xref: /freebsd/sys/net/bpf.c (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7  *
8  * This code is derived from the Stanford/CMU enet packet filter,
9  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11  * Berkeley Laboratory.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_bpf.h"
44 #include "opt_ddb.h"
45 #include "opt_netgraph.h"
46 
47 #include <sys/param.h>
48 #include <sys/conf.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/jail.h>
52 #include <sys/ktr.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/time.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/signalvar.h>
61 #include <sys/filio.h>
62 #include <sys/sockio.h>
63 #include <sys/ttycom.h>
64 #include <sys/uio.h>
65 #include <sys/sysent.h>
66 #include <sys/systm.h>
67 
68 #include <sys/event.h>
69 #include <sys/file.h>
70 #include <sys/poll.h>
71 #include <sys/proc.h>
72 
73 #include <sys/socket.h>
74 
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #endif
78 
79 #include <net/if.h>
80 #include <net/if_var.h>
81 #include <net/if_vlan_var.h>
82 #include <net/if_dl.h>
83 #include <net/bpf.h>
84 #include <net/bpf_buffer.h>
85 #ifdef BPF_JITTER
86 #include <net/bpf_jitter.h>
87 #endif
88 #include <net/bpf_zerocopy.h>
89 #include <net/bpfdesc.h>
90 #include <net/route.h>
91 #include <net/vnet.h>
92 
93 #include <netinet/in.h>
94 #include <netinet/if_ether.h>
95 #include <sys/kernel.h>
96 #include <sys/sysctl.h>
97 
98 #include <net80211/ieee80211_freebsd.h>
99 
100 #include <security/mac/mac_framework.h>
101 
102 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
103 
104 static struct bpf_if_ext dead_bpf_if = {
105 	.bif_dlist = CK_LIST_HEAD_INITIALIZER()
106 };
107 
108 struct bpf_if {
109 #define	bif_next	bif_ext.bif_next
110 #define	bif_dlist	bif_ext.bif_dlist
111 	struct bpf_if_ext bif_ext;	/* public members */
112 	u_int		bif_dlt;	/* link layer type */
113 	u_int		bif_hdrlen;	/* length of link header */
114 	struct bpfd_list bif_wlist;	/* writer-only list */
115 	struct ifnet	*bif_ifp;	/* corresponding interface */
116 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
117 	volatile u_int	bif_refcnt;
118 	struct epoch_context epoch_ctx;
119 };
120 
121 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
122 
123 struct bpf_program_buffer {
124 	struct epoch_context	epoch_ctx;
125 #ifdef BPF_JITTER
126 	bpf_jit_filter		*func;
127 #endif
128 	void			*buffer[0];
129 };
130 
131 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
132 
133 #define PRINET  26			/* interruptible */
134 #define BPF_PRIO_MAX	7
135 
136 #define	SIZEOF_BPF_HDR(type)	\
137     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
138 
139 #ifdef COMPAT_FREEBSD32
140 #include <sys/mount.h>
141 #include <compat/freebsd32/freebsd32.h>
142 #define BPF_ALIGNMENT32 sizeof(int32_t)
143 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
144 
145 #ifndef BURN_BRIDGES
146 /*
147  * 32-bit version of structure prepended to each packet.  We use this header
148  * instead of the standard one for 32-bit streams.  We mark the a stream as
149  * 32-bit the first time we see a 32-bit compat ioctl request.
150  */
151 struct bpf_hdr32 {
152 	struct timeval32 bh_tstamp;	/* time stamp */
153 	uint32_t	bh_caplen;	/* length of captured portion */
154 	uint32_t	bh_datalen;	/* original length of packet */
155 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
156 					   plus alignment padding) */
157 };
158 #endif
159 
160 struct bpf_program32 {
161 	u_int bf_len;
162 	uint32_t bf_insns;
163 };
164 
165 struct bpf_dltlist32 {
166 	u_int	bfl_len;
167 	u_int	bfl_list;
168 };
169 
170 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
171 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
172 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
173 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
174 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
175 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
176 #endif
177 
178 #define BPF_LOCK()	   sx_xlock(&bpf_sx)
179 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
180 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
181 /*
182  * bpf_iflist is a list of BPF interface structures, each corresponding to a
183  * specific DLT. The same network interface might have several BPF interface
184  * structures registered by different layers in the stack (i.e., 802.11
185  * frames, ethernet frames, etc).
186  */
187 CK_LIST_HEAD(bpf_iflist, bpf_if);
188 static struct bpf_iflist bpf_iflist;
189 static struct sx	bpf_sx;		/* bpf global lock */
190 static int		bpf_bpfd_cnt;
191 
192 static void	bpfif_ref(struct bpf_if *);
193 static void	bpfif_rele(struct bpf_if *);
194 
195 static void	bpfd_ref(struct bpf_d *);
196 static void	bpfd_rele(struct bpf_d *);
197 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
198 static void	bpf_detachd(struct bpf_d *);
199 static void	bpf_detachd_locked(struct bpf_d *, bool);
200 static void	bpfd_free(epoch_context_t);
201 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
202 		    struct sockaddr *, int *, struct bpf_d *);
203 static int	bpf_setif(struct bpf_d *, struct ifreq *);
204 static void	bpf_timed_out(void *);
205 static __inline void
206 		bpf_wakeup(struct bpf_d *);
207 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
208 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
209 		    struct bintime *);
210 static void	reset_d(struct bpf_d *);
211 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
212 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
213 static int	bpf_setdlt(struct bpf_d *, u_int);
214 static void	filt_bpfdetach(struct knote *);
215 static int	filt_bpfread(struct knote *, long);
216 static int	filt_bpfwrite(struct knote *, long);
217 static void	bpf_drvinit(void *);
218 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
219 
220 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
221     "bpf sysctl");
222 int bpf_maxinsns = BPF_MAXINSNS;
223 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
224     &bpf_maxinsns, 0, "Maximum bpf program instructions");
225 static int bpf_zerocopy_enable = 0;
226 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
227     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
228 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
229     bpf_stats_sysctl, "bpf statistics portal");
230 
231 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
232 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
233 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
234     &VNET_NAME(bpf_optimize_writers), 0,
235     "Do not send packets until BPF program is set");
236 
237 static	d_open_t	bpfopen;
238 static	d_read_t	bpfread;
239 static	d_write_t	bpfwrite;
240 static	d_ioctl_t	bpfioctl;
241 static	d_poll_t	bpfpoll;
242 static	d_kqfilter_t	bpfkqfilter;
243 
244 static struct cdevsw bpf_cdevsw = {
245 	.d_version =	D_VERSION,
246 	.d_open =	bpfopen,
247 	.d_read =	bpfread,
248 	.d_write =	bpfwrite,
249 	.d_ioctl =	bpfioctl,
250 	.d_poll =	bpfpoll,
251 	.d_name =	"bpf",
252 	.d_kqfilter =	bpfkqfilter,
253 };
254 
255 static struct filterops bpfread_filtops = {
256 	.f_isfd = 1,
257 	.f_detach = filt_bpfdetach,
258 	.f_event = filt_bpfread,
259 };
260 
261 static struct filterops bpfwrite_filtops = {
262 	.f_isfd = 1,
263 	.f_detach = filt_bpfdetach,
264 	.f_event = filt_bpfwrite,
265 };
266 
267 /*
268  * LOCKING MODEL USED BY BPF
269  *
270  * Locks:
271  * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
272  * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
273  * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
274  * structure fields used by bpf_*tap* code.
275  *
276  * Lock order: global lock, then descriptor lock.
277  *
278  * There are several possible consumers:
279  *
280  * 1. The kernel registers interface pointer with bpfattach().
281  * Each call allocates new bpf_if structure, references ifnet pointer
282  * and links bpf_if into bpf_iflist chain. This is protected with global
283  * lock.
284  *
285  * 2. An userland application uses ioctl() call to bpf_d descriptor.
286  * All such call are serialized with global lock. BPF filters can be
287  * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
288  * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
289  * filter pointers, even if change will happen during bpf_tap execution.
290  * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
291  *
292  * 3. An userland application can write packets into bpf_d descriptor.
293  * There we need to be sure, that ifnet won't disappear during bpfwrite().
294  *
295  * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
296  * bif_dlist is protected with net_epoch_preempt section. So, it should
297  * be safe to make access to bpf_d descriptor inside the section.
298  *
299  * 5. The kernel invokes bpfdetach() on interface destroying. All lists
300  * are modified with global lock held and actual free() is done using
301  * NET_EPOCH_CALL().
302  */
303 
304 static void
305 bpfif_free(epoch_context_t ctx)
306 {
307 	struct bpf_if *bp;
308 
309 	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
310 	if_rele(bp->bif_ifp);
311 	free(bp, M_BPF);
312 }
313 
314 static void
315 bpfif_ref(struct bpf_if *bp)
316 {
317 
318 	refcount_acquire(&bp->bif_refcnt);
319 }
320 
321 static void
322 bpfif_rele(struct bpf_if *bp)
323 {
324 
325 	if (!refcount_release(&bp->bif_refcnt))
326 		return;
327 	NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
328 }
329 
330 static void
331 bpfd_ref(struct bpf_d *d)
332 {
333 
334 	refcount_acquire(&d->bd_refcnt);
335 }
336 
337 static void
338 bpfd_rele(struct bpf_d *d)
339 {
340 
341 	if (!refcount_release(&d->bd_refcnt))
342 		return;
343 	NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
344 }
345 
346 static struct bpf_program_buffer*
347 bpf_program_buffer_alloc(size_t size, int flags)
348 {
349 
350 	return (malloc(sizeof(struct bpf_program_buffer) + size,
351 	    M_BPF, flags));
352 }
353 
354 static void
355 bpf_program_buffer_free(epoch_context_t ctx)
356 {
357 	struct bpf_program_buffer *ptr;
358 
359 	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
360 #ifdef BPF_JITTER
361 	if (ptr->func != NULL)
362 		bpf_destroy_jit_filter(ptr->func);
363 #endif
364 	free(ptr, M_BPF);
365 }
366 
367 /*
368  * Wrapper functions for various buffering methods.  If the set of buffer
369  * modes expands, we will probably want to introduce a switch data structure
370  * similar to protosw, et.
371  */
372 static void
373 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
374     u_int len)
375 {
376 
377 	BPFD_LOCK_ASSERT(d);
378 
379 	switch (d->bd_bufmode) {
380 	case BPF_BUFMODE_BUFFER:
381 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
382 
383 	case BPF_BUFMODE_ZBUF:
384 		counter_u64_add(d->bd_zcopy, 1);
385 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
386 
387 	default:
388 		panic("bpf_buf_append_bytes");
389 	}
390 }
391 
392 static void
393 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
394     u_int len)
395 {
396 
397 	BPFD_LOCK_ASSERT(d);
398 
399 	switch (d->bd_bufmode) {
400 	case BPF_BUFMODE_BUFFER:
401 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
402 
403 	case BPF_BUFMODE_ZBUF:
404 		counter_u64_add(d->bd_zcopy, 1);
405 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
406 
407 	default:
408 		panic("bpf_buf_append_mbuf");
409 	}
410 }
411 
412 /*
413  * This function gets called when the free buffer is re-assigned.
414  */
415 static void
416 bpf_buf_reclaimed(struct bpf_d *d)
417 {
418 
419 	BPFD_LOCK_ASSERT(d);
420 
421 	switch (d->bd_bufmode) {
422 	case BPF_BUFMODE_BUFFER:
423 		return;
424 
425 	case BPF_BUFMODE_ZBUF:
426 		bpf_zerocopy_buf_reclaimed(d);
427 		return;
428 
429 	default:
430 		panic("bpf_buf_reclaimed");
431 	}
432 }
433 
434 /*
435  * If the buffer mechanism has a way to decide that a held buffer can be made
436  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
437  * returned if the buffer can be discarded, (0) is returned if it cannot.
438  */
439 static int
440 bpf_canfreebuf(struct bpf_d *d)
441 {
442 
443 	BPFD_LOCK_ASSERT(d);
444 
445 	switch (d->bd_bufmode) {
446 	case BPF_BUFMODE_ZBUF:
447 		return (bpf_zerocopy_canfreebuf(d));
448 	}
449 	return (0);
450 }
451 
452 /*
453  * Allow the buffer model to indicate that the current store buffer is
454  * immutable, regardless of the appearance of space.  Return (1) if the
455  * buffer is writable, and (0) if not.
