xref: /freebsd/sys/net/bpf.c (revision 6a068746777241722b2b32c5d0bc443a2a64d80b)
1 /*-
2  * Copyright (c) 1990, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from the Stanford/CMU enet packet filter,
6  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
7  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
8  * Berkeley Laboratory.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_bpf.h"
41 #include "opt_compat.h"
42 #include "opt_netgraph.h"
43 
44 #include <sys/types.h>
45 #include <sys/param.h>
46 #include <sys/lock.h>
47 #include <sys/rwlock.h>
48 #include <sys/systm.h>
49 #include <sys/conf.h>
50 #include <sys/fcntl.h>
51 #include <sys/jail.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/time.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/signalvar.h>
58 #include <sys/filio.h>
59 #include <sys/sockio.h>
60 #include <sys/ttycom.h>
61 #include <sys/uio.h>
62 
63 #include <sys/event.h>
64 #include <sys/file.h>
65 #include <sys/poll.h>
66 #include <sys/proc.h>
67 
68 #include <sys/socket.h>
69 
70 #include <net/if.h>
71 #define	BPF_INTERNAL
72 #include <net/bpf.h>
73 #include <net/bpf_buffer.h>
74 #ifdef BPF_JITTER
75 #include <net/bpf_jitter.h>
76 #endif
77 #include <net/bpf_zerocopy.h>
78 #include <net/bpfdesc.h>
79 #include <net/vnet.h>
80 
81 #include <netinet/in.h>
82 #include <netinet/if_ether.h>
83 #include <sys/kernel.h>
84 #include <sys/sysctl.h>
85 
86 #include <net80211/ieee80211_freebsd.h>
87 
88 #include <security/mac/mac_framework.h>
89 
90 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
91 
92 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
93 
94 #define PRINET  26			/* interruptible */
95 
96 #define	SIZEOF_BPF_HDR(type)	\
97     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
98 
99 #ifdef COMPAT_FREEBSD32
100 #include <sys/mount.h>
101 #include <compat/freebsd32/freebsd32.h>
102 #define BPF_ALIGNMENT32 sizeof(int32_t)
103 #define BPF_WORDALIGN32(x) (((x)+(BPF_ALIGNMENT32-1))&~(BPF_ALIGNMENT32-1))
104 
105 #ifndef BURN_BRIDGES
106 /*
107  * 32-bit version of structure prepended to each packet.  We use this header
108  * instead of the standard one for 32-bit streams.  We mark the a stream as
109  * 32-bit the first time we see a 32-bit compat ioctl request.
110  */
111 struct bpf_hdr32 {
112 	struct timeval32 bh_tstamp;	/* time stamp */
113 	uint32_t	bh_caplen;	/* length of captured portion */
114 	uint32_t	bh_datalen;	/* original length of packet */
115 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
116 					   plus alignment padding) */
117 };
118 #endif
119 
120 struct bpf_program32 {
121 	u_int bf_len;
122 	uint32_t bf_insns;
123 };
124 
125 struct bpf_dltlist32 {
126 	u_int	bfl_len;
127 	u_int	bfl_list;
128 };
129 
130 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
131 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
132 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
133 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
134 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
135 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
136 #endif
137 
138 /*
139  * bpf_iflist is a list of BPF interface structures, each corresponding to a
140  * specific DLT.  The same network interface might have several BPF interface
141  * structures registered by different layers in the stack (i.e., 802.11
142  * frames, ethernet frames, etc).
143  */
144 static LIST_HEAD(, bpf_if)	bpf_iflist;
145 static struct mtx	bpf_mtx;		/* bpf global lock */
146 static int		bpf_bpfd_cnt;
147 
148 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
149 static void	bpf_detachd(struct bpf_d *);
150 static void	bpf_freed(struct bpf_d *);
151 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
152 		    struct sockaddr *, int *, struct bpf_insn *);
153 static int	bpf_setif(struct bpf_d *, struct ifreq *);
154 static void	bpf_timed_out(void *);
155 static __inline void
156 		bpf_wakeup(struct bpf_d *);
157 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
158 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
159 		    struct bintime *);
160 static void	reset_d(struct bpf_d *);
161 static int	 bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
162 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
163 static int	bpf_setdlt(struct bpf_d *, u_int);
164 static void	filt_bpfdetach(struct knote *);
165 static int	filt_bpfread(struct knote *, long);
166 static void	bpf_drvinit(void *);
167 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
168 
169 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW, 0, "bpf sysctl");
170 int bpf_maxinsns = BPF_MAXINSNS;
171 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
172     &bpf_maxinsns, 0, "Maximum bpf program instructions");
173 static int bpf_zerocopy_enable = 0;
174 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
175     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
176 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
177     bpf_stats_sysctl, "bpf statistics portal");
178 
179 static VNET_DEFINE(int, bpf_optimize_writers) = 0;
180 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
181 SYSCTL_VNET_INT(_net_bpf, OID_AUTO, optimize_writers,
182     CTLFLAG_RW, &VNET_NAME(bpf_optimize_writers), 0,
183     "Do not send packets until BPF program is set");
184 
185 static	d_open_t	bpfopen;
186 static	d_read_t	bpfread;
187 static	d_write_t	bpfwrite;
188 static	d_ioctl_t	bpfioctl;
189 static	d_poll_t	bpfpoll;
190 static	d_kqfilter_t	bpfkqfilter;
191 
192 static struct cdevsw bpf_cdevsw = {
193 	.d_version =	D_VERSION,
194 	.d_open =	bpfopen,
195 	.d_read =	bpfread,
196 	.d_write =	bpfwrite,
197 	.d_ioctl =	bpfioctl,
198 	.d_poll =	bpfpoll,
199 	.d_name =	"bpf",
200 	.d_kqfilter =	bpfkqfilter,
201 };
202 
203 static struct filterops bpfread_filtops = {
204 	.f_isfd = 1,
205 	.f_detach = filt_bpfdetach,
206 	.f_event = filt_bpfread,
207 };
208 
209 /*
210  * Wrapper functions for various buffering methods.  If the set of buffer
211  * modes expands, we will probably want to introduce a switch data structure
212  * similar to protosw, et.
213  */
214 static void
215 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
216     u_int len)
217 {
218 
219 	BPFD_WLOCK_ASSERT(d);
220 
221 	switch (d->bd_bufmode) {
222 	case BPF_BUFMODE_BUFFER:
223 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
224 
225 	case BPF_BUFMODE_ZBUF:
226 		d->bd_zcopy++;
227 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
228 
229 	default:
230 		panic("bpf_buf_append_bytes");
231 	}
232 }
233 
234 static void
235 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
236     u_int len)
237 {
238 
239 	BPFD_WLOCK_ASSERT(d);
240 
241 	switch (d->bd_bufmode) {
242 	case BPF_BUFMODE_BUFFER:
243 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
244 
245 	case BPF_BUFMODE_ZBUF:
246 		d->bd_zcopy++;
247 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
248 
249 	default:
250 		panic("bpf_buf_append_mbuf");
251 	}
252 }
253 
254 /*
255  * This function gets called when the free buffer is re-assigned.
256  */
257 static void
258 bpf_buf_reclaimed(struct bpf_d *d)
259 {
260 
261 	BPFD_WLOCK_ASSERT(d);
262 
263 	switch (d->bd_bufmode) {
264 	case BPF_BUFMODE_BUFFER:
265 		return;
266 
267 	case BPF_BUFMODE_ZBUF:
268 		bpf_zerocopy_buf_reclaimed(d);
269 		return;
270 
271 	default:
272 		panic("bpf_buf_reclaimed");
273 	}
274 }
275 
276 /*
277  * If the buffer mechanism has a way to decide that a held buffer can be made
278  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
279  * returned if the buffer can be discarded, (0) is returned if it cannot.
280  */
281 static int
282 bpf_canfreebuf(struct bpf_d *d)
283 {
284 
285 	BPFD_LOCK_ASSERT(d);
286 
287 	switch (d->bd_bufmode) {
288 	case BPF_BUFMODE_ZBUF:
289 		return (bpf_zerocopy_canfreebuf(d));
290 	}
291 	return (0);
292 }
293 
294 /*
295  * Allow the buffer model to indicate that the current store buffer is
296  * immutable, regardless of the appearance of space.  Return (1) if the
297  * buffer is writable, and (0) if not.
298  */
299 static int
300 bpf_canwritebuf(struct bpf_d *d)
301 {
302 	BPFD_LOCK_ASSERT(d);
303 
304 	switch (d->bd_bufmode) {
305 	case BPF_BUFMODE_ZBUF:
306 		return (bpf_zerocopy_canwritebuf(d));
307 	}
308 	return (1);
309 }
310 
311 /*
312  * Notify buffer model that an attempt to write to the store buffer has
313  * resulted in a dropped packet, in which case the buffer may be considered
314  * full.
315  */
316 static void
317 bpf_buffull(struct bpf_d *d)
318 {
319 
320 	BPFD_WLOCK_ASSERT(d);
321 
322 	switch (d->bd_bufmode) {
323 	case BPF_BUFMODE_ZBUF:
324 		bpf_zerocopy_buffull(d);
325 		break;
326 	}
327 }
328 
329 /*
330  * Notify the buffer model that a buffer has moved into the hold position.
331  */
332 void
333 bpf_bufheld(struct bpf_d *d)
334 {
335 
336 	BPFD_WLOCK_ASSERT(d);
337 
338 	switch (d->bd_bufmode) {
339 	case BPF_BUFMODE_ZBUF:
340 		bpf_zerocopy_bufheld(d);
341 		break;
342 	}
343 }
344 
345 static void
346 bpf_free(struct bpf_d *d)
347 {
348 
349 	switch (d->bd_bufmode) {
350 	case BPF_BUFMODE_BUFFER:
351 		return (bpf_buffer_free(d));
352 
353 	case BPF_BUFMODE_ZBUF:
354 		return (bpf_zerocopy_free(d));
355 
356 	default:
357 		panic("bpf_buf_free");
358 	}
359 }
360 
361 static int
362 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
363 {
364 
365 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
366 		return (EOPNOTSUPP);
367 	return (bpf_buffer_uiomove(d, buf, len, uio));
368 }
369 
370 static int
371 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
372 {
373 
374 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
375 		return (EOPNOTSUPP);
376 	return (bpf_buffer_ioctl_sblen(d, i));
377 }
378 
379 static int
380 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
381 {
382 
383 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
384 		return (EOPNOTSUPP);
385 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
386 }
387 
388 static int
389 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
390 {
391 
392 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
393 		return (EOPNOTSUPP);
394 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
395 }
396 
397 static int
398 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
399 {
400 
401 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
402 		return (EOPNOTSUPP);
403 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
404 }
405 
406 /*
407  * General BPF functions.
