1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org> 13 * Copyright (c) 2013, 2014 The FreeBSD Foundation 14 * 15 * Portions of this software were developed by Konstantin Belousov 16 * under sponsorship from the FreeBSD Foundation. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 1. Redistributions of source code must retain the above copyright 22 * notice, this list of conditions and the following disclaimer. 23 * 2. Redistributions in binary form must reproduce the above copyright 24 * notice, this list of conditions and the following disclaimer in the 25 * documentation and/or other materials provided with the distribution. 26 * 3. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 #include "opt_hwpmc_hooks.h" 44 #include "opt_hwt_hooks.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/buf.h> 49 #include <sys/disk.h> 50 #include <sys/dirent.h> 51 #include <sys/fail.h> 52 #include <sys/fcntl.h> 53 #include <sys/file.h> 54 #include <sys/filio.h> 55 #include <sys/inotify.h> 56 #include <sys/ktr.h> 57 #include <sys/ktrace.h> 58 #include <sys/limits.h> 59 #include <sys/lock.h> 60 #include <sys/mman.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/priv.h> 65 #include <sys/prng.h> 66 #include <sys/proc.h> 67 #include <sys/rwlock.h> 68 #include <sys/sleepqueue.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/unistd.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 75 #include <security/audit/audit.h> 76 #include <security/mac/mac_framework.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_extern.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_page.h> 84 #include <vm/vm_pager.h> 85 #include <vm/vnode_pager.h> 86 87 #ifdef HWPMC_HOOKS 88 #include <sys/pmckern.h> 89 #endif 90 91 #ifdef HWT_HOOKS 92 #include <dev/hwt/hwt_hook.h> 93 #endif 94 95 static fo_rdwr_t vn_read; 96 static fo_rdwr_t vn_write; 97 static fo_rdwr_t vn_io_fault; 98 static fo_truncate_t vn_truncate; 99 static fo_ioctl_t vn_ioctl; 100 static fo_poll_t vn_poll; 101 static fo_kqfilter_t vn_kqfilter; 102 static fo_close_t vn_closefile; 103 static fo_mmap_t vn_mmap; 104 static fo_fallocate_t vn_fallocate; 105 static fo_fspacectl_t vn_fspacectl; 106 107 const struct fileops vnops = { 108 .fo_read = vn_io_fault, 109 .fo_write = vn_io_fault, 110 .fo_truncate = vn_truncate, 111 .fo_ioctl = vn_ioctl, 112 .fo_poll = vn_poll, 113 .fo_kqfilter = vn_kqfilter, 114 .fo_stat = vn_statfile, 115 .fo_close = vn_closefile, 116 .fo_chmod = vn_chmod, 117 .fo_chown = vn_chown, 118 .fo_sendfile = vn_sendfile, 119 .fo_seek = vn_seek, 120 .fo_fill_kinfo = vn_fill_kinfo, 121 .fo_mmap = vn_mmap, 122 .fo_fallocate = vn_fallocate, 123 .fo_fspacectl = vn_fspacectl, 124 .fo_cmp = vn_cmp, 125 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE 126 }; 127 128 const u_int io_hold_cnt = 16; 129 static int vn_io_fault_enable = 1; 130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN, 131 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); 132 static int vn_io_fault_prefault = 0; 133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN, 134 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting"); 135 static int vn_io_pgcache_read_enable = 1; 136 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN, 137 &vn_io_pgcache_read_enable, 0, 138 "Enable copying from page cache for reads, avoiding fs"); 139 static u_long vn_io_faults_cnt; 140 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, 141 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); 142 143 static int vfs_allow_read_dir = 0; 144 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW, 145 &vfs_allow_read_dir, 0, 146 "Enable read(2) of directory by root for filesystems that support it"); 147 148 /* 149 * Returns true if vn_io_fault mode of handling the i/o request should 150 * be used. 151 */ 152 static bool 153 do_vn_io_fault(struct vnode *vp, struct uio *uio) 154 { 155 struct mount *mp; 156 157 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG && 158 (mp = vp->v_mount) != NULL && 159 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable); 160 } 161 162 /* 163 * Structure used to pass arguments to vn_io_fault1(), to do either 164 * file- or vnode-based I/O calls. 165 */ 166 struct vn_io_fault_args { 167 enum { 168 VN_IO_FAULT_FOP, 169 VN_IO_FAULT_VOP 170 } kind; 171 struct ucred *cred; 172 int flags; 173 union { 174 struct fop_args_tag { 175 struct file *fp; 176 fo_rdwr_t *doio; 177 } fop_args; 178 struct vop_args_tag { 179 struct vnode *vp; 180 } vop_args; 181 } args; 182 }; 183 184 static int vn_io_fault1(struct vnode *vp, struct uio *uio, 185 struct vn_io_fault_args *args, struct thread *td); 186 187 int 188 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp) 189 { 190 struct thread *td = curthread; 191 192 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); 193 } 194 195 static uint64_t 196 open2nameif(int fmode, u_int vn_open_flags, uint64_t cn_flags) 197 { 198 uint64_t res; 199 200 res = ISOPEN | LOCKLEAF | cn_flags; 201 if ((fmode & O_RESOLVE_BENEATH) != 0) 202 res |= RBENEATH; 203 if ((fmode & O_EMPTY_PATH) != 0) 204 res |= EMPTYPATH; 205 if ((fmode & FREAD) != 0) 206 res |= OPENREAD; 207 if ((fmode & FWRITE) != 0) 208 res |= OPENWRITE; 209 if ((fmode & O_NAMEDATTR) != 0) 210 res |= OPENNAMED | CREATENAMED; 211 if ((fmode & O_NOFOLLOW) != 0) 212 res &= ~FOLLOW; 213 if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0) 214 res |= AUDITVNODE1; 215 else 216 res &= ~AUDITVNODE1; 217 if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0) 218 res |= NOCAPCHECK; 219 if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0) 220 res |= WANTIOCTLCAPS; 221 222 return (res); 223 } 224 225 /* 226 * For the O_NAMEDATTR case, check for a valid use of it. 227 */ 228 static int 229 vfs_check_namedattr(struct vnode *vp) 230 { 231 int error; 232 short irflag; 233 234 error = 0; 235 irflag = vn_irflag_read(vp); 236 if ((vp->v_mount->mnt_flag & MNT_NAMEDATTR) == 0 || 237 ((irflag & VIRF_NAMEDATTR) != 0 && vp->v_type != VREG)) 238 error = EINVAL; 239 else if ((irflag & (VIRF_NAMEDDIR | VIRF_NAMEDATTR)) == 0) 240 error = ENOATTR; 241 return (error); 242 } 243 244 /* 245 * Common code for vnode open operations via a name lookup. 246 * Lookup the vnode and invoke VOP_CREATE if needed. 247 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. 248 * 249 * Note that this does NOT free nameidata for the successful case, 250 * due to the NDINIT being done elsewhere. 251 */ 252 int 253 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, 254 struct ucred *cred, struct file *fp) 255 { 256 struct vnode *vp; 257 struct mount *mp; 258 struct vattr vat; 259 struct vattr *vap = &vat; 260 int fmode, error; 261 bool first_open; 262 263 restart: 264 first_open = false; 265 fmode = *flagp; 266 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT | 267 O_EXCL | O_DIRECTORY) || 268 (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH)) 269 return (EINVAL); 270 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) { 271 ndp->ni_cnd.cn_nameiop = CREATE; 272 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags, 273 ndp->ni_cnd.cn_flags); 274 275 /* 276 * Set NOCACHE to avoid flushing the cache when 277 * rolling in many files at once. 278 * 279 * Set NC_KEEPPOSENTRY to keep positive entries if they already 280 * exist despite NOCACHE. 281 */ 282 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY; 283 if ((fmode & O_EXCL) != 0) 284 ndp->ni_cnd.cn_flags &= ~FOLLOW; 285 if ((vn_open_flags & VN_OPEN_INVFS) == 0) 286 bwillwrite(); 287 if ((error = namei(ndp)) != 0) 288 return (error); 289 if (ndp->ni_vp == NULL) { 290 if ((fmode & O_NAMEDATTR) != 0 && 291 (ndp->ni_dvp->v_mount->mnt_flag & MNT_NAMEDATTR) == 292 0) { 293 error = EINVAL; 294 vp = ndp->ni_dvp; 295 ndp->ni_dvp = NULL; 296 goto bad; 297 } 298 VATTR_NULL(vap); 299 vap->va_type = VREG; 300 vap->va_mode = cmode; 301 if (fmode & O_EXCL) 302 vap->va_vaflags |= VA_EXCLUSIVE; 303 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { 304 NDFREE_PNBUF(ndp); 305 vput(ndp->ni_dvp); 306 if ((error = vn_start_write(NULL, &mp, 307 V_XSLEEP | V_PCATCH)) != 0) 308 return (error); 309 NDREINIT(ndp); 310 goto restart; 311 } 312 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0 || 313 (vn_irflag_read(ndp->ni_dvp) & VIRF_INOTIFY) != 0) 314 ndp->ni_cnd.cn_flags |= MAKEENTRY; 315 #ifdef MAC 316 error = mac_vnode_check_create(cred, ndp->ni_dvp, 317 &ndp->ni_cnd, vap); 318 if (error == 0) 319 #endif 320 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, 321 &ndp->ni_cnd, vap); 322 vp = ndp->ni_vp; 323 if (error == 0 && (fmode & O_EXCL) != 0 && 324 (fmode & (O_EXLOCK | O_SHLOCK)) != 0) { 325 VI_LOCK(vp); 326 vp->v_iflag |= VI_FOPENING; 327 VI_UNLOCK(vp); 328 first_open = true; 329 } 330 VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL, 331 false); 332 vn_finished_write(mp); 333 if (error) { 334 NDFREE_PNBUF(ndp); 335 if (error == ERELOOKUP) { 336 NDREINIT(ndp); 337 goto restart; 338 } 339 return (error); 340 } 341 fmode &= ~O_TRUNC; 342 } else { 343 if (ndp->ni_dvp == ndp->ni_vp) 344 vrele(ndp->ni_dvp); 345 else 346 vput(ndp->ni_dvp); 347 ndp->ni_dvp = NULL; 348 vp = ndp->ni_vp; 349 if (fmode & O_EXCL) { 350 error = EEXIST; 351 goto bad; 352 } 353 if ((fmode & O_NAMEDATTR) != 0) { 354 error = vfs_check_namedattr(vp); 355 if (error != 0) 356 goto bad; 357 } else if (vp->v_type == VDIR) { 358 error = EISDIR; 359 goto bad; 360 } 361 fmode &= ~O_CREAT; 362 } 363 } else { 364 ndp->ni_cnd.cn_nameiop = LOOKUP; 365 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags, 366 ndp->ni_cnd.cn_flags); 367 if ((fmode & FWRITE) == 0) 368 ndp->ni_cnd.cn_flags |= LOCKSHARED; 369 if ((error = namei(ndp)) != 0) 370 return (error); 371 vp = ndp->ni_vp; 372 if ((fmode & O_NAMEDATTR) != 0) { 373 error = vfs_check_namedattr(vp); 374 if (error != 0) 375 goto bad; 376 } 377 } 378 error = vn_open_vnode(vp, fmode, cred, curthread, fp); 379 if (first_open) { 380 VI_LOCK(vp); 381 vp->v_iflag &= ~VI_FOPENING; 382 wakeup(vp); 383 VI_UNLOCK(vp); 384 } 385 if (error) 386 goto bad; 387 *flagp = fmode; 388 return (0); 389 bad: 390 NDFREE_PNBUF(ndp); 391 vput(vp); 392 *flagp = fmode; 393 ndp->ni_vp = NULL; 394 return (error); 395 } 396 397 static int 398 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp) 399 { 400 struct flock lf; 401 int error, lock_flags, type; 402 403 ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock"); 404 if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0) 405 return (0); 406 KASSERT(fp != NULL, ("open with flock requires fp")); 407 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) 408 return (EOPNOTSUPP); 409 410 lock_flags = VOP_ISLOCKED(vp); 411 VOP_UNLOCK(vp); 412 413 lf.l_whence = SEEK_SET; 414 lf.l_start = 0; 415 lf.l_len = 0; 416 lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK; 417 type = F_FLOCK; 418 if ((fmode & FNONBLOCK) == 0) 419 type |= F_WAIT; 420 if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 421 type |= F_FIRSTOPEN; 422 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); 423 if (error == 0) 424 fp->f_flag |= FHASLOCK; 425 426 vn_lock(vp, lock_flags | LK_RETRY); 427 return (error); 428 } 429 430 /* 431 * Common code for vnode open operations once a vnode is located. 432 * Check permissions, and call the VOP_OPEN routine. 433 */ 434 int 435 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, 436 struct thread *td, struct file *fp) 437 { 438 accmode_t accmode; 439 int error; 440 441 KASSERT((fmode & O_PATH) == 0 || (fmode & O_ACCMODE) == 0, 442 ("%s: O_PATH and O_ACCMODE are mutually exclusive", __func__)); 443 444 if (vp->v_type == VLNK) { 445 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0) 446 return (EMLINK); 447 } 448 if (vp->v_type != VDIR && fmode & O_DIRECTORY) 449 return (ENOTDIR); 450 451 accmode = 0; 452 if ((fmode & O_PATH) == 0) { 453 if (vp->v_type == VSOCK) 454 return (EOPNOTSUPP); 455 if ((fmode & (FWRITE | O_TRUNC)) != 0) { 456 if (vp->v_type == VDIR) 457 return (EISDIR); 458 accmode |= VWRITE; 459 } 460 if ((fmode & FREAD) != 0) 461 accmode |= VREAD; 462 if ((fmode & O_APPEND) && (fmode & FWRITE)) 463 accmode |= VAPPEND; 464 #ifdef MAC 465 if ((fmode & O_CREAT) != 0) 466 accmode |= VCREAT; 467 #endif 468 } 469 if ((fmode & FEXEC) != 0) 470 accmode |= VEXEC; 471 #ifdef MAC 472 if ((fmode & O_VERIFY) != 0) 473 accmode |= VVERIFY; 474 error = mac_vnode_check_open(cred, vp, accmode); 475 if (error != 0) 476 return (error); 477 478 accmode &= ~(VCREAT | VVERIFY); 479 #endif 480 if ((fmode & O_CREAT) == 0 && accmode != 0) { 481 error = VOP_ACCESS(vp, accmode, cred, td); 482 if (error != 0) 483 return (error); 484 } 485 if ((fmode & O_PATH) != 0) { 486 if (vp->v_type != VFIFO && vp->v_type != VSOCK && 487 VOP_ACCESS(vp, VREAD, cred, td) == 0) 488 fp->f_flag |= FKQALLOWED; 489 INOTIFY(vp, IN_OPEN); 490 return (0); 491 } 492 493 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 494 vn_lock(vp, LK_UPGRADE | LK_RETRY); 495 error = VOP_OPEN(vp, fmode, cred, td, fp); 496 if (error != 0) 497 return (error); 498 499 error = vn_open_vnode_advlock(vp, fmode, fp); 500 if (error == 0 && (fmode & FWRITE) != 0) { 501 error = VOP_ADD_WRITECOUNT(vp, 1); 502 if (error == 0) { 503 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 504 __func__, vp, vp->v_writecount); 505 } 506 } 507 508 /* 509 * Error from advlock or VOP_ADD_WRITECOUNT() still requires 510 * calling VOP_CLOSE() to pair with earlier VOP_OPEN(). 511 */ 512 if (error != 0) { 513 if (fp != NULL) { 514 /* 515 * Arrange the call by having fdrop() to use 516 * vn_closefile(). This is to satisfy 517 * filesystems like devfs or tmpfs, which 518 * override fo_close(). 519 */ 520 fp->f_flag |= FOPENFAILED; 521 fp->f_vnode = vp; 522 if (fp->f_ops == &badfileops) { 523 fp->f_type = DTYPE_VNODE; 524 fp->f_ops = &vnops; 525 } 526 vref(vp); 527 } else { 528 /* 529 * If there is no fp, due to kernel-mode open, 530 * we can call VOP_CLOSE() now. 531 */ 532 if ((vp->v_type == VFIFO || 533 !MNT_EXTENDED_SHARED(vp->v_mount)) && 534 VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 535 vn_lock(vp, LK_UPGRADE | LK_RETRY); 536 (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC), 537 cred, td); 538 } 539 } 540 541 ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); 542 return (error); 543 544 } 545 546 /* 547 * Check for write permissions on the specified vnode. 548 * Prototype text segments cannot be written. 549 * It is racy. 550 */ 551 int 552 vn_writechk(struct vnode *vp) 553 { 554 555 ASSERT_VOP_LOCKED(vp, "vn_writechk"); 556 /* 557 * If there's shared text associated with 558 * the vnode, try to free it up once. If 559 * we fail, we can't allow writing. 560 */ 561 if (VOP_IS_TEXT(vp)) 562 return (ETXTBSY); 563 564 return (0); 565 } 566 567 /* 568 * Vnode close call 569 */ 570 static int 571 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred, 572 struct thread *td, bool keep_ref) 573 { 574 struct mount *mp; 575 int error, lock_flags; 576 577 lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ? 