1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/ 5 * Authors: Doug Rabson <dfr@rabson.org> 6 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/lock.h> 35 #include <sys/malloc.h> 36 #include <sys/mutex.h> 37 #include <sys/kobj.h> 38 #include <sys/mbuf.h> 39 #include <opencrypto/cryptodev.h> 40 41 #include <kgssapi/gssapi.h> 42 #include <kgssapi/gssapi_impl.h> 43 44 #include "kcrypto.h" 45 46 struct aes_state { 47 struct mtx as_lock; 48 crypto_session_t as_session_aes; 49 crypto_session_t as_session_sha1; 50 }; 51 52 static void 53 aes_init(struct krb5_key_state *ks) 54 { 55 struct aes_state *as; 56 57 as = malloc(sizeof(struct aes_state), M_GSSAPI, M_WAITOK|M_ZERO); 58 mtx_init(&as->as_lock, "gss aes lock", NULL, MTX_DEF); 59 ks->ks_priv = as; 60 } 61 62 static void 63 aes_destroy(struct krb5_key_state *ks) 64 { 65 struct aes_state *as = ks->ks_priv; 66 67 if (as->as_session_aes != 0) 68 crypto_freesession(as->as_session_aes); 69 if (as->as_session_sha1 != 0) 70 crypto_freesession(as->as_session_sha1); 71 mtx_destroy(&as->as_lock); 72 free(ks->ks_priv, M_GSSAPI); 73 } 74 75 static void 76 aes_set_key(struct krb5_key_state *ks, const void *in) 77 { 78 void *kp = ks->ks_key; 79 struct aes_state *as = ks->ks_priv; 80 struct crypto_session_params csp; 81 82 if (kp != in) 83 bcopy(in, kp, ks->ks_class->ec_keylen); 84 85 if (as->as_session_aes != 0) 86 crypto_freesession(as->as_session_aes); 87 if (as->as_session_sha1 != 0) 88 crypto_freesession(as->as_session_sha1); 89 90 /* 91 * We only want the first 96 bits of the HMAC. 92 */ 93 memset(&csp, 0, sizeof(csp)); 94 csp.csp_mode = CSP_MODE_DIGEST; 95 csp.csp_auth_alg = CRYPTO_SHA1_HMAC; 96 csp.csp_auth_klen = ks->ks_class->ec_keybits / 8; 97 csp.csp_auth_mlen = 12; 98 csp.csp_auth_key = ks->ks_key; 99 crypto_newsession(&as->as_session_sha1, &csp, 100 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE); 101 102 memset(&csp, 0, sizeof(csp)); 103 csp.csp_mode = CSP_MODE_CIPHER; 104 csp.csp_cipher_alg = CRYPTO_AES_CBC; 105 csp.csp_cipher_klen = ks->ks_class->ec_keybits / 8; 106 csp.csp_cipher_key = ks->ks_key; 107 csp.csp_ivlen = 16; 108 crypto_newsession(&as->as_session_aes, &csp, 109 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE); 110 } 111 112 static void 113 aes_random_to_key(struct krb5_key_state *ks, const void *in) 114 { 115 116 aes_set_key(ks, in); 117 } 118 119 static int 120 aes_crypto_cb(struct cryptop *crp) 121 { 122 int error; 123 struct aes_state *as = (struct aes_state *) crp->crp_opaque; 124 125 if (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC) 126 return (0); 127 128 error = crp->crp_etype; 129 if (error == EAGAIN) 130 error = crypto_dispatch(crp); 131 mtx_lock(&as->as_lock); 132 if (error || (crp->crp_flags & CRYPTO_F_DONE)) 133 wakeup(crp); 134 mtx_unlock(&as->as_lock); 135 136 return (0); 137 } 138 139 static void 140 aes_encrypt_1(const struct krb5_key_state *ks, int buftype, void *buf, 141 size_t skip, size_t len, void *ivec, bool encrypt) 142 { 143 struct aes_state *as = ks->ks_priv; 144 struct cryptop *crp; 145 int error; 146 147 crp = crypto_getreq(as->as_session_aes, M_WAITOK); 148 149 crp->crp_payload_start = skip; 150 crp->crp_payload_length = len; 151 crp->crp_op = encrypt ? CRYPTO_OP_ENCRYPT : CRYPTO_OP_DECRYPT; 152 crp->crp_flags = CRYPTO_F_CBIFSYNC | CRYPTO_F_IV_SEPARATE; 153 if (ivec) { 154 memcpy(crp->crp_iv, ivec, 16); 155 } else { 156 memset(crp->crp_iv, 0, 16); 157 } 158 159 crp->crp_buf_type = buftype; 160 crp->crp_buf = buf; 161 crp->crp_ilen = skip + len; 162 crp->crp_opaque = as; 163 crp->crp_callback = aes_crypto_cb; 164 165 error = crypto_dispatch(crp); 166 167 if ((crypto_ses2caps(as->as_session_aes) & CRYPTOCAP_F_SYNC) == 0) { 168 mtx_lock(&as->as_lock); 169 if (!error && !