408  */
409 static int
410 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
411     struct sockaddr *sockp, int *hdrlen, struct bpf_insn *wfilter)
412 {
413 	const struct ieee80211_bpf_params *p;
414 	struct ether_header *eh;
415 	struct mbuf *m;
416 	int error;
417 	int len;
418 	int hlen;
419 	int slen;
420 
421 	/*
422 	 * Build a sockaddr based on the data link layer type.
423 	 * We do this at this level because the ethernet header
424 	 * is copied directly into the data field of the sockaddr.
425 	 * In the case of SLIP, there is no header and the packet
426 	 * is forwarded as is.
427 	 * Also, we are careful to leave room at the front of the mbuf
428 	 * for the link level header.
429 	 */
430 	switch (linktype) {
431 
432 	case DLT_SLIP:
433 		sockp->sa_family = AF_INET;
434 		hlen = 0;
435 		break;
436 
437 	case DLT_EN10MB:
438 		sockp->sa_family = AF_UNSPEC;
439 		/* XXX Would MAXLINKHDR be better? */
440 		hlen = ETHER_HDR_LEN;
441 		break;
442 
443 	case DLT_FDDI:
444 		sockp->sa_family = AF_IMPLINK;
445 		hlen = 0;
446 		break;
447 
448 	case DLT_RAW:
449 		sockp->sa_family = AF_UNSPEC;
450 		hlen = 0;
451 		break;
452 
453 	case DLT_NULL:
454 		/*
455 		 * null interface types require a 4 byte pseudo header which
456 		 * corresponds to the address family of the packet.
457 		 */
458 		sockp->sa_family = AF_UNSPEC;
459 		hlen = 4;
460 		break;
461 
462 	case DLT_ATM_RFC1483:
463 		/*
464 		 * en atm driver requires 4-byte atm pseudo header.
465 		 * though it isn't standard, vpi:vci needs to be
466 		 * specified anyway.
467 		 */
468 		sockp->sa_family = AF_UNSPEC;
469 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
470 		break;
471 
472 	case DLT_PPP:
473 		sockp->sa_family = AF_UNSPEC;
474 		hlen = 4;	/* This should match PPP_HDRLEN */
475 		break;
476 
477 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
478 		sockp->sa_family = AF_IEEE80211;
479 		hlen = 0;
480 		break;
481 
482 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
483 		sockp->sa_family = AF_IEEE80211;
484 		sockp->sa_len = 12;	/* XXX != 0 */
485 		hlen = sizeof(struct ieee80211_bpf_params);
486 		break;
487 
488 	default:
489 		return (EIO);
490 	}
491 
492 	len = uio->uio_resid;
493 
494 	if (len - hlen > ifp->if_mtu)
495 		return (EMSGSIZE);
496 
497 	if ((unsigned)len > MJUM16BYTES)
498 		return (EIO);
499 
500 	if (len <= MHLEN)
501 		MGETHDR(m, M_WAIT, MT_DATA);
502 	else if (len <= MCLBYTES)
503 		m = m_getcl(M_WAIT, MT_DATA, M_PKTHDR);
504 	else
505 		m = m_getjcl(M_WAIT, MT_DATA, M_PKTHDR,
506 #if (MJUMPAGESIZE > MCLBYTES)
507 		    len <= MJUMPAGESIZE ? MJUMPAGESIZE :
508 #endif
509 		    (len <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES));
510 	m->m_pkthdr.len = m->m_len = len;
511 	m->m_pkthdr.rcvif = NULL;
512 	*mp = m;
513 
514 	if (m->m_len < hlen) {
515 		error = EPERM;
516 		goto bad;
517 	}
518 
519 	error = uiomove(mtod(m, u_char *), len, uio);
520 	if (error)
521 		goto bad;
522 
523 	slen = bpf_filter(wfilter, mtod(m, u_char *), len, len);
524 	if (slen == 0) {
525 		error = EPERM;
526 		goto bad;
527 	}
528 
529 	/* Check for multicast destination */
530 	switch (linktype) {
531 	case DLT_EN10MB:
532 		eh = mtod(m, struct ether_header *);
533 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
534 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
535 			    ETHER_ADDR_LEN) == 0)
536 				m->m_flags |= M_BCAST;
537 			else
538 				m->m_flags |= M_MCAST;
539 		}
540 		break;
541 	}
542 
543 	/*
544 	 * Make room for link header, and copy it to sockaddr
545 	 */
546 	if (hlen != 0) {
547 		if (sockp->sa_family == AF_IEEE80211) {
548 			/*
549 			 * Collect true length from the parameter header
550 			 * NB: sockp is known to be zero'd so if we do a
551 			 *     short copy unspecified parameters will be
552 			 *     zero.
553 			 * NB: packet may not be aligned after stripping
554 			 *     bpf params
555 			 * XXX check ibp_vers
556 			 */
557 			p = mtod(m, const struct ieee80211_bpf_params *);
558 			hlen = p->ibp_len;
559 			if (hlen > sizeof(sockp->sa_data)) {
560 				error = EINVAL;
561 				goto bad;
562 			}
563 		}
564 		bcopy(m->m_data, sockp->sa_data, hlen);
565 	}
566 	*hdrlen = hlen;
567 
568 	return (0);
569 bad:
570 	m_freem(m);
571 	return (error);
572 }
573 
574 /*
575  * Attach file to the bpf interface, i.e. make d listen on bp.
576  */
577 static void
578 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
579 {
580 	/*
581 	 * Point d at bp, and add d to the interface's list.
582 	 * Since there are many applicaiotns using BPF for
583 	 * sending raw packets only (dhcpd, cdpd are good examples)
584 	 * we can delay adding d to the list of active listeners until
585 	 * some filter is configured.
586 	 */
587 	d->bd_bif = bp;
588 
589 	BPFIF_WLOCK(bp);
590 
591 	if (V_bpf_optimize_writers != 0) {
592 		/* Add to writers-only list */
593 		LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
594 		/*
595 		 * We decrement bd_writer on every filter set operation.
596 		 * First BIOCSETF is done by pcap_open_live() to set up
597 		 * snap length. After that appliation usually sets its own filter
598 		 */
599 		d->bd_writer = 2;
600 	} else
601 		LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
602 
603 	BPFIF_WUNLOCK(bp);
604 
605 	BPF_LOCK();
606 	bpf_bpfd_cnt++;
607 	BPF_UNLOCK();
608 
609 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
610 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
611 
612 	if (V_bpf_optimize_writers == 0)
613 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
614 }
615 
616 /*
617  * Add d to the list of active bp filters.
618  * Reuqires bpf_attachd() to be called before
619  */
620 static void
621 bpf_upgraded(struct bpf_d *d)
622 {
623 	struct bpf_if *bp;
624 
625 	bp = d->bd_bif;
626 
627 	BPFIF_WLOCK(bp);
628 	BPFD_WLOCK(d);
629 
630 	/* Remove from writers-only list */
631 	LIST_REMOVE(d, bd_next);
632 	LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
633 	/* Mark d as reader */
634 	d->bd_writer = 0;
635 
636 	BPFD_WUNLOCK(d);
637 	BPFIF_WUNLOCK(bp);
638 
639 	CTR2(KTR_NET, "%s: upgrade required by pid %d", __func__, d->bd_pid);
640 
641 	EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
642 }
643 
644 /*
645  * Detach a file from its interface.
646  */
647 static void
648 bpf_detachd(struct bpf_d *d)
649 {
650 	int error;
651 	struct bpf_if *bp;
652 	struct ifnet *ifp;
653 
654 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
655 
656 	BPF_LOCK_ASSERT();
657 
658 	bp = d->bd_bif;
659 	BPFIF_WLOCK(bp);
660 	BPFD_WLOCK(d);
661 
662 	/* Save bd_writer value */
663 	error = d->bd_writer;
664 
665 	/*
666 	 * Remove d from the interface's descriptor list.
667 	 */
668 	LIST_REMOVE(d, bd_next);
669 
670 	ifp = bp->bif_ifp;
671 	d->bd_bif = NULL;
672 	BPFD_WUNLOCK(d);
673 	BPFIF_WUNLOCK(bp);
674 
675 	/* We're already protected by global lock. */
676 	bpf_bpfd_cnt--;
677 
678 	/* Call event handler iff d is attached */
679 	if (error == 0)
680 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
681 
682 	/*
683 	 * Check if this descriptor had requested promiscuous mode.
684 	 * If so, turn it off.
685 	 */
686 	if (d->bd_promisc) {
687 		d->bd_promisc = 0;
688 		CURVNET_SET(ifp->if_vnet);
689 		error = ifpromisc(ifp, 0);
690 		CURVNET_RESTORE();
691 		if (error != 0 && error != ENXIO) {
692 			/*
693 			 * ENXIO can happen if a pccard is unplugged
694 			 * Something is really wrong if we were able to put
695 			 * the driver into promiscuous mode, but can't
696 			 * take it out.
697 			 */
698 			if_printf(bp->bif_ifp,
699 				"bpf_detach: ifpromisc failed (%d)\n", error);
700 		}
701 	}
702 }
703 
704 /*
705  * Close the descriptor by detaching it from its interface,
706  * deallocating its buffers, and marking it free.
707  */
708 static void
709 bpf_dtor(void *data)
710 {
711 	struct bpf_d *d = data;
712 
713 	BPFD_WLOCK(d);
714 	if (d->bd_state == BPF_WAITING)
715 		callout_stop(&d->bd_callout);
716 	d->bd_state = BPF_IDLE;
717 	BPFD_WUNLOCK(d);
718 	funsetown(&d->bd_sigio);
719 	BPF_LOCK();
720 	if (d->bd_bif)
721 		bpf_detachd(d);
722 	BPF_UNLOCK();
723 #ifdef MAC
724 	mac_bpfdesc_destroy(d);
725 #endif /* MAC */
726 	seldrain(&d->bd_sel);
727 	knlist_destroy(&d->bd_sel.si_note);
728 	callout_drain(&d->bd_callout);
729 	bpf_freed(d);
730 	free(d, M_BPF);
731 }
732 
733 /*
734  * Open ethernet device.  Returns ENXIO for illegal minor device number,
735  * EBUSY if file is open by another process.
736  */
737 /* ARGSUSED */
738 static	int
739 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
740 {
741 	struct bpf_d *d;
742 	int error;
743 
744 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
745 	error = devfs_set_cdevpriv(d, bpf_dtor);
746 	if (error != 0) {
747 		free(d, M_BPF);
748 		return (error);
749 	}
750 
751 	/*
752 	 * For historical reasons, perform a one-time initialization call to
753 	 * the buffer routines, even though we're not yet committed to a
754 	 * particular buffer method.