578 LK_SHARED : LK_EXCLUSIVE; 579 580 vn_start_write(vp, &mp, V_WAIT); 581 vn_lock(vp, lock_flags | LK_RETRY); 582 AUDIT_ARG_VNODE1(vp); 583 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) { 584 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 585 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 586 __func__, vp, vp->v_writecount); 587 } 588 error = VOP_CLOSE(vp, flags, file_cred, td); 589 if (keep_ref) 590 VOP_UNLOCK(vp); 591 else 592 vput(vp); 593 vn_finished_write(mp); 594 return (error); 595 } 596 597 int 598 vn_close(struct vnode *vp, int flags, struct ucred *file_cred, 599 struct thread *td) 600 { 601 602 return (vn_close1(vp, flags, file_cred, td, false)); 603 } 604 605 /* 606 * Heuristic to detect sequential operation. 607 */ 608 static int 609 sequential_heuristic(struct uio *uio, struct file *fp) 610 { 611 enum uio_rw rw; 612 613 ASSERT_VOP_LOCKED(fp->f_vnode, __func__); 614 615 rw = uio->uio_rw; 616 if (fp->f_flag & FRDAHEAD) 617 return (fp->f_seqcount[rw] << IO_SEQSHIFT); 618 619 /* 620 * Offset 0 is handled specially. open() sets f_seqcount to 1 so 621 * that the first I/O is normally considered to be slightly 622 * sequential. Seeking to offset 0 doesn't change sequentiality 623 * unless previous seeks have reduced f_seqcount to 0, in which 624 * case offset 0 is not special. 625 */ 626 if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) || 627 uio->uio_offset == fp->f_nextoff[rw]) { 628 /* 629 * f_seqcount is in units of fixed-size blocks so that it 630 * depends mainly on the amount of sequential I/O and not 631 * much on the number of sequential I/O's. The fixed size 632 * of 16384 is hard-coded here since it is (not quite) just 633 * a magic size that works well here. This size is more 634 * closely related to the best I/O size for real disks than 635 * to any block size used by software. 636 */ 637 if (uio->uio_resid >= IO_SEQMAX * 16384) 638 fp->f_seqcount[rw] = IO_SEQMAX; 639 else { 640 fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384); 641 if (fp->f_seqcount[rw] > IO_SEQMAX) 642 fp->f_seqcount[rw] = IO_SEQMAX; 643 } 644 return (fp->f_seqcount[rw] << IO_SEQSHIFT); 645 } 646 647 /* Not sequential. Quickly draw-down sequentiality. */ 648 if (fp->f_seqcount[rw] > 1) 649 fp->f_seqcount[rw] = 1; 650 else 651 fp->f_seqcount[rw] = 0; 652 return (0); 653 } 654 655 /* 656 * Package up an I/O request on a vnode into a uio and do it. 657 */ 658 int 659 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, 660 enum uio_seg segflg, int ioflg, struct ucred *active_cred, 661 struct ucred *file_cred, ssize_t *aresid, struct thread *td) 662 { 663 struct uio auio; 664 struct iovec aiov; 665 struct mount *mp; 666 struct ucred *cred; 667 void *rl_cookie; 668 struct vn_io_fault_args args; 669 int error, lock_flags; 670 671 if (offset < 0 && vp->v_type != VCHR) 672 return (EINVAL); 673 auio.uio_iov = &aiov; 674 auio.uio_iovcnt = 1; 675 aiov.iov_base = base; 676 aiov.iov_len = len; 677 auio.uio_resid = len; 678 auio.uio_offset = offset; 679 auio.uio_segflg = segflg; 680 auio.uio_rw = rw; 681 auio.uio_td = td; 682 error = 0; 683 684 if ((ioflg & IO_NODELOCKED) == 0) { 685 if ((ioflg & IO_RANGELOCKED) == 0) { 686 if (rw == UIO_READ) { 687 rl_cookie = vn_rangelock_rlock(vp, offset, 688 offset + len); 689 } else if ((ioflg & IO_APPEND) != 0) { 690 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 691 } else { 692 rl_cookie = vn_rangelock_wlock(vp, offset, 693 offset + len); 694 } 695 } else 696 rl_cookie = NULL; 697 mp = NULL; 698 if (rw == UIO_WRITE) { 699 if (vp->v_type != VCHR && 700 (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH)) 701 != 0) 702 goto out; 703 lock_flags = vn_lktype_write(mp, vp); 704 } else 705 lock_flags = LK_SHARED; 706 vn_lock(vp, lock_flags | LK_RETRY); 707 } else 708 rl_cookie = NULL; 709 710 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 711 #ifdef MAC 712 if ((ioflg & IO_NOMACCHECK) == 0) { 713 if (rw == UIO_READ) 714 error = mac_vnode_check_read(active_cred, file_cred, 715 vp); 716 else 717 error = mac_vnode_check_write(active_cred, file_cred, 718 vp); 719 } 720 #endif 721 if (error == 0) { 722 if (file_cred != NULL) 723 cred = file_cred; 724 else 725 cred = active_cred; 726 if (do_vn_io_fault(vp, &auio)) { 727 args.kind = VN_IO_FAULT_VOP; 728 args.cred = cred; 729 args.flags = ioflg; 730 args.args.vop_args.vp = vp; 731 error = vn_io_fault1(vp, &auio, &args, td); 732 } else if (rw == UIO_READ) { 733 error = VOP_READ(vp, &auio, ioflg, cred); 734 } else /* if (rw == UIO_WRITE) */ { 735 error = VOP_WRITE(vp, &auio, ioflg, cred); 736 } 737 } 738 if (aresid) 739 *aresid = auio.uio_resid; 740 else 741 if (auio.uio_resid && error == 0) 742 error = EIO; 743 if ((ioflg & IO_NODELOCKED) == 0) { 744 VOP_UNLOCK(vp); 745 if (mp != NULL) 746 vn_finished_write(mp); 747 } 748 out: 749 if (rl_cookie != NULL) 750 vn_rangelock_unlock(vp, rl_cookie); 751 return (error); 752 } 753 754 /* 755 * Package up an I/O request on a vnode into a uio and do it. The I/O 756 * request is split up into smaller chunks and we try to avoid saturating 757 * the buffer cache while potentially holding a vnode locked, so we 758 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() 759 * to give other processes a chance to lock the vnode (either other processes 760 * core'ing the same binary, or unrelated processes scanning the directory). 761 */ 762 int 763 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len, 764 off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, 765 struct ucred *file_cred, size_t *aresid, struct thread *td) 766 { 767 int error = 0; 768 ssize_t iaresid; 769 770 do { 771 int chunk; 772 773 /* 774 * Force `offset' to a multiple of MAXBSIZE except possibly 775 * for the first chunk, so that filesystems only need to 776 * write full blocks except possibly for the first and last 777 * chunks. 778 */ 779 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; 780 781 if (chunk > len) 782 chunk = len; 783 if (rw != UIO_READ && vp->v_type == VREG) 784 bwillwrite(); 785 iaresid = 0; 786 error = vn_rdwr(rw, vp, base, chunk, offset, segflg, 787 ioflg, active_cred, file_cred, &iaresid, td); 788 len -= chunk; /* aresid calc already includes length */ 789 if (error) 790 break; 791 offset += chunk; 792 base = (char *)base + chunk; 793 kern_yield(PRI_USER); 794 } while (len); 795 if (aresid) 796 *aresid = len + iaresid; 797 return (error); 798 } 799 800 #if OFF_MAX <= LONG_MAX 801 off_t 802 foffset_lock(struct file *fp, int flags) 803 { 804 volatile short *flagsp; 805 off_t res; 806 short state; 807 808 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 809 810 if ((flags & FOF_NOLOCK) != 0) 811 return (atomic_load_long(&fp->f_offset)); 812 813 /* 814 * According to McKusick the vn lock was protecting f_offset here. 815 * It is now protected by the FOFFSET_LOCKED flag. 816 */ 817 flagsp = &fp->f_vnread_flags; 818 if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED)) 819 return (atomic_load_long(&fp->f_offset)); 820 821 sleepq_lock(&fp->f_vnread_flags); 822 state = atomic_load_16(flagsp); 823 for (;;) { 824 if ((state & FOFFSET_LOCKED) == 0) { 825 if (!atomic_fcmpset_acq_16(flagsp, &state, 826 FOFFSET_LOCKED)) 827 continue; 828 break; 829 } 830 if ((state & FOFFSET_LOCK_WAITING) == 0) { 831 if (!atomic_fcmpset_acq_16(flagsp, &state, 832 state | FOFFSET_LOCK_WAITING)) 833 continue; 834 } 835 DROP_GIANT(); 836 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0); 837 sleepq_wait(&fp->f_vnread_flags, PRI_MAX_KERN); 838 PICKUP_GIANT(); 839 sleepq_lock(&fp->f_vnread_flags); 840 state = atomic_load_16(flagsp); 841 } 842 res = atomic_load_long(&fp->f_offset); 843 sleepq_release(&fp->f_vnread_flags); 844 return (res); 845 } 846 847 void 848 foffset_unlock(struct file *fp, off_t val, int flags) 849 { 850 volatile short *flagsp; 851 short state; 852 853 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 854 855 if ((flags & FOF_NOUPDATE) == 0) 856 atomic_store_long(&fp->f_offset, val); 857 if ((flags & FOF_NEXTOFF_R) != 0) 858 fp->f_nextoff[UIO_READ] = val; 859 if ((flags & FOF_NEXTOFF_W) != 0) 860 fp->f_nextoff[UIO_WRITE] = val; 861 862 if ((flags & FOF_NOLOCK) != 0) 863 return; 864 865 flagsp = &fp->f_vnread_flags; 866 state = atomic_load_16(flagsp); 867 if ((state & FOFFSET_LOCK_WAITING) == 0 && 868 atomic_cmpset_rel_16(flagsp, state, 0)) 869 return; 870 871 sleepq_lock(&fp->f_vnread_flags); 872 MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0); 873 MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0); 874 fp->f_vnread_flags = 0; 875 sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0); 876 sleepq_release(&fp->f_vnread_flags); 877 } 878 879 static off_t 880 foffset_read(struct file *fp) 881 { 882 883 return (atomic_load_long(&fp->f_offset)); 884 } 885 #else 886 off_t 887 foffset_lock(struct file *fp, int flags) 888 { 889 struct mtx *mtxp; 890 off_t res; 891 892 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 893 894 mtxp = mtx_pool_find(mtxpool_sleep, fp); 895 mtx_lock(mtxp); 896 if ((flags & FOF_NOLOCK) == 0) { 897 while (fp->f_vnread_flags & FOFFSET_LOCKED) { 898 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; 899 msleep(&fp->f_vnread_flags, mtxp, PRI_MAX_KERN, 900 "vofflock", 0); 901 } 902 fp->f_vnread_flags |= FOFFSET_LOCKED; 903 } 904 res = fp->f_offset; 905 mtx_unlock(mtxp); 906 return (res); 907 } 908 909 void 910 foffset_unlock(struct file *fp, off_t val, int flags) 911 { 912 struct mtx *mtxp; 913 914 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 915 916 mtxp = mtx_pool_find(mtxpool_sleep, fp); 917 mtx_lock(mtxp); 918 if ((flags & FOF_NOUPDATE) == 0) 919 fp->f_offset = val; 920 if ((flags & FOF_NEXTOFF_R) != 0) 921 fp->f_nextoff[UIO_READ] = val; 922 if ((flags & FOF_NEXTOFF_W) != 0) 923 fp->f_nextoff[UIO_WRITE] = val; 924 if ((flags & FOF_NOLOCK) == 0) { 925 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, 926 ("Lost FOFFSET_LOCKED")); 927 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) 928 wakeup(&fp->f_vnread_flags); 929 fp->f_vnread_flags = 0; 930 } 931 mtx_unlock(mtxp); 932 } 933 934 static off_t 935 foffset_read(struct file *fp) 936 { 937 938 return (foffset_lock(fp, FOF_NOLOCK)); 939 } 940 #endif 941 942 void 943 foffset_lock_pair(struct file *fp1, off_t *off1p, struct file *fp2, off_t *off2p, 944 int flags) 945 { 946 KASSERT(fp1 != fp2, ("foffset_lock_pair: fp1 == fp2")); 947 948 /* Lock in a consistent order to avoid deadlock. */ 949 if ((uintptr_t)fp1 > (uintptr_t)fp2) { 950 struct file *tmpfp; 951 off_t *tmpoffp; 952 953 tmpfp = fp1, fp1 = fp2, fp2 = tmpfp; 954 tmpoffp = off1p, off1p = off2p, off2p = tmpoffp; 955 } 956 if (fp1 != NULL) 957 *off1p = foffset_lock(fp1, flags); 958 if (fp2 != NULL) 959 *off2p = foffset_lock(fp2, flags); 960 } 961 962 void 963 foffset_lock_uio(struct file *fp, struct uio *uio, int flags) 964 { 965 966 if ((flags & FOF_OFFSET) == 0) 967 uio->uio_offset = foffset_lock(fp, flags); 968 } 969 970 void 971 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) 972 { 973 974 if ((flags & FOF_OFFSET) == 0) 975 foffset_unlock(fp, uio->uio_offset, flags); 976 } 977 978 static int 979 get_advice(struct file *fp, struct uio *uio) 980 { 981 struct mtx *mtxp; 982 int ret; 983 984 ret = POSIX_FADV_NORMAL; 985 if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG) 986 return (ret); 987 988 mtxp = mtx_pool_find(mtxpool_sleep, fp); 989 mtx_lock(mtxp); 990 if (fp->f_advice != NULL && 991 uio->uio_offset >= fp->f_advice->fa_start && 992 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) 993 ret = fp->f_advice->fa_advice; 994 mtx_unlock(mtxp); 995 return (ret); 996 } 997 998 static int 999 get_write_ioflag(struct file *fp) 1000 { 1001 int ioflag; 1002 struct mount *mp; 1003 struct vnode *vp; 1004 1005 ioflag = 0; 1006 vp = fp->f_vnode; 1007 mp = atomic_load_ptr(&vp->v_mount); 1008 1009 if ((fp->f_flag & O_DIRECT) != 0) 1010 ioflag |= IO_DIRECT; 1011 1012 if ((fp->f_flag & O_FSYNC) != 0 || 1013 (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0)) 1014 ioflag |= IO_SYNC; 1015 1016 /* 1017 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE() 1018 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC 1019 * fall back to full O_SYNC behavior. 1020 */ 1021 if ((fp->f_flag & O_DSYNC) != 0) 1022 ioflag |= IO_SYNC | IO_DATASYNC; 1023 1024 return (ioflag); 1025 } 1026 1027 int 1028 vn_read_from_obj(struct vnode *vp, struct uio *uio) 1029 { 1030 vm_object_t obj; 1031 vm_page_t ma[io_hold_cnt + 2]; 1032 off_t off, vsz; 1033 ssize_t resid; 1034 int error, i, j; 1035 1036 MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2)); 1037 obj = atomic_load_ptr(&vp->v_object); 1038 if (obj == NULL) 1039 return (EJUSTRETURN); 1040 1041 /* 1042 * Depends on type stability of vm_objects. 1043 */ 1044 vm_object_pip_add(obj, 1); 1045 if ((obj->flags & OBJ_DEAD) != 0) { 1046 /* 1047 * Note that object might be already reused from the 1048 * vnode, and the OBJ_DEAD flag cleared. This is fine, 1049 * we recheck for DOOMED vnode state after all pages 1050 * are busied, and retract then. 1051 * 1052 * But we check for OBJ_DEAD to ensure that we do not 1053 * busy pages while vm_object_terminate_pages() 1054 * processes the queue. 1055 */ 1056 error = EJUSTRETURN; 1057 goto out_pip; 1058 } 1059 1060 resid = uio->uio_resid; 1061 off = uio->uio_offset; 1062 for (i = 0; resid > 0; i++) { 1063 MPASS(i < io_hold_cnt + 2); 1064 ma[i] = vm_page_grab_unlocked(obj, atop(off), 1065 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY | 1066 VM_ALLOC_NOWAIT); 1067 if (ma[i] == NULL) 1068 break; 1069 1070 /* 1071 * Skip invalid pages. Valid mask can be partial only 1072 * at EOF, and we clip later. 1073 */ 1074 if (vm_page_none_valid(ma[i])) { 1075 vm_page_sunbusy(ma[i]); 1076 break; 1077 } 1078 1079 resid -= PAGE_SIZE; 1080 off += PAGE_SIZE; 1081 } 1082 if (i == 0) { 1083 error = EJUSTRETURN; 1084 goto out_pip; 1085 } 1086 1087 /* 1088 * Check VIRF_DOOMED after we busied our pages. Since 1089 * vgonel() terminates the vnode' vm_object, it cannot 1090 * process past pages busied by us. 1091 */ 1092 if (VN_IS_DOOMED(vp)) { 1093 error = EJUSTRETURN; 1094 goto out; 1095 } 1096 1097 resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1); 1098 if (resid > uio->uio_resid) 1099 resid = uio->uio_resid; 1100 1101 /* 1102 * Unlocked read of vnp_size is safe because truncation cannot 1103 * pass busied page. But we load vnp_size into a local 1104 * variable so that possible concurrent extension does not 1105 * break calculation. 1106 */ 1107 #if defined(__powerpc__) && !defined(__powerpc64__) 1108 vsz = obj->un_pager.vnp.vnp_size; 1109 #else 1110 vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size); 1111 #endif 1112 if (uio->uio_offset >= vsz) { 1113 error = EJUSTRETURN; 1114 goto out; 1115 } 1116 if (uio->uio_offset + resid > vsz) 1117 resid = vsz - uio->uio_offset; 1118 1119 error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio); 1120 1121 out: 1122 for (j = 0; j < i; j++) { 1123 if (error == 0) 1124 vm_page_reference(ma[j]); 1125 vm_page_sunbusy(ma[j]); 1126 } 1127 out_pip: 1128 vm_object_pip_wakeup(obj); 1129 if (error != 0) 1130 return (error); 1131 return (uio->uio_resid == 0 ? 0 : EJUSTRETURN); 1132 } 1133 1134 /* 1135 * File table vnode read routine. 