xref: /freebsd/sys/net/altq/altq_subr.c (revision 31d62a73c2e6ac0ff413a7a17700ffc7dce254ef)
1 /*-
2  * Copyright (C) 1997-2003
3  *	Sony Computer Science Laboratories Inc.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $
27  * $FreeBSD$
28  */
29 
30 #include "opt_altq.h"
31 #include "opt_inet.h"
32 #include "opt_inet6.h"
33 
34 #include <sys/param.h>
35 #include <sys/malloc.h>
36 #include <sys/mbuf.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/socket.h>
40 #include <sys/socketvar.h>
41 #include <sys/kernel.h>
42 #include <sys/errno.h>
43 #include <sys/syslog.h>
44 #include <sys/sysctl.h>
45 #include <sys/queue.h>
46 
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_dl.h>
50 #include <net/if_types.h>
51 #include <net/vnet.h>
52 
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/ip.h>
56 #ifdef INET6
57 #include <netinet/ip6.h>
58 #endif
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 
62 #include <netpfil/pf/pf.h>
63 #include <netpfil/pf/pf_altq.h>
64 #include <net/altq/altq.h>
65 #ifdef ALTQ3_COMPAT
66 #include <net/altq/altq_conf.h>
67 #endif
68 
69 /* machine dependent clock related includes */
70 #include <sys/bus.h>
71 #include <sys/cpu.h>
72 #include <sys/eventhandler.h>
73 #include <machine/clock.h>
74 #if defined(__amd64__) || defined(__i386__)
75 #include <machine/cpufunc.h>		/* for pentium tsc */
76 #include <machine/specialreg.h>		/* for CPUID_TSC */
77 #include <machine/md_var.h>		/* for cpu_feature */
78 #endif /* __amd64 || __i386__ */
79 
80 /*
81  * internal function prototypes
82  */
83 static void	tbr_timeout(void *);
84 int (*altq_input)(struct mbuf *, int) = NULL;
85 static struct mbuf *tbr_dequeue(struct ifaltq *, int);
86 static int tbr_timer = 0;	/* token bucket regulator timer */
87 #if !defined(__FreeBSD__) || (__FreeBSD_version < 600000)
88 static struct callout tbr_callout = CALLOUT_INITIALIZER;
89 #else
90 static struct callout tbr_callout;
91 #endif
92 
93 #ifdef ALTQ3_CLFIER_COMPAT
94 static int 	extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
95 #ifdef INET6
96 static int 	extract_ports6(struct mbuf *, struct ip6_hdr *,
97 			       struct flowinfo_in6 *);
98 #endif
99 static int	apply_filter4(u_int32_t, struct flow_filter *,
100 			      struct flowinfo_in *);
101 static int	apply_ppfilter4(u_int32_t, struct flow_filter *,
102 				struct flowinfo_in *);
103 #ifdef INET6
104 static int	apply_filter6(u_int32_t, struct flow_filter6 *,
105 			      struct flowinfo_in6 *);
106 #endif
107 static int	apply_tosfilter4(u_int32_t, struct flow_filter *,
108 				 struct flowinfo_in *);
109 static u_long	get_filt_handle(struct acc_classifier *, int);
110 static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
111 static u_int32_t filt2fibmask(struct flow_filter *);
112 
113 static void 	ip4f_cache(struct ip *, struct flowinfo_in *);
114 static int 	ip4f_lookup(struct ip *, struct flowinfo_in *);
115 static int 	ip4f_init(void);
116 static struct ip4_frag	*ip4f_alloc(void);
117 static void 	ip4f_free(struct ip4_frag *);
118 #endif /* ALTQ3_CLFIER_COMPAT */
119 
120 /*
121  * alternate queueing support routines
122  */
123 
124 /* look up the queue state by the interface name and the queueing type. */
125 void *
126 altq_lookup(name, type)
127 	char *name;
128 	int type;
129 {
130 	struct ifnet *ifp;
131 
132 	if ((ifp = ifunit(name)) != NULL) {
133 		/* read if_snd unlocked */
134 		if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
135 			return (ifp->if_snd.altq_disc);
136 	}
137 
138 	return NULL;
139 }
140 
141 int
142 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
143 	struct ifaltq *ifq;
144 	int type;
145 	void *discipline;
146 	int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
147 	struct mbuf *(*dequeue)(struct ifaltq *, int);
148 	int (*request)(struct ifaltq *, int, void *);
149 	void *clfier;
150 	void *(*classify)(void *, struct mbuf *, int);
151 {
152 	IFQ_LOCK(ifq);
153 	if (!ALTQ_IS_READY(ifq)) {
154 		IFQ_UNLOCK(ifq);
155 		return ENXIO;
156 	}
157 
158 #ifdef ALTQ3_COMPAT
159 	/*
160 	 * pfaltq can override the existing discipline, but altq3 cannot.
161 	 * check these if clfier is not NULL (which implies altq3).
162 	 */
163 	if (clfier != NULL) {
164 		if (ALTQ_IS_ENABLED(ifq)) {
165 			IFQ_UNLOCK(ifq);
166 			return EBUSY;
167 		}
168 		if (ALTQ_IS_ATTACHED(ifq)) {
169 			IFQ_UNLOCK(ifq);
170 			return EEXIST;
171 		}
172 	}
173 #endif
174 	ifq->altq_type     = type;
175 	ifq->altq_disc     = discipline;
176 	ifq->altq_enqueue  = enqueue;
177 	ifq->altq_dequeue  = dequeue;
178 	ifq->altq_request  = request;
179 	ifq->altq_clfier   = clfier;
180 	ifq->altq_classify = classify;
181 	ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
182 #ifdef ALTQ3_COMPAT
183 #ifdef ALTQ_KLD
184 	altq_module_incref(type);
185 #endif
186 #endif
187 	IFQ_UNLOCK(ifq);
188 	return 0;
189 }
190 
191 int
192 altq_detach(ifq)
193 	struct ifaltq *ifq;
194 {
195 	IFQ_LOCK(ifq);
196 
197 	if (!ALTQ_IS_READY(ifq)) {
198 		IFQ_UNLOCK(ifq);
199 		return ENXIO;
200 	}
201 	if (ALTQ_IS_ENABLED(ifq)) {
202 		IFQ_UNLOCK(ifq);
203 		return EBUSY;
204 	}
205 	if (!ALTQ_IS_ATTACHED(ifq)) {
206 		IFQ_UNLOCK(ifq);
207 		return (0);
208 	}
209 #ifdef ALTQ3_COMPAT
210 #ifdef ALTQ_KLD
211 	altq_module_declref(ifq->altq_type);
212 #endif
213 #endif
214 
215 	ifq->altq_type     = ALTQT_NONE;
216 	ifq->altq_disc     = NULL;
217 	ifq->altq_enqueue  = NULL;
218 	ifq->altq_dequeue  = NULL;
219 	ifq->altq_request  = NULL;
220 	ifq->altq_clfier   = NULL;
221 	ifq->altq_classify = NULL;
222 	ifq->altq_flags &= ALTQF_CANTCHANGE;
223 
224 	IFQ_UNLOCK(ifq);
225 	return 0;
226 }
227 
228 int
229 altq_enable(ifq)
230 	struct ifaltq *ifq;
231 {
232 	int s;
233 
234 	IFQ_LOCK(ifq);
235 
236 	if (!ALTQ_IS_READY(ifq)) {
237 		IFQ_UNLOCK(ifq);
238 		return ENXIO;
239 	}
240 	if (ALTQ_IS_ENABLED(ifq)) {
241 		IFQ_UNLOCK(ifq);
242 		return 0;
243 	}
244 
245 	s = splnet();
246 	IFQ_PURGE_NOLOCK(ifq);
247 	ASSERT(ifq->ifq_len == 0);
248 	ifq->ifq_drv_maxlen = 0;		/* disable bulk dequeue */
249 	ifq->altq_flags |= ALTQF_ENABLED;
250 	if (ifq->altq_clfier != NULL)