755 	 */
756 	bpf_buffer_init(d);
757 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
758 	d->bd_sig = SIGIO;
759 	d->bd_direction = BPF_D_INOUT;
760 	BPF_PID_REFRESH(d, td);
761 #ifdef MAC
762 	mac_bpfdesc_init(d);
763 	mac_bpfdesc_create(td->td_ucred, d);
764 #endif
765 	rw_init(&d->bd_lock, "bpf cdev lock");
766 	callout_init_rw(&d->bd_callout, &d->bd_lock, 0);
767 	knlist_init_rw_reader(&d->bd_sel.si_note, &d->bd_lock);
768 
769 	return (0);
770 }
771 
772 /*
773  *  bpfread - read next chunk of packets from buffers
774  */
775 static	int
776 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
777 {
778 	struct bpf_d *d;
779 	int error;
780 	int non_block;
781 	int timed_out;
782 
783 	error = devfs_get_cdevpriv((void **)&d);
784 	if (error != 0)
785 		return (error);
786 
787 	/*
788 	 * Restrict application to use a buffer the same size as
789 	 * as kernel buffers.
790 	 */
791 	if (uio->uio_resid != d->bd_bufsize)
792 		return (EINVAL);
793 
794 	non_block = ((ioflag & O_NONBLOCK) != 0);
795 
796 	BPFD_WLOCK(d);
797 	BPF_PID_REFRESH_CUR(d);
798 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
799 		BPFD_WUNLOCK(d);
800 		return (EOPNOTSUPP);
801 	}
802 	if (d->bd_state == BPF_WAITING)
803 		callout_stop(&d->bd_callout);
804 	timed_out = (d->bd_state == BPF_TIMED_OUT);
805 	d->bd_state = BPF_IDLE;
806 	/*
807 	 * If the hold buffer is empty, then do a timed sleep, which
808 	 * ends when the timeout expires or when enough packets
809 	 * have arrived to fill the store buffer.
810 	 */
811 	while (d->bd_hbuf == NULL) {
812 		if (d->bd_slen != 0) {
813 			/*
814 			 * A packet(s) either arrived since the previous
815 			 * read or arrived while we were asleep.
816 			 */
817 			if (d->bd_immediate || non_block || timed_out) {
818 				/*
819 				 * Rotate the buffers and return what's here
820 				 * if we are in immediate mode, non-blocking
821 				 * flag is set, or this descriptor timed out.
822 				 */
823 				ROTATE_BUFFERS(d);
824 				break;
825 			}
826 		}
827 
828 		/*
829 		 * No data is available, check to see if the bpf device
830 		 * is still pointed at a real interface.  If not, return
831 		 * ENXIO so that the userland process knows to rebind
832 		 * it before using it again.
833 		 */
834 		if (d->bd_bif == NULL) {
835 			BPFD_WUNLOCK(d);
836 			return (ENXIO);
837 		}
838 
839 		if (non_block) {
840 			BPFD_WUNLOCK(d);
841 			return (EWOULDBLOCK);
842 		}
843 		error = rw_sleep(d, &d->bd_lock, PRINET|PCATCH,
844 		     "bpf", d->bd_rtout);
845 		if (error == EINTR || error == ERESTART) {
846 			BPFD_WUNLOCK(d);
847 			return (error);
848 		}
849 		if (error == EWOULDBLOCK) {
850 			/*
851 			 * On a timeout, return what's in the buffer,
852 			 * which may be nothing.  If there is something
853 			 * in the store buffer, we can rotate the buffers.
854 			 */
855 			if (d->bd_hbuf)
856 				/*
857 				 * We filled up the buffer in between
858 				 * getting the timeout and arriving
859 				 * here, so we don't need to rotate.
860 				 */
861 				break;
862 
863 			if (d->bd_slen == 0) {
864 				BPFD_WUNLOCK(d);
865 				return (0);
866 			}
867 			ROTATE_BUFFERS(d);
868 			break;
869 		}
870 	}
871 	/*
872 	 * At this point, we know we have something in the hold slot.
873 	 */
874 	BPFD_WUNLOCK(d);
875 
876 	/*
877 	 * Move data from hold buffer into user space.
878 	 * We know the entire buffer is transferred since
879 	 * we checked above that the read buffer is bpf_bufsize bytes.
880 	 *
881 	 * XXXRW: More synchronization needed here: what if a second thread
882 	 * issues a read on the same fd at the same time?  Don't want this
883 	 * getting invalidated.
884 	 */
885 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
886 
887 	BPFD_WLOCK(d);
888 	d->bd_fbuf = d->bd_hbuf;
889 	d->bd_hbuf = NULL;
890 	d->bd_hlen = 0;
891 	bpf_buf_reclaimed(d);
892 	BPFD_WUNLOCK(d);
893 
894 	return (error);
895 }
896 
897 /*
898  * If there are processes sleeping on this descriptor, wake them up.
899  */
900 static __inline void
901 bpf_wakeup(struct bpf_d *d)
902 {
903 
904 	BPFD_WLOCK_ASSERT(d);
905 	if (d->bd_state == BPF_WAITING) {
906 		callout_stop(&d->bd_callout);
907 		d->bd_state = BPF_IDLE;
908 	}
909 	wakeup(d);
910 	if (d->bd_async && d->bd_sig && d->bd_sigio)
911 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
912 
913 	selwakeuppri(&d->bd_sel, PRINET);
914 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
915 }
916 
917 static void
918 bpf_timed_out(void *arg)
919 {
920 	struct bpf_d *d = (struct bpf_d *)arg;
921 
922 	BPFD_WLOCK_ASSERT(d);
923 
924 	if (callout_pending(&d->bd_callout) || !callout_active(&d->bd_callout))
925 		return;
926 	if (d->bd_state == BPF_WAITING) {
927 		d->bd_state = BPF_TIMED_OUT;
928 		if (d->bd_slen != 0)
929 			bpf_wakeup(d);
930 	}
931 }
932 
933 static int
934 bpf_ready(struct bpf_d *d)
935 {
936 
937 	BPFD_WLOCK_ASSERT(d);
938 
939 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
940 		return (1);
941 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
942 	    d->bd_slen != 0)
943 		return (1);
944 	return (0);
945 }
946 
947 static int
948 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
949 {
950 	struct bpf_d *d;
951 	struct ifnet *ifp;
952 	struct mbuf *m, *mc;
953 	struct sockaddr dst;
954 	int error, hlen;
955 
956 	error = devfs_get_cdevpriv((void **)&d);
957 	if (error != 0)
958 		return (error);
959 
960 	BPF_PID_REFRESH_CUR(d);
961 	d->bd_wcount++;
962 	if (d->bd_bif == NULL) {
963 		d->bd_wdcount++;
964 		return (ENXIO);
965 	}
966 
967 	ifp = d->bd_bif->bif_ifp;
968 
969 	if ((ifp->if_flags & IFF_UP) == 0) {
970 		d->bd_wdcount++;
971 		return (ENETDOWN);
972 	}
973 
974 	if (uio->uio_resid == 0) {
975 		d->bd_wdcount++;
976 		return (0);
977 	}
978 
979 	bzero(&dst, sizeof(dst));
980 	m = NULL;
981 	hlen = 0;
982 	error = bpf_movein(uio, (int)d->bd_bif->bif_dlt, ifp,
983 	    &m, &dst, &hlen, d->bd_wfilter);
984 	if (error) {
985 		d->bd_wdcount++;
986 		return (error);
987 	}
988 	d->bd_wfcount++;
989 	if (d->bd_hdrcmplt)
990 		dst.sa_family = pseudo_AF_HDRCMPLT;
991 
992 	if (d->bd_feedback) {
993 		mc = m_dup(m, M_DONTWAIT);
994 		if (mc != NULL)
995 			mc->m_pkthdr.rcvif = ifp;
996 		/* Set M_PROMISC for outgoing packets to be discarded. */
997 		if (d->bd_direction == BPF_D_INOUT)
998 			m->m_flags |= M_PROMISC;
999 	} else
1000 		mc = NULL;
1001 
1002 	m->m_pkthdr.len -= hlen;
1003 	m->m_len -= hlen;
1004 	m->m_data += hlen;	/* XXX */
1005 
1006 	CURVNET_SET(ifp->if_vnet);
1007 #ifdef MAC
1008 	BPFD_WLOCK(d);
1009 	mac_bpfdesc_create_mbuf(d, m);
1010 	if (mc != NULL)
1011 		mac_bpfdesc_create_mbuf(d, mc);
1012 	BPFD_WUNLOCK(d);
1013 #endif
1014 
1015 	error = (*ifp->if_output)(ifp, m, &dst, NULL);
1016 	if (error)
1017 		d->bd_wdcount++;
1018 
1019 	if (mc != NULL) {
1020 		if (error == 0)
1021 			(*ifp->if_input)(ifp, mc);
1022 		else
1023 			m_freem(mc);
1024 	}
1025 	CURVNET_RESTORE();
1026 
1027 	return (error);
1028 }
1029 
1030 /*
1031  * Reset a descriptor by flushing its packet buffer and clearing the receive
1032  * and drop counts.  This is doable for kernel-only buffers, but with
1033  * zero-copy buffers, we can't write to (or rotate) buffers that are
1034  * currently owned by userspace.  It would be nice if we could encapsulate
1035  * this logic in the buffer code rather than here.
1036  */
1037 static void
1038 reset_d(struct bpf_d *d)
1039 {
1040 
1041 	BPFD_WLOCK_ASSERT(d);
1042 
1043 	if ((d->bd_hbuf != NULL) &&
1044 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1045 		/* Free the hold buffer. */
1046 		d->bd_fbuf = d->bd_hbuf;
1047 		d->bd_hbuf = NULL;
1048 		d->bd_hlen = 0;
1049 		bpf_buf_reclaimed(d);
1050 	}
1051 	if (bpf_canwritebuf(d))
1052 		d->bd_slen = 0;
1053 	d->bd_rcount = 0;
1054 	d->bd_dcount = 0;
1055 	d->bd_fcount = 0;
1056 	d->bd_wcount = 0;
1057 	d->bd_wfcount = 0;
1058 	d->bd_wdcount = 0;
1059 	d->bd_zcopy = 0;
1060 }
1061 
1062 /*
1063  *  FIONREAD		Check for read packet available.
1064  *  SIOCGIFADDR		Get interface address - convenient hook to driver.
1065  *  BIOCGBLEN		Get buffer len [for read()].
1066  *  BIOCSETF		Set read filter.