1136 */ 1137 static int 1138 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, 1139 struct thread *td) 1140 { 1141 struct vnode *vp; 1142 off_t orig_offset; 1143 int error, ioflag; 1144 int advice; 1145 1146 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 1147 uio->uio_td, td)); 1148 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 1149 vp = fp->f_vnode; 1150 ioflag = 0; 1151 if (fp->f_flag & FNONBLOCK) 1152 ioflag |= IO_NDELAY; 1153 if (fp->f_flag & O_DIRECT) 1154 ioflag |= IO_DIRECT; 1155 1156 /* 1157 * Try to read from page cache. VIRF_DOOMED check is racy but 1158 * allows us to avoid unneeded work outright. 1159 */ 1160 if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() && 1161 (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) { 1162 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred); 1163 if (error == 0) { 1164 fp->f_nextoff[UIO_READ] = uio->uio_offset; 1165 return (0); 1166 } 1167 if (error != EJUSTRETURN) 1168 return (error); 1169 } 1170 1171 advice = get_advice(fp, uio); 1172 vn_lock(vp, LK_SHARED | LK_RETRY); 1173 1174 switch (advice) { 1175 case POSIX_FADV_NORMAL: 1176 case POSIX_FADV_SEQUENTIAL: 1177 case POSIX_FADV_NOREUSE: 1178 ioflag |= sequential_heuristic(uio, fp); 1179 break; 1180 case POSIX_FADV_RANDOM: 1181 /* Disable read-ahead for random I/O. */ 1182 break; 1183 } 1184 orig_offset = uio->uio_offset; 1185 1186 #ifdef MAC 1187 error = mac_vnode_check_read(active_cred, fp->f_cred, vp); 1188 if (error == 0) 1189 #endif 1190 error = VOP_READ(vp, uio, ioflag, fp->f_cred); 1191 fp->f_nextoff[UIO_READ] = uio->uio_offset; 1192 VOP_UNLOCK(vp); 1193 if (error == 0 && advice == POSIX_FADV_NOREUSE && 1194 orig_offset != uio->uio_offset) 1195 /* 1196 * Use POSIX_FADV_DONTNEED to flush pages and buffers 1197 * for the backing file after a POSIX_FADV_NOREUSE 1198 * read(2). 1199 */ 1200 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, 1201 POSIX_FADV_DONTNEED); 1202 return (error); 1203 } 1204 1205 /* 1206 * File table vnode write routine. 1207 */ 1208 static int 1209 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, 1210 struct thread *td) 1211 { 1212 struct vnode *vp; 1213 struct mount *mp; 1214 off_t orig_offset; 1215 int error, ioflag; 1216 int advice; 1217 bool need_finished_write; 1218 1219 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 1220 uio->uio_td, td)); 1221 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 1222 vp = fp->f_vnode; 1223 if (vp->v_type == VREG) 1224 bwillwrite(); 1225 ioflag = IO_UNIT; 1226 if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0) 1227 ioflag |= IO_APPEND; 1228 if ((fp->f_flag & FNONBLOCK) != 0) 1229 ioflag |= IO_NDELAY; 1230 ioflag |= get_write_ioflag(fp); 1231 1232 mp = NULL; 1233 need_finished_write = false; 1234 if (vp->v_type != VCHR) { 1235 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 1236 if (error != 0) 1237 goto unlock; 1238 need_finished_write = true; 1239 } 1240 1241 advice = get_advice(fp, uio); 1242 1243 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY); 1244 switch (advice) { 1245 case POSIX_FADV_NORMAL: 1246 case POSIX_FADV_SEQUENTIAL: 1247 case POSIX_FADV_NOREUSE: 1248 ioflag |= sequential_heuristic(uio, fp); 1249 break; 1250 case POSIX_FADV_RANDOM: 1251 /* XXX: Is this correct? */ 1252 break; 1253 } 1254 orig_offset = uio->uio_offset; 1255 1256 #ifdef MAC 1257 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1258 if (error == 0) 1259 #endif 1260 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); 1261 fp->f_nextoff[UIO_WRITE] = uio->uio_offset; 1262 VOP_UNLOCK(vp); 1263 if (need_finished_write) 1264 vn_finished_write(mp); 1265 if (error == 0 && advice == POSIX_FADV_NOREUSE && 1266 orig_offset != uio->uio_offset) 1267 /* 1268 * Use POSIX_FADV_DONTNEED to flush pages and buffers 1269 * for the backing file after a POSIX_FADV_NOREUSE 1270 * write(2). 1271 */ 1272 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, 1273 POSIX_FADV_DONTNEED); 1274 unlock: 1275 return (error); 1276 } 1277 1278 /* 1279 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to 1280 * prevent the following deadlock: 1281 * 1282 * Assume that the thread A reads from the vnode vp1 into userspace 1283 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is 1284 * currently not resident, then system ends up with the call chain 1285 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> 1286 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) 1287 * which establishes lock order vp1->vn_lock, then vp2->vn_lock. 1288 * If, at the same time, thread B reads from vnode vp2 into buffer buf2 1289 * backed by the pages of vnode vp1, and some page in buf2 is not 1290 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. 1291 * 1292 * To prevent the lock order reversal and deadlock, vn_io_fault() does 1293 * not allow page faults to happen during VOP_READ() or VOP_WRITE(). 1294 * Instead, it first tries to do the whole range i/o with pagefaults 1295 * disabled. If all pages in the i/o buffer are resident and mapped, 1296 * VOP will succeed (ignoring the genuine filesystem errors). 1297 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do 1298 * i/o in chunks, with all pages in the chunk prefaulted and held 1299 * using vm_fault_quick_hold_pages(). 1300 * 1301 * Filesystems using this deadlock avoidance scheme should use the 1302 * array of the held pages from uio, saved in the curthread->td_ma, 1303 * instead of doing uiomove(). A helper function 1304 * vn_io_fault_uiomove() converts uiomove request into 1305 * uiomove_fromphys() over td_ma array. 1306 * 1307 * Since vnode locks do not cover the whole i/o anymore, rangelocks 1308 * make the current i/o request atomic with respect to other i/os and 1309 * truncations. 1310 */ 1311 1312 /* 1313 * Decode vn_io_fault_args and perform the corresponding i/o. 1314 */ 1315 static int 1316 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio, 1317 struct thread *td) 1318 { 1319 int error, save; 1320 1321 error = 0; 1322 save = vm_fault_disable_pagefaults(); 1323 switch (args->kind) { 1324 case VN_IO_FAULT_FOP: 1325 error = (args->args.fop_args.doio)(args->args.fop_args.fp, 1326 uio, args->cred, args->flags, td); 1327 break; 1328 case VN_IO_FAULT_VOP: 1329 switch (uio->uio_rw) { 1330 case UIO_READ: 1331 error = VOP_READ(args->args.vop_args.vp, uio, 1332 args->flags, args->cred); 1333 break; 1334 case UIO_WRITE: 1335 error = VOP_WRITE(args->args.vop_args.vp, uio, 1336 args->flags, args->cred); 1337 break; 1338 } 1339 break; 1340 default: 1341 panic("vn_io_fault_doio: unknown kind of io %d %d", 1342 args->kind, uio->uio_rw); 1343 } 1344 vm_fault_enable_pagefaults(save); 1345 return (error); 1346 } 1347 1348 static int 1349 vn_io_fault_touch(char *base, const struct uio *uio) 1350 { 1351 int r; 1352 1353 r = fubyte(base); 1354 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1)) 1355 return (EFAULT); 1356 return (0); 1357 } 1358 1359 static int 1360 vn_io_fault_prefault_user(const struct uio *uio) 1361 { 1362 char *base; 1363 const struct iovec *iov; 1364 size_t len; 1365 ssize_t resid; 1366 int error, i; 1367 1368 KASSERT(uio->uio_segflg == UIO_USERSPACE, 1369 ("vn_io_fault_prefault userspace")); 1370 1371 error = i = 0; 1372 iov = uio->uio_iov; 1373 resid = uio->uio_resid; 1374 base = iov->iov_base; 1375 len = iov->iov_len; 1376 while (resid > 0) { 1377 error = vn_io_fault_touch(base, uio); 1378 if (error != 0) 1379 break; 1380 if (len < PAGE_SIZE) { 1381 if (len != 0) { 1382 error = vn_io_fault_touch(base + len - 1, uio); 1383 if (error != 0) 1384 break; 1385 resid -= len; 1386 } 1387 if (++i >= uio->uio_iovcnt) 1388 break; 1389 iov = uio->uio_iov + i; 1390 base = iov->iov_base; 1391 len = iov->iov_len; 1392 } else { 1393 len -= PAGE_SIZE; 1394 base += PAGE_SIZE; 1395 resid -= PAGE_SIZE; 1396 } 1397 } 1398 return (error); 1399 } 1400 1401 /* 1402 * Common code for vn_io_fault(), agnostic to the kind of i/o request. 1403 * Uses vn_io_fault_doio() to make the call to an actual i/o function. 1404 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request 1405 * into args and call vn_io_fault1() to handle faults during the user 1406 * mode buffer accesses. 1407 */ 1408 static int 1409 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, 1410 struct thread *td) 1411 { 1412 vm_page_t ma[io_hold_cnt + 2]; 1413 struct uio *uio_clone, short_uio; 1414 struct iovec short_iovec[1]; 1415 vm_page_t *prev_td_ma; 1416 vm_prot_t prot; 1417 vm_offset_t addr, end; 1418 size_t len, resid; 1419 ssize_t adv; 1420 int error, cnt, saveheld, prev_td_ma_cnt; 1421 1422 if (vn_io_fault_prefault) { 1423 error = vn_io_fault_prefault_user(uio); 1424 if (error != 0) 1425 return (error); /* Or ignore ? */ 1426 } 1427 1428 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ; 1429 1430 /* 1431 * The UFS follows IO_UNIT directive and replays back both 1432 * uio_offset and uio_resid if an error is encountered during the 1433 * operation. But, since the iovec may be already advanced, 1434 * uio is still in an inconsistent state. 1435 * 1436 * Cache a copy of the original uio, which is advanced to the redo 1437 * point using UIO_NOCOPY below. 1438 */ 1439 uio_clone = cloneuio(uio); 1440 resid = uio->uio_resid; 1441 1442 short_uio.uio_segflg = UIO_USERSPACE; 1443 short_uio.uio_rw = uio->uio_rw; 1444 short_uio.uio_td = uio->uio_td; 1445 1446 error = vn_io_fault_doio(args, uio, td); 1447 if (error != EFAULT) 1448 goto out; 1449 1450 atomic_add_long(&vn_io_faults_cnt, 1); 1451 uio_clone->uio_segflg = UIO_NOCOPY; 1452 uiomove(NULL, resid - uio->uio_resid, uio_clone); 1453 uio_clone->uio_segflg = uio->uio_segflg; 1454 1455 saveheld = curthread_pflags_set(TDP_UIOHELD); 1456 prev_td_ma = td->td_ma; 1457 prev_td_ma_cnt = td->td_ma_cnt; 1458 1459 while (uio_clone->uio_resid != 0) { 1460 len = uio_clone->uio_iov->iov_len; 1461 if (len == 0) { 1462 KASSERT(uio_clone->uio_iovcnt >= 1, 1463 ("iovcnt underflow")); 1464 uio_clone->uio_iov++; 1465 uio_clone->uio_iovcnt--; 1466 continue; 1467 } 1468 if (len > ptoa(io_hold_cnt)) 1469 len = ptoa(io_hold_cnt); 1470 addr = (uintptr_t)uio_clone->uio_iov->iov_base; 1471 end = round_page(addr + len); 1472 if (end < addr) { 1473 error = EFAULT; 1474 break; 1475 } 1476 /* 1477 * A perfectly misaligned address and length could cause 1478 * both the start and the end of the chunk to use partial 1479 * page. +2 accounts for such a situation. 1480 */ 1481 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, 1482 addr, len, prot, ma, io_hold_cnt + 2); 1483 if (cnt == -1) { 1484 error = EFAULT; 1485 break; 1486 } 1487 short_uio.uio_iov = &short_iovec[0]; 1488 short_iovec[0].iov_base = (void *)addr; 1489 short_uio.uio_iovcnt = 1; 1490 short_uio.uio_resid = short_iovec[0].iov_len = len; 1491 short_uio.uio_offset = uio_clone->uio_offset; 1492 td->td_ma = ma; 1493 td->td_ma_cnt = cnt; 1494 1495 error = vn_io_fault_doio(args, &short_uio, td); 1496 vm_page_unhold_pages(ma, cnt); 1497 adv = len - short_uio.uio_resid; 1498 1499 uio_clone->uio_iov->iov_base = 1500 (char *)uio_clone->uio_iov->iov_base + adv; 1501 uio_clone->uio_iov->iov_len -= adv; 1502 uio_clone->uio_resid -= adv; 1503 uio_clone->uio_offset += adv; 1504 1505 uio->uio_resid -= adv; 1506 uio->uio_offset += adv; 1507 1508 if (error != 0 || adv == 0) 1509 break; 1510 } 1511 td->td_ma = prev_td_ma; 1512 td->td_ma_cnt = prev_td_ma_cnt; 1513 curthread_pflags_restore(saveheld); 1514 out: 1515 freeuio(uio_clone); 1516 return (error); 1517 } 1518 1519 static int 1520 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, 1521 int flags, struct thread *td) 1522 { 1523 fo_rdwr_t *doio; 1524 struct vnode *vp; 1525 void *rl_cookie; 1526 struct vn_io_fault_args args; 1527 int error; 1528 bool do_io_fault, do_rangelock; 1529 1530 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write; 1531 vp = fp->f_vnode; 1532 1533 /* 1534 * The ability to read(2) on a directory has historically been 1535 * allowed for all users, but this can and has been the source of 1536 * at least one security issue in the past. As such, it is now hidden 1537 * away behind a sysctl for those that actually need it to use it, and 1538 * restricted to root when it's turned on to make it relatively safe to 1539 * leave on for longer sessions of need. 1540 */ 1541 if (vp->v_type == VDIR) { 1542 KASSERT(uio->uio_rw == UIO_READ, 1543 ("illegal write attempted on a directory")); 1544 if (!vfs_allow_read_dir) 1545 return (EISDIR); 1546 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0) 1547 return (EISDIR); 1548 } 1549 1550 do_io_fault = do_vn_io_fault(vp, uio); 1551 do_rangelock = do_io_fault || (vn_irflag_read(vp) & VIRF_PGREAD) != 0; 1552 foffset_lock_uio(fp, uio, flags); 1553 if (do_rangelock) { 1554 if (uio->uio_rw == UIO_READ) { 1555 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, 1556 uio->uio_offset + uio->uio_resid); 1557 } else if ((fp->f_flag & O_APPEND) != 0 || 1558 (flags & FOF_OFFSET) == 0) { 1559 /* For appenders, punt and lock the whole range. */ 1560 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1561 } else { 1562 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, 1563 uio->uio_offset + uio->uio_resid); 1564 } 1565 } 1566 if (do_io_fault) { 1567 args.kind = VN_IO_FAULT_FOP; 1568 args.args.fop_args.fp = fp; 1569 args.args.fop_args.doio = doio; 1570 args.cred = active_cred; 1571 args.flags = flags | FOF_OFFSET; 1572 error = vn_io_fault1(vp, uio, &args, td); 1573 } else { 1574 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 1575 } 1576 if (do_rangelock) 1577 vn_rangelock_unlock(vp, rl_cookie); 1578 foffset_unlock_uio(fp, uio, flags); 1579 return (error); 1580 } 1581 1582 /* 1583 * Helper function to perform the requested uiomove operation using 1584 * the held pages for io->uio_iov[0].iov_base buffer instead of 1585 * copyin/copyout. Access to the pages with uiomove_fromphys() 1586 * instead of iov_base prevents page faults that could occur due to 1587 * pmap_collect() invalidating the mapping created by 1588 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or 1589 * object cleanup revoking the write access from page mappings. 1590 * 1591 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() 1592 * instead of plain uiomove(). 1593 */ 1594 int 1595 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) 1596 { 1597 struct uio transp_uio; 1598 struct iovec transp_iov[1]; 1599 struct thread *td; 1600 size_t adv; 1601 int error, pgadv; 1602 1603 td = curthread; 1604 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1605 uio->uio_segflg != UIO_USERSPACE) 1606 return (uiomove(data, xfersize, uio)); 1607 1608 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1609 transp_iov[0].iov_base = data; 1610 transp_uio.uio_iov = &transp_iov[0]; 1611 transp_uio.uio_iovcnt = 1; 1612 if (xfersize > uio->uio_resid) 1613 xfersize = uio->uio_resid; 1614 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; 1615 transp_uio.uio_offset = 0; 1616 transp_uio.uio_segflg = UIO_SYSSPACE; 1617 /* 1618 * Since transp_iov points to data, and td_ma page array 1619 * corresponds to original uio->uio_iov, we need to invert the 1620 * direction of the i/o operation as passed to 1621 * uiomove_fromphys(). 