xref: /freebsd/sys/libkern/qdivrem.c (revision 51369649b03ece2aed3eb61b0c8214b9aa5b2fa2)
1df8bae1dSRodney W. Grimes /*-
2*51369649SPedro F. Giffuni  * SPDX-License-Identifier: BSD-3-Clause
3*51369649SPedro F. Giffuni  *
4df8bae1dSRodney W. Grimes  * Copyright (c) 1992, 1993
5df8bae1dSRodney W. Grimes  *	The Regents of the University of California.  All rights reserved.
6df8bae1dSRodney W. Grimes  *
7df8bae1dSRodney W. Grimes  * This software was developed by the Computer Systems Engineering group
8df8bae1dSRodney W. Grimes  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9df8bae1dSRodney W. Grimes  * contributed to Berkeley.
10df8bae1dSRodney W. Grimes  *
11df8bae1dSRodney W. Grimes  * Redistribution and use in source and binary forms, with or without
12df8bae1dSRodney W. Grimes  * modification, are permitted provided that the following conditions
13df8bae1dSRodney W. Grimes  * are met:
14df8bae1dSRodney W. Grimes  * 1. Redistributions of source code must retain the above copyright
15df8bae1dSRodney W. Grimes  *    notice, this list of conditions and the following disclaimer.
16df8bae1dSRodney W. Grimes  * 2. Redistributions in binary form must reproduce the above copyright
17df8bae1dSRodney W. Grimes  *    notice, this list of conditions and the following disclaimer in the
18df8bae1dSRodney W. Grimes  *    documentation and/or other materials provided with the distribution.
19fbbd9655SWarner Losh  * 3. Neither the name of the University nor the names of its contributors
20df8bae1dSRodney W. Grimes  *    may be used to endorse or promote products derived from this software
21df8bae1dSRodney W. Grimes  *    without specific prior written permission.
22df8bae1dSRodney W. Grimes  *
23df8bae1dSRodney W. Grimes  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24df8bae1dSRodney W. Grimes  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25df8bae1dSRodney W. Grimes  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26df8bae1dSRodney W. Grimes  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27df8bae1dSRodney W. Grimes  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28df8bae1dSRodney W. Grimes  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29df8bae1dSRodney W. Grimes  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30df8bae1dSRodney W. Grimes  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31df8bae1dSRodney W. Grimes  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32df8bae1dSRodney W. Grimes  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33df8bae1dSRodney W. Grimes  * SUCH DAMAGE.
34df8bae1dSRodney W. Grimes  */
35df8bae1dSRodney W. Grimes 
36ab0de15bSDavid E. O'Brien #include <sys/cdefs.h>
37ab0de15bSDavid E. O'Brien __FBSDID("$FreeBSD$");
38ab0de15bSDavid E. O'Brien 
39df8bae1dSRodney W. Grimes /*
40df8bae1dSRodney W. Grimes  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
41df8bae1dSRodney W. Grimes  * section 4.3.1, pp. 257--259.
42df8bae1dSRodney W. Grimes  */
43df8bae1dSRodney W. Grimes 
44f313170dSBruce Evans #include <libkern/quad.h>
45df8bae1dSRodney W. Grimes 
46df8bae1dSRodney W. Grimes #define	B	(1 << HALF_BITS)	/* digit base */
47df8bae1dSRodney W. Grimes 
48df8bae1dSRodney W. Grimes /* Combine two `digits' to make a single two-digit number. */
49df8bae1dSRodney W. Grimes #define	COMBINE(a, b) (((u_long)(a) << HALF_BITS) | (b))
50df8bae1dSRodney W. Grimes 
51df8bae1dSRodney W. Grimes /* select a type for digits in base B: use unsigned short if they fit */
52df8bae1dSRodney W. Grimes #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
53df8bae1dSRodney W. Grimes typedef unsigned short digit;
54df8bae1dSRodney W. Grimes #else
55df8bae1dSRodney W. Grimes typedef u_long digit;
56df8bae1dSRodney W. Grimes #endif
57df8bae1dSRodney W. Grimes 
58df8bae1dSRodney W. Grimes /*
59df8bae1dSRodney W. Grimes  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
60df8bae1dSRodney W. Grimes  * `fall out' the left (there never will be any such anyway).
