1 /*- 2 * Copyright (C) 1997-2003 3 * Sony Computer Science Laboratories Inc. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $ 27 */ 28 29 #include "opt_altq.h" 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 33 #include <sys/param.h> 34 #include <sys/malloc.h> 35 #include <sys/mbuf.h> 36 #include <sys/systm.h> 37 #include <sys/proc.h> 38 #include <sys/socket.h> 39 #include <sys/socketvar.h> 40 #include <sys/kernel.h> 41 #include <sys/errno.h> 42 #include <sys/syslog.h> 43 #include <sys/sysctl.h> 44 #include <sys/queue.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_private.h> 49 #include <net/if_dl.h> 50 #include <net/if_types.h> 51 #include <net/vnet.h> 52 53 #include <netinet/in.h> 54 #include <netinet/in_systm.h> 55 #include <netinet/ip.h> 56 #ifdef INET6 57 #include <netinet/ip6.h> 58 #endif 59 #include <netinet/tcp.h> 60 #include <netinet/udp.h> 61 62 #include <netpfil/pf/pf.h> 63 #include <netpfil/pf/pf_altq.h> 64 #include <net/altq/altq.h> 65 66 /* machine dependent clock related includes */ 67 #include <sys/bus.h> 68 #include <sys/cpu.h> 69 #include <sys/eventhandler.h> 70 #include <machine/clock.h> 71 #if defined(__amd64__) || defined(__i386__) 72 #include <machine/cpufunc.h> /* for pentium tsc */ 73 #include <machine/specialreg.h> /* for CPUID_TSC */ 74 #include <machine/md_var.h> /* for cpu_feature */ 75 #endif /* __amd64 || __i386__ */ 76 77 /* 78 * internal function prototypes 79 */ 80 static void tbr_timeout(void *); 81 static struct mbuf *tbr_dequeue(struct ifaltq *, int); 82 static int tbr_timer = 0; /* token bucket regulator timer */ 83 static struct callout tbr_callout; 84 85 #ifdef ALTQ3_CLFIER_COMPAT 86 static int extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *); 87 #ifdef INET6 88 static int extract_ports6(struct mbuf *, struct ip6_hdr *, 89 struct flowinfo_in6 *); 90 #endif 91 static int apply_filter4(u_int32_t, struct flow_filter *, 92 struct flowinfo_in *); 93 static int apply_ppfilter4(u_int32_t, struct flow_filter *, 94 struct flowinfo_in *); 95 #ifdef INET6 96 static int apply_filter6(u_int32_t, struct flow_filter6 *, 97 struct flowinfo_in6 *); 98 #endif 99 static int apply_tosfilter4(u_int32_t, struct flow_filter *, 100 struct flowinfo_in *); 101 static u_long get_filt_handle(struct acc_classifier *, int); 102 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long); 103 static u_int32_t filt2fibmask(struct flow_filter *); 104 105 static void ip4f_cache(struct ip *, struct flowinfo_in *); 106 static int ip4f_lookup(struct ip *, struct flowinfo_in *); 107 static int ip4f_init(void); 108 static struct ip4_frag *ip4f_alloc(void); 109 static void ip4f_free(struct ip4_frag *); 110 #endif /* ALTQ3_CLFIER_COMPAT */ 111 112 #ifdef ALTQ 113 SYSCTL_NODE(_kern_features, OID_AUTO, altq, CTLFLAG_RD | CTLFLAG_CAPRD, 0, 114 "ALTQ packet queuing"); 115 116 #define ALTQ_FEATURE(name, desc) \ 117 SYSCTL_INT_WITH_LABEL(_kern_features_altq, OID_AUTO, name, \ 118 CTLFLAG_RD | CTLFLAG_CAPRD, SYSCTL_NULL_INT_PTR, 1, \ 119 desc, "feature") 120 121 #ifdef ALTQ_CBQ 122 ALTQ_FEATURE(cbq, "ALTQ Class Based Queuing discipline"); 123 #endif 124 #ifdef ALTQ_CODEL 125 ALTQ_FEATURE(codel, "ALTQ Controlled Delay discipline"); 126 #endif 127 #ifdef ALTQ_RED 128 ALTQ_FEATURE(red, "ALTQ Random Early Detection discipline"); 129 #endif 130 #ifdef ALTQ_RIO 131 ALTQ_FEATURE(rio, "ALTQ Random Early Drop discipline"); 132 #endif 133 #ifdef ALTQ_HFSC 134 ALTQ_FEATURE(hfsc, "ALTQ Hierarchical Packet Scheduler discipline"); 135 #endif 136 #ifdef ALTQ_PRIQ 137 ALTQ_FEATURE(priq, "ATLQ Priority Queuing discipline"); 138 #endif 139 #ifdef ALTQ_FAIRQ 140 ALTQ_FEATURE(fairq, "ALTQ Fair Queuing discipline"); 141 #endif 142 #endif 143 144 /* 145 * alternate queueing support routines 146 */ 147 148 /* look up the queue state by the interface name and the queueing type. */ 149 void * 150 altq_lookup(char *name, int type) 151 { 152 struct ifnet *ifp; 153 154 if ((ifp = ifunit(name)) != NULL) { 155 /* read if_snd unlocked */ 156 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type) 157 return (ifp->if_snd.altq_disc); 158 } 159 160 return NULL; 161 } 162 163 int 164 altq_attach(struct ifaltq *ifq, int type, void *discipline, 165 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *), 166 struct mbuf *(*dequeue)(struct ifaltq *, int), 167 int (*request)(struct ifaltq *, int, void *)) 168 { 169 IFQ_LOCK(ifq); 170 if (!ALTQ_IS_READY(ifq)) { 171 IFQ_UNLOCK(ifq); 172 return ENXIO; 173 } 174 175 ifq->altq_type = type; 176 ifq->altq_disc = discipline; 177 ifq->altq_enqueue = enqueue; 178 ifq->altq_dequeue = dequeue; 179 ifq->altq_request = request; 180 ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED); 181 IFQ_UNLOCK(ifq); 182 return 0; 183 } 184 185 int 186 altq_detach(struct ifaltq *ifq) 187 { 188 IFQ_LOCK(ifq); 189 190 if (!ALTQ_IS_READY(ifq)) { 191 IFQ_UNLOCK(ifq); 192 return ENXIO; 193 } 194 if (ALTQ_IS_ENABLED(ifq)) { 195 IFQ_UNLOCK(ifq); 196 return EBUSY; 197 } 198 if (!ALTQ_IS_ATTACHED(ifq)) { 199 IFQ_UNLOCK(ifq); 200 return (0); 201 } 202 203 ifq->altq_type = ALTQT_NONE; 204 ifq->altq_disc = NULL; 205 ifq->altq_enqueue = NULL; 206 ifq->altq_dequeue = NULL; 207 ifq->altq_request = NULL; 208 ifq->altq_flags &= ALTQF_CANTCHANGE; 209 210 IFQ_UNLOCK(ifq); 211 return 0; 212 } 213 214 int 215 altq_enable(struct ifaltq *ifq) 216 { 217 int s; 218 219 IFQ_LOCK(ifq); 220 221 if (!ALTQ_IS_READY(ifq)) { 222 IFQ_UNLOCK(ifq); 223 return ENXIO; 224 } 225 if (ALTQ_IS_ENABLED(ifq)) { 226 IFQ_UNLOCK(ifq); 227 return 0; 228 } 229 230 s = splnet(); 231 IFQ_PURGE_NOLOCK(ifq); 232 ASSERT(ifq->ifq_len == 0); 233 ifq->ifq_drv_maxlen = 0; /* disable bulk dequeue */ 234 ifq->altq_flags |= ALTQF_ENABLED; 235 splx(s); 236 237 IFQ_UNLOCK(ifq); 238 return 0; 239 } 240 241 int 242 altq_disable(struct ifaltq *ifq) 243 { 244 int s; 245 246 IFQ_LOCK(ifq); 247 if (!ALTQ_IS_ENABLED(ifq)) { 248 IFQ_UNLOCK(ifq); 249 return 0; 250 } 251 252 s = splnet(); 253 IFQ_PURGE_NOLOCK(ifq); 254 ASSERT(ifq->ifq_len == 0); 255 ifq->altq_flags &= ~(ALTQF_ENABLED); 256 splx(s); 257 258 IFQ_UNLOCK(ifq); 259 return 0; 260 } 261 262 #ifdef ALTQ_DEBUG 263 void 264 altq_assert(const char *file, int line, const char *failedexpr) 265 { 266 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n", 267 failedexpr, file, line); 268 panic("altq assertion"); 269 /* NOTREACHED */ 270 } 271 #endif 272 273 /* 274 * internal representation of token bucket parameters 275 * rate: (byte_per_unittime << TBR_SHIFT) / machclk_freq 276 * (((bits_per_sec) / 8) << TBR_SHIFT) / machclk_freq 277 * depth: byte << TBR_SHIFT 278 * 279 */ 280 #define TBR_SHIFT 29 281 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT) 282 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT) 283 284 static struct mbuf * 285 tbr_dequeue(struct ifaltq *ifq, int op) 286 { 287 struct tb_regulator *tbr; 288 struct mbuf *m; 289 int64_t interval; 290 u_int64_t now; 291 292 IFQ_LOCK_ASSERT(ifq); 293 tbr = ifq->altq_tbr; 294 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) { 295 /* if this is a remove after poll, bypass tbr check */ 296 } else { 297 /* update token only when it is negative */ 298 if (tbr->tbr_token <= 0) { 299 now = read_machclk(); 300 interval = now - tbr->tbr_last; 301 if (interval >= tbr->tbr_filluptime) 302 tbr->tbr_token = tbr->tbr_depth; 303 else { 304 tbr->tbr_token += interval * tbr->tbr_rate; 305 if (tbr->tbr_token > tbr->tbr_depth) 306 tbr->tbr_token = tbr->tbr_depth; 307 } 308 tbr->tbr_last = now; 309 } 310 /* if token is still negative, don't allow dequeue */ 311 if (tbr->tbr_token <= 0) 312 return (NULL); 313 } 314 315 if (ALTQ_IS_ENABLED(ifq)) 316 m = (*ifq->altq_dequeue)(ifq, op); 317 else { 318 if (op == ALTDQ_POLL) 319 _IF_POLL(ifq, m); 320 else 321 _IF_DEQUEUE(ifq, m); 322 } 323 324 if (m != NULL && op == ALTDQ_REMOVE) 325 tbr->tbr_token -= TBR_SCALE(m_pktlen(m)); 326 tbr->tbr_lastop = op; 327 return (m); 328 } 329 330 /* 331 * set a token bucket regulator. 332 * if the specified rate is zero, the token bucket regulator is deleted. 333 */ 334 int 335 tbr_set(struct ifaltq *ifq, struct tb_profile *profile) 336 { 337 struct tb_regulator *tbr, *otbr; 338 339 if (tbr_dequeue_ptr == NULL) 340 tbr_dequeue_ptr = tbr_dequeue; 341 342 if (machclk_freq == 0) 343 init_machclk(); 344 if (machclk_freq == 0) { 345 printf("tbr_set: no cpu clock available!\n"); 346 return (ENXIO); 347 } 348 349 IFQ_LOCK(ifq); 350 if (profile->rate == 0) { 351 /* delete this tbr */ 352 if ((tbr = ifq->altq_tbr) == NULL) { 353 IFQ_UNLOCK(ifq); 354 return (ENOENT); 355 } 356 ifq->altq_tbr = NULL; 357 free(tbr, M_DEVBUF); 358 IFQ_UNLOCK(ifq); 359 return (0); 360 } 361 362 tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO); 363 if (tbr == NULL) { 364 IFQ_UNLOCK(ifq); 365 return (ENOMEM); 366 } 367 368 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq; 369 tbr->tbr_depth = TBR_SCALE(profile->depth); 370 if (tbr->tbr_rate > 0) 371 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate; 372 else 373 tbr->tbr_filluptime = LLONG_MAX; 374 /* 375 * The longest time between tbr_dequeue() calls will be about 1 376 * system tick, as the callout that drives it is scheduled once per 377 * tick. The refill-time detection logic in tbr_dequeue() can only 378 * properly detect the passage of up to LLONG_MAX machclk ticks. 379 * Therefore, in order for this logic to function properly in the 380 * extreme case, the maximum value of tbr_filluptime should be 381 * LLONG_MAX less one system tick's worth of machclk ticks less 382 * some additional slop factor (here one more system tick's worth 383 * of machclk ticks). 384 */ 385 if (tbr->tbr_filluptime > (LLONG_MAX - 2 * machclk_per_tick)) 386 tbr->tbr_filluptime = LLONG_MAX - 2 * machclk_per_tick; 387 tbr->tbr_token = tbr->tbr_depth; 388 tbr->tbr_last = read_machclk(); 389 tbr->tbr_lastop = ALTDQ_REMOVE; 390 391 otbr = ifq->altq_tbr; 392 ifq->altq_tbr = tbr; /* set the new tbr */ 393 394 if (otbr != NULL) 395 free(otbr, M_DEVBUF); 396 else { 397 if (tbr_timer == 0) { 398 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0); 399 tbr_timer = 1; 400 } 401 } 402 IFQ_UNLOCK(ifq); 403 return (0); 404 } 405 406 /* 407 * tbr_timeout goes through the interface list, and kicks the drivers 408 * if necessary. 409 * 410 * MPSAFE 411 */ 412 static void 413 tbr_timeout(void *arg) 414 { 415 VNET_ITERATOR_DECL(vnet_iter); 416 struct ifnet *ifp; 417 struct epoch_tracker et; 418 int active; 419 420 active = 0; 421 NET_EPOCH_ENTER(et); 422 VNET_LIST_RLOCK_NOSLEEP(); 423 VNET_FOREACH(vnet_iter) { 424 CURVNET_SET(vnet_iter); 425 for (ifp = CK_STAILQ_FIRST(&V_ifnet); ifp; 426 ifp = CK_STAILQ_NEXT(ifp, if_link)) { 427 /* read from if_snd unlocked */ 428 if (!TBR_IS_ENABLED(&ifp->if_snd)) 429 continue; 430 active++; 431 if (!IFQ_IS_EMPTY(&ifp->if_snd) && 432 ifp->if_start != NULL) 433 (*ifp->if_start)(ifp); 434 } 435 CURVNET_RESTORE(); 436 } 437 VNET_LIST_RUNLOCK_NOSLEEP(); 438 NET_EPOCH_EXIT(et); 439 if (active > 0) 440 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0); 441 else 442 tbr_timer = 0; /* don't need tbr_timer anymore */ 443 } 444 445 /* 446 * attach a discipline to the interface. if one already exists, it is 447 * overridden. 448 * Locking is done in the discipline specific attach functions. Basically 449 * they call back to altq_attach which takes care of the attach and locking. 450 */ 451 int 452 altq_pfattach(struct pf_altq *a) 453 { 454 int error = 0; 455 456 switch (a->scheduler) { 457 case ALTQT_NONE: 458 break; 459 #ifdef ALTQ_CBQ 460 case ALTQT_CBQ: 461 error = cbq_pfattach(a); 462 break; 463 #endif 464 #ifdef ALTQ_PRIQ 465 case ALTQT_PRIQ: 466 error = priq_pfattach(a); 467 break; 468 #endif 469 #ifdef ALTQ_HFSC 470 case ALTQT_HFSC: 471 error = hfsc_pfattach(a); 472 break; 473 #endif 474 #ifdef ALTQ_FAIRQ 475 case ALTQT_FAIRQ: 476 error = fairq_pfattach(a); 477 break; 478 #endif 479 #ifdef ALTQ_CODEL 480 case ALTQT_CODEL: 481 error = codel_pfattach(a); 482 break; 483 #endif 484 default: 485 error = ENXIO; 486 } 487 488 return (error); 489 } 490 491 /* 492 * detach a discipline from the interface. 493 * it is possible that the discipline was already overridden by another 494 * discipline. 