1622 */ 1623 switch (uio->uio_rw) { 1624 case UIO_WRITE: 1625 transp_uio.uio_rw = UIO_READ; 1626 break; 1627 case UIO_READ: 1628 transp_uio.uio_rw = UIO_WRITE; 1629 break; 1630 } 1631 transp_uio.uio_td = uio->uio_td; 1632 error = uiomove_fromphys(td->td_ma, 1633 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, 1634 xfersize, &transp_uio); 1635 adv = xfersize - transp_uio.uio_resid; 1636 pgadv = 1637 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - 1638 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); 1639 td->td_ma += pgadv; 1640 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1641 pgadv)); 1642 td->td_ma_cnt -= pgadv; 1643 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; 1644 uio->uio_iov->iov_len -= adv; 1645 uio->uio_resid -= adv; 1646 uio->uio_offset += adv; 1647 return (error); 1648 } 1649 1650 int 1651 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, 1652 struct uio *uio) 1653 { 1654 struct thread *td; 1655 vm_offset_t iov_base; 1656 int cnt, pgadv; 1657 1658 td = curthread; 1659 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1660 uio->uio_segflg != UIO_USERSPACE) 1661 return (uiomove_fromphys(ma, offset, xfersize, uio)); 1662 1663 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1664 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize; 1665 iov_base = (vm_offset_t)uio->uio_iov->iov_base; 1666 switch (uio->uio_rw) { 1667 case UIO_WRITE: 1668 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma, 1669 offset, cnt); 1670 break; 1671 case UIO_READ: 1672 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK, 1673 cnt); 1674 break; 1675 } 1676 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT); 1677 td->td_ma += pgadv; 1678 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1679 pgadv)); 1680 td->td_ma_cnt -= pgadv; 1681 uio->uio_iov->iov_base = (char *)(iov_base + cnt); 1682 uio->uio_iov->iov_len -= cnt; 1683 uio->uio_resid -= cnt; 1684 uio->uio_offset += cnt; 1685 return (0); 1686 } 1687 1688 /* 1689 * File table truncate routine. 1690 */ 1691 static int 1692 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1693 struct thread *td) 1694 { 1695 struct mount *mp; 1696 struct vnode *vp; 1697 void *rl_cookie; 1698 int error; 1699 1700 vp = fp->f_vnode; 1701 1702 retry: 1703 /* 1704 * Lock the whole range for truncation. Otherwise split i/o 1705 * might happen partly before and partly after the truncation. 1706 */ 1707 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1708 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 1709 if (error) 1710 goto out1; 1711 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1712 AUDIT_ARG_VNODE1(vp); 1713 if (vp->v_type == VDIR) { 1714 error = EISDIR; 1715 goto out; 1716 } 1717 #ifdef MAC 1718 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1719 if (error) 1720 goto out; 1721 #endif 1722 error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0, 1723 fp->f_cred); 1724 out: 1725 VOP_UNLOCK(vp); 1726 vn_finished_write(mp); 1727 out1: 1728 vn_rangelock_unlock(vp, rl_cookie); 1729 if (error == ERELOOKUP) 1730 goto retry; 1731 return (error); 1732 } 1733 1734 /* 1735 * Truncate a file that is already locked. 1736 */ 1737 int 1738 vn_truncate_locked(struct vnode *vp, off_t length, bool sync, 1739 struct ucred *cred) 1740 { 1741 struct vattr vattr; 1742 int error; 1743 1744 error = VOP_ADD_WRITECOUNT(vp, 1); 1745 if (error == 0) { 1746 VATTR_NULL(&vattr); 1747 vattr.va_size = length; 1748 if (sync) 1749 vattr.va_vaflags |= VA_SYNC; 1750 error = VOP_SETATTR(vp, &vattr, cred); 1751 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 1752 if (error == 0) 1753 INOTIFY(vp, IN_MODIFY); 1754 } 1755 return (error); 1756 } 1757 1758 /* 1759 * File table vnode stat routine. 1760 */ 1761 int 1762 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred) 1763 { 1764 struct vnode *vp = fp->f_vnode; 1765 int error; 1766 1767 vn_lock(vp, LK_SHARED | LK_RETRY); 1768 error = VOP_STAT(vp, sb, active_cred, fp->f_cred); 1769 VOP_UNLOCK(vp); 1770 1771 return (error); 1772 } 1773 1774 /* 1775 * File table vnode ioctl routine. 1776 */ 1777 static int 1778 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred, 1779 struct thread *td) 1780 { 1781 struct vnode *vp; 1782 struct fiobmap2_arg *bmarg; 1783 off_t size; 1784 int error; 1785 1786 vp = fp->f_vnode; 1787 switch (vp->v_type) { 1788 case VDIR: 1789 case VREG: 1790 switch (com) { 1791 case FIONREAD: 1792 error = vn_getsize(vp, &size, active_cred); 1793 if (error == 0) 1794 *(int *)data = size - fp->f_offset; 1795 return (error); 1796 case FIOBMAP2: 1797 bmarg = (struct fiobmap2_arg *)data; 1798 vn_lock(vp, LK_SHARED | LK_RETRY); 1799 #ifdef MAC 1800 error = mac_vnode_check_read(active_cred, fp->f_cred, 1801 vp); 1802 if (error == 0) 1803 #endif 1804 error = VOP_BMAP(vp, bmarg->bn, NULL, 1805 &bmarg->bn, &bmarg->runp, &bmarg->runb); 1806 VOP_UNLOCK(vp); 1807 return (error); 1808 case FIONBIO: 1809 case FIOASYNC: 1810 return (0); 1811 default: 1812 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1813 active_cred, td)); 1814 } 1815 break; 1816 case VCHR: 1817 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1818 active_cred, td)); 1819 default: 1820 return (ENOTTY); 1821 } 1822 } 1823 1824 /* 1825 * File table vnode poll routine. 1826 */ 1827 static int 1828 vn_poll(struct file *fp, int events, struct ucred *active_cred, 1829 struct thread *td) 1830 { 1831 struct vnode *vp; 1832 int error; 1833 1834 vp = fp->f_vnode; 1835 #if defined(MAC) || defined(AUDIT) 1836 if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) { 1837 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1838 AUDIT_ARG_VNODE1(vp); 1839 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); 1840 VOP_UNLOCK(vp); 1841 if (error != 0) 1842 return (error); 1843 } 1844 #endif 1845 error = VOP_POLL(vp, events, fp->f_cred, td); 1846 return (error); 1847 } 1848 1849 /* 1850 * Acquire the requested lock and then check for validity. LK_RETRY 1851 * permits vn_lock to return doomed vnodes. 1852 */ 1853 static int __noinline 1854 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line, 1855 int error) 1856 { 1857 1858 KASSERT((flags & LK_RETRY) == 0 || error == 0, 1859 ("vn_lock: error %d incompatible with flags %#x", error, flags)); 1860 1861 if (error == 0) 1862 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed")); 1863 1864 if ((flags & LK_RETRY) == 0) { 1865 if (error == 0) { 1866 VOP_UNLOCK(vp); 1867 error = ENOENT; 1868 } 1869 return (error); 1870 } 1871 1872 /* 1873 * LK_RETRY case. 1874 * 1875 * Nothing to do if we got the lock. 1876 */ 1877 if (error == 0) 1878 return (0); 1879 1880 /* 1881 * Interlock was dropped by the call in _vn_lock. 1882 */ 1883 flags &= ~LK_INTERLOCK; 1884 do { 1885 error = VOP_LOCK1(vp, flags, file, line); 1886 } while (error != 0); 1887 return (0); 1888 } 1889 1890 int 1891 _vn_lock(struct vnode *vp, int flags, const char *file, int line) 1892 { 1893 int error; 1894 1895 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 1896 ("vn_lock: no locktype (%d passed)", flags)); 1897 VNPASS(vp->v_holdcnt > 0, vp); 1898 error = VOP_LOCK1(vp, flags, file, line); 1899 if (__predict_false(error != 0 || VN_IS_DOOMED(vp))) 1900 return (_vn_lock_fallback(vp, flags, file, line, error)); 1901 return (0); 1902 } 1903 1904 /* 1905 * File table vnode close routine. 1906 */ 1907 static int 1908 vn_closefile(struct file *fp, struct thread *td) 1909 { 1910 struct vnode *vp; 1911 struct flock lf; 1912 int error; 1913 bool ref; 1914 1915 vp = fp->f_vnode; 1916 fp->f_ops = &badfileops; 1917 ref = (fp->f_flag & FHASLOCK) != 0; 1918 1919 error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref); 1920 1921 if (__predict_false(ref)) { 1922 lf.l_whence = SEEK_SET; 1923 lf.l_start = 0; 1924 lf.l_len = 0; 1925 lf.l_type = F_UNLCK; 1926 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); 1927 vrele(vp); 1928 } 1929 return (error); 1930 } 1931 1932 /* 1933 * Preparing to start a filesystem write operation. If the operation is 1934 * permitted, then we bump the count of operations in progress and 1935 * proceed. If a suspend request is in progress, we wait until the 1936 * suspension is over, and then proceed. 1937 */ 1938 static int 1939 vn_start_write_refed(struct mount *mp, int flags, bool mplocked) 1940 { 1941 struct mount_pcpu *mpcpu; 1942 int error, mflags; 1943 1944 if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 && 1945 vfs_op_thread_enter(mp, mpcpu)) { 1946 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0); 1947 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1); 1948 vfs_op_thread_exit(mp, mpcpu); 1949 return (0); 1950 } 1951 1952 if (mplocked) 1953 mtx_assert(MNT_MTX(mp), MA_OWNED); 1954 else 1955 MNT_ILOCK(mp); 1956 1957 error = 0; 1958 1959 /* 1960 * Check on status of suspension. 1961 */ 1962 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || 1963 mp->mnt_susp_owner != curthread) { 1964 mflags = 0; 1965 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) { 1966 if (flags & V_PCATCH) 1967 mflags |= PCATCH; 1968 } 1969 mflags |= PRI_MAX_KERN; 1970 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1971 if ((flags & V_NOWAIT) != 0) { 1972 error = EWOULDBLOCK; 1973 goto unlock; 1974 } 1975 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, 1976 "suspfs", 0); 1977 if (error != 0) 1978 goto unlock; 1979 } 1980 } 1981 if ((flags & V_XSLEEP) != 0) 1982 goto unlock; 1983 mp->mnt_writeopcount++; 1984 unlock: 1985 if (error != 0 || (flags & V_XSLEEP) != 0) 1986 MNT_REL(mp); 1987 MNT_IUNLOCK(mp); 1988 return (error); 1989 } 1990 1991 int 1992 vn_start_write(struct vnode *vp, struct mount **mpp, int flags) 1993 { 1994 struct mount *mp; 1995 int error; 1996 1997 KASSERT((flags & ~V_VALID_FLAGS) == 0, 1998 ("%s: invalid flags passed %d\n", __func__, flags)); 1999 2000 error = 0; 2001 /* 2002 * If a vnode is provided, get and return the mount point that 2003 * to which it will write. 2004 */ 2005 if (vp != NULL) { 2006 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 2007 *mpp = NULL; 2008 if (error != EOPNOTSUPP) 2009 return (error); 2010 return (0); 2011 } 2012 } 2013 if ((mp = *mpp) == NULL) 2014 return (0); 2015 2016 /* 2017 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 2018 * a vfs_ref(). 2019 * As long as a vnode is not provided we need to acquire a 2020 * refcount for the provided mountpoint too, in order to 2021 * emulate a vfs_ref(). 2022 */ 2023 if (vp == NULL) 2024 vfs_ref(mp); 2025 2026 error = vn_start_write_refed(mp, flags, false); 2027 if (error != 0 && (flags & V_NOWAIT) == 0) 2028 *mpp = NULL; 2029 return (error); 2030 } 2031 2032 /* 2033 * Secondary suspension. Used by operations such as vop_inactive 2034 * routines that are needed by the higher level functions. These 2035 * are allowed to proceed until all the higher level functions have 2036 * completed (indicated by mnt_writeopcount dropping to zero). At that 2037 * time, these operations are halted until the suspension is over. 2038 */ 2039 int 2040 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags) 2041 { 2042 struct mount *mp; 2043 int error, mflags; 2044 2045 KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0, 2046 ("%s: invalid flags passed %d\n", __func__, flags)); 2047 2048 retry: 2049 if (vp != NULL) { 2050 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 2051 *mpp = NULL; 2052 if (error != EOPNOTSUPP) 2053 return (error); 2054 return (0); 2055 } 2056 } 2057 /* 2058 * If we are not suspended or have not yet reached suspended 2059 * mode, then let the operation proceed. 2060 */ 2061 if ((mp = *mpp) == NULL) 2062 return (0); 2063 2064 /* 2065 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 2066 * a vfs_ref(). 2067 * As long as a vnode is not provided we need to acquire a 2068 * refcount for the provided mountpoint too, in order to 2069 * emulate a vfs_ref(). 2070 */ 2071 MNT_ILOCK(mp); 2072 if (vp == NULL) 2073 MNT_REF(mp); 2074 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { 2075 mp->mnt_secondary_writes++; 2076 mp->mnt_secondary_accwrites++; 2077 MNT_IUNLOCK(mp); 2078 return (0); 2079 } 2080 if ((flags & V_NOWAIT) != 0) { 2081 MNT_REL(mp); 2082 MNT_IUNLOCK(mp); 2083 *mpp = NULL; 2084 return (EWOULDBLOCK); 2085 } 2086 /* 2087 * Wait for the suspension to finish. 2088 */ 2089 mflags = 0; 2090 if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) { 2091 if ((flags & V_PCATCH) != 0) 2092 mflags |= PCATCH; 2093 } 2094 mflags |= PRI_MAX_KERN | PDROP; 2095 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0); 2096 vfs_rel(mp); 2097 if (error == 0) 2098 goto retry; 2099 *mpp = NULL; 2100 return (error); 2101 } 2102 2103 /* 2104 * Filesystem write operation has completed. If we are suspending and this 2105 * operation is the last one, notify the suspender that the suspension is 2106 * now in effect. 2107 */ 2108 void 2109 vn_finished_write(struct mount *mp) 2110 { 2111 struct mount_pcpu *mpcpu; 2112 int c; 2113 2114 if (mp == NULL) 2115 return; 2116 2117 if (vfs_op_thread_enter(mp, mpcpu)) { 2118 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1); 2119 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 2120 vfs_op_thread_exit(mp, mpcpu); 2121 return; 2122 } 2123 2124 MNT_ILOCK(mp); 2125 vfs_assert_mount_counters(mp); 2126 MNT_REL(mp); 2127 c = --mp->mnt_writeopcount; 2128 if (mp->mnt_vfs_ops == 0) { 2129 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0); 2130 MNT_IUNLOCK(mp); 2131 return; 2132 } 2133 if (c < 0) 2134 vfs_dump_mount_counters(mp); 2135 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0) 2136 wakeup(&mp->mnt_writeopcount); 2137 MNT_IUNLOCK(mp); 2138 } 2139 2140 /* 2141 * Filesystem secondary write operation has completed. If we are 2142 * suspending and this operation is the last one, notify the suspender 2143 * that the suspension is now in effect. 2144 */ 2145 void 2146 vn_finished_secondary_write(struct mount *mp) 2147 { 2148 if (mp == NULL) 2149 return; 2150 MNT_ILOCK(mp); 2151 MNT_REL(mp); 2152 mp->mnt_secondary_writes--; 2153 if (mp->mnt_secondary_writes < 0) 2154 panic("vn_finished_secondary_write: neg cnt"); 2155 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 2156 mp->mnt_secondary_writes <= 0) 2157 wakeup(&mp->mnt_secondary_writes); 2158 MNT_IUNLOCK(mp); 2159 } 2160 2161 /* 2162 * Request a filesystem to suspend write operations. 2163 */ 2164 int 2165 vfs_write_suspend(struct mount *mp, int flags) 2166 { 2167 int error; 2168 2169 vfs_op_enter(mp); 2170 2171 MNT_ILOCK(mp); 2172 vfs_assert_mount_counters(mp); 2173 if (mp->mnt_susp_owner == curthread) { 2174 vfs_op_exit_locked(mp); 2175 MNT_IUNLOCK(mp); 2176 return (EALREADY); 2177 } 2178 while (mp->mnt_kern_flag & MNTK_SUSPEND) 2179 msleep(&mp->mnt_flag, MNT_MTX(mp), PRI_MAX_KERN, "wsuspfs", 0); 2180 2181 /* 2182 * Unmount holds a write reference on the mount point. If we 2183 * own busy reference and drain for writers, we deadlock with 2184 * the reference draining in the unmount path. Callers of 2185 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if 2186 * vfs_busy() reference is owned and caller is not in the 2187 * unmount context. 2188 */ 2189 if ((flags & VS_SKIP_UNMOUNT) != 0 && 2190 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 2191 vfs_op_exit_locked(mp); 2192 MNT_IUNLOCK(mp); 2193 return (EBUSY); 2194 } 2195 2196 mp->mnt_kern_flag |= MNTK_SUSPEND; 2197 mp->mnt_susp_owner = curthread; 2198 if (mp->mnt_writeopcount > 0) 2199 (void) msleep(&mp->mnt_writeopcount, 2200 MNT_MTX(mp), PRI_MAX_KERN | PDROP, "suspwt", 0); 2201 else 2202 MNT_IUNLOCK(mp); 2203 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) { 2204 vfs_write_resume(mp, 0); 2205 /* vfs_write_resume does vfs_op_exit() for us */ 2206 } 2207 return (error); 2208 } 2209 2210 /* 2211 * Request a filesystem to resume write operations. 