251 		ifq->altq_flags |= ALTQF_CLASSIFY;
252 	splx(s);
253 
254 	IFQ_UNLOCK(ifq);
255 	return 0;
256 }
257 
258 int
259 altq_disable(ifq)
260 	struct ifaltq *ifq;
261 {
262 	int s;
263 
264 	IFQ_LOCK(ifq);
265 	if (!ALTQ_IS_ENABLED(ifq)) {
266 		IFQ_UNLOCK(ifq);
267 		return 0;
268 	}
269 
270 	s = splnet();
271 	IFQ_PURGE_NOLOCK(ifq);
272 	ASSERT(ifq->ifq_len == 0);
273 	ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
274 	splx(s);
275 
276 	IFQ_UNLOCK(ifq);
277 	return 0;
278 }
279 
280 #ifdef ALTQ_DEBUG
281 void
282 altq_assert(file, line, failedexpr)
283 	const char *file, *failedexpr;
284 	int line;
285 {
286 	(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
287 		     failedexpr, file, line);
288 	panic("altq assertion");
289 	/* NOTREACHED */
290 }
291 #endif
292 
293 /*
294  * internal representation of token bucket parameters
295  *	rate:	(byte_per_unittime << TBR_SHIFT)  / machclk_freq
296  *		(((bits_per_sec) / 8) << TBR_SHIFT) / machclk_freq
297  *	depth:	byte << TBR_SHIFT
298  *
299  */
300 #define	TBR_SHIFT	29
301 #define	TBR_SCALE(x)	((int64_t)(x) << TBR_SHIFT)
302 #define	TBR_UNSCALE(x)	((x) >> TBR_SHIFT)
303 
304 static struct mbuf *
305 tbr_dequeue(ifq, op)
306 	struct ifaltq *ifq;
307 	int op;
308 {
309 	struct tb_regulator *tbr;
310 	struct mbuf *m;
311 	int64_t interval;
312 	u_int64_t now;
313 
314 	IFQ_LOCK_ASSERT(ifq);
315 	tbr = ifq->altq_tbr;
316 	if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
317 		/* if this is a remove after poll, bypass tbr check */
318 	} else {
319 		/* update token only when it is negative */
320 		if (tbr->tbr_token <= 0) {
321 			now = read_machclk();
322 			interval = now - tbr->tbr_last;
323 			if (interval >= tbr->tbr_filluptime)
324 				tbr->tbr_token = tbr->tbr_depth;
325 			else {
326 				tbr->tbr_token += interval * tbr->tbr_rate;
327 				if (tbr->tbr_token > tbr->tbr_depth)
328 					tbr->tbr_token = tbr->tbr_depth;
329 			}
330 			tbr->tbr_last = now;
331 		}
332 		/* if token is still negative, don't allow dequeue */
333 		if (tbr->tbr_token <= 0)
334 			return (NULL);
335 	}
336 
337 	if (ALTQ_IS_ENABLED(ifq))
338 		m = (*ifq->altq_dequeue)(ifq, op);
339 	else {
340 		if (op == ALTDQ_POLL)
341 			_IF_POLL(ifq, m);
342 		else
343 			_IF_DEQUEUE(ifq, m);
344 	}
345 
346 	if (m != NULL && op == ALTDQ_REMOVE)
347 		tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
348 	tbr->tbr_lastop = op;
349 	return (m);
350 }
351 
352 /*
353  * set a token bucket regulator.
354  * if the specified rate is zero, the token bucket regulator is deleted.
355  */
356 int
357 tbr_set(ifq, profile)
358 	struct ifaltq *ifq;
359 	struct tb_profile *profile;
360 {
361 	struct tb_regulator *tbr, *otbr;
362 
363 	if (tbr_dequeue_ptr == NULL)
364 		tbr_dequeue_ptr = tbr_dequeue;
365 
366 	if (machclk_freq == 0)
367 		init_machclk();
368 	if (machclk_freq == 0) {
369 		printf("tbr_set: no cpu clock available!\n");
370 		return (ENXIO);
371 	}
372 
373 	IFQ_LOCK(ifq);
374 	if (profile->rate == 0) {
375 		/* delete this tbr */
376 		if ((tbr = ifq->altq_tbr) == NULL) {
377 			IFQ_UNLOCK(ifq);
378 			return (ENOENT);
379 		}
380 		ifq->altq_tbr = NULL;
381 		free(tbr, M_DEVBUF);
382 		IFQ_UNLOCK(ifq);
383 		return (0);
384 	}
385 
386 	tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
387 	if (tbr == NULL) {
388 		IFQ_UNLOCK(ifq);
389 		return (ENOMEM);
390 	}
391 
392 	tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
393 	tbr->tbr_depth = TBR_SCALE(profile->depth);
394 	if (tbr->tbr_rate > 0)
395 		tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
396 	else
397 		tbr->tbr_filluptime = LLONG_MAX;
398 	/*
399 	 *  The longest time between tbr_dequeue() calls will be about 1
400 	 *  system tick, as the callout that drives it is scheduled once per
401 	 *  tick.  The refill-time detection logic in tbr_dequeue() can only
402 	 *  properly detect the passage of up to LLONG_MAX machclk ticks.
403 	 *  Therefore, in order for this logic to function properly in the
404 	 *  extreme case, the maximum value of tbr_filluptime should be
405 	 *  LLONG_MAX less one system tick's worth of machclk ticks less
406 	 *  some additional slop factor (here one more system tick's worth
407 	 *  of machclk ticks).
408 	 */
409 	if (tbr->tbr_filluptime > (LLONG_MAX - 2 * machclk_per_tick))
410 		tbr->tbr_filluptime = LLONG_MAX - 2 * machclk_per_tick;
411 	tbr->tbr_token = tbr->tbr_depth;
412 	tbr->tbr_last = read_machclk();
413 	tbr->tbr_lastop = ALTDQ_REMOVE;
414 
415 	otbr = ifq->altq_tbr;
416 	ifq->altq_tbr = tbr;	/* set the new tbr */
417 
418 	if (otbr != NULL)
419 		free(otbr, M_DEVBUF);
420 	else {
421 		if (tbr_timer == 0) {
422 			CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
423 			tbr_timer = 1;
424 		}
425 	}
426 	IFQ_UNLOCK(ifq);
427 	return (0);
428 }
429 
430 /*
431  * tbr_timeout goes through the interface list, and kicks the drivers
432  * if necessary.
433  *
434  * MPSAFE
435  */
436 static void
437 tbr_timeout(arg)
438 	void *arg;
439 {
440 	VNET_ITERATOR_DECL(vnet_iter);
441 	struct ifnet *ifp;
442 	int active, s;
443 
444 	active = 0;
445 	s = splnet();
446 	IFNET_RLOCK_NOSLEEP();
447 	VNET_LIST_RLOCK_NOSLEEP();
448 	VNET_FOREACH(vnet_iter) {
449 		CURVNET_SET(vnet_iter);
450 		for (ifp = CK_STAILQ_FIRST(&V_ifnet); ifp;
451 		    ifp = CK_STAILQ_NEXT(ifp, if_link)) {
452 			/* read from if_snd unlocked */
453 			if (!TBR_IS_ENABLED(&ifp->if_snd))
454 				continue;
455 			active++;
456 			if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
457 			    ifp->if_start != NULL)
458 				(*ifp->if_start)(ifp);
459 		}
460 		CURVNET_RESTORE();
461 	}
462 	VNET_LIST_RUNLOCK_NOSLEEP();
463 	IFNET_RUNLOCK_NOSLEEP();
464 	splx(s);
465 	if (active > 0)
466 		CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
467 	else
468 		tbr_timer = 0;	/* don't need tbr_timer anymore */
469 }
470 
471 /*
472  * attach a discipline to the interface.  if one already exists, it is
473  * overridden.
474  * Locking is done in the discipline specific attach functions. Basically
475  * they call back to altq_attach which takes care of the attach and locking.