495 */ 496 int 497 altq_pfdetach(struct pf_altq *a) 498 { 499 struct ifnet *ifp; 500 int s, error = 0; 501 502 if ((ifp = ifunit(a->ifname)) == NULL) 503 return (EINVAL); 504 505 /* if this discipline is no longer referenced, just return */ 506 /* read unlocked from if_snd */ 507 if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc) 508 return (0); 509 510 s = splnet(); 511 /* read unlocked from if_snd, _disable and _detach take care */ 512 if (ALTQ_IS_ENABLED(&ifp->if_snd)) 513 error = altq_disable(&ifp->if_snd); 514 if (error == 0) 515 error = altq_detach(&ifp->if_snd); 516 splx(s); 517 518 return (error); 519 } 520 521 /* 522 * add a discipline or a queue 523 * Locking is done in the discipline specific functions with regards to 524 * malloc with WAITOK, also it is not yet clear which lock to use. 525 */ 526 int 527 altq_add(struct ifnet *ifp, struct pf_altq *a) 528 { 529 int error = 0; 530 531 if (a->qname[0] != 0) 532 return (altq_add_queue(a)); 533 534 if (machclk_freq == 0) 535 init_machclk(); 536 if (machclk_freq == 0) 537 panic("altq_add: no cpu clock"); 538 539 switch (a->scheduler) { 540 #ifdef ALTQ_CBQ 541 case ALTQT_CBQ: 542 error = cbq_add_altq(ifp, a); 543 break; 544 #endif 545 #ifdef ALTQ_PRIQ 546 case ALTQT_PRIQ: 547 error = priq_add_altq(ifp, a); 548 break; 549 #endif 550 #ifdef ALTQ_HFSC 551 case ALTQT_HFSC: 552 error = hfsc_add_altq(ifp, a); 553 break; 554 #endif 555 #ifdef ALTQ_FAIRQ 556 case ALTQT_FAIRQ: 557 error = fairq_add_altq(ifp, a); 558 break; 559 #endif 560 #ifdef ALTQ_CODEL 561 case ALTQT_CODEL: 562 error = codel_add_altq(ifp, a); 563 break; 564 #endif 565 default: 566 error = ENXIO; 567 } 568 569 return (error); 570 } 571 572 /* 573 * remove a discipline or a queue 574 * It is yet unclear what lock to use to protect this operation, the 575 * discipline specific functions will determine and grab it 576 */ 577 int 578 altq_remove(struct pf_altq *a) 579 { 580 int error = 0; 581 582 if (a->qname[0] != 0) 583 return (altq_remove_queue(a)); 584 585 switch (a->scheduler) { 586 #ifdef ALTQ_CBQ 587 case ALTQT_CBQ: 588 error = cbq_remove_altq(a); 589 break; 590 #endif 591 #ifdef ALTQ_PRIQ 592 case ALTQT_PRIQ: 593 error = priq_remove_altq(a); 594 break; 595 #endif 596 #ifdef ALTQ_HFSC 597 case ALTQT_HFSC: 598 error = hfsc_remove_altq(a); 599 break; 600 #endif 601 #ifdef ALTQ_FAIRQ 602 case ALTQT_FAIRQ: 603 error = fairq_remove_altq(a); 604 break; 605 #endif 606 #ifdef ALTQ_CODEL 607 case ALTQT_CODEL: 608 error = codel_remove_altq(a); 609 break; 610 #endif 611 default: 612 error = ENXIO; 613 } 614 615 return (error); 616 } 617 618 /* 619 * add a queue to the discipline 620 * It is yet unclear what lock to use to protect this operation, the 621 * discipline specific functions will determine and grab it 622 */ 623 int 624 altq_add_queue(struct pf_altq *a) 625 { 626 int error = 0; 627 628 switch (a->scheduler) { 629 #ifdef ALTQ_CBQ 630 case ALTQT_CBQ: 631 error = cbq_add_queue(a); 632 break; 633 #endif 634 #ifdef ALTQ_PRIQ 635 case ALTQT_PRIQ: 636 error = priq_add_queue(a); 637 break; 638 #endif 639 #ifdef ALTQ_HFSC 640 case ALTQT_HFSC: 641 error = hfsc_add_queue(a); 642 break; 643 #endif 644 #ifdef ALTQ_FAIRQ 645 case ALTQT_FAIRQ: 646 error = fairq_add_queue(a); 647 break; 648 #endif 649 default: 650 error = ENXIO; 651 } 652 653 return (error); 654 } 655 656 /* 657 * remove a queue from the discipline 658 * It is yet unclear what lock to use to protect this operation, the 659 * discipline specific functions will determine and grab it 660 */ 661 int 662 altq_remove_queue(struct pf_altq *a) 663 { 664 int error = 0; 665 666 switch (a->scheduler) { 667 #ifdef ALTQ_CBQ 668 case ALTQT_CBQ: 669 error = cbq_remove_queue(a); 670 break; 671 #endif 672 #ifdef ALTQ_PRIQ 673 case ALTQT_PRIQ: 674 error = priq_remove_queue(a); 675 break; 676 #endif 677 #ifdef ALTQ_HFSC 678 case ALTQT_HFSC: 679 error = hfsc_remove_queue(a); 680 break; 681 #endif 682 #ifdef ALTQ_FAIRQ 683 case ALTQT_FAIRQ: 684 error = fairq_remove_queue(a); 685 break; 686 #endif 687 default: 688 error = ENXIO; 689 } 690 691 return (error); 692 } 693 694 /* 695 * get queue statistics 696 * Locking is done in the discipline specific functions with regards to 697 * copyout operations, also it is not yet clear which lock to use. 698 */ 699 int 700 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes, int version) 701 { 702 int error = 0; 703 704 switch (a->scheduler) { 705 #ifdef ALTQ_CBQ 706 case ALTQT_CBQ: 707 error = cbq_getqstats(a, ubuf, nbytes, version); 708 break; 709 #endif 710 #ifdef ALTQ_PRIQ 711 case ALTQT_PRIQ: 712 error = priq_getqstats(a, ubuf, nbytes, version); 713 break; 714 #endif 715 #ifdef ALTQ_HFSC 716 case ALTQT_HFSC: 717 error = hfsc_getqstats(a, ubuf, nbytes, version); 718 break; 719 #endif 720 #ifdef ALTQ_FAIRQ 721 case ALTQT_FAIRQ: 722 error = fairq_getqstats(a, ubuf, nbytes, version); 723 break; 724 #endif 725 #ifdef ALTQ_CODEL 726 case ALTQT_CODEL: 727 error = codel_getqstats(a, ubuf, nbytes, version); 728 break; 729 #endif 730 default: 731 error = ENXIO; 732 } 733 734 return (error); 735 } 736 737 /* 738 * read and write diffserv field in IPv4 or IPv6 header 739 */ 740 u_int8_t 741 read_dsfield(struct mbuf *m, struct altq_pktattr *pktattr) 742 { 743 struct mbuf *m0; 744 u_int8_t ds_field = 0; 745 746 if (pktattr == NULL || 747 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6)) 748 return ((u_int8_t)0); 749 750 /* verify that pattr_hdr is within the mbuf data */ 751 for (m0 = m; m0 != NULL; m0 = m0->m_next) 752 if ((pktattr->pattr_hdr >= m0->m_data) && 753 (pktattr->pattr_hdr < m0->m_data + m0->m_len)) 754 break; 755 if (m0 == NULL) { 756 /* ick, pattr_hdr is stale */ 757 pktattr->pattr_af = AF_UNSPEC; 758 #ifdef ALTQ_DEBUG 759 printf("read_dsfield: can't locate header!