xref: /freebsd/sys/net/bpf.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1990, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 2019 Andrey V. Elsukov <ae@FreeBSD.org>
7  *
8  * This code is derived from the Stanford/CMU enet packet filter,
9  * (net/enet.c) distributed as part of 4.3BSD, and code contributed
10  * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
11  * Berkeley Laboratory.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *      @(#)bpf.c	8.4 (Berkeley) 1/9/95
38  */
39 
40 #include <sys/cdefs.h>
41 #include "opt_bpf.h"
42 #include "opt_ddb.h"
43 #include "opt_netgraph.h"
44 
45 #include <sys/param.h>
46 #include <sys/conf.h>
47 #include <sys/eventhandler.h>
48 #include <sys/fcntl.h>
49 #include <sys/jail.h>
50 #include <sys/ktr.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/mutex.h>
55 #include <sys/time.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/signalvar.h>
59 #include <sys/filio.h>
60 #include <sys/sockio.h>
61 #include <sys/ttycom.h>
62 #include <sys/uio.h>
63 #include <sys/sysent.h>
64 #include <sys/systm.h>
65 
66 #include <sys/event.h>
67 #include <sys/file.h>
68 #include <sys/poll.h>
69 #include <sys/proc.h>
70 
71 #include <sys/socket.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <net/if.h>
78 #include <net/if_var.h>
79 #include <net/if_private.h>
80 #include <net/if_vlan_var.h>
81 #include <net/if_dl.h>
82 #include <net/bpf.h>
83 #include <net/bpf_buffer.h>
84 #ifdef BPF_JITTER
85 #include <net/bpf_jitter.h>
86 #endif
87 #include <net/bpf_zerocopy.h>
88 #include <net/bpfdesc.h>
89 #include <net/route.h>
90 #include <net/vnet.h>
91 
92 #include <netinet/in.h>
93 #include <netinet/if_ether.h>
94 #include <sys/kernel.h>
95 #include <sys/sysctl.h>
96 
97 #include <net80211/ieee80211_freebsd.h>
98 
99 #include <security/mac/mac_framework.h>
100 
101 MALLOC_DEFINE(M_BPF, "BPF", "BPF data");
102 
103 static struct bpf_if_ext dead_bpf_if = {
104 	.bif_dlist = CK_LIST_HEAD_INITIALIZER()
105 };
106 
107 struct bpf_if {
108 #define	bif_next	bif_ext.bif_next
109 #define	bif_dlist	bif_ext.bif_dlist
110 	struct bpf_if_ext bif_ext;	/* public members */
111 	u_int		bif_dlt;	/* link layer type */
112 	u_int		bif_hdrlen;	/* length of link header */
113 	struct bpfd_list bif_wlist;	/* writer-only list */
114 	struct ifnet	*bif_ifp;	/* corresponding interface */
115 	struct bpf_if	**bif_bpf;	/* Pointer to pointer to us */
116 	volatile u_int	bif_refcnt;
117 	struct epoch_context epoch_ctx;
118 };
119 
120 CTASSERT(offsetof(struct bpf_if, bif_ext) == 0);
121 
122 struct bpf_program_buffer {
123 	struct epoch_context	epoch_ctx;
124 #ifdef BPF_JITTER
125 	bpf_jit_filter		*func;
126 #endif
127 	void			*buffer[0];
128 };
129 
130 #if defined(DEV_BPF) || defined(NETGRAPH_BPF)
131 
132 #define PRINET  26			/* interruptible */
133 #define BPF_PRIO_MAX	7
134 
135 #define	SIZEOF_BPF_HDR(type)	\
136     (offsetof(type, bh_hdrlen) + sizeof(((type *)0)->bh_hdrlen))
137 
138 #ifdef COMPAT_FREEBSD32
139 #include <sys/mount.h>
140 #include <compat/freebsd32/freebsd32.h>
141 #define BPF_ALIGNMENT32 sizeof(int32_t)
142 #define	BPF_WORDALIGN32(x) roundup2(x, BPF_ALIGNMENT32)
143 
144 #ifndef BURN_BRIDGES
145 /*
146  * 32-bit version of structure prepended to each packet.  We use this header
147  * instead of the standard one for 32-bit streams.  We mark the a stream as
148  * 32-bit the first time we see a 32-bit compat ioctl request.
149  */
150 struct bpf_hdr32 {
151 	struct timeval32 bh_tstamp;	/* time stamp */
152 	uint32_t	bh_caplen;	/* length of captured portion */
153 	uint32_t	bh_datalen;	/* original length of packet */
154 	uint16_t	bh_hdrlen;	/* length of bpf header (this struct
155 					   plus alignment padding) */
156 };
157 #endif
158 
159 struct bpf_program32 {
160 	u_int bf_len;
161 	uint32_t bf_insns;
162 };
163 
164 struct bpf_dltlist32 {
165 	u_int	bfl_len;
166 	u_int	bfl_list;
167 };
168 
169 #define	BIOCSETF32	_IOW('B', 103, struct bpf_program32)
170 #define	BIOCSRTIMEOUT32	_IOW('B', 109, struct timeval32)
171 #define	BIOCGRTIMEOUT32	_IOR('B', 110, struct timeval32)
172 #define	BIOCGDLTLIST32	_IOWR('B', 121, struct bpf_dltlist32)
173 #define	BIOCSETWF32	_IOW('B', 123, struct bpf_program32)
174 #define	BIOCSETFNR32	_IOW('B', 130, struct bpf_program32)
175 #endif
176 
177 #define BPF_LOCK()	   sx_xlock(&bpf_sx)
178 #define BPF_UNLOCK()		sx_xunlock(&bpf_sx)
179 #define BPF_LOCK_ASSERT()	sx_assert(&bpf_sx, SA_XLOCKED)
180 /*
181  * bpf_iflist is a list of BPF interface structures, each corresponding to a
182  * specific DLT. The same network interface might have several BPF interface
183  * structures registered by different layers in the stack (i.e., 802.11
184  * frames, ethernet frames, etc).
185  */
186 CK_LIST_HEAD(bpf_iflist, bpf_if);
187 static struct bpf_iflist bpf_iflist;
188 static struct sx	bpf_sx;		/* bpf global lock */
189 static int		bpf_bpfd_cnt;
190 
191 static void	bpfif_ref(struct bpf_if *);
192 static void	bpfif_rele(struct bpf_if *);
193 
194 static void	bpfd_ref(struct bpf_d *);
195 static void	bpfd_rele(struct bpf_d *);
196 static void	bpf_attachd(struct bpf_d *, struct bpf_if *);
197 static void	bpf_detachd(struct bpf_d *);
198 static void	bpf_detachd_locked(struct bpf_d *, bool);
199 static void	bpfd_free(epoch_context_t);
200 static int	bpf_movein(struct uio *, int, struct ifnet *, struct mbuf **,
201 		    struct sockaddr *, int *, struct bpf_d *);
202 static int	bpf_setif(struct bpf_d *, struct ifreq *);
203 static void	bpf_timed_out(void *);
204 static __inline void
205 		bpf_wakeup(struct bpf_d *);
206 static void	catchpacket(struct bpf_d *, u_char *, u_int, u_int,
207 		    void (*)(struct bpf_d *, caddr_t, u_int, void *, u_int),
208 		    struct bintime *);
209 static void	reset_d(struct bpf_d *);
210 static int	bpf_setf(struct bpf_d *, struct bpf_program *, u_long cmd);
211 static int	bpf_getdltlist(struct bpf_d *, struct bpf_dltlist *);
212 static int	bpf_setdlt(struct bpf_d *, u_int);
213 static void	filt_bpfdetach(struct knote *);
214 static int	filt_bpfread(struct knote *, long);
215 static int	filt_bpfwrite(struct knote *, long);
216 static void	bpf_drvinit(void *);
217 static int	bpf_stats_sysctl(SYSCTL_HANDLER_ARGS);
218 
219 SYSCTL_NODE(_net, OID_AUTO, bpf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
220     "bpf sysctl");
221 int bpf_maxinsns = BPF_MAXINSNS;
222 SYSCTL_INT(_net_bpf, OID_AUTO, maxinsns, CTLFLAG_RW,
223     &bpf_maxinsns, 0, "Maximum bpf program instructions");
224 static int bpf_zerocopy_enable = 0;
225 SYSCTL_INT(_net_bpf, OID_AUTO, zerocopy_enable, CTLFLAG_RW,
226     &bpf_zerocopy_enable, 0, "Enable new zero-copy BPF buffer sessions");
227 static SYSCTL_NODE(_net_bpf, OID_AUTO, stats, CTLFLAG_MPSAFE | CTLFLAG_RW,
228     bpf_stats_sysctl, "bpf statistics portal");
229 
230 VNET_DEFINE_STATIC(int, bpf_optimize_writers) = 0;
231 #define	V_bpf_optimize_writers VNET(bpf_optimize_writers)
232 SYSCTL_INT(_net_bpf, OID_AUTO, optimize_writers, CTLFLAG_VNET | CTLFLAG_RWTUN,
233     &VNET_NAME(bpf_optimize_writers), 0,
234     "Do not send packets until BPF program is set");
235 
236 static	d_open_t	bpfopen;
237 static	d_read_t	bpfread;
238 static	d_write_t	bpfwrite;
239 static	d_ioctl_t	bpfioctl;
240 static	d_poll_t	bpfpoll;
241 static	d_kqfilter_t	bpfkqfilter;
242 
243 static struct cdevsw bpf_cdevsw = {
244 	.d_version =	D_VERSION,
245 	.d_open =	bpfopen,
246 	.d_read =	bpfread,
247 	.d_write =	bpfwrite,
248 	.d_ioctl =	bpfioctl,
249 	.d_poll =	bpfpoll,
250 	.d_name =	"bpf",
251 	.d_kqfilter =	bpfkqfilter,
252 };
253 
254 static struct filterops bpfread_filtops = {
255 	.f_isfd = 1,
256 	.f_detach = filt_bpfdetach,
257 	.f_event = filt_bpfread,
258 };
259 
260 static struct filterops bpfwrite_filtops = {
261 	.f_isfd = 1,
262 	.f_detach = filt_bpfdetach,
263 	.f_event = filt_bpfwrite,
264 };
265 
266 /*
267  * LOCKING MODEL USED BY BPF
268  *
269  * Locks:
270  * 1) global lock (BPF_LOCK). Sx, used to protect some global counters,
271  * every bpf_iflist changes, serializes ioctl access to bpf descriptors.
272  * 2) Descriptor lock. Mutex, used to protect BPF buffers and various
273  * structure fields used by bpf_*tap* code.
274  *
275  * Lock order: global lock, then descriptor lock.
276  *
277  * There are several possible consumers:
278  *
279  * 1. The kernel registers interface pointer with bpfattach().
280  * Each call allocates new bpf_if structure, references ifnet pointer
281  * and links bpf_if into bpf_iflist chain. This is protected with global
282  * lock.
283  *
284  * 2. An userland application uses ioctl() call to bpf_d descriptor.
285  * All such call are serialized with global lock. BPF filters can be
286  * changed, but pointer to old filter will be freed using NET_EPOCH_CALL().
287  * Thus it should be safe for bpf_tap/bpf_mtap* code to do access to
288  * filter pointers, even if change will happen during bpf_tap execution.
289  * Destroying of bpf_d descriptor also is doing using NET_EPOCH_CALL().
290  *
291  * 3. An userland application can write packets into bpf_d descriptor.
292  * There we need to be sure, that ifnet won't disappear during bpfwrite().
293  *
294  * 4. The kernel invokes bpf_tap/bpf_mtap* functions. The access to
295  * bif_dlist is protected with net_epoch_preempt section. So, it should
296  * be safe to make access to bpf_d descriptor inside the section.
297  *
298  * 5. The kernel invokes bpfdetach() on interface destroying. All lists
299  * are modified with global lock held and actual free() is done using
300  * NET_EPOCH_CALL().
301  */
302 
303 static void
304 bpfif_free(epoch_context_t ctx)
305 {
306 	struct bpf_if *bp;
307 
308 	bp = __containerof(ctx, struct bpf_if, epoch_ctx);
309 	if_rele(bp->bif_ifp);
310 	free(bp, M_BPF);
311 }
312 
313 static void
314 bpfif_ref(struct bpf_if *bp)
315 {
316 
317 	refcount_acquire(&bp->bif_refcnt);
318 }
319 
320 static void
321 bpfif_rele(struct bpf_if *bp)
322 {
323 
324 	if (!refcount_release(&bp->bif_refcnt))
325 		return;
326 	NET_EPOCH_CALL(bpfif_free, &bp->epoch_ctx);
327 }
328 
329 static void
330 bpfd_ref(struct bpf_d *d)
331 {
332 
333 	refcount_acquire(&d->bd_refcnt);
334 }
335 
336 static void
337 bpfd_rele(struct bpf_d *d)
338 {
339 
340 	if (!refcount_release(&d->bd_refcnt))
341 		return;
342 	NET_EPOCH_CALL(bpfd_free, &d->epoch_ctx);
343 }
344 
345 static struct bpf_program_buffer*
346 bpf_program_buffer_alloc(size_t size, int flags)
347 {
348 
349 	return (malloc(sizeof(struct bpf_program_buffer) + size,
350 	    M_BPF, flags));
351 }
352 
353 static void
354 bpf_program_buffer_free(epoch_context_t ctx)
355 {
356 	struct bpf_program_buffer *ptr;
357 
358 	ptr = __containerof(ctx, struct bpf_program_buffer, epoch_ctx);
359 #ifdef BPF_JITTER
360 	if (ptr->func != NULL)
361 		bpf_destroy_jit_filter(ptr->func);
362 #endif
363 	free(ptr, M_BPF);
364 }
365 
366 /*
367  * Wrapper functions for various buffering methods.  If the set of buffer
368  * modes expands, we will probably want to introduce a switch data structure
369  * similar to protosw, et.
370  */
371 static void
372 bpf_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
373     u_int len)
374 {
375 
376 	BPFD_LOCK_ASSERT(d);
377 
378 	switch (d->bd_bufmode) {
379 	case BPF_BUFMODE_BUFFER:
380 		return (bpf_buffer_append_bytes(d, buf, offset, src, len));
381 
382 	case BPF_BUFMODE_ZBUF:
383 		counter_u64_add(d->bd_zcopy, 1);
384 		return (bpf_zerocopy_append_bytes(d, buf, offset, src, len));
385 
386 	default:
387 		panic("bpf_buf_append_bytes");
388 	}
389 }
390 
391 static void
392 bpf_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset, void *src,
393     u_int len)
394 {
395 
396 	BPFD_LOCK_ASSERT(d);
397 
398 	switch (d->bd_bufmode) {
399 	case BPF_BUFMODE_BUFFER:
400 		return (bpf_buffer_append_mbuf(d, buf, offset, src, len));
401 
402 	case BPF_BUFMODE_ZBUF:
403 		counter_u64_add(d->bd_zcopy, 1);
404 		return (bpf_zerocopy_append_mbuf(d, buf, offset, src, len));
405 
406 	default:
407 		panic("bpf_buf_append_mbuf");
408 	}
409 }
410 
411 /*
412  * This function gets called when the free buffer is re-assigned.