476  */
477 int
478 altq_pfattach(struct pf_altq *a)
479 {
480 	int error = 0;
481 
482 	switch (a->scheduler) {
483 	case ALTQT_NONE:
484 		break;
485 #ifdef ALTQ_CBQ
486 	case ALTQT_CBQ:
487 		error = cbq_pfattach(a);
488 		break;
489 #endif
490 #ifdef ALTQ_PRIQ
491 	case ALTQT_PRIQ:
492 		error = priq_pfattach(a);
493 		break;
494 #endif
495 #ifdef ALTQ_HFSC
496 	case ALTQT_HFSC:
497 		error = hfsc_pfattach(a);
498 		break;
499 #endif
500 #ifdef ALTQ_FAIRQ
501 	case ALTQT_FAIRQ:
502 		error = fairq_pfattach(a);
503 		break;
504 #endif
505 #ifdef ALTQ_CODEL
506 	case ALTQT_CODEL:
507 		error = codel_pfattach(a);
508 		break;
509 #endif
510 	default:
511 		error = ENXIO;
512 	}
513 
514 	return (error);
515 }
516 
517 /*
518  * detach a discipline from the interface.
519  * it is possible that the discipline was already overridden by another
520  * discipline.
521  */
522 int
523 altq_pfdetach(struct pf_altq *a)
524 {
525 	struct ifnet *ifp;
526 	int s, error = 0;
527 
528 	if ((ifp = ifunit(a->ifname)) == NULL)
529 		return (EINVAL);
530 
531 	/* if this discipline is no longer referenced, just return */
532 	/* read unlocked from if_snd */
533 	if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
534 		return (0);
535 
536 	s = splnet();
537 	/* read unlocked from if_snd, _disable and _detach take care */
538 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
539 		error = altq_disable(&ifp->if_snd);
540 	if (error == 0)
541 		error = altq_detach(&ifp->if_snd);
542 	splx(s);
543 
544 	return (error);
545 }
546 
547 /*
548  * add a discipline or a queue
549  * Locking is done in the discipline specific functions with regards to
550  * malloc with WAITOK, also it is not yet clear which lock to use.
551  */
552 int
553 altq_add(struct pf_altq *a)
554 {
555 	int error = 0;
556 
557 	if (a->qname[0] != 0)
558 		return (altq_add_queue(a));
559 
560 	if (machclk_freq == 0)
561 		init_machclk();
562 	if (machclk_freq == 0)
563 		panic("altq_add: no cpu clock");
564 
565 	switch (a->scheduler) {
566 #ifdef ALTQ_CBQ
567 	case ALTQT_CBQ:
568 		error = cbq_add_altq(a);
569 		break;
570 #endif
571 #ifdef ALTQ_PRIQ
572 	case ALTQT_PRIQ:
573 		error = priq_add_altq(a);
574 		break;
575 #endif
576 #ifdef ALTQ_HFSC
577 	case ALTQT_HFSC:
578 		error = hfsc_add_altq(a);
579 		break;
580 #endif
581 #ifdef ALTQ_FAIRQ
582         case ALTQT_FAIRQ:
583                 error = fairq_add_altq(a);
584                 break;
585 #endif
586 #ifdef ALTQ_CODEL
587 	case ALTQT_CODEL:
588 		error = codel_add_altq(a);
589 		break;
590 #endif
591 	default:
592 		error = ENXIO;
593 	}
594 
595 	return (error);
596 }
597 
598 /*
599  * remove a discipline or a queue
600  * It is yet unclear what lock to use to protect this operation, the
601  * discipline specific functions will determine and grab it
602  */
603 int
604 altq_remove(struct pf_altq *a)
605 {
606 	int error = 0;
607 
608 	if (a->qname[0] != 0)
609 		return (altq_remove_queue(a));
610 
611 	switch (a->scheduler) {
612 #ifdef ALTQ_CBQ
613 	case ALTQT_CBQ:
614 		error = cbq_remove_altq(a);
615 		break;
616 #endif
617 #ifdef ALTQ_PRIQ
618 	case ALTQT_PRIQ:
619 		error = priq_remove_altq(a);
620 		break;
621 #endif
622 #ifdef ALTQ_HFSC
623 	case ALTQT_HFSC:
624 		error = hfsc_remove_altq(a);
625 		break;
626 #endif
627 #ifdef ALTQ_FAIRQ
628         case ALTQT_FAIRQ:
629                 error = fairq_remove_altq(a);
630                 break;
631 #endif
632 #ifdef ALTQ_CODEL
633 	case ALTQT_CODEL:
634 		error = codel_remove_altq(a);
635 		break;
636 #endif
637 	default:
638 		error = ENXIO;
639 	}
640 
641 	return (error);
642 }
643 
644 /*
645  * add a queue to the discipline
646  * It is yet unclear what lock to use to protect this operation, the
647  * discipline specific functions will determine and grab it
648  */
649 int
650 altq_add_queue(struct pf_altq *a)
651 {
652 	int error = 0;
653 
654 	switch (a->scheduler) {
655 #ifdef ALTQ_CBQ
656 	case ALTQT_CBQ:
657 		error = cbq_add_queue(a);
658 		break;
659 #endif
660 #ifdef ALTQ_PRIQ
661 	case ALTQT_PRIQ:
662 		error = priq_add_queue(a);
663 		break;
664 #endif
665 #ifdef ALTQ_HFSC
666 	case ALTQT_HFSC:
667 		error = hfsc_add_queue(a);
668 		break;
669 #endif
670 #ifdef ALTQ_FAIRQ
671         case ALTQT_FAIRQ:
672                 error = fairq_add_queue(a);
673                 break;
674 #endif
675 	default:
676 		error = ENXIO;
677 	}
678 
679 	return (error);
680 }
681 
682 /*
683  * remove a queue from the discipline
684  * It is yet unclear what lock to use to protect this operation, the
685  * discipline specific functions will determine and grab it
686  */
687 int
688 altq_remove_queue(struct pf_altq *a)
689 {
690 	int error = 0;
691 
692 	switch (a->scheduler) {
693 #ifdef ALTQ_CBQ
694 	case ALTQT_CBQ:
695 		error = cbq_remove_queue(a);
696 		break;
697 #endif
698 #ifdef ALTQ_PRIQ
699 	case ALTQT_PRIQ:
700 		error = priq_remove_queue(a);
701 		break;
702 #endif
703 #ifdef ALTQ_HFSC
704 	case ALTQT_HFSC:
705 		error = hfsc_remove_queue(a);
706 		break;
707 #endif
708 #ifdef ALTQ_FAIRQ
709         case ALTQT_FAIRQ:
710                 error = fairq_remove_queue(a);
711                 break;
712 #endif
713 	default:
714 		error = ENXIO;
715 	}
716 
717 	return (error);
718 }
719 
720 /*
721  * get queue statistics
722  * Locking is done in the discipline specific functions with regards to
723  * copyout operations, also it is not yet clear which lock to use.