\n"); 760 #endif 761 return ((u_int8_t)0); 762 } 763 764 if (pktattr->pattr_af == AF_INET) { 765 struct ip *ip = (struct ip *)pktattr->pattr_hdr; 766 767 if (ip->ip_v != 4) 768 return ((u_int8_t)0); /* version mismatch! */ 769 ds_field = ip->ip_tos; 770 } 771 #ifdef INET6 772 else if (pktattr->pattr_af == AF_INET6) { 773 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr; 774 u_int32_t flowlabel; 775 776 flowlabel = ntohl(ip6->ip6_flow); 777 if ((flowlabel >> 28) != 6) 778 return ((u_int8_t)0); /* version mismatch! */ 779 ds_field = (flowlabel >> 20) & 0xff; 780 } 781 #endif 782 return (ds_field); 783 } 784 785 void 786 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield) 787 { 788 struct mbuf *m0; 789 790 if (pktattr == NULL || 791 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6)) 792 return; 793 794 /* verify that pattr_hdr is within the mbuf data */ 795 for (m0 = m; m0 != NULL; m0 = m0->m_next) 796 if ((pktattr->pattr_hdr >= m0->m_data) && 797 (pktattr->pattr_hdr < m0->m_data + m0->m_len)) 798 break; 799 if (m0 == NULL) { 800 /* ick, pattr_hdr is stale */ 801 pktattr->pattr_af = AF_UNSPEC; 802 #ifdef ALTQ_DEBUG 803 printf("write_dsfield: can't locate header!\n"); 804 #endif 805 return; 806 } 807 808 if (pktattr->pattr_af == AF_INET) { 809 struct ip *ip = (struct ip *)pktattr->pattr_hdr; 810 u_int8_t old; 811 int32_t sum; 812 813 if (ip->ip_v != 4) 814 return; /* version mismatch! */ 815 old = ip->ip_tos; 816 dsfield |= old & 3; /* leave CU bits */ 817 if (old == dsfield) 818 return; 819 ip->ip_tos = dsfield; 820 /* 821 * update checksum (from RFC1624) 822 * HC' = ~(~HC + ~m + m') 823 */ 824 sum = ~ntohs(ip->ip_sum) & 0xffff; 825 sum += 0xff00 + (~old & 0xff) + dsfield; 826 sum = (sum >> 16) + (sum & 0xffff); 827 sum += (sum >> 16); /* add carry */ 828 829 ip->ip_sum = htons(~sum & 0xffff); 830 } 831 #ifdef INET6 832 else if (pktattr->pattr_af == AF_INET6) { 833 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr; 834 u_int32_t flowlabel; 835 836 flowlabel = ntohl(ip6->ip6_flow); 837 if ((flowlabel >> 28) != 6) 838 return; /* version mismatch! */ 839 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20); 840 ip6->ip6_flow = htonl(flowlabel); 841 } 842 #endif 843 return; 844 } 845 846 /* 847 * high resolution clock support taking advantage of a machine dependent 848 * high resolution time counter (e.g., timestamp counter of intel pentium). 849 * we assume 850 * - 64-bit-long monotonically-increasing counter 851 * - frequency range is 100M-4GHz (CPU speed) 852 */ 853 /* if pcc is not available or disabled, emulate 256MHz using microtime() */ 854 #define MACHCLK_SHIFT 8 855 856 int machclk_usepcc; 857 u_int32_t machclk_freq; 858 u_int32_t machclk_per_tick; 859 860 #if defined(__i386__) && defined(__NetBSD__) 861 extern u_int64_t cpu_tsc_freq; 862 #endif 863 864 /* Update TSC freq with the value indicated by the caller. */ 865 static void 866 tsc_freq_changed(void *arg, const struct cf_level *level, int status) 867 { 868 /* If there was an error during the transition, don't do anything. */ 869 if (status != 0) 870 return; 871 872 #if defined(__amd64__) || defined(__i386__) 873 /* If TSC is P-state invariant, don't do anything. */ 874 if (tsc_is_invariant) 875 return; 876 #endif 877 878 /* Total setting for this level gives the new frequency in MHz. */ 879 init_machclk(); 880 } 881 EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL, 882 EVENTHANDLER_PRI_LAST); 883 884 static void 885 init_machclk_setup(void) 886 { 887 callout_init(&tbr_callout, 1); 888 889 machclk_usepcc = 1; 890 891 #if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC) 892 machclk_usepcc = 0; 893 #endif 894 #if defined(__FreeBSD__) && defined(SMP) 895 machclk_usepcc = 0; 896 #endif 897 #if defined(__NetBSD__) && defined(MULTIPROCESSOR) 898 machclk_usepcc = 0; 899 #endif 900 #if defined(__amd64__) || defined(__i386__) 901 /* check if TSC is available */ 902 if ((cpu_feature & CPUID_TSC) == 0 || 903 atomic_load_acq_64(&tsc_freq) == 0) 904 machclk_usepcc = 0; 905 #endif 906 } 907 908 void 909 init_machclk(void) 910 { 911 static int called; 912 913 /* Call one-time initialization function. */ 914 if (!called) { 915 init_machclk_setup(); 916 called = 1; 917 } 918 919 if (machclk_usepcc == 0) { 920 /* emulate 256MHz using microtime() */ 921 machclk_freq = 1000000 << MACHCLK_SHIFT; 922 machclk_per_tick = machclk_freq / hz; 923 #ifdef ALTQ_DEBUG 924 printf("altq: emulate %uHz cpu clock\n", machclk_freq); 925 #endif 926 return; 927 } 928 929 /* 930 * if the clock frequency (of Pentium TSC or Alpha PCC) is 931 * accessible, just use it. 932 */ 933 #if defined(__amd64__) || defined(__i386__) 934 machclk_freq = atomic_load_acq_64(&tsc_freq); 935 #endif 936 937 /* 938 * if we don't know the clock frequency, measure it. 939 */ 940 if (machclk_freq == 0) { 941 static int wait; 942 struct timeval tv_start, tv_end; 943 u_int64_t start, end, diff; 944 int timo; 945 946 microtime(&tv_start); 947 start = read_machclk(); 948 timo = hz; /* 1 sec */ 949 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo); 950 microtime(&tv_end); 951 end = read_machclk(); 952 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000 953 + tv_end.tv_usec - tv_start.tv_usec; 954 if (diff != 0) 955 machclk_freq = (u_int)((end - start) * 1000000 / diff); 956 } 957 958 machclk_per_tick = machclk_freq / hz; 959 960 #ifdef ALTQ_DEBUG 961 printf("altq: CPU clock: %uHz\n", machclk_freq); 962 #endif 963 } 964 965 #if defined(__OpenBSD__) && defined(__i386__) 966 static __inline u_int64_t 967 rdtsc(void) 968 { 969 u_int64_t rv; 970 __asm __volatile(".byte 0x0f, 0x31" : "=A" (rv)); 971 return (rv); 972 } 973 #endif /* __OpenBSD__ && __i386__ */ 974 975 u_int64_t 976 read_machclk(void) 977 { 978 u_int64_t val; 979 980 if (machclk_usepcc) { 981 #if defined(__amd64__) || defined(__i386__) 982 val = rdtsc(); 983 #else 984 panic("read_machclk"); 985 #endif 986 } else { 987 struct timeval tv, boottime; 988 989 microtime(&tv); 990 getboottime(&boottime); 991 val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000 992 + tv.tv_usec) << MACHCLK_SHIFT); 993 } 994 return (val); 995 } 996 997 #ifdef ALTQ3_CLFIER_COMPAT 998 999 #ifndef IPPROTO_ESP 1000 #define IPPROTO_ESP 50 /* encapsulating security payload */ 1001 #endif 1002 #ifndef IPPROTO_AH 1003 #define IPPROTO_AH 51 /* authentication header */ 1004 #endif 1005 1006 /* 1007 * extract flow information from a given packet. 