413  */
414 static void
415 bpf_buf_reclaimed(struct bpf_d *d)
416 {
417 
418 	BPFD_LOCK_ASSERT(d);
419 
420 	switch (d->bd_bufmode) {
421 	case BPF_BUFMODE_BUFFER:
422 		return;
423 
424 	case BPF_BUFMODE_ZBUF:
425 		bpf_zerocopy_buf_reclaimed(d);
426 		return;
427 
428 	default:
429 		panic("bpf_buf_reclaimed");
430 	}
431 }
432 
433 /*
434  * If the buffer mechanism has a way to decide that a held buffer can be made
435  * free, then it is exposed via the bpf_canfreebuf() interface.  (1) is
436  * returned if the buffer can be discarded, (0) is returned if it cannot.
437  */
438 static int
439 bpf_canfreebuf(struct bpf_d *d)
440 {
441 
442 	BPFD_LOCK_ASSERT(d);
443 
444 	switch (d->bd_bufmode) {
445 	case BPF_BUFMODE_ZBUF:
446 		return (bpf_zerocopy_canfreebuf(d));
447 	}
448 	return (0);
449 }
450 
451 /*
452  * Allow the buffer model to indicate that the current store buffer is
453  * immutable, regardless of the appearance of space.  Return (1) if the
454  * buffer is writable, and (0) if not.
455  */
456 static int
457 bpf_canwritebuf(struct bpf_d *d)
458 {
459 	BPFD_LOCK_ASSERT(d);
460 
461 	switch (d->bd_bufmode) {
462 	case BPF_BUFMODE_ZBUF:
463 		return (bpf_zerocopy_canwritebuf(d));
464 	}
465 	return (1);
466 }
467 
468 /*
469  * Notify buffer model that an attempt to write to the store buffer has
470  * resulted in a dropped packet, in which case the buffer may be considered
471  * full.
472  */
473 static void
474 bpf_buffull(struct bpf_d *d)
475 {
476 
477 	BPFD_LOCK_ASSERT(d);
478 
479 	switch (d->bd_bufmode) {
480 	case BPF_BUFMODE_ZBUF:
481 		bpf_zerocopy_buffull(d);
482 		break;
483 	}
484 }
485 
486 /*
487  * Notify the buffer model that a buffer has moved into the hold position.
488  */
489 void
490 bpf_bufheld(struct bpf_d *d)
491 {
492 
493 	BPFD_LOCK_ASSERT(d);
494 
495 	switch (d->bd_bufmode) {
496 	case BPF_BUFMODE_ZBUF:
497 		bpf_zerocopy_bufheld(d);
498 		break;
499 	}
500 }
501 
502 static void
503 bpf_free(struct bpf_d *d)
504 {
505 
506 	switch (d->bd_bufmode) {
507 	case BPF_BUFMODE_BUFFER:
508 		return (bpf_buffer_free(d));
509 
510 	case BPF_BUFMODE_ZBUF:
511 		return (bpf_zerocopy_free(d));
512 
513 	default:
514 		panic("bpf_buf_free");
515 	}
516 }
517 
518 static int
519 bpf_uiomove(struct bpf_d *d, caddr_t buf, u_int len, struct uio *uio)
520 {
521 
522 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
523 		return (EOPNOTSUPP);
524 	return (bpf_buffer_uiomove(d, buf, len, uio));
525 }
526 
527 static int
528 bpf_ioctl_sblen(struct bpf_d *d, u_int *i)
529 {
530 
531 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER)
532 		return (EOPNOTSUPP);
533 	return (bpf_buffer_ioctl_sblen(d, i));
534 }
535 
536 static int
537 bpf_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
538 {
539 
540 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
541 		return (EOPNOTSUPP);
542 	return (bpf_zerocopy_ioctl_getzmax(td, d, i));
543 }
544 
545 static int
546 bpf_ioctl_rotzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
547 {
548 
549 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
550 		return (EOPNOTSUPP);
551 	return (bpf_zerocopy_ioctl_rotzbuf(td, d, bz));
552 }
553 
554 static int
555 bpf_ioctl_setzbuf(struct thread *td, struct bpf_d *d, struct bpf_zbuf *bz)
556 {
557 
558 	if (d->bd_bufmode != BPF_BUFMODE_ZBUF)
559 		return (EOPNOTSUPP);
560 	return (bpf_zerocopy_ioctl_setzbuf(td, d, bz));
561 }
562 
563 /*
564  * General BPF functions.
565  */
566 static int
567 bpf_movein(struct uio *uio, int linktype, struct ifnet *ifp, struct mbuf **mp,
568     struct sockaddr *sockp, int *hdrlen, struct bpf_d *d)
569 {
570 	const struct ieee80211_bpf_params *p;
571 	struct ether_header *eh;
572 	struct mbuf *m;
573 	int error;
574 	int len;
575 	int hlen;
576 	int slen;
577 
578 	/*
579 	 * Build a sockaddr based on the data link layer type.
580 	 * We do this at this level because the ethernet header
581 	 * is copied directly into the data field of the sockaddr.
582 	 * In the case of SLIP, there is no header and the packet
583 	 * is forwarded as is.
584 	 * Also, we are careful to leave room at the front of the mbuf
585 	 * for the link level header.
586 	 */
587 	switch (linktype) {
588 	case DLT_SLIP:
589 		sockp->sa_family = AF_INET;
590 		hlen = 0;
591 		break;
592 
593 	case DLT_EN10MB:
594 		sockp->sa_family = AF_UNSPEC;
595 		/* XXX Would MAXLINKHDR be better? */
596 		hlen = ETHER_HDR_LEN;
597 		break;
598 
599 	case DLT_FDDI:
600 		sockp->sa_family = AF_IMPLINK;
601 		hlen = 0;
602 		break;
603 
604 	case DLT_RAW:
605 		sockp->sa_family = AF_UNSPEC;
606 		hlen = 0;
607 		break;
608 
609 	case DLT_NULL:
610 		/*
611 		 * null interface types require a 4 byte pseudo header which
612 		 * corresponds to the address family of the packet.
613 		 */
614 		sockp->sa_family = AF_UNSPEC;
615 		hlen = 4;
616 		break;
617 
618 	case DLT_ATM_RFC1483:
619 		/*
620 		 * en atm driver requires 4-byte atm pseudo header.
621 		 * though it isn't standard, vpi:vci needs to be
622 		 * specified anyway.
623 		 */
624 		sockp->sa_family = AF_UNSPEC;
625 		hlen = 12;	/* XXX 4(ATM_PH) + 3(LLC) + 5(SNAP) */
626 		break;
627 
628 	case DLT_PPP:
629 		sockp->sa_family = AF_UNSPEC;
630 		hlen = 4;	/* This should match PPP_HDRLEN */
631 		break;
632 
633 	case DLT_IEEE802_11:		/* IEEE 802.11 wireless */
634 		sockp->sa_family = AF_IEEE80211;
635 		hlen = 0;
636 		break;
637 
638 	case DLT_IEEE802_11_RADIO:	/* IEEE 802.11 wireless w/ phy params */
639 		sockp->sa_family = AF_IEEE80211;
640 		sockp->sa_len = 12;	/* XXX != 0 */
641 		hlen = sizeof(struct ieee80211_bpf_params);
642 		break;
643 
644 	default:
645 		return (EIO);
646 	}
647 
648 	len = uio->uio_resid;
649 	if (len < hlen || len - hlen > ifp->if_mtu)
650 		return (EMSGSIZE);
651 
652 	/* Allocate a mbuf for our write, since m_get2 fails if len >= to MJUMPAGESIZE, use m_getjcl for bigger buffers */
653 	m = m_get3(len, M_WAITOK, MT_DATA, M_PKTHDR);
654 	if (m == NULL)
655 		return (EIO);
656 	m->m_pkthdr.len = m->m_len = len;
657 	*mp = m;
658 
659 	error = uiomove(mtod(m, u_char *), len, uio);
660 	if (error)
661 		goto bad;
662 
663 	slen = bpf_filter(d->bd_wfilter, mtod(m, u_char *), len, len);
664 	if (slen == 0) {
665 		error = EPERM;
666 		goto bad;
667 	}
668 
669 	/* Check for multicast destination */
670 	switch (linktype) {
671 	case DLT_EN10MB:
672 		eh = mtod(m, struct ether_header *);
673 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
674 			if (bcmp(ifp->if_broadcastaddr, eh->ether_dhost,
675 			    ETHER_ADDR_LEN) == 0)
676 				m->m_flags |= M_BCAST;
677 			else
678 				m->m_flags |= M_MCAST;
679 		}
680 		if (d->bd_hdrcmplt == 0) {
681 			memcpy(eh->ether_shost, IF_LLADDR(ifp),
682 			    sizeof(eh->ether_shost));
683 		}
684 		break;
685 	}
686 
687 	/*
688 	 * Make room for link header, and copy it to sockaddr
689 	 */
690 	if (hlen != 0) {
691 		if (sockp->sa_family == AF_IEEE80211) {
692 			/*
693 			 * Collect true length from the parameter header
694 			 * NB: sockp is known to be zero'd so if we do a
695 			 *     short copy unspecified parameters will be
696 			 *     zero.
697 			 * NB: packet may not be aligned after stripping
698 			 *     bpf params
699 			 * XXX check ibp_vers
700 			 */
701 			p = mtod(m, const struct ieee80211_bpf_params *);
702 			hlen = p->ibp_len;
703 			if (hlen > sizeof(sockp->sa_data)) {
704 				error = EINVAL;
705 				goto bad;
706 			}
707 		}
708 		bcopy(mtod(m, const void *), sockp->sa_data, hlen);
709 	}
710 	*hdrlen = hlen;
711 
712 	return (0);
713 bad:
714 	m_freem(m);
715 	return (error);
716 }
717 
718 /*
719  * Attach descriptor to the bpf interface, i.e. make d listen on bp,
720  * then reset its buffers and counters with reset_d().
721  */
722 static void
723 bpf_attachd(struct bpf_d *d, struct bpf_if *bp)
724 {
725 	int op_w;
726 
727 	BPF_LOCK_ASSERT();
728 
729 	/*
730 	 * Save sysctl value to protect from sysctl change
731 	 * between reads
732 	 */
733 	op_w = V_bpf_optimize_writers || d->bd_writer;
734 
735 	if (d->bd_bif != NULL)
736 		bpf_detachd_locked(d, false);
737 	/*
738 	 * Point d at bp, and add d to the interface's list.
739 	 * Since there are many applications using BPF for
740 	 * sending raw packets only (dhcpd, cdpd are good examples)
741 	 * we can delay adding d to the list of active listeners until
742 	 * some filter is configured.
743 	 */
744 
745 	BPFD_LOCK(d);
746 	/*
747 	 * Hold reference to bpif while descriptor uses this interface.
748 	 */
749 	bpfif_ref(bp);
750 	d->bd_bif = bp;
751 	if (op_w != 0) {
752 		/* Add to writers-only list */
753 		CK_LIST_INSERT_HEAD(&bp->bif_wlist, d, bd_next);
754 		/*
755 		 * We decrement bd_writer on every filter set operation.
756 		 * First BIOCSETF is done by pcap_open_live() to set up
757 		 * snap length. After that appliation usually sets its own
758 		 * filter.
759 		 */
760 		d->bd_writer = 2;
761 	} else
762 		CK_LIST_INSERT_HEAD(&bp->bif_dlist, d, bd_next);
763 
764 	reset_d(d);
765 
766 	/* Trigger EVFILT_WRITE events. */
767 	bpf_wakeup(d);
768 
769 	BPFD_UNLOCK(d);
770 	bpf_bpfd_cnt++;
771 
772 	CTR3(KTR_NET, "%s: bpf_attach called by pid %d, adding to %s list",
773 	    __func__, d->bd_pid, d->bd_writer ? "writer" : "active");
774 
775 	if (op_w == 0)
776 		EVENTHANDLER_INVOKE(bpf_track, bp->bif_ifp, bp->bif_dlt, 1);
777 }
778 
779 /*
780  * Check if we need to upgrade our descriptor @d from write-only mode.
781  */
782 static int
783 bpf_check_upgrade(u_long cmd, struct bpf_d *d, struct bpf_insn *fcode,
784     int flen)
785 {
786 	int is_snap, need_upgrade;
787 
788 	/*
789 	 * Check if we've already upgraded or new filter is empty.
790 	 */
791 	if (d->bd_writer == 0 || fcode == NULL)
792 		return (0);
793 
794 	need_upgrade = 0;
795 
796 	/*
797 	 * Check if cmd looks like snaplen setting from
798 	 * pcap_bpf.c:pcap_open_live().
799 	 * Note we're not checking .k value here:
800 	 * while pcap_open_live() definitely sets to non-zero value,
801 	 * we'd prefer to treat k=0 (deny ALL) case the same way: e.g.
802 	 * do not consider upgrading immediately
803 	 */
804 	if (cmd == BIOCSETF && flen == 1 &&
805 	    fcode[0].code == (BPF_RET | BPF_K))
806 		is_snap = 1;
807 	else
808 		is_snap = 0;
809 
810 	if (is_snap == 0) {
811 		/*
812 		 * We're setting first filter and it doesn't look like
813 		 * setting snaplen.  We're probably using bpf directly.
814 		 * Upgrade immediately.
815 		 */
816 		need_upgrade = 1;
817 	} else {
818 		/*
819 		 * Do not require upgrade by first BIOCSETF
820 		 * (used to set snaplen) by pcap_open_live().
821 		 */
822 
823 		if (--d->bd_writer == 0) {
824 			/*
825 			 * First snaplen filter has already
826 			 * been set. This is probably catch-all
827 			 * filter
828 			 */
829 			need_upgrade = 1;
830 		}
831 	}
832 
833 	CTR5(KTR_NET,
834 	    "%s: filter function set by pid %d, "
835 	    "bd_writer counter %d, snap %d upgrade %d",
836 	    __func__, d->bd_pid, d->bd_writer,
837 	    is_snap, need_upgrade);
838 
839 	return (need_upgrade);
840 }
841 
842 /*
843  * Detach a file from its interface.