2212 */ 2213 void 2214 vfs_write_resume(struct mount *mp, int flags) 2215 { 2216 2217 MNT_ILOCK(mp); 2218 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 2219 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); 2220 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | 2221 MNTK_SUSPENDED); 2222 mp->mnt_susp_owner = NULL; 2223 wakeup(&mp->mnt_writeopcount); 2224 wakeup(&mp->mnt_flag); 2225 curthread->td_pflags &= ~TDP_IGNSUSP; 2226 if ((flags & VR_START_WRITE) != 0) { 2227 MNT_REF(mp); 2228 mp->mnt_writeopcount++; 2229 } 2230 MNT_IUNLOCK(mp); 2231 if ((flags & VR_NO_SUSPCLR) == 0) 2232 VFS_SUSP_CLEAN(mp); 2233 vfs_op_exit(mp); 2234 } else if ((flags & VR_START_WRITE) != 0) { 2235 MNT_REF(mp); 2236 vn_start_write_refed(mp, 0, true); 2237 } else { 2238 MNT_IUNLOCK(mp); 2239 } 2240 } 2241 2242 /* 2243 * Helper loop around vfs_write_suspend() for filesystem unmount VFS 2244 * methods. 2245 */ 2246 int 2247 vfs_write_suspend_umnt(struct mount *mp) 2248 { 2249 int error; 2250 2251 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0, 2252 ("vfs_write_suspend_umnt: recursed")); 2253 2254 /* dounmount() already called vn_start_write(). */ 2255 for (;;) { 2256 vn_finished_write(mp); 2257 error = vfs_write_suspend(mp, 0); 2258 if (error != 0) { 2259 vn_start_write(NULL, &mp, V_WAIT); 2260 return (error); 2261 } 2262 MNT_ILOCK(mp); 2263 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0) 2264 break; 2265 MNT_IUNLOCK(mp); 2266 vn_start_write(NULL, &mp, V_WAIT); 2267 } 2268 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 2269 wakeup(&mp->mnt_flag); 2270 MNT_IUNLOCK(mp); 2271 curthread->td_pflags |= TDP_IGNSUSP; 2272 return (0); 2273 } 2274 2275 /* 2276 * Implement kqueues for files by translating it to vnode operation. 2277 */ 2278 static int 2279 vn_kqfilter(struct file *fp, struct knote *kn) 2280 { 2281 2282 return (VOP_KQFILTER(fp->f_vnode, kn)); 2283 } 2284 2285 int 2286 vn_kqfilter_opath(struct file *fp, struct knote *kn) 2287 { 2288 if ((fp->f_flag & FKQALLOWED) == 0) 2289 return (EBADF); 2290 return (vn_kqfilter(fp, kn)); 2291 } 2292 2293 /* 2294 * Simplified in-kernel wrapper calls for extended attribute access. 2295 * Both calls pass in a NULL credential, authorizing as "kernel" access. 2296 * Set IO_NODELOCKED in ioflg if the vnode is already locked. 2297 */ 2298 int 2299 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, 2300 const char *attrname, int *buflen, char *buf, struct thread *td) 2301 { 2302 struct uio auio; 2303 struct iovec iov; 2304 int error; 2305 2306 iov.iov_len = *buflen; 2307 iov.iov_base = buf; 2308 2309 auio.uio_iov = &iov; 2310 auio.uio_iovcnt = 1; 2311 auio.uio_rw = UIO_READ; 2312 auio.uio_segflg = UIO_SYSSPACE; 2313 auio.uio_td = td; 2314 auio.uio_offset = 0; 2315 auio.uio_resid = *buflen; 2316 2317 if ((ioflg & IO_NODELOCKED) == 0) 2318 vn_lock(vp, LK_SHARED | LK_RETRY); 2319 2320 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2321 2322 /* authorize attribute retrieval as kernel */ 2323 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, 2324 td); 2325 2326 if ((ioflg & IO_NODELOCKED) == 0) 2327 VOP_UNLOCK(vp); 2328 2329 if (error == 0) { 2330 *buflen = *buflen - auio.uio_resid; 2331 } 2332 2333 return (error); 2334 } 2335 2336 /* 2337 * XXX failure mode if partially written? 2338 */ 2339 int 2340 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, 2341 const char *attrname, int buflen, char *buf, struct thread *td) 2342 { 2343 struct uio auio; 2344 struct iovec iov; 2345 struct mount *mp; 2346 int error; 2347 2348 iov.iov_len = buflen; 2349 iov.iov_base = buf; 2350 2351 auio.uio_iov = &iov; 2352 auio.uio_iovcnt = 1; 2353 auio.uio_rw = UIO_WRITE; 2354 auio.uio_segflg = UIO_SYSSPACE; 2355 auio.uio_td = td; 2356 auio.uio_offset = 0; 2357 auio.uio_resid = buflen; 2358 2359 if ((ioflg & IO_NODELOCKED) == 0) { 2360 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2361 return (error); 2362 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2363 } 2364 2365 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2366 2367 /* authorize attribute setting as kernel */ 2368 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); 2369 2370 if ((ioflg & IO_NODELOCKED) == 0) { 2371 vn_finished_write(mp); 2372 VOP_UNLOCK(vp); 2373 } 2374 2375 return (error); 2376 } 2377 2378 int 2379 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, 2380 const char *attrname, struct thread *td) 2381 { 2382 struct mount *mp; 2383 int error; 2384 2385 if ((ioflg & IO_NODELOCKED) == 0) { 2386 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2387 return (error); 2388 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2389 } 2390 2391 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2392 2393 /* authorize attribute removal as kernel */ 2394 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); 2395 if (error == EOPNOTSUPP) 2396 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, 2397 NULL, td); 2398 2399 if ((ioflg & IO_NODELOCKED) == 0) { 2400 vn_finished_write(mp); 2401 VOP_UNLOCK(vp); 2402 } 2403 2404 return (error); 2405 } 2406 2407 static int 2408 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags, 2409 struct vnode **rvp) 2410 { 2411 2412 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp)); 2413 } 2414 2415 int 2416 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) 2417 { 2418 2419 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino, 2420 lkflags, rvp)); 2421 } 2422 2423 int 2424 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, 2425 int lkflags, struct vnode **rvp) 2426 { 2427 struct mount *mp; 2428 int ltype, error; 2429 2430 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get"); 2431 mp = vp->v_mount; 2432 ltype = VOP_ISLOCKED(vp); 2433 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, 2434 ("vn_vget_ino: vp not locked")); 2435 error = vfs_busy(mp, MBF_NOWAIT); 2436 if (error != 0) { 2437 vfs_ref(mp); 2438 VOP_UNLOCK(vp); 2439 error = vfs_busy(mp, 0); 2440 vn_lock(vp, ltype | LK_RETRY); 2441 vfs_rel(mp); 2442 if (error != 0) 2443 return (ENOENT); 2444 if (VN_IS_DOOMED(vp)) { 2445 vfs_unbusy(mp); 2446 return (ENOENT); 2447 } 2448 } 2449 VOP_UNLOCK(vp); 2450 error = alloc(mp, alloc_arg, lkflags, rvp); 2451 vfs_unbusy(mp); 2452 if (error != 0 || *rvp != vp) 2453 vn_lock(vp, ltype | LK_RETRY); 2454 if (VN_IS_DOOMED(vp)) { 2455 if (error == 0) { 2456 if (*rvp == vp) 2457 vunref(vp); 2458 else 2459 vput(*rvp); 2460 } 2461 error = ENOENT; 2462 } 2463 return (error); 2464 } 2465 2466 static void 2467 vn_send_sigxfsz(struct proc *p) 2468 { 2469 PROC_LOCK(p); 2470 kern_psignal(p, SIGXFSZ); 2471 PROC_UNLOCK(p); 2472 } 2473 2474 int 2475 vn_rlimit_trunc(u_quad_t size, struct thread *td) 2476 { 2477 if (size <= lim_cur(td, RLIMIT_FSIZE)) 2478 return (0); 2479 vn_send_sigxfsz(td->td_proc); 2480 return (EFBIG); 2481 } 2482 2483 static int 2484 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz, 2485 bool adj, struct thread *td) 2486 { 2487 off_t lim; 2488 bool ktr_write; 2489 2490 if (vp->v_type != VREG) 2491 return (0); 2492 2493 /* 2494 * Handle file system maximum file size. 2495 */ 2496 if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) { 2497 if (!adj || uio->uio_offset >= maxfsz) 2498 return (EFBIG); 2499 uio->uio_resid = maxfsz - uio->uio_offset; 2500 } 2501 2502 /* 2503 * This is kernel write (e.g. vnode_pager) or accounting 2504 * write, ignore limit. 2505 */ 2506 if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0) 2507 return (0); 2508 2509 /* 2510 * Calculate file size limit. 2511 */ 2512 ktr_write = (td->td_pflags & TDP_INKTRACE) != 0; 2513 lim = __predict_false(ktr_write) ? td->td_ktr_io_lim : 2514 lim_cur(td, RLIMIT_FSIZE); 2515 2516 /* 2517 * Is the limit reached? 2518 */ 2519 if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim)) 2520 return (0); 2521 2522 /* 2523 * Prepared filesystems can handle writes truncated to the 2524 * file size limit. 2525 */ 2526 if (adj && (uoff_t)uio->uio_offset < lim) { 2527 uio->uio_resid = lim - (uoff_t)uio->uio_offset; 2528 return (0); 2529 } 2530 2531 if (!ktr_write || ktr_filesize_limit_signal) 2532 vn_send_sigxfsz(td->td_proc); 2533 return (EFBIG); 2534 } 2535 2536 /* 2537 * Helper for VOP_WRITE() implementations, the common code to 2538 * handle maximum supported file size on the filesystem, and 2539 * RLIMIT_FSIZE, except for special writes from accounting subsystem 2540 * and ktrace. 2541 * 2542 * For maximum file size (maxfsz argument): 2543 * - return EFBIG if uio_offset is beyond it 2544 * - otherwise, clamp uio_resid if write would extend file beyond maxfsz. 2545 * 2546 * For RLIMIT_FSIZE: 2547 * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit 2548 * - otherwise, clamp uio_resid if write would extend file beyond limit. 2549 * 2550 * If clamping occured, the adjustment for uio_resid is stored in 2551 * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return 2552 * from the VOP. 2553 */ 2554 int 2555 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz, 2556 ssize_t *resid_adj, struct thread *td) 2557 { 2558 ssize_t resid_orig; 2559 int error; 2560 bool adj; 2561 2562 resid_orig = uio->uio_resid; 2563 adj = resid_adj != NULL; 2564 error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td); 2565 if (adj) 2566 *resid_adj = resid_orig - uio->uio_resid; 2567 return (error); 2568 } 2569 2570 void 2571 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj) 2572 { 2573 uio->uio_resid += resid_adj; 2574 } 2575 2576 int 2577 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, 2578 struct thread *td) 2579 { 2580 return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL, 2581 td)); 2582 } 2583 2584 int 2585 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 2586 struct thread *td) 2587 { 2588 struct vnode *vp; 2589 2590 vp = fp->f_vnode; 2591 #ifdef AUDIT 2592 vn_lock(vp, LK_SHARED | LK_RETRY); 2593 AUDIT_ARG_VNODE1(vp); 2594 VOP_UNLOCK(vp); 2595 #endif 2596 return (setfmode(td, active_cred, vp, mode)); 2597 } 2598 2599 int 2600 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 2601 struct thread *td) 2602 { 2603 struct vnode *vp; 2604 2605 vp = fp->f_vnode; 2606 #ifdef AUDIT 2607 vn_lock(vp, LK_SHARED | LK_RETRY); 2608 AUDIT_ARG_VNODE1(vp); 2609 VOP_UNLOCK(vp); 2610 #endif 2611 return (setfown(td, active_cred, vp, uid, gid)); 2612 } 2613 2614 /* 2615 * Remove pages in the range ["start", "end") from the vnode's VM object. If 2616 * "end" is 0, then the range extends to the end of the object. 2617 */ 2618 void 2619 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 2620 { 2621 vm_object_t object; 2622 2623 if ((object = vp->v_object) == NULL) 2624 return; 2625 VM_OBJECT_WLOCK(object); 2626 vm_object_page_remove(object, start, end, 0); 2627 VM_OBJECT_WUNLOCK(object); 2628 } 2629 2630 /* 2631 * Like vn_pages_remove(), but skips invalid pages, which by definition are not 2632 * mapped into any process' address space. Filesystems may use this in 2633 * preference to vn_pages_remove() to avoid blocking on pages busied in 2634 * preparation for a VOP_GETPAGES. 2635 */ 2636 void 2637 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 2638 { 2639 vm_object_t object; 2640 2641 if ((object = vp->v_object) == NULL) 2642 return; 2643 VM_OBJECT_WLOCK(object); 2644 vm_object_page_remove(object, start, end, OBJPR_VALIDONLY); 2645 VM_OBJECT_WUNLOCK(object); 2646 } 2647 2648 int 2649 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off, 2650 struct ucred *cred) 2651 { 2652 off_t size; 2653 daddr_t bn, bnp; 2654 uint64_t bsize; 2655 off_t noff; 2656 int error; 2657 2658 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 2659 ("%s: Wrong command %lu", __func__, cmd)); 2660 ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked"); 2661 2662 if (vp->v_type != VREG) { 2663 error = ENOTTY; 2664 goto out; 2665 } 2666 error = vn_getsize_locked(vp, &size, cred); 2667 if (error != 0) 2668 goto out; 2669 noff = *off; 2670 if (noff < 0 || noff >= size) { 2671 error = ENXIO; 2672 goto out; 2673 } 2674 2675 /* See the comment in ufs_bmap_seekdata(). */ 2676 vnode_pager_clean_sync(vp); 2677 2678 bsize = vp->v_mount->mnt_stat.f_iosize; 2679 for (bn = noff / bsize; noff < size; bn++, noff += bsize - 2680 noff % bsize) { 2681 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); 2682 if (error == EOPNOTSUPP) { 2683 error = ENOTTY; 2684 goto out; 2685 } 2686 if ((bnp == -1 && cmd == FIOSEEKHOLE) || 2687 (bnp != -1 && cmd == FIOSEEKDATA)) { 2688 noff = bn * bsize; 2689 if (noff < *off) 2690 noff = *off; 2691 goto out; 2692 } 2693 } 2694 if (noff > size) 2695 noff = size; 2696 /* noff == size. There is an implicit hole at the end of file. */ 2697 if (cmd == FIOSEEKDATA) 2698 error = ENXIO; 2699 out: 2700 if (error == 0) 2701 *off = noff; 2702 return (error); 2703 } 2704 2705 int 2706 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) 2707 { 2708 int error; 2709 2710 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 2711 ("%s: Wrong command %lu", __func__, cmd)); 2712 2713 if (vn_lock(vp, LK_EXCLUSIVE) != 0) 2714 return (EBADF); 2715 error = vn_bmap_seekhole_locked(vp, cmd, off, cred); 2716 VOP_UNLOCK(vp); 2717 return (error); 2718 } 2719 2720 int 2721 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td) 2722 { 2723 struct ucred *cred; 2724 struct vnode *vp; 2725 off_t foffset, fsize, size; 2726 int error, noneg; 2727 2728 cred = td->td_ucred; 2729 vp = fp->f_vnode; 2730 noneg = (vp->v_type != VCHR); 2731 /* 2732 * Try to dodge locking for common case of querying the offset. 2733 */ 2734 if (whence == L_INCR && offset == 0) { 2735 foffset = foffset_read(fp); 2736 if (__predict_false(foffset < 0 && noneg)) { 2737 return (EOVERFLOW); 2738 } 2739 td->td_uretoff.tdu_off = foffset; 2740 return (0); 2741 } 2742 foffset = foffset_lock(fp, 0); 2743 error = 0; 2744 switch (whence) { 2745 case L_INCR: 2746 if (noneg && 2747 (foffset < 0 || 2748 (offset > 0 && foffset > OFF_MAX - offset))) { 2749 error = EOVERFLOW; 2750 break; 2751 } 2752 offset += foffset; 2753 break; 2754 case L_XTND: 2755 error = vn_getsize(vp, &fsize, cred); 2756 if (error != 0) 2757 break; 2758 2759 /* 2760 * If the file references a disk device, then fetch 2761 * the media size and use that to determine the ending 2762 * offset. 2763 */ 2764 if (fsize == 0 && vp->v_type == VCHR && 2765 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0) 2766 fsize = size; 2767 if (noneg && offset > 0 && fsize > OFF_MAX - offset) { 2768 error = EOVERFLOW; 2769 break; 2770 } 2771 offset += fsize; 2772 break; 2773 case L_SET: 2774 break; 2775 case SEEK_DATA: 2776 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td); 2777 if (error == ENOTTY) 2778 error = EINVAL; 2779 break; 2780 case SEEK_HOLE: 2781 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td); 2782 if (error == ENOTTY) 2783 error = EINVAL; 2784 break; 2785 default: 2786 error = EINVAL; 2787 } 2788 if (error == 0 && noneg && offset < 0) 2789 error = EINVAL; 2790 if (error != 0) 2791 goto drop; 2792 VFS_KNOTE_UNLOCKED(vp, 0); 2793 td->td_uretoff.tdu_off = offset; 2794 drop: 2795 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0); 2796 return (error); 2797 } 2798 2799 int 2800 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, 2801 struct thread *td) 2802 { 2803 int error; 2804 2805 /* 2806 * Grant permission if the caller is the owner of the file, or 2807 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on 2808 * on the file. If the time pointer is null, then write 2809 * permission on the file is also sufficient. 