456  */
457 static int
458 bpf_canwritebuf(struct bpf_d *d)
459 {
460 	BPFD_LOCK_ASSERT(d);
461 
462 	switch (d->bd_bufmode) {
463 	case BPF_BUFMODE_ZBUF:
464 		return (bpf_zerocopy_canwritebuf(d));
465 	}
466 	return (1);
467 }
468 
469 /*
470  * Notify buffer model that an attempt to write to the store buffer has
471  * resulted in a dropped packet, in which case the buffer may be considered
472  * full.
473  */
474 static void
475 bpf_buffull(struct bpf_d *d)
476 {
477 
478 	BPFD_LOCK_ASSERT(d);
479 
480 	switch (d->bd_bufmode) {
481 	case BPF_BUFMODE_ZBUF:
482 		bpf_zerocopy_buffull(d);
483 		break;
484 	}
485 }
486 
487 /*
488  * Notify the buffer model that a buffer has moved into the hold position.
489  */
490 void
491 bpf_bufheld(struct bpf_d *d)
492 {
493 
494 	BPFD_LOCK_ASSERT(d);
495 
496 	switch (d->bd_bufmode) {
497 	case BPF_BUFMODE_ZBUF:
498 		bpf_zerocopy_bufheld(d);
499 		break;
500 	}
501 }
502 
503 static void
504 bpf_free(struct bpf_d *d)
505 {
506 
507 	switch (d->bd_bufmode) {
508 	case BPF_BUFMODE_BUFFER:
509 		return (bpf_buffer_free(d));
510 
511 	case BPF_BUFMODE_ZBUF:
512 		return (bpf_zerocopy_free(d));
513 
514 	default:
515 		panic("bpf_buf_free");
516 	}
517 }
518 
519 static int
520 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
521 {
522 
523 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
524 		return (EOPNOTSUPP);
525 	return (bpf_buffer_uiomove(d, buf, len, uio));
526 }
527 
528 static int
529 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
530 {
531 
532 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
533 		return (EOPNOTSUPP);
534 	return (bpf_buffer_ioctl_sblen(d, i));
535 }
536 
537 static int
538 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
539 {
540 
541 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
542 		return (EOPNOTSUPP);
543 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
544 }
545 
546 static int
547 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
548 {
549 
550 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
551 		return (EOPNOTSUPP);
552 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
553 }
554 
555 static int
556 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
557 {
558 
559 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
560 		return (EOPNOTSUPP);
561 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
562 }
563 
564 /*
565  * General BPF functions.
566  */
567 static int
568 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
569     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
570 {
571 	const struct ieee80211_bpf_params *p;
572 	struct ether_header *eh;
573 	struct mbuf *m;
574 	int error;
575 	int len;
576 	int hlen;
577 	int slen;
578 
579 	/*
580 	 * Build a sockaddr based on the data link layer type.
581 	 * We do this at this level because the ethernet header
582 	 * is copied directly into the data field of the sockaddr.
583 	 * In the case of SLIP, there is no header and the packet
584 	 * is forwarded as is.
585 	 * Also, we are careful to leave room at the front of the mbuf
586 	 * for the link level header.
587 	 */
588 	switch (linktype) {
589 	case DLT_SLIP:
590 		sockp->sa_family = AF_INET;
591 		hlen = 0;
592 		break;
593 
594 	case DLT_EN10MB:
595 		sockp->sa_family = AF_UNSPEC;
596 		/* XXX Would MAXLINKHDR be better? */
597 		hlen = ETHER_HDR_LEN;
598 		break;
599 
600 	case DLT_FDDI:
601 		sockp->sa_family = AF_IMPLINK;
602 		hlen = 0;
603 		break;
604 
605 	case DLT_RAW:
606 		sockp->sa_family = AF_UNSPEC;
607 		hlen = 0;
608 		break;
609 
610 	case DLT_NULL:
611 		/*
612 		 * null interface types require a 4 byte pseudo header which
613 		 * corresponds to the address family of the packet.
614 		 */
615 		sockp->sa_family = AF_UNSPEC;
616 		hlen = 4;
617 		break;
618 
619 	case DLT_ATM_RFC1483:
620 		/*
621 		 * en atm driver requires 4-byte atm pseudo header.
622 		 * though it isn't standard, vpi:vci needs to be
623 		 * specified anyway.
624 		 */
625 		sockp->sa_family = AF_UNSPEC;
626 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
627 		break;
628 
629 	case DLT_PPP:
630 		sockp->sa_family = AF_UNSPEC;
631 		hlen = 4;	/* This should match PPP_HDRLEN */
632 		break;
633 
634 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
635 		sockp->sa_family = AF_IEEE80211;
636 		hlen = 0;
637 		break;
638 
639 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
640 		sockp->sa_family = AF_IEEE80211;
641 		sockp->sa_len = 12;	/* XXX != 0 */
642 		hlen = sizeof(struct ieee80211_bpf_params);
643 		break;
644 
645 	default:
646 		return (EIO);
647 	}
648 
649 	len = uio->uio_resid;
650 	if (len < hlen || len - hlen > ifp->if_mtu)
651 		return (EMSGSIZE);
652 
653 	/* Allocate a mbuf for our write, since m_get2 fails if len >= to MJUMPAGESIZE, use m_getjcl for bigger buffers */
654 	m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
655 	if (m == NULL)
656 		return (EIO);
657 	m->m_pkthdr.len = m->m_len = len;
658 	*mp = m;
659 
660 	error = uiomove(mtod(m, u_char *), len, uio);
661 	if (error)
662 		goto bad;
663 
664 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
665 	if (slen == 0) {
666 		error = EPERM;
667 		goto bad;
668 	}
669 
670 	/* Check for multicast destination */
671 	switch (linktype) {
672 	case DLT_EN10MB:
673 		eh = mtod(m, struct ether_header *);
674 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
675 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
676 			    ETHER_ADDR_LEN) == 0)
677 				m->m_flags |= M_BCAST;
678 			else
679 				m->m_flags |= M_MCAST;
680 		}
681 		if (d->bd_hdrcmplt == 0) {
682 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
683 			    sizeof(eh->ether_shost));
684 		}
685 		break;
686 	}
687 
688 	/*
689 	 * Make room for link header, and copy it to sockaddr
690 	 */
691 	if (hlen != 0) {
692 		if (sockp->sa_family == AF_IEEE80211) {
693 			/*
694 			 * Collect true length from the parameter header
695 			 * NB: sockp is known to be zero'd so if we do a
696 			 *     short copy unspecified parameters will be
697 			 *     zero.
698 			 * NB: packet may not be aligned after stripping
699 			 *     bpf params
700 			 * XXX check ibp_vers
701 			 */
702 			p = mtod(m, const struct ieee80211_bpf_params *);
703 			hlen = p->ibp_len;
704 			if (hlen > sizeof(sockp->sa_data)) {
705 				error = EINVAL;
706 				goto bad;
707 			}
708 		}
709 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
710 	}
711 	*hdrlen = hlen;
712 
713 	return (0);
714 bad:
715 	m_freem(m);
716 	return (error);
717 }
718 
719 /*
720  * Attach descriptor to the bpf interface, i.e. make d listen on bp,
721  * then reset its buffers and counters with reset_d().
722  */
723 static void
724 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
725 {
726 	int op_w;
727 
728 	BPF_LOCK_ASSERT();
729 
730 	/*
731 	 * Save sysctl value to protect from sysctl change
732 	 * between reads
733 	 */
734 	op_w = V_bpf_optimize_writers || d->bd_writer;
735 
736 	if (d->bd_bif != NULL)
737 		bpf_detachd_locked(d, false);
738 	/*
739 	 * Point d at bp, and add d to the interface's list.
740 	 * Since there are many applications using BPF for
741 	 * sending raw packets only (dhcpd, cdpd are good examples)
742 	 * we can delay adding d to the list of active listeners until
743 	 * some filter is configured.
744 	 */
745 
746 	BPFD_LOCK(d);
747 	/*
748 	 * Hold reference to bpif while descriptor uses this interface.
749 	 */
750 	bpfif_ref(bp);
751 	d->bd_bif = bp;
752 	if (op_w != 0) {
753 		/* Add to writers-only list */
754 		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
755 		/*
756 		 * We decrement bd_writer on every filter set operation.
757 		 * First BIOCSETF is done by pcap_open_live() to set up
758 		 * snap length. After that appliation usually sets its own
759 		 * filter.
760 		 */
761 		d->bd_writer = 2;
762 	} else
763 		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
764 
765 	reset_d(d);
766 
767 	/* Trigger EVFILT_WRITE events. */
768 	bpf_wakeup(d);
769 
770 	BPFD_UNLOCK(d);
771 	bpf_bpfd_cnt++;
772 
773 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
774 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
775 
776 	if (op_w == 0)
777 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
778 }
779 
780 /*
781  * Check if we need to upgrade our descriptor @d from write-only mode.
782  */
783 static int
784 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
785     int flen)
786 {
787 	int is_snap, need_upgrade;
788 
789 	/*
790 	 * Check if we've already upgraded or new filter is empty.
791 	 */
792 	if (d->bd_writer == 0 || fcode == NULL)
793 		return (0);
794 
795 	need_upgrade = 0;
796 
797 	/*
798 	 * Check if cmd looks like snaplen setting from
799 	 * pcap_bpf.c:pcap_open_live().
800 	 * Note we're not checking .k value here:
801 	 * while pcap_open_live() definitely sets to non-zero value,
802 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
803 	 * do not consider upgrading immediately
804 	 */
805 	if (cmd == BIOCSETF && flen == 1 &&
806 	    fcode[0].code == (BPF_RET | BPF_K))
807 		is_snap = 1;
808 	else
809 		is_snap = 0;
810 
811 	if (is_snap == 0) {
812 		/*
813 		 * We're setting first filter and it doesn't look like
814 		 * setting snaplen.  We're probably using bpf directly.
815 		 * Upgrade immediately.
816 		 */
817 		need_upgrade = 1;
818 	} else {
819 		/*
820 		 * Do not require upgrade by first BIOCSETF
821 		 * (used to set snaplen) by pcap_open_live().
822 		 */
823 
824 		if (--d->bd_writer == 0) {
825 			/*
826 			 * First snaplen filter has already
827 			 * been set. This is probably catch-all
828 			 * filter
829 			 */
830 			need_upgrade = 1;
831 		}
832 	}
833 
834 	CTR5(KTR_NET,
835 	    "%s: filter function set by pid %d, "
836 	    "bd_writer counter %d, snap %d upgrade %d",
837 	    __func__, d->bd_pid, d->bd_writer,
838 	    is_snap, need_upgrade);
839 
840 	return (need_upgrade);
841 }
842 
843 /*
844  * Detach a file from its interface.
845  */
846 static void
847 bpf_detachd(struct bpf_d *d)
848 {
849 	BPF_LOCK();
850 	bpf_detachd_locked(d, false);
851 	BPF_UNLOCK();
852 }
853 
854 static void
855 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
856 {
857 	struct bpf_if *bp;
858 	struct ifnet *ifp;
859 	int error;
860 
861 	BPF_LOCK_ASSERT();
862 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
863 
864 	/* Check if descriptor is attached */
865 	if ((bp = d->bd_bif) == NULL)
866 		return;
867 
868 	BPFD_LOCK(d);
869 	/* Remove d from the interface's descriptor list. */
870 	CK_LIST_REMOVE(d, bd_next);
871 	/* Save bd_writer value */
872 	error = d->bd_writer;
873 	ifp = bp->bif_ifp;
874 	d->bd_bif = NULL;
875 	if (detached_ifp) {
876 		/*
877 		 * Notify descriptor as it's detached, so that any
878 		 * sleepers wake up and get ENXIO.
879 		 */
880 		bpf_wakeup(d);
881 	}
882 	BPFD_UNLOCK(d);
883 	bpf_bpfd_cnt--;
884 
885 	/* Call event handler iff d is attached */
886 	if (error == 0)
887 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
888 
889 	/*
890 	 * Check if this descriptor had requested promiscuous mode.