61df8bae1dSRodney W. Grimes  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
62df8bae1dSRodney W. Grimes  */
63df8bae1dSRodney W. Grimes static void
64484820d4SConrad Meyer __shl(digit *p, int len, int sh)
65df8bae1dSRodney W. Grimes {
66484820d4SConrad Meyer 	int i;
67df8bae1dSRodney W. Grimes 
68df8bae1dSRodney W. Grimes 	for (i = 0; i < len; i++)
69df8bae1dSRodney W. Grimes 		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
70df8bae1dSRodney W. Grimes 	p[i] = LHALF(p[i] << sh);
71df8bae1dSRodney W. Grimes }
72df8bae1dSRodney W. Grimes 
73df8bae1dSRodney W. Grimes /*
74df8bae1dSRodney W. Grimes  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
75df8bae1dSRodney W. Grimes  *
76df8bae1dSRodney W. Grimes  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
77df8bae1dSRodney W. Grimes  * fit within u_long.  As a consequence, the maximum length dividend and
78df8bae1dSRodney W. Grimes  * divisor are 4 `digits' in this base (they are shorter if they have
79df8bae1dSRodney W. Grimes  * leading zeros).
80df8bae1dSRodney W. Grimes  */
81df8bae1dSRodney W. Grimes u_quad_t
824a8dea8cSEd Maste __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
83df8bae1dSRodney W. Grimes {
84df8bae1dSRodney W. Grimes 	union uu tmp;
85df8bae1dSRodney W. Grimes 	digit *u, *v, *q;
86484820d4SConrad Meyer 	digit v1, v2;
87df8bae1dSRodney W. Grimes 	u_long qhat, rhat, t;
88df8bae1dSRodney W. Grimes 	int m, n, d, j, i;
89df8bae1dSRodney W. Grimes 	digit uspace[5], vspace[5], qspace[5];
90df8bae1dSRodney W. Grimes 
91df8bae1dSRodney W. Grimes 	/*
92df8bae1dSRodney W. Grimes 	 * Take care of special cases: divide by zero, and u < v.
93df8bae1dSRodney W. Grimes 	 */
94df8bae1dSRodney W. Grimes 	if (vq == 0) {
95df8bae1dSRodney W. Grimes 		/* divide by zero. */
96df8bae1dSRodney W. Grimes 		static volatile const unsigned int zero = 0;
97df8bae1dSRodney W. Grimes 
98df8bae1dSRodney W. Grimes 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
99df8bae1dSRodney W. Grimes 		if (arq)
100df8bae1dSRodney W. Grimes 			*arq = uq;
101df8bae1dSRodney W. Grimes 		return (tmp.q);
102df8bae1dSRodney W. Grimes 	}
103df8bae1dSRodney W. Grimes 	if (uq < vq) {
104df8bae1dSRodney W. Grimes 		if (arq)
105df8bae1dSRodney W. Grimes 			*arq = uq;
106df8bae1dSRodney W. Grimes 		return (0);
107df8bae1dSRodney W. Grimes 	}
108df8bae1dSRodney W. Grimes 	u = &uspace[0];
109df8bae1dSRodney W. Grimes 	v = &vspace[0];
110df8bae1dSRodney W. Grimes 	q = &qspace[0];
111df8bae1dSRodney W. Grimes 
112df8bae1dSRodney W. Grimes 	/*
113df8bae1dSRodney W. Grimes 	 * Break dividend and divisor into digits in base B, then
114df8bae1dSRodney W. Grimes 	 * count leading zeros to determine m and n.  When done, we
115df8bae1dSRodney W. Grimes 	 * will have:
116df8bae1dSRodney W. Grimes 	 *	u = (u[1]u[2]...u[m+n]) sub B