1008 * filt_mask shows flowinfo fields required. 1009 * we assume the ip header is in one mbuf, and addresses and ports are 1010 * in network byte order. 1011 */ 1012 int 1013 altq_extractflow(m, af, flow, filt_bmask) 1014 struct mbuf *m; 1015 int af; 1016 struct flowinfo *flow; 1017 u_int32_t filt_bmask; 1018 { 1019 1020 switch (af) { 1021 case PF_INET: { 1022 struct flowinfo_in *fin; 1023 struct ip *ip; 1024 1025 ip = mtod(m, struct ip *); 1026 1027 if (ip->ip_v != 4) 1028 break; 1029 1030 fin = (struct flowinfo_in *)flow; 1031 fin->fi_len = sizeof(struct flowinfo_in); 1032 fin->fi_family = AF_INET; 1033 1034 fin->fi_proto = ip->ip_p; 1035 fin->fi_tos = ip->ip_tos; 1036 1037 fin->fi_src.s_addr = ip->ip_src.s_addr; 1038 fin->fi_dst.s_addr = ip->ip_dst.s_addr; 1039 1040 if (filt_bmask & FIMB4_PORTS) 1041 /* if port info is required, extract port numbers */ 1042 extract_ports4(m, ip, fin); 1043 else { 1044 fin->fi_sport = 0; 1045 fin->fi_dport = 0; 1046 fin->fi_gpi = 0; 1047 } 1048 return (1); 1049 } 1050 1051 #ifdef INET6 1052 case PF_INET6: { 1053 struct flowinfo_in6 *fin6; 1054 struct ip6_hdr *ip6; 1055 1056 ip6 = mtod(m, struct ip6_hdr *); 1057 /* should we check the ip version? */ 1058 1059 fin6 = (struct flowinfo_in6 *)flow; 1060 fin6->fi6_len = sizeof(struct flowinfo_in6); 1061 fin6->fi6_family = AF_INET6; 1062 1063 fin6->fi6_proto = ip6->ip6_nxt; 1064 fin6->fi6_tclass = IPV6_TRAFFIC_CLASS(ip6); 1065 1066 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff); 1067 fin6->fi6_src = ip6->ip6_src; 1068 fin6->fi6_dst = ip6->ip6_dst; 1069 1070 if ((filt_bmask & FIMB6_PORTS) || 1071 ((filt_bmask & FIMB6_PROTO) 1072 && ip6->ip6_nxt > IPPROTO_IPV6)) 1073 /* 1074 * if port info is required, or proto is required 1075 * but there are option headers, extract port 1076 * and protocol numbers. 1077 */ 1078 extract_ports6(m, ip6, fin6); 1079 else { 1080 fin6->fi6_sport = 0; 1081 fin6->fi6_dport = 0; 1082 fin6->fi6_gpi = 0; 1083 } 1084 return (1); 1085 } 1086 #endif /* INET6 */ 1087 1088 default: 1089 break; 1090 } 1091 1092 /* failed */ 1093 flow->fi_len = sizeof(struct flowinfo); 1094 flow->fi_family = AF_UNSPEC; 1095 return (0); 1096 } 1097 1098 /* 1099 * helper routine to extract port numbers 1100 */ 1101 /* structure for ipsec and ipv6 option header template */ 1102 struct _opt6 { 1103 u_int8_t opt6_nxt; /* next header */ 1104 u_int8_t opt6_hlen; /* header extension length */ 1105 u_int16_t _pad; 1106 u_int32_t ah_spi; /* security parameter index 1107 for authentication header */ 1108 }; 1109 1110 /* 1111 * extract port numbers from a ipv4 packet. 1112 */ 1113 static int 1114 extract_ports4(m, ip, fin) 1115 struct mbuf *m; 1116 struct ip *ip; 1117 struct flowinfo_in *fin; 1118 { 1119 struct mbuf *m0; 1120 u_short ip_off; 1121 u_int8_t proto; 1122 int off; 1123 1124 fin->fi_sport = 0; 1125 fin->fi_dport = 0; 1126 fin->fi_gpi = 0; 1127 1128 ip_off = ntohs(ip->ip_off); 1129 /* if it is a fragment, try cached fragment info */ 1130 if (ip_off & IP_OFFMASK) { 1131 ip4f_lookup(ip, fin); 1132 return (1); 1133 } 1134 1135 /* locate the mbuf containing the protocol header */ 1136 for (m0 = m; m0 != NULL; m0 = m0->m_next) 1137 if (((caddr_t)ip >= m0->m_data) && 1138 ((caddr_t)ip < m0->m_data + m0->m_len)) 1139 break; 1140 if (m0 == NULL) { 1141 #ifdef ALTQ_DEBUG 1142 printf("extract_ports4: can't locate header! ip=%p\n", ip); 1143 #endif 1144 return (0); 1145 } 1146 off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2); 1147 proto = ip->ip_p; 1148 1149 #ifdef ALTQ_IPSEC 1150 again: 1151 #endif 1152 while (off >= m0->m_len) { 1153 off -= m0->m_len; 1154 m0 = m0->m_next; 1155 if (m0 == NULL) 1156 return (0); /* bogus ip_hl! */ 1157 } 1158 if (m0->m_len < off + 4) 1159 return (0); 1160 1161 switch (proto) { 1162 case IPPROTO_TCP: 1163 case IPPROTO_UDP: { 1164 struct udphdr *udp; 1165 1166 udp = (struct udphdr *)(mtod(m0, caddr_t) + off); 1167 fin->fi_sport = udp->uh_sport; 1168 fin->fi_dport = udp->uh_dport; 1169 fin->fi_proto = proto; 1170 } 1171 break; 1172 1173 #ifdef ALTQ_IPSEC 1174 case IPPROTO_ESP: 1175 if (fin->fi_gpi == 0){ 1176 u_int32_t *gpi; 1177 1178 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off); 1179 fin->fi_gpi = *gpi; 1180 } 1181 fin->fi_proto = proto; 1182 break; 1183 1184 case IPPROTO_AH: { 1185 /* get next header and header length */ 1186 struct _opt6 *opt6; 1187 1188 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); 1189 proto = opt6->opt6_nxt; 1190 off += 8 + (opt6->opt6_hlen * 4); 1191 if (fin->fi_gpi == 0 && m0->m_len >= off + 8) 1192 fin->fi_gpi = opt6->ah_spi; 1193 } 1194 /* goto the next header */ 1195 goto again; 1196 #endif /* ALTQ_IPSEC */ 1197 1198 default: 1199 fin->fi_proto = proto; 1200 return (0); 1201 } 1202 1203 /* if this is a first fragment, cache it. */ 1204 if (ip_off & IP_MF) 1205 ip4f_cache(ip, fin); 1206 1207 return (1); 1208 } 1209 1210 #ifdef INET6 1211 static int 1212 extract_ports6(m, ip6, fin6) 1213 struct mbuf *m; 1214 struct ip6_hdr *ip6; 1215 struct flowinfo_in6 *fin6; 1216 { 1217 struct mbuf *m0; 1218 int off; 1219 u_int8_t proto; 1220 1221 fin6->fi6_gpi = 0; 1222 fin6->fi6_sport = 0; 1223 fin6->fi6_dport = 0; 1224 1225 /* locate the mbuf containing the protocol header */ 1226 for (m0 = m; m0 != NULL; m0 = m0->m_next) 1227 if (((caddr_t)ip6 >= m0->m_data) && 1228 ((caddr_t)ip6 < m0->m_data + m0->m_len)) 1229 break; 1230 if (m0 == NULL) { 1231 #ifdef ALTQ_DEBUG 1232 printf("extract_ports6: can't locate header! ip6=%p\n", ip6); 1233 #endif 1234 return (0); 1235 } 1236 off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr); 1237 1238 proto = ip6->ip6_nxt; 1239 do { 1240 while (off >= m0->m_len) { 1241 off -= m0->m_len; 1242 m0 = m0->m_next; 1243 if (m0 == NULL) 1244 return (0); 1245 } 1246 if (m0->m_len < off + 4) 1247 return (0); 1248 1249 switch (proto) { 1250 case IPPROTO_TCP: 1251 case IPPROTO_UDP: { 1252 struct udphdr *udp; 1253 1254 udp = (struct udphdr *)(mtod(m0, caddr_t) + off); 1255 fin6->fi6_sport = udp->uh_sport; 1256 fin6->fi6_dport = udp->uh_dport; 1257 fin6->fi6_proto = proto; 1258 } 1259 