1067  *  BIOCSETFNR		Set read filter without resetting descriptor.
1068  *  BIOCSETWF		Set write filter.
1069  *  BIOCFLUSH		Flush read packet buffer.
1070  *  BIOCPROMISC		Put interface into promiscuous mode.
1071  *  BIOCGDLT		Get link layer type.
1072  *  BIOCGETIF		Get interface name.
1073  *  BIOCSETIF		Set interface.
1074  *  BIOCSRTIMEOUT	Set read timeout.
1075  *  BIOCGRTIMEOUT	Get read timeout.
1076  *  BIOCGSTATS		Get packet stats.
1077  *  BIOCIMMEDIATE	Set immediate mode.
1078  *  BIOCVERSION		Get filter language version.
1079  *  BIOCGHDRCMPLT	Get "header already complete" flag
1080  *  BIOCSHDRCMPLT	Set "header already complete" flag
1081  *  BIOCGDIRECTION	Get packet direction flag
1082  *  BIOCSDIRECTION	Set packet direction flag
1083  *  BIOCGTSTAMP		Get time stamp format and resolution.
1084  *  BIOCSTSTAMP		Set time stamp format and resolution.
1085  *  BIOCLOCK		Set "locked" flag
1086  *  BIOCFEEDBACK	Set packet feedback mode.
1087  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1088  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1089  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1090  *  BIOCSETBUFMODE	Set buffer mode.
1091  *  BIOCGETBUFMODE	Get current buffer mode.
1092  */
1093 /* ARGSUSED */
1094 static	int
1095 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1096     struct thread *td)
1097 {
1098 	struct bpf_d *d;
1099 	int error;
1100 
1101 	error = devfs_get_cdevpriv((void **)&d);
1102 	if (error != 0)
1103 		return (error);
1104 
1105 	/*
1106 	 * Refresh PID associated with this descriptor.
1107 	 */
1108 	BPFD_WLOCK(d);
1109 	BPF_PID_REFRESH(d, td);
1110 	if (d->bd_state == BPF_WAITING)
1111 		callout_stop(&d->bd_callout);
1112 	d->bd_state = BPF_IDLE;
1113 	BPFD_WUNLOCK(d);
1114 
1115 	if (d->bd_locked == 1) {
1116 		switch (cmd) {
1117 		case BIOCGBLEN:
1118 		case BIOCFLUSH:
1119 		case BIOCGDLT:
1120 		case BIOCGDLTLIST:
1121 #ifdef COMPAT_FREEBSD32
1122 		case BIOCGDLTLIST32:
1123 #endif
1124 		case BIOCGETIF:
1125 		case BIOCGRTIMEOUT:
1126 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1127 		case BIOCGRTIMEOUT32:
1128 #endif
1129 		case BIOCGSTATS:
1130 		case BIOCVERSION:
1131 		case BIOCGRSIG:
1132 		case BIOCGHDRCMPLT:
1133 		case BIOCSTSTAMP:
1134 		case BIOCFEEDBACK:
1135 		case FIONREAD:
1136 		case BIOCLOCK:
1137 		case BIOCSRTIMEOUT:
1138 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1139 		case BIOCSRTIMEOUT32:
1140 #endif
1141 		case BIOCIMMEDIATE:
1142 		case TIOCGPGRP:
1143 		case BIOCROTZBUF:
1144 			break;
1145 		default:
1146 			return (EPERM);
1147 		}
1148 	}
1149 #ifdef COMPAT_FREEBSD32
1150 	/*
1151 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1152 	 * that it will get 32-bit packet headers.
1153 	 */
1154 	switch (cmd) {
1155 	case BIOCSETF32:
1156 	case BIOCSETFNR32:
1157 	case BIOCSETWF32:
1158 	case BIOCGDLTLIST32:
1159 	case BIOCGRTIMEOUT32:
1160 	case BIOCSRTIMEOUT32:
1161 		d->bd_compat32 = 1;
1162 	}
1163 #endif
1164 
1165 	CURVNET_SET(TD_TO_VNET(td));
1166 	switch (cmd) {
1167 
1168 	default:
1169 		error = EINVAL;
1170 		break;
1171 
1172 	/*
1173 	 * Check for read packet available.
1174 	 */
1175 	case FIONREAD:
1176 		{
1177 			int n;
1178 
1179 			BPFD_WLOCK(d);
1180 			n = d->bd_slen;
1181 			if (d->bd_hbuf)
1182 				n += d->bd_hlen;
1183 			BPFD_WUNLOCK(d);
1184 
1185 			*(int *)addr = n;
1186 			break;
1187 		}
1188 
1189 	case SIOCGIFADDR:
1190 		{
1191 			struct ifnet *ifp;
1192 
1193 			if (d->bd_bif == NULL)
1194 				error = EINVAL;
1195 			else {
1196 				ifp = d->bd_bif->bif_ifp;
1197 				error = (*ifp->if_ioctl)(ifp, cmd, addr);
1198 			}
1199 			break;
1200 		}
1201 
1202 	/*
1203 	 * Get buffer len [for read()].
1204 	 */
1205 	case BIOCGBLEN:
1206 		*(u_int *)addr = d->bd_bufsize;
1207 		break;
1208 
1209 	/*
1210 	 * Set buffer length.
1211 	 */
1212 	case BIOCSBLEN:
1213 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1214 		break;
1215 
1216 	/*
1217 	 * Set link layer read filter.
1218 	 */
1219 	case BIOCSETF:
1220 	case BIOCSETFNR:
1221 	case BIOCSETWF:
1222 #ifdef COMPAT_FREEBSD32
1223 	case BIOCSETF32:
1224 	case BIOCSETFNR32:
1225 	case BIOCSETWF32:
1226 #endif
1227 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1228 		break;
1229 
1230 	/*
1231 	 * Flush read packet buffer.
1232 	 */
1233 	case BIOCFLUSH:
1234 		BPFD_WLOCK(d);
1235 		reset_d(d);
1236 		BPFD_WUNLOCK(d);
1237 		break;
1238 
1239 	/*
1240 	 * Put interface into promiscuous mode.
1241 	 */
1242 	case BIOCPROMISC:
1243 		if (d->bd_bif == NULL) {
1244 			/*
1245 			 * No interface attached yet.
1246 			 */
1247 			error = EINVAL;
1248 			break;
1249 		}
1250 		if (d->bd_promisc == 0) {
1251 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1252 			if (error == 0)
1253 				d->bd_promisc = 1;
1254 		}
1255 		break;
1256 
1257 	/*
1258 	 * Get current data link type.
1259 	 */
1260 	case BIOCGDLT:
1261 		if (d->bd_bif == NULL)
1262 			error = EINVAL;
1263 		else
1264 			*(u_int *)addr = d->bd_bif->bif_dlt;
1265 		break;
1266 
1267 	/*
1268 	 * Get a list of supported data link types.
1269 	 */
1270 #ifdef COMPAT_FREEBSD32
1271 	case BIOCGDLTLIST32:
1272 		{
1273 			struct bpf_dltlist32 *list32;
1274 			struct bpf_dltlist dltlist;
1275 
1276 			list32 = (struct bpf_dltlist32 *)addr;
1277 			dltlist.bfl_len = list32->bfl_len;
1278 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1279 			if (d->bd_bif == NULL)
1280 				error = EINVAL;
1281 			else {
1282 				error = bpf_getdltlist(d, &dltlist);
1283 				if (error == 0)
1284 					list32->bfl_len = dltlist.bfl_len;
1285 			}
1286 			break;
1287 		}
1288 #endif
1289 
1290 	case BIOCGDLTLIST:
1291 		if (d->bd_bif == NULL)
1292 			error = EINVAL;
1293 		else
1294 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1295 		break;
1296 
1297 	/*
1298 	 * Set data link type.
1299 	 */
1300 	case BIOCSDLT:
1301 		if (d->bd_bif == NULL)
1302 			error = EINVAL;
1303 		else
1304 			error = bpf_setdlt(d, *(u_int *)addr);
1305 		break;
1306 
1307 	/*
1308 	 * Get interface name.
1309 	 */
1310 	case BIOCGETIF:
1311 		if (d->bd_bif == NULL)
1312 			error = EINVAL;
1313 		else {
1314 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1315 			struct ifreq *const ifr = (struct ifreq *)addr;
1316 
1317 			strlcpy(ifr->ifr_name, ifp->if_xname,
1318 			    sizeof(ifr->ifr_name));
1319 		}
1320 		break;
1321 
1322 	/*
1323 	 * Set interface.
1324 	 */
1325 	case BIOCSETIF:
1326 		error = bpf_setif(d, (struct ifreq *)addr);
1327 		break;
1328 
1329 	/*
1330 	 * Set read timeout.
1331 	 */
1332 	case BIOCSRTIMEOUT:
1333 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1334 	case BIOCSRTIMEOUT32:
1335 #endif
1336 		{
1337 			struct timeval *tv = (struct timeval *)addr;
1338 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1339 			struct timeval32 *tv32;
1340 			struct timeval tv64;
1341 
1342 			if (cmd == BIOCSRTIMEOUT32) {
1343 				tv32 = (struct timeval32 *)addr;
1344 				tv = &tv64;
1345 				tv->tv_sec = tv32->tv_sec;
1346 				tv->tv_usec = tv32->tv_usec;
1347 			} else
1348 #endif
1349 				tv = (struct timeval *)addr;
1350 
1351 			/*
1352 			 * Subtract 1 tick from tvtohz() since this isn't
1353 			 * a one-shot timer.
1354 			 */
1355 			if ((error = itimerfix(tv)) == 0)
1356 				d->bd_rtout = tvtohz(tv) - 1;
1357 			break;
1358 		}
1359 
1360 	/*
1361 	 * Get read timeout.
1362 	 */
1363 	case BIOCGRTIMEOUT:
1364 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1365 	case BIOCGRTIMEOUT32:
1366 #endif
1367 		{
1368 			struct timeval *tv;
1369 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1370 			struct timeval32 *tv32;
1371 			struct timeval tv64;
1372 
1373 			if (cmd == BIOCGRTIMEOUT32)
1374 				tv = &tv64;
1375 			else
1376 #endif
1377 				tv = (struct timeval *)addr;
1378 
1379 			tv->tv_sec = d->bd_rtout / hz;
1380 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1381 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1382 			if (cmd == BIOCGRTIMEOUT32) {
1383 				tv32 = (struct timeval32 *)addr;
1384 				tv32->tv_sec = tv->tv_sec;
1385 				tv32->tv_usec = tv->tv_usec;
1386 			}
1387 #endif
1388 
1389 			break;
1390 		}
1391 
1392 	/*
1393 	 * Get packet stats.