117df8bae1dSRodney W. Grimes 	 *	v = (v[1]v[2]...v[n]) sub B
118df8bae1dSRodney W. Grimes 	 *	v[1] != 0
119df8bae1dSRodney W. Grimes 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
120df8bae1dSRodney W. Grimes 	 *	m >= 0 (otherwise u < v, which we already checked)
121df8bae1dSRodney W. Grimes 	 *	m + n = 4
122df8bae1dSRodney W. Grimes 	 * and thus
123df8bae1dSRodney W. Grimes 	 *	m = 4 - n <= 2
124df8bae1dSRodney W. Grimes 	 */
125df8bae1dSRodney W. Grimes 	tmp.uq = uq;
126df8bae1dSRodney W. Grimes 	u[0] = 0;
127df8bae1dSRodney W. Grimes 	u[1] = HHALF(tmp.ul[H]);
128df8bae1dSRodney W. Grimes 	u[2] = LHALF(tmp.ul[H]);
129df8bae1dSRodney W. Grimes 	u[3] = HHALF(tmp.ul[L]);
130df8bae1dSRodney W. Grimes 	u[4] = LHALF(tmp.ul[L]);
131df8bae1dSRodney W. Grimes 	tmp.uq = vq;
132df8bae1dSRodney W. Grimes 	v[1] = HHALF(tmp.ul[H]);
133df8bae1dSRodney W. Grimes 	v[2] = LHALF(tmp.ul[H]);
134df8bae1dSRodney W. Grimes 	v[3] = HHALF(tmp.ul[L]);
135df8bae1dSRodney W. Grimes 	v[4] = LHALF(tmp.ul[L]);
136df8bae1dSRodney W. Grimes 	for (n = 4; v[1] == 0; v++) {
137df8bae1dSRodney W. Grimes 		if (--n == 1) {
138df8bae1dSRodney W. Grimes 			u_long rbj;	/* r*B+u[j] (not root boy jim) */
139df8bae1dSRodney W. Grimes 			digit q1, q2, q3, q4;
140df8bae1dSRodney W. Grimes 
141df8bae1dSRodney W. Grimes 			/*
142df8bae1dSRodney W. Grimes 			 * Change of plan, per exercise 16.
143df8bae1dSRodney W. Grimes 			 *	r = 0;
144df8bae1dSRodney W. Grimes 			 *	for j = 1..4:
145df8bae1dSRodney W. Grimes 			 *		q[j] = floor((r*B + u[j]) / v),
146df8bae1dSRodney W. Grimes 			 *		r = (r*B + u[j]) % v;
147df8bae1dSRodney W. Grimes 			 * We unroll this completely here.
148df8bae1dSRodney W. Grimes 			 */
149df8bae1dSRodney W. Grimes 			t = v[2];	/* nonzero, by definition */
150df8bae1dSRodney W. Grimes 			q1 = u[1] / t;
151df8bae1dSRodney W. Grimes 			rbj = COMBINE(u[1] % t, u[2]);
152df8bae1dSRodney W. Grimes 			q2 = rbj / t;
153df8bae1dSRodney W. Grimes 			rbj = COMBINE(rbj % t, u[3]);
154df8bae1dSRodney W. Grimes 			q3 = rbj / t;
155df8bae1dSRodney W. Grimes 			rbj = COMBINE(rbj % t, u[4]);
156df8bae1dSRodney W. Grimes 			q4 = rbj / t;
157df8bae1dSRodney W. Grimes 			if (arq)
158df8bae1dSRodney W. Grimes 				*arq = rbj % t;
159df8bae1dSRodney W. Grimes 			tmp.ul[H] = COMBINE(q1, q2);
160df8bae1dSRodney W. Grimes 			tmp.ul[L] = COMBINE(q3, q4);
161df8bae1dSRodney W. Grimes 			return (tmp.q);
162df8bae1dSRodney W. Grimes 		}
163df8bae1dSRodney W. Grimes 	}
164df8bae1dSRodney W. Grimes 
165df8bae1dSRodney W. Grimes 	/*
166df8bae1dSRodney W. Grimes 	 * By adjusting q once we determine m, we can guarantee that
167df8bae1dSRodney W. Grimes 	 * there is a complete four-digit quotient at &qspace[1] when
168df8bae1dSRodney W. Grimes 	 * we finally stop.