return (1); 1260 1261 case IPPROTO_ESP: 1262 if (fin6->fi6_gpi == 0) { 1263 u_int32_t *gpi; 1264 1265 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off); 1266 fin6->fi6_gpi = *gpi; 1267 } 1268 fin6->fi6_proto = proto; 1269 return (1); 1270 1271 case IPPROTO_AH: { 1272 /* get next header and header length */ 1273 struct _opt6 *opt6; 1274 1275 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); 1276 if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8) 1277 fin6->fi6_gpi = opt6->ah_spi; 1278 proto = opt6->opt6_nxt; 1279 off += 8 + (opt6->opt6_hlen * 4); 1280 /* goto the next header */ 1281 break; 1282 } 1283 1284 case IPPROTO_HOPOPTS: 1285 case IPPROTO_ROUTING: 1286 case IPPROTO_DSTOPTS: { 1287 /* get next header and header length */ 1288 struct _opt6 *opt6; 1289 1290 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off); 1291 proto = opt6->opt6_nxt; 1292 off += (opt6->opt6_hlen + 1) * 8; 1293 /* goto the next header */ 1294 break; 1295 } 1296 1297 case IPPROTO_FRAGMENT: 1298 /* ipv6 fragmentations are not supported yet */ 1299 default: 1300 fin6->fi6_proto = proto; 1301 return (0); 1302 } 1303 } while (1); 1304 /*NOTREACHED*/ 1305 } 1306 #endif /* INET6 */ 1307 1308 /* 1309 * altq common classifier 1310 */ 1311 int 1312 acc_add_filter(classifier, filter, class, phandle) 1313 struct acc_classifier *classifier; 1314 struct flow_filter *filter; 1315 void *class; 1316 u_long *phandle; 1317 { 1318 struct acc_filter *afp, *prev, *tmp; 1319 int i, s; 1320 1321 #ifdef INET6 1322 if (filter->ff_flow.fi_family != AF_INET && 1323 filter->ff_flow.fi_family != AF_INET6) 1324 return (EINVAL); 1325 #else 1326 if (filter->ff_flow.fi_family != AF_INET) 1327 return (EINVAL); 1328 #endif 1329 1330 afp = malloc(sizeof(*afp), M_DEVBUF, M_WAITOK | M_ZERO); 1331 afp->f_filter = *filter; 1332 afp->f_class = class; 1333 1334 i = ACC_WILDCARD_INDEX; 1335 if (filter->ff_flow.fi_family == AF_INET) { 1336 struct flow_filter *filter4 = &afp->f_filter; 1337 1338 /* 1339 * if address is 0, it's a wildcard. if address mask 1340 * isn't set, use full mask. 1341 */ 1342 if (filter4->ff_flow.fi_dst.s_addr == 0) 1343 filter4->ff_mask.mask_dst.s_addr = 0; 1344 else if (filter4->ff_mask.mask_dst.s_addr == 0) 1345 filter4->ff_mask.mask_dst.s_addr = 0xffffffff; 1346 if (filter4->ff_flow.fi_src.s_addr == 0) 1347 filter4->ff_mask.mask_src.s_addr = 0; 1348 else if (filter4->ff_mask.mask_src.s_addr == 0) 1349 filter4->ff_mask.mask_src.s_addr = 0xffffffff; 1350 1351 /* clear extra bits in addresses */ 1352 filter4->ff_flow.fi_dst.s_addr &= 1353 filter4->ff_mask.mask_dst.s_addr; 1354 filter4->ff_flow.fi_src.s_addr &= 1355 filter4->ff_mask.mask_src.s_addr; 1356 1357 /* 1358 * if dst address is a wildcard, use hash-entry 1359 * ACC_WILDCARD_INDEX. 1360 */ 1361 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff) 1362 i = ACC_WILDCARD_INDEX; 1363 else 1364 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr); 1365 } 1366 #ifdef INET6 1367 else if (filter->ff_flow.fi_family == AF_INET6) { 1368 struct flow_filter6 *filter6 = 1369 (struct flow_filter6 *)&afp->f_filter; 1370 #ifndef IN6MASK0 /* taken from kame ipv6 */ 1371 #define IN6MASK0 {{{ 0, 0, 0, 0 }}} 1372 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}} 1373 const struct in6_addr in6mask0 = IN6MASK0; 1374 const struct in6_addr in6mask128 = IN6MASK128; 1375 #endif 1376 1377 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst)) 1378 filter6->ff_mask6.mask6_dst = in6mask0; 1379 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst)) 1380 filter6->ff_mask6.mask6_dst = in6mask128; 1381 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src)) 1382 filter6->ff_mask6.mask6_src = in6mask0; 1383 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src)) 1384 filter6->ff_mask6.mask6_src = in6mask128; 1385 1386 /* clear extra bits in addresses */ 1387 for (i = 0; i < 16; i++) 1388 filter6->ff_flow6.fi6_dst.s6_addr[i] &= 1389 filter6->ff_mask6.mask6_dst.s6_addr[i]; 1390 for (i = 0; i < 16; i++) 1391 filter6->ff_flow6.fi6_src.s6_addr[i] &= 1392 filter6->ff_mask6.mask6_src.s6_addr[i]; 1393 1394 if (filter6->ff_flow6.fi6_flowlabel == 0) 1395 i = ACC_WILDCARD_INDEX; 1396 else 1397 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel); 1398 } 1399 #endif /* INET6 */ 1400 1401 afp->f_handle = get_filt_handle(classifier, i); 1402 1403 /* update filter bitmask */ 1404 afp->f_fbmask = filt2fibmask(filter); 1405 classifier->acc_fbmask |= afp->f_fbmask; 1406 1407 /* 1408 * add this filter to the filter list. 1409 * filters are ordered from the highest rule number. 1410 */ 1411 s = splnet(); 1412 prev = NULL; 1413 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) { 1414 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno) 1415 prev = tmp; 1416 else 1417 break; 1418 } 1419 if (prev == NULL) 1420 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain); 1421 else 1422 LIST_INSERT_AFTER(prev, afp, f_chain); 1423 splx(s); 1424 1425 *phandle = afp->f_handle; 1426 return (0); 1427 } 1428 1429 int 1430 acc_delete_filter(classifier, handle) 1431 struct acc_classifier *classifier; 1432 u_long handle; 1433 { 1434 struct acc_filter *afp; 1435 int s; 1436 1437 if ((afp = filth_to_filtp(classifier, handle)) == NULL) 1438 return (EINVAL); 1439 1440 s = splnet(); 1441 LIST_REMOVE(afp, f_chain); 1442 splx(s); 1443 1444 free(afp, M_DEVBUF); 1445 1446 /* todo: update filt_bmask */ 1447 1448 return (0); 1449 } 1450 1451 /* 1452 * delete filters referencing to the specified class. 1453 * if the all flag is not 0, delete all the filters. 