2810 * 2811 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes: 2812 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES 2813 * will be allowed to set the times [..] to the current 2814 * server time. 2815 */ 2816 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td); 2817 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0) 2818 error = VOP_ACCESS(vp, VWRITE, cred, td); 2819 return (error); 2820 } 2821 2822 int 2823 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 2824 { 2825 struct vnode *vp; 2826 int error; 2827 2828 if (fp->f_type == DTYPE_FIFO) 2829 kif->kf_type = KF_TYPE_FIFO; 2830 else 2831 kif->kf_type = KF_TYPE_VNODE; 2832 vp = fp->f_vnode; 2833 vref(vp); 2834 FILEDESC_SUNLOCK(fdp); 2835 error = vn_fill_kinfo_vnode(vp, kif); 2836 vrele(vp); 2837 FILEDESC_SLOCK(fdp); 2838 return (error); 2839 } 2840 2841 static inline void 2842 vn_fill_junk(struct kinfo_file *kif) 2843 { 2844 size_t len, olen; 2845 2846 /* 2847 * Simulate vn_fullpath returning changing values for a given 2848 * vp during e.g. coredump. 2849 */ 2850 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1; 2851 olen = strlen(kif->kf_path); 2852 if (len < olen) 2853 strcpy(&kif->kf_path[len - 1], "$"); 2854 else 2855 for (; olen < len; olen++) 2856 strcpy(&kif->kf_path[olen], "A"); 2857 } 2858 2859 int 2860 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif) 2861 { 2862 struct vattr va; 2863 char *fullpath, *freepath; 2864 int error; 2865 2866 kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type); 2867 freepath = NULL; 2868 fullpath = "-"; 2869 error = vn_fullpath(vp, &fullpath, &freepath); 2870 if (error == 0) { 2871 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); 2872 } 2873 if (freepath != NULL) 2874 free(freepath, M_TEMP); 2875 2876 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path, 2877 vn_fill_junk(kif); 2878 ); 2879 2880 /* 2881 * Retrieve vnode attributes. 2882 */ 2883 va.va_fsid = VNOVAL; 2884 va.va_rdev = NODEV; 2885 vn_lock(vp, LK_SHARED | LK_RETRY); 2886 error = VOP_GETATTR(vp, &va, curthread->td_ucred); 2887 VOP_UNLOCK(vp); 2888 if (error != 0) 2889 return (error); 2890 if (va.va_fsid != VNOVAL) 2891 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid; 2892 else 2893 kif->kf_un.kf_file.kf_file_fsid = 2894 vp->v_mount->mnt_stat.f_fsid.val[0]; 2895 kif->kf_un.kf_file.kf_file_fsid_freebsd11 = 2896 kif->kf_un.kf_file.kf_file_fsid; /* truncate */ 2897 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid; 2898 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode); 2899 kif->kf_un.kf_file.kf_file_size = va.va_size; 2900 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev; 2901 kif->kf_un.kf_file.kf_file_rdev_freebsd11 = 2902 kif->kf_un.kf_file.kf_file_rdev; /* truncate */ 2903 kif->kf_un.kf_file.kf_file_nlink = va.va_nlink; 2904 return (0); 2905 } 2906 2907 int 2908 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 2909 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 2910 struct thread *td) 2911 { 2912 #ifdef HWPMC_HOOKS 2913 struct pmckern_map_in pkm; 2914 #endif 2915 struct mount *mp; 2916 struct vnode *vp; 2917 vm_object_t object; 2918 vm_prot_t maxprot; 2919 boolean_t writecounted; 2920 int error; 2921 2922 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \ 2923 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) 2924 /* 2925 * POSIX shared-memory objects are defined to have 2926 * kernel persistence, and are not defined to support 2927 * read(2)/write(2) -- or even open(2). Thus, we can 2928 * use MAP_ASYNC to trade on-disk coherence for speed. 2929 * The shm_open(3) library routine turns on the FPOSIXSHM 2930 * flag to request this behavior. 2931 */ 2932 if ((fp->f_flag & FPOSIXSHM) != 0) 2933 flags |= MAP_NOSYNC; 2934 #endif 2935 vp = fp->f_vnode; 2936 2937 /* 2938 * Ensure that file and memory protections are 2939 * compatible. Note that we only worry about 2940 * writability if mapping is shared; in this case, 2941 * current and max prot are dictated by the open file. 2942 * XXX use the vnode instead? Problem is: what 2943 * credentials do we use for determination? What if 2944 * proc does a setuid? 2945 */ 2946 mp = vp->v_mount; 2947 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { 2948 maxprot = VM_PROT_NONE; 2949 if ((prot & VM_PROT_EXECUTE) != 0) 2950 return (EACCES); 2951 } else 2952 maxprot = VM_PROT_EXECUTE; 2953 if ((fp->f_flag & FREAD) != 0) 2954 maxprot |= VM_PROT_READ; 2955 else if ((prot & VM_PROT_READ) != 0) 2956 return (EACCES); 2957 2958 /* 2959 * If we are sharing potential changes via MAP_SHARED and we 2960 * are trying to get write permission although we opened it 2961 * without asking for it, bail out. 2962 */ 2963 if ((flags & MAP_SHARED) != 0) { 2964 if ((fp->f_flag & FWRITE) != 0) 2965 maxprot |= VM_PROT_WRITE; 2966 else if ((prot & VM_PROT_WRITE) != 0) 2967 return (EACCES); 2968 } else { 2969 maxprot |= VM_PROT_WRITE; 2970 cap_maxprot |= VM_PROT_WRITE; 2971 } 2972 maxprot &= cap_maxprot; 2973 2974 /* 2975 * For regular files and shared memory, POSIX requires that 2976 * the value of foff be a legitimate offset within the data 2977 * object. In particular, negative offsets are invalid. 2978 * Blocking negative offsets and overflows here avoids 2979 * possible wraparound or user-level access into reserved 2980 * ranges of the data object later. In contrast, POSIX does 2981 * not dictate how offsets are used by device drivers, so in 2982 * the case of a device mapping a negative offset is passed 2983 * on. 2984 */ 2985 if ( 2986 #ifdef _LP64 2987 size > OFF_MAX || 2988 #endif 2989 foff > OFF_MAX - size) 2990 return (EINVAL); 2991 2992 writecounted = FALSE; 2993 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp, 2994 &foff, &object, &writecounted); 2995 if (error != 0) 2996 return (error); 2997 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 2998 foff, writecounted, td); 2999 if (error != 0) { 3000 /* 3001 * If this mapping was accounted for in the vnode's 3002 * writecount, then undo that now. 3003 */ 3004 if (writecounted) 3005 vm_pager_release_writecount(object, 0, size); 3006 vm_object_deallocate(object); 3007 } 3008 #ifdef HWPMC_HOOKS 3009 /* Inform hwpmc(4) if an executable is being mapped. */ 3010 if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) { 3011 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) { 3012 pkm.pm_file = vp; 3013 pkm.pm_address = (uintptr_t) *addr; 3014 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm); 3015 } 3016 } 3017 #endif 3018 3019 #ifdef HWT_HOOKS 3020 if (HWT_HOOK_INSTALLED && (prot & VM_PROT_EXECUTE) != 0 && 3021 error == 0) { 3022 struct hwt_record_entry ent; 3023 char *fullpath; 3024 char *freepath; 3025 3026 if (vn_fullpath(vp, &fullpath, &freepath) == 0) { 3027 ent.fullpath = fullpath; 3028 ent.addr = (uintptr_t) *addr; 3029 ent.record_type = HWT_RECORD_MMAP; 3030 HWT_CALL_HOOK(td, HWT_MMAP, &ent); 3031 free(freepath, M_TEMP); 3032 } 3033 } 3034 #endif 3035 3036 return (error); 3037 } 3038 3039 void 3040 vn_fsid(struct vnode *vp, struct vattr *va) 3041 { 3042 fsid_t *f; 3043 3044 f = &vp->v_mount->mnt_stat.f_fsid; 3045 va->va_fsid = (uint32_t)f->val[1]; 3046 va->va_fsid <<= sizeof(f->val[1]) * NBBY; 3047 va->va_fsid += (uint32_t)f->val[0]; 3048 } 3049 3050 int 3051 vn_fsync_buf(struct vnode *vp, int waitfor) 3052 { 3053 struct buf *bp, *nbp; 3054 struct bufobj *bo; 3055 struct mount *mp; 3056 int error, maxretry; 3057 3058 error = 0; 3059 maxretry = 10000; /* large, arbitrarily chosen */ 3060 mp = NULL; 3061 if (vp->v_type == VCHR) { 3062 VI_LOCK(vp); 3063 mp = vp->v_rdev->si_mountpt; 3064 VI_UNLOCK(vp); 3065 } 3066 bo = &vp->v_bufobj; 3067 BO_LOCK(bo); 3068 loop1: 3069 /* 3070 * MARK/SCAN initialization to avoid infinite loops. 3071 */ 3072 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 3073 bp->b_vflags &= ~BV_SCANNED; 3074 bp->b_error = 0; 3075 } 3076 3077 /* 3078 * Flush all dirty buffers associated with a vnode. 3079 */ 3080 loop2: 3081 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 3082 if ((bp->b_vflags & BV_SCANNED) != 0) 3083 continue; 3084 bp->b_vflags |= BV_SCANNED; 3085 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 3086 if (waitfor != MNT_WAIT) 3087 continue; 3088 if (BUF_LOCK(bp, 3089 LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL, 3090 BO_LOCKPTR(bo)) != 0) { 3091 BO_LOCK(bo); 3092 goto loop1; 3093 } 3094 BO_LOCK(bo); 3095 } 3096 BO_UNLOCK(bo); 3097 KASSERT(bp->b_bufobj == bo, 3098 ("bp %p wrong b_bufobj %p should be %p", 3099 bp, bp->b_bufobj, bo)); 3100 if ((bp->b_flags & B_DELWRI) == 0) 3101 panic("fsync: not dirty"); 3102 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) { 3103 vfs_bio_awrite(bp); 3104 } else { 3105 bremfree(bp); 3106 bawrite(bp); 3107 } 3108 if (maxretry < 1000) 3109 pause("dirty", hz < 1000 ? 1 : hz / 1000); 3110 BO_LOCK(bo); 3111 goto loop2; 3112 } 3113 3114 /* 3115 * If synchronous the caller expects us to completely resolve all 3116 * dirty buffers in the system. Wait for in-progress I/O to 3117 * complete (which could include background bitmap writes), then 3118 * retry if dirty blocks still exist. 3119 */ 3120 if (waitfor == MNT_WAIT) { 3121 bufobj_wwait(bo, 0, 0); 3122 if (bo->bo_dirty.bv_cnt > 0) { 3123 /* 3124 * If we are unable to write any of these buffers 3125 * then we fail now rather than trying endlessly 3126 * to write them out. 3127 */ 3128 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 3129 if ((error = bp->b_error) != 0) 3130 break; 3131 if ((mp != NULL && mp->mnt_secondary_writes > 0) || 3132 (error == 0 && --maxretry >= 0)) 3133 goto loop1; 3134 if (error == 0) 3135 error = EAGAIN; 3136 } 3137 } 3138 BO_UNLOCK(bo); 3139 if (error != 0) 3140 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error); 3141 3142 return (error); 3143 } 3144 3145 /* 3146 * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE() 3147 * or vn_generic_copy_file_range() after rangelocking the byte ranges, 3148 * to do the actual copy. 3149 * vn_generic_copy_file_range() is factored out, so it can be called 3150 * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from 3151 * different file systems. 3152 */ 3153 int 3154 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp, 3155 off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred, 3156 struct ucred *outcred, struct thread *fsize_td) 3157 { 3158 struct mount *inmp, *outmp; 3159 struct vnode *invpl, *outvpl; 3160 int error; 3161 size_t len; 3162 uint64_t uval; 3163 3164 invpl = outvpl = NULL; 3165 len = *lenp; 3166 *lenp = 0; /* For error returns. */ 3167 error = 0; 3168 3169 /* Do some sanity checks on the arguments. */ 3170 if (invp->v_type == VDIR || outvp->v_type == VDIR) 3171 error = EISDIR; 3172 else if (*inoffp < 0 || *outoffp < 0 || 3173 invp->v_type != VREG || outvp->v_type != VREG) 3174 error = EINVAL; 3175 if (error != 0) 3176 goto out; 3177 3178 /* Ensure offset + len does not wrap around. */ 3179 uval = *inoffp; 3180 uval += len; 3181 if (uval > INT64_MAX) 3182 len = INT64_MAX - *inoffp; 3183 uval = *outoffp; 3184 uval += len; 3185 if (uval > INT64_MAX) 3186 len = INT64_MAX - *outoffp; 3187 if (len == 0) 3188 goto out; 3189 3190 error = VOP_GETLOWVNODE(invp, &invpl, FREAD); 3191 if (error != 0) 3192 goto out; 3193 error = VOP_GETLOWVNODE(outvp, &outvpl, FWRITE); 3194 if (error != 0) 3195 goto out1; 3196 3197 inmp = invpl->v_mount; 3198 outmp = outvpl->v_mount; 3199 if (inmp == NULL || outmp == NULL) 3200 goto out2; 3201 3202 for (;;) { 3203 error = vfs_busy(inmp, 0); 3204 if (error != 0) 3205 goto out2; 3206 if (inmp == outmp) 3207 break; 3208 error = vfs_busy(outmp, MBF_NOWAIT); 3209 if (error != 0) { 3210 vfs_unbusy(inmp); 3211 error = vfs_busy(outmp, 0); 3212 if (error == 0) { 3213 vfs_unbusy(outmp); 3214 continue; 3215 } 3216 goto out2; 3217 } 3218 break; 3219 } 3220 3221 /* 3222 * If the two vnodes are for the same file system type, call 3223 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range() 3224 * which can handle copies across multiple file system types. 3225 */ 3226 *lenp = len; 3227 if (inmp == outmp || inmp->mnt_vfc == outmp->mnt_vfc) 3228 error = VOP_COPY_FILE_RANGE(invpl, inoffp, outvpl, outoffp, 3229 lenp, flags, incred, outcred, fsize_td); 3230 else 3231 error = ENOSYS; 3232 if (error == ENOSYS) 3233 error = vn_generic_copy_file_range(invpl, inoffp, outvpl, 3234 outoffp, lenp, flags, incred, outcred, fsize_td); 3235 vfs_unbusy(outmp); 3236 if (inmp != outmp) 3237 vfs_unbusy(inmp); 3238 out2: 3239 if (outvpl != NULL) 3240 vrele(outvpl); 3241 out1: 3242 if (invpl != NULL) 3243 vrele(invpl); 3244 out: 3245 return (error); 3246 } 3247 3248 /* 3249 * Test len bytes of data starting at dat for all bytes == 0. 3250 * Return true if all bytes are zero, false otherwise. 3251 * Expects dat to be well aligned. 3252 */ 3253 static bool 3254 mem_iszero(void *dat, int len) 3255 { 3256 int i; 3257 const u_int *p; 3258 const char *cp; 3259 3260 for (p = dat; len > 0; len -= sizeof(*p), p++) { 3261 if (len >= sizeof(*p)) { 3262 if (*p != 0) 3263 return (false); 3264 } else { 3265 cp = (const char *)p; 3266 for (i = 0; i < len; i++, cp++) 3267 if (*cp != '\0') 3268 return (false); 3269 } 3270 } 3271 return (true); 3272 } 3273 3274 /* 3275 * Look for a hole in the output file and, if found, adjust *outoffp 3276 * and *xferp to skip past the hole. 3277 * *xferp is the entire hole length to be written and xfer2 is how many bytes 3278 * to be written as 0's upon return. 3279 */ 3280 static off_t 3281 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp, 3282 off_t *dataoffp, off_t *holeoffp, struct ucred *cred) 3283 { 3284 int error; 3285 off_t delta; 3286 3287 if (*holeoffp == 0 || *holeoffp <= *outoffp) { 3288 *dataoffp = *outoffp; 3289 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred, 3290 curthread); 3291 if (error == 0) { 3292 *holeoffp = *dataoffp; 3293 error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred, 3294 curthread); 3295 } 3296 if (error != 0 || *holeoffp == *dataoffp) { 3297 /* 3298 * Since outvp is unlocked, it may be possible for 3299 * another thread to do a truncate(), lseek(), write() 3300 * creating a hole at startoff between the above 3301 * VOP_IOCTL() calls, if the other thread does not do 3302 * rangelocking. 3303 * If that happens, *holeoffp == *dataoffp and finding 3304 * the hole has failed, so disable vn_skip_hole(). 3305 */ 3306 *holeoffp = -1; /* Disable use of vn_skip_hole(). */ 3307 return (xfer2); 3308 } 3309 KASSERT(*dataoffp >= *outoffp, 3310 ("vn_skip_hole: dataoff=%jd < outoff=%jd", 3311 (intmax_t)*dataoffp, (intmax_t)*outoffp)); 3312 KASSERT(*holeoffp > *dataoffp, 3313 ("vn_skip_hole: holeoff=%jd <= dataoff=%jd", 3314 (intmax_t)*holeoffp, (intmax_t)*dataoffp)); 3315 } 3316 3317 /* 3318 * If there is a hole before the data starts, advance *outoffp and 3319 * *xferp past the hole. 3320 */ 3321 if (*dataoffp > *outoffp) { 3322 delta = *dataoffp - *outoffp; 3323 if (delta >= *xferp) { 3324 /* Entire *xferp is a hole. */ 3325 *outoffp += *xferp; 3326 *xferp = 0; 3327 return (0); 3328 } 3329 *xferp -= delta; 3330 *outoffp += delta; 3331 xfer2 = MIN(xfer2, *xferp); 3332 } 3333 3334 /* 3335 * If a hole starts before the end of this xfer2, reduce this xfer2 so 3336 * that the write ends at the start of the hole. 3337 * *holeoffp should always be greater than *outoffp, but for the 3338 * non-INVARIANTS case, check this to make sure xfer2 remains a sane 3339 * value. 