844  */
845 static void
846 bpf_detachd(struct bpf_d *d)
847 {
848 	BPF_LOCK();
849 	bpf_detachd_locked(d, false);
850 	BPF_UNLOCK();
851 }
852 
853 static void
854 bpf_detachd_locked(struct bpf_d *d, bool detached_ifp)
855 {
856 	struct bpf_if *bp;
857 	struct ifnet *ifp;
858 	int error;
859 
860 	BPF_LOCK_ASSERT();
861 	CTR2(KTR_NET, "%s: detach required by pid %d", __func__, d->bd_pid);
862 
863 	/* Check if descriptor is attached */
864 	if ((bp = d->bd_bif) == NULL)
865 		return;
866 
867 	BPFD_LOCK(d);
868 	/* Remove d from the interface's descriptor list. */
869 	CK_LIST_REMOVE(d, bd_next);
870 	/* Save bd_writer value */
871 	error = d->bd_writer;
872 	ifp = bp->bif_ifp;
873 	d->bd_bif = NULL;
874 	if (detached_ifp) {
875 		/*
876 		 * Notify descriptor as it's detached, so that any
877 		 * sleepers wake up and get ENXIO.
878 		 */
879 		bpf_wakeup(d);
880 	}
881 	BPFD_UNLOCK(d);
882 	bpf_bpfd_cnt--;
883 
884 	/* Call event handler iff d is attached */
885 	if (error == 0)
886 		EVENTHANDLER_INVOKE(bpf_track, ifp, bp->bif_dlt, 0);
887 
888 	/*
889 	 * Check if this descriptor had requested promiscuous mode.
890 	 * If so and ifnet is not detached, turn it off.
891 	 */
892 	if (d->bd_promisc && !detached_ifp) {
893 		d->bd_promisc = 0;
894 		CURVNET_SET(ifp->if_vnet);
895 		error = ifpromisc(ifp, 0);
896 		CURVNET_RESTORE();
897 		if (error != 0 && error != ENXIO) {
898 			/*
899 			 * ENXIO can happen if a pccard is unplugged
900 			 * Something is really wrong if we were able to put
901 			 * the driver into promiscuous mode, but can't
902 			 * take it out.
903 			 */
904 			if_printf(bp->bif_ifp,
905 				"bpf_detach: ifpromisc failed (%d)\n", error);
906 		}
907 	}
908 	bpfif_rele(bp);
909 }
910 
911 /*
912  * Close the descriptor by detaching it from its interface,
913  * deallocating its buffers, and marking it free.
914  */
915 static void
916 bpf_dtor(void *data)
917 {
918 	struct bpf_d *d = data;
919 
920 	BPFD_LOCK(d);
921 	if (d->bd_state == BPF_WAITING)
922 		callout_stop(&d->bd_callout);
923 	d->bd_state = BPF_IDLE;
924 	BPFD_UNLOCK(d);
925 	funsetown(&d->bd_sigio);
926 	bpf_detachd(d);
927 #ifdef MAC
928 	mac_bpfdesc_destroy(d);
929 #endif /* MAC */
930 	seldrain(&d->bd_sel);
931 	knlist_destroy(&d->bd_sel.si_note);
932 	callout_drain(&d->bd_callout);
933 	bpfd_rele(d);
934 }
935 
936 /*
937  * Open ethernet device.  Returns ENXIO for illegal minor device number,
938  * EBUSY if file is open by another process.
939  */
940 /* ARGSUSED */
941 static	int
942 bpfopen(struct cdev *dev, int flags, int fmt, struct thread *td)
943 {
944 	struct bpf_d *d;
945 	int error;
946 
947 	d = malloc(sizeof(*d), M_BPF, M_WAITOK | M_ZERO);
948 	error = devfs_set_cdevpriv(d, bpf_dtor);
949 	if (error != 0) {
950 		free(d, M_BPF);
951 		return (error);
952 	}
953 
954 	/* Setup counters */
955 	d->bd_rcount = counter_u64_alloc(M_WAITOK);
956 	d->bd_dcount = counter_u64_alloc(M_WAITOK);
957 	d->bd_fcount = counter_u64_alloc(M_WAITOK);
958 	d->bd_wcount = counter_u64_alloc(M_WAITOK);
959 	d->bd_wfcount = counter_u64_alloc(M_WAITOK);
960 	d->bd_wdcount = counter_u64_alloc(M_WAITOK);
961 	d->bd_zcopy = counter_u64_alloc(M_WAITOK);
962 
963 	/*
964 	 * For historical reasons, perform a one-time initialization call to
965 	 * the buffer routines, even though we're not yet committed to a
966 	 * particular buffer method.
967 	 */
968 	bpf_buffer_init(d);
969 	if ((flags & FREAD) == 0)
970 		d->bd_writer = 2;
971 	d->bd_hbuf_in_use = 0;
972 	d->bd_bufmode = BPF_BUFMODE_BUFFER;
973 	d->bd_sig = SIGIO;
974 	d->bd_direction = BPF_D_INOUT;
975 	refcount_init(&d->bd_refcnt, 1);
976 	BPF_PID_REFRESH(d, td);
977 #ifdef MAC
978 	mac_bpfdesc_init(d);
979 	mac_bpfdesc_create(td->td_ucred, d);
980 #endif
981 	mtx_init(&d->bd_lock, devtoname(dev), "bpf cdev lock", MTX_DEF);
982 	callout_init_mtx(&d->bd_callout, &d->bd_lock, 0);
983 	knlist_init_mtx(&d->bd_sel.si_note, &d->bd_lock);
984 
985 	/* Disable VLAN pcp tagging. */
986 	d->bd_pcp = 0;
987 
988 	return (0);
989 }
990 
991 /*
992  *  bpfread - read next chunk of packets from buffers
993  */
994 static	int
995 bpfread(struct cdev *dev, struct uio *uio, int ioflag)
996 {
997 	struct bpf_d *d;
998 	int error;
999 	int non_block;
1000 	int timed_out;
1001 
1002 	error = devfs_get_cdevpriv((void **)&d);
1003 	if (error != 0)
1004 		return (error);
1005 
1006 	/*
1007 	 * Restrict application to use a buffer the same size as
1008 	 * as kernel buffers.
1009 	 */
1010 	if (uio->uio_resid != d->bd_bufsize)
1011 		return (EINVAL);
1012 
1013 	non_block = ((ioflag & O_NONBLOCK) != 0);
1014 
1015 	BPFD_LOCK(d);
1016 	BPF_PID_REFRESH_CUR(d);
1017 	if (d->bd_bufmode != BPF_BUFMODE_BUFFER) {
1018 		BPFD_UNLOCK(d);
1019 		return (EOPNOTSUPP);
1020 	}
1021 	if (d->bd_state == BPF_WAITING)
1022 		callout_stop(&d->bd_callout);
1023 	timed_out = (d->bd_state == BPF_TIMED_OUT);
1024 	d->bd_state = BPF_IDLE;
1025 	while (d->bd_hbuf_in_use) {
1026 		error = mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1027 		    PRINET|PCATCH, "bd_hbuf", 0);
1028 		if (error != 0) {
1029 			BPFD_UNLOCK(d);
1030 			return (error);
1031 		}
1032 	}
1033 	/*
1034 	 * If the hold buffer is empty, then do a timed sleep, which
1035 	 * ends when the timeout expires or when enough packets
1036 	 * have arrived to fill the store buffer.
1037 	 */
1038 	while (d->bd_hbuf == NULL) {
1039 		if (d->bd_slen != 0) {
1040 			/*
1041 			 * A packet(s) either arrived since the previous
1042 			 * read or arrived while we were asleep.
1043 			 */
1044 			if (d->bd_immediate || non_block || timed_out) {
1045 				/*
1046 				 * Rotate the buffers and return what's here
1047 				 * if we are in immediate mode, non-blocking
1048 				 * flag is set, or this descriptor timed out.
1049 				 */
1050 				ROTATE_BUFFERS(d);
1051 				break;
1052 			}
1053 		}
1054 
1055 		/*
1056 		 * No data is available, check to see if the bpf device
1057 		 * is still pointed at a real interface.  If not, return
1058 		 * ENXIO so that the userland process knows to rebind
1059 		 * it before using it again.
1060 		 */
1061 		if (d->bd_bif == NULL) {
1062 			BPFD_UNLOCK(d);
1063 			return (ENXIO);
1064 		}
1065 
1066 		if (non_block) {
1067 			BPFD_UNLOCK(d);
1068 			return (EWOULDBLOCK);
1069 		}
1070 		error = msleep(d, &d->bd_lock, PRINET|PCATCH,
1071 		     "bpf", d->bd_rtout);
1072 		if (error == EINTR || error == ERESTART) {
1073 			BPFD_UNLOCK(d);
1074 			return (error);
1075 		}
1076 		if (error == EWOULDBLOCK) {
1077 			/*
1078 			 * On a timeout, return what's in the buffer,
1079 			 * which may be nothing.  If there is something
1080 			 * in the store buffer, we can rotate the buffers.
1081 			 */
1082 			if (d->bd_hbuf)
1083 				/*
1084 				 * We filled up the buffer in between
1085 				 * getting the timeout and arriving
1086 				 * here, so we don't need to rotate.
1087 				 */
1088 				break;
1089 
1090 			if (d->bd_slen == 0) {
1091 				BPFD_UNLOCK(d);
1092 				return (0);
1093 			}
1094 			ROTATE_BUFFERS(d);
1095 			break;
1096 		}
1097 	}
1098 	/*
1099 	 * At this point, we know we have something in the hold slot.
1100 	 */
1101 	d->bd_hbuf_in_use = 1;
1102 	BPFD_UNLOCK(d);
1103 
1104 	/*
1105 	 * Move data from hold buffer into user space.
1106 	 * We know the entire buffer is transferred since
1107 	 * we checked above that the read buffer is bpf_bufsize bytes.
1108   	 *
1109 	 * We do not have to worry about simultaneous reads because
1110 	 * we waited for sole access to the hold buffer above.
1111 	 */
1112 	error = bpf_uiomove(d, d->bd_hbuf, d->bd_hlen, uio);
1113 
1114 	BPFD_LOCK(d);
1115 	KASSERT(d->bd_hbuf != NULL, ("bpfread: lost bd_hbuf"));
1116 	d->bd_fbuf = d->bd_hbuf;
1117 	d->bd_hbuf = NULL;
1118 	d->bd_hlen = 0;
1119 	bpf_buf_reclaimed(d);
1120 	d->bd_hbuf_in_use = 0;
1121 	wakeup(&d->bd_hbuf_in_use);
1122 	BPFD_UNLOCK(d);
1123 
1124 	return (error);
1125 }
1126 
1127 /*
1128  * If there are processes sleeping on this descriptor, wake them up.
1129  */
1130 static __inline void
1131 bpf_wakeup(struct bpf_d *d)
1132 {
1133 
1134 	BPFD_LOCK_ASSERT(d);
1135 	if (d->bd_state == BPF_WAITING) {
1136 		callout_stop(&d->bd_callout);
1137 		d->bd_state = BPF_IDLE;
1138 	}
1139 	wakeup(d);
1140 	if (d->bd_async && d->bd_sig && d->bd_sigio)
1141 		pgsigio(&d->bd_sigio, d->bd_sig, 0);
1142 
1143 	selwakeuppri(&d->bd_sel, PRINET);
1144 	KNOTE_LOCKED(&d->bd_sel.si_note, 0);
1145 }
1146 
1147 static void
1148 bpf_timed_out(void *arg)
1149 {
1150 	struct bpf_d *d = (struct bpf_d *)arg;
1151 
1152 	BPFD_LOCK_ASSERT(d);
1153 
1154 	if (callout_pending(&d->bd_callout) ||
1155 	    !callout_active(&d->bd_callout))
1156 		return;
1157 	if (d->bd_state == BPF_WAITING) {
1158 		d->bd_state = BPF_TIMED_OUT;
1159 		if (d->bd_slen != 0)
1160 			bpf_wakeup(d);
1161 	}
1162 }
1163 
1164 static int
1165 bpf_ready(struct bpf_d *d)
1166 {
1167 
1168 	BPFD_LOCK_ASSERT(d);
1169 
1170 	if (!bpf_canfreebuf(d) && d->bd_hlen != 0)
1171 		return (1);
1172 	if ((d->bd_immediate || d->bd_state == BPF_TIMED_OUT) &&
1173 	    d->bd_slen != 0)
1174 		return (1);
1175 	return (0);
1176 }
1177 
1178 static int
1179 bpfwrite(struct cdev *dev, struct uio *uio, int ioflag)
1180 {
1181 	struct route ro;
1182 	struct sockaddr dst;
1183 	struct epoch_tracker et;
1184 	struct bpf_if *bp;
1185 	struct bpf_d *d;
1186 	struct ifnet *ifp;
1187 	struct mbuf *m, *mc;
1188 	int error, hlen;
1189 
1190 	error = devfs_get_cdevpriv((void **)&d);
1191 	if (error != 0)
1192 		return (error);
1193 
1194 	NET_EPOCH_ENTER(et);
1195 	BPFD_LOCK(d);
1196 	BPF_PID_REFRESH_CUR(d);
1197 	counter_u64_add(d->bd_wcount, 1);
1198 	if ((bp = d->bd_bif) == NULL) {
1199 		error = ENXIO;
1200 		goto out_locked;
1201 	}
1202 
1203 	ifp = bp->bif_ifp;
1204 	if ((ifp->if_flags & IFF_UP) == 0) {
1205 		error = ENETDOWN;
1206 		goto out_locked;
1207 	}
1208 
1209 	if (uio->uio_resid == 0)
1210 		goto out_locked;
1211 
1212 	bzero(&dst, sizeof(dst));
1213 	m = NULL;
1214 	hlen = 0;
1215 
1216 	/*
1217 	 * Take extra reference, unlock d and exit from epoch section,
1218 	 * since bpf_movein() can sleep.
1219 	 */
1220 	bpfd_ref(d);
1221 	NET_EPOCH_EXIT(et);
1222 	BPFD_UNLOCK(d);
1223 
1224 	error = bpf_movein(uio, (int)bp->bif_dlt, ifp,
1225 	    &m, &dst, &hlen, d);
1226 
1227 	if (error != 0) {
1228 		counter_u64_add(d->bd_wdcount, 1);
1229 		bpfd_rele(d);
1230 		return (error);
1231 	}
1232 
1233 	BPFD_LOCK(d);
1234 	/*
1235 	 * Check that descriptor is still attached to the interface.
1236 	 * This can happen on bpfdetach(). To avoid access to detached
1237 	 * ifnet, free mbuf and return ENXIO.