1454 */ 1455 int 1456 acc_discard_filters(classifier, class, all) 1457 struct acc_classifier *classifier; 1458 void *class; 1459 int all; 1460 { 1461 struct acc_filter *afp; 1462 int i, s; 1463 1464 s = splnet(); 1465 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) { 1466 do { 1467 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) 1468 if (all || afp->f_class == class) { 1469 LIST_REMOVE(afp, f_chain); 1470 free(afp, M_DEVBUF); 1471 /* start again from the head */ 1472 break; 1473 } 1474 } while (afp != NULL); 1475 } 1476 splx(s); 1477 1478 if (all) 1479 classifier->acc_fbmask = 0; 1480 1481 return (0); 1482 } 1483 1484 void * 1485 acc_classify(clfier, m, af) 1486 void *clfier; 1487 struct mbuf *m; 1488 int af; 1489 { 1490 struct acc_classifier *classifier; 1491 struct flowinfo flow; 1492 struct acc_filter *afp; 1493 int i; 1494 1495 classifier = (struct acc_classifier *)clfier; 1496 altq_extractflow(m, af, &flow, classifier->acc_fbmask); 1497 1498 if (flow.fi_family == AF_INET) { 1499 struct flowinfo_in *fp = (struct flowinfo_in *)&flow; 1500 1501 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) { 1502 /* only tos is used */ 1503 LIST_FOREACH(afp, 1504 &classifier->acc_filters[ACC_WILDCARD_INDEX], 1505 f_chain) 1506 if (apply_tosfilter4(afp->f_fbmask, 1507 &afp->f_filter, fp)) 1508 /* filter matched */ 1509 return (afp->f_class); 1510 } else if ((classifier->acc_fbmask & 1511 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL)) 1512 == 0) { 1513 /* only proto and ports are used */ 1514 LIST_FOREACH(afp, 1515 &classifier->acc_filters[ACC_WILDCARD_INDEX], 1516 f_chain) 1517 if (apply_ppfilter4(afp->f_fbmask, 1518 &afp->f_filter, fp)) 1519 /* filter matched */ 1520 return (afp->f_class); 1521 } else { 1522 /* get the filter hash entry from its dest address */ 1523 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr); 1524 do { 1525 /* 1526 * go through this loop twice. first for dst 1527 * hash, second for wildcards. 1528 */ 1529 LIST_FOREACH(afp, &classifier->acc_filters[i], 1530 f_chain) 1531 if (apply_filter4(afp->f_fbmask, 1532 &afp->f_filter, fp)) 1533 /* filter matched */ 1534 return (afp->f_class); 1535 1536 /* 1537 * check again for filters with a dst addr 1538 * wildcard. 1539 * (daddr == 0 || dmask != 0xffffffff). 1540 */ 1541 if (i != ACC_WILDCARD_INDEX) 1542 i = ACC_WILDCARD_INDEX; 1543 else 1544 break; 1545 } while (1); 1546 } 1547 } 1548 #ifdef INET6 1549 else if (flow.fi_family == AF_INET6) { 1550 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow; 1551 1552 /* get the filter hash entry from its flow ID */ 1553 if (fp6->fi6_flowlabel != 0) 1554 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel); 1555 else 1556 /* flowlable can be zero */ 1557 i = ACC_WILDCARD_INDEX; 1558 1559 /* go through this loop twice. first for flow hash, second 1560 for wildcards. */ 1561 do { 1562 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) 1563 if (apply_filter6(afp->f_fbmask, 1564 (struct flow_filter6 *)&afp->f_filter, 1565 fp6)) 1566 /* filter matched */ 1567 return (afp->f_class); 1568 1569 /* 1570 * check again for filters with a wildcard. 1571 */ 1572 if (i != ACC_WILDCARD_INDEX) 1573 i = ACC_WILDCARD_INDEX; 1574 else 1575 break; 1576 } while (1); 1577 } 1578 #endif /* INET6 */ 1579 1580 /* no filter matched */ 1581 return (NULL); 1582 } 1583 1584 static int 1585 apply_filter4(fbmask, filt, pkt) 1586 u_int32_t fbmask; 1587 struct flow_filter *filt; 1588 struct flowinfo_in *pkt; 1589 { 1590 if (filt->ff_flow.fi_family != AF_INET) 1591 return (0); 1592 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport) 1593 return (0); 1594 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport) 1595 return (0); 1596 if ((fbmask & FIMB4_DADDR) && 1597 filt->ff_flow.fi_dst.s_addr != 1598 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr)) 1599 return (0); 1600 if ((fbmask & FIMB4_SADDR) && 1601 filt->ff_flow.fi_src.s_addr != 1602 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr)) 1603 return (0); 1604 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto) 1605 return (0); 1606 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos != 1607 (pkt->fi_tos & filt->ff_mask.mask_tos)) 1608 return (0); 1609 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi)) 1610 return (0); 1611 /* match */ 1612 return (1); 1613 } 1614 1615 /* 1616 * filter matching function optimized for a common case that checks 1617 * only protocol and port numbers 1618 */ 1619 static int 1620 apply_ppfilter4(fbmask, filt, pkt) 1621 u_int32_t fbmask; 1622 struct flow_filter *filt; 1623 struct flowinfo_in *pkt; 1624 { 1625 if (filt->ff_flow.fi_family != AF_INET) 1626 return (0); 1627 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport) 1628 return (0); 1629 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport) 1630 return (0); 1631 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto) 1632 return (0); 1633 /* match */ 1634 return (1); 1635 } 1636 1637 /* 1638 * filter matching function only for tos field. 1639 */ 1640 static int 1641 apply_tosfilter4(fbmask, filt, pkt) 1642 u_int32_t fbmask; 1643 struct flow_filter *filt; 1644 struct flowinfo_in *pkt; 1645 { 1646 if (filt->ff_flow.fi_family != AF_INET) 1647 return (0); 1648 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos != 1649 (pkt->fi_tos & filt->ff_mask.mask_tos)) 1650 return (0); 1651 /* match */ 1652 return (1); 1653 } 1654 1655 #ifdef INET6 1656 static int 1657 apply_filter6(fbmask, filt, pkt) 1658 u_int32_t fbmask; 1659 struct flow_filter6 *filt; 1660 struct flowinfo_in6 *pkt; 1661 { 1662 int i; 1663 1664 if (filt->ff_flow6.fi6_family != AF_INET6) 1665 return (0); 1666 if ((fbmask & FIMB6_FLABEL) && 1667 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel) 1668 return (0); 1669 if ((fbmask & FIMB6_PROTO) && 1670 filt->ff_flow6.fi6_proto != pkt->fi6_proto) 1671 return (0); 1672 if ((fbmask & FIMB6_SPORT) && 1673 filt->ff_flow6.fi6_sport != pkt->fi6_sport) 1674 return (0); 1675 if ((fbmask & FIMB6_DPORT) && 1676 filt->ff_flow6.fi6_dport != pkt->fi6_dport) 1677 return (0); 1678 if (fbmask & FIMB6_SADDR) { 1679 for (i = 0; i < 4; i++) 1680 if (filt->ff_flow6.fi6_src.s6_addr32[i] != 1681 (pkt->fi6_src.s6_addr32[i] & 1682 filt->ff_mask6.mask6_src.s6_addr32[i])) 1683 return (0); 1684 } 1685 if (fbmask & FIMB6_DADDR) { 1686 for (i = 0; i < 4; i++) 1687 if (filt->ff_flow6.fi6_dst.s6_addr32[i] != 1688 (pkt->fi6_dst.s6_addr32[i] & 1689 filt->ff_mask6.mask6_dst.s6_addr32[i])) 1690 return (0); 1691 } 1692 if ((fbmask & FIMB6_TCLASS) && 1693 filt->ff_flow6.fi6_tclass != 1694 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass)) 1695 return (0); 1696 if ((fbmask & FIMB6_GPI) && 1697 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi) 1698 return (0); 1699 /* match */ 1700 return (1); 1701 } 1702 #endif /* INET6 */ 1703 1704 /* 1705 * filter handle: 1706 * bit 20-28: index to the filter hash table 1707 * bit 0-19: unique id in the hash bucket. 