(crp->crp_flags & CRYPTO_F_DONE)) 170 error = msleep(crp, &as->as_lock, 0, "gssaes", 0); 171 mtx_unlock(&as->as_lock); 172 } 173 174 crypto_freereq(crp); 175 } 176 177 static void 178 aes_encrypt(const struct krb5_key_state *ks, struct mbuf *inout, 179 size_t skip, size_t len, void *ivec, size_t ivlen) 180 { 181 size_t blocklen = 16, plen; 182 struct { 183 uint8_t cn_1[16], cn[16]; 184 } last2; 185 int i, off; 186 187 /* 188 * AES encryption with cyphertext stealing: 189 * 190 * CTSencrypt(P[0], ..., P[n], IV, K): 191 * len = length(P[n]) 192 * (C[0], ..., C[n-2], E[n-1]) = 193 * CBCencrypt(P[0], ..., P[n-1], IV, K) 194 * P = pad(P[n], 0, blocksize) 195 * E[n] = CBCencrypt(P, E[n-1], K); 196 * C[n-1] = E[n] 197 * C[n] = E[n-1]{0..len-1} 198 */ 199 plen = len % blocklen; 200 if (len == blocklen) { 201 /* 202 * Note: caller will ensure len >= blocklen. 203 */ 204 aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec, 205 true); 206 } else if (plen == 0) { 207 /* 208 * This is equivalent to CBC mode followed by swapping 209 * the last two blocks. We assume that neither of the 210 * last two blocks cross iov boundaries. 211 */ 212 aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec, 213 true); 214 off = skip + len - 2 * blocklen; 215 m_copydata(inout, off, 2 * blocklen, (void*) &last2); 216 m_copyback(inout, off, blocklen, last2.cn); 217 m_copyback(inout, off + blocklen, blocklen, last2.cn_1); 218 } else { 219 /* 220 * This is the difficult case. We encrypt all but the 221 * last partial block first. We then create a padded 222 * copy of the last block and encrypt that using the 223 * second to last encrypted block as IV. Once we have 224 * the encrypted versions of the last two blocks, we 225 * reshuffle to create the final result. 226 */ 227 aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len - plen, 228 ivec, true); 229 230 /* 231 * Copy out the last two blocks, pad the last block 232 * and encrypt it. Rearrange to get the final 233 * result. The cyphertext for cn_1 is in cn. The 234 * cyphertext for cn is the first plen bytes of what 235 * is in cn_1 now. 236 */ 237 off = skip + len - blocklen - plen; 238 m_copydata(inout, off, blocklen + plen, (void*) &last2); 239 for (i = plen; i < blocklen; i++) 240 last2.cn[i] = 0; 241 aes_encrypt_1(ks, CRYPTO_BUF_CONTIG, last2.cn, 0, blocklen, 242 last2.cn_1, true); 243 m_copyback(inout, off, blocklen, last2.cn); 244 m_copyback(inout, off + blocklen, plen, last2.cn_1); 245 } 246 } 247 248 static void 249 aes_decrypt(const struct krb5_key_state *ks, struct mbuf *inout, 250 size_t skip, size_t len, void *ivec, size_t ivlen) 251 { 252 size_t blocklen = 16, plen; 253 struct { 254 uint8_t cn_1[16], cn[16]; 255 } last2; 256 int i, off, t; 257 258 /* 259 * AES decryption with cyphertext stealing: 260 * 261 * CTSencrypt(C[0], ..., C[n], IV, K): 262 * len = length(C[n]) 263 * E[n] = C[n-1] 264 * X = decrypt(E[n], K) 265 * P[n] = (X ^ C[n]){0..len-1} 266 * E[n-1] = {C[n,0],...,C[n,len-1],X[len],...,X[blocksize-1]} 267 * (P[0],...,P[n-1]) = CBCdecrypt(C[0],...,C[n-2],E[n-1], IV, K) 268 */ 269 plen = len % blocklen; 270 if (len == blocklen) { 271 /* 272 * Note: caller will ensure len >= blocklen. 