891 	 * If so and ifnet is not detached, turn it off.
892 	 */
893 	if (d->bd_promisc && !detached_ifp) {
894 		d->bd_promisc = 0;
895 		CURVNET_SET(ifp->if_vnet);
896 		error = ifpromisc(ifp, 0);
897 		CURVNET_RESTORE();
898 		if (error != 0 && error != ENXIO) {
899 			/*
900 			 * ENXIO can happen if a pccard is unplugged
901 			 * Something is really wrong if we were able to put
902 			 * the driver into promiscuous mode, but can't
903 			 * take it out.
904 			 */
905 			if_printf(bp->bif_ifp,
906 				"bpf_detach: ifpromisc failed (%d)\n", error);
907 		}
908 	}
909 	bpfif_rele(bp);
910 }
911 
912 /*
913  * Close the descriptor by detaching it from its interface,
914  * deallocating its buffers, and marking it free.
915  */
916 static void
917 bpf_dtor(void *data)
918 {
919 	struct bpf_d *d = data;
920 
921 	BPFD_LOCK(d);
922 	if (d->bd_state == BPF_WAITING)
923 		callout_stop(&d->bd_callout);
924 	d->bd_state = BPF_IDLE;
925 	BPFD_UNLOCK(d);
926 	funsetown(&d->bd_sigio);
927 	bpf_detachd(d);
928 #ifdef MAC
929 	mac_bpfdesc_destroy(d);
930 #endif /* MAC */
931 	seldrain(&d->bd_sel);
932 	knlist_destroy(&d->bd_sel.si_note);
933 	callout_drain(&d->bd_callout);
934 	bpfd_rele(d);
935 }
936 
937 /*
938  * Open ethernet device.  Returns ENXIO for illegal minor device number,
939  * EBUSY if file is open by another process.
940  */
941 /* ARGSUSED */
942 static	int
943 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
944 {
945 	struct bpf_d *d;
946 	int error;
947 
948 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
949 	error = devfs_set_cdevpriv(d, bpf_dtor);
950 	if (error != 0) {
951 		free(d, M_BPF);
952 		return (error);
953 	}
954 
955 	/* Setup counters */
956 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
957 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
958 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
959 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
960 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
961 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
962 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
963 
964 	/*
965 	 * For historical reasons, perform a one-time initialization call to
966 	 * the buffer routines, even though we're not yet committed to a
967 	 * particular buffer method.
968 	 */
969 	bpf_buffer_init(d);
970 	if ((flags & FREAD) == 0)
971 		d->bd_writer = 2;
972 	d->bd_hbuf_in_use = 0;
973 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
974 	d->bd_sig = SIGIO;
975 	d->bd_direction = BPF_D_INOUT;
976 	d->bd_refcnt = 1;
977 	BPF_PID_REFRESH(d, td);
978 #ifdef MAC
979 	mac_bpfdesc_init(d);
980 	mac_bpfdesc_create(td->td_ucred, d);
981 #endif
982 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
983 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
984 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
985 
986 	/* Disable VLAN pcp tagging. */
987 	d->bd_pcp = 0;
988 
989 	return (0);
990 }
991 
992 /*
993  *  bpfread - read next chunk of packets from buffers
994  */
995 static	int
996 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
997 {
998 	struct bpf_d *d;
999 	int error;
1000 	int non_block;
1001 	int timed_out;
1002 
1003 	error = devfs_get_cdevpriv((void **)&d);
1004 	if (error != 0)
1005 		return (error);
1006 
1007 	/*
1008 	 * Restrict application to use a buffer the same size as
1009 	 * as kernel buffers.
1010 	 */
1011 	if (uio->uio_resid != d->bd_bufsize)
1012 		return (EINVAL);
1013 
1014 	non_block = ((ioflag & O_NONBLOCK) != 0);
1015 
1016 	BPFD_LOCK(d);
1017 	BPF_PID_REFRESH_CUR(d);
1018 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1019 		BPFD_UNLOCK(d);
1020 		return (EOPNOTSUPP);
1021 	}
1022 	if (d->bd_state == BPF_WAITING)
1023 		callout_stop(&d->bd_callout);
1024 	timed_out = (d->bd_state == BPF_TIMED_OUT);
1025 	d->bd_state = BPF_IDLE;
1026 	while (d->bd_hbuf_in_use) {
1027 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1028 		    PRINET|PCATCH, "bd_hbuf", 0);
1029 		if (error != 0) {
1030 			BPFD_UNLOCK(d);
1031 			return (error);
1032 		}
1033 	}
1034 	/*
1035 	 * If the hold buffer is empty, then do a timed sleep, which
1036 	 * ends when the timeout expires or when enough packets
1037 	 * have arrived to fill the store buffer.
1038 	 */
1039 	while (d->bd_hbuf == NULL) {
1040 		if (d->bd_slen != 0) {
1041 			/*
1042 			 * A packet(s) either arrived since the previous
1043 			 * read or arrived while we were asleep.
1044 			 */
1045 			if (d->bd_immediate || non_block || timed_out) {
1046 				/*
1047 				 * Rotate the buffers and return what's here
1048 				 * if we are in immediate mode, non-blocking
1049 				 * flag is set, or this descriptor timed out.
1050 				 */
1051 				ROTATE_BUFFERS(d);
1052 				break;
1053 			}
1054 		}
1055 
1056 		/*
1057 		 * No data is available, check to see if the bpf device
1058 		 * is still pointed at a real interface.  If not, return
1059 		 * ENXIO so that the userland process knows to rebind
1060 		 * it before using it again.
1061 		 */
1062 		if (d->bd_bif == NULL) {
1063 			BPFD_UNLOCK(d);
1064 			return (ENXIO);
1065 		}
1066 
1067 		if (non_block) {
1068 			BPFD_UNLOCK(d);
1069 			return (EWOULDBLOCK);
1070 		}
1071 		error = msleep(d, &d->bd_lock, PRINET|PCATCH,
1072 		     "bpf", d->bd_rtout);
1073 		if (error == EINTR || error == ERESTART) {
1074 			BPFD_UNLOCK(d);
1075 			return (error);
1076 		}
1077 		if (error == EWOULDBLOCK) {
1078 			/*
1079 			 * On a timeout, return what's in the buffer,
1080 			 * which may be nothing.  If there is something
1081 			 * in the store buffer, we can rotate the buffers.
1082 			 */
1083 			if (d->bd_hbuf)
1084 				/*
1085 				 * We filled up the buffer in between
1086 				 * getting the timeout and arriving
1087 				 * here, so we don't need to rotate.
1088 				 */
1089 				break;
1090 
1091 			if (d->bd_slen == 0) {
1092 				BPFD_UNLOCK(d);
1093 				return (0);
1094 			}
1095 			ROTATE_BUFFERS(d);
1096 			break;
1097 		}
1098 	}
1099 	/*
1100 	 * At this point, we know we have something in the hold slot.
1101 	 */
1102 	d->bd_hbuf_in_use = 1;
1103 	BPFD_UNLOCK(d);
1104 
1105 	/*
1106 	 * Move data from hold buffer into user space.
1107 	 * We know the entire buffer is transferred since
1108 	 * we checked above that the read buffer is bpf_bufsize bytes.
1109   	 *
1110 	 * We do not have to worry about simultaneous reads because
1111 	 * we waited for sole access to the hold buffer above.
1112 	 */
1113 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1114 
1115 	BPFD_LOCK(d);
1116 	KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1117 	d->bd_fbuf = d->bd_hbuf;
1118 	d->bd_hbuf = NULL;
1119 	d->bd_hlen = 0;
1120 	bpf_buf_reclaimed(d);
1121 	d->bd_hbuf_in_use = 0;
1122 	wakeup(&d->bd_hbuf_in_use);
1123 	BPFD_UNLOCK(d);
1124 
1125 	return (error);
1126 }
1127 
1128 /*
1129  * If there are processes sleeping on this descriptor, wake them up.
1130  */
1131 static __inline void
1132 bpf_wakeup(struct bpf_d *d)
1133 {
1134 
1135 	BPFD_LOCK_ASSERT(d);
1136 	if (d->bd_state == BPF_WAITING) {
1137 		callout_stop(&d->bd_callout);
1138 		d->bd_state = BPF_IDLE;
1139 	}
1140 	wakeup(d);
1141 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1142 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1143 
1144 	selwakeuppri(&d->bd_sel, PRINET);
1145 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1146 }
1147 
1148 static void
1149 bpf_timed_out(void *arg)
1150 {
1151 	struct bpf_d *d = (struct bpf_d *)arg;
1152 
1153 	BPFD_LOCK_ASSERT(d);
1154 
1155 	if (callout_pending(&d->bd_callout) ||
1156 	    !callout_active(&d->bd_callout))
1157 		return;
1158 	if (d->bd_state == BPF_WAITING) {
1159 		d->bd_state = BPF_TIMED_OUT;
1160 		if (d->bd_slen != 0)
1161 			bpf_wakeup(d);
1162 	}
1163 }
1164 
1165 static int
1166 bpf_ready(struct bpf_d *d)
1167 {
1168 
1169 	BPFD_LOCK_ASSERT(d);
1170 
1171 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1172 		return (1);
1173 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1174 	    d->bd_slen != 0)
1175 		return (1);
1176 	return (0);
1177 }
1178 
1179 static int
1180 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1181 {
1182 	struct route ro;
1183 	struct sockaddr dst;
1184 	struct epoch_tracker et;
1185 	struct bpf_if *bp;
1186 	struct bpf_d *d;
1187 	struct ifnet *ifp;
1188 	struct mbuf *m, *mc;
1189 	int error, hlen;
1190 
1191 	error = devfs_get_cdevpriv((void **)&d);
1192 	if (error != 0)
1193 		return (error);
1194 
1195 	NET_EPOCH_ENTER(et);
1196 	BPFD_LOCK(d);
1197 	BPF_PID_REFRESH_CUR(d);
1198 	counter_u64_add(d->bd_wcount, 1);
1199 	if ((bp = d->bd_bif) == NULL) {
1200 		error = ENXIO;
1201 		goto out_locked;
1202 	}
1203 
1204 	ifp = bp->bif_ifp;
1205 	if ((ifp->if_flags & IFF_UP) == 0) {
1206 		error = ENETDOWN;
1207 		goto out_locked;
1208 	}
1209 
1210 	if (uio->uio_resid == 0)
1211 		goto out_locked;
1212 
1213 	bzero(&dst, sizeof(dst));
1214 	m = NULL;
1215 	hlen = 0;
1216 
1217 	/*
1218 	 * Take extra reference, unlock d and exit from epoch section,
1219 	 * since bpf_movein() can sleep.
1220 	 */
1221 	bpfd_ref(d);
1222 	NET_EPOCH_EXIT(et);
1223 	BPFD_UNLOCK(d);
1224 
1225 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1226 	    &m, &dst, &hlen, d);
1227 
1228 	if (error != 0) {
1229 		counter_u64_add(d->bd_wdcount, 1);
1230 		bpfd_rele(d);
1231 		return (error);
1232 	}
1233 
1234 	BPFD_LOCK(d);
1235 	/*
1236 	 * Check that descriptor is still attached to the interface.
1237 	 * This can happen on bpfdetach(). To avoid access to detached
1238 	 * ifnet, free mbuf and return ENXIO.