1394 	 */
1395 	case BIOCGSTATS:
1396 		{
1397 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1398 
1399 			/* XXXCSJP overflow */
1400 			bs->bs_recv = d->bd_rcount;
1401 			bs->bs_drop = d->bd_dcount;
1402 			break;
1403 		}
1404 
1405 	/*
1406 	 * Set immediate mode.
1407 	 */
1408 	case BIOCIMMEDIATE:
1409 		d->bd_immediate = *(u_int *)addr;
1410 		break;
1411 
1412 	case BIOCVERSION:
1413 		{
1414 			struct bpf_version *bv = (struct bpf_version *)addr;
1415 
1416 			bv->bv_major = BPF_MAJOR_VERSION;
1417 			bv->bv_minor = BPF_MINOR_VERSION;
1418 			break;
1419 		}
1420 
1421 	/*
1422 	 * Get "header already complete" flag
1423 	 */
1424 	case BIOCGHDRCMPLT:
1425 		*(u_int *)addr = d->bd_hdrcmplt;
1426 		break;
1427 
1428 	/*
1429 	 * Set "header already complete" flag
1430 	 */
1431 	case BIOCSHDRCMPLT:
1432 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1433 		break;
1434 
1435 	/*
1436 	 * Get packet direction flag
1437 	 */
1438 	case BIOCGDIRECTION:
1439 		*(u_int *)addr = d->bd_direction;
1440 		break;
1441 
1442 	/*
1443 	 * Set packet direction flag
1444 	 */
1445 	case BIOCSDIRECTION:
1446 		{
1447 			u_int	direction;
1448 
1449 			direction = *(u_int *)addr;
1450 			switch (direction) {
1451 			case BPF_D_IN:
1452 			case BPF_D_INOUT:
1453 			case BPF_D_OUT:
1454 				d->bd_direction = direction;
1455 				break;
1456 			default:
1457 				error = EINVAL;
1458 			}
1459 		}
1460 		break;
1461 
1462 	/*
1463 	 * Get packet timestamp format and resolution.
1464 	 */
1465 	case BIOCGTSTAMP:
1466 		*(u_int *)addr = d->bd_tstamp;
1467 		break;
1468 
1469 	/*
1470 	 * Set packet timestamp format and resolution.
1471 	 */
1472 	case BIOCSTSTAMP:
1473 		{
1474 			u_int	func;
1475 
1476 			func = *(u_int *)addr;
1477 			if (BPF_T_VALID(func))
1478 				d->bd_tstamp = func;
1479 			else
1480 				error = EINVAL;
1481 		}
1482 		break;
1483 
1484 	case BIOCFEEDBACK:
1485 		d->bd_feedback = *(u_int *)addr;
1486 		break;
1487 
1488 	case BIOCLOCK:
1489 		d->bd_locked = 1;
1490 		break;
1491 
1492 	case FIONBIO:		/* Non-blocking I/O */
1493 		break;
1494 
1495 	case FIOASYNC:		/* Send signal on receive packets */
1496 		d->bd_async = *(int *)addr;
1497 		break;
1498 
1499 	case FIOSETOWN:
1500 		error = fsetown(*(int *)addr, &d->bd_sigio);
1501 		break;
1502 
1503 	case FIOGETOWN:
1504 		*(int *)addr = fgetown(&d->bd_sigio);
1505 		break;
1506 
1507 	/* This is deprecated, FIOSETOWN should be used instead. */
1508 	case TIOCSPGRP:
1509 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1510 		break;
1511 
1512 	/* This is deprecated, FIOGETOWN should be used instead. */
1513 	case TIOCGPGRP:
1514 		*(int *)addr = -fgetown(&d->bd_sigio);
1515 		break;
1516 
1517 	case BIOCSRSIG:		/* Set receive signal */
1518 		{
1519 			u_int sig;
1520 
1521 			sig = *(u_int *)addr;
1522 
1523 			if (sig >= NSIG)
1524 				error = EINVAL;
1525 			else
1526 				d->bd_sig = sig;
1527 			break;
1528 		}
1529 	case BIOCGRSIG:
1530 		*(u_int *)addr = d->bd_sig;
1531 		break;
1532 
1533 	case BIOCGETBUFMODE:
1534 		*(u_int *)addr = d->bd_bufmode;
1535 		break;
1536 
1537 	case BIOCSETBUFMODE:
1538 		/*
1539 		 * Allow the buffering mode to be changed as long as we
1540 		 * haven't yet committed to a particular mode.  Our
1541 		 * definition of commitment, for now, is whether or not a
1542 		 * buffer has been allocated or an interface attached, since
1543 		 * that's the point where things get tricky.
1544 		 */
1545 		switch (*(u_int *)addr) {
1546 		case BPF_BUFMODE_BUFFER:
1547 			break;
1548 
1549 		case BPF_BUFMODE_ZBUF:
1550 			if (bpf_zerocopy_enable)
1551 				break;
1552 			/* FALLSTHROUGH */
1553 
1554 		default:
1555 			CURVNET_RESTORE();
1556 			return (EINVAL);
1557 		}
1558 
1559 		BPFD_WLOCK(d);
1560 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1561 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1562 			BPFD_WUNLOCK(d);
1563 			CURVNET_RESTORE();
1564 			return (EBUSY);
1565 		}
1566 		d->bd_bufmode = *(u_int *)addr;
1567 		BPFD_WUNLOCK(d);
1568 		break;
1569 
1570 	case BIOCGETZMAX:
1571 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1572 		break;
1573 
1574 	case BIOCSETZBUF:
1575 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1576 		break;
1577 
1578 	case BIOCROTZBUF:
1579 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1580 		break;
1581 	}
1582 	CURVNET_RESTORE();
1583 	return (error);
1584 }
1585 
1586 /*
1587  * Set d's packet filter program to fp.  If this file already has a filter,
1588  * free it and replace it.  Returns EINVAL for bogus requests.
1589  */
1590 static int
1591 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1592 {
1593 	struct bpf_insn *fcode, *old;
1594 	u_int wfilter, flen, size;
1595 #ifdef BPF_JITTER
1596 	bpf_jit_filter *ofunc;
1597 #endif
1598 	int need_upgrade;
1599 #ifdef COMPAT_FREEBSD32
1600 	struct bpf_program32 *fp32;
1601 	struct bpf_program fp_swab;
1602 
1603 	if (cmd == BIOCSETWF32 || cmd == BIOCSETF32 || cmd == BIOCSETFNR32) {
1604 		fp32 = (struct bpf_program32 *)fp;
1605 		fp_swab.bf_len = fp32->bf_len;
1606 		fp_swab.bf_insns = (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1607 		fp = &fp_swab;
1608 		if (cmd == BIOCSETWF32)
1609 			cmd = BIOCSETWF;
1610 	}
1611 #endif
1612 	if (cmd == BIOCSETWF) {
1613 		old = d->bd_wfilter;
1614 		wfilter = 1;
1615 #ifdef BPF_JITTER
1616 		ofunc = NULL;
1617 #endif
1618 	} else {
1619 		wfilter = 0;
1620 		old = d->bd_rfilter;
1621 #ifdef BPF_JITTER
1622 		ofunc = d->bd_bfilter;
1623 #endif
1624 	}
1625 	if (fp->bf_insns == NULL) {
1626 		if (fp->bf_len != 0)
1627 			return (EINVAL);
1628 		/*
1629 		 * Protect filter change by interface lock, too.
1630 		 * The same lock order is used by bpf_detachd().
1631 		 */
1632 		BPFIF_WLOCK(d->bd_bif);
1633 		BPFD_WLOCK(d);
1634 		if (wfilter)
1635 			d->bd_wfilter = NULL;
1636 		else {
1637 			d->bd_rfilter = NULL;
1638 #ifdef BPF_JITTER
1639 			d->bd_bfilter = NULL;
1640 #endif
1641 			if (cmd == BIOCSETF)
1642 				reset_d(d);
1643 		}
1644 		BPFD_WUNLOCK(d);
1645 		BPFIF_WUNLOCK(d->bd_bif);
1646 		if (old != NULL)
1647 			free((caddr_t)old, M_BPF);
1648 #ifdef BPF_JITTER
1649 		if (ofunc != NULL)
1650 			bpf_destroy_jit_filter(ofunc);
1651 #endif
1652 		return (0);
1653 	}
1654 	flen = fp->bf_len;
1655 	if (flen > bpf_maxinsns)
1656 		return (EINVAL);
1657 
1658 	need_upgrade = 0;
1659 	size = flen * sizeof(*fp->bf_insns);
1660 	fcode = (struct bpf_insn *)malloc(size, M_BPF, M_WAITOK);
1661 	if (copyin((caddr_t)fp->bf_insns, (caddr_t)fcode, size) == 0 &&
1662 	    bpf_validate(fcode, (int)flen)) {
1663 		/*
1664 		 * Protect filter change by interface lock, too
1665 		 * The same lock order is used by bpf_detachd().
1666 		 */
1667 		BPFIF_WLOCK(d->bd_bif);
1668 		BPFD_WLOCK(d);
1669 		if (wfilter)
1670 			d->bd_wfilter = fcode;
1671 		else {
1672 			d->bd_rfilter = fcode;
1673 #ifdef BPF_JITTER
1674 			d->bd_bfilter = bpf_jitter(fcode, flen);
1675 #endif
1676 			if (cmd == BIOCSETF)
1677 				reset_d(d);
1678 
1679 			/*
1680 			 * Do not require upgrade by first BIOCSETF
1681 			 * (used to set snaplen) by pcap_open_live()
1682 			 */
1683 			if ((d->bd_writer != 0) && (--d->bd_writer == 0))
1684 				need_upgrade = 1;
1685 			CTR4(KTR_NET, "%s: filter function set by pid %d, "
1686 			    "bd_writer counter %d, need_upgrade %d",
1687 			    __func__, d->bd_pid, d->bd_writer, need_upgrade);
1688 		}
1689 		BPFD_WUNLOCK(d);
1690 		BPFIF_WUNLOCK(d->bd_bif);
1691 		if (old != NULL)
1692 			free((caddr_t)old, M_BPF);
1693 #ifdef BPF_JITTER
1694 		if (ofunc != NULL)
1695 			bpf_destroy_jit_filter(ofunc);
1696 #endif
1697 
1698 		/* Move d to active readers list */
1699 		if (need_upgrade != 0)
1700 			bpf_upgraded(d);
1701 
1702 		return (0);
1703 	}
1704 	free((caddr_t)fcode, M_BPF);
1705 	return (EINVAL);
1706 }
1707 
1708 /*
1709  * Detach a file from its current interface (if attached at all) and attach
1710  * to the interface indicated by the name stored in ifr.
