xref: /freebsd/sys/kgssapi/krb5/kcrypto_aes.c (revision aa24f48b361effe51163877d84f1b70d32b77e04)
1 /*-
2  * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3  * Authors: Doug Rabson <dfr@rabson.org>
4  * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/lock.h>
33 #include <sys/malloc.h>
34 #include <sys/mutex.h>
35 #include <sys/kobj.h>
36 #include <sys/mbuf.h>
37 #include <opencrypto/cryptodev.h>
38 
39 #include <kgssapi/gssapi.h>
40 #include <kgssapi/gssapi_impl.h>
41 
42 #include "kcrypto.h"
43 
44 struct aes_state {
45 	struct mtx	as_lock;
46 	uint64_t	as_session_aes;
47 	uint64_t	as_session_sha1;
48 };
49 
50 static void
51 aes_init(struct krb5_key_state *ks)
52 {
53 	struct aes_state *as;
54 
55 	as = malloc(sizeof(struct aes_state), M_GSSAPI, M_WAITOK|M_ZERO);
56 	mtx_init(&as->as_lock, "gss aes lock", NULL, MTX_DEF);
57 	ks->ks_priv = as;
58 }
59 
60 static void
61 aes_destroy(struct krb5_key_state *ks)
62 {
63 	struct aes_state *as = ks->ks_priv;
64 
65 	if (as->as_session_aes != 0)
66 		crypto_freesession(as->as_session_aes);
67 	if (as->as_session_sha1 != 0)
68 		crypto_freesession(as->as_session_sha1);
69 	mtx_destroy(&as->as_lock);
70 	free(ks->ks_priv, M_GSSAPI);
71 }
72 
73 static void
74 aes_set_key(struct krb5_key_state *ks, const void *in)
75 {
76 	void *kp = ks->ks_key;
77 	struct aes_state *as = ks->ks_priv;
78 	struct cryptoini cri;
79 
80 	if (kp != in)
81 		bcopy(in, kp, ks->ks_class->ec_keylen);
82 
83 	if (as->as_session_aes != 0)
84 		crypto_freesession(as->as_session_aes);
85 	if (as->as_session_sha1 != 0)
86 		crypto_freesession(as->as_session_sha1);
87 
88 	/*
89 	 * We only want the first 96 bits of the HMAC.
90 	 */
91 	bzero(&cri, sizeof(cri));
92 	cri.cri_alg = CRYPTO_SHA1_HMAC;
93 	cri.cri_klen = ks->ks_class->ec_keybits;
94 	cri.cri_mlen = 12;
95 	cri.cri_key = ks->ks_key;
96 	cri.cri_next = NULL;
97 	crypto_newsession(&as->as_session_sha1, &cri,
98 	    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE);
99 
100 	bzero(&cri, sizeof(cri));
101 	cri.cri_alg = CRYPTO_AES_CBC;
102 	cri.cri_klen = ks->ks_class->ec_keybits;
103 	cri.cri_mlen = 0;
104 	cri.cri_key = ks->ks_key;
105 	cri.cri_next = NULL;
106 	crypto_newsession(&as->as_session_aes, &cri,
107 	    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE);
108 }
109 
110 static void
111 aes_random_to_key(struct krb5_key_state *ks, const void *in)
112 {
113 
114 	aes_set_key(ks, in);
115 }
116 
117 static int
118 aes_crypto_cb(struct cryptop *crp)
119 {
120 	int error;
121 	struct aes_state *as = (struct aes_state *) crp->crp_opaque;
122 
123 	if (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC)
124 		return (0);
125 
126 	error = crp->crp_etype;
127 	if (error == EAGAIN)
128 		error = crypto_dispatch(crp);
129 	mtx_lock(&as->as_lock);
130 	if (error || (crp->crp_flags & CRYPTO_F_DONE))
131 		wakeup(crp);
132 	mtx_unlock(&as->as_lock);
133 
134 	return (0);
135 }
136 
137 static void
138 aes_encrypt_1(const struct krb5_key_state *ks, int buftype, void *buf,
139     size_t skip, size_t len, void *ivec, int encdec)
140 {
141 	struct aes_state *as = ks->ks_priv;
142 	struct cryptop *crp;
143 	struct cryptodesc *crd;
144 	int error;
145 
146 	crp = crypto_getreq(1);
147 	crd = crp->crp_desc;
148 
149 	crd->crd_skip = skip;
150 	crd->crd_len = len;
151 	crd->crd_flags = CRD_F_IV_EXPLICIT | CRD_F_IV_PRESENT | encdec;
152 	if (ivec) {
153 		bcopy(ivec, crd->crd_iv, 16);
154 	} else {
155 		bzero(crd->crd_iv, 16);
156 	}
157 	crd->crd_next = NULL;
158 	crd->crd_alg = CRYPTO_AES_CBC;
159 
160 	crp->crp_sid = as->as_session_aes;
161 	crp->crp_flags = buftype | CRYPTO_F_CBIFSYNC;
162 	crp->crp_buf = buf;
