_UNLOCK(bd);
2878 		}
2879 		BPFIF_RUNLOCK(bp);
2880 	}
2881 	BPF_UNLOCK();
2882 }
2883 
2884 /*
2885  * Fill filter statistics
2886  */
2887 static void
2888 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
2889 {
2890 
2891 	bzero(d, sizeof(*d));
2892 	BPFD_LOCK_ASSERT(bd);
2893 	d->bd_structsize = sizeof(*d);
2894 	/* XXX: reading should be protected by global lock */
2895 	d->bd_immediate = bd->bd_immediate;
2896 	d->bd_promisc = bd->bd_promisc;
2897 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
2898 	d->bd_direction = bd->bd_direction;
2899 	d->bd_feedback = bd->bd_feedback;
2900 	d->bd_async = bd->bd_async;
2901 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
2902 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
2903 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
2904 	d->bd_sig = bd->bd_sig;
2905 	d->bd_slen = bd->bd_slen;
2906 	d->bd_hlen = bd->bd_hlen;
2907 	d->bd_bufsize = bd->bd_bufsize;
2908 	d->bd_pid = bd->bd_pid;
2909 	strlcpy(d->bd_ifname,
2910 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
2911 	d->bd_locked = bd->bd_locked;
2912 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
2913 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
2914 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
2915 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
2916 	d->bd_bufmode = bd->bd_bufmode;
2917 }
2918 
2919 /*
2920  * Handle `netstat -B' stats request
2921  */
2922 static int
2923 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
2924 {
2925 	static const struct xbpf_d zerostats;
2926 	struct xbpf_d *xbdbuf, *xbd, tempstats;
2927 	int index, error;
2928 	struct bpf_if *bp;
2929 	struct bpf_d *bd;
2930 
2931 	/*
2932 	 * XXX This is not technically correct. It is possible for non
2933 	 * privileged users to open bpf devices. It would make sense
2934 	 * if the users who opened the devices were able to retrieve
2935 	 * the statistics for them, too.
2936 	 */
2937 	error = priv_check(req->td, PRIV_NET_BPF);
2938 	if (error)
2939 		return (error);
2940 	/*
2941 	 * Check to see if the user is requesting that the counters be
2942 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
2943 	 * as we aren't allowing the user to set the counters currently.
2944 	 */
2945 	if (req->newptr != NULL) {
2946 		if (req->newlen != sizeof(tempstats))
2947 			return (EINVAL);
2948 		memset(&tempstats, 0, sizeof(tempstats));
2949 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
2950 		if (error)
2951 			return (error);
2952 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
2953 			return (EINVAL);
2954 		bpf_zero_counters();
2955 		return (0);
2956 	}
2957 	if (req->oldptr == NULL)
2958 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
2959 	if (bpf_bpfd_cnt == 0)
2960 		return (SYSCTL_OUT(req, 0, 0));
2961 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
2962 	BPF_LOCK();
2963 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
2964 		BPF_UNLOCK();
2965 		free(xbdbuf, M_BPF);
2966 		return (ENOMEM);
2967 	}
2968 	index = 0;
2969 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2970 		BPFIF_RLOCK(bp);
2971 		/* Send writers-only first */
2972 		LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
2973 			xbd = &xbdbuf[index++];
2974 			BPFD_LOCK(bd);
2975 			bpfstats_fill_xbpf(xbd, bd);
2976 			BPFD_UNLOCK(bd);
2977 		}
2978 		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2979 			xbd = &xbdbuf[index++];
2980 			BPFD_LOCK(bd);
2981 			bpfstats_fill_xbpf(xbd, bd);
2982 			BPFD_UNLOCK(bd);
2983 		}
2984 		BPFIF_RUNLOCK(bp);
2985 	}
2986 	BPF_UNLOCK();
2987 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
2988 	free(xbdbuf, M_BPF);
2989 	return (error);
2990 }
2991 
2992 SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
2993 
2994 #else /* !DEV_BPF && !NETGRAPH_BPF */
2995 
2996 /*
2997  * NOP stubs to allow bpf-using drivers to load and function.
2998  *
2999  * A 'better' implementation would allow the core bpf functionality
3000  * to be loaded at runtime.
3001  */
3002 
3003 void
3004 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3005 {
3006 }
3007 
3008 void
3009 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3010 {
3011 }
3012 
3013 void
3014 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3015 {
3016 }
3017 
3018 void
3019 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3020 {
3021 
3022 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3023 }
3024 
3025 void
3026 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3027 {
3028 
3029 	*driverp = (struct bpf_if *)&dead_bpf_if;
3030 }
3031 
3032 void
3033 bpfdetach(struct ifnet *ifp)
3034 {
3035 }
3036 
3037 u_int
3038 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3039 {
3040 	return -1;	/* "no filter" behaviour */
3041 }
3042 
3043 int
3044 bpf_validate(const struct bpf_insn *f, int len)
3045 {
3046 	return 0;		/* false */
3047 }
3048 
3049 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3050 
3051 #ifdef DDB
3052 static void
3053 bpf_show_bpf_if(struct bpf_if *bpf_if)
3054 {
3055 
3056 	if (bpf_if == NULL)
3057 		return;
3058 	db_printf("%p:\n", bpf_if);
3059 #define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3060 	/* bif_ext.bif_next */
3061 	/* bif_ext.bif_dlist */
3062 	BPF_DB_PRINTF("%#x", bif_dlt);
3063 	BPF_DB_PRINTF("%u", bif_hdrlen);
3064 	BPF_DB_PRINTF("%p", bif_ifp);
3065 	/* bif_lock */
3066 	/* bif_wlist */
3067 	BPF_DB_PRINTF("%#x", bif_flags);
3068 }
3069 
3070 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3071 {
3072 
3073 	if (!have_addr) {
3074 		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3075 		return;
3076 	}
3077 
3078 	bpf_show_bpf_if((struct bpf_if *)addr);
3079 }
3080 #endif
3081