1711  * Return an errno or 0.
1712  */
1713 static int
1714 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
1715 {
1716 	struct bpf_if *bp;
1717 	struct ifnet *theywant;
1718 
1719 	theywant = ifunit(ifr->ifr_name);
1720 	if (theywant == NULL || theywant->if_bpf == NULL)
1721 		return (ENXIO);
1722 
1723 	bp = theywant->if_bpf;
1724 
1725 	/*
1726 	 * Behavior here depends on the buffering model.  If we're using
1727 	 * kernel memory buffers, then we can allocate them here.  If we're
1728 	 * using zero-copy, then the user process must have registered
1729 	 * buffers by the time we get here.  If not, return an error.
1730 	 *
1731 	 * XXXRW: There are locking issues here with multi-threaded use: what
1732 	 * if two threads try to set the interface at once?
1733 	 */
1734 	switch (d->bd_bufmode) {
1735 	case BPF_BUFMODE_BUFFER:
1736 		if (d->bd_sbuf == NULL)
1737 			bpf_buffer_alloc(d);
1738 		KASSERT(d->bd_sbuf != NULL, ("bpf_setif: bd_sbuf NULL"));
1739 		break;
1740 
1741 	case BPF_BUFMODE_ZBUF:
1742 		if (d->bd_sbuf == NULL)
1743 			return (EINVAL);
1744 		break;
1745 
1746 	default:
1747 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
1748 	}
1749 	if (bp != d->bd_bif) {
1750 		if (d->bd_bif)
1751 			/*
1752 			 * Detach if attached to something else.
1753 			 */
1754 			bpf_detachd(d);
1755 
1756 		bpf_attachd(d, bp);
1757 	}
1758 	BPFD_WLOCK(d);
1759 	reset_d(d);
1760 	BPFD_WUNLOCK(d);
1761 	return (0);
1762 }
1763 
1764 /*
1765  * Support for select() and poll() system calls
1766  *
1767  * Return true iff the specific operation will not block indefinitely.
1768  * Otherwise, return false but make a note that a selwakeup() must be done.
1769  */
1770 static int
1771 bpfpoll(struct cdev *dev, int events, struct thread *td)
1772 {
1773 	struct bpf_d *d;
1774 	int revents;
1775 
1776 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
1777 		return (events &
1778 		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
1779 
1780 	/*
1781 	 * Refresh PID associated with this descriptor.
1782 	 */
1783 	revents = events & (POLLOUT | POLLWRNORM);
1784 	BPFD_WLOCK(d);
1785 	BPF_PID_REFRESH(d, td);
1786 	if (events & (POLLIN | POLLRDNORM)) {
1787 		if (bpf_ready(d))
1788 			revents |= events & (POLLIN | POLLRDNORM);
1789 		else {
1790 			selrecord(td, &d->bd_sel);
1791 			/* Start the read timeout if necessary. */
1792 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1793 				callout_reset(&d->bd_callout, d->bd_rtout,
1794 				    bpf_timed_out, d);
1795 				d->bd_state = BPF_WAITING;
1796 			}
1797 		}
1798 	}
1799 	BPFD_WUNLOCK(d);
1800 	return (revents);
1801 }
1802 
1803 /*
1804  * Support for kevent() system call.  Register EVFILT_READ filters and
1805  * reject all others.
1806  */
1807 int
1808 bpfkqfilter(struct cdev *dev, struct knote *kn)
1809 {
1810 	struct bpf_d *d;
1811 
1812 	if (devfs_get_cdevpriv((void **)&d) != 0 ||
1813 	    kn->kn_filter != EVFILT_READ)
1814 		return (1);
1815 
1816 	/*
1817 	 * Refresh PID associated with this descriptor.
1818 	 */
1819 	BPFD_WLOCK(d);
1820 	BPF_PID_REFRESH_CUR(d);
1821 	kn->kn_fop = &bpfread_filtops;
1822 	kn->kn_hook = d;
1823 	knlist_add(&d->bd_sel.si_note, kn, 1);
1824 	BPFD_WUNLOCK(d);
1825 
1826 	return (0);
1827 }
1828 
1829 static void
1830 filt_bpfdetach(struct knote *kn)
1831 {
1832 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1833 
1834 	knlist_remove(&d->bd_sel.si_note, kn, 0);
1835 }
1836 
1837 static int
1838 filt_bpfread(struct knote *kn, long hint)
1839 {
1840 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
1841 	int ready;
1842 
1843 	BPFD_WLOCK_ASSERT(d);
1844 	ready = bpf_ready(d);
1845 	if (ready) {
1846 		kn->kn_data = d->bd_slen;
1847 		if (d->bd_hbuf)
1848 			kn->kn_data += d->bd_hlen;
1849 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
1850 		callout_reset(&d->bd_callout, d->bd_rtout,
1851 		    bpf_timed_out, d);
1852 		d->bd_state = BPF_WAITING;
1853 	}
1854 
1855 	return (ready);
1856 }
1857 
1858 #define	BPF_TSTAMP_NONE		0
1859 #define	BPF_TSTAMP_FAST		1
1860 #define	BPF_TSTAMP_NORMAL	2
1861 #define	BPF_TSTAMP_EXTERN	3
1862 
1863 static int
1864 bpf_ts_quality(int tstype)
1865 {
1866 
1867 	if (tstype == BPF_T_NONE)
1868 		return (BPF_TSTAMP_NONE);
1869 	if ((tstype & BPF_T_FAST) != 0)
1870 		return (BPF_TSTAMP_FAST);
1871 
1872 	return (BPF_TSTAMP_NORMAL);
1873 }
1874 
1875 static int
1876 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
1877 {
1878 	struct m_tag *tag;
1879 	int quality;
1880 
1881 	quality = bpf_ts_quality(tstype);
1882 	if (quality == BPF_TSTAMP_NONE)
1883 		return (quality);
1884 
1885 	if (m != NULL) {
1886 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
1887 		if (tag != NULL) {
1888 			*bt = *(struct bintime *)(tag + 1);
1889 			return (BPF_TSTAMP_EXTERN);
1890 		}
1891 	}
1892 	if (quality == BPF_TSTAMP_NORMAL)
1893 		binuptime(bt);
1894 	else
1895 		getbinuptime(bt);
1896 
1897 	return (quality);
1898 }
1899 
1900 /*
1901  * Incoming linkage from device drivers.  Process the packet pkt, of length
1902  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
1903  * by each process' filter, and if accepted, stashed into the corresponding
1904  * buffer.
1905  */
1906 void
1907 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
1908 {
1909 	struct bintime bt;
1910 	struct bpf_d *d;
1911 #ifdef BPF_JITTER
1912 	bpf_jit_filter *bf;
1913 #endif
1914 	u_int slen;
1915 	int gottime;
1916 
1917 	gottime = BPF_TSTAMP_NONE;
1918 
1919 	BPFIF_RLOCK(bp);
1920 
1921 	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1922 		/*
1923 		 * We are not using any locks for d here because:
1924 		 * 1) any filter change is protected by interface
1925 		 * write lock
1926 		 * 2) destroying/detaching d is protected by interface
1927 		 * write lock, too
1928 		 */
1929 
1930 		/* XXX: Do not protect counter for the sake of performance. */
1931 		++d->bd_rcount;
1932 		/*
1933 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there is no
1934 		 * way for the caller to indiciate to us whether this packet
1935 		 * is inbound or outbound.  In the bpf_mtap() routines, we use
1936 		 * the interface pointers on the mbuf to figure it out.
1937 		 */
1938 #ifdef BPF_JITTER
1939 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
1940 		if (bf != NULL)
1941 			slen = (*(bf->func))(pkt, pktlen, pktlen);
1942 		else
1943 #endif
1944 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
1945 		if (slen != 0) {
1946 			/*
1947 			 * Filter matches. Let's to acquire write lock.
1948 			 */
1949 			BPFD_WLOCK(d);
1950 
1951 			d->bd_fcount++;
1952 			if (gottime < bpf_ts_quality(d->bd_tstamp))
1953 				gottime = bpf_gettime(&bt, d->bd_tstamp, NULL);
1954 #ifdef MAC
1955 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
1956 #endif
1957 				catchpacket(d, pkt, pktlen, slen,
1958 				    bpf_append_bytes, &bt);
1959 			BPFD_WUNLOCK(d);
1960 		}
1961 	}
1962 	BPFIF_RUNLOCK(bp);
1963 }
1964 
1965 #define	BPF_CHECK_DIRECTION(d, r, i)				\
1966 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
1967 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
1968 
1969 /*
1970  * Incoming linkage from device drivers, when packet is in an mbuf chain.
1971  * Locking model is explained in bpf_tap().
1972  */
1973 void
1974 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
1975 {
1976 	struct bintime bt;
1977 	struct bpf_d *d;
1978 #ifdef BPF_JITTER
1979 	bpf_jit_filter *bf;
1980 #endif
1981 	u_int pktlen, slen;
1982 	int gottime;
1983 
1984 	/* Skip outgoing duplicate packets. */
1985 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
1986 		m->m_flags &= ~M_PROMISC;
1987 		return;
1988 	}
1989 
1990 	pktlen = m_length(m, NULL);
1991 	gottime = BPF_TSTAMP_NONE;
1992 
1993 	BPFIF_RLOCK(bp);
1994 
1995 	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
1996 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
1997 			continue;
1998 		++d->bd_rcount;
1999 #ifdef BPF_JITTER
2000 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2001 		/* XXX We cannot handle multiple mbufs. */
2002 		if (bf != NULL && m->m_next == NULL)
2003 			slen = (*(bf->func))(mtod(m, u_char *), pktlen, pktlen);
2004 		else
2005 #endif
2006 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2007 		if (slen != 0) {
2008 			BPFD_WLOCK(d);
2009 
2010 			d->bd_fcount++;
2011 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2012 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2013 #ifdef MAC
2014 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2015 #endif
2016 				catchpacket(d, (u_char *)m, pktlen, slen,
2017 				    bpf_append_mbuf, &bt);
2018 			BPFD_WUNLOCK(d);
2019 		}
2020 	}
2021 	BPFIF_RUNLOCK(bp);
2022 }
2023 
2024 /*
2025  * Incoming linkage from device drivers, when packet is in
2026  * an mbuf chain and to be prepended by a contiguous header.
2027  */
2028 void
2029 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2030 {
2031 	struct bintime bt;
2032 	struct mbuf mb;
2033 	struct bpf_d *d;
2034 	u_int pktlen, slen;
2035 	int gottime;
2036 
2037 	/* Skip outgoing duplicate packets. */
2038 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2039 		m->m_flags &= ~M_PROMISC;
2040 		return;
2041 	}
2042 
2043 	pktlen = m_length(m, NULL);
2044 	/*
2045 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2046 	 * Note that we cut corners here; we only setup what's
2047 	 * absolutely needed--this mbuf should never go anywhere else.
