xref: /freebsd/sys/kern/vfs_vnops.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/disk.h>
49 #include <sys/fcntl.h>
50 #include <sys/file.h>
51 #include <sys/kdb.h>
52 #include <sys/stat.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/limits.h>
56 #include <sys/lock.h>
57 #include <sys/mman.h>
58 #include <sys/mount.h>
59 #include <sys/mutex.h>
60 #include <sys/namei.h>
61 #include <sys/vnode.h>
62 #include <sys/bio.h>
63 #include <sys/buf.h>
64 #include <sys/filio.h>
65 #include <sys/resourcevar.h>
66 #include <sys/rwlock.h>
67 #include <sys/sx.h>
68 #include <sys/sysctl.h>
69 #include <sys/ttycom.h>
70 #include <sys/conf.h>
71 #include <sys/syslog.h>
72 #include <sys/unistd.h>
73 #include <sys/user.h>
74 
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_extern.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_page.h>
84 #include <vm/vnode_pager.h>
85 
86 static fo_rdwr_t	vn_read;
87 static fo_rdwr_t	vn_write;
88 static fo_rdwr_t	vn_io_fault;
89 static fo_truncate_t	vn_truncate;
90 static fo_ioctl_t	vn_ioctl;
91 static fo_poll_t	vn_poll;
92 static fo_kqfilter_t	vn_kqfilter;
93 static fo_stat_t	vn_statfile;
94 static fo_close_t	vn_closefile;
95 static fo_mmap_t	vn_mmap;
96 
97 struct 	fileops vnops = {
98 	.fo_read = vn_io_fault,
99 	.fo_write = vn_io_fault,
100 	.fo_truncate = vn_truncate,
101 	.fo_ioctl = vn_ioctl,
102 	.fo_poll = vn_poll,
103 	.fo_kqfilter = vn_kqfilter,
104 	.fo_stat = vn_statfile,
105 	.fo_close = vn_closefile,
106 	.fo_chmod = vn_chmod,
107 	.fo_chown = vn_chown,
108 	.fo_sendfile = vn_sendfile,
109 	.fo_seek = vn_seek,
110 	.fo_fill_kinfo = vn_fill_kinfo,
111 	.fo_mmap = vn_mmap,
112 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
113 };
114 
115 static const int io_hold_cnt = 16;
116 static int vn_io_fault_enable = 1;
117 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
118     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
119 static u_long vn_io_faults_cnt;
120 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
121     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
122 
123 /*
124  * Returns true if vn_io_fault mode of handling the i/o request should
125  * be used.
126  */
127 static bool
128 do_vn_io_fault(struct vnode *vp, struct uio *uio)
129 {
130 	struct mount *mp;
131 
132 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
133 	    (mp = vp->v_mount) != NULL &&
134 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
135 }
136 
137 /*
138  * Structure used to pass arguments to vn_io_fault1(), to do either
139  * file- or vnode-based I/O calls.
140  */
141 struct vn_io_fault_args {
142 	enum {
143 		VN_IO_FAULT_FOP,
144 		VN_IO_FAULT_VOP
145 	} kind;
146 	struct ucred *cred;
147 	int flags;
148 	union {
149 		struct fop_args_tag {
150 			struct file *fp;
151 			fo_rdwr_t *doio;
152 		} fop_args;
153 		struct vop_args_tag {
154 			struct vnode *vp;
155 		} vop_args;
156 	} args;
157 };
158 
159 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
160     struct vn_io_fault_args *args, struct thread *td);
161 
162 int
163 vn_open(ndp, flagp, cmode, fp)
164 	struct nameidata *ndp;
165 	int *flagp, cmode;
166 	struct file *fp;
167 {
168 	struct thread *td = ndp->ni_cnd.cn_thread;
169 
170 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
171 }
172 
173 /*
174  * Common code for vnode open operations via a name lookup.
175  * Lookup the vnode and invoke VOP_CREATE if needed.
176  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
177  *
178  * Note that this does NOT free nameidata for the successful case,
179  * due to the NDINIT being done elsewhere.
180  */
181 int
182 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
183     struct ucred *cred, struct file *fp)
184 {
185 	struct vnode *vp;
186 	struct mount *mp;
187 	struct thread *td = ndp->ni_cnd.cn_thread;
188 	struct vattr vat;
189 	struct vattr *vap = &vat;
190 	int fmode, error;
191 
192 restart:
193 	fmode = *flagp;
194 	if (fmode & O_CREAT) {
195 		ndp->ni_cnd.cn_nameiop = CREATE;
196 		/*
197 		 * Set NOCACHE to avoid flushing the cache when
198 		 * rolling in many files at once.
199 		*/
200 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
201 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
202 			ndp->ni_cnd.cn_flags |= FOLLOW;
203 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
204 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
205 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
206 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
207 		bwillwrite();
208 		if ((error = namei(ndp)) != 0)
209 			return (error);
210 		if (ndp->ni_vp == NULL) {
211 			VATTR_NULL(vap);
212 			vap->va_type = VREG;
213 			vap->va_mode = cmode;
214 			if (fmode & O_EXCL)
215 				vap->va_vaflags |= VA_EXCLUSIVE;
216 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
217 				NDFREE(ndp, NDF_ONLY_PNBUF);
218 				vput(ndp->ni_dvp);
219 				if ((error = vn_start_write(NULL, &mp,
220 				    V_XSLEEP | PCATCH)) != 0)
221 					return (error);
222 				goto restart;
223 			}
224 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
225 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
226 #ifdef MAC
227 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
228 			    &ndp->ni_cnd, vap);
229 			if (error == 0)
230 #endif
231 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
232 						   &ndp->ni_cnd, vap);
233 			vput(ndp->ni_dvp);
234 			vn_finished_write(mp);
235 			if (error) {
236 				NDFREE(ndp, NDF_ONLY_PNBUF);
237 				return (error);
238 			}
239 			fmode &= ~O_TRUNC;
240 			vp = ndp->ni_vp;
241 		} else {
242 			if (ndp->ni_dvp == ndp->ni_vp)
243 				vrele(ndp->ni_dvp);
244 			else
245 				vput(ndp->ni_dvp);
246 			ndp->ni_dvp = NULL;
247 			vp = ndp->ni_vp;
248 			if (fmode & O_EXCL) {
249 				error = EEXIST;
250 				goto bad;
251 			}
252 			fmode &= ~O_CREAT;
253 		}
254 	} else {
255 		ndp->ni_cnd.cn_nameiop = LOOKUP;
256 		ndp->ni_cnd.cn_flags = ISOPEN |
257 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
258 		if (!(fmode & FWRITE))
259 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
260 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
261 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
262 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
263 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
264 		if ((error = namei(ndp)) != 0)
265 			return (error);
266 		vp = ndp->ni_vp;
267 	}
268 	error = vn_open_vnode(vp, fmode, cred, td, fp);
269 	if (error)
270 		goto bad;
271 	*flagp = fmode;
272 	return (0);
273 bad:
274 	NDFREE(ndp, NDF_ONLY_PNBUF);
275 	vput(vp);
276 	*flagp = fmode;
277 	ndp->ni_vp = NULL;
278 	return (error);
279 }
280 
281 /*
282  * Common code for vnode open operations once a vnode is located.
283  * Check permissions, and call the VOP_OPEN routine.
284  */
285 int
286 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
287     struct thread *td, struct file *fp)
288 {
289 	struct mount *mp;
290 	accmode_t accmode;
291 	struct flock lf;
292 	int error, have_flock, lock_flags, type;
293 
294 	if (vp->v_type == VLNK)
295 		return (EMLINK);
296 	if (vp->v_type == VSOCK)
297 		return (EOPNOTSUPP);
298 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
299 		return (ENOTDIR);
300 	accmode = 0;
301 	if (fmode & (FWRITE | O_TRUNC)) {
302 		if (vp->v_type == VDIR)
303 			return (EISDIR);
304 		accmode |= VWRITE;
305 	}
306 	if (fmode & FREAD)
307 		accmode |= VREAD;
308 	if (fmode & FEXEC)
309 		accmode |= VEXEC;
310 	if ((fmode & O_APPEND) && (fmode & FWRITE))
311 		accmode |= VAPPEND;
312 #ifdef MAC
313 	if (fmode & O_CREAT)
314 		accmode |= VCREAT;
315 	if (fmode & O_VERIFY)
316 		accmode |= VVERIFY;
317 	error = mac_vnode_check_open(cred, vp, accmode);
318 	if (error)
319 		return (error);
320 
321 	accmode &= ~(VCREAT | VVERIFY);
322 #endif
323 	if ((fmode & O_CREAT) == 0) {
324 		if (accmode & VWRITE) {
325 			error = vn_writechk(vp);
326 			if (error)
327 				return (error);
328 		}
329 		if (accmode) {
330 		        error = VOP_ACCESS(vp, accmode, cred, td);
331 			if (error)
332 				return (error);
333 		}
334 	}
335 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
336 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
337 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
338 		return (error);
339 
340 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
341 		KASSERT(fp != NULL, ("open with flock requires fp"));
342 		lock_flags = VOP_ISLOCKED(vp);
343 		VOP_UNLOCK(vp, 0);
344 		lf.l_whence = SEEK_SET;
345 		lf.l_start = 0;
346 		lf.l_len = 0;
347 		if (fmode & O_EXLOCK)
348 			lf.l_type = F_WRLCK;
349 		else
350 			lf.l_type = F_RDLCK;
351 		type = F_FLOCK;
352 		if ((fmode & FNONBLOCK) == 0)
353 			type |= F_WAIT;
354 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
355 		have_flock = (error == 0);
356 		vn_lock(vp, lock_flags | LK_RETRY);
357 		if (error == 0 && vp->v_iflag & VI_DOOMED)
358 			error = ENOENT;
359 		/*
360 		 * Another thread might have used this vnode as an
361 		 * executable while the vnode lock was dropped.