1239 	 */
1240 	if (d->bd_bif == NULL) {
1241 		counter_u64_add(d->bd_wdcount, 1);
1242 		BPFD_UNLOCK(d);
1243 		bpfd_rele(d);
1244 		m_freem(m);
1245 		return (ENXIO);
1246 	}
1247 	counter_u64_add(d->bd_wfcount, 1);
1248 	if (d->bd_hdrcmplt)
1249 		dst.sa_family = pseudo_AF_HDRCMPLT;
1250 
1251 	if (d->bd_feedback) {
1252 		mc = m_dup(m, M_NOWAIT);
1253 		if (mc != NULL)
1254 			mc->m_pkthdr.rcvif = ifp;
1255 		/* Set M_PROMISC for outgoing packets to be discarded. */
1256 		if (d->bd_direction == BPF_D_INOUT)
1257 			m->m_flags |= M_PROMISC;
1258 	} else
1259 		mc = NULL;
1260 
1261 	m->m_pkthdr.len -= hlen;
1262 	m->m_len -= hlen;
1263 	m->m_data += hlen;	/* XXX */
1264 
1265 	CURVNET_SET(ifp->if_vnet);
1266 #ifdef MAC
1267 	mac_bpfdesc_create_mbuf(d, m);
1268 	if (mc != NULL)
1269 		mac_bpfdesc_create_mbuf(d, mc);
1270 #endif
1271 
1272 	bzero(&ro, sizeof(ro));
1273 	if (hlen != 0) {
1274 		ro.ro_prepend = (u_char *)&dst.sa_data;
1275 		ro.ro_plen = hlen;
1276 		ro.ro_flags = RT_HAS_HEADER;
1277 	}
1278 
1279 	if (d->bd_pcp != 0)
1280 		vlan_set_pcp(m, d->bd_pcp);
1281 
1282 	/* Avoid possible recursion on BPFD_LOCK(). */
1283 	NET_EPOCH_ENTER(et);
1284 	BPFD_UNLOCK(d);
1285 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1286 	if (error)
1287 		counter_u64_add(d->bd_wdcount, 1);
1288 
1289 	if (mc != NULL) {
1290 		if (error == 0)
1291 			(*ifp->if_input)(ifp, mc);
1292 		else
1293 			m_freem(mc);
1294 	}
1295 	NET_EPOCH_EXIT(et);
1296 	CURVNET_RESTORE();
1297 	bpfd_rele(d);
1298 	return (error);
1299 
1300 out_locked:
1301 	counter_u64_add(d->bd_wdcount, 1);
1302 	NET_EPOCH_EXIT(et);
1303 	BPFD_UNLOCK(d);
1304 	return (error);
1305 }
1306 
1307 /*
1308  * Reset a descriptor by flushing its packet buffer and clearing the receive
1309  * and drop counts.  This is doable for kernel-only buffers, but with
1310  * zero-copy buffers, we can't write to (or rotate) buffers that are
1311  * currently owned by userspace.  It would be nice if we could encapsulate
1312  * this logic in the buffer code rather than here.
1313  */
1314 static void
1315 reset_d(struct bpf_d *d)
1316 {
1317 
1318 	BPFD_LOCK_ASSERT(d);
1319 
1320 	while (d->bd_hbuf_in_use)
1321 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1322 		    "bd_hbuf", 0);
1323 	if ((d->bd_hbuf != NULL) &&
1324 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1325 		/* Free the hold buffer. */
1326 		d->bd_fbuf = d->bd_hbuf;
1327 		d->bd_hbuf = NULL;
1328 		d->bd_hlen = 0;
1329 		bpf_buf_reclaimed(d);
1330 	}
1331 	if (bpf_canwritebuf(d))
1332 		d->bd_slen = 0;
1333 	counter_u64_zero(d->bd_rcount);
1334 	counter_u64_zero(d->bd_dcount);
1335 	counter_u64_zero(d->bd_fcount);
1336 	counter_u64_zero(d->bd_wcount);
1337 	counter_u64_zero(d->bd_wfcount);
1338 	counter_u64_zero(d->bd_wdcount);
1339 	counter_u64_zero(d->bd_zcopy);
1340 }
1341 
1342 /*
1343  *  FIONREAD		Check for read packet available.
1344  *  BIOCGBLEN		Get buffer len [for read()].
1345  *  BIOCSETF		Set read filter.
1346  *  BIOCSETFNR		Set read filter without resetting descriptor.
1347  *  BIOCSETWF		Set write filter.
1348  *  BIOCFLUSH		Flush read packet buffer.
1349  *  BIOCPROMISC		Put interface into promiscuous mode.
1350  *  BIOCGDLT		Get link layer type.
1351  *  BIOCGETIF		Get interface name.
1352  *  BIOCSETIF		Set interface.
1353  *  BIOCSRTIMEOUT	Set read timeout.
1354  *  BIOCGRTIMEOUT	Get read timeout.
1355  *  BIOCGSTATS		Get packet stats.
1356  *  BIOCIMMEDIATE	Set immediate mode.
1357  *  BIOCVERSION		Get filter language version.
1358  *  BIOCGHDRCMPLT	Get "header already complete" flag
1359  *  BIOCSHDRCMPLT	Set "header already complete" flag
1360  *  BIOCGDIRECTION	Get packet direction flag
1361  *  BIOCSDIRECTION	Set packet direction flag
1362  *  BIOCGTSTAMP		Get time stamp format and resolution.
1363  *  BIOCSTSTAMP		Set time stamp format and resolution.
1364  *  BIOCLOCK		Set "locked" flag
1365  *  BIOCFEEDBACK	Set packet feedback mode.
1366  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1367  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1368  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1369  *  BIOCSETBUFMODE	Set buffer mode.
1370  *  BIOCGETBUFMODE	Get current buffer mode.
1371  *  BIOCSETVLANPCP	Set VLAN PCP tag.
1372  */
1373 /* ARGSUSED */
1374 static	int
1375 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1376     struct thread *td)
1377 {
1378 	struct bpf_d *d;
1379 	int error;
1380 
1381 	error = devfs_get_cdevpriv((void **)&d);
1382 	if (error != 0)
1383 		return (error);
1384 
1385 	/*
1386 	 * Refresh PID associated with this descriptor.
1387 	 */
1388 	BPFD_LOCK(d);
1389 	BPF_PID_REFRESH(d, td);
1390 	if (d->bd_state == BPF_WAITING)
1391 		callout_stop(&d->bd_callout);
1392 	d->bd_state = BPF_IDLE;
1393 	BPFD_UNLOCK(d);
1394 
1395 	if (d->bd_locked == 1) {
1396 		switch (cmd) {
1397 		case BIOCGBLEN:
1398 		case BIOCFLUSH:
1399 		case BIOCGDLT:
1400 		case BIOCGDLTLIST:
1401 #ifdef COMPAT_FREEBSD32
1402 		case BIOCGDLTLIST32:
1403 #endif
1404 		case BIOCGETIF:
1405 		case BIOCGRTIMEOUT:
1406 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1407 		case BIOCGRTIMEOUT32:
1408 #endif
1409 		case BIOCGSTATS:
1410 		case BIOCVERSION:
1411 		case BIOCGRSIG:
1412 		case BIOCGHDRCMPLT:
1413 		case BIOCSTSTAMP:
1414 		case BIOCFEEDBACK:
1415 		case FIONREAD:
1416 		case BIOCLOCK:
1417 		case BIOCSRTIMEOUT:
1418 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1419 		case BIOCSRTIMEOUT32:
1420 #endif
1421 		case BIOCIMMEDIATE:
1422 		case TIOCGPGRP:
1423 		case BIOCROTZBUF:
1424 			break;
1425 		default:
1426 			return (EPERM);
1427 		}
1428 	}
1429 #ifdef COMPAT_FREEBSD32
1430 	/*
1431 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1432 	 * that it will get 32-bit packet headers.
1433 	 */
1434 	switch (cmd) {
1435 	case BIOCSETF32:
1436 	case BIOCSETFNR32:
1437 	case BIOCSETWF32:
1438 	case BIOCGDLTLIST32:
1439 	case BIOCGRTIMEOUT32:
1440 	case BIOCSRTIMEOUT32:
1441 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1442 			BPFD_LOCK(d);
1443 			d->bd_compat32 = 1;
1444 			BPFD_UNLOCK(d);
1445 		}
1446 	}
1447 #endif
1448 
1449 	CURVNET_SET(TD_TO_VNET(td));
1450 	switch (cmd) {
1451 	default:
1452 		error = EINVAL;
1453 		break;
1454 
1455 	/*
1456 	 * Check for read packet available.
1457 	 */
1458 	case FIONREAD:
1459 		{
1460 			int n;
1461 
1462 			BPFD_LOCK(d);
1463 			n = d->bd_slen;
1464 			while (d->bd_hbuf_in_use)
1465 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1466 				    PRINET, "bd_hbuf", 0);
1467 			if (d->bd_hbuf)
1468 				n += d->bd_hlen;
1469 			BPFD_UNLOCK(d);
1470 
1471 			*(int *)addr = n;
1472 			break;
1473 		}
1474 
1475 	/*
1476 	 * Get buffer len [for read()].
1477 	 */
1478 	case BIOCGBLEN:
1479 		BPFD_LOCK(d);
1480 		*(u_int *)addr = d->bd_bufsize;
1481 		BPFD_UNLOCK(d);
1482 		break;
1483 
1484 	/*
1485 	 * Set buffer length.
1486 	 */
1487 	case BIOCSBLEN:
1488 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1489 		break;
1490 
1491 	/*
1492 	 * Set link layer read filter.
1493 	 */
1494 	case BIOCSETF:
1495 	case BIOCSETFNR:
1496 	case BIOCSETWF:
1497 #ifdef COMPAT_FREEBSD32
1498 	case BIOCSETF32:
1499 	case BIOCSETFNR32:
1500 	case BIOCSETWF32:
1501 #endif
1502 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1503 		break;
1504 
1505 	/*
1506 	 * Flush read packet buffer.
1507 	 */
1508 	case BIOCFLUSH:
1509 		BPFD_LOCK(d);
1510 		reset_d(d);
1511 		BPFD_UNLOCK(d);
1512 		break;
1513 
1514 	/*
1515 	 * Put interface into promiscuous mode.
1516 	 */
1517 	case BIOCPROMISC:
1518 		if (d->bd_bif == NULL) {
1519 			/*
1520 			 * No interface attached yet.
1521 			 */
1522 			error = EINVAL;
1523 			break;
1524 		}
1525 		if (d->bd_promisc == 0) {
1526 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1527 			if (error == 0)
1528 				d->bd_promisc = 1;
1529 		}
1530 		break;
1531 
1532 	/*
1533 	 * Get current data link type.
1534 	 */
1535 	case BIOCGDLT:
1536 		BPF_LOCK();
1537 		if (d->bd_bif == NULL)
1538 			error = EINVAL;
1539 		else
1540 			*(u_int *)addr = d->bd_bif->bif_dlt;
1541 		BPF_UNLOCK();
1542 		break;
1543 
1544 	/*
1545 	 * Get a list of supported data link types.
1546 	 */
1547 #ifdef COMPAT_FREEBSD32
1548 	case BIOCGDLTLIST32:
1549 		{
1550 			struct bpf_dltlist32 *list32;
1551 			struct bpf_dltlist dltlist;
1552 
1553 			list32 = (struct bpf_dltlist32 *)addr;
1554 			dltlist.bfl_len = list32->bfl_len;
1555 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1556 			BPF_LOCK();
1557 			if (d->bd_bif == NULL)
1558 				error = EINVAL;
1559 			else {
1560 				error = bpf_getdltlist(d, &dltlist);
1561 				if (error == 0)
1562 					list32->bfl_len = dltlist.bfl_len;
1563 			}
1564 			BPF_UNLOCK();
1565 			break;
1566 		}
1567 #endif
1568 
1569 	case BIOCGDLTLIST:
1570 		BPF_LOCK();
1571 		if (d->bd_bif == NULL)
1572 			error = EINVAL;
1573 		else
1574 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1575 		BPF_UNLOCK();
1576 		break;
1577 
1578 	/*
1579 	 * Set data link type.
1580 	 */
1581 	case BIOCSDLT:
1582 		BPF_LOCK();
1583 		if (d->bd_bif == NULL)
1584 			error = EINVAL;
1585 		else
1586 			error = bpf_setdlt(d, *(u_int *)addr);
1587 		BPF_UNLOCK();
1588 		break;
1589 
1590 	/*
1591 	 * Get interface name.
1592 	 */
1593 	case BIOCGETIF:
1594 		BPF_LOCK();
1595 		if (d->bd_bif == NULL)
1596 			error = EINVAL;
1597 		else {
1598 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1599 			struct ifreq *const ifr = (struct ifreq *)addr;
1600 
1601 			strlcpy(ifr->ifr_name, ifp->if_xname,
1602 			    sizeof(ifr->ifr_name));
1603 		}
1604 		BPF_UNLOCK();
1605 		break;
1606 
1607 	/*
1608 	 * Set interface.
