1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org> 11 * Copyright (c) 2013, 2014 The FreeBSD Foundation 12 * 13 * Portions of this software were developed by Konstantin Belousov 14 * under sponsorship from the FreeBSD Foundation. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/disk.h> 49 #include <sys/fcntl.h> 50 #include <sys/file.h> 51 #include <sys/kdb.h> 52 #include <sys/stat.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/limits.h> 56 #include <sys/lock.h> 57 #include <sys/mount.h> 58 #include <sys/mutex.h> 59 #include <sys/namei.h> 60 #include <sys/vnode.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/filio.h> 64 #include <sys/resourcevar.h> 65 #include <sys/rwlock.h> 66 #include <sys/sx.h> 67 #include <sys/sysctl.h> 68 #include <sys/ttycom.h> 69 #include <sys/conf.h> 70 #include <sys/syslog.h> 71 #include <sys/unistd.h> 72 #include <sys/user.h> 73 74 #include <security/audit/audit.h> 75 #include <security/mac/mac_framework.h> 76 77 #include <vm/vm.h> 78 #include <vm/vm_extern.h> 79 #include <vm/pmap.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_object.h> 82 #include <vm/vm_page.h> 83 84 static fo_rdwr_t vn_read; 85 static fo_rdwr_t vn_write; 86 static fo_rdwr_t vn_io_fault; 87 static fo_truncate_t vn_truncate; 88 static fo_ioctl_t vn_ioctl; 89 static fo_poll_t vn_poll; 90 static fo_kqfilter_t vn_kqfilter; 91 static fo_stat_t vn_statfile; 92 static fo_close_t vn_closefile; 93 94 struct fileops vnops = { 95 .fo_read = vn_io_fault, 96 .fo_write = vn_io_fault, 97 .fo_truncate = vn_truncate, 98 .fo_ioctl = vn_ioctl, 99 .fo_poll = vn_poll, 100 .fo_kqfilter = vn_kqfilter, 101 .fo_stat = vn_statfile, 102 .fo_close = vn_closefile, 103 .fo_chmod = vn_chmod, 104 .fo_chown = vn_chown, 105 .fo_sendfile = vn_sendfile, 106 .fo_seek = vn_seek, 107 .fo_fill_kinfo = vn_fill_kinfo, 108 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE 109 }; 110 111 static const int io_hold_cnt = 16; 112 static int vn_io_fault_enable = 1; 113 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW, 114 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); 115 static u_long vn_io_faults_cnt; 116 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, 117 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); 118 119 /* 120 * Returns true if vn_io_fault mode of handling the i/o request should 121 * be used. 122 */ 123 static bool 124 do_vn_io_fault(struct vnode *vp, struct uio *uio) 125 { 126 struct mount *mp; 127 128 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG && 129 (mp = vp->v_mount) != NULL && 130 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable); 131 } 132 133 /* 134 * Structure used to pass arguments to vn_io_fault1(), to do either 135 * file- or vnode-based I/O calls. 136 */ 137 struct vn_io_fault_args { 138 enum { 139 VN_IO_FAULT_FOP, 140 VN_IO_FAULT_VOP 141 } kind; 142 struct ucred *cred; 143 int flags; 144 union { 145 struct fop_args_tag { 146 struct file *fp; 147 fo_rdwr_t *doio; 148 } fop_args; 149 struct vop_args_tag { 150 struct vnode *vp; 151 } vop_args; 152 } args; 153 }; 154 155 static int vn_io_fault1(struct vnode *vp, struct uio *uio, 156 struct vn_io_fault_args *args, struct thread *td); 157 158 int 159 vn_open(ndp, flagp, cmode, fp) 160 struct nameidata *ndp; 161 int *flagp, cmode; 162 struct file *fp; 163 { 164 struct thread *td = ndp->ni_cnd.cn_thread; 165 166 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); 167 } 168 169 /* 170 * Common code for vnode open operations via a name lookup. 171 * Lookup the vnode and invoke VOP_CREATE if needed. 172 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. 173 * 174 * Note that this does NOT free nameidata for the successful case, 175 * due to the NDINIT being done elsewhere. 176 */ 177 int 178 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, 179 struct ucred *cred, struct file *fp) 180 { 181 struct vnode *vp; 182 struct mount *mp; 183 struct thread *td = ndp->ni_cnd.cn_thread; 184 struct vattr vat; 185 struct vattr *vap = &vat; 186 int fmode, error; 187 188 restart: 189 fmode = *flagp; 190 if (fmode & O_CREAT) { 191 ndp->ni_cnd.cn_nameiop = CREATE; 192 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF; 193 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) 194 ndp->ni_cnd.cn_flags |= FOLLOW; 195 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 196 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 197 if (vn_open_flags & VN_OPEN_NOCAPCHECK) 198 ndp->ni_cnd.cn_flags |= NOCAPCHECK; 199 bwillwrite(); 200 if ((error = namei(ndp)) != 0) 201 return (error); 202 if (ndp->ni_vp == NULL) { 203 VATTR_NULL(vap); 204 vap->va_type = VREG; 205 vap->va_mode = cmode; 206 if (fmode & O_EXCL) 207 vap->va_vaflags |= VA_EXCLUSIVE; 208 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { 209 NDFREE(ndp, NDF_ONLY_PNBUF); 210 vput(ndp->ni_dvp); 211 if ((error = vn_start_write(NULL, &mp, 212 V_XSLEEP | PCATCH)) != 0) 213 return (error); 214 goto restart; 215 } 216 #ifdef MAC 217 error = mac_vnode_check_create(cred, ndp->ni_dvp, 218 &ndp->ni_cnd, vap); 219 if (error == 0) 220 #endif 221 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, 222 &ndp->ni_cnd, vap); 223 vput(ndp->ni_dvp); 224 vn_finished_write(mp); 225 if (error) { 226 NDFREE(ndp, NDF_ONLY_PNBUF); 227 return (error); 228 } 229 fmode &= ~O_TRUNC; 230 vp = ndp->ni_vp; 231 } else { 232 if (ndp->ni_dvp == ndp->ni_vp) 233 vrele(ndp->ni_dvp); 234 else 235 vput(ndp->ni_dvp); 236 ndp->ni_dvp = NULL; 237 vp = ndp->ni_vp; 238 if (fmode & O_EXCL) { 239 error = EEXIST; 240 goto bad; 241 } 242 fmode &= ~O_CREAT; 243 } 244 } else { 245 ndp->ni_cnd.cn_nameiop = LOOKUP; 246 ndp->ni_cnd.cn_flags = ISOPEN | 247 ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF; 248 if (!