1708 */ 1709 static u_long 1710 get_filt_handle(classifier, i) 1711 struct acc_classifier *classifier; 1712 int i; 1713 { 1714 static u_long handle_number = 1; 1715 u_long handle; 1716 struct acc_filter *afp; 1717 1718 while (1) { 1719 handle = handle_number++ & 0x000fffff; 1720 1721 if (LIST_EMPTY(&classifier->acc_filters[i])) 1722 break; 1723 1724 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) 1725 if ((afp->f_handle & 0x000fffff) == handle) 1726 break; 1727 if (afp == NULL) 1728 break; 1729 /* this handle is already used, try again */ 1730 } 1731 1732 return ((i << 20) | handle); 1733 } 1734 1735 /* convert filter handle to filter pointer */ 1736 static struct acc_filter * 1737 filth_to_filtp(classifier, handle) 1738 struct acc_classifier *classifier; 1739 u_long handle; 1740 { 1741 struct acc_filter *afp; 1742 int i; 1743 1744 i = ACC_GET_HINDEX(handle); 1745 1746 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain) 1747 if (afp->f_handle == handle) 1748 return (afp); 1749 1750 return (NULL); 1751 } 1752 1753 /* create flowinfo bitmask */ 1754 static u_int32_t 1755 filt2fibmask(filt) 1756 struct flow_filter *filt; 1757 { 1758 u_int32_t mask = 0; 1759 #ifdef INET6 1760 struct flow_filter6 *filt6; 1761 #endif 1762 1763 switch (filt->ff_flow.fi_family) { 1764 case AF_INET: 1765 if (filt->ff_flow.fi_proto != 0) 1766 mask |= FIMB4_PROTO; 1767 if (filt->ff_flow.fi_tos != 0) 1768 mask |= FIMB4_TOS; 1769 if (filt->ff_flow.fi_dst.s_addr != 0) 1770 mask |= FIMB4_DADDR; 1771 if (filt->ff_flow.fi_src.s_addr != 0) 1772 mask |= FIMB4_SADDR; 1773 if (filt->ff_flow.fi_sport != 0) 1774 mask |= FIMB4_SPORT; 1775 if (filt->ff_flow.fi_dport != 0) 1776 mask |= FIMB4_DPORT; 1777 if (filt->ff_flow.fi_gpi != 0) 1778 mask |= FIMB4_GPI; 1779 break; 1780 #ifdef INET6 1781 case AF_INET6: 1782 filt6 = (struct flow_filter6 *)filt; 1783 1784 if (filt6->ff_flow6.fi6_proto != 0) 1785 mask |= FIMB6_PROTO; 1786 if (filt6->ff_flow6.fi6_tclass != 0) 1787 mask |= FIMB6_TCLASS; 1788 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst)) 1789 mask |= FIMB6_DADDR; 1790 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src)) 1791 mask |= FIMB6_SADDR; 1792 if (filt6->ff_flow6.fi6_sport != 0) 1793 mask |= FIMB6_SPORT; 1794 if (filt6->ff_flow6.fi6_dport != 0) 1795 mask |= FIMB6_DPORT; 1796 if (filt6->ff_flow6.fi6_gpi != 0) 1797 mask |= FIMB6_GPI; 1798 if (filt6->ff_flow6.fi6_flowlabel != 0) 1799 mask |= FIMB6_FLABEL; 1800 break; 1801 #endif /* INET6 */ 1802 } 1803 return (mask); 1804 } 1805 1806 /* 1807 * helper functions to handle IPv4 fragments. 1808 * currently only in-sequence fragments are handled. 1809 * - fragment info is cached in a LRU list. 1810 * - when a first fragment is found, cache its flow info. 1811 * - when a non-first fragment is found, lookup the cache. 1812 */ 1813 1814 struct ip4_frag { 1815 TAILQ_ENTRY(ip4_frag) ip4f_chain; 1816 char ip4f_valid; 1817 u_short ip4f_id; 1818 struct flowinfo_in ip4f_info; 1819 }; 1820 1821 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */ 1822 1823 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */ 1824 1825 static void 1826 ip4f_cache(ip, fin) 1827 struct ip *ip; 1828 struct flowinfo_in *fin; 1829 { 1830 struct ip4_frag *fp; 1831 1832 if (TAILQ_EMPTY(&ip4f_list)) { 1833 /* first time call, allocate fragment cache entries. */ 1834 if (ip4f_init() < 0) 1835 /* allocation failed! */ 1836 return; 1837 } 1838 1839 fp = ip4f_alloc(); 1840 fp->ip4f_id = ip->ip_id; 1841 fp->ip4f_info.fi_proto = ip->ip_p; 1842 fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr; 1843 fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr; 1844 1845 /* save port numbers */ 1846 fp->ip4f_info.fi_sport = fin->fi_sport; 1847 fp->ip4f_info.fi_dport = fin->fi_dport; 1848 fp->ip4f_info.fi_gpi = fin->fi_gpi; 1849 } 1850 1851 static int 1852 ip4f_lookup(ip, fin) 1853 struct ip *ip; 1854 struct flowinfo_in *fin; 1855 { 1856 struct ip4_frag *fp; 1857 1858 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid; 1859 fp = TAILQ_NEXT(fp, ip4f_chain)) 1860 if (ip->ip_id == fp->ip4f_id && 1861 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr && 1862 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr && 1863 ip->ip_p == fp->ip4f_info.fi_proto) { 1864 /* found the matching entry */ 1865 fin->fi_sport = fp->ip4f_info.fi_sport; 1866 fin->fi_dport = fp->ip4f_info.fi_dport; 1867 fin->fi_gpi = fp->ip4f_info.fi_gpi; 1868 1869 if ((ntohs(ip->ip_off) & IP_MF) == 0) 1870 /* this is the last fragment, 1871 release the entry. */ 1872 ip4f_free(fp); 1873 1874 return (1); 1875 } 1876 1877 /* no matching entry found */ 1878 return (0); 1879 } 1880 1881 static int 1882 ip4f_init(void) 1883 { 1884 struct ip4_frag *fp; 1885 int i; 1886 1887 TAILQ_INIT(&ip4f_list); 1888 for (i=0; i<IP4F_TABSIZE; i++) { 1889 fp = malloc(sizeof(struct ip4_frag), 1890 M_DEVBUF, M_NOWAIT); 1891 if (fp == NULL) { 1892 printf("ip4f_init: can't alloc %dth entry!\n", i); 1893 if (i == 0) 1894 return (-1); 1895 return (0); 1896 } 1897 fp->ip4f_valid = 0; 1898 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain); 1899 } 1900 return (0); 1901 } 1902 1903 static struct ip4_frag * 1904 ip4f_alloc(void) 1905 { 1906 struct ip4_frag *fp; 1907 1908 /* reclaim an entry at the tail, put it at the head */ 1909 fp = TAILQ_LAST(&ip4f_list, ip4f_list); 1910 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain); 1911 fp->ip4f_valid = 1; 1912 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain); 1913 return (fp); 1914 } 1915 1916 static void 1917 ip4f_free(fp) 1918 struct ip4_frag *fp; 1919 { 1920 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain); 1921 fp->ip4f_valid = 0; 1922 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain); 1923 } 1924 1925 #endif /* ALTQ3_CLFIER_COMPAT */ 1926