3340 */ 3341 if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2) 3342 xfer2 = *holeoffp - *outoffp; 3343 return (xfer2); 3344 } 3345 3346 /* 3347 * Write an xfer sized chunk to outvp in blksize blocks from dat. 3348 * dat is a maximum of blksize in length and can be written repeatedly in 3349 * the chunk. 3350 * If growfile == true, just grow the file via vn_truncate_locked() instead 3351 * of doing actual writes. 3352 * If checkhole == true, a hole is being punched, so skip over any hole 3353 * already in the output file. 3354 */ 3355 static int 3356 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer, 3357 u_long blksize, bool growfile, bool checkhole, struct ucred *cred) 3358 { 3359 struct mount *mp; 3360 off_t dataoff, holeoff, xfer2; 3361 int error; 3362 3363 /* 3364 * Loop around doing writes of blksize until write has been completed. 3365 * Lock/unlock on each loop iteration so that a bwillwrite() can be 3366 * done for each iteration, since the xfer argument can be very 3367 * large if there is a large hole to punch in the output file. 3368 */ 3369 error = 0; 3370 holeoff = 0; 3371 do { 3372 xfer2 = MIN(xfer, blksize); 3373 if (checkhole) { 3374 /* 3375 * Punching a hole. Skip writing if there is 3376 * already a hole in the output file. 3377 */ 3378 xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer, 3379 &dataoff, &holeoff, cred); 3380 if (xfer == 0) 3381 break; 3382 if (holeoff < 0) 3383 checkhole = false; 3384 KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd", 3385 (intmax_t)xfer2)); 3386 } 3387 bwillwrite(); 3388 mp = NULL; 3389 error = vn_start_write(outvp, &mp, V_WAIT); 3390 if (error != 0) 3391 break; 3392 if (growfile) { 3393 error = vn_lock(outvp, LK_EXCLUSIVE); 3394 if (error == 0) { 3395 error = vn_truncate_locked(outvp, outoff + xfer, 3396 false, cred); 3397 VOP_UNLOCK(outvp); 3398 } 3399 } else { 3400 error = vn_lock(outvp, vn_lktype_write(mp, outvp)); 3401 if (error == 0) { 3402 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2, 3403 outoff, UIO_SYSSPACE, IO_NODELOCKED, 3404 curthread->td_ucred, cred, NULL, curthread); 3405 outoff += xfer2; 3406 xfer -= xfer2; 3407 VOP_UNLOCK(outvp); 3408 } 3409 } 3410 if (mp != NULL) 3411 vn_finished_write(mp); 3412 } while (!growfile && xfer > 0 && error == 0); 3413 return (error); 3414 } 3415 3416 /* 3417 * Copy a byte range of one file to another. This function can handle the 3418 * case where invp and outvp are on different file systems. 3419 * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there 3420 * is no better file system specific way to do it. 3421 */ 3422 int 3423 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp, 3424 struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags, 3425 struct ucred *incred, struct ucred *outcred, struct thread *fsize_td) 3426 { 3427 struct vattr inva; 3428 struct mount *mp; 3429 off_t startoff, endoff, xfer, xfer2; 3430 u_long blksize; 3431 int error, interrupted; 3432 bool cantseek, readzeros, eof, first, lastblock, holetoeof, sparse; 3433 ssize_t aresid, r = 0; 3434 size_t copylen, len, savlen; 3435 off_t outsize; 3436 char *dat; 3437 long holein, holeout; 3438 struct timespec curts, endts; 3439 3440 holein = holeout = 0; 3441 savlen = len = *lenp; 3442 error = 0; 3443 interrupted = 0; 3444 dat = NULL; 3445 3446 if ((flags & COPY_FILE_RANGE_CLONE) != 0) { 3447 error = ENOSYS; 3448 goto out; 3449 } 3450 3451 error = vn_lock(invp, LK_SHARED); 3452 if (error != 0) 3453 goto out; 3454 if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0) 3455 holein = 0; 3456 error = VOP_GETATTR(invp, &inva, incred); 3457 if (error == 0 && inva.va_size > OFF_MAX) 3458 error = EFBIG; 3459 VOP_UNLOCK(invp); 3460 if (error != 0) 3461 goto out; 3462 3463 /* 3464 * Use va_bytes >= va_size as a hint that the file does not have 3465 * sufficient holes to justify the overhead of doing FIOSEEKHOLE. 3466 * This hint does not work well for file systems doing compression 3467 * and may fail when allocations for extended attributes increases 3468 * the value of va_bytes to >= va_size. 3469 */ 3470 sparse = true; 3471 if (holein != 0 && inva.va_bytes >= inva.va_size) { 3472 holein = 0; 3473 sparse = false; 3474 } 3475 3476 mp = NULL; 3477 error = vn_start_write(outvp, &mp, V_WAIT); 3478 if (error == 0) 3479 error = vn_lock(outvp, LK_EXCLUSIVE); 3480 if (error == 0) { 3481 /* 3482 * If fsize_td != NULL, do a vn_rlimit_fsizex() call, 3483 * now that outvp is locked. 3484 */ 3485 if (fsize_td != NULL) { 3486 struct uio io; 3487 3488 io.uio_offset = *outoffp; 3489 io.uio_resid = len; 3490 error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td); 3491 len = savlen = io.uio_resid; 3492 /* 3493 * No need to call vn_rlimit_fsizex_res before return, 3494 * since the uio is local. 3495 */ 3496 } 3497 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0) 3498 holeout = 0; 3499 /* 3500 * Holes that are past EOF do not need to be written as a block 3501 * of zero bytes. So, truncate the output file as far as 3502 * possible and then use size to decide if writing 0 3503 * bytes is necessary in the loop below. 3504 */ 3505 if (error == 0) 3506 error = vn_getsize_locked(outvp, &outsize, outcred); 3507 if (error == 0 && outsize > *outoffp && 3508 *outoffp <= OFF_MAX - len && outsize <= *outoffp + len && 3509 *inoffp < inva.va_size && 3510 *outoffp <= OFF_MAX - (inva.va_size - *inoffp) && 3511 outsize <= *outoffp + (inva.va_size - *inoffp)) { 3512 #ifdef MAC 3513 error = mac_vnode_check_write(curthread->td_ucred, 3514 outcred, outvp); 3515 if (error == 0) 3516 #endif 3517 error = vn_truncate_locked(outvp, *outoffp, 3518 false, outcred); 3519 if (error == 0) 3520 outsize = *outoffp; 3521 } 3522 VOP_UNLOCK(outvp); 3523 } 3524 if (mp != NULL) 3525 vn_finished_write(mp); 3526 if (error != 0) 3527 goto out; 3528 3529 if (sparse && holein == 0 && holeout > 0) { 3530 /* 3531 * For this special case, the input data will be scanned 3532 * for blocks of all 0 bytes. For these blocks, the 3533 * write can be skipped for the output file to create 3534 * an unallocated region. 3535 * Therefore, use the appropriate size for the output file. 3536 */ 3537 blksize = holeout; 3538 if (blksize <= 512) { 3539 /* 3540 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE 3541 * of 512, although it actually only creates 3542 * unallocated regions for blocks >= f_iosize. 3543 */ 3544 blksize = outvp->v_mount->mnt_stat.f_iosize; 3545 } 3546 } else { 3547 /* 3548 * Use the larger of the two f_iosize values. If they are 3549 * not the same size, one will normally be an exact multiple of 3550 * the other, since they are both likely to be a power of 2. 3551 */ 3552 blksize = MAX(invp->v_mount->mnt_stat.f_iosize, 3553 outvp->v_mount->mnt_stat.f_iosize); 3554 } 3555 3556 /* Clip to sane limits. */ 3557 if (blksize < 4096) 3558 blksize = 4096; 3559 else if (blksize > maxphys) 3560 blksize = maxphys; 3561 dat = malloc(blksize, M_TEMP, M_WAITOK); 3562 3563 /* 3564 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA 3565 * to find holes. Otherwise, just scan the read block for all 0s 3566 * in the inner loop where the data copying is done. 3567 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may 3568 * support holes on the server, but do not support FIOSEEKHOLE. 3569 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate 3570 * that this function should return after 1second with a partial 3571 * completion. 3572 */ 3573 if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) { 3574 getnanouptime(&endts); 3575 endts.tv_sec++; 3576 } else 3577 timespecclear(&endts); 3578 first = true; 3579 holetoeof = eof = false; 3580 while (len > 0 && error == 0 && !eof && interrupted == 0) { 3581 endoff = 0; /* To shut up compilers. */ 3582 cantseek = true; 3583 startoff = *inoffp; 3584 copylen = len; 3585 3586 /* 3587 * Find the next data area. If there is just a hole to EOF, 3588 * FIOSEEKDATA should fail with ENXIO. 3589 * (I do not know if any file system will report a hole to 3590 * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA 3591 * will fail for those file systems.) 3592 * 3593 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE, 3594 * the code just falls through to the inner copy loop. 3595 */ 3596 error = EINVAL; 3597 if (holein > 0) { 3598 error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0, 3599 incred, curthread); 3600 if (error == ENXIO) { 3601 startoff = endoff = inva.va_size; 3602 eof = holetoeof = true; 3603 error = 0; 3604 } 3605 } 3606 if (error == 0 && !holetoeof) { 3607 endoff = startoff; 3608 error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0, 3609 incred, curthread); 3610 /* 3611 * Since invp is unlocked, it may be possible for 3612 * another thread to do a truncate(), lseek(), write() 3613 * creating a hole at startoff between the above 3614 * VOP_IOCTL() calls, if the other thread does not do 3615 * rangelocking. 3616 * If that happens, startoff == endoff and finding 3617 * the hole has failed, so set an error. 3618 */ 3619 if (error == 0 && startoff == endoff) 3620 error = EINVAL; /* Any error. Reset to 0. */ 3621 } 3622 if (error == 0) { 3623 if (startoff > *inoffp) { 3624 /* Found hole before data block. */ 3625 xfer = MIN(startoff - *inoffp, len); 3626 if (*outoffp < outsize) { 3627 /* Must write 0s to punch hole. */ 3628 xfer2 = MIN(outsize - *outoffp, 3629 xfer); 3630 memset(dat, 0, MIN(xfer2, blksize)); 3631 error = vn_write_outvp(outvp, dat, 3632 *outoffp, xfer2, blksize, false, 3633 holeout > 0, outcred); 3634 } 3635 3636 if (error == 0 && *outoffp + xfer > 3637 outsize && (xfer == len || holetoeof)) { 3638 /* Grow output file (hole at end). */ 3639 error = vn_write_outvp(outvp, dat, 3640 *outoffp, xfer, blksize, true, 3641 false, outcred); 3642 } 3643 if (error == 0) { 3644 *inoffp += xfer; 3645 *outoffp += xfer; 3646 len -= xfer; 3647 if (len < savlen) { 3648 interrupted = sig_intr(); 3649 if (timespecisset(&endts) && 3650 interrupted == 0) { 3651 getnanouptime(&curts); 3652 if (timespeccmp(&curts, 3653 &endts, >=)) 3654 interrupted = 3655 EINTR; 3656 } 3657 } 3658 } 3659 } 3660 copylen = MIN(len, endoff - startoff); 3661 cantseek = false; 3662 } else { 3663 cantseek = true; 3664 if (!sparse) 3665 cantseek = false; 3666 startoff = *inoffp; 3667 copylen = len; 3668 error = 0; 3669 } 3670 3671 xfer = blksize; 3672 if (cantseek) { 3673 /* 3674 * Set first xfer to end at a block boundary, so that 3675 * holes are more likely detected in the loop below via 3676 * the for all bytes 0 method. 3677 */ 3678 xfer -= (*inoffp % blksize); 3679 } 3680 3681 /* 3682 * Loop copying the data block. If this was our first attempt 3683 * to copy anything, allow a zero-length block so that the VOPs 3684 * get a chance to update metadata, specifically the atime. 3685 */ 3686 while (error == 0 && ((copylen > 0 && !eof) || first) && 3687 interrupted == 0) { 3688 if (copylen < xfer) 3689 xfer = copylen; 3690 first = false; 3691 error = vn_lock(invp, LK_SHARED); 3692 if (error != 0) 3693 goto out; 3694 error = vn_rdwr(UIO_READ, invp, dat, xfer, 3695 startoff, UIO_SYSSPACE, IO_NODELOCKED, 3696 curthread->td_ucred, incred, &aresid, 3697 curthread); 3698 VOP_UNLOCK(invp); 3699 lastblock = false; 3700 if (error == 0 && (xfer == 0 || aresid > 0)) { 3701 /* Stop the copy at EOF on the input file. */ 3702 xfer -= aresid; 3703 eof = true; 3704 lastblock = true; 3705 } 3706 if (error == 0) { 3707 /* 3708 * Skip the write for holes past the initial EOF 3709 * of the output file, unless this is the last 3710 * write of the output file at EOF. 3711 */ 3712 readzeros = cantseek ? mem_iszero(dat, xfer) : 3713 false; 3714 if (xfer == len) 3715 lastblock = true; 3716 if (!cantseek || *outoffp < outsize || 3717 lastblock || !readzeros) 3718 error = vn_write_outvp(outvp, dat, 3719 *outoffp, xfer, blksize, 3720 readzeros && lastblock && 3721 *outoffp >= outsize, false, 3722 outcred); 3723 if (error == 0) { 3724 *inoffp += xfer; 3725 startoff += xfer; 3726 *outoffp += xfer; 3727 copylen -= xfer; 3728 len -= xfer; 3729 if (len < savlen) { 3730 interrupted = sig_intr(); 3731 if (timespecisset(&endts) && 3732 interrupted == 0) { 3733 getnanouptime(&curts); 3734 if (timespeccmp(&curts, 3735 &endts, >=)) 3736 interrupted = 3737 EINTR; 3738 } 3739 } 3740 } 3741 } 3742 xfer = blksize; 3743 } 3744 } 3745 out: 3746 *lenp = savlen - len; 3747 free(dat, M_TEMP); 3748 return (error); 3749 } 3750 3751 static int 3752 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td) 3753 { 3754 struct mount *mp; 3755 struct vnode *vp; 3756 off_t olen, ooffset; 3757 int error; 3758 #ifdef AUDIT 3759 int audited_vnode1 = 0; 3760 #endif 3761 3762 vp = fp->f_vnode; 3763 if (vp->v_type != VREG) 3764 return (ENODEV); 3765 3766 /* Allocating blocks may take a long time, so iterate. */ 3767 for (;;) { 3768 olen = len; 3769 ooffset = offset; 3770 3771 bwillwrite(); 3772 mp = NULL; 3773 error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH); 3774 if (error != 0) 3775 break; 3776 error = vn_lock(vp, LK_EXCLUSIVE); 3777 if (error != 0) { 3778 vn_finished_write(mp); 3779 break; 3780 } 3781 #ifdef AUDIT 3782 if (!audited_vnode1) { 3783 AUDIT_ARG_VNODE1(vp); 3784 audited_vnode1 = 1; 3785 } 3786 #endif 3787 #ifdef MAC 3788 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp); 3789 if (error == 0) 3790 #endif 3791 error = VOP_ALLOCATE(vp, &offset, &len, 0, 3792 td->td_ucred); 3793 VOP_UNLOCK(vp); 3794 vn_finished_write(mp); 3795 3796 if (olen + ooffset != offset + len) { 3797 panic("offset + len changed from %jx/%jx to %jx/%jx", 3798 ooffset, olen, offset, len); 3799 } 3800 if (error != 0 || len == 0) 3801 break; 3802 KASSERT(olen > len, ("Iteration did not make progress?")); 3803 maybe_yield(); 3804 } 3805 3806 return (error); 3807 } 3808 3809 static int 3810 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags, 3811 int ioflag, struct ucred *cred, struct ucred *active_cred, 3812 struct ucred *file_cred) 3813 { 3814 struct mount *mp; 3815 void *rl_cookie; 3816 off_t off, len; 3817 int error; 3818 #ifdef AUDIT 3819 bool audited_vnode1 = false; 3820 #endif 3821 3822 rl_cookie = NULL; 3823 error = 0; 3824 mp = NULL; 3825 off = *offset; 3826 len = *length; 3827 3828 if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0) 3829 rl_cookie = vn_rangelock_wlock(vp, off, off + len); 3830 while (len > 0 && error == 0) { 3831 /* 3832 * Try to deallocate the longest range in one pass. 3833 * In case a pass takes too long to be executed, it returns 3834 * partial result. The residue will be proceeded in the next 3835 * pass. 3836 */ 3837 3838 if ((ioflag & IO_NODELOCKED) == 0) { 3839 bwillwrite(); 3840 if ((error = vn_start_write(vp, &mp, 3841 V_WAIT | V_PCATCH)) != 0) 3842 goto out; 3843 vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY); 3844 } 3845 #ifdef AUDIT 3846 if (!audited_vnode1) { 3847 AUDIT_ARG_VNODE1(vp); 3848 audited_vnode1 = true; 3849 } 3850 #endif 3851 3852 #ifdef MAC 3853 if ((ioflag & IO_NOMACCHECK) == 0) 3854 error = mac_vnode_check_write(active_cred, file_cred, 3855 vp); 3856 #endif 3857 if (error == 0) 3858 error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag, 3859 cred); 3860 3861 if ((ioflag & IO_NODELOCKED) == 0) { 3862 VOP_UNLOCK(vp); 3863 if (mp != NULL) { 3864 vn_finished_write(mp); 3865 mp = NULL; 3866 } 3867 } 3868 if (error == 0 && len != 0) 3869 maybe_yield(); 3870 } 3871 out: 3872 if (rl_cookie != NULL) 3873 vn_rangelock_unlock(vp, rl_cookie); 3874 *offset = off; 3875 *length = len; 3876 return (error); 3877 } 3878 3879 /* 3880 * This function is supposed to be used in the situations where the deallocation 3881 * is not triggered by a user request. 