362 		 * Ensure the vnode is still able to be opened for
363 		 * writing after the lock has been obtained.
364 		 */
365 		if (error == 0 && accmode & VWRITE)
366 			error = vn_writechk(vp);
367 		if (error) {
368 			VOP_UNLOCK(vp, 0);
369 			if (have_flock) {
370 				lf.l_whence = SEEK_SET;
371 				lf.l_start = 0;
372 				lf.l_len = 0;
373 				lf.l_type = F_UNLCK;
374 				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
375 				    F_FLOCK);
376 			}
377 			vn_start_write(vp, &mp, V_WAIT);
378 			vn_lock(vp, lock_flags | LK_RETRY);
379 			(void)VOP_CLOSE(vp, fmode, cred, td);
380 			vn_finished_write(mp);
381 			/* Prevent second close from fdrop()->vn_close(). */
382 			if (fp != NULL)
383 				fp->f_ops= &badfileops;
384 			return (error);
385 		}
386 		fp->f_flag |= FHASLOCK;
387 	}
388 	if (fmode & FWRITE) {
389 		VOP_ADD_WRITECOUNT(vp, 1);
390 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
391 		    __func__, vp, vp->v_writecount);
392 	}
393 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
394 	return (0);
395 }
396 
397 /*
398  * Check for write permissions on the specified vnode.
399  * Prototype text segments cannot be written.
400  */
401 int
402 vn_writechk(vp)
403 	register struct vnode *vp;
404 {
405 
406 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
407 	/*
408 	 * If there's shared text associated with
409 	 * the vnode, try to free it up once.  If
410 	 * we fail, we can't allow writing.
411 	 */
412 	if (VOP_IS_TEXT(vp))
413 		return (ETXTBSY);
414 
415 	return (0);
416 }
417 
418 /*
419  * Vnode close call
420  */
421 int
422 vn_close(vp, flags, file_cred, td)
423 	register struct vnode *vp;
424 	int flags;
425 	struct ucred *file_cred;
426 	struct thread *td;
427 {
428 	struct mount *mp;
429 	int error, lock_flags;
430 
431 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
432 	    MNT_EXTENDED_SHARED(vp->v_mount))
433 		lock_flags = LK_SHARED;
434 	else
435 		lock_flags = LK_EXCLUSIVE;
436 
437 	vn_start_write(vp, &mp, V_WAIT);
438 	vn_lock(vp, lock_flags | LK_RETRY);
439 	if (flags & FWRITE) {
440 		VNASSERT(vp->v_writecount > 0, vp,
441 		    ("vn_close: negative writecount"));
442 		VOP_ADD_WRITECOUNT(vp, -1);
443 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
444 		    __func__, vp, vp->v_writecount);
445 	}
446 	error = VOP_CLOSE(vp, flags, file_cred, td);
447 	vput(vp);
448 	vn_finished_write(mp);
449 	return (error);
450 }
451 
452 /*
453  * Heuristic to detect sequential operation.
454  */
455 static int
456 sequential_heuristic(struct uio *uio, struct file *fp)
457 {
458 
459 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
460 	if (fp->f_flag & FRDAHEAD)
461 		return (fp->f_seqcount << IO_SEQSHIFT);
462 
463 	/*
464 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
465 	 * that the first I/O is normally considered to be slightly
466 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
467 	 * unless previous seeks have reduced f_seqcount to 0, in which
468 	 * case offset 0 is not special.
469 	 */
470 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
471 	    uio->uio_offset == fp->f_nextoff) {
472 		/*
473 		 * f_seqcount is in units of fixed-size blocks so that it
474 		 * depends mainly on the amount of sequential I/O and not
475 		 * much on the number of sequential I/O's.  The fixed size
476 		 * of 16384 is hard-coded here since it is (not quite) just
477 		 * a magic size that works well here.  This size is more
478 		 * closely related to the best I/O size for real disks than
479 		 * to any block size used by software.
480 		 */
481 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
482 		if (fp->f_seqcount > IO_SEQMAX)
483 			fp->f_seqcount = IO_SEQMAX;
484 		return (fp->f_seqcount << IO_SEQSHIFT);
485 	}
486 
487 	/* Not sequential.  Quickly draw-down sequentiality. */
488 	if (fp->f_seqcount > 1)
489 		fp->f_seqcount = 1;
490 	else
491 		fp->f_seqcount = 0;
492 	return (0);
493 }
494 
495 /*
496  * Package up an I/O request on a vnode into a uio and do it.
497  */
498 int
499 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
500     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
501     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
502 {
503 	struct uio auio;
504 	struct iovec aiov;
505 	struct mount *mp;
506 	struct ucred *cred;
507 	void *rl_cookie;
508 	struct vn_io_fault_args args;
509 	int error, lock_flags;
510 
511 	auio.uio_iov = &aiov;
512 	auio.uio_iovcnt = 1;
513 	aiov.iov_base = base;
514 	aiov.iov_len = len;
515 	auio.uio_resid = len;
516 	auio.uio_offset = offset;
517 	auio.uio_segflg = segflg;
518 	auio.uio_rw = rw;
519 	auio.uio_td = td;
520 	error = 0;
521 
522 	if ((ioflg & IO_NODELOCKED) == 0) {
523 		if ((ioflg & IO_RANGELOCKED) == 0) {
524 			if (rw == UIO_READ) {
525 				rl_cookie = vn_rangelock_rlock(vp, offset,
526 				    offset + len);
527 			} else {
528 				rl_cookie = vn_rangelock_wlock(vp, offset,
529 				    offset + len);
530 			}
531 		} else
532 			rl_cookie = NULL;
533 		mp = NULL;
534 		if (rw == UIO_WRITE) {
535 			if (vp->v_type != VCHR &&
536 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
537 			    != 0)
538 				goto out;
539 			if (MNT_SHARED_WRITES(mp) ||
540 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
541 				lock_flags = LK_SHARED;
542 			else
543 				lock_flags = LK_EXCLUSIVE;
544 		} else
545 			lock_flags = LK_SHARED;
546 		vn_lock(vp, lock_flags | LK_RETRY);
547 	} else
548 		rl_cookie = NULL;
549 
550 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
551 #ifdef MAC
552 	if ((ioflg & IO_NOMACCHECK) == 0) {
553 		if (rw == UIO_READ)
554 			error = mac_vnode_check_read(active_cred, file_cred,
555 			    vp);
556 		else
557 			error = mac_vnode_check_write(active_cred, file_cred,
558 			    vp);
559 	}
560 #endif
561 	if (error == 0) {
562 		if (file_cred != NULL)
563 			cred = file_cred;
564 		else
565 			cred = active_cred;
566 		if (do_vn_io_fault(vp, &auio)) {
567 			args.kind = VN_IO_FAULT_VOP;
568 			args.cred = cred;
569 			args.flags = ioflg;
570 			args.args.vop_args.vp = vp;
571 			error = vn_io_fault1(vp, &auio, &args, td);
572 		} else if (rw == UIO_READ) {
573 			error = VOP_READ(vp, &auio, ioflg, cred);
574 		} else /* if (rw == UIO_WRITE) */ {
575 			error = VOP_WRITE(vp, &auio, ioflg, cred);
576 		}
577 	}
578 	if (aresid)
579 		*aresid = auio.uio_resid;
580 	else
581 		if (auio.uio_resid && error == 0)
582 			error = EIO;
583 	if ((ioflg & IO_NODELOCKED) == 0) {
584 		VOP_UNLOCK(vp, 0);
585 		if (mp != NULL)
586 			vn_finished_write(mp);
587 	}
588  out:
589 	if (rl_cookie != NULL)
590 		vn_rangelock_unlock(vp, rl_cookie);
591 	return (error);
592 }
593 
594 /*
595  * Package up an I/O request on a vnode into a uio and do it.  The I/O
596  * request is split up into smaller chunks and we try to avoid saturating
597  * the buffer cache while potentially holding a vnode locked, so we
598  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
599  * to give other processes a chance to lock the vnode (either other processes
600  * core'ing the same binary, or unrelated processes scanning the directory).
601  */
602 int
603 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
604     file_cred, aresid, td)
605 	enum uio_rw rw;
606 	struct vnode *vp;
607 	void *base;
608 	size_t len;
609 	off_t offset;
610 	enum uio_seg segflg;
611 	int ioflg;
612 	struct ucred *active_cred;
613 	struct ucred *file_cred;
614 	size_t *aresid;
615 	struct thread *td;
616 {
617 	int error = 0;
618 	ssize_t iaresid;
619 
620 	do {
621 		int chunk;
622 
623 		/*
624 		 * Force `offset' to a multiple of MAXBSIZE except possibly
625 		 * for the first chunk, so that filesystems only need to
626 		 * write full blocks except possibly for the first and last
627 		 * chunks.