724  */
725 int
726 altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes, int version)
727 {
728 	int error = 0;
729 
730 	switch (a->scheduler) {
731 #ifdef ALTQ_CBQ
732 	case ALTQT_CBQ:
733 		error = cbq_getqstats(a, ubuf, nbytes, version);
734 		break;
735 #endif
736 #ifdef ALTQ_PRIQ
737 	case ALTQT_PRIQ:
738 		error = priq_getqstats(a, ubuf, nbytes, version);
739 		break;
740 #endif
741 #ifdef ALTQ_HFSC
742 	case ALTQT_HFSC:
743 		error = hfsc_getqstats(a, ubuf, nbytes, version);
744 		break;
745 #endif
746 #ifdef ALTQ_FAIRQ
747         case ALTQT_FAIRQ:
748                 error = fairq_getqstats(a, ubuf, nbytes, version);
749                 break;
750 #endif
751 #ifdef ALTQ_CODEL
752 	case ALTQT_CODEL:
753 		error = codel_getqstats(a, ubuf, nbytes, version);
754 		break;
755 #endif
756 	default:
757 		error = ENXIO;
758 	}
759 
760 	return (error);
761 }
762 
763 /*
764  * read and write diffserv field in IPv4 or IPv6 header
765  */
766 u_int8_t
767 read_dsfield(m, pktattr)
768 	struct mbuf *m;
769 	struct altq_pktattr *pktattr;
770 {
771 	struct mbuf *m0;
772 	u_int8_t ds_field = 0;
773 
774 	if (pktattr == NULL ||
775 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
776 		return ((u_int8_t)0);
777 
778 	/* verify that pattr_hdr is within the mbuf data */
779 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
780 		if ((pktattr->pattr_hdr >= m0->m_data) &&
781 		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
782 			break;
783 	if (m0 == NULL) {
784 		/* ick, pattr_hdr is stale */
785 		pktattr->pattr_af = AF_UNSPEC;
786 #ifdef ALTQ_DEBUG
787 		printf("read_dsfield: can't locate header!\n");
788 #endif
789 		return ((u_int8_t)0);
790 	}
791 
792 	if (pktattr->pattr_af == AF_INET) {
793 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
794 
795 		if (ip->ip_v != 4)
796 			return ((u_int8_t)0);	/* version mismatch! */
797 		ds_field = ip->ip_tos;
798 	}
799 #ifdef INET6
800 	else if (pktattr->pattr_af == AF_INET6) {
801 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
802 		u_int32_t flowlabel;
803 
804 		flowlabel = ntohl(ip6->ip6_flow);
805 		if ((flowlabel >> 28) != 6)
806 			return ((u_int8_t)0);	/* version mismatch! */
807 		ds_field = (flowlabel >> 20) & 0xff;
808 	}
809 #endif
810 	return (ds_field);
811 }
812 
813 void
814 write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
815 {
816 	struct mbuf *m0;
817 
818 	if (pktattr == NULL ||
819 	    (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
820 		return;
821 
822 	/* verify that pattr_hdr is within the mbuf data */
823 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
824 		if ((pktattr->pattr_hdr >= m0->m_data) &&
825 		    (pktattr->pattr_hdr < m0->m_data + m0->m_len))
826 			break;
827 	if (m0 == NULL) {
828 		/* ick, pattr_hdr is stale */
829 		pktattr->pattr_af = AF_UNSPEC;
830 #ifdef ALTQ_DEBUG
831 		printf("write_dsfield: can't locate header!\n");
832 #endif
833 		return;
834 	}
835 
836 	if (pktattr->pattr_af == AF_INET) {
837 		struct ip *ip = (struct ip *)pktattr->pattr_hdr;
838 		u_int8_t old;
839 		int32_t sum;
840 
841 		if (ip->ip_v != 4)
842 			return;		/* version mismatch! */
843 		old = ip->ip_tos;
844 		dsfield |= old & 3;	/* leave CU bits */
845 		if (old == dsfield)
846 			return;
847 		ip->ip_tos = dsfield;
848 		/*
849 		 * update checksum (from RFC1624)
850 		 *	   HC' = ~(~HC + ~m + m')
851 		 */
852 		sum = ~ntohs(ip->ip_sum) & 0xffff;
853 		sum += 0xff00 + (~old & 0xff) + dsfield;
854 		sum = (sum >> 16) + (sum & 0xffff);
855 		sum += (sum >> 16);  /* add carry */
856 
857 		ip->ip_sum = htons(~sum & 0xffff);
858 	}
859 #ifdef INET6
860 	else if (pktattr->pattr_af == AF_INET6) {
861 		struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
862 		u_int32_t flowlabel;
863 
864 		flowlabel = ntohl(ip6->ip6_flow);
865 		if ((flowlabel >> 28) != 6)
866 			return;		/* version mismatch! */
867 		flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
868 		ip6->ip6_flow = htonl(flowlabel);
869 	}
870 #endif
871 	return;
872 }
873 
874 
875 /*
876  * high resolution clock support taking advantage of a machine dependent
877  * high resolution time counter (e.g., timestamp counter of intel pentium).
878  * we assume
879  *  - 64-bit-long monotonically-increasing counter
880  *  - frequency range is 100M-4GHz (CPU speed)
881  */
882 /* if pcc is not available or disabled, emulate 256MHz using microtime() */
883 #define	MACHCLK_SHIFT	8
884 
885 int machclk_usepcc;
886 u_int32_t machclk_freq;
887 u_int32_t machclk_per_tick;
888 
889 #if defined(__i386__) && defined(__NetBSD__)
890 extern u_int64_t cpu_tsc_freq;
891 #endif
892 
893 #if (__FreeBSD_version >= 700035)
894 /* Update TSC freq with the value indicated by the caller. */
895 static void
896 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
897 {
898 	/* If there was an error during the transition, don't do anything. */
899 	if (status != 0)
900 		return;
901 
902 #if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__))
903 	/* If TSC is P-state invariant, don't do anything. */
904 	if (tsc_is_invariant)
905 		return;
906 #endif
907 
908 	/* Total setting for this level gives the new frequency in MHz. */
909 	init_machclk();
910 }
911 EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
912     EVENTHANDLER_PRI_LAST);
913 #endif /* __FreeBSD_version >= 700035 */
914 
915 static void
916 init_machclk_setup(void)
917 {
918 #if (__FreeBSD_version >= 600000)
919 	callout_init(&tbr_callout, 0);
920 #endif
921 
922 	machclk_usepcc = 1;
923 
924 #if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
925 	machclk_usepcc = 0;
926 #endif
927 #if defined(__FreeBSD__) && defined(SMP)
928 	machclk_usepcc = 0;
929 #endif
930 #if defined(__NetBSD__) && defined(MULTIPROCESSOR)
931 	machclk_usepcc = 0;
932 #endif
933 #if defined(__amd64__) || defined(__i386__)
934 	/* check if TSC is available */
935 	if ((cpu_feature & CPUID_TSC) == 0 ||
936 	    atomic_load_acq_64(&tsc_freq) == 0)
937 		machclk_usepcc = 0;
938 #endif
939 }
940 
941 void
942 init_machclk(void)
943 {
944 	static int called;
945 
946 	/* Call one-time initialization function. */
947 	if (!called) {
948 		init_machclk_setup();
949 		called = 1;
950 	}
951 
952 	if (machclk_usepcc == 0) {
953 		/* emulate 256MHz using microtime() */
954 		machclk_freq = 1000000 << MACHCLK_SHIFT;
955 		machclk_per_tick = machclk_freq / hz;
956 #ifdef ALTQ_DEBUG
957 		printf("altq: emulate %uHz cpu clock\n", machclk_freq);
958 #endif
959 		return;
960 	}
961 
962 	/*
963 	 * if the clock frequency (of Pentium TSC or Alpha PCC) is
964 	 * accessible, just use it.
965 	 */
966 #if defined(__amd64__) || defined(__i386__)
967 	machclk_freq = atomic_load_acq_64(&tsc_freq);
968 #endif
969 
970 	/*
971 	 * if we don't know the clock frequency, measure it.
972 	 */
973 	if (machclk_freq == 0) {
974 		static int	wait;
975 		struct timeval	tv_start, tv_end;
976 		u_int64_t	start, end, diff;
977 		int		timo;
978 
979 		microtime(&tv_start);
980 		start = read_machclk();
981 		timo = hz;	/* 1 sec */
982 		(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
983 		microtime(&tv_end);
984 		end = read_machclk();
985 		diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
986 		    + tv_end.tv_usec - tv_start.tv_usec;
987 		if (diff != 0)
988 			machclk_freq = (u_int)((end - start) * 1000000 / diff);
989 	}
990 
991 	machclk_per_tick = machclk_freq / hz;
992 
993 #ifdef ALTQ_DEBUG
994 	printf("altq: CPU clock: %uHz\n", machclk_freq);
995 #endif
996 }
997 
998 #if defined(__OpenBSD__) && defined(__i386__)
999 static __inline u_int64_t
1000 rdtsc(void)
1001 {
1002 	u_int64_t rv;
1003 	__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
1004 	return (rv);
1005 }
1006 #endif /* __OpenBSD__ && __i386__ */
1007 
1008 u_int64_t
1009 read_machclk(void)
1010 {
1011 	u_int64_t val;
1012 
1013 	if (machclk_usepcc) {
1014 #if defined(__amd64__) || defined(__i386__)
1015 		val = rdtsc();
1016 #else
1017 		panic("read_machclk");
1018 #endif
1019 	} else {
1020 		struct timeval tv, boottime;
1021 
1022 		microtime(&tv);
1023 		getboottime(&boottime);
1024 		val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
1025 		    + tv.tv_usec) << MACHCLK_SHIFT);
1026 	}
1027 	return (val);
1028 }
1029 
1030 #ifdef ALTQ3_CLFIER_COMPAT
1031 
1032 #ifndef IPPROTO_ESP
1033 #define	IPPROTO_ESP	50		/* encapsulating security payload */
1034 #endif
1035 #ifndef IPPROTO_AH
1036 #define	IPPROTO_AH	51		/* authentication header */
1037 #endif
1038 
1039 /*
1040  * extract flow information from a given packet.