3882 */ 3883 int 3884 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags, 3885 int ioflag, struct ucred *active_cred, struct ucred *file_cred) 3886 { 3887 struct ucred *cred; 3888 3889 if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset || 3890 flags != 0) 3891 return (EINVAL); 3892 if (vp->v_type != VREG) 3893 return (ENODEV); 3894 3895 cred = file_cred != NOCRED ? file_cred : active_cred; 3896 return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred, 3897 active_cred, file_cred)); 3898 } 3899 3900 static int 3901 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags, 3902 struct ucred *active_cred, struct thread *td) 3903 { 3904 int error; 3905 struct vnode *vp; 3906 int ioflag; 3907 3908 KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd")); 3909 KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0, 3910 ("vn_fspacectl: non-zero flags")); 3911 KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset, 3912 ("vn_fspacectl: offset/length overflow or underflow")); 3913 vp = fp->f_vnode; 3914 3915 if (vp->v_type != VREG) 3916 return (ENODEV); 3917 3918 ioflag = get_write_ioflag(fp); 3919 3920 switch (cmd) { 3921 case SPACECTL_DEALLOC: 3922 error = vn_deallocate_impl(vp, offset, length, flags, ioflag, 3923 active_cred, active_cred, fp->f_cred); 3924 break; 3925 default: 3926 panic("vn_fspacectl: unknown cmd %d", cmd); 3927 } 3928 3929 return (error); 3930 } 3931 3932 /* 3933 * Keep this assert as long as sizeof(struct dirent) is used as the maximum 3934 * entry size. 3935 */ 3936 _Static_assert(_GENERIC_MAXDIRSIZ == sizeof(struct dirent), 3937 "'struct dirent' size must be a multiple of its alignment " 3938 "(see _GENERIC_DIRLEN())"); 3939 3940 /* 3941 * Returns successive directory entries through some caller's provided buffer. 3942 * 3943 * This function automatically refills the provided buffer with calls to 3944 * VOP_READDIR() (after MAC permission checks). 3945 * 3946 * 'td' is used for credentials and passed to uiomove(). 'dirbuf' is the 3947 * caller's buffer to fill and 'dirbuflen' its allocated size. 'dirbuf' must 3948 * be properly aligned to access 'struct dirent' structures and 'dirbuflen' 3949 * must be greater than GENERIC_MAXDIRSIZ to avoid VOP_READDIR() returning 3950 * EINVAL (the latter is not a strong guarantee (yet); but EINVAL will always 3951 * be returned if this requirement is not verified). '*dpp' points to the 3952 * current directory entry in the buffer and '*len' contains the remaining 3953 * valid bytes in 'dirbuf' after 'dpp' (including the pointed entry). 3954 * 3955 * At first call (or when restarting the read), '*len' must have been set to 0, 3956 * '*off' to 0 (or any valid start offset) and '*eofflag' to 0. There are no 3957 * more entries as soon as '*len' is 0 after a call that returned 0. Calling 3958 * again this function after such a condition is considered an error and EINVAL 3959 * will be returned. Other possible error codes are those of VOP_READDIR(), 3960 * EINTEGRITY if the returned entries do not pass coherency tests, or EINVAL 3961 * (bad call). All errors are unrecoverable, i.e., the state ('*len', '*off' 3962 * and '*eofflag') must be re-initialized before a subsequent call. On error 3963 * or at end of directory, '*dpp' is reset to NULL. 3964 * 3965 * '*len', '*off' and '*eofflag' are internal state the caller should not 3966 * tamper with except as explained above. '*off' is the next directory offset 3967 * to read from to refill the buffer. '*eofflag' is set to 0 or 1 by the last 3968 * internal call to VOP_READDIR() that returned without error, indicating 3969 * whether it reached the end of the directory, and to 2 by this function after 3970 * all entries have been read. 3971 */ 3972 int 3973 vn_dir_next_dirent(struct vnode *vp, struct thread *td, 3974 char *dirbuf, size_t dirbuflen, 3975 struct dirent **dpp, size_t *len, off_t *off, int *eofflag) 3976 { 3977 struct dirent *dp = NULL; 3978 int reclen; 3979 int error; 3980 struct uio uio; 3981 struct iovec iov; 3982 3983 ASSERT_VOP_LOCKED(vp, "vnode not locked"); 3984 VNASSERT(vp->v_type == VDIR, vp, ("vnode is not a directory")); 3985 MPASS2((uintptr_t)dirbuf < (uintptr_t)dirbuf + dirbuflen, 3986 "Address space overflow"); 3987 3988 if (__predict_false(dirbuflen < GENERIC_MAXDIRSIZ)) { 3989 /* Don't take any chances in this case */ 3990 error = EINVAL; 3991 goto out; 3992 } 3993 3994 if (*len != 0) { 3995 dp = *dpp; 3996 3997 /* 3998 * The caller continued to call us after an error (we set dp to 3999 * NULL in a previous iteration). Bail out right now. 4000 */ 4001 if (__predict_false(dp == NULL)) 4002 return (EINVAL); 4003 4004 MPASS(*len <= dirbuflen); 4005 MPASS2((uintptr_t)dirbuf <= (uintptr_t)dp && 4006 (uintptr_t)dp + *len <= (uintptr_t)dirbuf + dirbuflen, 4007 "Filled range not inside buffer"); 4008 4009 reclen = dp->d_reclen; 4010 if (reclen >= *len) { 4011 /* End of buffer reached */ 4012 *len = 0; 4013 } else { 4014 dp = (struct dirent *)((char *)dp + reclen); 4015 *len -= reclen; 4016 } 4017 } 4018 4019 if (*len == 0) { 4020 dp = NULL; 4021 4022 /* Have to refill. */ 4023 switch (*eofflag) { 4024 case 0: 4025 break; 4026 4027 case 1: 4028 /* Nothing more to read. */ 4029 *eofflag = 2; /* Remember the caller reached EOF. */ 4030 goto success; 4031 4032 default: 4033 /* The caller didn't test for EOF. */ 4034 error = EINVAL; 4035 goto out; 4036 } 4037 4038 iov.iov_base = dirbuf; 4039 iov.iov_len = dirbuflen; 4040 4041 uio.uio_iov = &iov; 4042 uio.uio_iovcnt = 1; 4043 uio.uio_offset = *off; 4044 uio.uio_resid = dirbuflen; 4045 uio.uio_segflg = UIO_SYSSPACE; 4046 uio.uio_rw = UIO_READ; 4047 uio.uio_td = td; 4048 4049 #ifdef MAC 4050 error = mac_vnode_check_readdir(td->td_ucred, vp); 4051 if (error == 0) 4052 #endif 4053 error = VOP_READDIR(vp, &uio, td->td_ucred, eofflag, 4054 NULL, NULL); 4055 if (error != 0) 4056 goto out; 4057 4058 *len = dirbuflen - uio.uio_resid; 4059 *off = uio.uio_offset; 4060 4061 if (*len == 0) { 4062 /* Sanity check on INVARIANTS. */ 4063 MPASS(*eofflag != 0); 4064 *eofflag = 1; 4065 goto success; 4066 } 4067 4068 /* 4069 * Normalize the flag returned by VOP_READDIR(), since we use 2 4070 * as a sentinel value. 4071 */ 4072 if (*eofflag != 0) 4073 *eofflag = 1; 4074 4075 dp = (struct dirent *)dirbuf; 4076 } 4077 4078 if (__predict_false(*len < GENERIC_MINDIRSIZ || 4079 dp->d_reclen < GENERIC_MINDIRSIZ)) { 4080 error = EINTEGRITY; 4081 dp = NULL; 4082 goto out; 4083 } 4084 4085 success: 4086 error = 0; 4087 out: 4088 *dpp = dp; 4089 return (error); 4090 } 4091 4092 /* 4093 * Checks whether a directory is empty or not. 4094 * 4095 * If the directory is empty, returns 0, and if it is not, ENOTEMPTY. Other 4096 * values are genuine errors preventing the check. 4097 */ 4098 int 4099 vn_dir_check_empty(struct vnode *vp) 4100 { 4101 struct thread *const td = curthread; 4102 char *dirbuf; 4103 size_t dirbuflen, len; 4104 off_t off; 4105 int eofflag, error; 4106 struct dirent *dp; 4107 struct vattr va; 4108 4109 ASSERT_VOP_LOCKED(vp, "vfs_emptydir"); 4110 VNPASS(vp->v_type == VDIR, vp); 4111 4112 error = VOP_GETATTR(vp, &va, td->td_ucred); 4113 if (error != 0) 4114 return (error); 4115 4116 dirbuflen = max(DEV_BSIZE, GENERIC_MAXDIRSIZ); 4117 if (dirbuflen < va.va_blocksize) 4118 dirbuflen = va.va_blocksize; 4119 dirbuf = malloc(dirbuflen, M_TEMP, M_WAITOK); 4120 4121 len = 0; 4122 off = 0; 4123 eofflag = 0; 4124 4125 for (;;) { 4126 error = vn_dir_next_dirent(vp, td, dirbuf, dirbuflen, 4127 &dp, &len, &off, &eofflag); 4128 if (error != 0) 4129 goto end; 4130 4131 if (len == 0) { 4132 /* EOF */ 4133 error = 0; 4134 goto end; 4135 } 4136 4137 /* 4138 * Skip whiteouts. Unionfs operates on filesystems only and 4139 * not on hierarchies, so these whiteouts would be shadowed on 4140 * the system hierarchy but not for a union using the 4141 * filesystem of their directories as the upper layer. 4142 * Additionally, unionfs currently transparently exposes 4143 * union-specific metadata of its upper layer, meaning that 4144 * whiteouts can be seen through the union view in empty 4145 * directories. Taking into account these whiteouts would then 4146 * prevent mounting another filesystem on such effectively 4147 * empty directories. 4148 */ 4149 if (dp->d_type == DT_WHT) 4150 continue; 4151 4152 /* 4153 * Any file in the directory which is not '.' or '..' indicates 4154 * the directory is not empty. 4155 */ 4156 switch (dp->d_namlen) { 4157 case 2: 4158 if (dp->d_name[1] != '.') { 4159 /* Can't be '..' (nor '.') */ 4160 error = ENOTEMPTY; 4161 goto end; 4162 } 4163 /* FALLTHROUGH */ 4164 case 1: 4165 if (dp->d_name[0] != '.') { 4166 /* Can't be '..' nor '.' */ 4167 error = ENOTEMPTY; 4168 goto end; 4169 } 4170 break; 4171 4172 default: 4173 error = ENOTEMPTY; 4174 goto end; 4175 } 4176 } 4177 4178 end: 4179 free(dirbuf, M_TEMP); 4180 return (error); 4181 } 4182 4183 4184 static u_long vn_lock_pair_pause_cnt; 4185 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD, 4186 &vn_lock_pair_pause_cnt, 0, 4187 "Count of vn_lock_pair deadlocks"); 4188 4189 u_int vn_lock_pair_pause_max; 4190 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW, 4191 &vn_lock_pair_pause_max, 0, 4192 "Max ticks for vn_lock_pair deadlock avoidance sleep"); 4193 4194 static void 4195 vn_lock_pair_pause(const char *wmesg) 4196 { 4197 atomic_add_long(&vn_lock_pair_pause_cnt, 1); 4198 pause(wmesg, prng32_bounded(vn_lock_pair_pause_max)); 4199 } 4200 4201 /* 4202 * Lock pair of (possibly same) vnodes vp1, vp2, avoiding lock order 4203 * reversal. vp1_locked indicates whether vp1 is locked; if not, vp1 4204 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes 4205 * can be NULL. 4206 * 4207 * The function returns with both vnodes exclusively or shared locked, 4208 * according to corresponding lkflags, and guarantees that it does not 4209 * create lock order reversal with other threads during its execution. 4210 * Both vnodes could be unlocked temporary (and reclaimed). 4211 * 4212 * If requesting shared locking, locked vnode lock must not be recursed. 4213 * 4214 * Only one of LK_SHARED and LK_EXCLUSIVE must be specified. 4215 * LK_NODDLKTREAT can be optionally passed. 4216 * 4217 * If vp1 == vp2, only one, most exclusive, lock is obtained on it. 4218 */ 4219 void 4220 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1, 4221 struct vnode *vp2, bool vp2_locked, int lkflags2) 4222 { 4223 int error, locked1; 4224 4225 MPASS((((lkflags1 & LK_SHARED) != 0) ^ ((lkflags1 & LK_EXCLUSIVE) != 0)) || 4226 (vp1 == NULL && lkflags1 == 0)); 4227 MPASS((lkflags1 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0); 4228 MPASS((((lkflags2 & LK_SHARED) != 0) ^ ((lkflags2 & LK_EXCLUSIVE) != 0)) || 4229 (vp2 == NULL && lkflags2 == 0)); 4230 MPASS((lkflags2 & ~(LK_SHARED | LK_EXCLUSIVE | LK_NODDLKTREAT)) == 0); 4231 4232 if (vp1 == NULL && vp2 == NULL) 4233 return; 4234 4235 if (vp1 == vp2) { 4236 MPASS(vp1_locked == vp2_locked); 4237 4238 /* Select the most exclusive mode for lock. */ 4239 if ((lkflags1 & LK_TYPE_MASK) != (lkflags2 & LK_TYPE_MASK)) 4240 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE; 4241 4242 if (vp1_locked) { 4243 ASSERT_VOP_LOCKED(vp1, "vp1"); 4244 4245 /* No need to relock if any lock is exclusive. */ 4246 if ((vp1->v_vnlock->lock_object.lo_flags & 4247 LK_NOSHARE) != 0) 4248 return; 4249 4250 locked1 = VOP_ISLOCKED(vp1); 4251 if (((lkflags1 & LK_SHARED) != 0 && 4252 locked1 != LK_EXCLUSIVE) || 4253 ((lkflags1 & LK_EXCLUSIVE) != 0 && 4254 locked1 == LK_EXCLUSIVE)) 4255 return; 4256 VOP_UNLOCK(vp1); 4257 } 4258 4259 ASSERT_VOP_UNLOCKED(vp1, "vp1"); 4260 vn_lock(vp1, lkflags1 | LK_RETRY); 4261 return; 4262 } 4263 4264 if (vp1 != NULL) { 4265 if ((lkflags1 & LK_SHARED) != 0 && 4266 (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0) 4267 lkflags1 = (lkflags1 & ~LK_SHARED) | LK_EXCLUSIVE; 4268 if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) { 4269 ASSERT_VOP_LOCKED(vp1, "vp1"); 4270 if ((lkflags1 & LK_EXCLUSIVE) != 0) { 4271 VOP_UNLOCK(vp1); 4272 ASSERT_VOP_UNLOCKED(vp1, 4273 "vp1 shared recursed"); 4274 vp1_locked = false; 4275 } 4276 } else if (!vp1_locked) 4277 ASSERT_VOP_UNLOCKED(vp1, "vp1"); 4278 } else { 4279 vp1_locked = true; 4280 } 4281 4282 if (vp2 != NULL) { 4283 if ((lkflags2 & LK_SHARED) != 0 && 4284 (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0) 4285 lkflags2 = (lkflags2 & ~LK_SHARED) | LK_EXCLUSIVE; 4286 if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) { 4287 ASSERT_VOP_LOCKED(vp2, "vp2"); 4288 if ((lkflags2 & LK_EXCLUSIVE) != 0) { 4289 VOP_UNLOCK(vp2); 4290 ASSERT_VOP_UNLOCKED(vp2, 4291 "vp2 shared recursed"); 4292 vp2_locked = false; 4293 } 4294 } else if (!vp2_locked) 4295 ASSERT_VOP_UNLOCKED(vp2, "vp2"); 4296 } else { 4297 vp2_locked = true; 4298 } 4299 4300 if (!vp1_locked && !vp2_locked) { 4301 vn_lock(vp1, lkflags1 | LK_RETRY); 4302 vp1_locked = true; 4303 } 4304 4305 while (!vp1_locked || !vp2_locked) { 4306 if (vp1_locked && vp2 != NULL) { 4307 if (vp1 != NULL) { 4308 error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT, 4309 __FILE__, __LINE__); 4310 if (error == 0) 4311 break; 4312 VOP_UNLOCK(vp1); 4313 vp1_locked = false; 4314 vn_lock_pair_pause("vlp1"); 4315 } 4316 vn_lock(vp2, lkflags2 | LK_RETRY); 4317 vp2_locked = true; 4318 } 4319 if (vp2_locked && vp1 != NULL) { 4320 if (vp2 != NULL) { 4321 error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT, 4322 __FILE__, __LINE__); 4323 if (error == 0) 4324 break; 4325 VOP_UNLOCK(vp2); 4326 vp2_locked = false; 4327 vn_lock_pair_pause("vlp2"); 4328 } 4329 vn_lock(vp1, lkflags1 | LK_RETRY); 4330 vp1_locked = true; 4331 } 4332 } 4333 if (vp1 != NULL) { 4334 if (lkflags1 == LK_EXCLUSIVE) 4335 ASSERT_VOP_ELOCKED(vp1, "vp1 ret"); 4336 else 4337 ASSERT_VOP_LOCKED(vp1, "vp1 ret"); 4338 } 4339 if (vp2 != NULL) { 4340 if (lkflags2 == LK_EXCLUSIVE) 4341 ASSERT_VOP_ELOCKED(vp2, "vp2 ret"); 4342 else 4343 ASSERT_VOP_LOCKED(vp2, "vp2 ret"); 4344 } 4345 } 4346 4347 int 4348 vn_lktype_write(struct mount *mp, struct vnode *vp) 4349 { 4350 if (MNT_SHARED_WRITES(mp) || 4351 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) 4352 return (LK_SHARED); 4353 return (LK_EXCLUSIVE); 4354 } 4355 4356 int 4357 vn_cmp(struct file *fp1, struct file *fp2, struct thread *td) 4358 { 4359 if (fp2->f_type != DTYPE_VNODE) 4360 return (3); 4361 return (kcmp_cmp((uintptr_t)fp1->f_vnode, (uintptr_t)fp2->f_vnode)); 4362 } 4363