1238 	 */
1239 	if (d->bd_bif == NULL) {
1240 		counter_u64_add(d->bd_wdcount, 1);
1241 		BPFD_UNLOCK(d);
1242 		bpfd_rele(d);
1243 		m_freem(m);
1244 		return (ENXIO);
1245 	}
1246 	counter_u64_add(d->bd_wfcount, 1);
1247 	if (d->bd_hdrcmplt)
1248 		dst.sa_family = pseudo_AF_HDRCMPLT;
1249 
1250 	if (d->bd_feedback) {
1251 		mc = m_dup(m, M_NOWAIT);
1252 		if (mc != NULL)
1253 			mc->m_pkthdr.rcvif = ifp;
1254 		/* Set M_PROMISC for outgoing packets to be discarded. */
1255 		if (d->bd_direction == BPF_D_INOUT)
1256 			m->m_flags |= M_PROMISC;
1257 	} else
1258 		mc = NULL;
1259 
1260 	m->m_pkthdr.len -= hlen;
1261 	m->m_len -= hlen;
1262 	m->m_data += hlen;	/* XXX */
1263 
1264 	CURVNET_SET(ifp->if_vnet);
1265 #ifdef MAC
1266 	mac_bpfdesc_create_mbuf(d, m);
1267 	if (mc != NULL)
1268 		mac_bpfdesc_create_mbuf(d, mc);
1269 #endif
1270 
1271 	bzero(&ro, sizeof(ro));
1272 	if (hlen != 0) {
1273 		ro.ro_prepend = (u_char *)&dst.sa_data;
1274 		ro.ro_plen = hlen;
1275 		ro.ro_flags = RT_HAS_HEADER;
1276 	}
1277 
1278 	if (d->bd_pcp != 0)
1279 		vlan_set_pcp(m, d->bd_pcp);
1280 
1281 	/* Avoid possible recursion on BPFD_LOCK(). */
1282 	NET_EPOCH_ENTER(et);
1283 	BPFD_UNLOCK(d);
1284 	error = (*ifp->if_output)(ifp, m, &dst, &ro);
1285 	if (error)
1286 		counter_u64_add(d->bd_wdcount, 1);
1287 
1288 	if (mc != NULL) {
1289 		if (error == 0)
1290 			(*ifp->if_input)(ifp, mc);
1291 		else
1292 			m_freem(mc);
1293 	}
1294 	NET_EPOCH_EXIT(et);
1295 	CURVNET_RESTORE();
1296 	bpfd_rele(d);
1297 	return (error);
1298 
1299 out_locked:
1300 	counter_u64_add(d->bd_wdcount, 1);
1301 	NET_EPOCH_EXIT(et);
1302 	BPFD_UNLOCK(d);
1303 	return (error);
1304 }
1305 
1306 /*
1307  * Reset a descriptor by flushing its packet buffer and clearing the receive
1308  * and drop counts.  This is doable for kernel-only buffers, but with
1309  * zero-copy buffers, we can't write to (or rotate) buffers that are
1310  * currently owned by userspace.  It would be nice if we could encapsulate
1311  * this logic in the buffer code rather than here.
1312  */
1313 static void
1314 reset_d(struct bpf_d *d)
1315 {
1316 
1317 	BPFD_LOCK_ASSERT(d);
1318 
1319 	while (d->bd_hbuf_in_use)
1320 		mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock, PRINET,
1321 		    "bd_hbuf", 0);
1322 	if ((d->bd_hbuf != NULL) &&
1323 	    (d->bd_bufmode != BPF_BUFMODE_ZBUF || bpf_canfreebuf(d))) {
1324 		/* Free the hold buffer. */
1325 		d->bd_fbuf = d->bd_hbuf;
1326 		d->bd_hbuf = NULL;
1327 		d->bd_hlen = 0;
1328 		bpf_buf_reclaimed(d);
1329 	}
1330 	if (bpf_canwritebuf(d))
1331 		d->bd_slen = 0;
1332 	counter_u64_zero(d->bd_rcount);
1333 	counter_u64_zero(d->bd_dcount);
1334 	counter_u64_zero(d->bd_fcount);
1335 	counter_u64_zero(d->bd_wcount);
1336 	counter_u64_zero(d->bd_wfcount);
1337 	counter_u64_zero(d->bd_wdcount);
1338 	counter_u64_zero(d->bd_zcopy);
1339 }
1340 
1341 /*
1342  *  FIONREAD		Check for read packet available.
1343  *  BIOCGBLEN		Get buffer len [for read()].
1344  *  BIOCSETF		Set read filter.
1345  *  BIOCSETFNR		Set read filter without resetting descriptor.
1346  *  BIOCSETWF		Set write filter.
1347  *  BIOCFLUSH		Flush read packet buffer.
1348  *  BIOCPROMISC		Put interface into promiscuous mode.
1349  *  BIOCGDLT		Get link layer type.
1350  *  BIOCGETIF		Get interface name.
1351  *  BIOCSETIF		Set interface.
1352  *  BIOCSRTIMEOUT	Set read timeout.
1353  *  BIOCGRTIMEOUT	Get read timeout.
1354  *  BIOCGSTATS		Get packet stats.
1355  *  BIOCIMMEDIATE	Set immediate mode.
1356  *  BIOCVERSION		Get filter language version.
1357  *  BIOCGHDRCMPLT	Get "header already complete" flag
1358  *  BIOCSHDRCMPLT	Set "header already complete" flag
1359  *  BIOCGDIRECTION	Get packet direction flag
1360  *  BIOCSDIRECTION	Set packet direction flag
1361  *  BIOCGTSTAMP		Get time stamp format and resolution.
1362  *  BIOCSTSTAMP		Set time stamp format and resolution.
1363  *  BIOCLOCK		Set "locked" flag
1364  *  BIOCFEEDBACK	Set packet feedback mode.
1365  *  BIOCSETZBUF		Set current zero-copy buffer locations.
1366  *  BIOCGETZMAX		Get maximum zero-copy buffer size.
1367  *  BIOCROTZBUF		Force rotation of zero-copy buffer
1368  *  BIOCSETBUFMODE	Set buffer mode.
1369  *  BIOCGETBUFMODE	Get current buffer mode.
1370  *  BIOCSETVLANPCP	Set VLAN PCP tag.
1371  */
1372 /* ARGSUSED */
1373 static	int
1374 bpfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags,
1375     struct thread *td)
1376 {
1377 	struct bpf_d *d;
1378 	int error;
1379 
1380 	error = devfs_get_cdevpriv((void **)&d);
1381 	if (error != 0)
1382 		return (error);
1383 
1384 	/*
1385 	 * Refresh PID associated with this descriptor.
1386 	 */
1387 	BPFD_LOCK(d);
1388 	BPF_PID_REFRESH(d, td);
1389 	if (d->bd_state == BPF_WAITING)
1390 		callout_stop(&d->bd_callout);
1391 	d->bd_state = BPF_IDLE;
1392 	BPFD_UNLOCK(d);
1393 
1394 	if (d->bd_locked == 1) {
1395 		switch (cmd) {
1396 		case BIOCGBLEN:
1397 		case BIOCFLUSH:
1398 		case BIOCGDLT:
1399 		case BIOCGDLTLIST:
1400 #ifdef COMPAT_FREEBSD32
1401 		case BIOCGDLTLIST32:
1402 #endif
1403 		case BIOCGETIF:
1404 		case BIOCGRTIMEOUT:
1405 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1406 		case BIOCGRTIMEOUT32:
1407 #endif
1408 		case BIOCGSTATS:
1409 		case BIOCVERSION:
1410 		case BIOCGRSIG:
1411 		case BIOCGHDRCMPLT:
1412 		case BIOCSTSTAMP:
1413 		case BIOCFEEDBACK:
1414 		case FIONREAD:
1415 		case BIOCLOCK:
1416 		case BIOCSRTIMEOUT:
1417 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1418 		case BIOCSRTIMEOUT32:
1419 #endif
1420 		case BIOCIMMEDIATE:
1421 		case TIOCGPGRP:
1422 		case BIOCROTZBUF:
1423 			break;
1424 		default:
1425 			return (EPERM);
1426 		}
1427 	}
1428 #ifdef COMPAT_FREEBSD32
1429 	/*
1430 	 * If we see a 32-bit compat ioctl, mark the stream as 32-bit so
1431 	 * that it will get 32-bit packet headers.
1432 	 */
1433 	switch (cmd) {
1434 	case BIOCSETF32:
1435 	case BIOCSETFNR32:
1436 	case BIOCSETWF32:
1437 	case BIOCGDLTLIST32:
1438 	case BIOCGRTIMEOUT32:
1439 	case BIOCSRTIMEOUT32:
1440 		if (SV_PROC_FLAG(td->td_proc, SV_ILP32)) {
1441 			BPFD_LOCK(d);
1442 			d->bd_compat32 = 1;
1443 			BPFD_UNLOCK(d);
1444 		}
1445 	}
1446 #endif
1447 
1448 	CURVNET_SET(TD_TO_VNET(td));
1449 	switch (cmd) {
1450 	default:
1451 		error = EINVAL;
1452 		break;
1453 
1454 	/*
1455 	 * Check for read packet available.
1456 	 */
1457 	case FIONREAD:
1458 		{
1459 			int n;
1460 
1461 			BPFD_LOCK(d);
1462 			n = d->bd_slen;
1463 			while (d->bd_hbuf_in_use)
1464 				mtx_sleep(&d->bd_hbuf_in_use, &d->bd_lock,
1465 				    PRINET, "bd_hbuf", 0);
1466 			if (d->bd_hbuf)
1467 				n += d->bd_hlen;
1468 			BPFD_UNLOCK(d);
1469 
1470 			*(int *)addr = n;
1471 			break;
1472 		}
1473 
1474 	/*
1475 	 * Get buffer len [for read()].
1476 	 */
1477 	case BIOCGBLEN:
1478 		BPFD_LOCK(d);
1479 		*(u_int *)addr = d->bd_bufsize;
1480 		BPFD_UNLOCK(d);
1481 		break;
1482 
1483 	/*
1484 	 * Set buffer length.
1485 	 */
1486 	case BIOCSBLEN:
1487 		error = bpf_ioctl_sblen(d, (u_int *)addr);
1488 		break;
1489 
1490 	/*
1491 	 * Set link layer read filter.
1492 	 */
1493 	case BIOCSETF:
1494 	case BIOCSETFNR:
1495 	case BIOCSETWF:
1496 #ifdef COMPAT_FREEBSD32
1497 	case BIOCSETF32:
1498 	case BIOCSETFNR32:
1499 	case BIOCSETWF32:
1500 #endif
1501 		error = bpf_setf(d, (struct bpf_program *)addr, cmd);
1502 		break;
1503 
1504 	/*
1505 	 * Flush read packet buffer.
1506 	 */
1507 	case BIOCFLUSH:
1508 		BPFD_LOCK(d);
1509 		reset_d(d);
1510 		BPFD_UNLOCK(d);
1511 		break;
1512 
1513 	/*
1514 	 * Put interface into promiscuous mode.
1515 	 */
1516 	case BIOCPROMISC:
1517 		BPF_LOCK();
1518 		if (d->bd_bif == NULL) {
1519 			/*
1520 			 * No interface attached yet.
1521 			 */
1522 			error = EINVAL;
1523 		} else if (d->bd_promisc == 0) {
1524 			error = ifpromisc(d->bd_bif->bif_ifp, 1);
1525 			if (error == 0)
1526 				d->bd_promisc = 1;
1527 		}
1528 		BPF_UNLOCK();
1529 		break;
1530 
1531 	/*
1532 	 * Get current data link type.
1533 	 */
1534 	case BIOCGDLT:
1535 		BPF_LOCK();
1536 		if (d->bd_bif == NULL)
1537 			error = EINVAL;
1538 		else
1539 			*(u_int *)addr = d->bd_bif->bif_dlt;
1540 		BPF_UNLOCK();
1541 		break;
1542 
1543 	/*
1544 	 * Get a list of supported data link types.
1545 	 */
1546 #ifdef COMPAT_FREEBSD32
1547 	case BIOCGDLTLIST32:
1548 		{
1549 			struct bpf_dltlist32 *list32;
1550 			struct bpf_dltlist dltlist;
1551 
1552 			list32 = (struct bpf_dltlist32 *)addr;
1553 			dltlist.bfl_len = list32->bfl_len;
1554 			dltlist.bfl_list = PTRIN(list32->bfl_list);
1555 			BPF_LOCK();
1556 			if (d->bd_bif == NULL)
1557 				error = EINVAL;
1558 			else {
1559 				error = bpf_getdltlist(d, &dltlist);
1560 				if (error == 0)
1561 					list32->bfl_len = dltlist.bfl_len;
1562 			}
1563 			BPF_UNLOCK();
1564 			break;
1565 		}
1566 #endif
1567 
1568 	case BIOCGDLTLIST:
1569 		BPF_LOCK();
1570 		if (d->bd_bif == NULL)
1571 			error = EINVAL;
1572 		else
1573 			error = bpf_getdltlist(d, (struct bpf_dltlist *)addr);
1574 		BPF_UNLOCK();
1575 		break;
1576 
1577 	/*
1578 	 * Set data link type.
1579 	 */
1580 	case BIOCSDLT:
1581 		BPF_LOCK();
1582 		if (d->bd_bif == NULL)
1583 			error = EINVAL;
1584 		else
1585 			error = bpf_setdlt(d, *(u_int *)addr);
1586 		BPF_UNLOCK();
1587 		break;
1588 
1589 	/*
1590 	 * Get interface name.
1591 	 */
1592 	case BIOCGETIF:
1593 		BPF_LOCK();
1594 		if (d->bd_bif == NULL)
1595 			error = EINVAL;
1596 		else {
1597 			struct ifnet *const ifp = d->bd_bif->bif_ifp;
1598 			struct ifreq *const ifr = (struct ifreq *)addr;
1599 
1600 			strlcpy(ifr->ifr_name, ifp->if_xname,
1601 			    sizeof(ifr->ifr_name));
1602 		}
1603 		BPF_UNLOCK();
1604 		break;
1605 
1606 	/*
1607 	 * Set interface.
1608 	 */
1609 	case BIOCSETIF:
1610 		{
1611 			int alloc_buf, size;
1612 
1613 			/*
1614 			 * Behavior here depends on the buffering model.  If
1615 			 * we're using kernel memory buffers, then we can
1616 			 * allocate them here.  If we're using zero-copy,
1617 			 * then the user process must have registered buffers
1618 			 * by the time we get here.
1619 			 */
1620 			alloc_buf = 0;
1621 			BPFD_LOCK(d);
1622 			if (d->bd_bufmode == BPF_BUFMODE_BUFFER &&
1623 			    d->bd_sbuf == NULL)
1624 				alloc_buf = 1;
1625 			BPFD_UNLOCK(d);
1626 			if (alloc_buf) {
1627 				size = d->bd_bufsize;
1628 				error = bpf_buffer_ioctl_sblen(d, &size);
1629 				if (error != 0)
1630 					break;
1631 			}
1632 			BPF_LOCK();
1633 			error = bpf_setif(d, (struct ifreq *)addr);
1634 			BPF_UNLOCK();
1635 			break;
1636 		}
1637 
1638 	/*
1639 	 * Set read timeout.