628 		 */
629 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
630 
631 		if (chunk > len)
632 			chunk = len;
633 		if (rw != UIO_READ && vp->v_type == VREG)
634 			bwillwrite();
635 		iaresid = 0;
636 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
637 		    ioflg, active_cred, file_cred, &iaresid, td);
638 		len -= chunk;	/* aresid calc already includes length */
639 		if (error)
640 			break;
641 		offset += chunk;
642 		base = (char *)base + chunk;
643 		kern_yield(PRI_USER);
644 	} while (len);
645 	if (aresid)
646 		*aresid = len + iaresid;
647 	return (error);
648 }
649 
650 off_t
651 foffset_lock(struct file *fp, int flags)
652 {
653 	struct mtx *mtxp;
654 	off_t res;
655 
656 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
657 
658 #if OFF_MAX <= LONG_MAX
659 	/*
660 	 * Caller only wants the current f_offset value.  Assume that
661 	 * the long and shorter integer types reads are atomic.
662 	 */
663 	if ((flags & FOF_NOLOCK) != 0)
664 		return (fp->f_offset);
665 #endif
666 
667 	/*
668 	 * According to McKusick the vn lock was protecting f_offset here.
669 	 * It is now protected by the FOFFSET_LOCKED flag.
670 	 */
671 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
672 	mtx_lock(mtxp);
673 	if ((flags & FOF_NOLOCK) == 0) {
674 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
675 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
676 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
677 			    "vofflock", 0);
678 		}
679 		fp->f_vnread_flags |= FOFFSET_LOCKED;
680 	}
681 	res = fp->f_offset;
682 	mtx_unlock(mtxp);
683 	return (res);
684 }
685 
686 void
687 foffset_unlock(struct file *fp, off_t val, int flags)
688 {
689 	struct mtx *mtxp;
690 
691 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
692 
693 #if OFF_MAX <= LONG_MAX
694 	if ((flags & FOF_NOLOCK) != 0) {
695 		if ((flags & FOF_NOUPDATE) == 0)
696 			fp->f_offset = val;
697 		if ((flags & FOF_NEXTOFF) != 0)
698 			fp->f_nextoff = val;
699 		return;
700 	}
701 #endif
702 
703 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
704 	mtx_lock(mtxp);
705 	if ((flags & FOF_NOUPDATE) == 0)
706 		fp->f_offset = val;
707 	if ((flags & FOF_NEXTOFF) != 0)
708 		fp->f_nextoff = val;
709 	if ((flags & FOF_NOLOCK) == 0) {
710 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
711 		    ("Lost FOFFSET_LOCKED"));
712 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
713 			wakeup(&fp->f_vnread_flags);
714 		fp->f_vnread_flags = 0;
715 	}
716 	mtx_unlock(mtxp);
717 }
718 
719 void
720 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
721 {
722 
723 	if ((flags & FOF_OFFSET) == 0)
724 		uio->uio_offset = foffset_lock(fp, flags);
725 }
726 
727 void
728 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
729 {
730 
731 	if ((flags & FOF_OFFSET) == 0)
732 		foffset_unlock(fp, uio->uio_offset, flags);
733 }
734 
735 static int
736 get_advice(struct file *fp, struct uio *uio)
737 {
738 	struct mtx *mtxp;
739 	int ret;
740 
741 	ret = POSIX_FADV_NORMAL;
742 	if (fp->f_advice == NULL)
743 		return (ret);
744 
745 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
746 	mtx_lock(mtxp);
747 	if (uio->uio_offset >= fp->f_advice->fa_start &&
748 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
749 		ret = fp->f_advice->fa_advice;
750 	mtx_unlock(mtxp);
751 	return (ret);
752 }
753 
754 /*
755  * File table vnode read routine.
756  */
757 static int
758 vn_read(fp, uio, active_cred, flags, td)
759 	struct file *fp;
760 	struct uio *uio;
761 	struct ucred *active_cred;
762 	int flags;
763 	struct thread *td;
764 {
765 	struct vnode *vp;
766 	struct mtx *mtxp;
767 	int error, ioflag;
768 	int advice;
769 	off_t offset, start, end;
770 
771 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
772 	    uio->uio_td, td));
773 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
774 	vp = fp->f_vnode;
775 	ioflag = 0;
776 	if (fp->f_flag & FNONBLOCK)
777 		ioflag |= IO_NDELAY;
778 	if (fp->f_flag & O_DIRECT)
779 		ioflag |= IO_DIRECT;
780 	advice = get_advice(fp, uio);
781 	vn_lock(vp, LK_SHARED | LK_RETRY);
782 
783 	switch (advice) {
784 	case POSIX_FADV_NORMAL:
785 	case POSIX_FADV_SEQUENTIAL:
786 	case POSIX_FADV_NOREUSE:
787 		ioflag |= sequential_heuristic(uio, fp);
788 		break;
789 	case POSIX_FADV_RANDOM:
790 		/* Disable read-ahead for random I/O. */
791 		break;
792 	}
793 	offset = uio->uio_offset;
794 
795 #ifdef MAC
796 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
797 	if (error == 0)
798 #endif
799 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
800 	fp->f_nextoff = uio->uio_offset;
801 	VOP_UNLOCK(vp, 0);
802 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
803 	    offset != uio->uio_offset) {
804 		/*
805 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
806 		 * buffers for the backing file after a
807 		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
808 		 * case of using POSIX_FADV_NOREUSE with sequential
809 		 * access, track the previous implicit DONTNEED
810 		 * request and grow this request to include the
811 		 * current read(2) in addition to the previous
812 		 * DONTNEED.  With purely sequential access this will
813 		 * cause the DONTNEED requests to continously grow to
814 		 * cover all of the previously read regions of the
815 		 * file.  This allows filesystem blocks that are
816 		 * accessed by multiple calls to read(2) to be flushed
817 		 * once the last read(2) finishes.
818 		 */
819 		start = offset;
820 		end = uio->uio_offset - 1;
821 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
822 		mtx_lock(mtxp);
823 		if (fp->f_advice != NULL &&
824 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
825 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
826 				start = fp->f_advice->fa_prevstart;
827 			else if (fp->f_advice->fa_prevstart != 0 &&
828 			    fp->f_advice->fa_prevstart == end + 1)
829 				end = fp->f_advice->fa_prevend;
830 			fp->f_advice->fa_prevstart = start;
831 			fp->f_advice->fa_prevend = end;
832 		}
833 		mtx_unlock(mtxp);
834 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
835 	}
836 	return (error);
837 }
838 
839 /*
840  * File table vnode write routine.
841  */
842 static int
843 vn_write(fp, uio, active_cred, flags, td)
844 	struct file *fp;
845 	struct uio *uio;
846 	struct ucred *active_cred;
847 	int flags;
848 	struct thread *td;
849 {
850 	struct vnode *vp;
851 	struct mount *mp;
852 	struct mtx *mtxp;
853 	int error, ioflag, lock_flags;
854 	int advice;
855 	off_t offset, start, end;
856 
857 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
858 	    uio->uio_td, td));
859 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
860 	vp = fp->f_vnode;
861 	if (vp->v_type == VREG)
862 		bwillwrite();
863 	ioflag = IO_UNIT;
864 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
865 		ioflag |= IO_APPEND;
866 	if (fp->f_flag & FNONBLOCK)
867 		ioflag |= IO_NDELAY;
868 	if (fp->f_flag & O_DIRECT)
869 		ioflag |= IO_DIRECT;
870 	if ((fp->f_flag & O_FSYNC) ||
871 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
872 		ioflag |= IO_SYNC;
873 	mp = NULL;
874 	if (vp->v_type != VCHR &&
875 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
876 		goto unlock;
877 
878 	advice = get_advice(fp, uio);
879 
880 	if (MNT_SHARED_WRITES(mp) ||
881 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
882 		lock_flags = LK_SHARED;
883 	} else {
884 		lock_flags = LK_EXCLUSIVE;
885 	}
886 
887 	vn_lock(vp, lock_flags | LK_RETRY);
888 	switch (advice) {
889 	case POSIX_FADV_NORMAL:
890 	case POSIX_FADV_SEQUENTIAL:
891 	case POSIX_FADV_NOREUSE:
892 		ioflag |= sequential_heuristic(uio, fp);
893 		break;
894 	case POSIX_FADV_RANDOM:
895 		/* XXX: Is this correct? */
896 		break;
897 	}
898 	offset = uio->uio_offset;
899 
900 #ifdef MAC
901 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
902 	if (error == 0)
903 #endif
904 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
905 	fp->f_nextoff = uio->uio_offset;
906 	VOP_UNLOCK(vp, 0);
907 	if (vp->v_type != VCHR)
908 		vn_finished_write(mp);
909 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
910 	    offset != uio->uio_offset) {
911 		/*
912 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
913 		 * buffers for the backing file after a
914 		 * POSIX_FADV_NOREUSE write(2).  To optimize the
915 		 * common case of using POSIX_FADV_NOREUSE with
916 		 * sequential access, track the previous implicit
917 		 * DONTNEED request and grow this request to include
918 		 * the current write(2) in addition to the previous
919 		 * DONTNEED.  With purely sequential access this will
920 		 * cause the DONTNEED requests to continously grow to
921 		 * cover all of the previously written regions of the
922 		 * file.
923 		 *
924 		 * Note that the blocks just written are almost
925 		 * certainly still dirty, so this only works when
926 		 * VOP_ADVISE() calls from subsequent writes push out
927 		 * the data written by this write(2) once the backing
928 		 * buffers are clean.  However, as compared to forcing
929 		 * IO_DIRECT, this gives much saner behavior.  Write
930 		 * clustering is still allowed, and clean pages are
931 		 * merely moved to the cache page queue rather than
932 		 * outright thrown away.  This means a subsequent
933 		 * read(2) can still avoid hitting the disk if the
934 		 * pages have not been reclaimed.