(fmode & FWRITE)) 249 ndp->ni_cnd.cn_flags |= LOCKSHARED; 250 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 251 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 252 if (vn_open_flags & VN_OPEN_NOCAPCHECK) 253 ndp->ni_cnd.cn_flags |= NOCAPCHECK; 254 if ((error = namei(ndp)) != 0) 255 return (error); 256 vp = ndp->ni_vp; 257 } 258 error = vn_open_vnode(vp, fmode, cred, td, fp); 259 if (error) 260 goto bad; 261 *flagp = fmode; 262 return (0); 263 bad: 264 NDFREE(ndp, NDF_ONLY_PNBUF); 265 vput(vp); 266 *flagp = fmode; 267 ndp->ni_vp = NULL; 268 return (error); 269 } 270 271 /* 272 * Common code for vnode open operations once a vnode is located. 273 * Check permissions, and call the VOP_OPEN routine. 274 */ 275 int 276 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, 277 struct thread *td, struct file *fp) 278 { 279 struct mount *mp; 280 accmode_t accmode; 281 struct flock lf; 282 int error, have_flock, lock_flags, type; 283 284 if (vp->v_type == VLNK) 285 return (EMLINK); 286 if (vp->v_type == VSOCK) 287 return (EOPNOTSUPP); 288 if (vp->v_type != VDIR && fmode & O_DIRECTORY) 289 return (ENOTDIR); 290 accmode = 0; 291 if (fmode & (FWRITE | O_TRUNC)) { 292 if (vp->v_type == VDIR) 293 return (EISDIR); 294 accmode |= VWRITE; 295 } 296 if (fmode & FREAD) 297 accmode |= VREAD; 298 if (fmode & FEXEC) 299 accmode |= VEXEC; 300 if ((fmode & O_APPEND) && (fmode & FWRITE)) 301 accmode |= VAPPEND; 302 #ifdef MAC 303 error = mac_vnode_check_open(cred, vp, accmode); 304 if (error) 305 return (error); 306 #endif 307 if ((fmode & O_CREAT) == 0) { 308 if (accmode & VWRITE) { 309 error = vn_writechk(vp); 310 if (error) 311 return (error); 312 } 313 if (accmode) { 314 error = VOP_ACCESS(vp, accmode, cred, td); 315 if (error) 316 return (error); 317 } 318 } 319 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 320 vn_lock(vp, LK_UPGRADE | LK_RETRY); 321 if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0) 322 return (error); 323 324 if (fmode & (O_EXLOCK | O_SHLOCK)) { 325 KASSERT(fp != NULL, ("open with flock requires fp")); 326 lock_flags = VOP_ISLOCKED(vp); 327 VOP_UNLOCK(vp, 0); 328 lf.l_whence = SEEK_SET; 329 lf.l_start = 0; 330 lf.l_len = 0; 331 if (fmode & O_EXLOCK) 332 lf.l_type = F_WRLCK; 333 else 334 lf.l_type = F_RDLCK; 335 type = F_FLOCK; 336 if ((fmode & FNONBLOCK) == 0) 337 type |= F_WAIT; 338 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); 339 have_flock = (error == 0); 340 vn_lock(vp, lock_flags | LK_RETRY); 341 if (error == 0 && vp->v_iflag & VI_DOOMED) 342 error = ENOENT; 343 /* 344 * Another thread might have used this vnode as an 345 * executable while the vnode lock was dropped. 346 * Ensure the vnode is still able to be opened for 347 * writing after the lock has been obtained. 348 */ 349 if (error == 0 && accmode & VWRITE) 350 error = vn_writechk(vp); 351 if (error) { 352 VOP_UNLOCK(vp, 0); 353 if (have_flock) { 354 lf.l_whence = SEEK_SET; 355 lf.l_start = 0; 356 lf.l_len = 0; 357 lf.l_type = F_UNLCK; 358 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, 359 F_FLOCK); 360 } 361 vn_start_write(vp, &mp, V_WAIT); 362 vn_lock(vp, lock_flags | LK_RETRY); 363 (void)VOP_CLOSE(vp, fmode, cred, td); 364 vn_finished_write(mp); 365 /* Prevent second close from fdrop()->vn_close(). */ 366 if (fp != NULL) 367 fp->f_ops= &badfileops; 368 return (error); 369 } 370 fp->f_flag |= FHASLOCK; 371 } 372 if (fmode & FWRITE) { 373 VOP_ADD_WRITECOUNT(vp, 1); 374 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 375 __func__, vp, vp->v_writecount); 376 } 377 ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); 378 return (0); 379 } 380 381 /* 382 * Check for write permissions on the specified vnode. 383 * Prototype text segments cannot be written. 384 */ 385 int 386 vn_writechk(vp) 387 register struct vnode *vp; 388 { 389 390 ASSERT_VOP_LOCKED(vp, "vn_writechk"); 391 /* 392 * If there's shared text associated with 393 * the vnode, try to free it up once. If 394 * we fail, we can't allow writing. 395 */ 396 if (VOP_IS_TEXT(vp)) 397 return (ETXTBSY); 398 399 return (0); 400 } 401 402 /* 403 * Vnode close call 404 */ 405 int 406 vn_close(vp, flags, file_cred, td) 407 register struct vnode *vp; 408 int flags; 409 struct ucred *file_cred; 410 struct thread *td; 411 { 412 struct mount *mp; 413 int error, lock_flags; 414 415 if (vp->v_type != VFIFO && (flags & FWRITE) == 0 && 416 MNT_EXTENDED_SHARED(vp->v_mount)) 417 lock_flags = LK_SHARED; 418 else 419 lock_flags = LK_EXCLUSIVE; 420 421 vn_start_write(vp, &mp, V_WAIT); 422 vn_lock(vp, lock_flags | LK_RETRY); 423 if (flags & FWRITE) { 424 VNASSERT(vp->v_writecount > 0, vp, 425 ("vn_close: negative writecount")); 426 VOP_ADD_WRITECOUNT(vp, -1); 427 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 428 __func__, vp, vp->v_writecount); 429 } 430 error = VOP_CLOSE(vp, flags, file_cred, td); 431 vput(vp); 432 vn_finished_write(mp); 433 return (error); 434 } 435 436 /* 437 * Heuristic to detect sequential operation. 