1640 	 */
1641 	case BIOCSRTIMEOUT:
1642 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1643 	case BIOCSRTIMEOUT32:
1644 #endif
1645 		{
1646 			struct timeval *tv = (struct timeval *)addr;
1647 #if defined(COMPAT_FREEBSD32)
1648 			struct timeval32 *tv32;
1649 			struct timeval tv64;
1650 
1651 			if (cmd == BIOCSRTIMEOUT32) {
1652 				tv32 = (struct timeval32 *)addr;
1653 				tv = &tv64;
1654 				tv->tv_sec = tv32->tv_sec;
1655 				tv->tv_usec = tv32->tv_usec;
1656 			} else
1657 #endif
1658 				tv = (struct timeval *)addr;
1659 
1660 			/*
1661 			 * Subtract 1 tick from tvtohz() since this isn't
1662 			 * a one-shot timer.
1663 			 */
1664 			if ((error = itimerfix(tv)) == 0)
1665 				d->bd_rtout = tvtohz(tv) - 1;
1666 			break;
1667 		}
1668 
1669 	/*
1670 	 * Get read timeout.
1671 	 */
1672 	case BIOCGRTIMEOUT:
1673 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1674 	case BIOCGRTIMEOUT32:
1675 #endif
1676 		{
1677 			struct timeval *tv;
1678 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1679 			struct timeval32 *tv32;
1680 			struct timeval tv64;
1681 
1682 			if (cmd == BIOCGRTIMEOUT32)
1683 				tv = &tv64;
1684 			else
1685 #endif
1686 				tv = (struct timeval *)addr;
1687 
1688 			tv->tv_sec = d->bd_rtout / hz;
1689 			tv->tv_usec = (d->bd_rtout % hz) * tick;
1690 #if defined(COMPAT_FREEBSD32) && defined(__amd64__)
1691 			if (cmd == BIOCGRTIMEOUT32) {
1692 				tv32 = (struct timeval32 *)addr;
1693 				tv32->tv_sec = tv->tv_sec;
1694 				tv32->tv_usec = tv->tv_usec;
1695 			}
1696 #endif
1697 
1698 			break;
1699 		}
1700 
1701 	/*
1702 	 * Get packet stats.
1703 	 */
1704 	case BIOCGSTATS:
1705 		{
1706 			struct bpf_stat *bs = (struct bpf_stat *)addr;
1707 
1708 			/* XXXCSJP overflow */
1709 			bs->bs_recv = (u_int)counter_u64_fetch(d->bd_rcount);
1710 			bs->bs_drop = (u_int)counter_u64_fetch(d->bd_dcount);
1711 			break;
1712 		}
1713 
1714 	/*
1715 	 * Set immediate mode.
1716 	 */
1717 	case BIOCIMMEDIATE:
1718 		BPFD_LOCK(d);
1719 		d->bd_immediate = *(u_int *)addr;
1720 		BPFD_UNLOCK(d);
1721 		break;
1722 
1723 	case BIOCVERSION:
1724 		{
1725 			struct bpf_version *bv = (struct bpf_version *)addr;
1726 
1727 			bv->bv_major = BPF_MAJOR_VERSION;
1728 			bv->bv_minor = BPF_MINOR_VERSION;
1729 			break;
1730 		}
1731 
1732 	/*
1733 	 * Get "header already complete" flag
1734 	 */
1735 	case BIOCGHDRCMPLT:
1736 		BPFD_LOCK(d);
1737 		*(u_int *)addr = d->bd_hdrcmplt;
1738 		BPFD_UNLOCK(d);
1739 		break;
1740 
1741 	/*
1742 	 * Set "header already complete" flag
1743 	 */
1744 	case BIOCSHDRCMPLT:
1745 		BPFD_LOCK(d);
1746 		d->bd_hdrcmplt = *(u_int *)addr ? 1 : 0;
1747 		BPFD_UNLOCK(d);
1748 		break;
1749 
1750 	/*
1751 	 * Get packet direction flag
1752 	 */
1753 	case BIOCGDIRECTION:
1754 		BPFD_LOCK(d);
1755 		*(u_int *)addr = d->bd_direction;
1756 		BPFD_UNLOCK(d);
1757 		break;
1758 
1759 	/*
1760 	 * Set packet direction flag
1761 	 */
1762 	case BIOCSDIRECTION:
1763 		{
1764 			u_int	direction;
1765 
1766 			direction = *(u_int *)addr;
1767 			switch (direction) {
1768 			case BPF_D_IN:
1769 			case BPF_D_INOUT:
1770 			case BPF_D_OUT:
1771 				BPFD_LOCK(d);
1772 				d->bd_direction = direction;
1773 				BPFD_UNLOCK(d);
1774 				break;
1775 			default:
1776 				error = EINVAL;
1777 			}
1778 		}
1779 		break;
1780 
1781 	/*
1782 	 * Get packet timestamp format and resolution.
1783 	 */
1784 	case BIOCGTSTAMP:
1785 		BPFD_LOCK(d);
1786 		*(u_int *)addr = d->bd_tstamp;
1787 		BPFD_UNLOCK(d);
1788 		break;
1789 
1790 	/*
1791 	 * Set packet timestamp format and resolution.
1792 	 */
1793 	case BIOCSTSTAMP:
1794 		{
1795 			u_int	func;
1796 
1797 			func = *(u_int *)addr;
1798 			if (BPF_T_VALID(func))
1799 				d->bd_tstamp = func;
1800 			else
1801 				error = EINVAL;
1802 		}
1803 		break;
1804 
1805 	case BIOCFEEDBACK:
1806 		BPFD_LOCK(d);
1807 		d->bd_feedback = *(u_int *)addr;
1808 		BPFD_UNLOCK(d);
1809 		break;
1810 
1811 	case BIOCLOCK:
1812 		BPFD_LOCK(d);
1813 		d->bd_locked = 1;
1814 		BPFD_UNLOCK(d);
1815 		break;
1816 
1817 	case FIONBIO:		/* Non-blocking I/O */
1818 		break;
1819 
1820 	case FIOASYNC:		/* Send signal on receive packets */
1821 		BPFD_LOCK(d);
1822 		d->bd_async = *(int *)addr;
1823 		BPFD_UNLOCK(d);
1824 		break;
1825 
1826 	case FIOSETOWN:
1827 		/*
1828 		 * XXX: Add some sort of locking here?
1829 		 * fsetown() can sleep.
1830 		 */
1831 		error = fsetown(*(int *)addr, &d->bd_sigio);
1832 		break;
1833 
1834 	case FIOGETOWN:
1835 		BPFD_LOCK(d);
1836 		*(int *)addr = fgetown(&d->bd_sigio);
1837 		BPFD_UNLOCK(d);
1838 		break;
1839 
1840 	/* This is deprecated, FIOSETOWN should be used instead. */
1841 	case TIOCSPGRP:
1842 		error = fsetown(-(*(int *)addr), &d->bd_sigio);
1843 		break;
1844 
1845 	/* This is deprecated, FIOGETOWN should be used instead. */
1846 	case TIOCGPGRP:
1847 		*(int *)addr = -fgetown(&d->bd_sigio);
1848 		break;
1849 
1850 	case BIOCSRSIG:		/* Set receive signal */
1851 		{
1852 			u_int sig;
1853 
1854 			sig = *(u_int *)addr;
1855 
1856 			if (sig >= NSIG)
1857 				error = EINVAL;
1858 			else {
1859 				BPFD_LOCK(d);
1860 				d->bd_sig = sig;
1861 				BPFD_UNLOCK(d);
1862 			}
1863 			break;
1864 		}
1865 	case BIOCGRSIG:
1866 		BPFD_LOCK(d);
1867 		*(u_int *)addr = d->bd_sig;
1868 		BPFD_UNLOCK(d);
1869 		break;
1870 
1871 	case BIOCGETBUFMODE:
1872 		BPFD_LOCK(d);
1873 		*(u_int *)addr = d->bd_bufmode;
1874 		BPFD_UNLOCK(d);
1875 		break;
1876 
1877 	case BIOCSETBUFMODE:
1878 		/*
1879 		 * Allow the buffering mode to be changed as long as we
1880 		 * haven't yet committed to a particular mode.  Our
1881 		 * definition of commitment, for now, is whether or not a
1882 		 * buffer has been allocated or an interface attached, since
1883 		 * that's the point where things get tricky.
1884 		 */
1885 		switch (*(u_int *)addr) {
1886 		case BPF_BUFMODE_BUFFER:
1887 			break;
1888 
1889 		case BPF_BUFMODE_ZBUF:
1890 			if (bpf_zerocopy_enable)
1891 				break;
1892 			/* FALLSTHROUGH */
1893 
1894 		default:
1895 			CURVNET_RESTORE();
1896 			return (EINVAL);
1897 		}
1898 
1899 		BPFD_LOCK(d);
1900 		if (d->bd_sbuf != NULL || d->bd_hbuf != NULL ||
1901 		    d->bd_fbuf != NULL || d->bd_bif != NULL) {
1902 			BPFD_UNLOCK(d);
1903 			CURVNET_RESTORE();
1904 			return (EBUSY);
1905 		}
1906 		d->bd_bufmode = *(u_int *)addr;
1907 		BPFD_UNLOCK(d);
1908 		break;
1909 
1910 	case BIOCGETZMAX:
1911 		error = bpf_ioctl_getzmax(td, d, (size_t *)addr);
1912 		break;
1913 
1914 	case BIOCSETZBUF:
1915 		error = bpf_ioctl_setzbuf(td, d, (struct bpf_zbuf *)addr);
1916 		break;
1917 
1918 	case BIOCROTZBUF:
1919 		error = bpf_ioctl_rotzbuf(td, d, (struct bpf_zbuf *)addr);
1920 		break;
1921 
1922 	case BIOCSETVLANPCP:
1923 		{
1924 			u_int pcp;
1925 
1926 			pcp = *(u_int *)addr;
1927 			if (pcp > BPF_PRIO_MAX || pcp < 0) {
1928 				error = EINVAL;
1929 				break;
1930 			}
1931 			d->bd_pcp = pcp;
1932 			break;
1933 		}
1934 	}
1935 	CURVNET_RESTORE();
1936 	return (error);
1937 }
1938 
1939 /*
1940  * Set d's packet filter program to fp. If this file already has a filter,
1941  * free it and replace it. Returns EINVAL for bogus requests.
1942  *
1943  * Note we use global lock here to serialize bpf_setf() and bpf_setif()
1944  * calls.
1945  */
1946 static int
1947 bpf_setf(struct bpf_d *d, struct bpf_program *fp, u_long cmd)
1948 {
1949 #ifdef COMPAT_FREEBSD32
1950 	struct bpf_program fp_swab;
1951 	struct bpf_program32 *fp32;
1952 #endif
1953 	struct bpf_program_buffer *fcode;
1954 	struct bpf_insn *filter;
1955 #ifdef BPF_JITTER
1956 	bpf_jit_filter *jfunc;
1957 #endif
1958 	size_t size;
1959 	u_int flen;
1960 	bool track_event;
1961 
1962 #ifdef COMPAT_FREEBSD32
1963 	switch (cmd) {
1964 	case BIOCSETF32:
1965 	case BIOCSETWF32:
1966 	case BIOCSETFNR32:
1967 		fp32 = (struct bpf_program32 *)fp;
1968 		fp_swab.bf_len = fp32->bf_len;
1969 		fp_swab.bf_insns =
1970 		    (struct bpf_insn *)(uintptr_t)fp32->bf_insns;
1971 		fp = &fp_swab;
1972 		switch (cmd) {
1973 		case BIOCSETF32:
1974 			cmd = BIOCSETF;
1975 			break;
1976 		case BIOCSETWF32:
1977 			cmd = BIOCSETWF;
1978 			break;
1979 		}
1980 		break;
1981 	}
1982 #endif
1983 
1984 	filter = NULL;
1985 #ifdef BPF_JITTER
1986 	jfunc = NULL;
1987 #endif
1988 	/*
1989 	 * Check new filter validness before acquiring any locks.
1990 	 * Allocate memory for new filter, if needed.
1991 	 */
1992 	flen = fp->bf_len;
1993 	if (flen > bpf_maxinsns || (fp->bf_insns == NULL && flen != 0))
1994 		return (EINVAL);
1995 	size = flen * sizeof(*fp->bf_insns);
1996 	if (size > 0) {
1997 		/* We're setting up new filter. Copy and check actual data. */
1998 		fcode = bpf_program_buffer_alloc(size, M_WAITOK);
1999 		filter = (struct bpf_insn *)fcode->buffer;
2000 		if (copyin(fp->bf_insns, filter, size) != 0 ||
2001 		    !bpf_validate(filter, flen)) {
2002 			free(fcode, M_BPF);
2003 			return (EINVAL);
2004 		}
2005 #ifdef BPF_JITTER
2006 		if (cmd != BIOCSETWF) {
2007 			/*
2008 			 * Filter is copied inside fcode and is
2009 			 * perfectly valid.
2010 			 */
2011 			jfunc = bpf_jitter(filter, flen);
2012 		}
2013 #endif
2014 	}
2015 
2016 	track_event = false;
2017 	fcode = NULL;
2018 
2019 	BPF_LOCK();
2020 	BPFD_LOCK(d);
2021 	/* Set up new filter. */
2022 	if (cmd == BIOCSETWF) {
2023 		if (d->bd_wfilter != NULL) {
2024 			fcode = __containerof((void *)d->bd_wfilter,
2025 			    struct bpf_program_buffer, buffer);
2026 #ifdef BPF_JITTER
2027 			fcode->func = NULL;
2028 #endif
2029 		}
2030 		d->bd_wfilter = filter;
2031 	} else {
2032 		if (d->bd_rfilter != NULL) {
2033 			fcode = __containerof((void *)d->bd_rfilter,
2034 			    struct bpf_program_buffer, buffer);
2035 #ifdef BPF_JITTER
2036 			fcode->func = d->bd_bfilter;
2037 #endif
2038 		}
2039 		d->bd_rfilter = filter;
2040 #ifdef BPF_JITTER
2041 		d->bd_bfilter = jfunc;
2042 #endif
2043 		if (cmd == BIOCSETF)
2044 			reset_d(d);
2045 
2046 		if (bpf_check_upgrade(cmd, d, filter, flen) != 0) {
2047 			/*
2048 			 * Filter can be set several times without
2049 			 * specifying interface. In this case just mark d
2050 			 * as reader.
2051 			 */
2052 			d->bd_writer = 0;
2053 			if (d->bd_bif != NULL) {
2054 				/*
2055 				 * Remove descriptor from writers-only list
2056 				 * and add it to active readers list.