169df8bae1dSRodney W. Grimes 	 */
170df8bae1dSRodney W. Grimes 	for (m = 4 - n; u[1] == 0; u++)
171df8bae1dSRodney W. Grimes 		m--;
172df8bae1dSRodney W. Grimes 	for (i = 4 - m; --i >= 0;)
173df8bae1dSRodney W. Grimes 		q[i] = 0;
174df8bae1dSRodney W. Grimes 	q += 4 - m;
175df8bae1dSRodney W. Grimes 
176df8bae1dSRodney W. Grimes 	/*
177df8bae1dSRodney W. Grimes 	 * Here we run Program D, translated from MIX to C and acquiring
178df8bae1dSRodney W. Grimes 	 * a few minor changes.
179df8bae1dSRodney W. Grimes 	 *
180df8bae1dSRodney W. Grimes 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
181df8bae1dSRodney W. Grimes 	 */
182df8bae1dSRodney W. Grimes 	d = 0;
183df8bae1dSRodney W. Grimes 	for (t = v[1]; t < B / 2; t <<= 1)
184df8bae1dSRodney W. Grimes 		d++;
185df8bae1dSRodney W. Grimes 	if (d > 0) {
1866ff5e8a6SAndrew Thompson 		__shl(&u[0], m + n, d);		/* u <<= d */
1876ff5e8a6SAndrew Thompson 		__shl(&v[1], n - 1, d);		/* v <<= d */
188df8bae1dSRodney W. Grimes 	}
189df8bae1dSRodney W. Grimes 	/*
190df8bae1dSRodney W. Grimes 	 * D2: j = 0.
191df8bae1dSRodney W. Grimes 	 */
192df8bae1dSRodney W. Grimes 	j = 0;
193df8bae1dSRodney W. Grimes 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
194df8bae1dSRodney W. Grimes 	v2 = v[2];	/* for D3 */
195df8bae1dSRodney W. Grimes 	do {
196484820d4SConrad Meyer 		digit uj0, uj1, uj2;
197df8bae1dSRodney W. Grimes 
198df8bae1dSRodney W. Grimes 		/*
199df8bae1dSRodney W. Grimes 		 * D3: Calculate qhat (\^q, in TeX notation).
200df8bae1dSRodney W. Grimes 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
201df8bae1dSRodney W. Grimes 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
202df8bae1dSRodney W. Grimes 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
203df8bae1dSRodney W. Grimes 		 * decrement qhat and increase rhat correspondingly.
204df8bae1dSRodney W. Grimes 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
205df8bae1dSRodney W. Grimes 		 */
206df8bae1dSRodney W. Grimes 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
207df8bae1dSRodney W. Grimes 		uj1 = u[j + 1];	/* for D3 only */
208df8bae1dSRodney W. Grimes 		uj2 = u[j + 2];	/* for D3 only */
209df8bae1dSRodney W. Grimes 		if (uj0 == v1) {
210df8bae1dSRodney W. Grimes 			qhat = B;
211df8bae1dSRodney W. Grimes 			rhat = uj1;
212df8bae1dSRodney W. Grimes 			goto qhat_too_big;
213df8bae1dSRodney W. Grimes 		} else {
2140abc78a6SPoul-Henning Kamp 			u_long nn = COMBINE(uj0, uj1);
2150abc78a6SPoul-Henning Kamp 			qhat = nn / v1;
2160abc78a6SPoul-Henning Kamp 			rhat = nn % v1;
217df8bae1dSRodney W. Grimes 		}
218df8bae1dSRodney W. Grimes 		while (v2 * qhat > COMBINE(rhat, uj2)) {
219df8bae1dSRodney W. Grimes 	qhat_too_big:
220df8bae1dSRodney W. Grimes 			qhat--;
221df8bae1dSRodney W. Grimes 			if ((rhat += v1) >= B)
222df8bae1dSRodney W. Grimes 				break;
223df8bae1dSRodney W. Grimes 		}
224df8bae1dSRodney W. Grimes 		/*
225df8bae1dSRodney W. Grimes 		 * D4: Multiply and subtract.