438 */ 439 static int 440 sequential_heuristic(struct uio *uio, struct file *fp) 441 { 442 443 ASSERT_VOP_LOCKED(fp->f_vnode, __func__); 444 if (fp->f_flag & FRDAHEAD) 445 return (fp->f_seqcount << IO_SEQSHIFT); 446 447 /* 448 * Offset 0 is handled specially. open() sets f_seqcount to 1 so 449 * that the first I/O is normally considered to be slightly 450 * sequential. Seeking to offset 0 doesn't change sequentiality 451 * unless previous seeks have reduced f_seqcount to 0, in which 452 * case offset 0 is not special. 453 */ 454 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || 455 uio->uio_offset == fp->f_nextoff) { 456 /* 457 * f_seqcount is in units of fixed-size blocks so that it 458 * depends mainly on the amount of sequential I/O and not 459 * much on the number of sequential I/O's. The fixed size 460 * of 16384 is hard-coded here since it is (not quite) just 461 * a magic size that works well here. This size is more 462 * closely related to the best I/O size for real disks than 463 * to any block size used by software. 464 */ 465 fp->f_seqcount += howmany(uio->uio_resid, 16384); 466 if (fp->f_seqcount > IO_SEQMAX) 467 fp->f_seqcount = IO_SEQMAX; 468 return (fp->f_seqcount << IO_SEQSHIFT); 469 } 470 471 /* Not sequential. Quickly draw-down sequentiality. */ 472 if (fp->f_seqcount > 1) 473 fp->f_seqcount = 1; 474 else 475 fp->f_seqcount = 0; 476 return (0); 477 } 478 479 /* 480 * Package up an I/O request on a vnode into a uio and do it. 481 */ 482 int 483 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, 484 enum uio_seg segflg, int ioflg, struct ucred *active_cred, 485 struct ucred *file_cred, ssize_t *aresid, struct thread *td) 486 { 487 struct uio auio; 488 struct iovec aiov; 489 struct mount *mp; 490 struct ucred *cred; 491 void *rl_cookie; 492 struct vn_io_fault_args args; 493 int error, lock_flags; 494 495 auio.uio_iov = &aiov; 496 auio.uio_iovcnt = 1; 497 aiov.iov_base = base; 498 aiov.iov_len = len; 499 auio.uio_resid = len; 500 auio.uio_offset = offset; 501 auio.uio_segflg = segflg; 502 auio.uio_rw = rw; 503 auio.uio_td = td; 504 error = 0; 505 506 if ((ioflg & IO_NODELOCKED) == 0) { 507 if (rw == UIO_READ) { 508 rl_cookie = vn_rangelock_rlock(vp, offset, 509 offset + len); 510 } else { 511 rl_cookie = vn_rangelock_wlock(vp, offset, 512 offset + len); 513 } 514 mp = NULL; 515 if (rw == UIO_WRITE) { 516 if (vp->v_type != VCHR && 517 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) 518 != 0) 519 goto out; 520 if (MNT_SHARED_WRITES(mp) || 521 ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) 522 lock_flags = LK_SHARED; 523 else 524 lock_flags = LK_EXCLUSIVE; 525 } else 526 lock_flags = LK_SHARED; 527 vn_lock(vp, lock_flags | LK_RETRY); 528 } else 529 rl_cookie = NULL; 530 531 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 532 #ifdef MAC 533 if ((ioflg & IO_NOMACCHECK) == 0) { 534 if (rw == UIO_READ) 535 error = mac_vnode_check_read(active_cred, file_cred, 536 vp); 537 else 538 error = mac_vnode_check_write(active_cred, file_cred, 539 vp); 540 } 541 #endif 542 if (error == 0) { 543 if (file_cred != NULL) 544 cred = file_cred; 545 else 546 cred = active_cred; 547 if (do_vn_io_fault(vp, &auio)) { 548 args.kind = VN_IO_FAULT_VOP; 549 args.cred = cred; 550 args.flags = ioflg; 551 args.args.vop_args.vp = vp; 552 error = vn_io_fault1(vp, &auio, &args, td); 553 } else if (rw == UIO_READ) { 554 error = VOP_READ(vp, &auio, ioflg, cred); 555 } else /* if (rw == UIO_WRITE) */ { 556 error = VOP_WRITE(vp, &auio, ioflg, cred); 557 } 558 } 559 if (aresid) 560 *aresid = auio.uio_resid; 561 else 562 if (auio.uio_resid && error == 0) 563 error = EIO; 564 if ((ioflg & IO_NODELOCKED) == 0) { 565 VOP_UNLOCK(vp, 0); 566 if (mp != NULL) 567 vn_finished_write(mp); 568 } 569 out: 570 if (rl_cookie != NULL) 571 vn_rangelock_unlock(vp, rl_cookie); 572 return (error); 573 } 574 575 /* 576 * Package up an I/O request on a vnode into a uio and do it. The I/O 577 * request is split up into smaller chunks and we try to avoid saturating 578 * the buffer cache while potentially holding a vnode locked, so we 579 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() 580 * to give other processes a chance to lock the vnode (either other processes 581 * core'ing the same binary, or unrelated processes scanning the directory). 582 */ 583 int 584 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred, 585 file_cred, aresid, td) 586 enum uio_rw rw; 587 struct vnode *vp; 588 void *base; 589 size_t len; 590 off_t offset; 591 enum uio_seg segflg; 592 int ioflg; 593 struct ucred *active_cred; 594 struct ucred *file_cred; 595 size_t *aresid; 596 struct thread *td; 597 { 598 int error = 0; 599 ssize_t iaresid; 600 601 do { 602 int chunk; 603 604 /* 605 * Force `offset' to a multiple of MAXBSIZE except possibly 606 * for the first chunk, so that filesystems only need to 607 * write full blocks except possibly for the first and last 608 * chunks. 