935 		 *
936 		 * This does make POSIX_FADV_NOREUSE largely useless
937 		 * with non-sequential access.  However, sequential
938 		 * access is the more common use case and the flag is
939 		 * merely advisory.
940 		 */
941 		start = offset;
942 		end = uio->uio_offset - 1;
943 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
944 		mtx_lock(mtxp);
945 		if (fp->f_advice != NULL &&
946 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
947 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
948 				start = fp->f_advice->fa_prevstart;
949 			else if (fp->f_advice->fa_prevstart != 0 &&
950 			    fp->f_advice->fa_prevstart == end + 1)
951 				end = fp->f_advice->fa_prevend;
952 			fp->f_advice->fa_prevstart = start;
953 			fp->f_advice->fa_prevend = end;
954 		}
955 		mtx_unlock(mtxp);
956 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
957 	}
958 
959 unlock:
960 	return (error);
961 }
962 
963 /*
964  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
965  * prevent the following deadlock:
966  *
967  * Assume that the thread A reads from the vnode vp1 into userspace
968  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
969  * currently not resident, then system ends up with the call chain
970  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
971  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
972  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
973  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
974  * backed by the pages of vnode vp1, and some page in buf2 is not
975  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
976  *
977  * To prevent the lock order reversal and deadlock, vn_io_fault() does
978  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
979  * Instead, it first tries to do the whole range i/o with pagefaults
980  * disabled. If all pages in the i/o buffer are resident and mapped,
981  * VOP will succeed (ignoring the genuine filesystem errors).
982  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
983  * i/o in chunks, with all pages in the chunk prefaulted and held
984  * using vm_fault_quick_hold_pages().
985  *
986  * Filesystems using this deadlock avoidance scheme should use the
987  * array of the held pages from uio, saved in the curthread->td_ma,
988  * instead of doing uiomove().  A helper function
989  * vn_io_fault_uiomove() converts uiomove request into
990  * uiomove_fromphys() over td_ma array.
991  *
992  * Since vnode locks do not cover the whole i/o anymore, rangelocks
993  * make the current i/o request atomic with respect to other i/os and
994  * truncations.
995  */
996 
997 /*
998  * Decode vn_io_fault_args and perform the corresponding i/o.
999  */
1000 static int
1001 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1002     struct thread *td)
1003 {
1004 
1005 	switch (args->kind) {
1006 	case VN_IO_FAULT_FOP:
1007 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
1008 		    uio, args->cred, args->flags, td));
1009 	case VN_IO_FAULT_VOP:
1010 		if (uio->uio_rw == UIO_READ) {
1011 			return (VOP_READ(args->args.vop_args.vp, uio,
1012 			    args->flags, args->cred));
1013 		} else if (uio->uio_rw == UIO_WRITE) {
1014 			return (VOP_WRITE(args->args.vop_args.vp, uio,
1015 			    args->flags, args->cred));
1016 		}
1017 		break;
1018 	}
1019 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
1020 	    uio->uio_rw);
1021 }
1022 
1023 /*
1024  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1025  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1026  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1027  * into args and call vn_io_fault1() to handle faults during the user
1028  * mode buffer accesses.
1029  */
1030 static int
1031 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1032     struct thread *td)
1033 {
1034 	vm_page_t ma[io_hold_cnt + 2];
1035 	struct uio *uio_clone, short_uio;
1036 	struct iovec short_iovec[1];
1037 	vm_page_t *prev_td_ma;
1038 	vm_prot_t prot;
1039 	vm_offset_t addr, end;
1040 	size_t len, resid;
1041 	ssize_t adv;
1042 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1043 
1044 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1045 
1046 	/*
1047 	 * The UFS follows IO_UNIT directive and replays back both
1048 	 * uio_offset and uio_resid if an error is encountered during the
1049 	 * operation.  But, since the iovec may be already advanced,
1050 	 * uio is still in an inconsistent state.
1051 	 *
1052 	 * Cache a copy of the original uio, which is advanced to the redo
1053 	 * point using UIO_NOCOPY below.
1054 	 */
1055 	uio_clone = cloneuio(uio);
1056 	resid = uio->uio_resid;
1057 
1058 	short_uio.uio_segflg = UIO_USERSPACE;
1059 	short_uio.uio_rw = uio->uio_rw;
1060 	short_uio.uio_td = uio->uio_td;
1061 
1062 	save = vm_fault_disable_pagefaults();
1063 	error = vn_io_fault_doio(args, uio, td);
1064 	if (error != EFAULT)
1065 		goto out;
1066 
1067 	atomic_add_long(&vn_io_faults_cnt, 1);
1068 	uio_clone->uio_segflg = UIO_NOCOPY;
1069 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1070 	uio_clone->uio_segflg = uio->uio_segflg;
1071 
1072 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1073 	prev_td_ma = td->td_ma;
1074 	prev_td_ma_cnt = td->td_ma_cnt;
1075 
1076 	while (uio_clone->uio_resid != 0) {
1077 		len = uio_clone->uio_iov->iov_len;
1078 		if (len == 0) {
1079 			KASSERT(uio_clone->uio_iovcnt >= 1,
1080 			    ("iovcnt underflow"));
1081 			uio_clone->uio_iov++;
1082 			uio_clone->uio_iovcnt--;
1083 			continue;
1084 		}
1085 		if (len > io_hold_cnt * PAGE_SIZE)
1086 			len = io_hold_cnt * PAGE_SIZE;
1087 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1088 		end = round_page(addr + len);
1089 		if (end < addr) {
1090 			error = EFAULT;
1091 			break;
1092 		}
1093 		cnt = atop(end - trunc_page(addr));
1094 		/*
1095 		 * A perfectly misaligned address and length could cause
1096 		 * both the start and the end of the chunk to use partial
1097 		 * page.  +2 accounts for such a situation.
1098 		 */
1099 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1100 		    addr, len, prot, ma, io_hold_cnt + 2);
1101 		if (cnt == -1) {
1102 			error = EFAULT;
1103 			break;
1104 		}
1105 		short_uio.uio_iov = &short_iovec[0];
1106 		short_iovec[0].iov_base = (void *)addr;
1107 		short_uio.uio_iovcnt = 1;
1108 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1109 		short_uio.uio_offset = uio_clone->uio_offset;
1110 		td->td_ma = ma;
1111 		td->td_ma_cnt = cnt;
1112 
1113 		error = vn_io_fault_doio(args, &short_uio, td);
1114 		vm_page_unhold_pages(ma, cnt);
1115 		adv = len - short_uio.uio_resid;
1116 
1117 		uio_clone->uio_iov->iov_base =
1118 		    (char *)uio_clone->uio_iov->iov_base + adv;
1119 		uio_clone->uio_iov->iov_len -= adv;
1120 		uio_clone->uio_resid -= adv;
1121 		uio_clone->uio_offset += adv;
1122 
1123 		uio->uio_resid -= adv;
1124 		uio->uio_offset += adv;
1125 
1126 		if (error != 0 || adv == 0)
1127 			break;
1128 	}
1129 	td->td_ma = prev_td_ma;
1130 	td->td_ma_cnt = prev_td_ma_cnt;
1131 	curthread_pflags_restore(saveheld);
1132 out:
1133 	vm_fault_enable_pagefaults(save);
1134 	free(uio_clone, M_IOV);
1135 	return (error);
1136 }
1137 
1138 static int
1139 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1140     int flags, struct thread *td)
1141 {
1142 	fo_rdwr_t *doio;
1143 	struct vnode *vp;
1144 	void *rl_cookie;
1145 	struct vn_io_fault_args args;
1146 	int error;
1147 
1148 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1149 	vp = fp->f_vnode;
1150 	foffset_lock_uio(fp, uio, flags);
1151 	if (do_vn_io_fault(vp, uio)) {
1152 		args.kind = VN_IO_FAULT_FOP;
1153 		args.args.fop_args.fp = fp;
1154 		args.args.fop_args.doio = doio;
1155 		args.cred = active_cred;
1156 		args.flags = flags | FOF_OFFSET;
1157 		if (uio->uio_rw == UIO_READ) {
1158 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1159 			    uio->uio_offset + uio->uio_resid);
1160 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1161 		    (flags & FOF_OFFSET) == 0) {
1162 			/* For appenders, punt and lock the whole range. */
1163 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1164 		} else {
1165 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1166 			    uio->uio_offset + uio->uio_resid);
1167 		}
1168 		error = vn_io_fault1(vp, uio, &args, td);
1169 		vn_rangelock_unlock(vp, rl_cookie);
1170 	} else {
1171 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1172 	}
1173 	foffset_unlock_uio(fp, uio, flags);
1174 	return (error);
1175 }
1176 
1177 /*
1178  * Helper function to perform the requested uiomove operation using
1179  * the held pages for io->uio_iov[0].iov_base buffer instead of
1180  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1181  * instead of iov_base prevents page faults that could occur due to
1182  * pmap_collect() invalidating the mapping created by
1183  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1184  * object cleanup revoking the write access from page mappings.
1185  *
1186  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1187  * instead of plain uiomove().