2057 				 */
2058 				CK_LIST_REMOVE(d, bd_next);
2059 				CK_LIST_INSERT_HEAD(&d->bd_bif->bif_dlist,
2060 				    d, bd_next);
2061 				CTR2(KTR_NET,
2062 				    "%s: upgrade required by pid %d",
2063 				    __func__, d->bd_pid);
2064 				track_event = true;
2065 			}
2066 		}
2067 	}
2068 	BPFD_UNLOCK(d);
2069 
2070 	if (fcode != NULL)
2071 		NET_EPOCH_CALL(bpf_program_buffer_free, &fcode->epoch_ctx);
2072 
2073 	if (track_event)
2074 		EVENTHANDLER_INVOKE(bpf_track,
2075 		    d->bd_bif->bif_ifp, d->bd_bif->bif_dlt, 1);
2076 
2077 	BPF_UNLOCK();
2078 	return (0);
2079 }
2080 
2081 /*
2082  * Detach a file from its current interface (if attached at all) and attach
2083  * to the interface indicated by the name stored in ifr.
2084  * Return an errno or 0.
2085  */
2086 static int
2087 bpf_setif(struct bpf_d *d, struct ifreq *ifr)
2088 {
2089 	struct bpf_if *bp;
2090 	struct ifnet *theywant;
2091 
2092 	BPF_LOCK_ASSERT();
2093 
2094 	theywant = ifunit(ifr->ifr_name);
2095 	if (theywant == NULL || theywant->if_bpf == NULL)
2096 		return (ENXIO);
2097 
2098 	bp = theywant->if_bpf;
2099 	/*
2100 	 * At this point, we expect the buffer is already allocated.  If not,
2101 	 * return an error.
2102 	 */
2103 	switch (d->bd_bufmode) {
2104 	case BPF_BUFMODE_BUFFER:
2105 	case BPF_BUFMODE_ZBUF:
2106 		if (d->bd_sbuf == NULL)
2107 			return (EINVAL);
2108 		break;
2109 
2110 	default:
2111 		panic("bpf_setif: bufmode %d", d->bd_bufmode);
2112 	}
2113 	if (bp != d->bd_bif)
2114 		bpf_attachd(d, bp);
2115 	else {
2116 		BPFD_LOCK(d);
2117 		reset_d(d);
2118 		BPFD_UNLOCK(d);
2119 	}
2120 	return (0);
2121 }
2122 
2123 /*
2124  * Support for select() and poll() system calls
2125  *
2126  * Return true iff the specific operation will not block indefinitely.
2127  * Otherwise, return false but make a note that a selwakeup() must be done.
2128  */
2129 static int
2130 bpfpoll(struct cdev *dev, int events, struct thread *td)
2131 {
2132 	struct bpf_d *d;
2133 	int revents;
2134 
2135 	if (devfs_get_cdevpriv((void **)&d) != 0 || d->bd_bif == NULL)
2136 		return (events &
2137 		    (POLLHUP|POLLIN|POLLRDNORM|POLLOUT|POLLWRNORM));
2138 
2139 	/*
2140 	 * Refresh PID associated with this descriptor.
2141 	 */
2142 	revents = events & (POLLOUT | POLLWRNORM);
2143 	BPFD_LOCK(d);
2144 	BPF_PID_REFRESH(d, td);
2145 	if (events & (POLLIN | POLLRDNORM)) {
2146 		if (bpf_ready(d))
2147 			revents |= events & (POLLIN | POLLRDNORM);
2148 		else {
2149 			selrecord(td, &d->bd_sel);
2150 			/* Start the read timeout if necessary. */
2151 			if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2152 				callout_reset(&d->bd_callout, d->bd_rtout,
2153 				    bpf_timed_out, d);
2154 				d->bd_state = BPF_WAITING;
2155 			}
2156 		}
2157 	}
2158 	BPFD_UNLOCK(d);
2159 	return (revents);
2160 }
2161 
2162 /*
2163  * Support for kevent() system call.  Register EVFILT_READ filters and
2164  * reject all others.
2165  */
2166 int
2167 bpfkqfilter(struct cdev *dev, struct knote *kn)
2168 {
2169 	struct bpf_d *d;
2170 
2171 	if (devfs_get_cdevpriv((void **)&d) != 0)
2172 		return (1);
2173 
2174 	switch (kn->kn_filter) {
2175 	case EVFILT_READ:
2176 		kn->kn_fop = &bpfread_filtops;
2177 		break;
2178 
2179 	case EVFILT_WRITE:
2180 		kn->kn_fop = &bpfwrite_filtops;
2181 		break;
2182 
2183 	default:
2184 		return (1);
2185 	}
2186 
2187 	/*
2188 	 * Refresh PID associated with this descriptor.
2189 	 */
2190 	BPFD_LOCK(d);
2191 	BPF_PID_REFRESH_CUR(d);
2192 	kn->kn_hook = d;
2193 	knlist_add(&d->bd_sel.si_note, kn, 1);
2194 	BPFD_UNLOCK(d);
2195 
2196 	return (0);
2197 }
2198 
2199 static void
2200 filt_bpfdetach(struct knote *kn)
2201 {
2202 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2203 
2204 	knlist_remove(&d->bd_sel.si_note, kn, 0);
2205 }
2206 
2207 static int
2208 filt_bpfread(struct knote *kn, long hint)
2209 {
2210 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2211 	int ready;
2212 
2213 	BPFD_LOCK_ASSERT(d);
2214 	ready = bpf_ready(d);
2215 	if (ready) {
2216 		kn->kn_data = d->bd_slen;
2217 		/*
2218 		 * Ignore the hold buffer if it is being copied to user space.
2219 		 */
2220 		if (!d->bd_hbuf_in_use && d->bd_hbuf)
2221 			kn->kn_data += d->bd_hlen;
2222 	} else if (d->bd_rtout > 0 && d->bd_state == BPF_IDLE) {
2223 		callout_reset(&d->bd_callout, d->bd_rtout,
2224 		    bpf_timed_out, d);
2225 		d->bd_state = BPF_WAITING;
2226 	}
2227 
2228 	return (ready);
2229 }
2230 
2231 static int
2232 filt_bpfwrite(struct knote *kn, long hint)
2233 {
2234 	struct bpf_d *d = (struct bpf_d *)kn->kn_hook;
2235 
2236 	BPFD_LOCK_ASSERT(d);
2237 
2238 	if (d->bd_bif == NULL) {
2239 		kn->kn_data = 0;
2240 		return (0);
2241 	} else {
2242 		kn->kn_data = d->bd_bif->bif_ifp->if_mtu;
2243 		return (1);
2244 	}
2245 }
2246 
2247 #define	BPF_TSTAMP_NONE		0
2248 #define	BPF_TSTAMP_FAST		1
2249 #define	BPF_TSTAMP_NORMAL	2
2250 #define	BPF_TSTAMP_EXTERN	3
2251 
2252 static int
2253 bpf_ts_quality(int tstype)
2254 {
2255 
2256 	if (tstype == BPF_T_NONE)
2257 		return (BPF_TSTAMP_NONE);
2258 	if ((tstype & BPF_T_FAST) != 0)
2259 		return (BPF_TSTAMP_FAST);
2260 
2261 	return (BPF_TSTAMP_NORMAL);
2262 }
2263 
2264 static int
2265 bpf_gettime(struct bintime *bt, int tstype, struct mbuf *m)
2266 {
2267 	struct timespec ts;
2268 	struct m_tag *tag;
2269 	int quality;
2270 
2271 	quality = bpf_ts_quality(tstype);
2272 	if (quality == BPF_TSTAMP_NONE)
2273 		return (quality);
2274 
2275 	if (m != NULL) {
2276 		if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) {
2277 			mbuf_tstmp2timespec(m, &ts);
2278 			timespec2bintime(&ts, bt);
2279 			return (BPF_TSTAMP_EXTERN);
2280 		}
2281 		tag = m_tag_locate(m, MTAG_BPF, MTAG_BPF_TIMESTAMP, NULL);
2282 		if (tag != NULL) {
2283 			*bt = *(struct bintime *)(tag + 1);
2284 			return (BPF_TSTAMP_EXTERN);
2285 		}
2286 	}
2287 	if (quality == BPF_TSTAMP_NORMAL)
2288 		binuptime(bt);
2289 	else
2290 		getbinuptime(bt);
2291 
2292 	return (quality);
2293 }
2294 
2295 /*
2296  * Incoming linkage from device drivers.  Process the packet pkt, of length
2297  * pktlen, which is stored in a contiguous buffer.  The packet is parsed
2298  * by each process' filter, and if accepted, stashed into the corresponding
2299  * buffer.
2300  */
2301 void
2302 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
2303 {
2304 	struct epoch_tracker et;
2305 	struct bintime bt;
2306 	struct bpf_d *d;
2307 #ifdef BPF_JITTER
2308 	bpf_jit_filter *bf;
2309 #endif
2310 	u_int slen;
2311 	int gottime;
2312 
2313 	gottime = BPF_TSTAMP_NONE;
2314 	NET_EPOCH_ENTER(et);
2315 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2316 		counter_u64_add(d->bd_rcount, 1);
2317 		/*
2318 		 * NB: We dont call BPF_CHECK_DIRECTION() here since there
2319 		 * is no way for the caller to indiciate to us whether this
2320 		 * packet is inbound or outbound. In the bpf_mtap() routines,
2321 		 * we use the interface pointers on the mbuf to figure it out.
2322 		 */
2323 #ifdef BPF_JITTER
2324 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2325 		if (bf != NULL)
2326 			slen = (*(bf->func))(pkt, pktlen, pktlen);
2327 		else
2328 #endif
2329 		slen = bpf_filter(d->bd_rfilter, pkt, pktlen, pktlen);
2330 		if (slen != 0) {
2331 			/*
2332 			 * Filter matches. Let's to acquire write lock.
2333 			 */
2334 			BPFD_LOCK(d);
2335 			counter_u64_add(d->bd_fcount, 1);
2336 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2337 				gottime = bpf_gettime(&bt, d->bd_tstamp,
2338 				    NULL);
2339 #ifdef MAC
2340 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2341 #endif
2342 				catchpacket(d, pkt, pktlen, slen,
2343 				    bpf_append_bytes, &bt);
2344 			BPFD_UNLOCK(d);
2345 		}
2346 	}
2347 	NET_EPOCH_EXIT(et);
2348 }
2349 
2350 void
2351 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
2352 {
2353 	if (bpf_peers_present(ifp->if_bpf))
2354 		bpf_tap(ifp->if_bpf, pkt, pktlen);
2355 }
2356 
2357 #define	BPF_CHECK_DIRECTION(d, r, i)				\
2358 	    (((d)->bd_direction == BPF_D_IN && (r) != (i)) ||	\
2359 	    ((d)->bd_direction == BPF_D_OUT && (r) == (i)))
2360 
2361 /*
2362  * Incoming linkage from device drivers, when packet is in an mbuf chain.
2363  * Locking model is explained in bpf_tap().
2364  */
2365 void
2366 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
2367 {
2368 	struct epoch_tracker et;
2369 	struct bintime bt;
2370 	struct bpf_d *d;
2371 #ifdef BPF_JITTER
2372 	bpf_jit_filter *bf;
2373 #endif
2374 	u_int pktlen, slen;
2375 	int gottime;
2376 
2377 	/* Skip outgoing duplicate packets. */
2378 	if ((m->m_flags & M_PROMISC) != 0 && m_rcvif(m) == NULL) {
2379 		m->m_flags &= ~M_PROMISC;
2380 		return;
2381 	}
2382 
2383 	pktlen = m_length(m, NULL);
2384 	gottime = BPF_TSTAMP_NONE;
2385 
2386 	NET_EPOCH_ENTER(et);
2387 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2388 		if (BPF_CHECK_DIRECTION(d, m_rcvif(m), bp->bif_ifp))
2389 			continue;
2390 		counter_u64_add(d->bd_rcount, 1);
2391 #ifdef BPF_JITTER
2392 		bf = bpf_jitter_enable != 0 ? d->bd_bfilter : NULL;
2393 		/* XXX We cannot handle multiple mbufs. */
2394 		if (bf != NULL && m->m_next == NULL)
2395 			slen = (*(bf->func))(mtod(m, u_char *), pktlen,
2396 			    pktlen);
2397 		else
2398 #endif
2399 		slen = bpf_filter(d->bd_rfilter, (u_char *)m, pktlen, 0);
2400 		if (slen != 0) {
2401 			BPFD_LOCK(d);
2402 
2403 			counter_u64_add(d->bd_fcount, 1);
2404 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2405 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2406 #ifdef MAC
2407 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2408 #endif
2409 				catchpacket(d, (u_char *)m, pktlen, slen,
2410 				    bpf_append_mbuf, &bt);
2411 			BPFD_UNLOCK(d);
2412 		}
2413 	}
2414 	NET_EPOCH_EXIT(et);
2415 }
2416 
2417 void
2418 bpf_mtap_if(if_t ifp, struct mbuf *m)
2419 {
2420 	if (bpf_peers_present(ifp->if_bpf)) {
2421 		M_ASSERTVALID(m);
2422 		bpf_mtap(ifp->if_bpf, m);
2423 	}
2424 }
2425 
2426 /*
2427  * Incoming linkage from device drivers, when packet is in
2428  * an mbuf chain and to be prepended by a contiguous header.
2429  */
2430 void
2431 bpf_mtap2(struct bpf_if *bp, void *data, u_int dlen, struct mbuf *m)
2432 {
2433 	struct epoch_tracker et;
2434 	struct bintime bt;
2435 	struct mbuf mb;
2436 	struct bpf_d *d;
2437 	u_int pktlen, slen;
2438 	int gottime;
2439 
2440 	/* Skip outgoing duplicate packets. */
2441 	if ((m->m_flags & M_PROMISC) != 0 && m->m_pkthdr.rcvif == NULL) {
2442 		m->m_flags &= ~M_PROMISC;
2443 		return;
2444 	}
2445 
2446 	pktlen = m_length(m, NULL);
2447 	/*
2448 	 * Craft on-stack mbuf suitable for passing to bpf_filter.
2449 	 * Note that we cut corners here; we only setup what's
2450 	 * absolutely needed--this mbuf should never go anywhere else.