609 */ 610 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; 611 612 if (chunk > len) 613 chunk = len; 614 if (rw != UIO_READ && vp->v_type == VREG) 615 bwillwrite(); 616 iaresid = 0; 617 error = vn_rdwr(rw, vp, base, chunk, offset, segflg, 618 ioflg, active_cred, file_cred, &iaresid, td); 619 len -= chunk; /* aresid calc already includes length */ 620 if (error) 621 break; 622 offset += chunk; 623 base = (char *)base + chunk; 624 kern_yield(PRI_USER); 625 } while (len); 626 if (aresid) 627 *aresid = len + iaresid; 628 return (error); 629 } 630 631 off_t 632 foffset_lock(struct file *fp, int flags) 633 { 634 struct mtx *mtxp; 635 off_t res; 636 637 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 638 639 #if OFF_MAX <= LONG_MAX 640 /* 641 * Caller only wants the current f_offset value. Assume that 642 * the long and shorter integer types reads are atomic. 643 */ 644 if ((flags & FOF_NOLOCK) != 0) 645 return (fp->f_offset); 646 #endif 647 648 /* 649 * According to McKusick the vn lock was protecting f_offset here. 650 * It is now protected by the FOFFSET_LOCKED flag. 651 */ 652 mtxp = mtx_pool_find(mtxpool_sleep, fp); 653 mtx_lock(mtxp); 654 if ((flags & FOF_NOLOCK) == 0) { 655 while (fp->f_vnread_flags & FOFFSET_LOCKED) { 656 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; 657 msleep(&fp->f_vnread_flags, mtxp, PUSER -1, 658 "vofflock", 0); 659 } 660 fp->f_vnread_flags |= FOFFSET_LOCKED; 661 } 662 res = fp->f_offset; 663 mtx_unlock(mtxp); 664 return (res); 665 } 666 667 void 668 foffset_unlock(struct file *fp, off_t val, int flags) 669 { 670 struct mtx *mtxp; 671 672 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 673 674 #if OFF_MAX <= LONG_MAX 675 if ((flags & FOF_NOLOCK) != 0) { 676 if ((flags & FOF_NOUPDATE) == 0) 677 fp->f_offset = val; 678 if ((flags & FOF_NEXTOFF) != 0) 679 fp->f_nextoff = val; 680 return; 681 } 682 #endif 683 684 mtxp = mtx_pool_find(mtxpool_sleep, fp); 685 mtx_lock(mtxp); 686 if ((flags & FOF_NOUPDATE) == 0) 687 fp->f_offset = val; 688 if ((flags & FOF_NEXTOFF) != 0) 689 fp->f_nextoff = val; 690 if ((flags & FOF_NOLOCK) == 0) { 691 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, 692 ("Lost FOFFSET_LOCKED")); 693 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) 694 wakeup(&fp->f_vnread_flags); 695 fp->f_vnread_flags = 0; 696 } 697 mtx_unlock(mtxp); 698 } 699 700 void 701 foffset_lock_uio(struct file *fp, struct uio *uio, int flags) 702 { 703 704 if ((flags & FOF_OFFSET) == 0) 705 uio->uio_offset = foffset_lock(fp, flags); 706 } 707 708 void 709 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) 710 { 711 712 if ((flags & FOF_OFFSET) == 0) 713 foffset_unlock(fp, uio->uio_offset, flags); 714 } 715 716 static int 717 get_advice(struct file *fp, struct uio *uio) 718 { 719 struct mtx *mtxp; 720 int ret; 721 722 ret = POSIX_FADV_NORMAL; 723 if (fp->f_advice == NULL) 724 return (ret); 725 726 mtxp = mtx_pool_find(mtxpool_sleep, fp); 727 mtx_lock(mtxp); 728 if (uio->uio_offset >= fp->f_advice->fa_start && 729 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) 730 ret = fp->f_advice->fa_advice; 731 mtx_unlock(mtxp); 732 return (ret); 733 } 734 735 /* 736 * File table vnode read routine. 737 */ 738 static int 739 vn_read(fp, uio, active_cred, flags, td) 740 struct file *fp; 741 struct uio *uio; 742 struct ucred *active_cred; 743 int flags; 744 struct thread *td; 745 { 746 struct vnode *vp; 747 struct mtx *mtxp; 748 int error, ioflag; 749 int advice; 750 off_t offset, start, end; 751 752 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 753 uio->uio_td, td)); 754 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 755 vp = fp->f_vnode; 756 ioflag = 0; 757 if (fp->f_flag & FNONBLOCK) 758 ioflag |= IO_NDELAY; 759 if (fp->f_flag & O_DIRECT) 760 ioflag |= IO_DIRECT; 761 advice = get_advice(fp, uio); 762 vn_lock(vp, LK_SHARED | LK_RETRY); 763 764 switch (advice) { 765 case POSIX_FADV_NORMAL: 766 case POSIX_FADV_SEQUENTIAL: 767 case POSIX_FADV_NOREUSE: 768 ioflag |= sequential_heuristic(uio, fp); 769 break; 770 case POSIX_FADV_RANDOM: 771 /* Disable read-ahead for random I/O. */ 772 break; 773 } 774 offset = uio->uio_offset; 775 776 #ifdef MAC 777 error = mac_vnode_check_read(active_cred, fp->f_cred, vp); 778 if (error == 0) 779 #endif 780 error = VOP_READ(vp, uio, ioflag, fp->f_cred); 781 fp->f_nextoff = uio->uio_offset; 782 VOP_UNLOCK(vp, 0); 783 if (error == 0 && advice == POSIX_FADV_NOREUSE && 784 offset != uio->uio_offset) { 785 /* 786 * Use POSIX_FADV_DONTNEED to flush clean pages and 787 * buffers for the backing file after a 788 * POSIX_FADV_NOREUSE read(2). To optimize the common 789 * case of using POSIX_FADV_NOREUSE with sequential 790 * access, track the previous implicit DONTNEED 791 * request and grow this request to include the 792 * current read(2) in addition to the previous 793 * DONTNEED. With purely sequential access this will 794 * cause the DONTNEED requests to continously grow to 795 * cover all of the previously read regions of the 796 * file. This allows filesystem blocks that are 797 * accessed by multiple calls to read(2) to be flushed 798 * once the last read(2) finishes. 799 */ 800 start = offset; 801 end = uio->uio_offset - 1; 802 mtxp = mtx_pool_find(mtxpool_sleep, fp); 803 mtx_lock(mtxp); 804 if (fp->f_advice != NULL && 805 fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { 806 if (start != 0 && fp->f_advice->fa_prevend + 1 == start) 807 start = fp->f_advice->fa_prevstart; 808 else if (fp->f_advice->fa_prevstart != 0 && 809 fp->f_advice->fa_prevstart == end + 1) 810 end = fp->f_advice->fa_prevend; 811 fp->f_advice->fa_prevstart = start; 812 fp->f_advice->fa_prevend = end; 813 } 814 mtx_unlock(mtxp); 815 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); 816 } 817 return (error); 818 } 819 820 /* 821 * File table vnode write routine. 