1188  */
1189 int
1190 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1191 {
1192 	struct uio transp_uio;
1193 	struct iovec transp_iov[1];
1194 	struct thread *td;
1195 	size_t adv;
1196 	int error, pgadv;
1197 
1198 	td = curthread;
1199 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1200 	    uio->uio_segflg != UIO_USERSPACE)
1201 		return (uiomove(data, xfersize, uio));
1202 
1203 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1204 	transp_iov[0].iov_base = data;
1205 	transp_uio.uio_iov = &transp_iov[0];
1206 	transp_uio.uio_iovcnt = 1;
1207 	if (xfersize > uio->uio_resid)
1208 		xfersize = uio->uio_resid;
1209 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1210 	transp_uio.uio_offset = 0;
1211 	transp_uio.uio_segflg = UIO_SYSSPACE;
1212 	/*
1213 	 * Since transp_iov points to data, and td_ma page array
1214 	 * corresponds to original uio->uio_iov, we need to invert the
1215 	 * direction of the i/o operation as passed to
1216 	 * uiomove_fromphys().
1217 	 */
1218 	switch (uio->uio_rw) {
1219 	case UIO_WRITE:
1220 		transp_uio.uio_rw = UIO_READ;
1221 		break;
1222 	case UIO_READ:
1223 		transp_uio.uio_rw = UIO_WRITE;
1224 		break;
1225 	}
1226 	transp_uio.uio_td = uio->uio_td;
1227 	error = uiomove_fromphys(td->td_ma,
1228 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1229 	    xfersize, &transp_uio);
1230 	adv = xfersize - transp_uio.uio_resid;
1231 	pgadv =
1232 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1233 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1234 	td->td_ma += pgadv;
1235 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1236 	    pgadv));
1237 	td->td_ma_cnt -= pgadv;
1238 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1239 	uio->uio_iov->iov_len -= adv;
1240 	uio->uio_resid -= adv;
1241 	uio->uio_offset += adv;
1242 	return (error);
1243 }
1244 
1245 int
1246 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1247     struct uio *uio)
1248 {
1249 	struct thread *td;
1250 	vm_offset_t iov_base;
1251 	int cnt, pgadv;
1252 
1253 	td = curthread;
1254 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1255 	    uio->uio_segflg != UIO_USERSPACE)
1256 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1257 
1258 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1259 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1260 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1261 	switch (uio->uio_rw) {
1262 	case UIO_WRITE:
1263 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1264 		    offset, cnt);
1265 		break;
1266 	case UIO_READ:
1267 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1268 		    cnt);
1269 		break;
1270 	}
1271 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1272 	td->td_ma += pgadv;
1273 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1274 	    pgadv));
1275 	td->td_ma_cnt -= pgadv;
1276 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1277 	uio->uio_iov->iov_len -= cnt;
1278 	uio->uio_resid -= cnt;
1279 	uio->uio_offset += cnt;
1280 	return (0);
1281 }
1282 
1283 
1284 /*
1285  * File table truncate routine.
1286  */
1287 static int
1288 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1289     struct thread *td)
1290 {
1291 	struct vattr vattr;
1292 	struct mount *mp;
1293 	struct vnode *vp;
1294 	void *rl_cookie;
1295 	int error;
1296 
1297 	vp = fp->f_vnode;
1298 
1299 	/*
1300 	 * Lock the whole range for truncation.  Otherwise split i/o
1301 	 * might happen partly before and partly after the truncation.
1302 	 */
1303 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1304 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1305 	if (error)
1306 		goto out1;
1307 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1308 	if (vp->v_type == VDIR) {
1309 		error = EISDIR;
1310 		goto out;
1311 	}
1312 #ifdef MAC
1313 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1314 	if (error)
1315 		goto out;
1316 #endif
1317 	error = vn_writechk(vp);
1318 	if (error == 0) {
1319 		VATTR_NULL(&vattr);
1320 		vattr.va_size = length;
1321 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1322 	}
1323 out:
1324 	VOP_UNLOCK(vp, 0);
1325 	vn_finished_write(mp);
1326 out1:
1327 	vn_rangelock_unlock(vp, rl_cookie);
1328 	return (error);
1329 }
1330 
1331 /*
1332  * File table vnode stat routine.
1333  */
1334 static int
1335 vn_statfile(fp, sb, active_cred, td)
1336 	struct file *fp;
1337 	struct stat *sb;
1338 	struct ucred *active_cred;
1339 	struct thread *td;
1340 {
1341 	struct vnode *vp = fp->f_vnode;
1342 	int error;
1343 
1344 	vn_lock(vp, LK_SHARED | LK_RETRY);
1345 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1346 	VOP_UNLOCK(vp, 0);
1347 
1348 	return (error);
1349 }
1350 
1351 /*
1352  * Stat a vnode; implementation for the stat syscall
1353  */
1354 int
1355 vn_stat(vp, sb, active_cred, file_cred, td)
1356 	struct vnode *vp;
1357 	register struct stat *sb;
1358 	struct ucred *active_cred;
1359 	struct ucred *file_cred;
1360 	struct thread *td;
1361 {
1362 	struct vattr vattr;
1363 	register struct vattr *vap;
1364 	int error;
1365 	u_short mode;
1366 
1367 #ifdef MAC
1368 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1369 	if (error)
1370 		return (error);
1371 #endif
1372 
1373 	vap = &vattr;
1374 
1375 	/*
1376 	 * Initialize defaults for new and unusual fields, so that file
1377 	 * systems which don't support these fields don't need to know
1378 	 * about them.
1379 	 */
1380 	vap->va_birthtime.tv_sec = -1;
1381 	vap->va_birthtime.tv_nsec = 0;
1382 	vap->va_fsid = VNOVAL;
1383 	vap->va_rdev = NODEV;
1384 
1385 	error = VOP_GETATTR(vp, vap, active_cred);
1386 	if (error)
1387 		return (error);
1388 
1389 	/*
1390 	 * Zero the spare stat fields
1391 	 */
1392 	bzero(sb, sizeof *sb);
1393 
1394 	/*
1395 	 * Copy from vattr table
1396 	 */
1397 	if (vap->va_fsid != VNOVAL)
1398 		sb->st_dev = vap->va_fsid;
1399 	else
1400 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1401 	sb->st_ino = vap->va_fileid;
1402 	mode = vap->va_mode;
1403 	switch (vap->va_type) {
1404 	case VREG:
1405 		mode |= S_IFREG;
1406 		break;
1407 	case VDIR:
1408 		mode |= S_IFDIR;
1409 		break;
1410 	case VBLK:
1411 		mode |= S_IFBLK;
1412 		break;
1413 	case VCHR:
1414 		mode |= S_IFCHR;
1415 		break;
1416 	case VLNK:
1417 		mode |= S_IFLNK;
1418 		break;
1419 	case VSOCK:
1420 		mode |= S_IFSOCK;
1421 		break;
1422 	case VFIFO:
1423 		mode |= S_IFIFO;
1424 		break;
1425 	default:
1426 		return (EBADF);
1427 	};
1428 	sb->st_mode = mode;
1429 	sb->st_nlink = vap->va_nlink;
1430 	sb->st_uid = vap->va_uid;
1431 	sb->st_gid = vap->va_gid;
1432 	sb->st_rdev = vap->va_rdev;
1433 	if (vap->va_size > OFF_MAX)
1434 		return (EOVERFLOW);
1435 	sb->st_size = vap->va_size;
1436 	sb->st_atim = vap->va_atime;
1437 	sb->st_mtim = vap->va_mtime;
1438 	sb->st_ctim = vap->va_ctime;
1439 	sb->st_birthtim = vap->va_birthtime;
1440 
1441         /*
1442 	 * According to www.opengroup.org, the meaning of st_blksize is
1443 	 *   "a filesystem-specific preferred I/O block size for this
1444 	 *    object.  In some filesystem types, this may vary from file
1445 	 *    to file"
1446 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1447 	 */
1448 
1449 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1450 
1451 	sb->st_flags = vap->va_flags;
1452 	if (priv_check(td, PRIV_VFS_GENERATION))
1453 		sb->st_gen = 0;
1454 	else
1455 		sb->st_gen = vap->va_gen;
1456 
1457 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1458 	return (0);
1459 }
1460 
1461 /*
1462  * File table vnode ioctl routine.
1463  */
1464 static int
1465 vn_ioctl(fp, com, data, active_cred, td)
1466 	struct file *fp;
1467 	u_long com;
1468 	void *data;
1469 	struct ucred *active_cred;
1470 	struct thread *td;
1471 {
1472 	struct vattr vattr;
1473 	struct vnode *vp;
1474 	int error;
1475 
1476 	vp = fp->f_vnode;
1477 	switch (vp->v_type) {
1478 	case VDIR:
1479 	case VREG:
1480 		switch (com) {
1481 		case FIONREAD:
1482 			vn_lock(vp, LK_SHARED | LK_RETRY);
1483 			error = VOP_GETATTR(vp, &vattr, active_cred);
1484 			VOP_UNLOCK(vp, 0);
1485 			if (error == 0)
1486 				*(int *)data = vattr.va_size - fp->f_offset;
1487 			return (error);
1488 		case FIONBIO:
1489 		case FIOASYNC:
1490 			return (0);
1491 		default:
1492 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1493 			    active_cred, td));
1494 		}
1495 	default:
1496 		return (ENOTTY);
1497 	}
1498 }
1499 
1500 /*
1501  * File table vnode poll routine.