2451 	 */
2452 	mb.m_flags = 0;
2453 	mb.m_next = m;
2454 	mb.m_data = data;
2455 	mb.m_len = dlen;
2456 	pktlen += dlen;
2457 
2458 	gottime = BPF_TSTAMP_NONE;
2459 
2460 	NET_EPOCH_ENTER(et);
2461 	CK_LIST_FOREACH(d, &bp->bif_dlist, bd_next) {
2462 		if (BPF_CHECK_DIRECTION(d, m->m_pkthdr.rcvif, bp->bif_ifp))
2463 			continue;
2464 		counter_u64_add(d->bd_rcount, 1);
2465 		slen = bpf_filter(d->bd_rfilter, (u_char *)&mb, pktlen, 0);
2466 		if (slen != 0) {
2467 			BPFD_LOCK(d);
2468 
2469 			counter_u64_add(d->bd_fcount, 1);
2470 			if (gottime < bpf_ts_quality(d->bd_tstamp))
2471 				gottime = bpf_gettime(&bt, d->bd_tstamp, m);
2472 #ifdef MAC
2473 			if (mac_bpfdesc_check_receive(d, bp->bif_ifp) == 0)
2474 #endif
2475 				catchpacket(d, (u_char *)&mb, pktlen, slen,
2476 				    bpf_append_mbuf, &bt);
2477 			BPFD_UNLOCK(d);
2478 		}
2479 	}
2480 	NET_EPOCH_EXIT(et);
2481 }
2482 
2483 void
2484 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
2485 {
2486 	if (bpf_peers_present(ifp->if_bpf)) {
2487 		M_ASSERTVALID(m);
2488 		bpf_mtap2(ifp->if_bpf, data, dlen, m);
2489 	}
2490 }
2491 
2492 #undef	BPF_CHECK_DIRECTION
2493 #undef	BPF_TSTAMP_NONE
2494 #undef	BPF_TSTAMP_FAST
2495 #undef	BPF_TSTAMP_NORMAL
2496 #undef	BPF_TSTAMP_EXTERN
2497 
2498 static int
2499 bpf_hdrlen(struct bpf_d *d)
2500 {
2501 	int hdrlen;
2502 
2503 	hdrlen = d->bd_bif->bif_hdrlen;
2504 #ifndef BURN_BRIDGES
2505 	if (d->bd_tstamp == BPF_T_NONE ||
2506 	    BPF_T_FORMAT(d->bd_tstamp) == BPF_T_MICROTIME)
2507 #ifdef COMPAT_FREEBSD32
2508 		if (d->bd_compat32)
2509 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr32);
2510 		else
2511 #endif
2512 			hdrlen += SIZEOF_BPF_HDR(struct bpf_hdr);
2513 	else
2514 #endif
2515 		hdrlen += SIZEOF_BPF_HDR(struct bpf_xhdr);
2516 #ifdef COMPAT_FREEBSD32
2517 	if (d->bd_compat32)
2518 		hdrlen = BPF_WORDALIGN32(hdrlen);
2519 	else
2520 #endif
2521 		hdrlen = BPF_WORDALIGN(hdrlen);
2522 
2523 	return (hdrlen - d->bd_bif->bif_hdrlen);
2524 }
2525 
2526 static void
2527 bpf_bintime2ts(struct bintime *bt, struct bpf_ts *ts, int tstype)
2528 {
2529 	struct bintime bt2, boottimebin;
2530 	struct timeval tsm;
2531 	struct timespec tsn;
2532 
2533 	if ((tstype & BPF_T_MONOTONIC) == 0) {
2534 		bt2 = *bt;
2535 		getboottimebin(&boottimebin);
2536 		bintime_add(&bt2, &boottimebin);
2537 		bt = &bt2;
2538 	}
2539 	switch (BPF_T_FORMAT(tstype)) {
2540 	case BPF_T_MICROTIME:
2541 		bintime2timeval(bt, &tsm);
2542 		ts->bt_sec = tsm.tv_sec;
2543 		ts->bt_frac = tsm.tv_usec;
2544 		break;
2545 	case BPF_T_NANOTIME:
2546 		bintime2timespec(bt, &tsn);
2547 		ts->bt_sec = tsn.tv_sec;
2548 		ts->bt_frac = tsn.tv_nsec;
2549 		break;
2550 	case BPF_T_BINTIME:
2551 		ts->bt_sec = bt->sec;
2552 		ts->bt_frac = bt->frac;
2553 		break;
2554 	}
2555 }
2556 
2557 /*
2558  * Move the packet data from interface memory (pkt) into the
2559  * store buffer.  "cpfn" is the routine called to do the actual data
2560  * transfer.  bcopy is passed in to copy contiguous chunks, while
2561  * bpf_append_mbuf is passed in to copy mbuf chains.  In the latter case,
2562  * pkt is really an mbuf.
2563  */
2564 static void
2565 catchpacket(struct bpf_d *d, u_char *pkt, u_int pktlen, u_int snaplen,
2566     void (*cpfn)(struct bpf_d *, caddr_t, u_int, void *, u_int),
2567     struct bintime *bt)
2568 {
2569 	static char zeroes[BPF_ALIGNMENT];
2570 	struct bpf_xhdr hdr;
2571 #ifndef BURN_BRIDGES
2572 	struct bpf_hdr hdr_old;
2573 #ifdef COMPAT_FREEBSD32
2574 	struct bpf_hdr32 hdr32_old;
2575 #endif
2576 #endif
2577 	int caplen, curlen, hdrlen, pad, totlen;
2578 	int do_wakeup = 0;
2579 	int do_timestamp;
2580 	int tstype;
2581 
2582 	BPFD_LOCK_ASSERT(d);
2583 	if (d->bd_bif == NULL) {
2584 		/* Descriptor was detached in concurrent thread */
2585 		counter_u64_add(d->bd_dcount, 1);
2586 		return;
2587 	}
2588 
2589 	/*
2590 	 * Detect whether user space has released a buffer back to us, and if
2591 	 * so, move it from being a hold buffer to a free buffer.  This may
2592 	 * not be the best place to do it (for example, we might only want to
2593 	 * run this check if we need the space), but for now it's a reliable
2594 	 * spot to do it.
2595 	 */
2596 	if (d->bd_fbuf == NULL && bpf_canfreebuf(d)) {
2597 		d->bd_fbuf = d->bd_hbuf;
2598 		d->bd_hbuf = NULL;
2599 		d->bd_hlen = 0;
2600 		bpf_buf_reclaimed(d);
2601 	}
2602 
2603 	/*
2604 	 * Figure out how many bytes to move.  If the packet is
2605 	 * greater or equal to the snapshot length, transfer that
2606 	 * much.  Otherwise, transfer the whole packet (unless
2607 	 * we hit the buffer size limit).
2608 	 */
2609 	hdrlen = bpf_hdrlen(d);
2610 	totlen = hdrlen + min(snaplen, pktlen);
2611 	if (totlen > d->bd_bufsize)
2612 		totlen = d->bd_bufsize;
2613 
2614 	/*
2615 	 * Round up the end of the previous packet to the next longword.
2616 	 *
2617 	 * Drop the packet if there's no room and no hope of room
2618 	 * If the packet would overflow the storage buffer or the storage
2619 	 * buffer is considered immutable by the buffer model, try to rotate
2620 	 * the buffer and wakeup pending processes.
2621 	 */
2622 #ifdef COMPAT_FREEBSD32
2623 	if (d->bd_compat32)
2624 		curlen = BPF_WORDALIGN32(d->bd_slen);
2625 	else
2626 #endif
2627 		curlen = BPF_WORDALIGN(d->bd_slen);
2628 	if (curlen + totlen > d->bd_bufsize || !bpf_canwritebuf(d)) {
2629 		if (d->bd_fbuf == NULL) {
2630 			/*
2631 			 * There's no room in the store buffer, and no
2632 			 * prospect of room, so drop the packet.  Notify the
2633 			 * buffer model.
2634 			 */
2635 			bpf_buffull(d);
2636 			counter_u64_add(d->bd_dcount, 1);
2637 			return;
2638 		}
2639 		KASSERT(!d->bd_hbuf_in_use, ("hold buffer is in use"));
2640 		ROTATE_BUFFERS(d);
2641 		do_wakeup = 1;
2642 		curlen = 0;
2643 	} else {
2644 		if (d->bd_immediate || d->bd_state == BPF_TIMED_OUT) {
2645 			/*
2646 			 * Immediate mode is set, or the read timeout has
2647 			 * already expired during a select call.  A packet
2648 			 * arrived, so the reader should be woken up.
2649 			 */
2650 			do_wakeup = 1;
2651 		}
2652 		pad = curlen - d->bd_slen;
2653 		KASSERT(pad >= 0 && pad <= sizeof(zeroes),
2654 		    ("%s: invalid pad byte count %d", __func__, pad));
2655 		if (pad > 0) {
2656 			/* Zero pad bytes. */
2657 			bpf_append_bytes(d, d->bd_sbuf, d->bd_slen, zeroes,
2658 			    pad);
2659 		}
2660 	}
2661 
2662 	caplen = totlen - hdrlen;
2663 	tstype = d->bd_tstamp;
2664 	do_timestamp = tstype != BPF_T_NONE;
2665 #ifndef BURN_BRIDGES
2666 	if (tstype == BPF_T_NONE || BPF_T_FORMAT(tstype) == BPF_T_MICROTIME) {
2667 		struct bpf_ts ts;
2668 		if (do_timestamp)
2669 			bpf_bintime2ts(bt, &ts, tstype);
2670 #ifdef COMPAT_FREEBSD32
2671 		if (d->bd_compat32) {
2672 			bzero(&hdr32_old, sizeof(hdr32_old));
2673 			if (do_timestamp) {
2674 				hdr32_old.bh_tstamp.tv_sec = ts.bt_sec;
2675 				hdr32_old.bh_tstamp.tv_usec = ts.bt_frac;
2676 			}
2677 			hdr32_old.bh_datalen = pktlen;
2678 			hdr32_old.bh_hdrlen = hdrlen;
2679 			hdr32_old.bh_caplen = caplen;
2680 			bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr32_old,
2681 			    sizeof(hdr32_old));
2682 			goto copy;
2683 		}
2684 #endif
2685 		bzero(&hdr_old, sizeof(hdr_old));
2686 		if (do_timestamp) {
2687 			hdr_old.bh_tstamp.tv_sec = ts.bt_sec;
2688 			hdr_old.bh_tstamp.tv_usec = ts.bt_frac;
2689 		}
2690 		hdr_old.bh_datalen = pktlen;
2691 		hdr_old.bh_hdrlen = hdrlen;
2692 		hdr_old.bh_caplen = caplen;
2693 		bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr_old,
2694 		    sizeof(hdr_old));
2695 		goto copy;
2696 	}
2697 #endif
2698 
2699 	/*
2700 	 * Append the bpf header.  Note we append the actual header size, but
2701 	 * move forward the length of the header plus padding.
2702 	 */
2703 	bzero(&hdr, sizeof(hdr));
2704 	if (do_timestamp)
2705 		bpf_bintime2ts(bt, &hdr.bh_tstamp, tstype);
2706 	hdr.bh_datalen = pktlen;
2707 	hdr.bh_hdrlen = hdrlen;
2708 	hdr.bh_caplen = caplen;
2709 	bpf_append_bytes(d, d->bd_sbuf, curlen, &hdr, sizeof(hdr));
2710 
2711 	/*
2712 	 * Copy the packet data into the store buffer and update its length.
2713 	 */
2714 #ifndef BURN_BRIDGES
2715 copy:
2716 #endif
2717 	(*cpfn)(d, d->bd_sbuf, curlen + hdrlen, pkt, caplen);
2718 	d->bd_slen = curlen + totlen;
2719 
2720 	if (do_wakeup)
2721 		bpf_wakeup(d);
2722 }
2723 
2724 /*
2725  * Free buffers currently in use by a descriptor.
2726  * Called on close.
2727  */
2728 static void
2729 bpfd_free(epoch_context_t ctx)
2730 {
2731 	struct bpf_d *d;
2732 	struct bpf_program_buffer *p;
2733 
2734 	/*
2735 	 * We don't need to lock out interrupts since this descriptor has
2736 	 * been detached from its interface and it yet hasn't been marked
2737 	 * free.
2738 	 */
2739 	d = __containerof(ctx, struct bpf_d, epoch_ctx);
2740 	bpf_free(d);
2741 	if (d->bd_rfilter != NULL) {
2742 		p = __containerof((void *)d->bd_rfilter,
2743 		    struct bpf_program_buffer, buffer);
2744 #ifdef BPF_JITTER
2745 		p->func = d->bd_bfilter;
2746 #endif
2747 		bpf_program_buffer_free(&p->epoch_ctx);
2748 	}
2749 	if (d->bd_wfilter != NULL) {
2750 		p = __containerof((void *)d->bd_wfilter,
2751 		    struct bpf_program_buffer, buffer);
2752 #ifdef BPF_JITTER
2753 		p->func = NULL;
2754 #endif
2755 		bpf_program_buffer_free(&p->epoch_ctx);
2756 	}
2757 
2758 	mtx_destroy(&d->bd_lock);
2759 	counter_u64_free(d->bd_rcount);
2760 	counter_u64_free(d->bd_dcount);
2761 	counter_u64_free(d->bd_fcount);
2762 	counter_u64_free(d->bd_wcount);
2763 	counter_u64_free(d->bd_wfcount);
2764 	counter_u64_free(d->bd_wdcount);
2765 	counter_u64_free(d->bd_zcopy);
2766 	free(d, M_BPF);
2767 }
2768 
2769 /*
2770  * Attach an interface to bpf.  dlt is the link layer type; hdrlen is the
2771  * fixed size of the link header (variable length headers not yet supported).
2772  */
2773 void
2774 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
2775 {
2776 
2777 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
2778 }
2779 
2780 /*
2781  * Attach an interface to bpf.  ifp is a pointer to the structure
2782  * defining the interface to be attached, dlt is the link layer type,
2783  * and hdrlen is the fixed size of the link header (variable length
2784  * headers are not yet supporrted).
2785  */
2786 void
2787 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen,
2788     struct bpf_if **driverp)
2789 {
2790 	struct bpf_if *bp;
2791 
2792 	KASSERT(*driverp == NULL,
2793 	    ("bpfattach2: driverp already initialized"));
2794 
2795 	bp = malloc(sizeof(*bp), M_BPF, M_WAITOK | M_ZERO);
2796 
2797 	CK_LIST_INIT(&bp->bif_dlist);
2798 	CK_LIST_INIT(&bp->bif_wlist);
2799 	bp->bif_ifp = ifp;
2800 	bp->bif_dlt = dlt;
2801 	bp->bif_hdrlen = hdrlen;
2802 	bp->bif_bpf = driverp;
2803 	refcount_init(&bp->bif_refcnt, 1);
2804 	*driverp = bp;
2805 	/*
2806 	 * Reference ifnet pointer, so it won't freed until
2807 	 * we release it.
2808 	 */
2809 	if_ref(ifp);
2810 	BPF_LOCK();
2811 	CK_LIST_INSERT_HEAD(&bpf_iflist, bp, bif_next);
2812 	BPF_UNLOCK();
2813 
2814 	if (bootverbose && IS_DEFAULT_VNET(curvnet))
2815 		if_printf(ifp, "bpf attached\n");
2816 }
2817 
2818 #ifdef VIMAGE
2819 /*
2820  * When moving interfaces between vnet instances we need a way to
2821  * query the dlt and hdrlen before detach so we can re-attch the if_bpf
2822  * after the vmove.  We unfortunately have no device driver infrastructure
2823  * to query the interface for these values after creation/attach, thus
2824  * add this as a workaround.