1041  * filt_mask shows flowinfo fields required.
1042  * we assume the ip header is in one mbuf, and addresses and ports are
1043  * in network byte order.
1044  */
1045 int
1046 altq_extractflow(m, af, flow, filt_bmask)
1047 	struct mbuf *m;
1048 	int af;
1049 	struct flowinfo *flow;
1050 	u_int32_t	filt_bmask;
1051 {
1052 
1053 	switch (af) {
1054 	case PF_INET: {
1055 		struct flowinfo_in *fin;
1056 		struct ip *ip;
1057 
1058 		ip = mtod(m, struct ip *);
1059 
1060 		if (ip->ip_v != 4)
1061 			break;
1062 
1063 		fin = (struct flowinfo_in *)flow;
1064 		fin->fi_len = sizeof(struct flowinfo_in);
1065 		fin->fi_family = AF_INET;
1066 
1067 		fin->fi_proto = ip->ip_p;
1068 		fin->fi_tos = ip->ip_tos;
1069 
1070 		fin->fi_src.s_addr = ip->ip_src.s_addr;
1071 		fin->fi_dst.s_addr = ip->ip_dst.s_addr;
1072 
1073 		if (filt_bmask & FIMB4_PORTS)
1074 			/* if port info is required, extract port numbers */
1075 			extract_ports4(m, ip, fin);
1076 		else {
1077 			fin->fi_sport = 0;
1078 			fin->fi_dport = 0;
1079 			fin->fi_gpi = 0;
1080 		}
1081 		return (1);
1082 	}
1083 
1084 #ifdef INET6
1085 	case PF_INET6: {
1086 		struct flowinfo_in6 *fin6;
1087 		struct ip6_hdr *ip6;
1088 
1089 		ip6 = mtod(m, struct ip6_hdr *);
1090 		/* should we check the ip version? */
1091 
1092 		fin6 = (struct flowinfo_in6 *)flow;
1093 		fin6->fi6_len = sizeof(struct flowinfo_in6);
1094 		fin6->fi6_family = AF_INET6;
1095 
1096 		fin6->fi6_proto = ip6->ip6_nxt;
1097 		fin6->fi6_tclass   = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1098 
1099 		fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
1100 		fin6->fi6_src = ip6->ip6_src;
1101 		fin6->fi6_dst = ip6->ip6_dst;
1102 
1103 		if ((filt_bmask & FIMB6_PORTS) ||
1104 		    ((filt_bmask & FIMB6_PROTO)
1105 		     && ip6->ip6_nxt > IPPROTO_IPV6))
1106 			/*
1107 			 * if port info is required, or proto is required
1108 			 * but there are option headers, extract port
1109 			 * and protocol numbers.
1110 			 */
1111 			extract_ports6(m, ip6, fin6);
1112 		else {
1113 			fin6->fi6_sport = 0;
1114 			fin6->fi6_dport = 0;
1115 			fin6->fi6_gpi = 0;
1116 		}
1117 		return (1);
1118 	}
1119 #endif /* INET6 */
1120 
1121 	default:
1122 		break;
1123 	}
1124 
1125 	/* failed */
1126 	flow->fi_len = sizeof(struct flowinfo);
1127 	flow->fi_family = AF_UNSPEC;
1128 	return (0);
1129 }
1130 
1131 /*
1132  * helper routine to extract port numbers
1133  */
1134 /* structure for ipsec and ipv6 option header template */
1135 struct _opt6 {
1136 	u_int8_t	opt6_nxt;	/* next header */
1137 	u_int8_t	opt6_hlen;	/* header extension length */
1138 	u_int16_t	_pad;
1139 	u_int32_t	ah_spi;		/* security parameter index
1140 					   for authentication header */
1141 };
1142 
1143 /*
1144  * extract port numbers from a ipv4 packet.
1145  */
1146 static int
1147 extract_ports4(m, ip, fin)
1148 	struct mbuf *m;
1149 	struct ip *ip;
1150 	struct flowinfo_in *fin;
1151 {
1152 	struct mbuf *m0;
1153 	u_short ip_off;
1154 	u_int8_t proto;
1155 	int 	off;
1156 
1157 	fin->fi_sport = 0;
1158 	fin->fi_dport = 0;
1159 	fin->fi_gpi = 0;
1160 
1161 	ip_off = ntohs(ip->ip_off);
1162 	/* if it is a fragment, try cached fragment info */
1163 	if (ip_off & IP_OFFMASK) {
1164 		ip4f_lookup(ip, fin);
1165 		return (1);
1166 	}
1167 
1168 	/* locate the mbuf containing the protocol header */
1169 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
1170 		if (((caddr_t)ip >= m0->m_data) &&
1171 		    ((caddr_t)ip < m0->m_data + m0->m_len))
1172 			break;
1173 	if (m0 == NULL) {
1174 #ifdef ALTQ_DEBUG
1175 		printf("extract_ports4: can't locate header! ip=%p\n", ip);
1176 #endif
1177 		return (0);
1178 	}
1179 	off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
1180 	proto = ip->ip_p;
1181 
1182 #ifdef ALTQ_IPSEC
1183  again:
1184 #endif
1185 	while (off >= m0->m_len) {
1186 		off -= m0->m_len;
1187 		m0 = m0->m_next;
1188 		if (m0 == NULL)
1189 			return (0);  /* bogus ip_hl! */
1190 	}
1191 	if (m0->m_len < off + 4)
1192 		return (0);
1193 
1194 	switch (proto) {
1195 	case IPPROTO_TCP:
1196 	case IPPROTO_UDP: {
1197 		struct udphdr *udp;
1198 
1199 		udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1200 		fin->fi_sport = udp->uh_sport;
1201 		fin->fi_dport = udp->uh_dport;
1202 		fin->fi_proto = proto;
1203 		}
1204 		break;
1205 
1206 #ifdef ALTQ_IPSEC
1207 	case IPPROTO_ESP:
1208 		if (fin->fi_gpi == 0){
1209 			u_int32_t *gpi;
1210 
1211 			gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1212 			fin->fi_gpi   = *gpi;
1213 		}
1214 		fin->fi_proto = proto;
1215 		break;
1216 
1217 	case IPPROTO_AH: {
1218 			/* get next header and header length */
1219 			struct _opt6 *opt6;
1220 
1221 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1222 			proto = opt6->opt6_nxt;
1223 			off += 8 + (opt6->opt6_hlen * 4);
1224 			if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
1225 				fin->fi_gpi = opt6->ah_spi;
1226 		}
1227 		/* goto the next header */
1228 		goto again;
1229 #endif  /* ALTQ_IPSEC */
1230 
1231 	default:
1232 		fin->fi_proto = proto;
1233 		return (0);
1234 	}
1235 
1236 	/* if this is a first fragment, cache it. */
1237 	if (ip_off & IP_MF)
1238 		ip4f_cache(ip, fin);
1239 
1240 	return (1);
1241 }
1242 
1243 #ifdef INET6
1244 static int
1245 extract_ports6(m, ip6, fin6)
1246 	struct mbuf *m;
1247 	struct ip6_hdr *ip6;
1248 	struct flowinfo_in6 *fin6;
1249 {
1250 	struct mbuf *m0;
1251 	int	off;
1252 	u_int8_t proto;
1253 
1254 	fin6->fi6_gpi   = 0;
1255 	fin6->fi6_sport = 0;
1256 	fin6->fi6_dport = 0;
1257 
1258 	/* locate the mbuf containing the protocol header */
1259 	for (m0 = m; m0 != NULL; m0 = m0->m_next)
1260 		if (((caddr_t)ip6 >= m0->m_data) &&
1261 		    ((caddr_t)ip6 < m0->m_data + m0->m_len))
1262 			break;
1263 	if (m0 == NULL) {
1264 #ifdef ALTQ_DEBUG
1265 		printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
1266 #endif
1267 		return (0);
1268 	}
1269 	off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
1270 
1271 	proto = ip6->ip6_nxt;
1272 	do {
1273 		while (off >= m0->m_len) {
1274 			off -= m0->m_len;
1275 			m0 = m0->m_next;
1276 			if (m0 == NULL)
1277 				return (0);
1278 		}
1279 		if (m0->m_len < off + 4)
1280 			return (0);
1281 
1282 		switch (proto) {