1609 	 */
1610 	case BIOCSETIF:
1611 		{
1612 			int alloc_buf, size;
1613 
1614 			/*
1615 			 * Behavior here depends on the buffering model.  If
1616 			 * we're using kernel memory buffers, then we can
1617 			 * allocate them here.  If we're using zero-copy,
1618 			 * then the user process must have registered buffers
1619 			 * by the time we get here.
1620 			 */
1621 			alloc_buf = 0;
1622 			BPFD_LOCK(d);
1623 			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1624 			    d->bd_sbuf == NULL)
1625 				alloc_buf = 1;
1626 			BPFD_UNLOCK(d);
1627 			if (alloc_buf) {
1628 				size = d->bd_bufsize;
1629 				error = bpf_buffer_ioctl_sblen(d, &size);
1630 				if (error != 0)
1631 					break;
1632 			}
1633 			BPF_LOCK();
1634 			error = bpf_setif(d, (struct ifreq *)addr);
1635 			BPF_UNLOCK();
1636 			break;
1637 		}
1638 
1639 	/*
1640 	 * Set read timeout.
1641 	 */
1642 	case BIOCSRTIMEOUT:
1643 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1644 	case BIOCSRTIMEOUT32:
1645 #endif
1646 		{
1647 			struct timeval *tv = (struct timeval *)addr;
1648 #if defined(COMPAT_FREEBSD32) && !defined(__mips__)
1649 			struct timeval32 *tv32;
1650 			struct timeval tv64;
1651 
1652 			if (cmd == BIOCSRTIMEOUT32) {
1653 				tv32 = (struct timeval32 *)addr;
1654 				tv = &tv64;
1655 				tv->tv_sec = tv32->tv_sec;
1656 				tv->tv_usec = tv32->tv_usec;
1657 			} else
1658 #endif
1659 				tv = (struct timeval *)addr;
1660 
1661 			/*
1662 			 * Subtract 1 tick from tvtohz() since this isn't
1663 			 * a one-shot timer.
1664 			 */
1665 			if ((error = itimerfix(tv)) == 0)
1666 				d->bd_rtout = tvtohz(tv) - 1;
1667 			break;
1668 		}
1669 
1670 	/*
1671 	 * Get read timeout.
1672 	 */
1673 	case BIOCGRTIMEOUT:
1674 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1675 	case BIOCGRTIMEOUT32:
1676 #endif
1677 		{
1678 			struct timeval *tv;
1679 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1680 			struct timeval32 *tv32;
1681 			struct timeval tv64;
1682 
1683 			if (cmd == BIOCGRTIMEOUT32)
1684 				tv = &tv64;
1685 			else
1686 #endif
1687 				tv = (struct timeval *)addr;
1688 
1689 			tv->tv_sec = d->bd_rtout / hz;
1690 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1691 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1692 			if (cmd == BIOCGRTIMEOUT32) {
1693 				tv32 = (struct timeval32 *)addr;
1694 				tv32->tv_sec = tv->tv_sec;
1695 				tv32->tv_usec = tv->tv_usec;
1696 			}
1697 #endif
1698 
1699 			break;
1700 		}
1701 
1702 	/*
1703 	 * Get packet stats.
1704 	 */
1705 	case BIOCGSTATS:
1706 		{
1707 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1708 
1709 			/* XXXCSJP overflow */
1710 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1711 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1712 			break;
1713 		}
1714 
1715 	/*
1716 	 * Set immediate mode.
1717 	 */
1718 	case BIOCIMMEDIATE:
1719 		BPFD_LOCK(d);
1720 		d->bd_immediate = *(u_int *)addr;
1721 		BPFD_UNLOCK(d);
1722 		break;
1723 
1724 	case BIOCVERSION:
1725 		{
1726 			struct bpf_version *bv = (struct bpf_version *)addr;
1727 
1728 			bv->bv_major = BPF_MAJOR_VERSION;
1729 			bv->bv_minor = BPF_MINOR_VERSION;
1730 			break;
1731 		}
1732 
1733 	/*
1734 	 * Get "header already complete" flag
1735 	 */
1736 	case BIOCGHDRCMPLT:
1737 		BPFD_LOCK(d);
1738 		*(u_int *)addr = d->bd_hdrcmplt;
1739 		BPFD_UNLOCK(d);
1740 		break;
1741 
1742 	/*
1743 	 * Set "header already complete" flag
1744 	 */
1745 	case BIOCSHDRCMPLT:
1746 		BPFD_LOCK(d);
1747 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1748 		BPFD_UNLOCK(d);
1749 		break;
1750 
1751 	/*
1752 	 * Get packet direction flag
1753 	 */
1754 	case BIOCGDIRECTION:
1755 		BPFD_LOCK(d);
1756 		*(u_int *)addr = d->bd_direction;
1757 		BPFD_UNLOCK(d);
1758 		break;
1759 
1760 	/*
1761 	 * Set packet direction flag
1762 	 */
1763 	case BIOCSDIRECTION:
1764 		{
1765 			u_int	direction;
1766 
1767 			direction = *(u_int *)addr;
1768 			switch (direction) {
1769 			case BPF_D_IN:
1770 			case BPF_D_INOUT:
1771 			case BPF_D_OUT:
1772 				BPFD_LOCK(d);
1773 				d->bd_direction = direction;
1774 				BPFD_UNLOCK(d);
1775 				break;
1776 			default:
1777 				error = EINVAL;
1778 			}
1779 		}
1780 		break;
1781 
1782 	/*
1783 	 * Get packet timestamp format and resolution.
1784 	 */
1785 	case BIOCGTSTAMP:
1786 		BPFD_LOCK(d);
1787 		*(u_int *)addr = d->bd_tstamp;
1788 		BPFD_UNLOCK(d);
1789 		break;
1790 
1791 	/*
1792 	 * Set packet timestamp format and resolution.
1793 	 */
1794 	case BIOCSTSTAMP:
1795 		{
1796 			u_int	func;
1797 
1798 			func = *(u_int *)addr;
1799 			if (BPF_T_VALID(func))
1800 				d->bd_tstamp = func;
1801 			else
1802 				error = EINVAL;
1803 		}
1804 		break;
1805 
1806 	case BIOCFEEDBACK:
1807 		BPFD_LOCK(d);
1808 		d->bd_feedback = *(u_int *)addr;
1809 		BPFD_UNLOCK(d);
1810 		break;
1811 
1812 	case BIOCLOCK:
1813 		BPFD_LOCK(d);
1814 		d->bd_locked = 1;
1815 		BPFD_UNLOCK(d);
1816 		break;
1817 
1818 	case FIONBIO:		/* Non-blocking I/O */
1819 		break;
1820 
1821 	case FIOASYNC:		/* Send signal on receive packets */
1822 		BPFD_LOCK(d);
1823 		d->bd_async = *(int *)addr;
1824 		BPFD_UNLOCK(d);
1825 		break;
1826 
1827 	case FIOSETOWN:
1828 		/*
1829 		 * XXX: Add some sort of locking here?
1830 		 * fsetown() can sleep.
1831 		 */
1832 		error = fsetown(*(int *)addr, &d->bd_sigio);
1833 		break;
1834 
1835 	case FIOGETOWN:
1836 		BPFD_LOCK(d);
1837 		*(int *)addr = fgetown(&d->bd_sigio);
1838 		BPFD_UNLOCK(d);
1839 		break;
1840 
1841 	/* This is deprecated, FIOSETOWN should be used instead. */
1842 	case TIOCSPGRP:
1843 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1844 		break;
1845 
1846 	/* This is deprecated, FIOGETOWN should be used instead. */
1847 	case TIOCGPGRP:
1848 		*(int *)addr = -fgetown(&d->bd_sigio);
1849 		break;
1850 
1851 	case BIOCSRSIG:		/* Set receive signal */
1852 		{
1853 			u_int sig;
1854 
1855 			sig = *(u_int *)addr;
1856 
1857 			if (sig >= NSIG)
1858 				error = EINVAL;
1859 			else {
1860 				BPFD_LOCK(d);
1861 				d->bd_sig = sig;
1862 				BPFD_UNLOCK(d);
1863 			}
1864 			break;
1865 		}
1866 	case BIOCGRSIG:
1867 		BPFD_LOCK(d);
1868 		*(u_int *)addr = d->bd_sig;
1869 		BPFD_UNLOCK(d);
1870 		break;
1871 
1872 	case BIOCGETBUFMODE:
1873 		BPFD_LOCK(d);
1874 		*(u_int *)addr = d->bd_bufmode;
1875 		BPFD_UNLOCK(d);
1876 		break;
1877 
1878 	case BIOCSETBUFMODE:
1879 		/*
1880 		 * Allow the buffering mode to be changed as long as we
1881 		 * haven't yet committed to a particular mode.  Our
1882 		 * definition of commitment, for now, is whether or not a
1883 		 * buffer has been allocated or an interface attached, since
1884 		 * that's the point where things get tricky.
1885 		 */
1886 		switch (*(u_int *)addr) {
1887 		case BPF_BUFMODE_BUFFER:
1888 			break;
1889 
1890 		case BPF_BUFMODE_ZBUF:
1891 			if (bpf_zerocopy_enable)
1892 				break;
1893 			/* FALLSTHROUGH */
1894 
1895 		default:
1896 			CURVNET_RESTORE();
1897 			return (EINVAL);
1898 		}
1899 
1900 		BPFD_LOCK(d);
1901 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1902 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1903 			BPFD_UNLOCK(d);
1904 			CURVNET_RESTORE();
1905 			return (EBUSY);
1906 		}
1907 		d->bd_bufmode = *(u_int *)addr;
1908 		BPFD_UNLOCK(d);
1909 		break;
1910 
1911 	case BIOCGETZMAX:
1912 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1913 		break;
1914 
1915 	case BIOCSETZBUF:
1916 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1917 		break;
1918 
1919 	case BIOCROTZBUF:
1920 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1921 		break;
1922 
1923 	case BIOCSETVLANPCP:
1924 		{
1925 			u_int pcp;
1926 
1927 			pcp = *(u_int *)addr;
1928 			if (pcp > BPF_PRIO_MAX || pcp < 0) {
1929 				error = EINVAL;
1930 				break;
1931 			}
1932 			d->bd_pcp = pcp;
1933 			break;
1934 		}
1935 	}
1936 	CURVNET_RESTORE();
1937 	return (error);
1938 }
1939 
1940 /*
1941  * Set d's packet filter program to fp. If this file already has a filter,
1942  * free it and replace it. Returns EINVAL for bogus requests.
1943  *
1944  * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1945  * calls.
1946  */
1947 static int
1948 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1949 {
1950 #ifdef COMPAT_FREEBSD32
1951 	struct bpf_program fp_swab;
1952 	struct bpf_program32 *fp32;
1953 #endif
1954 	struct bpf_program_buffer *fcode;
1955 	struct bpf_insn *filter;
1956 #ifdef BPF_JITTER
1957 	bpf_jit_filter *jfunc;
1958 #endif
1959 	size_t size;
1960 	u_int flen;
1961 	bool track_event;
1962 
1963 #ifdef COMPAT_FREEBSD32
1964 	switch (cmd) {
1965 	case BIOCSETF32:
1966 	case BIOCSETWF32:
1967 	case BIOCSETFNR32:
1968 		fp32 = (struct bpf_program32 *)fp;
1969 		fp_swab.bf_len = fp32->bf_len;
1970 		fp_swab.bf_insns =
1971 		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1972 		fp = &fp_swab;
1973 		switch (cmd) {
1974 		case BIOCSETF32:
1975 			cmd = BIOCSETF;
1976 			break;
1977 		case BIOCSETWF32:
1978 			cmd = BIOCSETWF;
1979 			break;
1980 		}
1981 		break;
1982 	}
1983 #endif
1984 
1985 	filter = NULL;
1986 #ifdef BPF_JITTER
1987 	jfunc = NULL;
1988 #endif
1989 	/*
1990 	 * Check new filter validness before acquiring any locks.