2048 	 */
2049 	mb.m_next = m;
2050 	mb.m_data = data;
2051 	mb.m_len = dlen;
2052 	pktlen += dlen;
2053 
2054 	gottime = BPF_TSTAMP_NONE;
2055 
2056 	BPFIF_RLOCK(bp);
2057 
2058 	LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2059 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2060 			continue;
2061 		++d->bd_rcount;
2062 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2063 		if (slen != 0) {
2064 			BPFD_WLOCK(d);
2065 
2066 			d->bd_fcount++;
2067 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2068 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2069 #ifdef MAC
2070 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2071 #endif
2072 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2073 				    bpf_append_mbuf, &bt);
2074 			BPFD_WUNLOCK(d);
2075 		}
2076 	}
2077 	BPFIF_RUNLOCK(bp);
2078 }
2079 
2080 #undef	BPF_CHECK_DIRECTION
2081 
2082 #undef	BPF_TSTAMP_NONE
2083 #undef	BPF_TSTAMP_FAST
2084 #undef	BPF_TSTAMP_NORMAL
2085 #undef	BPF_TSTAMP_EXTERN
2086 
2087 static int
2088 bpf_hdrlen(struct bpf_d *d)
2089 {
2090 	int hdrlen;
2091 
2092 	hdrlen = d->bd_bif->bif_hdrlen;
2093 #ifndef BURN_BRIDGES
2094 	if (d->bd_tstamp == BPF_T_NONE ||
2095 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2096 #ifdef COMPAT_FREEBSD32
2097 		if (d->bd_compat32)
2098 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2099 		else
2100 #endif
2101 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2102 	else
2103 #endif
2104 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2105 #ifdef COMPAT_FREEBSD32
2106 	if (d->bd_compat32)
2107 		hdrlen = BPF_WORDALIGN32(hdrlen);
2108 	else
2109 #endif
2110 		hdrlen = BPF_WORDALIGN(hdrlen);
2111 
2112 	return (hdrlen - d->bd_bif->bif_hdrlen);
2113 }
2114 
2115 static void
2116 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2117 {
2118 	struct bintime bt2;
2119 	struct timeval tsm;
2120 	struct timespec tsn;
2121 
2122 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2123 		bt2 = *bt;
2124 		bintime_add(&bt2, &boottimebin);
2125 		bt = &bt2;
2126 	}
2127 	switch (BPF_T_FORMAT(tstype)) {
2128 	case BPF_T_MICROTIME:
2129 		bintime2timeval(bt, &tsm);
2130 		ts->bt_sec = tsm.tv_sec;
2131 		ts->bt_frac = tsm.tv_usec;
2132 		break;
2133 	case BPF_T_NANOTIME:
2134 		bintime2timespec(bt, &tsn);
2135 		ts->bt_sec = tsn.tv_sec;
2136 		ts->bt_frac = tsn.tv_nsec;
2137 		break;
2138 	case BPF_T_BINTIME:
2139 		ts->bt_sec = bt->sec;
2140 		ts->bt_frac = bt->frac;
2141 		break;
2142 	}
2143 }
2144 
2145 /*
2146  * Move the packet data from interface memory (pkt) into the
2147  * store buffer.  "cpfn" is the routine called to do the actual data
2148  * transfer.  bcopy is passed in to copy contiguous chunks, while
2149  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2150  * pkt is really an mbuf.
2151  */
2152 static void
2153 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2154     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2155     struct bintime *bt)
2156 {
2157 	struct bpf_xhdr hdr;
2158 #ifndef BURN_BRIDGES
2159 	struct bpf_hdr hdr_old;
2160 #ifdef COMPAT_FREEBSD32
2161 	struct bpf_hdr32 hdr32_old;
2162 #endif
2163 #endif
2164 	int caplen, curlen, hdrlen, totlen;
2165 	int do_wakeup = 0;
2166 	int do_timestamp;
2167 	int tstype;
2168 
2169 	BPFD_WLOCK_ASSERT(d);
2170 
2171 	/*
2172 	 * Detect whether user space has released a buffer back to us, and if
2173 	 * so, move it from being a hold buffer to a free buffer.  This may
2174 	 * not be the best place to do it (for example, we might only want to
2175 	 * run this check if we need the space), but for now it's a reliable
2176 	 * spot to do it.
2177 	 */
2178 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2179 		d->bd_fbuf = d->bd_hbuf;
2180 		d->bd_hbuf = NULL;
2181 		d->bd_hlen = 0;
2182 		bpf_buf_reclaimed(d);
2183 	}
2184 
2185 	/*
2186 	 * Figure out how many bytes to move.  If the packet is
2187 	 * greater or equal to the snapshot length, transfer that
2188 	 * much.  Otherwise, transfer the whole packet (unless
2189 	 * we hit the buffer size limit).
2190 	 */
2191 	hdrlen = bpf_hdrlen(d);
2192 	totlen = hdrlen + min(snaplen, pktlen);
2193 	if (totlen > d->bd_bufsize)
2194 		totlen = d->bd_bufsize;
2195 
2196 	/*
2197 	 * Round up the end of the previous packet to the next longword.
2198 	 *
2199 	 * Drop the packet if there's no room and no hope of room
2200 	 * If the packet would overflow the storage buffer or the storage
2201 	 * buffer is considered immutable by the buffer model, try to rotate
2202 	 * the buffer and wakeup pending processes.
2203 	 */
2204 #ifdef COMPAT_FREEBSD32
2205 	if (d->bd_compat32)
2206 		curlen = BPF_WORDALIGN32(d->bd_slen);
2207 	else
2208 #endif
2209 		curlen = BPF_WORDALIGN(d->bd_slen);
2210 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2211 		if (d->bd_fbuf == NULL) {
2212 			/*
2213 			 * There's no room in the store buffer, and no
2214 			 * prospect of room, so drop the packet.  Notify the
2215 			 * buffer model.
2216 			 */
2217 			bpf_buffull(d);
2218 			++d->bd_dcount;
2219 			return;
2220 		}
2221 		ROTATE_BUFFERS(d);
2222 		do_wakeup = 1;
2223 		curlen = 0;
2224 	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
2225 		/*
2226 		 * Immediate mode is set, or the read timeout has already
2227 		 * expired during a select call.  A packet arrived, so the
2228 		 * reader should be woken up.
2229 		 */
2230 		do_wakeup = 1;
2231 	caplen = totlen - hdrlen;
2232 	tstype = d->bd_tstamp;
2233 	do_timestamp = tstype != BPF_T_NONE;
2234 #ifndef BURN_BRIDGES
2235 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2236 		struct bpf_ts ts;
2237 		if (do_timestamp)
2238 			bpf_bintime2ts(bt, &ts, tstype);
2239 #ifdef COMPAT_FREEBSD32
2240 		if (d->bd_compat32) {
2241 			bzero(&hdr32_old, sizeof(hdr32_old));
2242 			if (do_timestamp) {
2243 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2244 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2245 			}
2246 			hdr32_old.bh_datalen = pktlen;
2247 			hdr32_old.bh_hdrlen = hdrlen;
2248 			hdr32_old.bh_caplen = caplen;
2249 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2250 			    sizeof(hdr32_old));
2251 			goto copy;
2252 		}
2253 #endif
2254 		bzero(&hdr_old, sizeof(hdr_old));
2255 		if (do_timestamp) {
2256 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2257 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2258 		}
2259 		hdr_old.bh_datalen = pktlen;
2260 		hdr_old.bh_hdrlen = hdrlen;
2261 		hdr_old.bh_caplen = caplen;
2262 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2263 		    sizeof(hdr_old));
2264 		goto copy;
2265 	}
2266 #endif
2267 
2268 	/*
2269 	 * Append the bpf header.  Note we append the actual header size, but
2270 	 * move forward the length of the header plus padding.
2271 	 */
2272 	bzero(&hdr, sizeof(hdr));
2273 	if (do_timestamp)
2274 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2275 	hdr.bh_datalen = pktlen;
2276 	hdr.bh_hdrlen = hdrlen;
2277 	hdr.bh_caplen = caplen;
2278 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2279 
2280 	/*
2281 	 * Copy the packet data into the store buffer and update its length.
2282 	 */
2283 #ifndef BURN_BRIDGES
2284 copy:
2285 #endif
2286 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2287 	d->bd_slen = curlen + totlen;
2288 
2289 	if (do_wakeup)
2290 		bpf_wakeup(d);
2291 }
2292 
2293 /*
2294  * Free buffers currently in use by a descriptor.
2295  * Called on close.
2296  */
2297 static void
2298 bpf_freed(struct bpf_d *d)
2299 {
2300 
2301 	/*
2302 	 * We don't need to lock out interrupts since this descriptor has
2303 	 * been detached from its interface and it yet hasn't been marked
2304 	 * free.
2305 	 */
2306 	bpf_free(d);
2307 	if (d->bd_rfilter != NULL) {
2308 		free((caddr_t)d->bd_rfilter, M_BPF);
2309 #ifdef BPF_JITTER
2310 		if (d->bd_bfilter != NULL)
2311 			bpf_destroy_jit_filter(d->bd_bfilter);
2312 #endif
2313 	}
2314 	if (d->bd_wfilter != NULL)
2315 		free((caddr_t)d->bd_wfilter, M_BPF);
2316 	rw_destroy(&d->bd_lock);
2317 }
2318 
2319 /*
2320  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2321  * fixed size of the link header (variable length headers not yet supported).
2322  */
2323 void
2324 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2325 {
2326 
2327 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2328 }
2329 
2330 /*
2331  * Attach an interface to bpf.  ifp is a pointer to the structure
2332  * defining the interface to be attached, dlt is the link layer type,
2333  * and hdrlen is the fixed size of the link header (variable length
2334  * headers are not yet supporrted).