1283 		case IPPROTO_TCP:
1284 		case IPPROTO_UDP: {
1285 			struct udphdr *udp;
1286 
1287 			udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1288 			fin6->fi6_sport = udp->uh_sport;
1289 			fin6->fi6_dport = udp->uh_dport;
1290 			fin6->fi6_proto = proto;
1291 			}
1292 			return (1);
1293 
1294 		case IPPROTO_ESP:
1295 			if (fin6->fi6_gpi == 0) {
1296 				u_int32_t *gpi;
1297 
1298 				gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1299 				fin6->fi6_gpi   = *gpi;
1300 			}
1301 			fin6->fi6_proto = proto;
1302 			return (1);
1303 
1304 		case IPPROTO_AH: {
1305 			/* get next header and header length */
1306 			struct _opt6 *opt6;
1307 
1308 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1309 			if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
1310 				fin6->fi6_gpi = opt6->ah_spi;
1311 			proto = opt6->opt6_nxt;
1312 			off += 8 + (opt6->opt6_hlen * 4);
1313 			/* goto the next header */
1314 			break;
1315 			}
1316 
1317 		case IPPROTO_HOPOPTS:
1318 		case IPPROTO_ROUTING:
1319 		case IPPROTO_DSTOPTS: {
1320 			/* get next header and header length */
1321 			struct _opt6 *opt6;
1322 
1323 			opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1324 			proto = opt6->opt6_nxt;
1325 			off += (opt6->opt6_hlen + 1) * 8;
1326 			/* goto the next header */
1327 			break;
1328 			}
1329 
1330 		case IPPROTO_FRAGMENT:
1331 			/* ipv6 fragmentations are not supported yet */
1332 		default:
1333 			fin6->fi6_proto = proto;
1334 			return (0);
1335 		}
1336 	} while (1);
1337 	/*NOTREACHED*/
1338 }
1339 #endif /* INET6 */
1340 
1341 /*
1342  * altq common classifier
1343  */
1344 int
1345 acc_add_filter(classifier, filter, class, phandle)
1346 	struct acc_classifier *classifier;
1347 	struct flow_filter *filter;
1348 	void	*class;
1349 	u_long	*phandle;
1350 {
1351 	struct acc_filter *afp, *prev, *tmp;
1352 	int	i, s;
1353 
1354 #ifdef INET6
1355 	if (filter->ff_flow.fi_family != AF_INET &&
1356 	    filter->ff_flow.fi_family != AF_INET6)
1357 		return (EINVAL);
1358 #else
1359 	if (filter->ff_flow.fi_family != AF_INET)
1360 		return (EINVAL);
1361 #endif
1362 
1363 	afp = malloc(sizeof(struct acc_filter),
1364 	       M_DEVBUF, M_WAITOK);
1365 	if (afp == NULL)
1366 		return (ENOMEM);
1367 	bzero(afp, sizeof(struct acc_filter));
1368 
1369 	afp->f_filter = *filter;
1370 	afp->f_class = class;
1371 
1372 	i = ACC_WILDCARD_INDEX;
1373 	if (filter->ff_flow.fi_family == AF_INET) {
1374 		struct flow_filter *filter4 = &afp->f_filter;
1375 
1376 		/*
1377 		 * if address is 0, it's a wildcard.  if address mask
1378 		 * isn't set, use full mask.
1379 		 */
1380 		if (filter4->ff_flow.fi_dst.s_addr == 0)
1381 			filter4->ff_mask.mask_dst.s_addr = 0;
1382 		else if (filter4->ff_mask.mask_dst.s_addr == 0)
1383 			filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
1384 		if (filter4->ff_flow.fi_src.s_addr == 0)
1385 			filter4->ff_mask.mask_src.s_addr = 0;
1386 		else if (filter4->ff_mask.mask_src.s_addr == 0)
1387 			filter4->ff_mask.mask_src.s_addr = 0xffffffff;
1388 
1389 		/* clear extra bits in addresses  */
1390 		   filter4->ff_flow.fi_dst.s_addr &=
1391 		       filter4->ff_mask.mask_dst.s_addr;
1392 		   filter4->ff_flow.fi_src.s_addr &=
1393 		       filter4->ff_mask.mask_src.s_addr;
1394 
1395 		/*
1396 		 * if dst address is a wildcard, use hash-entry
1397 		 * ACC_WILDCARD_INDEX.
1398 		 */
1399 		if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
1400 			i = ACC_WILDCARD_INDEX;
1401 		else
1402 			i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
1403 	}
1404 #ifdef INET6
1405 	else if (filter->ff_flow.fi_family == AF_INET6) {
1406 		struct flow_filter6 *filter6 =
1407 			(struct flow_filter6 *)&afp->f_filter;
1408 #ifndef IN6MASK0 /* taken from kame ipv6 */
1409 #define	IN6MASK0	{{{ 0, 0, 0, 0 }}}
1410 #define	IN6MASK128	{{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
1411 		const struct in6_addr in6mask0 = IN6MASK0;
1412 		const struct in6_addr in6mask128 = IN6MASK128;
1413 #endif
1414 
1415 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
1416 			filter6->ff_mask6.mask6_dst = in6mask0;
1417 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
1418 			filter6->ff_mask6.mask6_dst = in6mask128;
1419 		if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
1420 			filter6->ff_mask6.mask6_src = in6mask0;
1421 		else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
1422 			filter6->ff_mask6.mask6_src = in6mask128;
1423 
1424 		/* clear extra bits in addresses  */
1425 		for (i = 0; i < 16; i++)
1426 			filter6->ff_flow6.fi6_dst.s6_addr[i] &=
1427 			    filter6->ff_mask6.mask6_dst.s6_addr[i];
1428 		for (i = 0; i < 16; i++)
1429 			filter6->ff_flow6.fi6_src.s6_addr[i] &=
1430 			    filter6->ff_mask6.mask6_src.s6_addr[i];
1431 
1432 		if (filter6->ff_flow6.fi6_flowlabel == 0)
1433 			i = ACC_WILDCARD_INDEX;
1434 		else
1435 			i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
1436 	}
1437 #endif /* INET6 */
1438 
1439 	afp->f_handle = get_filt_handle(classifier, i);
1440 
1441 	/* update filter bitmask */
1442 	afp->f_fbmask = filt2fibmask(filter);
1443 	classifier->acc_fbmask |= afp->f_fbmask;
1444 
1445 	/*
1446 	 * add this filter to the filter list.
1447 	 * filters are ordered from the highest rule number.
1448 	 */
1449 	s = splnet();
1450 	prev = NULL;
1451 	LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
1452 		if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
1453 			prev = tmp;
1454 		else
1455 			break;
1456 	}
1457 	if (prev == NULL)
1458 		LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
1459 	else
1460 		LIST_INSERT_AFTER(prev, afp, f_chain);
1461 	splx(s);
1462 
1463 	*phandle = afp->f_handle;
1464 	return (0);
1465 }
1466 
1467 int
1468 acc_delete_filter(classifier, handle)
1469 	struct acc_classifier *classifier;
1470 	u_long handle;
1471 {
1472 	struct acc_filter *afp;
1473 	int	s;
1474 
1475 	if ((afp = filth_to_filtp(classifier, handle)) == NULL)
1476 		return (EINVAL);
1477 
1478 	s = splnet();
1479 	LIST_REMOVE(afp, f_chain);
1480 	splx(s);
1481 
1482 	free(afp, M_DEVBUF);
1483 
1484 	/* todo: update filt_bmask */
1485 
1486 	return (0);
1487 }
1488 
1489 /*
1490  * delete filters referencing to the specified class.