1502  */
1503 static int
1504 vn_poll(fp, events, active_cred, td)
1505 	struct file *fp;
1506 	int events;
1507 	struct ucred *active_cred;
1508 	struct thread *td;
1509 {
1510 	struct vnode *vp;
1511 	int error;
1512 
1513 	vp = fp->f_vnode;
1514 #ifdef MAC
1515 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1516 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1517 	VOP_UNLOCK(vp, 0);
1518 	if (!error)
1519 #endif
1520 
1521 	error = VOP_POLL(vp, events, fp->f_cred, td);
1522 	return (error);
1523 }
1524 
1525 /*
1526  * Acquire the requested lock and then check for validity.  LK_RETRY
1527  * permits vn_lock to return doomed vnodes.
1528  */
1529 int
1530 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1531 {
1532 	int error;
1533 
1534 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1535 	    ("vn_lock called with no locktype."));
1536 	do {
1537 #ifdef DEBUG_VFS_LOCKS
1538 		KASSERT(vp->v_holdcnt != 0,
1539 		    ("vn_lock %p: zero hold count", vp));
1540 #endif
1541 		error = VOP_LOCK1(vp, flags, file, line);
1542 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1543 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1544 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1545 		    flags, error));
1546 		/*
1547 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1548 		 * If RETRY is not set, we return ENOENT instead.
1549 		 */
1550 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1551 		    (flags & LK_RETRY) == 0) {
1552 			VOP_UNLOCK(vp, 0);
1553 			error = ENOENT;
1554 			break;
1555 		}
1556 	} while (flags & LK_RETRY && error != 0);
1557 	return (error);
1558 }
1559 
1560 /*
1561  * File table vnode close routine.
1562  */
1563 static int
1564 vn_closefile(fp, td)
1565 	struct file *fp;
1566 	struct thread *td;
1567 {
1568 	struct vnode *vp;
1569 	struct flock lf;
1570 	int error;
1571 
1572 	vp = fp->f_vnode;
1573 	fp->f_ops = &badfileops;
1574 
1575 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1576 		vref(vp);
1577 
1578 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1579 
1580 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1581 		lf.l_whence = SEEK_SET;
1582 		lf.l_start = 0;
1583 		lf.l_len = 0;
1584 		lf.l_type = F_UNLCK;
1585 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1586 		vrele(vp);
1587 	}
1588 	return (error);
1589 }
1590 
1591 static bool
1592 vn_suspendable(struct mount *mp)
1593 {
1594 
1595 	return (mp->mnt_op->vfs_susp_clean != NULL);
1596 }
1597 
1598 /*
1599  * Preparing to start a filesystem write operation. If the operation is
1600  * permitted, then we bump the count of operations in progress and
1601  * proceed. If a suspend request is in progress, we wait until the
1602  * suspension is over, and then proceed.
1603  */
1604 static int
1605 vn_start_write_locked(struct mount *mp, int flags)
1606 {
1607 	int error, mflags;
1608 
1609 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1610 	error = 0;
1611 
1612 	/*
1613 	 * Check on status of suspension.
1614 	 */
1615 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1616 	    mp->mnt_susp_owner != curthread) {
1617 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1618 		    (flags & PCATCH) : 0) | (PUSER - 1);
1619 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1620 			if (flags & V_NOWAIT) {
1621 				error = EWOULDBLOCK;
1622 				goto unlock;
1623 			}
1624 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1625 			    "suspfs", 0);
1626 			if (error)
1627 				goto unlock;
1628 		}
1629 	}
1630 	if (flags & V_XSLEEP)
1631 		goto unlock;
1632 	mp->mnt_writeopcount++;
1633 unlock:
1634 	if (error != 0 || (flags & V_XSLEEP) != 0)
1635 		MNT_REL(mp);
1636 	MNT_IUNLOCK(mp);
1637 	return (error);
1638 }
1639 
1640 int
1641 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1642 {
1643 	struct mount *mp;
1644 	int error;
1645 
1646 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1647 	    ("V_MNTREF requires mp"));
1648 
1649 	error = 0;
1650 	/*
1651 	 * If a vnode is provided, get and return the mount point that
1652 	 * to which it will write.
1653 	 */
1654 	if (vp != NULL) {
1655 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1656 			*mpp = NULL;
1657 			if (error != EOPNOTSUPP)
1658 				return (error);
1659 			return (0);
1660 		}
1661 	}
1662 	if ((mp = *mpp) == NULL)
1663 		return (0);
1664 
1665 	if (!vn_suspendable(mp)) {
1666 		if (vp != NULL || (flags & V_MNTREF) != 0)
1667 			vfs_rel(mp);
1668 		return (0);
1669 	}
1670 
1671 	/*
1672 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1673 	 * a vfs_ref().
1674 	 * As long as a vnode is not provided we need to acquire a
1675 	 * refcount for the provided mountpoint too, in order to
1676 	 * emulate a vfs_ref().
1677 	 */
1678 	MNT_ILOCK(mp);
1679 	if (vp == NULL && (flags & V_MNTREF) == 0)
1680 		MNT_REF(mp);
1681 
1682 	return (vn_start_write_locked(mp, flags));
1683 }
1684 
1685 /*
1686  * Secondary suspension. Used by operations such as vop_inactive
1687  * routines that are needed by the higher level functions. These
1688  * are allowed to proceed until all the higher level functions have
1689  * completed (indicated by mnt_writeopcount dropping to zero). At that
1690  * time, these operations are halted until the suspension is over.
1691  */
1692 int
1693 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1694 {
1695 	struct mount *mp;
1696 	int error;
1697 
1698 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1699 	    ("V_MNTREF requires mp"));
1700 
1701  retry:
1702 	if (vp != NULL) {
1703 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1704 			*mpp = NULL;
1705 			if (error != EOPNOTSUPP)
1706 				return (error);
1707 			return (0);
1708 		}
1709 	}
1710 	/*
1711 	 * If we are not suspended or have not yet reached suspended
1712 	 * mode, then let the operation proceed.
1713 	 */
1714 	if ((mp = *mpp) == NULL)
1715 		return (0);
1716 
1717 	if (!vn_suspendable(mp)) {
1718 		if (vp != NULL || (flags & V_MNTREF) != 0)
1719 			vfs_rel(mp);
1720 		return (0);
1721 	}
1722 
1723 	/*
1724 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1725 	 * a vfs_ref().
1726 	 * As long as a vnode is not provided we need to acquire a
1727 	 * refcount for the provided mountpoint too, in order to
1728 	 * emulate a vfs_ref().
1729 	 */
1730 	MNT_ILOCK(mp);
1731 	if (vp == NULL && (flags & V_MNTREF) == 0)
1732 		MNT_REF(mp);
1733 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1734 		mp->mnt_secondary_writes++;
1735 		mp->mnt_secondary_accwrites++;
1736 		MNT_IUNLOCK(mp);
1737 		return (0);
1738 	}
1739 	if (flags & V_NOWAIT) {
1740 		MNT_REL(mp);
1741 		MNT_IUNLOCK(mp);
1742 		return (EWOULDBLOCK);
1743 	}
1744 	/*
1745 	 * Wait for the suspension to finish.
1746 	 */
1747 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1748 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1749 	    "suspfs", 0);
1750 	vfs_rel(mp);
1751 	if (error == 0)
1752 		goto retry;
1753 	return (error);
1754 }
1755 
1756 /*
1757  * Filesystem write operation has completed. If we are suspending and this
1758  * operation is the last one, notify the suspender that the suspension is
1759  * now in effect.
1760  */
1761 void
1762 vn_finished_write(mp)
1763 	struct mount *mp;
1764 {
1765 	if (mp == NULL || !vn_suspendable(mp))
1766 		return;
1767 	MNT_ILOCK(mp);
1768 	MNT_REL(mp);
1769 	mp->mnt_writeopcount--;
1770 	if (mp->mnt_writeopcount < 0)
1771 		panic("vn_finished_write: neg cnt");
1772 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1773 	    mp->mnt_writeopcount <= 0)
1774 		wakeup(&mp->mnt_writeopcount);
1775 	MNT_IUNLOCK(mp);
1776 }
1777 
1778 
1779 /*
1780  * Filesystem secondary write operation has completed. If we are
1781  * suspending and this operation is the last one, notify the suspender
1782  * that the suspension is now in effect.
1783  */
1784 void
1785 vn_finished_secondary_write(mp)
1786 	struct mount *mp;
1787 {
1788 	if (mp == NULL || !vn_suspendable(mp))
1789 		return;
1790 	MNT_ILOCK(mp);
1791 	MNT_REL(mp);
1792 	mp->mnt_secondary_writes--;
1793 	if (mp->mnt_secondary_writes < 0)
1794 		panic("vn_finished_secondary_write: neg cnt");
1795 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1796 	    mp->mnt_secondary_writes <= 0)
1797 		wakeup(&mp->mnt_secondary_writes);
1798 	MNT_IUNLOCK(mp);
1799 }
1800 
1801 
1802 
1803 /*
1804  * Request a filesystem to suspend write operations.
1805  */
1806 int
1807 vfs_write_suspend(struct mount *mp, int flags)
1808 {
1809 	int error;
1810 
1811 	MPASS(vn_suspendable(mp));
1812 
1813 	MNT_ILOCK(mp);
1814 	if (mp->mnt_susp_owner == curthread) {
1815 		MNT_IUNLOCK(mp);
1816 		return (EALREADY);
1817 	}
1818 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1819 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1820 
1821 	/*
1822 	 * Unmount holds a write reference on the mount point.  If we
1823 	 * own busy reference and drain for writers, we deadlock with
1824 	 * the reference draining in the unmount path.  Callers of
1825 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1826 	 * vfs_busy() reference is owned and caller is not in the
1827 	 * unmount context.