1991 	 * Allocate memory for new filter, if needed.
1992 	 */
1993 	flen = fp->bf_len;
1994 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1995 		return (EINVAL);
1996 	size = flen * sizeof(*fp->bf_insns);
1997 	if (size > 0) {
1998 		/* We're setting up new filter. Copy and check actual data. */
1999 		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
2000 		filter = (struct bpf_insn *)fcode->buffer;
2001 		if (copyin(fp->bf_insns, filter, size) != 0 ||
2002 		    !bpf_validate(filter, flen)) {
2003 			free(fcode, M_BPF);
2004 			return (EINVAL);
2005 		}
2006 #ifdef BPF_JITTER
2007 		if (cmd != BIOCSETWF) {
2008 			/*
2009 			 * Filter is copied inside fcode and is
2010 			 * perfectly valid.
2011 			 */
2012 			jfunc = bpf_jitter(filter, flen);
2013 		}
2014 #endif
2015 	}
2016 
2017 	track_event = false;
2018 	fcode = NULL;
2019 
2020 	BPF_LOCK();
2021 	BPFD_LOCK(d);
2022 	/* Set up new filter. */
2023 	if (cmd == BIOCSETWF) {
2024 		if (d->bd_wfilter != NULL) {
2025 			fcode = __containerof((void *)d->bd_wfilter,
2026 			    struct bpf_program_buffer, buffer);
2027 #ifdef BPF_JITTER
2028 			fcode->func = NULL;
2029 #endif
2030 		}
2031 		d->bd_wfilter = filter;
2032 	} else {
2033 		if (d->bd_rfilter != NULL) {
2034 			fcode = __containerof((void *)d->bd_rfilter,
2035 			    struct bpf_program_buffer, buffer);
2036 #ifdef BPF_JITTER
2037 			fcode->func = d->bd_bfilter;
2038 #endif
2039 		}
2040 		d->bd_rfilter = filter;
2041 #ifdef BPF_JITTER
2042 		d->bd_bfilter = jfunc;
2043 #endif
2044 		if (cmd == BIOCSETF)
2045 			reset_d(d);
2046 
2047 		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2048 			/*
2049 			 * Filter can be set several times without
2050 			 * specifying interface. In this case just mark d
2051 			 * as reader.
2052 			 */
2053 			d->bd_writer = 0;
2054 			if (d->bd_bif != NULL) {
2055 				/*
2056 				 * Remove descriptor from writers-only list
2057 				 * and add it to active readers list.
2058 				 */
2059 				CK_LIST_REMOVE(d, bd_next);
2060 				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2061 				    d, bd_next);
2062 				CTR2(KTR_NET,
2063 				    "%s: upgrade required by pid %d",
2064 				    __func__, d->bd_pid);
2065 				track_event = true;
2066 			}
2067 		}
2068 	}
2069 	BPFD_UNLOCK(d);
2070 
2071 	if (fcode != NULL)
2072 		NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2073 
2074 	if (track_event)
2075 		EVENTHANDLER_INVOKE(bpf_track,
2076 		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2077 
2078 	BPF_UNLOCK();
2079 	return (0);
2080 }
2081 
2082 /*
2083  * Detach a file from its current interface (if attached at all) and attach
2084  * to the interface indicated by the name stored in ifr.
2085  * Return an errno or 0.
2086  */
2087 static int
2088 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2089 {
2090 	struct bpf_if *bp;
2091 	struct ifnet *theywant;
2092 
2093 	BPF_LOCK_ASSERT();
2094 
2095 	theywant = ifunit(ifr->ifr_name);
2096 	if (theywant == NULL || theywant->if_bpf == NULL)
2097 		return (ENXIO);
2098 
2099 	bp = theywant->if_bpf;
2100 	/*
2101 	 * At this point, we expect the buffer is already allocated.  If not,
2102 	 * return an error.
2103 	 */
2104 	switch (d->bd_bufmode) {
2105 	case BPF_BUFMODE_BUFFER:
2106 	case BPF_BUFMODE_ZBUF:
2107 		if (d->bd_sbuf == NULL)
2108 			return (EINVAL);
2109 		break;
2110 
2111 	default:
2112 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2113 	}
2114 	if (bp != d->bd_bif)
2115 		bpf_attachd(d, bp);
2116 	else {
2117 		BPFD_LOCK(d);
2118 		reset_d(d);
2119 		BPFD_UNLOCK(d);
2120 	}
2121 	return (0);
2122 }
2123 
2124 /*
2125  * Support for select() and poll() system calls
2126  *
2127  * Return true iff the specific operation will not block indefinitely.
2128  * Otherwise, return false but make a note that a selwakeup() must be done.
2129  */
2130 static int
2131 bpfpoll(struct cdev *dev, int events, struct thread *td)
2132 {
2133 	struct bpf_d *d;
2134 	int revents;
2135 
2136 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2137 		return (events &
2138 		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
2139 
2140 	/*
2141 	 * Refresh PID associated with this descriptor.
2142 	 */
2143 	revents = events & (POLLOUT | POLLWRNORM);
2144 	BPFD_LOCK(d);
2145 	BPF_PID_REFRESH(d, td);
2146 	if (events & (POLLIN | POLLRDNORM)) {
2147 		if (bpf_ready(d))
2148 			revents |= events & (POLLIN | POLLRDNORM);
2149 		else {
2150 			selrecord(td, &d->bd_sel);
2151 			/* Start the read timeout if necessary. */
2152 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2153 				callout_reset(&d->bd_callout, d->bd_rtout,
2154 				    bpf_timed_out, d);
2155 				d->bd_state = BPF_WAITING;
2156 			}
2157 		}
2158 	}
2159 	BPFD_UNLOCK(d);
2160 	return (revents);
2161 }
2162 
2163 /*
2164  * Support for kevent() system call.  Register EVFILT_READ filters and
2165  * reject all others.
2166  */
2167 int
2168 bpfkqfilter(struct cdev *dev, struct knote *kn)
2169 {
2170 	struct bpf_d *d;
2171 
2172 	if (devfs_get_cdevpriv((void **)&d) != 0)
2173 		return (1);
2174 
2175 	switch (kn->kn_filter) {
2176 	case EVFILT_READ:
2177 		kn->kn_fop = &bpfread_filtops;
2178 		break;
2179 
2180 	case EVFILT_WRITE:
2181 		kn->kn_fop = &bpfwrite_filtops;
2182 		break;
2183 
2184 	default:
2185 		return (1);
2186 	}
2187 
2188 	/*
2189 	 * Refresh PID associated with this descriptor.
2190 	 */
2191 	BPFD_LOCK(d);
2192 	BPF_PID_REFRESH_CUR(d);
2193 	kn->kn_hook = d;
2194 	knlist_add(&d->bd_sel.si_note, kn, 1);
2195 	BPFD_UNLOCK(d);
2196 
2197 	return (0);
2198 }
2199 
2200 static void
2201 filt_bpfdetach(struct knote *kn)
2202 {
2203 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2204 
2205 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2206 }
2207 
2208 static int
2209 filt_bpfread(struct knote *kn, long hint)
2210 {
2211 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2212 	int ready;
2213 
2214 	BPFD_LOCK_ASSERT(d);
2215 	ready = bpf_ready(d);
2216 	if (ready) {
2217 		kn->kn_data = d->bd_slen;
2218 		/*
2219 		 * Ignore the hold buffer if it is being copied to user space.
2220 		 */
2221 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2222 			kn->kn_data += d->bd_hlen;
2223 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2224 		callout_reset(&d->bd_callout, d->bd_rtout,
2225 		    bpf_timed_out, d);
2226 		d->bd_state = BPF_WAITING;
2227 	}
2228 
2229 	return (ready);
2230 }
2231 
2232 static int
2233 filt_bpfwrite(struct knote *kn, long hint)
2234 {
2235 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2236 
2237 	BPFD_LOCK_ASSERT(d);
2238 
2239 	if (d->bd_bif == NULL) {
2240 		kn->kn_data = 0;
2241 		return (0);
2242 	} else {
2243 		kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2244 		return (1);
2245 	}
2246 }
2247 
2248 #define	BPF_TSTAMP_NONE		0
2249 #define	BPF_TSTAMP_FAST		1
2250 #define	BPF_TSTAMP_NORMAL	2
2251 #define	BPF_TSTAMP_EXTERN	3
2252 
2253 static int
2254 bpf_ts_quality(int tstype)
2255 {
2256 
2257 	if (tstype == BPF_T_NONE)
2258 		return (BPF_TSTAMP_NONE);
2259 	if ((tstype & BPF_T_FAST) != 0)
2260 		return (BPF_TSTAMP_FAST);
2261 
2262 	return (BPF_TSTAMP_NORMAL);
2263 }
2264 
2265 static int
2266 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2267 {
2268 	struct m_tag *tag;
2269 	int quality;
2270 
2271 	quality = bpf_ts_quality(tstype);
2272 	if (quality == BPF_TSTAMP_NONE)
2273 		return (quality);
2274 
2275 	if (m != NULL) {
2276 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2277 		if (tag != NULL) {
2278 			*bt = *(struct bintime *)(tag + 1);
2279 			return (BPF_TSTAMP_EXTERN);
2280 		}
2281 	}
2282 	if (quality == BPF_TSTAMP_NORMAL)
2283 		binuptime(bt);
2284 	else
2285 		getbinuptime(bt);
2286 
2287 	return (quality);
2288 }
2289 
2290 /*
2291  * Incoming linkage from device drivers.  Process the packet pkt, of length
2292  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2293  * by each process' filter, and if accepted, stashed into the corresponding
2294  * buffer.
2295  */
2296 void
2297 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2298 {
2299 	struct epoch_tracker et;
2300 	struct bintime bt;
2301 	struct bpf_d *d;
2302 #ifdef BPF_JITTER
2303 	bpf_jit_filter *bf;
2304 #endif
2305 	u_int slen;
2306 	int gottime;
2307 
2308 	gottime = BPF_TSTAMP_NONE;
2309 	NET_EPOCH_ENTER(et);
2310 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2311 		counter_u64_add(d->bd_rcount, 1);
2312 		/*
2313 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2314 		 * is no way for the caller to indiciate to us whether this
2315 		 * packet is inbound or outbound. In the bpf_mtap() routines,
2316 		 * we use the interface pointers on the mbuf to figure it out.
2317 		 */
2318 #ifdef BPF_JITTER
2319 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2320 		if (bf != NULL)
2321 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2322 		else
2323 #endif
2324 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2325 		if (slen != 0) {
2326 			/*
2327 			 * Filter matches. Let's to acquire write lock.
2328 			 */
2329 			BPFD_LOCK(d);
2330 			counter_u64_add(d->bd_fcount, 1);
2331 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2332 				gottime = bpf_gettime(&bt, d->bd_tstamp,
2333 				    NULL);
2334 #ifdef MAC
2335 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2336 #endif
2337 				catchpacket(d, pkt, pktlen, slen,
2338 				    bpf_append_bytes, &bt);
2339 			BPFD_UNLOCK(d);
2340 		}
2341 	}
2342 	NET_EPOCH_EXIT(et);
2343 }
2344 
2345 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2346 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2347 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2348 
2349 /*
2350  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2351  * Locking model is explained in bpf_tap().
2352  */
2353 void
2354 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2355 {
2356 	struct epoch_tracker et;
2357 	struct bintime bt;
2358 	struct bpf_d *d;
2359 #ifdef BPF_JITTER
2360 	bpf_jit_filter *bf;
2361 #endif
2362 	u_int pktlen, slen;
2363 	int gottime;
2364 
2365 	/* Skip outgoing duplicate packets. */
2366 	if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2367 		m->m_flags &= ~M_PROMISC;
2368 		return;
2369 	}
2370 
2371 	pktlen = m_length(m, NULL);
2372 	gottime = BPF_TSTAMP_NONE;
2373 
2374 	NET_EPOCH_ENTER(et);
2375 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2376 		if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2377 			continue;
2378 		counter_u64_add(d->bd_rcount, 1);
2379 #ifdef BPF_JITTER
2380 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2381 		/* XXX We cannot handle multiple mbufs. */
2382 		if (bf != NULL && m->m_next == NULL)
2383 			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2384 			    pktlen);
2385 		else
2386 #endif
2387 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2388 		if (slen != 0) {
2389 			BPFD_LOCK(d);
2390 
2391 			counter_u64_add(d->bd_fcount, 1);
2392 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2393 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2394 #ifdef MAC
2395 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2396 #endif
2397 				catchpacket(d, (u_char *)m, pktlen, slen,
2398 				    bpf_append_mbuf, &bt);
2399 			BPFD_UNLOCK(d);
2400 		}
2401 	}
2402 	NET_EPOCH_EXIT(et);
2403 }
2404 
2405 /*
2406  * Incoming linkage from device drivers, when packet is in
2407  * an mbuf chain and to be prepended by a contiguous header.