1491  * if the all flag is not 0, delete all the filters.
1492  */
1493 int
1494 acc_discard_filters(classifier, class, all)
1495 	struct acc_classifier *classifier;
1496 	void	*class;
1497 	int	all;
1498 {
1499 	struct acc_filter *afp;
1500 	int	i, s;
1501 
1502 	s = splnet();
1503 	for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
1504 		do {
1505 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1506 				if (all || afp->f_class == class) {
1507 					LIST_REMOVE(afp, f_chain);
1508 					free(afp, M_DEVBUF);
1509 					/* start again from the head */
1510 					break;
1511 				}
1512 		} while (afp != NULL);
1513 	}
1514 	splx(s);
1515 
1516 	if (all)
1517 		classifier->acc_fbmask = 0;
1518 
1519 	return (0);
1520 }
1521 
1522 void *
1523 acc_classify(clfier, m, af)
1524 	void *clfier;
1525 	struct mbuf *m;
1526 	int af;
1527 {
1528 	struct acc_classifier *classifier;
1529 	struct flowinfo flow;
1530 	struct acc_filter *afp;
1531 	int	i;
1532 
1533 	classifier = (struct acc_classifier *)clfier;
1534 	altq_extractflow(m, af, &flow, classifier->acc_fbmask);
1535 
1536 	if (flow.fi_family == AF_INET) {
1537 		struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
1538 
1539 		if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
1540 			/* only tos is used */
1541 			LIST_FOREACH(afp,
1542 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1543 				 f_chain)
1544 				if (apply_tosfilter4(afp->f_fbmask,
1545 						     &afp->f_filter, fp))
1546 					/* filter matched */
1547 					return (afp->f_class);
1548 		} else if ((classifier->acc_fbmask &
1549 			(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
1550 		    == 0) {
1551 			/* only proto and ports are used */
1552 			LIST_FOREACH(afp,
1553 				 &classifier->acc_filters[ACC_WILDCARD_INDEX],
1554 				 f_chain)
1555 				if (apply_ppfilter4(afp->f_fbmask,
1556 						    &afp->f_filter, fp))
1557 					/* filter matched */
1558 					return (afp->f_class);
1559 		} else {
1560 			/* get the filter hash entry from its dest address */
1561 			i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
1562 			do {
1563 				/*
1564 				 * go through this loop twice.  first for dst
1565 				 * hash, second for wildcards.
1566 				 */
1567 				LIST_FOREACH(afp, &classifier->acc_filters[i],
1568 					     f_chain)
1569 					if (apply_filter4(afp->f_fbmask,
1570 							  &afp->f_filter, fp))
1571 						/* filter matched */
1572 						return (afp->f_class);
1573 
1574 				/*
1575 				 * check again for filters with a dst addr
1576 				 * wildcard.
1577 				 * (daddr == 0 || dmask != 0xffffffff).
1578 				 */
1579 				if (i != ACC_WILDCARD_INDEX)
1580 					i = ACC_WILDCARD_INDEX;
1581 				else
1582 					break;
1583 			} while (1);
1584 		}
1585 	}
1586 #ifdef INET6
1587 	else if (flow.fi_family == AF_INET6) {
1588 		struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
1589 
1590 		/* get the filter hash entry from its flow ID */
1591 		if (fp6->fi6_flowlabel != 0)
1592 			i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
1593 		else
1594 			/* flowlable can be zero */
1595 			i = ACC_WILDCARD_INDEX;
1596 
1597 		/* go through this loop twice.  first for flow hash, second
1598 		   for wildcards. */
1599 		do {
1600 			LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1601 				if (apply_filter6(afp->f_fbmask,
1602 					(struct flow_filter6 *)&afp->f_filter,
1603 					fp6))
1604 					/* filter matched */
1605 					return (afp->f_class);
1606 
1607 			/*
1608 			 * check again for filters with a wildcard.
1609 			 */
1610 			if (i != ACC_WILDCARD_INDEX)
1611 				i = ACC_WILDCARD_INDEX;
1612 			else
1613 				break;
1614 		} while (1);
1615 	}
1616 #endif /* INET6 */
1617 
1618 	/* no filter matched */
1619 	return (NULL);
1620 }
1621 
1622 static int
1623 apply_filter4(fbmask, filt, pkt)
1624 	u_int32_t	fbmask;
1625 	struct flow_filter *filt;
1626 	struct flowinfo_in *pkt;
1627 {
1628 	if (filt->ff_flow.fi_family != AF_INET)
1629 		return (0);
1630 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1631 		return (0);
1632 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1633 		return (0);
1634 	if ((fbmask & FIMB4_DADDR) &&
1635 	    filt->ff_flow.fi_dst.s_addr !=
1636 	    (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1637 		return (0);
1638 	if ((fbmask & FIMB4_SADDR) &&
1639 	    filt->ff_flow.fi_src.s_addr !=
1640 	    (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1641 		return (0);
1642 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1643 		return (0);
1644 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1645 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1646 		return (0);
1647 	if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1648 		return (0);
1649 	/* match */
1650 	return (1);
1651 }
1652 
1653 /*
1654  * filter matching function optimized for a common case that checks
1655  * only protocol and port numbers
1656  */
1657 static int
1658 apply_ppfilter4(fbmask, filt, pkt)
1659 	u_int32_t	fbmask;
1660 	struct flow_filter *filt;
1661 	struct flowinfo_in *pkt;
1662 {
1663 	if (filt->ff_flow.fi_family != AF_INET)
1664 		return (0);
1665 	if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1666 		return (0);
1667 	if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1668 		return (0);
1669 	if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1670 		return (0);
1671 	/* match */
1672 	return (1);
1673 }
1674 
1675 /*
1676  * filter matching function only for tos field.
1677  */
1678 static int
1679 apply_tosfilter4(fbmask, filt, pkt)
1680 	u_int32_t	fbmask;
1681 	struct flow_filter *filt;
1682 	struct flowinfo_in *pkt;
1683 {
1684 	if (filt->ff_flow.fi_family != AF_INET)
1685 		return (0);
1686 	if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1687 	    (pkt->fi_tos & filt->ff_mask.mask_tos))
1688 		return (0);
1689 	/* match */
1690 	return (1);
1691 }
1692 
1693 #ifdef INET6
1694 static int
1695 apply_filter6(fbmask, filt, pkt)
1696 	u_int32_t	fbmask;
1697 	struct flow_filter6 *filt;
1698 	struct flowinfo_in6 *pkt;
1699 {
1700 	int i;
1701 
1702 	if (filt->ff_flow6.fi6_family != AF_INET6)
1703 		return (0);
1704 	if ((fbmask & FIMB6_FLABEL) &&
1705 	    filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1706 		return (0);
1707 	if ((fbmask & FIMB6_PROTO) &&
1708 	    filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1709 		return (0);
1710 	if ((fbmask & FIMB6_SPORT) &&
1711 	    filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1712 		return (0);
1713 	if ((fbmask & FIMB6_DPORT) &&
1714 	    filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1715 		return (0);
1716 	if (fbmask & FIMB6_SADDR) {
1717 		for (i = 0; i < 4; i++)
1718 			if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1719 			    (pkt->fi6_src.s6_addr32[i] &
1720 			     filt->ff_mask6.mask6_src.s6_addr32[i]))
1721 				return (0);
1722 	}
1723 	if (fbmask & FIMB6_DADDR) {
1724 		for (i = 0; i < 4; i++)
1725 			if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1726 			    (pkt->fi6_dst.s6_addr32[i] &
1727 			     filt->ff_mask6.mask6_dst.s6_addr32[i]))
1728 				return (0);
1729 	}
1730 	if ((fbmask & FIMB6_TCLASS) &&
1731 	    filt->ff_flow6.fi6_tclass !=
1732 	    (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1733 		return (0);
1734 	if ((fbmask & FIMB6_GPI) &&
1735 	    filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1736 		return (0);
1737 	/* match */
1738 	return (1);
1739 }
1740 #endif /* INET6 */
1741 
1742 /*
1743  *  filter handle:
1744  *	bit 20-28: index to the filter hash table
1745  *	bit  0-19: unique id in the hash bucket.