1828 	 */
1829 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1830 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1831 		MNT_IUNLOCK(mp);
1832 		return (EBUSY);
1833 	}
1834 
1835 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1836 	mp->mnt_susp_owner = curthread;
1837 	if (mp->mnt_writeopcount > 0)
1838 		(void) msleep(&mp->mnt_writeopcount,
1839 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1840 	else
1841 		MNT_IUNLOCK(mp);
1842 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1843 		vfs_write_resume(mp, 0);
1844 	return (error);
1845 }
1846 
1847 /*
1848  * Request a filesystem to resume write operations.
1849  */
1850 void
1851 vfs_write_resume(struct mount *mp, int flags)
1852 {
1853 
1854 	MPASS(vn_suspendable(mp));
1855 
1856 	MNT_ILOCK(mp);
1857 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1858 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1859 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1860 				       MNTK_SUSPENDED);
1861 		mp->mnt_susp_owner = NULL;
1862 		wakeup(&mp->mnt_writeopcount);
1863 		wakeup(&mp->mnt_flag);
1864 		curthread->td_pflags &= ~TDP_IGNSUSP;
1865 		if ((flags & VR_START_WRITE) != 0) {
1866 			MNT_REF(mp);
1867 			mp->mnt_writeopcount++;
1868 		}
1869 		MNT_IUNLOCK(mp);
1870 		if ((flags & VR_NO_SUSPCLR) == 0)
1871 			VFS_SUSP_CLEAN(mp);
1872 	} else if ((flags & VR_START_WRITE) != 0) {
1873 		MNT_REF(mp);
1874 		vn_start_write_locked(mp, 0);
1875 	} else {
1876 		MNT_IUNLOCK(mp);
1877 	}
1878 }
1879 
1880 /*
1881  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1882  * methods.
1883  */
1884 int
1885 vfs_write_suspend_umnt(struct mount *mp)
1886 {
1887 	int error;
1888 
1889 	MPASS(vn_suspendable(mp));
1890 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1891 	    ("vfs_write_suspend_umnt: recursed"));
1892 
1893 	/* dounmount() already called vn_start_write(). */
1894 	for (;;) {
1895 		vn_finished_write(mp);
1896 		error = vfs_write_suspend(mp, 0);
1897 		if (error != 0) {
1898 			vn_start_write(NULL, &mp, V_WAIT);
1899 			return (error);
1900 		}
1901 		MNT_ILOCK(mp);
1902 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1903 			break;
1904 		MNT_IUNLOCK(mp);
1905 		vn_start_write(NULL, &mp, V_WAIT);
1906 	}
1907 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1908 	wakeup(&mp->mnt_flag);
1909 	MNT_IUNLOCK(mp);
1910 	curthread->td_pflags |= TDP_IGNSUSP;
1911 	return (0);
1912 }
1913 
1914 /*
1915  * Implement kqueues for files by translating it to vnode operation.
1916  */
1917 static int
1918 vn_kqfilter(struct file *fp, struct knote *kn)
1919 {
1920 
1921 	return (VOP_KQFILTER(fp->f_vnode, kn));
1922 }
1923 
1924 /*
1925  * Simplified in-kernel wrapper calls for extended attribute access.
1926  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1927  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1928  */
1929 int
1930 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1931     const char *attrname, int *buflen, char *buf, struct thread *td)
1932 {
1933 	struct uio	auio;
1934 	struct iovec	iov;
1935 	int	error;
1936 
1937 	iov.iov_len = *buflen;
1938 	iov.iov_base = buf;
1939 
1940 	auio.uio_iov = &iov;
1941 	auio.uio_iovcnt = 1;
1942 	auio.uio_rw = UIO_READ;
1943 	auio.uio_segflg = UIO_SYSSPACE;
1944 	auio.uio_td = td;
1945 	auio.uio_offset = 0;
1946 	auio.uio_resid = *buflen;
1947 
1948 	if ((ioflg & IO_NODELOCKED) == 0)
1949 		vn_lock(vp, LK_SHARED | LK_RETRY);
1950 
1951 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1952 
1953 	/* authorize attribute retrieval as kernel */
1954 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1955 	    td);
1956 
1957 	if ((ioflg & IO_NODELOCKED) == 0)
1958 		VOP_UNLOCK(vp, 0);
1959 
1960 	if (error == 0) {
1961 		*buflen = *buflen - auio.uio_resid;
1962 	}
1963 
1964 	return (error);
1965 }
1966 
1967 /*
1968  * XXX failure mode if partially written?
1969  */
1970 int
1971 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1972     const char *attrname, int buflen, char *buf, struct thread *td)
1973 {
1974 	struct uio	auio;
1975 	struct iovec	iov;
1976 	struct mount	*mp;
1977 	int	error;
1978 
1979 	iov.iov_len = buflen;
1980 	iov.iov_base = buf;
1981 
1982 	auio.uio_iov = &iov;
1983 	auio.uio_iovcnt = 1;
1984 	auio.uio_rw = UIO_WRITE;
1985 	auio.uio_segflg = UIO_SYSSPACE;
1986 	auio.uio_td = td;
1987 	auio.uio_offset = 0;
1988 	auio.uio_resid = buflen;
1989 
1990 	if ((ioflg & IO_NODELOCKED) == 0) {
1991 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1992 			return (error);
1993 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1994 	}
1995 
1996 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1997 
1998 	/* authorize attribute setting as kernel */
1999 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2000 
2001 	if ((ioflg & IO_NODELOCKED) == 0) {
2002 		vn_finished_write(mp);
2003 		VOP_UNLOCK(vp, 0);
2004 	}
2005 
2006 	return (error);
2007 }
2008 
2009 int
2010 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2011     const char *attrname, struct thread *td)
2012 {
2013 	struct mount	*mp;
2014 	int	error;
2015 
2016 	if ((ioflg & IO_NODELOCKED) == 0) {
2017 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2018 			return (error);
2019 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2020 	}
2021 
2022 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2023 
2024 	/* authorize attribute removal as kernel */
2025 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2026 	if (error == EOPNOTSUPP)
2027 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2028 		    NULL, td);
2029 
2030 	if ((ioflg & IO_NODELOCKED) == 0) {
2031 		vn_finished_write(mp);
2032 		VOP_UNLOCK(vp, 0);
2033 	}
2034 
2035 	return (error);
2036 }
2037 
2038 static int
2039 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2040     struct vnode **rvp)
2041 {
2042 
2043 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2044 }
2045 
2046 int
2047 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2048 {
2049 
2050 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2051 	    lkflags, rvp));
2052 }
2053 
2054 int
2055 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2056     int lkflags, struct vnode **rvp)
2057 {
2058 	struct mount *mp;
2059 	int ltype, error;
2060 
2061 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2062 	mp = vp->v_mount;
2063 	ltype = VOP_ISLOCKED(vp);
2064 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2065 	    ("vn_vget_ino: vp not locked"));
2066 	error = vfs_busy(mp, MBF_NOWAIT);
2067 	if (error != 0) {
2068 		vfs_ref(mp);
2069 		VOP_UNLOCK(vp, 0);
2070 		error = vfs_busy(mp, 0);
2071 		vn_lock(vp, ltype | LK_RETRY);
2072 		vfs_rel(mp);
2073 		if (error != 0)
2074 			return (ENOENT);
2075 		if (vp->v_iflag & VI_DOOMED) {
2076 			vfs_unbusy(mp);
2077 			return (ENOENT);
2078 		}
2079 	}
2080 	VOP_UNLOCK(vp, 0);
2081 	error = alloc(mp, alloc_arg, lkflags, rvp);
2082 	vfs_unbusy(mp);
2083 	if (*rvp != vp)
2084 		vn_lock(vp, ltype | LK_RETRY);
2085 	if (vp->v_iflag & VI_DOOMED) {
2086 		if (error == 0) {
2087 			if (*rvp == vp)
2088 				vunref(vp);
2089 			else
2090 				vput(*rvp);
2091 		}
2092 		error = ENOENT;
2093 	}
2094 	return (error);
2095 }
2096 
2097 int
2098 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2099     struct thread *td)
2100 {
2101 
2102 	if (vp->v_type != VREG || td == NULL)
2103 		return (0);
2104 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2105 	    lim_cur(td, RLIMIT_FSIZE)) {
2106 		PROC_LOCK(td->td_proc);
2107 		kern_psignal(td->td_proc, SIGXFSZ);
2108 		PROC_UNLOCK(td->td_proc);
2109 		return (EFBIG);
2110 	}
2111 	return (0);
2112 }
2113 
2114 int
2115 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2116     struct thread *td)
2117 {
2118 	struct vnode *vp;
2119 
2120 	vp = fp->f_vnode;
2121 #ifdef AUDIT
2122 	vn_lock(vp, LK_SHARED | LK_RETRY);
2123 	AUDIT_ARG_VNODE1(vp);
2124 	VOP_UNLOCK(vp, 0);
2125 #endif
2126 	return (setfmode(td, active_cred, vp, mode));
2127 }
2128 
2129 int
2130 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2131     struct thread *td)
2132 {
2133 	struct vnode *vp;
2134 
2135 	vp = fp->f_vnode;
2136 #ifdef AUDIT
2137 	vn_lock(vp, LK_SHARED | LK_RETRY);
2138 	AUDIT_ARG_VNODE1(vp);
2139 	VOP_UNLOCK(vp, 0);
2140 #endif
2141 	return (setfown(td, active_cred, vp, uid, gid));
2142 }
2143 
2144 void
2145 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2146 {
2147 	vm_object_t object;
2148 
2149 	if ((object = vp->v_object) == NULL)
2150 		return;
2151 	VM_OBJECT_WLOCK(object);
2152 	vm_object_page_remove(object, start, end, 0);
2153 	VM_OBJECT_WUNLOCK(object);
2154 }
2155 
2156 int