822 */ 823 static int 824 vn_write(fp, uio, active_cred, flags, td) 825 struct file *fp; 826 struct uio *uio; 827 struct ucred *active_cred; 828 int flags; 829 struct thread *td; 830 { 831 struct vnode *vp; 832 struct mount *mp; 833 struct mtx *mtxp; 834 int error, ioflag, lock_flags; 835 int advice; 836 off_t offset, start, end; 837 838 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 839 uio->uio_td, td)); 840 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 841 vp = fp->f_vnode; 842 if (vp->v_type == VREG) 843 bwillwrite(); 844 ioflag = IO_UNIT; 845 if (vp->v_type == VREG && (fp->f_flag & O_APPEND)) 846 ioflag |= IO_APPEND; 847 if (fp->f_flag & FNONBLOCK) 848 ioflag |= IO_NDELAY; 849 if (fp->f_flag & O_DIRECT) 850 ioflag |= IO_DIRECT; 851 if ((fp->f_flag & O_FSYNC) || 852 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))) 853 ioflag |= IO_SYNC; 854 mp = NULL; 855 if (vp->v_type != VCHR && 856 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 857 goto unlock; 858 859 advice = get_advice(fp, uio); 860 861 if (MNT_SHARED_WRITES(mp) || 862 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) { 863 lock_flags = LK_SHARED; 864 } else { 865 lock_flags = LK_EXCLUSIVE; 866 } 867 868 vn_lock(vp, lock_flags | LK_RETRY); 869 switch (advice) { 870 case POSIX_FADV_NORMAL: 871 case POSIX_FADV_SEQUENTIAL: 872 case POSIX_FADV_NOREUSE: 873 ioflag |= sequential_heuristic(uio, fp); 874 break; 875 case POSIX_FADV_RANDOM: 876 /* XXX: Is this correct? */ 877 break; 878 } 879 offset = uio->uio_offset; 880 881 #ifdef MAC 882 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 883 if (error == 0) 884 #endif 885 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); 886 fp->f_nextoff = uio->uio_offset; 887 VOP_UNLOCK(vp, 0); 888 if (vp->v_type != VCHR) 889 vn_finished_write(mp); 890 if (error == 0 && advice == POSIX_FADV_NOREUSE && 891 offset != uio->uio_offset) { 892 /* 893 * Use POSIX_FADV_DONTNEED to flush clean pages and 894 * buffers for the backing file after a 895 * POSIX_FADV_NOREUSE write(2). To optimize the 896 * common case of using POSIX_FADV_NOREUSE with 897 * sequential access, track the previous implicit 898 * DONTNEED request and grow this request to include 899 * the current write(2) in addition to the previous 900 * DONTNEED. With purely sequential access this will 901 * cause the DONTNEED requests to continously grow to 902 * cover all of the previously written regions of the 903 * file. 904 * 905 * Note that the blocks just written are almost 906 * certainly still dirty, so this only works when 907 * VOP_ADVISE() calls from subsequent writes push out 908 * the data written by this write(2) once the backing 909 * buffers are clean. However, as compared to forcing 910 * IO_DIRECT, this gives much saner behavior. Write 911 * clustering is still allowed, and clean pages are 912 * merely moved to the cache page queue rather than 913 * outright thrown away. This means a subsequent 914 * read(2) can still avoid hitting the disk if the 915 * pages have not been reclaimed. 916 * 917 * This does make POSIX_FADV_NOREUSE largely useless 918 * with non-sequential access. However, sequential 919 * access is the more common use case and the flag is 920 * merely advisory. 921 */ 922 start = offset; 923 end = uio->uio_offset - 1; 924 mtxp = mtx_pool_find(mtxpool_sleep, fp); 925 mtx_lock(mtxp); 926 if (fp->f_advice != NULL && 927 fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { 928 if (start != 0 && fp->f_advice->fa_prevend + 1 == start) 929 start = fp->f_advice->fa_prevstart; 930 else if (fp->f_advice->fa_prevstart != 0 && 931 fp->f_advice->fa_prevstart == end + 1) 932 end = fp->f_advice->fa_prevend; 933 fp->f_advice->fa_prevstart = start; 934 fp->f_advice->fa_prevend = end; 935 } 936 mtx_unlock(mtxp); 937 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); 938 } 939 940 unlock: 941 return (error); 942 } 943 944 /* 945 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to 946 * prevent the following deadlock: 947 * 948 * Assume that the thread A reads from the vnode vp1 into userspace 949 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is 950 * currently not resident, then system ends up with the call chain 951 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> 952 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) 953 * which establishes lock order vp1->vn_lock, then vp2->vn_lock. 954 * If, at the same time, thread B reads from vnode vp2 into buffer buf2 955 * backed by the pages of vnode vp1, and some page in buf2 is not 956 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. 957 * 958 * To prevent the lock order reversal and deadlock, vn_io_fault() does 959 * not allow page faults to happen during VOP_READ() or VOP_WRITE(). 960 * Instead, it first tries to do the whole range i/o with pagefaults 961 * disabled. If all pages in the i/o buffer are resident and mapped, 962 * VOP will succeed (ignoring the genuine filesystem errors). 963 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do 964 * i/o in chunks, with all pages in the chunk prefaulted and held 965 * using vm_fault_quick_hold_pages(). 