1746  */
1747 static u_long
1748 get_filt_handle(classifier, i)
1749 	struct acc_classifier *classifier;
1750 	int	i;
1751 {
1752 	static u_long handle_number = 1;
1753 	u_long 	handle;
1754 	struct acc_filter *afp;
1755 
1756 	while (1) {
1757 		handle = handle_number++ & 0x000fffff;
1758 
1759 		if (LIST_EMPTY(&classifier->acc_filters[i]))
1760 			break;
1761 
1762 		LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1763 			if ((afp->f_handle & 0x000fffff) == handle)
1764 				break;
1765 		if (afp == NULL)
1766 			break;
1767 		/* this handle is already used, try again */
1768 	}
1769 
1770 	return ((i << 20) | handle);
1771 }
1772 
1773 /* convert filter handle to filter pointer */
1774 static struct acc_filter *
1775 filth_to_filtp(classifier, handle)
1776 	struct acc_classifier *classifier;
1777 	u_long handle;
1778 {
1779 	struct acc_filter *afp;
1780 	int	i;
1781 
1782 	i = ACC_GET_HINDEX(handle);
1783 
1784 	LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1785 		if (afp->f_handle == handle)
1786 			return (afp);
1787 
1788 	return (NULL);
1789 }
1790 
1791 /* create flowinfo bitmask */
1792 static u_int32_t
1793 filt2fibmask(filt)
1794 	struct flow_filter *filt;
1795 {
1796 	u_int32_t mask = 0;
1797 #ifdef INET6
1798 	struct flow_filter6 *filt6;
1799 #endif
1800 
1801 	switch (filt->ff_flow.fi_family) {
1802 	case AF_INET:
1803 		if (filt->ff_flow.fi_proto != 0)
1804 			mask |= FIMB4_PROTO;
1805 		if (filt->ff_flow.fi_tos != 0)
1806 			mask |= FIMB4_TOS;
1807 		if (filt->ff_flow.fi_dst.s_addr != 0)
1808 			mask |= FIMB4_DADDR;
1809 		if (filt->ff_flow.fi_src.s_addr != 0)
1810 			mask |= FIMB4_SADDR;
1811 		if (filt->ff_flow.fi_sport != 0)
1812 			mask |= FIMB4_SPORT;
1813 		if (filt->ff_flow.fi_dport != 0)
1814 			mask |= FIMB4_DPORT;
1815 		if (filt->ff_flow.fi_gpi != 0)
1816 			mask |= FIMB4_GPI;
1817 		break;
1818 #ifdef INET6
1819 	case AF_INET6:
1820 		filt6 = (struct flow_filter6 *)filt;
1821 
1822 		if (filt6->ff_flow6.fi6_proto != 0)
1823 			mask |= FIMB6_PROTO;
1824 		if (filt6->ff_flow6.fi6_tclass != 0)
1825 			mask |= FIMB6_TCLASS;
1826 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1827 			mask |= FIMB6_DADDR;
1828 		if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1829 			mask |= FIMB6_SADDR;
1830 		if (filt6->ff_flow6.fi6_sport != 0)
1831 			mask |= FIMB6_SPORT;
1832 		if (filt6->ff_flow6.fi6_dport != 0)
1833 			mask |= FIMB6_DPORT;
1834 		if (filt6->ff_flow6.fi6_gpi != 0)
1835 			mask |= FIMB6_GPI;
1836 		if (filt6->ff_flow6.fi6_flowlabel != 0)
1837 			mask |= FIMB6_FLABEL;
1838 		break;
1839 #endif /* INET6 */
1840 	}
1841 	return (mask);
1842 }
1843 
1844 
1845 /*
1846  * helper functions to handle IPv4 fragments.
1847  * currently only in-sequence fragments are handled.
1848  *	- fragment info is cached in a LRU list.
1849  *	- when a first fragment is found, cache its flow info.
1850  *	- when a non-first fragment is found, lookup the cache.
1851  */
1852 
1853 struct ip4_frag {
1854     TAILQ_ENTRY(ip4_frag) ip4f_chain;
1855     char    ip4f_valid;
1856     u_short ip4f_id;
1857     struct flowinfo_in ip4f_info;
1858 };
1859 
1860 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1861 
1862 #define	IP4F_TABSIZE		16	/* IPv4 fragment cache size */
1863 
1864 
1865 static void
1866 ip4f_cache(ip, fin)
1867 	struct ip *ip;
1868 	struct flowinfo_in *fin;
1869 {
1870 	struct ip4_frag *fp;
1871 
1872 	if (TAILQ_EMPTY(&ip4f_list)) {
1873 		/* first time call, allocate fragment cache entries. */
1874 		if (ip4f_init() < 0)
1875 			/* allocation failed! */
1876 			return;
1877 	}
1878 
1879 	fp = ip4f_alloc();
1880 	fp->ip4f_id = ip->ip_id;
1881 	fp->ip4f_info.fi_proto = ip->ip_p;
1882 	fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1883 	fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1884 
1885 	/* save port numbers */
1886 	fp->ip4f_info.fi_sport = fin->fi_sport;
1887 	fp->ip4f_info.fi_dport = fin->fi_dport;
1888 	fp->ip4f_info.fi_gpi   = fin->fi_gpi;
1889 }
1890 
1891 static int
1892 ip4f_lookup(ip, fin)
1893 	struct ip *ip;
1894 	struct flowinfo_in *fin;
1895 {
1896 	struct ip4_frag *fp;
1897 
1898 	for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1899 	     fp = TAILQ_NEXT(fp, ip4f_chain))
1900 		if (ip->ip_id == fp->ip4f_id &&
1901 		    ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1902 		    ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1903 		    ip->ip_p == fp->ip4f_info.fi_proto) {
1904 
1905 			/* found the matching entry */
1906 			fin->fi_sport = fp->ip4f_info.fi_sport;
1907 			fin->fi_dport = fp->ip4f_info.fi_dport;
1908 			fin->fi_gpi   = fp->ip4f_info.fi_gpi;
1909 
1910 			if ((ntohs(ip->ip_off) & IP_MF) == 0)
1911 				/* this is the last fragment,
1912 				   release the entry. */
1913 				ip4f_free(fp);
1914 
1915 			return (1);
1916 		}
1917 
1918 	/* no matching entry found */
1919 	return (0);
1920 }
1921 
1922 static int
1923 ip4f_init(void)
1924 {
1925 	struct ip4_frag *fp;
1926 	int i;
1927 
1928 	TAILQ_INIT(&ip4f_list);
1929 	for (i=0; i<IP4F_TABSIZE; i++) {
1930 		fp = malloc(sizeof(struct ip4_frag),
1931 		       M_DEVBUF, M_NOWAIT);
1932 		if (fp == NULL) {
1933 			printf("ip4f_init: can't alloc %dth entry!\n", i);
1934 			if (i == 0)
1935 				return (-1);
1936 			return (0);
1937 		}
1938 		fp->ip4f_valid = 0;
1939 		TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1940 	}
1941 	return (0);
1942 }
1943 
1944 static struct ip4_frag *
1945 ip4f_alloc(void)
1946 {
1947 	struct ip4_frag *fp;
1948 
1949 	/* reclaim an entry at the tail, put it at the head */
1950 	fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1951 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1952 	fp->ip4f_valid = 1;
1953 	TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1954 	return (fp);
1955 }
1956 
1957 static void
1958 ip4f_free(fp)
1959 	struct ip4_frag *fp;
1960 {
1961 	TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1962 	fp->ip4f_valid = 0;
1963 	TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1964 }
1965 
1966 #endif /* ALTQ3_CLFIER_COMPAT */
1967