2335  */
2336 void
2337 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2338 {
2339 	struct bpf_if *bp;
2340 
2341 	bp = malloc(sizeof(*bp), M_BPF, M_NOWAIT | M_ZERO);
2342 	if (bp == NULL)
2343 		panic("bpfattach");
2344 
2345 	LIST_INIT(&bp->bif_dlist);
2346 	LIST_INIT(&bp->bif_wlist);
2347 	bp->bif_ifp = ifp;
2348 	bp->bif_dlt = dlt;
2349 	rw_init(&bp->bif_lock, "bpf interface lock");
2350 	KASSERT(*driverp == NULL, ("bpfattach2: driverp already initialized"));
2351 	*driverp = bp;
2352 
2353 	BPF_LOCK();
2354 	LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2355 	BPF_UNLOCK();
2356 
2357 	bp->bif_hdrlen = hdrlen;
2358 
2359 	if (bootverbose)
2360 		if_printf(ifp, "bpf attached\n");
2361 }
2362 
2363 /*
2364  * Detach bpf from an interface.  This involves detaching each descriptor
2365  * associated with the interface, and leaving bd_bif NULL.  Notify each
2366  * descriptor as it's detached so that any sleepers wake up and get
2367  * ENXIO.
2368  */
2369 void
2370 bpfdetach(struct ifnet *ifp)
2371 {
2372 	struct bpf_if	*bp;
2373 	struct bpf_d	*d;
2374 #ifdef INVARIANTS
2375 	int ndetached;
2376 
2377 	ndetached = 0;
2378 #endif
2379 
2380 	/* Find all bpf_if struct's which reference ifp and detach them. */
2381 	do {
2382 		BPF_LOCK();
2383 		LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2384 			if (ifp == bp->bif_ifp)
2385 				break;
2386 		}
2387 		if (bp != NULL)
2388 			LIST_REMOVE(bp, bif_next);
2389 		BPF_UNLOCK();
2390 
2391 		if (bp != NULL) {
2392 #ifdef INVARIANTS
2393 			ndetached++;
2394 #endif
2395 			while ((d = LIST_FIRST(&bp->bif_dlist)) != NULL) {
2396 				bpf_detachd(d);
2397 				BPFD_WLOCK(d);
2398 				bpf_wakeup(d);
2399 				BPFD_WUNLOCK(d);
2400 			}
2401 			rw_destroy(&bp->bif_lock);
2402 			free(bp, M_BPF);
2403 		}
2404 	} while (bp != NULL);
2405 
2406 #ifdef INVARIANTS
2407 	if (ndetached == 0)
2408 		printf("bpfdetach: %s was not attached\n", ifp->if_xname);
2409 #endif
2410 }
2411 
2412 /*
2413  * Get a list of available data link type of the interface.
2414  */
2415 static int
2416 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2417 {
2418 	int n, error;
2419 	struct ifnet *ifp;
2420 	struct bpf_if *bp;
2421 
2422 	ifp = d->bd_bif->bif_ifp;
2423 	n = 0;
2424 	error = 0;
2425 	BPF_LOCK();
2426 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2427 		if (bp->bif_ifp != ifp)
2428 			continue;
2429 		if (bfl->bfl_list != NULL) {
2430 			if (n >= bfl->bfl_len) {
2431 				BPF_UNLOCK();
2432 				return (ENOMEM);
2433 			}
2434 			error = copyout(&bp->bif_dlt,
2435 			    bfl->bfl_list + n, sizeof(u_int));
2436 		}
2437 		n++;
2438 	}
2439 	BPF_UNLOCK();
2440 	bfl->bfl_len = n;
2441 	return (error);
2442 }
2443 
2444 /*
2445  * Set the data link type of a BPF instance.
2446  */
2447 static int
2448 bpf_setdlt(struct bpf_d *d, u_int dlt)
2449 {
2450 	int error, opromisc;
2451 	struct ifnet *ifp;
2452 	struct bpf_if *bp;
2453 
2454 	if (d->bd_bif->bif_dlt == dlt)
2455 		return (0);
2456 	ifp = d->bd_bif->bif_ifp;
2457 	BPF_LOCK();
2458 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2459 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2460 			break;
2461 	}
2462 	BPF_UNLOCK();
2463 	if (bp != NULL) {
2464 		opromisc = d->bd_promisc;
2465 		bpf_detachd(d);
2466 		bpf_attachd(d, bp);
2467 		BPFD_WLOCK(d);
2468 		reset_d(d);
2469 		BPFD_WUNLOCK(d);
2470 		if (opromisc) {
2471 			error = ifpromisc(bp->bif_ifp, 1);
2472 			if (error)
2473 				if_printf(bp->bif_ifp,
2474 					"bpf_setdlt: ifpromisc failed (%d)\n",
2475 					error);
2476 			else
2477 				d->bd_promisc = 1;
2478 		}
2479 	}
2480 	return (bp == NULL ? EINVAL : 0);
2481 }
2482 
2483 static void
2484 bpf_drvinit(void *unused)
2485 {
2486 	struct cdev *dev;
2487 
2488 	mtx_init(&bpf_mtx, "bpf global lock", NULL, MTX_DEF);
2489 	LIST_INIT(&bpf_iflist);
2490 
2491 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2492 	/* For compatibility */
2493 	make_dev_alias(dev, "bpf0");
2494 }
2495 
2496 /*
2497  * Zero out the various packet counters associated with all of the bpf
2498  * descriptors.  At some point, we will probably want to get a bit more
2499  * granular and allow the user to specify descriptors to be zeroed.
2500  */
2501 static void
2502 bpf_zero_counters(void)
2503 {
2504 	struct bpf_if *bp;
2505 	struct bpf_d *bd;
2506 
2507 	BPF_LOCK();
2508 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2509 		BPFIF_RLOCK(bp);
2510 		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2511 			BPFD_WLOCK(bd);
2512 			bd->bd_rcount = 0;
2513 			bd->bd_dcount = 0;
2514 			bd->bd_fcount = 0;
2515 			bd->bd_wcount = 0;
2516 			bd->bd_wfcount = 0;
2517 			bd->bd_zcopy = 0;
2518 			BPFD_WUNLOCK(bd);
2519 		}
2520 		BPFIF_RUNLOCK(bp);
2521 	}
2522 	BPF_UNLOCK();
2523 }
2524 
2525 static void
2526 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
2527 {
2528 
2529 	bzero(d, sizeof(*d));
2530 	BPFD_LOCK_ASSERT(bd);
2531 	d->bd_structsize = sizeof(*d);
2532 	d->bd_immediate = bd->bd_immediate;
2533 	d->bd_promisc = bd->bd_promisc;
2534 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
2535 	d->bd_direction = bd->bd_direction;
2536 	d->bd_feedback = bd->bd_feedback;
2537 	d->bd_async = bd->bd_async;
2538 	d->bd_rcount = bd->bd_rcount;
2539 	d->bd_dcount = bd->bd_dcount;
2540 	d->bd_fcount = bd->bd_fcount;
2541 	d->bd_sig = bd->bd_sig;
2542 	d->bd_slen = bd->bd_slen;
2543 	d->bd_hlen = bd->bd_hlen;
2544 	d->bd_bufsize = bd->bd_bufsize;
2545 	d->bd_pid = bd->bd_pid;
2546 	strlcpy(d->bd_ifname,
2547 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
2548 	d->bd_locked = bd->bd_locked;
2549 	d->bd_wcount = bd->bd_wcount;
2550 	d->bd_wdcount = bd->bd_wdcount;
2551 	d->bd_wfcount = bd->bd_wfcount;
2552 	d->bd_zcopy = bd->bd_zcopy;
2553 	d->bd_bufmode = bd->bd_bufmode;
2554 }
2555 
2556 static int
2557 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
2558 {
2559 	struct xbpf_d *xbdbuf, *xbd, zerostats;
2560 	int index, error;
2561 	struct bpf_if *bp;
2562 	struct bpf_d *bd;
2563 
2564 	/*
2565 	 * XXX This is not technically correct. It is possible for non
2566 	 * privileged users to open bpf devices. It would make sense
2567 	 * if the users who opened the devices were able to retrieve
2568 	 * the statistics for them, too.
2569 	 */
2570 	error = priv_check(req->td, PRIV_NET_BPF);
2571 	if (error)
2572 		return (error);
2573 	/*
2574 	 * Check to see if the user is requesting that the counters be
2575 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
2576 	 * as we aren't allowing the user to set the counters currently.
2577 	 */
2578 	if (req->newptr != NULL) {
2579 		if (req->newlen != sizeof(zerostats))
2580 			return (EINVAL);
2581 		bzero(&zerostats, sizeof(zerostats));
2582 		xbd = req->newptr;
2583 		if (bcmp(xbd, &zerostats, sizeof(*xbd)) != 0)
2584 			return (EINVAL);
2585 		bpf_zero_counters();
2586 		return (0);
2587 	}
2588 	if (req->oldptr == NULL)
2589 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
2590 	if (bpf_bpfd_cnt == 0)
2591 		return (SYSCTL_OUT(req, 0, 0));
2592 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
2593 	BPF_LOCK();
2594 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
2595 		BPF_UNLOCK();
2596 		free(xbdbuf, M_BPF);
2597 		return (ENOMEM);
2598 	}
2599 	index = 0;
2600 	LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2601 		BPFIF_RLOCK(bp);
2602 		/* Send writers-only first */
2603 		LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
2604 			xbd = &xbdbuf[index++];
2605 			BPFD_RLOCK(bd);
2606 			bpfstats_fill_xbpf(xbd, bd);
2607 			BPFD_RUNLOCK(bd);
2608 		}
2609 		LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2610 			xbd = &xbdbuf[index++];
2611 			BPFD_RLOCK(bd);
2612 			bpfstats_fill_xbpf(xbd, bd);
2613 			BPFD_RUNLOCK(bd);
2614 		}
2615 		BPFIF_RUNLOCK(bp);
2616 	}
2617 	BPF_UNLOCK();
2618 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
2619 	free(xbdbuf, M_BPF);
2620 	return (error);
2621 }
2622 
2623 SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
2624 
2625 #else /* !DEV_BPF && !NETGRAPH_BPF */
2626 /*
2627  * NOP stubs to allow bpf-using drivers to load and function.
2628  *
2629  * A 'better' implementation would allow the core bpf functionality
2630  * to be loaded at runtime.
2631  */
2632 static struct bpf_if bp_null;
2633 
2634 void
2635 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2636 {
2637 }
2638 
2639 void
2640 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2641 {
2642 }
2643 
2644 void
2645 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
2646 {
2647 }
2648 
2649 void
2650 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2651 {
2652 
2653 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2654 }
2655 
2656 void
2657 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
2658 {
2659 
2660 	*driverp = &bp_null;
2661 }
2662 
2663 void
2664 bpfdetach(struct ifnet *ifp)
2665 {
2666 }
2667 
2668 u_int
2669 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
2670 {
2671 	return -1;	/* "no filter" behaviour */
2672 }
2673 
2674 int
2675 bpf_validate(const struct bpf_insn *f, int len)
2676 {
2677 	return 0;		/* false */
2678 }
2679 
2680 #endif /* !DEV_BPF && !NETGRAPH_BPF */
2681