226df8bae1dSRodney W. Grimes 		 * The variable `t' holds any borrows across the loop.
227df8bae1dSRodney W. Grimes 		 * We split this up so that we do not require v[0] = 0,
228df8bae1dSRodney W. Grimes 		 * and to eliminate a final special case.
229df8bae1dSRodney W. Grimes 		 */
230df8bae1dSRodney W. Grimes 		for (t = 0, i = n; i > 0; i--) {
231df8bae1dSRodney W. Grimes 			t = u[i + j] - v[i] * qhat - t;
232df8bae1dSRodney W. Grimes 			u[i + j] = LHALF(t);
233df8bae1dSRodney W. Grimes 			t = (B - HHALF(t)) & (B - 1);
234df8bae1dSRodney W. Grimes 		}
235df8bae1dSRodney W. Grimes 		t = u[j] - t;
236df8bae1dSRodney W. Grimes 		u[j] = LHALF(t);
237df8bae1dSRodney W. Grimes 		/*
238df8bae1dSRodney W. Grimes 		 * D5: test remainder.
239df8bae1dSRodney W. Grimes 		 * There is a borrow if and only if HHALF(t) is nonzero;
240df8bae1dSRodney W. Grimes 		 * in that (rare) case, qhat was too large (by exactly 1).
241df8bae1dSRodney W. Grimes 		 * Fix it by adding v[1..n] to u[j..j+n].
242df8bae1dSRodney W. Grimes 		 */
243df8bae1dSRodney W. Grimes 		if (HHALF(t)) {
244df8bae1dSRodney W. Grimes 			qhat--;
245df8bae1dSRodney W. Grimes 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
246df8bae1dSRodney W. Grimes 				t += u[i + j] + v[i];
247df8bae1dSRodney W. Grimes 				u[i + j] = LHALF(t);
248df8bae1dSRodney W. Grimes 				t = HHALF(t);
249df8bae1dSRodney W. Grimes 			}
250df8bae1dSRodney W. Grimes 			u[j] = LHALF(u[j] + t);
251df8bae1dSRodney W. Grimes 		}
252df8bae1dSRodney W. Grimes 		q[j] = qhat;
253df8bae1dSRodney W. Grimes 	} while (++j <= m);		/* D7: loop on j. */
254df8bae1dSRodney W. Grimes 
255df8bae1dSRodney W. Grimes 	/*
256df8bae1dSRodney W. Grimes 	 * If caller wants the remainder, we have to calculate it as
257df8bae1dSRodney W. Grimes 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
258df8bae1dSRodney W. Grimes 	 * u[m+1..m+n], but we may need more source digits).
259df8bae1dSRodney W. Grimes 	 */
260df8bae1dSRodney W. Grimes 	if (arq) {
261df8bae1dSRodney W. Grimes 		if (d) {
262df8bae1dSRodney W. Grimes 			for (i = m + n; i > m; --i)
263df8bae1dSRodney W. Grimes 				u[i] = (u[i] >> d) |
264df8bae1dSRodney W. Grimes 				    LHALF(u[i - 1] << (HALF_BITS - d));
265df8bae1dSRodney W. Grimes 			u[i] = 0;
266df8bae1dSRodney W. Grimes 		}
267df8bae1dSRodney W. Grimes 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
268df8bae1dSRodney W. Grimes 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
269df8bae1dSRodney W. Grimes 		*arq = tmp.q;
270df8bae1dSRodney W. Grimes 	}
271df8bae1dSRodney W. Grimes 
272df8bae1dSRodney W. Grimes 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
273df8bae1dSRodney W. Grimes 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
274df8bae1dSRodney W. Grimes 	return (tmp.q);
275df8bae1dSRodney W. Grimes }
276