2408  */
2409 void
2410 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2411 {
2412 	struct epoch_tracker et;
2413 	struct bintime bt;
2414 	struct mbuf mb;
2415 	struct bpf_d *d;
2416 	u_int pktlen, slen;
2417 	int gottime;
2418 
2419 	/* Skip outgoing duplicate packets. */
2420 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2421 		m->m_flags &= ~M_PROMISC;
2422 		return;
2423 	}
2424 
2425 	pktlen = m_length(m, NULL);
2426 	/*
2427 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2428 	 * Note that we cut corners here; we only setup what's
2429 	 * absolutely needed--this mbuf should never go anywhere else.
2430 	 */
2431 	mb.m_flags = 0;
2432 	mb.m_next = m;
2433 	mb.m_data = data;
2434 	mb.m_len = dlen;
2435 	pktlen += dlen;
2436 
2437 	gottime = BPF_TSTAMP_NONE;
2438 
2439 	NET_EPOCH_ENTER(et);
2440 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2441 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2442 			continue;
2443 		counter_u64_add(d->bd_rcount, 1);
2444 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2445 		if (slen != 0) {
2446 			BPFD_LOCK(d);
2447 
2448 			counter_u64_add(d->bd_fcount, 1);
2449 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2450 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2451 #ifdef MAC
2452 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2453 #endif
2454 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2455 				    bpf_append_mbuf, &bt);
2456 			BPFD_UNLOCK(d);
2457 		}
2458 	}
2459 	NET_EPOCH_EXIT(et);
2460 }
2461 
2462 #undef	BPF_CHECK_DIRECTION
2463 #undef	BPF_TSTAMP_NONE
2464 #undef	BPF_TSTAMP_FAST
2465 #undef	BPF_TSTAMP_NORMAL
2466 #undef	BPF_TSTAMP_EXTERN
2467 
2468 static int
2469 bpf_hdrlen(struct bpf_d *d)
2470 {
2471 	int hdrlen;
2472 
2473 	hdrlen = d->bd_bif->bif_hdrlen;
2474 #ifndef BURN_BRIDGES
2475 	if (d->bd_tstamp == BPF_T_NONE ||
2476 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2477 #ifdef COMPAT_FREEBSD32
2478 		if (d->bd_compat32)
2479 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2480 		else
2481 #endif
2482 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2483 	else
2484 #endif
2485 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2486 #ifdef COMPAT_FREEBSD32
2487 	if (d->bd_compat32)
2488 		hdrlen = BPF_WORDALIGN32(hdrlen);
2489 	else
2490 #endif
2491 		hdrlen = BPF_WORDALIGN(hdrlen);
2492 
2493 	return (hdrlen - d->bd_bif->bif_hdrlen);
2494 }
2495 
2496 static void
2497 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2498 {
2499 	struct bintime bt2, boottimebin;
2500 	struct timeval tsm;
2501 	struct timespec tsn;
2502 
2503 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2504 		bt2 = *bt;
2505 		getboottimebin(&boottimebin);
2506 		bintime_add(&bt2, &boottimebin);
2507 		bt = &bt2;
2508 	}
2509 	switch (BPF_T_FORMAT(tstype)) {
2510 	case BPF_T_MICROTIME:
2511 		bintime2timeval(bt, &tsm);
2512 		ts->bt_sec = tsm.tv_sec;
2513 		ts->bt_frac = tsm.tv_usec;
2514 		break;
2515 	case BPF_T_NANOTIME:
2516 		bintime2timespec(bt, &tsn);
2517 		ts->bt_sec = tsn.tv_sec;
2518 		ts->bt_frac = tsn.tv_nsec;
2519 		break;
2520 	case BPF_T_BINTIME:
2521 		ts->bt_sec = bt->sec;
2522 		ts->bt_frac = bt->frac;
2523 		break;
2524 	}
2525 }
2526 
2527 /*
2528  * Move the packet data from interface memory (pkt) into the
2529  * store buffer.  "cpfn" is the routine called to do the actual data
2530  * transfer.  bcopy is passed in to copy contiguous chunks, while
2531  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2532  * pkt is really an mbuf.
2533  */
2534 static void
2535 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2536     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2537     struct bintime *bt)
2538 {
2539 	struct bpf_xhdr hdr;
2540 #ifndef BURN_BRIDGES
2541 	struct bpf_hdr hdr_old;
2542 #ifdef COMPAT_FREEBSD32
2543 	struct bpf_hdr32 hdr32_old;
2544 #endif
2545 #endif
2546 	int caplen, curlen, hdrlen, totlen;
2547 	int do_wakeup = 0;
2548 	int do_timestamp;
2549 	int tstype;
2550 
2551 	BPFD_LOCK_ASSERT(d);
2552 	if (d->bd_bif == NULL) {
2553 		/* Descriptor was detached in concurrent thread */
2554 		counter_u64_add(d->bd_dcount, 1);
2555 		return;
2556 	}
2557 
2558 	/*
2559 	 * Detect whether user space has released a buffer back to us, and if
2560 	 * so, move it from being a hold buffer to a free buffer.  This may
2561 	 * not be the best place to do it (for example, we might only want to
2562 	 * run this check if we need the space), but for now it's a reliable
2563 	 * spot to do it.
2564 	 */
2565 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2566 		d->bd_fbuf = d->bd_hbuf;
2567 		d->bd_hbuf = NULL;
2568 		d->bd_hlen = 0;
2569 		bpf_buf_reclaimed(d);
2570 	}
2571 
2572 	/*
2573 	 * Figure out how many bytes to move.  If the packet is
2574 	 * greater or equal to the snapshot length, transfer that
2575 	 * much.  Otherwise, transfer the whole packet (unless
2576 	 * we hit the buffer size limit).
2577 	 */
2578 	hdrlen = bpf_hdrlen(d);
2579 	totlen = hdrlen + min(snaplen, pktlen);
2580 	if (totlen > d->bd_bufsize)
2581 		totlen = d->bd_bufsize;
2582 
2583 	/*
2584 	 * Round up the end of the previous packet to the next longword.
2585 	 *
2586 	 * Drop the packet if there's no room and no hope of room
2587 	 * If the packet would overflow the storage buffer or the storage
2588 	 * buffer is considered immutable by the buffer model, try to rotate
2589 	 * the buffer and wakeup pending processes.
2590 	 */
2591 #ifdef COMPAT_FREEBSD32
2592 	if (d->bd_compat32)
2593 		curlen = BPF_WORDALIGN32(d->bd_slen);
2594 	else
2595 #endif
2596 		curlen = BPF_WORDALIGN(d->bd_slen);
2597 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2598 		if (d->bd_fbuf == NULL) {
2599 			/*
2600 			 * There's no room in the store buffer, and no
2601 			 * prospect of room, so drop the packet.  Notify the
2602 			 * buffer model.
2603 			 */
2604 			bpf_buffull(d);
2605 			counter_u64_add(d->bd_dcount, 1);
2606 			return;
2607 		}
2608 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2609 		ROTATE_BUFFERS(d);
2610 		do_wakeup = 1;
2611 		curlen = 0;
2612 	} else if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT)
2613 		/*
2614 		 * Immediate mode is set, or the read timeout has already
2615 		 * expired during a select call.  A packet arrived, so the
2616 		 * reader should be woken up.
2617 		 */
2618 		do_wakeup = 1;
2619 	caplen = totlen - hdrlen;
2620 	tstype = d->bd_tstamp;
2621 	do_timestamp = tstype != BPF_T_NONE;
2622 #ifndef BURN_BRIDGES
2623 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2624 		struct bpf_ts ts;
2625 		if (do_timestamp)
2626 			bpf_bintime2ts(bt, &ts, tstype);
2627 #ifdef COMPAT_FREEBSD32
2628 		if (d->bd_compat32) {
2629 			bzero(&hdr32_old, sizeof(hdr32_old));
2630 			if (do_timestamp) {
2631 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2632 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2633 			}
2634 			hdr32_old.bh_datalen = pktlen;
2635 			hdr32_old.bh_hdrlen = hdrlen;
2636 			hdr32_old.bh_caplen = caplen;
2637 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2638 			    sizeof(hdr32_old));
2639 			goto copy;
2640 		}
2641 #endif
2642 		bzero(&hdr_old, sizeof(hdr_old));
2643 		if (do_timestamp) {
2644 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2645 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2646 		}
2647 		hdr_old.bh_datalen = pktlen;
2648 		hdr_old.bh_hdrlen = hdrlen;
2649 		hdr_old.bh_caplen = caplen;
2650 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2651 		    sizeof(hdr_old));
2652 		goto copy;
2653 	}
2654 #endif
2655 
2656 	/*
2657 	 * Append the bpf header.  Note we append the actual header size, but
2658 	 * move forward the length of the header plus padding.
2659 	 */
2660 	bzero(&hdr, sizeof(hdr));
2661 	if (do_timestamp)
2662 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2663 	hdr.bh_datalen = pktlen;
2664 	hdr.bh_hdrlen = hdrlen;
2665 	hdr.bh_caplen = caplen;
2666 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2667 
2668 	/*
2669 	 * Copy the packet data into the store buffer and update its length.
2670 	 */
2671 #ifndef BURN_BRIDGES
2672 copy:
2673 #endif
2674 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2675 	d->bd_slen = curlen + totlen;
2676 
2677 	if (do_wakeup)
2678 		bpf_wakeup(d);
2679 }
2680 
2681 /*
2682  * Free buffers currently in use by a descriptor.
2683  * Called on close.
2684  */
2685 static void
2686 bpfd_free(epoch_context_t ctx)
2687 {
2688 	struct bpf_d *d;
2689 	struct bpf_program_buffer *p;
2690 
2691 	/*
2692 	 * We don't need to lock out interrupts since this descriptor has
2693 	 * been detached from its interface and it yet hasn't been marked
2694 	 * free.
2695 	 */
2696 	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2697 	bpf_free(d);
2698 	if (d->bd_rfilter != NULL) {
2699 		p = __containerof((void *)d->bd_rfilter,
2700 		    struct bpf_program_buffer, buffer);
2701 #ifdef BPF_JITTER
2702 		p->func = d->bd_bfilter;
2703 #endif
2704 		bpf_program_buffer_free(&p->epoch_ctx);
2705 	}
2706 	if (d->bd_wfilter != NULL) {
2707 		p = __containerof((void *)d->bd_wfilter,
2708 		    struct bpf_program_buffer, buffer);
2709 #ifdef BPF_JITTER
2710 		p->func = NULL;
2711 #endif
2712 		bpf_program_buffer_free(&p->epoch_ctx);
2713 	}
2714 
2715 	mtx_destroy(&d->bd_lock);
2716 	counter_u64_free(d->bd_rcount);
2717 	counter_u64_free(d->bd_dcount);
2718 	counter_u64_free(d->bd_fcount);
2719 	counter_u64_free(d->bd_wcount);
2720 	counter_u64_free(d->bd_wfcount);
2721 	counter_u64_free(d->bd_wdcount);
2722 	counter_u64_free(d->bd_zcopy);
2723 	free(d, M_BPF);
2724 }
2725 
2726 /*
2727  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2728  * fixed size of the link header (variable length headers not yet supported).
2729  */
2730 void
2731 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2732 {
2733 
2734 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2735 }
2736 
2737 /*
2738  * Attach an interface to bpf.  ifp is a pointer to the structure
2739  * defining the interface to be attached, dlt is the link layer type,
2740  * and hdrlen is the fixed size of the link header (variable length
2741  * headers are not yet supporrted).