163 	crp->crp_opaque = (void *) as;
164 	crp->crp_callback = aes_crypto_cb;
165 
166 	error = crypto_dispatch(crp);
167 
168 	if ((CRYPTO_SESID2CAPS(as->as_session_aes) & CRYPTOCAP_F_SYNC) == 0) {
169 		mtx_lock(&as->as_lock);
170 		if (!error && !(crp->crp_flags & CRYPTO_F_DONE))
171 			error = msleep(crp, &as->as_lock, 0, "gssaes", 0);
172 		mtx_unlock(&as->as_lock);
173 	}
174 
175 	crypto_freereq(crp);
176 }
177 
178 static void
179 aes_encrypt(const struct krb5_key_state *ks, struct mbuf *inout,
180     size_t skip, size_t len, void *ivec, size_t ivlen)
181 {
182 	size_t blocklen = 16, plen;
183 	struct {
184 		uint8_t cn_1[16], cn[16];
185 	} last2;
186 	int i, off;
187 
188 	/*
189 	 * AES encryption with cyphertext stealing:
190 	 *
191 	 * CTSencrypt(P[0], ..., P[n], IV, K):
192 	 *	len = length(P[n])
193 	 *	(C[0], ..., C[n-2], E[n-1]) =
194 	 *		CBCencrypt(P[0], ..., P[n-1], IV, K)
195 	 *	P = pad(P[n], 0, blocksize)
196 	 *	E[n] = CBCencrypt(P, E[n-1], K);
197 	 *	C[n-1] = E[n]
198 	 *	C[n] = E[n-1]{0..len-1}
199 	 */
200 	plen = len % blocklen;
201 	if (len == blocklen) {
202 		/*
203 		 * Note: caller will ensure len >= blocklen.
204 		 */
205 		aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec,
206 		    CRD_F_ENCRYPT);
207 	} else if (plen == 0) {
208 		/*
209 		 * This is equivalent to CBC mode followed by swapping
210 		 * the last two blocks. We assume that neither of the
211 		 * last two blocks cross iov boundaries.
212 		 */
213 		aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec,
214 		    CRD_F_ENCRYPT);
215 		off = skip + len - 2 * blocklen;
216 		m_copydata(inout, off, 2 * blocklen, (void*) &last2);
217 		m_copyback(inout, off, blocklen, last2.cn);
218 		m_copyback(inout, off + blocklen, blocklen, last2.cn_1);
219 	} else {
220 		/*
221 		 * This is the difficult case. We encrypt all but the
222 		 * last partial block first. We then create a padded
223 		 * copy of the last block and encrypt that using the
224 		 * second to last encrypted block as IV. Once we have
225 		 * the encrypted versions of the last two blocks, we
226 		 * reshuffle to create the final result.
227 		 */
228 		aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len - plen,
229 		    ivec, CRD_F_ENCRYPT);
230 
231 		/*
232 		 * Copy out the last two blocks, pad the last block
233 		 * and encrypt it. Rearrange to get the final
234 		 * result. The cyphertext for cn_1 is in cn. The
235 		 * cyphertext for cn is the first plen bytes of what
236 		 * is in cn_1 now.
237 		 */
238 		off = skip + len - blocklen - plen;
239 		m_copydata(inout, off, blocklen + plen, (void*) &last2);
240 		for (i = plen; i < blocklen; i++)
241 			last2.cn[i] = 0;
242 		aes_encrypt_1(ks, 0, last2.cn, 0, blocklen, last2.cn_1,
243 		    CRD_F_ENCRYPT);
244 		m_copyback(inout, off, blocklen, last2.cn);
245 		m_copyback(inout, off + blocklen, plen, last2.cn_1);
246 	}
247 }
248 
249 static void
250 aes_decrypt(const struct krb5_key_state *ks, struct mbuf *inout,
251     size_t skip, size_t len, void *ivec, size_t ivlen)
252 {
253 	size_t blocklen = 16, plen;
254 	struct {
255 		uint8_t cn_1[16], cn[16];
256 	} last2;
257 	int i, off, t;
258 
259 	/*
260 	 * AES decryption with cyphertext stealing:
261 	 *
262 	 * CTSencrypt(C[0], ..., C[n], IV, K):
263 	 *	len = length(C[n])
264 	 *	E[n] = C[n-1]
265 	 *	X = decrypt(E[n], K)
266 	 *	P[n] = (X ^ C[n]){0..len-1}
267 	 *	E[n-1] = {C[n,0],...,C[n,len-1],X[len],...,X[blocksize-1]}
268 	 *	(P[0],...,P[n-1]) = CBCdecrypt(C[0],...,C[n-2],E[n-1], IV, K)
269 	 */
270 	plen = len % blocklen;
271 	if (len == blocklen) {
272 		/*
273 		 * Note: caller will ensure len >= blocklen.