273 */ 274 aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec, 275 false); 276 } else if (plen == 0) { 277 /* 278 * This is equivalent to CBC mode followed by swapping 279 * the last two blocks. 280 */ 281 off = skip + len - 2 * blocklen; 282 m_copydata(inout, off, 2 * blocklen, (void*) &last2); 283 m_copyback(inout, off, blocklen, last2.cn); 284 m_copyback(inout, off + blocklen, blocklen, last2.cn_1); 285 aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec, 286 false); 287 } else { 288 /* 289 * This is the difficult case. We first decrypt the 290 * second to last block with a zero IV to make X. The 291 * plaintext for the last block is the XOR of X and 292 * the last cyphertext block. 293 * 294 * We derive a new cypher text for the second to last 295 * block by mixing the unused bytes of X with the last 296 * cyphertext block. The result of that can be 297 * decrypted with the rest in CBC mode. 298 */ 299 off = skip + len - plen - blocklen; 300 aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, off, blocklen, 301 NULL, false); 302 m_copydata(inout, off, blocklen + plen, (void*) &last2); 303 304 for (i = 0; i < plen; i++) { 305 t = last2.cn[i]; 306 last2.cn[i] ^= last2.cn_1[i]; 307 last2.cn_1[i] = t; 308 } 309 310 m_copyback(inout, off, blocklen + plen, (void*) &last2); 311 aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len - plen, 312 ivec, false); 313 } 314 315 } 316 317 static void 318 aes_checksum(const struct krb5_key_state *ks, int usage, 319 struct mbuf *inout, size_t skip, size_t inlen, size_t outlen) 320 { 321 struct aes_state *as = ks->ks_priv; 322 struct cryptop *crp; 323 int error; 324 325 crp = crypto_getreq(as->as_session_sha1, M_WAITOK); 326 327 crp->crp_payload_start = skip; 328 crp->crp_payload_length = inlen; 329 crp->crp_digest_start = skip + inlen; 330 crp->crp_flags = CRYPTO_F_CBIFSYNC; 331 crp->crp_buf_type = CRYPTO_BUF_MBUF; 332 crp->crp_mbuf = inout; 333 crp->crp_ilen = skip + inlen + 12; 334 crp->crp_opaque = as; 335 crp->crp_callback = aes_crypto_cb; 336 337 error = crypto_dispatch(crp); 338 339 if ((crypto_ses2caps(as->as_session_sha1) & CRYPTOCAP_F_SYNC) == 0) { 340 mtx_lock(&as->as_lock); 341 if (!error && !(crp->crp_flags & CRYPTO_F_DONE)) 342 error = msleep(crp, &as->as_lock, 0, "gssaes", 0); 343 mtx_unlock(&as->as_lock); 344 } 345 346 crypto_freereq(crp); 347 } 348 349 struct krb5_encryption_class krb5_aes128_encryption_class = { 350 "aes128-cts-hmac-sha1-96", /* name */ 351 ETYPE_AES128_CTS_HMAC_SHA1_96, /* etype */ 352 EC_DERIVED_KEYS, /* flags */ 353 16, /* blocklen */ 354 1, /* msgblocklen */ 355 12, /* checksumlen */ 356 128, /* keybits */ 357 16, /* keylen */ 358 aes_init, 359 aes_destroy, 360 aes_set_key, 361 aes_random_to_key, 362 aes_encrypt, 363 aes_decrypt, 364 aes_checksum 365 }; 366 367 struct krb5_encryption_class krb5_aes256_encryption_class = { 368 "aes256-cts-hmac-sha1-96", /* name */ 369 ETYPE_AES256_CTS_HMAC_SHA1_96, /* etype */ 370 EC_DERIVED_KEYS, /* flags */ 371 16, /* blocklen */ 372 1, /* msgblocklen */ 373 12, /* checksumlen */ 374 256, /* keybits */ 375 32, /* keylen */ 376 aes_init, 377 aes_destroy, 378 aes_set_key, 379 aes_random_to_key, 380 aes_encrypt, 381 aes_decrypt, 382 aes_checksum 383 }; 384