2157 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2158 {
2159 	struct vattr va;
2160 	daddr_t bn, bnp;
2161 	uint64_t bsize;
2162 	off_t noff;
2163 	int error;
2164 
2165 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2166 	    ("Wrong command %lu", cmd));
2167 
2168 	if (vn_lock(vp, LK_SHARED) != 0)
2169 		return (EBADF);
2170 	if (vp->v_type != VREG) {
2171 		error = ENOTTY;
2172 		goto unlock;
2173 	}
2174 	error = VOP_GETATTR(vp, &va, cred);
2175 	if (error != 0)
2176 		goto unlock;
2177 	noff = *off;
2178 	if (noff >= va.va_size) {
2179 		error = ENXIO;
2180 		goto unlock;
2181 	}
2182 	bsize = vp->v_mount->mnt_stat.f_iosize;
2183 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2184 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2185 		if (error == EOPNOTSUPP) {
2186 			error = ENOTTY;
2187 			goto unlock;
2188 		}
2189 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2190 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2191 			noff = bn * bsize;
2192 			if (noff < *off)
2193 				noff = *off;
2194 			goto unlock;
2195 		}
2196 	}
2197 	if (noff > va.va_size)
2198 		noff = va.va_size;
2199 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2200 	if (cmd == FIOSEEKDATA)
2201 		error = ENXIO;
2202 unlock:
2203 	VOP_UNLOCK(vp, 0);
2204 	if (error == 0)
2205 		*off = noff;
2206 	return (error);
2207 }
2208 
2209 int
2210 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2211 {
2212 	struct ucred *cred;
2213 	struct vnode *vp;
2214 	struct vattr vattr;
2215 	off_t foffset, size;
2216 	int error, noneg;
2217 
2218 	cred = td->td_ucred;
2219 	vp = fp->f_vnode;
2220 	foffset = foffset_lock(fp, 0);
2221 	noneg = (vp->v_type != VCHR);
2222 	error = 0;
2223 	switch (whence) {
2224 	case L_INCR:
2225 		if (noneg &&
2226 		    (foffset < 0 ||
2227 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2228 			error = EOVERFLOW;
2229 			break;
2230 		}
2231 		offset += foffset;
2232 		break;
2233 	case L_XTND:
2234 		vn_lock(vp, LK_SHARED | LK_RETRY);
2235 		error = VOP_GETATTR(vp, &vattr, cred);
2236 		VOP_UNLOCK(vp, 0);
2237 		if (error)
2238 			break;
2239 
2240 		/*
2241 		 * If the file references a disk device, then fetch
2242 		 * the media size and use that to determine the ending
2243 		 * offset.
2244 		 */
2245 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2246 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2247 			vattr.va_size = size;
2248 		if (noneg &&
2249 		    (vattr.va_size > OFF_MAX ||
2250 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2251 			error = EOVERFLOW;
2252 			break;
2253 		}
2254 		offset += vattr.va_size;
2255 		break;
2256 	case L_SET:
2257 		break;
2258 	case SEEK_DATA:
2259 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2260 		break;
2261 	case SEEK_HOLE:
2262 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2263 		break;
2264 	default:
2265 		error = EINVAL;
2266 	}
2267 	if (error == 0 && noneg && offset < 0)
2268 		error = EINVAL;
2269 	if (error != 0)
2270 		goto drop;
2271 	VFS_KNOTE_UNLOCKED(vp, 0);
2272 	td->td_uretoff.tdu_off = offset;
2273 drop:
2274 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2275 	return (error);
2276 }
2277 
2278 int
2279 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2280     struct thread *td)
2281 {
2282 	int error;
2283 
2284 	/*
2285 	 * Grant permission if the caller is the owner of the file, or
2286 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2287 	 * on the file.  If the time pointer is null, then write
2288 	 * permission on the file is also sufficient.
2289 	 *
2290 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2291 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2292 	 * will be allowed to set the times [..] to the current
2293 	 * server time.
2294 	 */
2295 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2296 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2297 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2298 	return (error);
2299 }
2300 
2301 int
2302 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2303 {
2304 	struct vnode *vp;
2305 	int error;
2306 
2307 	if (fp->f_type == DTYPE_FIFO)
2308 		kif->kf_type = KF_TYPE_FIFO;
2309 	else
2310 		kif->kf_type = KF_TYPE_VNODE;
2311 	vp = fp->f_vnode;
2312 	vref(vp);
2313 	FILEDESC_SUNLOCK(fdp);
2314 	error = vn_fill_kinfo_vnode(vp, kif);
2315 	vrele(vp);
2316 	FILEDESC_SLOCK(fdp);
2317 	return (error);
2318 }
2319 
2320 int
2321 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2322 {
2323 	struct vattr va;
2324 	char *fullpath, *freepath;
2325 	int error;
2326 
2327 	kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
2328 	freepath = NULL;
2329 	fullpath = "-";
2330 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2331 	if (error == 0) {
2332 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2333 	}
2334 	if (freepath != NULL)
2335 		free(freepath, M_TEMP);
2336 
2337 	/*
2338 	 * Retrieve vnode attributes.
2339 	 */
2340 	va.va_fsid = VNOVAL;
2341 	va.va_rdev = NODEV;
2342 	vn_lock(vp, LK_SHARED | LK_RETRY);
2343 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2344 	VOP_UNLOCK(vp, 0);
2345 	if (error != 0)
2346 		return (error);
2347 	if (va.va_fsid != VNOVAL)
2348 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2349 	else
2350 		kif->kf_un.kf_file.kf_file_fsid =
2351 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2352 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2353 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2354 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2355 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2356 	return (0);
2357 }
2358 
2359 int
2360 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2361     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2362     struct thread *td)
2363 {
2364 #ifdef HWPMC_HOOKS
2365 	struct pmckern_map_in pkm;
2366 #endif
2367 	struct mount *mp;
2368 	struct vnode *vp;
2369 	vm_object_t object;
2370 	vm_prot_t maxprot;
2371 	boolean_t writecounted;
2372 	int error;
2373 
2374 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2375     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2376 	/*
2377 	 * POSIX shared-memory objects are defined to have
2378 	 * kernel persistence, and are not defined to support
2379 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2380 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2381 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2382 	 * flag to request this behavior.
2383 	 */
2384 	if ((fp->f_flag & FPOSIXSHM) != 0)
2385 		flags |= MAP_NOSYNC;
2386 #endif
2387 	vp = fp->f_vnode;
2388 
2389 	/*
2390 	 * Ensure that file and memory protections are
2391 	 * compatible.  Note that we only worry about
2392 	 * writability if mapping is shared; in this case,
2393 	 * current and max prot are dictated by the open file.
2394 	 * XXX use the vnode instead?  Problem is: what
2395 	 * credentials do we use for determination? What if
2396 	 * proc does a setuid?
2397 	 */
2398 	mp = vp->v_mount;
2399 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0)
2400 		maxprot = VM_PROT_NONE;
2401 	else
2402 		maxprot = VM_PROT_EXECUTE;
2403 	if ((fp->f_flag & FREAD) != 0)
2404 		maxprot |= VM_PROT_READ;
2405 	else if ((prot & VM_PROT_READ) != 0)
2406 		return (EACCES);
2407 
2408 	/*
2409 	 * If we are sharing potential changes via MAP_SHARED and we
2410 	 * are trying to get write permission although we opened it
2411 	 * without asking for it, bail out.
2412 	 */
2413 	if ((flags & MAP_SHARED) != 0) {
2414 		if ((fp->f_flag & FWRITE) != 0)
2415 			maxprot |= VM_PROT_WRITE;
2416 		else if ((prot & VM_PROT_WRITE) != 0)
2417 			return (EACCES);
2418 	} else {
2419 		maxprot |= VM_PROT_WRITE;
2420 		cap_maxprot |= VM_PROT_WRITE;
2421 	}
2422 	maxprot &= cap_maxprot;
2423 
2424 	writecounted = FALSE;
2425 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2426 	    &foff, &object, &writecounted);
2427 	if (error != 0)
2428 		return (error);
2429 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2430 	    foff, writecounted, td);
2431 	if (error != 0) {
2432 		/*
2433 		 * If this mapping was accounted for in the vnode's
2434 		 * writecount, then undo that now.
2435 		 */
2436 		if (writecounted)
2437 			vnode_pager_release_writecount(object, 0, size);
2438 		vm_object_deallocate(object);
2439 	}
2440 #ifdef HWPMC_HOOKS
2441 	/* Inform hwpmc(4) if an executable is being mapped. */
2442 	if (error == 0 && (prot & VM_PROT_EXECUTE) != 0) {
2443 		pkm.pm_file = vp;
2444 		pkm.pm_address = (uintptr_t) addr;
2445 		PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2446 	}
2447 #endif
2448 	return (error);
2449 }
2450