274 		 */
275 		aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec, 0);
276 	} else if (plen == 0) {
277 		/*
278 		 * This is equivalent to CBC mode followed by swapping
279 		 * the last two blocks.
280 		 */
281 		off = skip + len - 2 * blocklen;
282 		m_copydata(inout, off, 2 * blocklen, (void*) &last2);
283 		m_copyback(inout, off, blocklen, last2.cn);
284 		m_copyback(inout, off + blocklen, blocklen, last2.cn_1);
285 		aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len, ivec, 0);
286 	} else {
287 		/*
288 		 * This is the difficult case. We first decrypt the
289 		 * second to last block with a zero IV to make X. The
290 		 * plaintext for the last block is the XOR of X and
291 		 * the last cyphertext block.
292 		 *
293 		 * We derive a new cypher text for the second to last
294 		 * block by mixing the unused bytes of X with the last
295 		 * cyphertext block. The result of that can be
296 		 * decrypted with the rest in CBC mode.
297 		 */
298 		off = skip + len - plen - blocklen;
299 		aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, off, blocklen,
300 		    NULL, 0);
301 		m_copydata(inout, off, blocklen + plen, (void*) &last2);
302 
303 		for (i = 0; i < plen; i++) {
304 			t = last2.cn[i];
305 			last2.cn[i] ^= last2.cn_1[i];
306 			last2.cn_1[i] = t;
307 		}
308 
309 		m_copyback(inout, off, blocklen + plen, (void*) &last2);
310 		aes_encrypt_1(ks, CRYPTO_F_IMBUF, inout, skip, len - plen,
311 		    ivec, 0);
312 	}
313 
314 }
315 
316 static void
317 aes_checksum(const struct krb5_key_state *ks, int usage,
318     struct mbuf *inout, size_t skip, size_t inlen, size_t outlen)
319 {
320 	struct aes_state *as = ks->ks_priv;
321 	struct cryptop *crp;
322 	struct cryptodesc *crd;
323 	int error;
324 
325 	crp = crypto_getreq(1);
326 	crd = crp->crp_desc;
327 
328 	crd->crd_skip = skip;
329 	crd->crd_len = inlen;
330 	crd->crd_inject = skip + inlen;
331 	crd->crd_flags = 0;
332 	crd->crd_next = NULL;
333 	crd->crd_alg = CRYPTO_SHA1_HMAC;
334 
335 	crp->crp_sid = as->as_session_sha1;
336 	crp->crp_ilen = inlen;
337 	crp->crp_olen = 12;
338 	crp->crp_etype = 0;
339 	crp->crp_flags = CRYPTO_F_IMBUF | CRYPTO_F_CBIFSYNC;
340 	crp->crp_buf = (void *) inout;
341 	crp->crp_opaque = (void *) as;
342 	crp->crp_callback = aes_crypto_cb;
343 
344 	error = crypto_dispatch(crp);
345 
346 	if ((CRYPTO_SESID2CAPS(as->as_session_sha1) & CRYPTOCAP_F_SYNC) == 0) {
347 		mtx_lock(&as->as_lock);
348 		if (!error && !(crp->crp_flags & CRYPTO_F_DONE))
349 			error = msleep(crp, &as->as_lock, 0, "gssaes", 0);
350 		mtx_unlock(&as->as_lock);
351 	}
352 
353 	crypto_freereq(crp);
354 }
355 
356 struct krb5_encryption_class krb5_aes128_encryption_class = {
357 	"aes128-cts-hmac-sha1-96", /* name */
358 	ETYPE_AES128_CTS_HMAC_SHA1_96, /* etype */
359 	EC_DERIVED_KEYS,	/* flags */
360 	16,			/* blocklen */
361 	1,			/* msgblocklen */
362 	12,			/* checksumlen */
363 	128,			/* keybits */
364 	16,			/* keylen */
365 	aes_init,
366 	aes_destroy,
367 	aes_set_key,
368 	aes_random_to_key,
369 	aes_encrypt,
370 	aes_decrypt,
371 	aes_checksum
372 };
373 
374 struct krb5_encryption_class krb5_aes256_encryption_class = {
375 	"aes256-cts-hmac-sha1-96", /* name */
376 	ETYPE_AES256_CTS_HMAC_SHA1_96, /* etype */
377 	EC_DERIVED_KEYS,	/* flags */
378 	16,			/* blocklen */
379 	1,			/* msgblocklen */
380 	12,			/* checksumlen */
381 	256,			/* keybits */
382 	32,			/* keylen */
383 	aes_init,
384 	aes_destroy,
385 	aes_set_key,
386 	aes_random_to_key,
387 	aes_encrypt,
388 	aes_decrypt,
389 	aes_checksum
390 };
391