2742  */
2743 void
2744 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2745     struct bpf_if **driverp)
2746 {
2747 	struct bpf_if *bp;
2748 
2749 	KASSERT(*driverp == NULL,
2750 	    ("bpfattach2: driverp already initialized"));
2751 
2752 	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2753 
2754 	CK_LIST_INIT(&bp->bif_dlist);
2755 	CK_LIST_INIT(&bp->bif_wlist);
2756 	bp->bif_ifp = ifp;
2757 	bp->bif_dlt = dlt;
2758 	bp->bif_hdrlen = hdrlen;
2759 	bp->bif_bpf = driverp;
2760 	bp->bif_refcnt = 1;
2761 	*driverp = bp;
2762 	/*
2763 	 * Reference ifnet pointer, so it won't freed until
2764 	 * we release it.
2765 	 */
2766 	if_ref(ifp);
2767 	BPF_LOCK();
2768 	CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2769 	BPF_UNLOCK();
2770 
2771 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2772 		if_printf(ifp, "bpf attached\n");
2773 }
2774 
2775 #ifdef VIMAGE
2776 /*
2777  * When moving interfaces between vnet instances we need a way to
2778  * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2779  * after the vmove.  We unfortunately have no device driver infrastructure
2780  * to query the interface for these values after creation/attach, thus
2781  * add this as a workaround.
2782  */
2783 int
2784 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2785 {
2786 
2787 	if (bp == NULL)
2788 		return (ENXIO);
2789 	if (bif_dlt == NULL && bif_hdrlen == NULL)
2790 		return (0);
2791 
2792 	if (bif_dlt != NULL)
2793 		*bif_dlt = bp->bif_dlt;
2794 	if (bif_hdrlen != NULL)
2795 		*bif_hdrlen = bp->bif_hdrlen;
2796 
2797 	return (0);
2798 }
2799 #endif
2800 
2801 /*
2802  * Detach bpf from an interface. This involves detaching each descriptor
2803  * associated with the interface. Notify each descriptor as it's detached
2804  * so that any sleepers wake up and get ENXIO.
2805  */
2806 void
2807 bpfdetach(struct ifnet *ifp)
2808 {
2809 	struct bpf_if *bp, *bp_temp;
2810 	struct bpf_d *d;
2811 
2812 	BPF_LOCK();
2813 	/* Find all bpf_if struct's which reference ifp and detach them. */
2814 	CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2815 		if (ifp != bp->bif_ifp)
2816 			continue;
2817 
2818 		CK_LIST_REMOVE(bp, bif_next);
2819 		*bp->bif_bpf = (struct bpf_if *)&dead_bpf_if;
2820 
2821 		CTR4(KTR_NET,
2822 		    "%s: sheduling free for encap %d (%p) for if %p",
2823 		    __func__, bp->bif_dlt, bp, ifp);
2824 
2825 		/* Detach common descriptors */
2826 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2827 			bpf_detachd_locked(d, true);
2828 		}
2829 
2830 		/* Detach writer-only descriptors */
2831 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2832 			bpf_detachd_locked(d, true);
2833 		}
2834 		bpfif_rele(bp);
2835 	}
2836 	BPF_UNLOCK();
2837 }
2838 
2839 /*
2840  * Get a list of available data link type of the interface.
2841  */
2842 static int
2843 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2844 {
2845 	struct ifnet *ifp;
2846 	struct bpf_if *bp;
2847 	u_int *lst;
2848 	int error, n, n1;
2849 
2850 	BPF_LOCK_ASSERT();
2851 
2852 	ifp = d->bd_bif->bif_ifp;
2853 	n1 = 0;
2854 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2855 		if (bp->bif_ifp == ifp)
2856 			n1++;
2857 	}
2858 	if (bfl->bfl_list == NULL) {
2859 		bfl->bfl_len = n1;
2860 		return (0);
2861 	}
2862 	if (n1 > bfl->bfl_len)
2863 		return (ENOMEM);
2864 
2865 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2866 	n = 0;
2867 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2868 		if (bp->bif_ifp != ifp)
2869 			continue;
2870 		lst[n++] = bp->bif_dlt;
2871 	}
2872 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2873 	free(lst, M_TEMP);
2874 	bfl->bfl_len = n;
2875 	return (error);
2876 }
2877 
2878 /*
2879  * Set the data link type of a BPF instance.
2880  */
2881 static int
2882 bpf_setdlt(struct bpf_d *d, u_int dlt)
2883 {
2884 	int error, opromisc;
2885 	struct ifnet *ifp;
2886 	struct bpf_if *bp;
2887 
2888 	BPF_LOCK_ASSERT();
2889 	MPASS(d->bd_bif != NULL);
2890 
2891 	/*
2892 	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2893 	 * changed while we hold global lock.
2894 	 */
2895 	if (d->bd_bif->bif_dlt == dlt)
2896 		return (0);
2897 
2898 	ifp = d->bd_bif->bif_ifp;
2899 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2900 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2901 			break;
2902 	}
2903 	if (bp == NULL)
2904 		return (EINVAL);
2905 
2906 	opromisc = d->bd_promisc;
2907 	bpf_attachd(d, bp);
2908 	if (opromisc) {
2909 		error = ifpromisc(bp->bif_ifp, 1);
2910 		if (error)
2911 			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2912 			    __func__, error);
2913 		else
2914 			d->bd_promisc = 1;
2915 	}
2916 	return (0);
2917 }
2918 
2919 static void
2920 bpf_drvinit(void *unused)
2921 {
2922 	struct cdev *dev;
2923 
2924 	sx_init(&bpf_sx, "bpf global lock");
2925 	CK_LIST_INIT(&bpf_iflist);
2926 
2927 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2928 	/* For compatibility */
2929 	make_dev_alias(dev, "bpf0");
2930 }
2931 
2932 /*
2933  * Zero out the various packet counters associated with all of the bpf
2934  * descriptors.  At some point, we will probably want to get a bit more
2935  * granular and allow the user to specify descriptors to be zeroed.
2936  */
2937 static void
2938 bpf_zero_counters(void)
2939 {
2940 	struct bpf_if *bp;
2941 	struct bpf_d *bd;
2942 
2943 	BPF_LOCK();
2944 	/*
2945 	 * We are protected by global lock here, interfaces and
2946 	 * descriptors can not be deleted while we hold it.
2947 	 */
2948 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2949 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2950 			counter_u64_zero(bd->bd_rcount);
2951 			counter_u64_zero(bd->bd_dcount);
2952 			counter_u64_zero(bd->bd_fcount);
2953 			counter_u64_zero(bd->bd_wcount);
2954 			counter_u64_zero(bd->bd_wfcount);
2955 			counter_u64_zero(bd->bd_zcopy);
2956 		}
2957 	}
2958 	BPF_UNLOCK();
2959 }
2960 
2961 /*
2962  * Fill filter statistics
2963  */
2964 static void
2965 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
2966 {
2967 
2968 	BPF_LOCK_ASSERT();
2969 	bzero(d, sizeof(*d));
2970 	d->bd_structsize = sizeof(*d);
2971 	d->bd_immediate = bd->bd_immediate;
2972 	d->bd_promisc = bd->bd_promisc;
2973 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
2974 	d->bd_direction = bd->bd_direction;
2975 	d->bd_feedback = bd->bd_feedback;
2976 	d->bd_async = bd->bd_async;
2977 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
2978 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
2979 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
2980 	d->bd_sig = bd->bd_sig;
2981 	d->bd_slen = bd->bd_slen;
2982 	d->bd_hlen = bd->bd_hlen;
2983 	d->bd_bufsize = bd->bd_bufsize;
2984 	d->bd_pid = bd->bd_pid;
2985 	strlcpy(d->bd_ifname,
2986 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
2987 	d->bd_locked = bd->bd_locked;
2988 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
2989 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
2990 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
2991 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
2992 	d->bd_bufmode = bd->bd_bufmode;
2993 }
2994 
2995 /*
2996  * Handle `netstat -B' stats request
2997  */
2998 static int
2999 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3000 {
3001 	static const struct xbpf_d zerostats;
3002 	struct xbpf_d *xbdbuf, *xbd, tempstats;
3003 	int index, error;
3004 	struct bpf_if *bp;
3005 	struct bpf_d *bd;
3006 
3007 	/*
3008 	 * XXX This is not technically correct. It is possible for non
3009 	 * privileged users to open bpf devices. It would make sense
3010 	 * if the users who opened the devices were able to retrieve
3011 	 * the statistics for them, too.
3012 	 */
3013 	error = priv_check(req->td, PRIV_NET_BPF);
3014 	if (error)
3015 		return (error);
3016 	/*
3017 	 * Check to see if the user is requesting that the counters be
3018 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
3019 	 * as we aren't allowing the user to set the counters currently.
3020 	 */
3021 	if (req->newptr != NULL) {
3022 		if (req->newlen != sizeof(tempstats))
3023 			return (EINVAL);
3024 		memset(&tempstats, 0, sizeof(tempstats));
3025 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3026 		if (error)
3027 			return (error);
3028 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3029 			return (EINVAL);
3030 		bpf_zero_counters();
3031 		return (0);
3032 	}
3033 	if (req->oldptr == NULL)
3034 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
3035 	if (bpf_bpfd_cnt == 0)
3036 		return (SYSCTL_OUT(req, 0, 0));
3037 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3038 	BPF_LOCK();
3039 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3040 		BPF_UNLOCK();
3041 		free(xbdbuf, M_BPF);
3042 		return (ENOMEM);
3043 	}
3044 	index = 0;
3045 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3046 		/* Send writers-only first */
3047 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3048 			xbd = &xbdbuf[index++];
3049 			bpfstats_fill_xbpf(xbd, bd);
3050 		}
3051 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3052 			xbd = &xbdbuf[index++];
3053 			bpfstats_fill_xbpf(xbd, bd);
3054 		}
3055 	}
3056 	BPF_UNLOCK();
3057 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3058 	free(xbdbuf, M_BPF);
3059 	return (error);
3060 }
3061 
3062 SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
3063 
3064 #else /* !DEV_BPF && !NETGRAPH_BPF */
3065 
3066 /*
3067  * NOP stubs to allow bpf-using drivers to load and function.
3068  *
3069  * A 'better' implementation would allow the core bpf functionality
3070  * to be loaded at runtime.
3071  */
3072 
3073 void
3074 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3075 {
3076 }
3077 
3078 void
3079 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3080 {
3081 }
3082 
3083 void
3084 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3085 {
3086 }
3087 
3088 void
3089 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3090 {
3091 
3092 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3093 }
3094 
3095 void
3096 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3097 {
3098 
3099 	*driverp = (struct bpf_if *)&dead_bpf_if;
3100 }
3101 
3102 void
3103 bpfdetach(struct ifnet *ifp)
3104 {
3105 }
3106 
3107 u_int
3108 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3109 {
3110 	return -1;	/* "no filter" behaviour */
3111 }
3112 
3113 int
3114 bpf_validate(const struct bpf_insn *f, int len)
3115 {
3116 	return 0;		/* false */
3117 }
3118 
3119 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3120 
3121 #ifdef DDB
3122 static void
3123 bpf_show_bpf_if(struct bpf_if *bpf_if)
3124 {
3125 
3126 	if (bpf_if == NULL)
3127 		return;
3128 	db_printf("%p:\n", bpf_if);
3129 #define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3130 	/* bif_ext.bif_next */
3131 	/* bif_ext.bif_dlist */
3132 	BPF_DB_PRINTF("%#x", bif_dlt);
3133 	BPF_DB_PRINTF("%u", bif_hdrlen);
3134 	/* bif_wlist */
3135 	BPF_DB_PRINTF("%p", bif_ifp);
3136 	BPF_DB_PRINTF("%p", bif_bpf);
3137 	BPF_DB_PRINTF("%u", bif_refcnt);
3138 }
3139 
3140 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3141 {
3142 
3143 	if (!have_addr) {
3144 		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3145 		return;
3146 	}
3147 
3148 	bpf_show_bpf_if((struct bpf_if *)addr);
3149 }
3150 #endif
3151