966 * 967 * Filesystems using this deadlock avoidance scheme should use the 968 * array of the held pages from uio, saved in the curthread->td_ma, 969 * instead of doing uiomove(). A helper function 970 * vn_io_fault_uiomove() converts uiomove request into 971 * uiomove_fromphys() over td_ma array. 972 * 973 * Since vnode locks do not cover the whole i/o anymore, rangelocks 974 * make the current i/o request atomic with respect to other i/os and 975 * truncations. 976 */ 977 978 /* 979 * Decode vn_io_fault_args and perform the corresponding i/o. 980 */ 981 static int 982 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio, 983 struct thread *td) 984 { 985 986 switch (args->kind) { 987 case VN_IO_FAULT_FOP: 988 return ((args->args.fop_args.doio)(args->args.fop_args.fp, 989 uio, args->cred, args->flags, td)); 990 case VN_IO_FAULT_VOP: 991 if (uio->uio_rw == UIO_READ) { 992 return (VOP_READ(args->args.vop_args.vp, uio, 993 args->flags, args->cred)); 994 } else if (uio->uio_rw == UIO_WRITE) { 995 return (VOP_WRITE(args->args.vop_args.vp, uio, 996 args->flags, args->cred)); 997 } 998 break; 999 } 1000 panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind, 1001 uio->uio_rw); 1002 } 1003 1004 /* 1005 * Common code for vn_io_fault(), agnostic to the kind of i/o request. 1006 * Uses vn_io_fault_doio() to make the call to an actual i/o function. 1007 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request 1008 * into args and call vn_io_fault1() to handle faults during the user 1009 * mode buffer accesses. 1010 */ 1011 static int 1012 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, 1013 struct thread *td) 1014 { 1015 vm_page_t ma[io_hold_cnt + 2]; 1016 struct uio *uio_clone, short_uio; 1017 struct iovec short_iovec[1]; 1018 vm_page_t *prev_td_ma; 1019 vm_prot_t prot; 1020 vm_offset_t addr, end; 1021 size_t len, resid; 1022 ssize_t adv; 1023 int error, cnt, save, saveheld, prev_td_ma_cnt; 1024 1025 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ; 1026 1027 /* 1028 * The UFS follows IO_UNIT directive and replays back both 1029 * uio_offset and uio_resid if an error is encountered during the 1030 * operation. But, since the iovec may be already advanced, 1031 * uio is still in an inconsistent state. 1032 * 1033 * Cache a copy of the original uio, which is advanced to the redo 1034 * point using UIO_NOCOPY below. 1035 */ 1036 uio_clone = cloneuio(uio); 1037 resid = uio->uio_resid; 1038 1039 short_uio.uio_segflg = UIO_USERSPACE; 1040 short_uio.uio_rw = uio->uio_rw; 1041 short_uio.uio_td = uio->uio_td; 1042 1043 save = vm_fault_disable_pagefaults(); 1044 error = vn_io_fault_doio(args, uio, td); 1045 if (error != EFAULT) 1046 goto out; 1047 1048 atomic_add_long(&vn_io_faults_cnt, 1); 1049 uio_clone->uio_segflg = UIO_NOCOPY; 1050 uiomove(NULL, resid - uio->uio_resid, uio_clone); 1051 uio_clone->uio_segflg = uio->uio_segflg; 1052 1053 saveheld = curthread_pflags_set(TDP_UIOHELD); 1054 prev_td_ma = td->td_ma; 1055 prev_td_ma_cnt = td->td_ma_cnt; 1056 1057 while (uio_clone->uio_resid != 0) { 1058 len = uio_clone->uio_iov->iov_len; 1059 if (len == 0) { 1060 KASSERT(uio_clone->uio_iovcnt >= 1, 1061 ("iovcnt underflow")); 1062 uio_clone->uio_iov++; 1063 uio_clone->uio_iovcnt--; 1064 continue; 1065 } 1066 if (len > io_hold_cnt * PAGE_SIZE) 1067 len = io_hold_cnt * PAGE_SIZE; 1068 addr = (uintptr_t)uio_clone->uio_iov->iov_base; 1069 end = round_page(addr + len); 1070 if (end < addr) { 1071 error = EFAULT; 1072 break; 1073 } 1074 cnt = atop(end - trunc_page(addr)); 1075 /* 1076 * A perfectly misaligned address and length could cause 1077 * both the start and the end of the chunk to use partial 1078 * page. +2 accounts for such a situation. 1079 */ 1080 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, 1081 addr, len, prot, ma, io_hold_cnt + 2); 1082 if (cnt == -1) { 1083 error = EFAULT; 1084 break; 1085 } 1086 short_uio.uio_iov = &short_iovec[0]; 1087 short_iovec[0].iov_base = (void *)addr; 1088 short_uio.uio_iovcnt = 1; 1089 short_uio.uio_resid = short_iovec[0].iov_len = len; 1090 short_uio.uio_offset = uio_clone->uio_offset; 1091 td->td_ma = ma; 1092 td->td_ma_cnt = cnt; 1093 1094 error = vn_io_fault_doio(args, &short_uio, td); 1095 vm_page_unhold_pages(ma, cnt); 1096 adv = len - short_uio.uio_resid; 1097 1098 uio_clone->uio_iov->iov_base = 1099 (char *)uio_clone->uio_iov->iov_base + adv; 1100 uio_clone->uio_iov->iov_len -= adv; 1101 uio_clone->uio_resid -= adv; 1102 uio_clone->uio_offset += adv; 1103 1104 uio->uio_resid -= adv; 1105 uio->uio_offset += adv; 1106 1107 if (error != 0 || adv == 0) 1108 break; 1109 } 1110 td->td_ma = prev_td_ma; 1111 td->td_ma_cnt = prev_td_ma_cnt; 1112 curthread_pflags_restore(saveheld); 1113 out: 1114 vm_fault_enable_pagefaults(save); 1115 free(uio_clone, M_IOV); 1116 return (error); 1117 } 1118 1119 static int 1120 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, 1121 int flags, struct thread *td) 1122 { 1123 fo_rdwr_t *doio; 1124 struct vnode *vp; 1125 void *rl_cookie; 1126 struct vn_io_fault_args args; 1127 int error; 1128 1129 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write; 1130 vp = fp->f_vnode; 1131 foffset_lock_uio(fp, uio, flags); 1132 if (do_vn_io_fault(vp, uio)) { 1133 args.kind = VN_IO_FAULT_FOP; 1134 args.args.fop_args.fp = fp; 1135 args.args.fop_args.doio = doio; 1136 args.cred = active_cred; 1137 args.flags = flags | FOF_OFFSET; 1138 if (uio->uio_rw == UIO_READ) { 1139 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, 1140 uio->uio_offset + uio->uio_resid); 1141 } else if ((fp->f_flag & O_APPEND) != 0 || 1142 (flags & FOF_OFFSET) == 0) { 1143 /* For appenders, punt and lock the whole range. */ 1144 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1145 } else { 1146 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, 1147 uio->uio_offset + uio->uio_resid); 1148 } 1149 error = vn_io_fault1(vp, uio, &args, td); 1150 vn_rangelock_unlock(vp, rl_cookie); 1151 } else { 1152 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 1153 } 1154 foffset_unlock_uio(fp, uio, flags); 1155 return (error); 1156 } 1157 1158 /* 1159 * Helper function to perform the requested uiomove operation using 1160 * the held pages for io->uio_iov[0].iov_base buffer instead of 1161 * copyin/copyout. Access to the pages with uiomove_fromphys() 1162 * instead of iov_base prevents page faults that could occur due to 1163 * pmap_collect() invalidating the mapping created by 1164 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or 1165 * object cleanup revoking the write access from page mappings. 1166 * 1167 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() 1168 * instead of plain uiomove(). 1169 */ 1170 int 1171 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) 1172 { 1173 struct uio transp_uio; 1174 struct iovec transp_iov[1]; 1175 struct thread *td; 1176 size_t adv; 1177 int error, pgadv; 1178 1179 td = curthread; 1180 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1181 uio->uio_segflg != UIO_USERSPACE) 1182 return (uiomove(data, xfersize, uio)); 1183 1184 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1185 transp_iov[0].iov_base = data; 1186 transp_uio.uio_iov = &transp_iov[0]; 1187 transp_uio.uio_iovcnt = 1; 1188 if (xfersize > uio->uio_resid) 1189 xfersize = uio->uio_resid; 1190 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; 1191 transp_uio.uio_offset = 0; 1192 transp_uio.uio_segflg = UIO_SYSSPACE; 1193 /* 1194 * Since transp_iov points to data, and td_ma page array 1195 * corresponds to original uio->uio_iov, we need to invert the 1196 * direction of the i/o operation as passed to 1197 * uiomove_fromphys(). 1198 */ 1199 switch (uio->uio_rw) { 1200 case UIO_WRITE: 1201 transp_uio.uio_rw = UIO_READ; 1202 break; 1203 case UIO_READ: 1204 transp_uio.uio_rw = UIO_WRITE; 1205 break; 1206 } 1207 transp_uio.uio_td = uio->uio_td; 1208 error = uiomove_fromphys(td->td_ma, 1209 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, 1210 xfersize, &transp_uio); 1211 adv = xfersize - transp_uio.uio_resid; 1212 pgadv = 1213 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - 1214 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); 1215 td->td_ma += pgadv; 1216 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1217 pgadv)); 1218 td->td_ma_cnt -= pgadv; 1219 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; 1220 uio->uio_iov->iov_len -= adv; 1221 uio->uio_resid -= adv; 1222 uio->uio_offset += adv; 1223 return (error); 1224 } 1225 1226 int 1227 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, 1228 struct uio *uio) 1229 { 1230 struct thread *td; 1231 vm_offset_t iov_base; 1232 int cnt, pgadv; 1233 1234 td = curthread; 1235 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1236 uio->uio_segflg != UIO_USERSPACE) 1237 return (uiomove_fromphys(ma, offset, xfersize, uio)); 1238 1239 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1240 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize; 1241 iov_base = (vm_offset_t)uio->uio_iov->iov_base; 1242 switch (uio->uio_rw) { 1243 case UIO_WRITE: 1244 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma, 1245 offset, cnt); 1246 break; 1247 case UIO_READ: 1248 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK, 1249 cnt); 1250 break; 1251 } 1252 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT); 1253 td->td_ma += pgadv; 1254 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1255 pgadv)); 1256 td->td_ma_cnt -= pgadv; 1257 uio->uio_iov->iov_base = (char *)(iov_base + cnt); 1258 uio->uio_iov->iov_len -= cnt; 1259 uio->uio_resid -= cnt; 1260 uio->uio_offset += cnt; 1261 return (0); 1262 } 1263 1264 1265 /* 1266 * File table truncate routine. 1267 */ 1268 static int 1269 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1270 struct thread *td) 1271 { 1272 struct vattr vattr; 1273 struct mount *mp; 1274 struct vnode *vp; 1275 void *rl_cookie; 1276 int error; 1277 1278 vp = fp->f_vnode; 1279 1280 /* 1281 * Lock the whole range for truncation. Otherwise split i/o 1282 * might happen partly before and partly after the truncation. 1283 */ 1284 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1285 error = vn_start_write(vp, &mp, V_WAIT | PCATCH); 1286 if (error) 1287 goto out1; 1288 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1289 if (vp->v_type == VDIR) { 1290 error = EISDIR; 1291 goto out; 1292 } 1293 #ifdef MAC 1294 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1295 if (error) 1296 goto out; 1297 #endif 1298 error = vn_writechk(vp); 1299 if (error == 0) { 1300 VATTR_NULL(&vattr); 1301 vattr.va_size = length; 1302 error = VOP_SETATTR(vp, &vattr, fp->f_cred); 1303 } 1304 out: 1305 VOP_UNLOCK(vp, 0); 1306 vn_finished_write(mp); 1307 out1: 1308 vn_rangelock_unlock(vp, rl_cookie); 1309 return (error); 1310 } 1311 1312 /* 1313 * File table vnode stat routine. 