2825  */
2826 int
2827 bpf_get_bp_params(struct bpf_if *bp, u_int *bif_dlt, u_int *bif_hdrlen)
2828 {
2829 
2830 	if (bp == NULL)
2831 		return (ENXIO);
2832 	if (bif_dlt == NULL && bif_hdrlen == NULL)
2833 		return (0);
2834 
2835 	if (bif_dlt != NULL)
2836 		*bif_dlt = bp->bif_dlt;
2837 	if (bif_hdrlen != NULL)
2838 		*bif_hdrlen = bp->bif_hdrlen;
2839 
2840 	return (0);
2841 }
2842 #endif
2843 
2844 /*
2845  * Detach bpf from an interface. This involves detaching each descriptor
2846  * associated with the interface. Notify each descriptor as it's detached
2847  * so that any sleepers wake up and get ENXIO.
2848  */
2849 void
2850 bpfdetach(struct ifnet *ifp)
2851 {
2852 	struct bpf_if *bp, *bp_temp;
2853 	struct bpf_d *d;
2854 
2855 	BPF_LOCK();
2856 	/* Find all bpf_if struct's which reference ifp and detach them. */
2857 	CK_LIST_FOREACH_SAFE(bp, &bpf_iflist, bif_next, bp_temp) {
2858 		if (ifp != bp->bif_ifp)
2859 			continue;
2860 
2861 		CK_LIST_REMOVE(bp, bif_next);
2862 		*bp->bif_bpf = (struct bpf_if *)&dead_bpf_if;
2863 
2864 		CTR4(KTR_NET,
2865 		    "%s: sheduling free for encap %d (%p) for if %p",
2866 		    __func__, bp->bif_dlt, bp, ifp);
2867 
2868 		/* Detach common descriptors */
2869 		while ((d = CK_LIST_FIRST(&bp->bif_dlist)) != NULL) {
2870 			bpf_detachd_locked(d, true);
2871 		}
2872 
2873 		/* Detach writer-only descriptors */
2874 		while ((d = CK_LIST_FIRST(&bp->bif_wlist)) != NULL) {
2875 			bpf_detachd_locked(d, true);
2876 		}
2877 		bpfif_rele(bp);
2878 	}
2879 	BPF_UNLOCK();
2880 }
2881 
2882 /*
2883  * Get a list of available data link type of the interface.
2884  */
2885 static int
2886 bpf_getdltlist(struct bpf_d *d, struct bpf_dltlist *bfl)
2887 {
2888 	struct ifnet *ifp;
2889 	struct bpf_if *bp;
2890 	u_int *lst;
2891 	int error, n, n1;
2892 
2893 	BPF_LOCK_ASSERT();
2894 
2895 	ifp = d->bd_bif->bif_ifp;
2896 	n1 = 0;
2897 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2898 		if (bp->bif_ifp == ifp)
2899 			n1++;
2900 	}
2901 	if (bfl->bfl_list == NULL) {
2902 		bfl->bfl_len = n1;
2903 		return (0);
2904 	}
2905 	if (n1 > bfl->bfl_len)
2906 		return (ENOMEM);
2907 
2908 	lst = malloc(n1 * sizeof(u_int), M_TEMP, M_WAITOK);
2909 	n = 0;
2910 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2911 		if (bp->bif_ifp != ifp)
2912 			continue;
2913 		lst[n++] = bp->bif_dlt;
2914 	}
2915 	error = copyout(lst, bfl->bfl_list, sizeof(u_int) * n);
2916 	free(lst, M_TEMP);
2917 	bfl->bfl_len = n;
2918 	return (error);
2919 }
2920 
2921 /*
2922  * Set the data link type of a BPF instance.
2923  */
2924 static int
2925 bpf_setdlt(struct bpf_d *d, u_int dlt)
2926 {
2927 	int error, opromisc;
2928 	struct ifnet *ifp;
2929 	struct bpf_if *bp;
2930 
2931 	BPF_LOCK_ASSERT();
2932 	MPASS(d->bd_bif != NULL);
2933 
2934 	/*
2935 	 * It is safe to check bd_bif without BPFD_LOCK, it can not be
2936 	 * changed while we hold global lock.
2937 	 */
2938 	if (d->bd_bif->bif_dlt == dlt)
2939 		return (0);
2940 
2941 	ifp = d->bd_bif->bif_ifp;
2942 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2943 		if (bp->bif_ifp == ifp && bp->bif_dlt == dlt)
2944 			break;
2945 	}
2946 	if (bp == NULL)
2947 		return (EINVAL);
2948 
2949 	opromisc = d->bd_promisc;
2950 	bpf_attachd(d, bp);
2951 	if (opromisc) {
2952 		error = ifpromisc(bp->bif_ifp, 1);
2953 		if (error)
2954 			if_printf(bp->bif_ifp, "%s: ifpromisc failed (%d)\n",
2955 			    __func__, error);
2956 		else
2957 			d->bd_promisc = 1;
2958 	}
2959 	return (0);
2960 }
2961 
2962 static void
2963 bpf_drvinit(void *unused)
2964 {
2965 	struct cdev *dev;
2966 
2967 	sx_init(&bpf_sx, "bpf global lock");
2968 	CK_LIST_INIT(&bpf_iflist);
2969 
2970 	dev = make_dev(&bpf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "bpf");
2971 	/* For compatibility */
2972 	make_dev_alias(dev, "bpf0");
2973 }
2974 
2975 /*
2976  * Zero out the various packet counters associated with all of the bpf
2977  * descriptors.  At some point, we will probably want to get a bit more
2978  * granular and allow the user to specify descriptors to be zeroed.
2979  */
2980 static void
2981 bpf_zero_counters(void)
2982 {
2983 	struct bpf_if *bp;
2984 	struct bpf_d *bd;
2985 
2986 	BPF_LOCK();
2987 	/*
2988 	 * We are protected by global lock here, interfaces and
2989 	 * descriptors can not be deleted while we hold it.
2990 	 */
2991 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
2992 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
2993 			counter_u64_zero(bd->bd_rcount);
2994 			counter_u64_zero(bd->bd_dcount);
2995 			counter_u64_zero(bd->bd_fcount);
2996 			counter_u64_zero(bd->bd_wcount);
2997 			counter_u64_zero(bd->bd_wfcount);
2998 			counter_u64_zero(bd->bd_zcopy);
2999 		}
3000 	}
3001 	BPF_UNLOCK();
3002 }
3003 
3004 /*
3005  * Fill filter statistics
3006  */
3007 static void
3008 bpfstats_fill_xbpf(struct xbpf_d *d, struct bpf_d *bd)
3009 {
3010 
3011 	BPF_LOCK_ASSERT();
3012 	bzero(d, sizeof(*d));
3013 	d->bd_structsize = sizeof(*d);
3014 	d->bd_immediate = bd->bd_immediate;
3015 	d->bd_promisc = bd->bd_promisc;
3016 	d->bd_hdrcmplt = bd->bd_hdrcmplt;
3017 	d->bd_direction = bd->bd_direction;
3018 	d->bd_feedback = bd->bd_feedback;
3019 	d->bd_async = bd->bd_async;
3020 	d->bd_rcount = counter_u64_fetch(bd->bd_rcount);
3021 	d->bd_dcount = counter_u64_fetch(bd->bd_dcount);
3022 	d->bd_fcount = counter_u64_fetch(bd->bd_fcount);
3023 	d->bd_sig = bd->bd_sig;
3024 	d->bd_slen = bd->bd_slen;
3025 	d->bd_hlen = bd->bd_hlen;
3026 	d->bd_bufsize = bd->bd_bufsize;
3027 	d->bd_pid = bd->bd_pid;
3028 	strlcpy(d->bd_ifname,
3029 	    bd->bd_bif->bif_ifp->if_xname, IFNAMSIZ);
3030 	d->bd_locked = bd->bd_locked;
3031 	d->bd_wcount = counter_u64_fetch(bd->bd_wcount);
3032 	d->bd_wdcount = counter_u64_fetch(bd->bd_wdcount);
3033 	d->bd_wfcount = counter_u64_fetch(bd->bd_wfcount);
3034 	d->bd_zcopy = counter_u64_fetch(bd->bd_zcopy);
3035 	d->bd_bufmode = bd->bd_bufmode;
3036 }
3037 
3038 /*
3039  * Handle `netstat -B' stats request
3040  */
3041 static int
3042 bpf_stats_sysctl(SYSCTL_HANDLER_ARGS)
3043 {
3044 	static const struct xbpf_d zerostats;
3045 	struct xbpf_d *xbdbuf, *xbd, tempstats;
3046 	int index, error;
3047 	struct bpf_if *bp;
3048 	struct bpf_d *bd;
3049 
3050 	/*
3051 	 * XXX This is not technically correct. It is possible for non
3052 	 * privileged users to open bpf devices. It would make sense
3053 	 * if the users who opened the devices were able to retrieve
3054 	 * the statistics for them, too.
3055 	 */
3056 	error = priv_check(req->td, PRIV_NET_BPF);
3057 	if (error)
3058 		return (error);
3059 	/*
3060 	 * Check to see if the user is requesting that the counters be
3061 	 * zeroed out.  Explicitly check that the supplied data is zeroed,
3062 	 * as we aren't allowing the user to set the counters currently.
3063 	 */
3064 	if (req->newptr != NULL) {
3065 		if (req->newlen != sizeof(tempstats))
3066 			return (EINVAL);
3067 		memset(&tempstats, 0, sizeof(tempstats));
3068 		error = SYSCTL_IN(req, &tempstats, sizeof(tempstats));
3069 		if (error)
3070 			return (error);
3071 		if (bcmp(&tempstats, &zerostats, sizeof(tempstats)) != 0)
3072 			return (EINVAL);
3073 		bpf_zero_counters();
3074 		return (0);
3075 	}
3076 	if (req->oldptr == NULL)
3077 		return (SYSCTL_OUT(req, 0, bpf_bpfd_cnt * sizeof(*xbd)));
3078 	if (bpf_bpfd_cnt == 0)
3079 		return (SYSCTL_OUT(req, 0, 0));
3080 	xbdbuf = malloc(req->oldlen, M_BPF, M_WAITOK);
3081 	BPF_LOCK();
3082 	if (req->oldlen < (bpf_bpfd_cnt * sizeof(*xbd))) {
3083 		BPF_UNLOCK();
3084 		free(xbdbuf, M_BPF);
3085 		return (ENOMEM);
3086 	}
3087 	index = 0;
3088 	CK_LIST_FOREACH(bp, &bpf_iflist, bif_next) {
3089 		/* Send writers-only first */
3090 		CK_LIST_FOREACH(bd, &bp->bif_wlist, bd_next) {
3091 			xbd = &xbdbuf[index++];
3092 			bpfstats_fill_xbpf(xbd, bd);
3093 		}
3094 		CK_LIST_FOREACH(bd, &bp->bif_dlist, bd_next) {
3095 			xbd = &xbdbuf[index++];
3096 			bpfstats_fill_xbpf(xbd, bd);
3097 		}
3098 	}
3099 	BPF_UNLOCK();
3100 	error = SYSCTL_OUT(req, xbdbuf, index * sizeof(*xbd));
3101 	free(xbdbuf, M_BPF);
3102 	return (error);
3103 }
3104 
3105 SYSINIT(bpfdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE,bpf_drvinit,NULL);
3106 
3107 #else /* !DEV_BPF && !NETGRAPH_BPF */
3108 
3109 /*
3110  * NOP stubs to allow bpf-using drivers to load and function.
3111  *
3112  * A 'better' implementation would allow the core bpf functionality
3113  * to be loaded at runtime.
3114  */
3115 
3116 void
3117 bpf_tap(struct bpf_if *bp, u_char *pkt, u_int pktlen)
3118 {
3119 }
3120 
3121 void
3122 bpf_tap_if(if_t ifp, u_char *pkt, u_int pktlen)
3123 {
3124 }
3125 
3126 void
3127 bpf_mtap(struct bpf_if *bp, struct mbuf *m)
3128 {
3129 }
3130 
3131 void
3132 bpf_mtap_if(if_t ifp, struct mbuf *m)
3133 {
3134 }
3135 
3136 void
3137 bpf_mtap2(struct bpf_if *bp, void *d, u_int l, struct mbuf *m)
3138 {
3139 }
3140 
3141 void
3142 bpf_mtap2_if(if_t ifp, void *data, u_int dlen, struct mbuf *m)
3143 {
3144 }
3145 
3146 void
3147 bpfattach(struct ifnet *ifp, u_int dlt, u_int hdrlen)
3148 {
3149 
3150 	bpfattach2(ifp, dlt, hdrlen, &ifp->if_bpf);
3151 }
3152 
3153 void
3154 bpfattach2(struct ifnet *ifp, u_int dlt, u_int hdrlen, struct bpf_if **driverp)
3155 {
3156 
3157 	*driverp = (struct bpf_if *)&dead_bpf_if;
3158 }
3159 
3160 void
3161 bpfdetach(struct ifnet *ifp)
3162 {
3163 }
3164 
3165 u_int
3166 bpf_filter(const struct bpf_insn *pc, u_char *p, u_int wirelen, u_int buflen)
3167 {
3168 	return -1;	/* "no filter" behaviour */
3169 }
3170 
3171 int
3172 bpf_validate(const struct bpf_insn *f, int len)
3173 {
3174 	return 0;		/* false */
3175 }
3176 
3177 #endif /* !DEV_BPF && !NETGRAPH_BPF */
3178 
3179 #ifdef DDB
3180 static void
3181 bpf_show_bpf_if(struct bpf_if *bpf_if)
3182 {
3183 
3184 	if (bpf_if == NULL)
3185 		return;
3186 	db_printf("%p:\n", bpf_if);
3187 #define	BPF_DB_PRINTF(f, e)	db_printf("   %s = " f "\n", #e, bpf_if->e);
3188 #define	BPF_DB_PRINTF_RAW(f, e)	db_printf("   %s = " f "\n", #e, e);
3189 	/* bif_ext.bif_next */
3190 	/* bif_ext.bif_dlist */
3191 	BPF_DB_PRINTF("%#x", bif_dlt);
3192 	BPF_DB_PRINTF("%u", bif_hdrlen);
3193 	/* bif_wlist */
3194 	BPF_DB_PRINTF("%p", bif_ifp);
3195 	BPF_DB_PRINTF("%p", bif_bpf);
3196 	BPF_DB_PRINTF_RAW("%u", refcount_load(&bpf_if->bif_refcnt));
3197 }
3198 
3199 DB_SHOW_COMMAND(bpf_if, db_show_bpf_if)
3200 {
3201 
3202 	if (!have_addr) {
3203 		db_printf("usage: show bpf_if <struct bpf_if *>\n");
3204 		return;
3205 	}
3206 
3207 	bpf_show_bpf_if((struct bpf_if *)addr);
3208 }
3209 #endif
3210