1314 */ 1315 static int 1316 vn_statfile(fp, sb, active_cred, td) 1317 struct file *fp; 1318 struct stat *sb; 1319 struct ucred *active_cred; 1320 struct thread *td; 1321 { 1322 struct vnode *vp = fp->f_vnode; 1323 int error; 1324 1325 vn_lock(vp, LK_SHARED | LK_RETRY); 1326 error = vn_stat(vp, sb, active_cred, fp->f_cred, td); 1327 VOP_UNLOCK(vp, 0); 1328 1329 return (error); 1330 } 1331 1332 /* 1333 * Stat a vnode; implementation for the stat syscall 1334 */ 1335 int 1336 vn_stat(vp, sb, active_cred, file_cred, td) 1337 struct vnode *vp; 1338 register struct stat *sb; 1339 struct ucred *active_cred; 1340 struct ucred *file_cred; 1341 struct thread *td; 1342 { 1343 struct vattr vattr; 1344 register struct vattr *vap; 1345 int error; 1346 u_short mode; 1347 1348 #ifdef MAC 1349 error = mac_vnode_check_stat(active_cred, file_cred, vp); 1350 if (error) 1351 return (error); 1352 #endif 1353 1354 vap = &vattr; 1355 1356 /* 1357 * Initialize defaults for new and unusual fields, so that file 1358 * systems which don't support these fields don't need to know 1359 * about them. 1360 */ 1361 vap->va_birthtime.tv_sec = -1; 1362 vap->va_birthtime.tv_nsec = 0; 1363 vap->va_fsid = VNOVAL; 1364 vap->va_rdev = NODEV; 1365 1366 error = VOP_GETATTR(vp, vap, active_cred); 1367 if (error) 1368 return (error); 1369 1370 /* 1371 * Zero the spare stat fields 1372 */ 1373 bzero(sb, sizeof *sb); 1374 1375 /* 1376 * Copy from vattr table 1377 */ 1378 if (vap->va_fsid != VNOVAL) 1379 sb->st_dev = vap->va_fsid; 1380 else 1381 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; 1382 sb->st_ino = vap->va_fileid; 1383 mode = vap->va_mode; 1384 switch (vap->va_type) { 1385 case VREG: 1386 mode |= S_IFREG; 1387 break; 1388 case VDIR: 1389 mode |= S_IFDIR; 1390 break; 1391 case VBLK: 1392 mode |= S_IFBLK; 1393 break; 1394 case VCHR: 1395 mode |= S_IFCHR; 1396 break; 1397 case VLNK: 1398 mode |= S_IFLNK; 1399 break; 1400 case VSOCK: 1401 mode |= S_IFSOCK; 1402 break; 1403 case VFIFO: 1404 mode |= S_IFIFO; 1405 break; 1406 default: 1407 return (EBADF); 1408 }; 1409 sb->st_mode = mode; 1410 sb->st_nlink = vap->va_nlink; 1411 sb->st_uid = vap->va_uid; 1412 sb->st_gid = vap->va_gid; 1413 sb->st_rdev = vap->va_rdev; 1414 if (vap->va_size > OFF_MAX) 1415 return (EOVERFLOW); 1416 sb->st_size = vap->va_size; 1417 sb->st_atim = vap->va_atime; 1418 sb->st_mtim = vap->va_mtime; 1419 sb->st_ctim = vap->va_ctime; 1420 sb->st_birthtim = vap->va_birthtime; 1421 1422 /* 1423 * According to www.opengroup.org, the meaning of st_blksize is 1424 * "a filesystem-specific preferred I/O block size for this 1425 * object. In some filesystem types, this may vary from file 1426 * to file" 1427 * Use miminum/default of PAGE_SIZE (e.g. for VCHR). 1428 */ 1429 1430 sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize); 1431 1432 sb->st_flags = vap->va_flags; 1433 if (priv_check(td, PRIV_VFS_GENERATION)) 1434 sb->st_gen = 0; 1435 else 1436 sb->st_gen = vap->va_gen; 1437 1438 sb->st_blocks = vap->va_bytes / S_BLKSIZE; 1439 return (0); 1440 } 1441 1442 /* 1443 * File table vnode ioctl routine. 1444 */ 1445 static int 1446 vn_ioctl(fp, com, data, active_cred, td) 1447 struct file *fp; 1448 u_long com; 1449 void *data; 1450 struct ucred *active_cred; 1451 struct thread *td; 1452 { 1453 struct vattr vattr; 1454 struct vnode *vp; 1455 int error; 1456 1457 vp = fp->f_vnode; 1458 switch (vp->v_type) { 1459 case VDIR: 1460 case VREG: 1461 switch (com) { 1462 case FIONREAD: 1463 vn_lock(vp, LK_SHARED | LK_RETRY); 1464 error = VOP_GETATTR(vp, &vattr, active_cred); 1465 VOP_UNLOCK(vp, 0); 1466 if (error == 0) 1467 *(int *)data = vattr.va_size - fp->f_offset; 1468 return (error); 1469 case FIONBIO: 1470 case FIOASYNC: 1471 return (0); 1472 default: 1473 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1474 active_cred, td)); 1475 } 1476 default: 1477 return (ENOTTY); 1478 } 1479 } 1480 1481 /* 1482 * File table vnode poll routine. 1483 */ 1484 static int 1485 vn_poll(fp, events, active_cred, td) 1486 struct file *fp; 1487 int events; 1488 struct ucred *active_cred; 1489 struct thread *td; 1490 { 1491 struct vnode *vp; 1492 int error; 1493 1494 vp = fp->f_vnode; 1495 #ifdef MAC 1496 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1497 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); 1498 VOP_UNLOCK(vp, 0); 1499 if (!error) 1500 #endif 1501 1502 error = VOP_POLL(vp, events, fp->f_cred, td); 1503 return (error); 1504 } 1505 1506 /* 1507 * Acquire the requested lock and then check for validity. LK_RETRY 1508 * permits vn_lock to return doomed vnodes. 1509 */ 1510 int 1511 _vn_lock(struct vnode *vp, int flags, char *file, int line) 1512 { 1513 int error; 1514 1515 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 1516 ("vn_lock called with no locktype.")); 1517 do { 1518 #ifdef DEBUG_VFS_LOCKS 1519 KASSERT(vp->v_holdcnt != 0, 1520 ("vn_lock %p: zero hold count", vp)); 1521 #endif 1522 error = VOP_LOCK1(vp, flags, file, line); 1523 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */ 1524 KASSERT((flags & LK_RETRY) == 0 || error == 0, 1525 ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)", 1526 flags, error)); 1527 /* 1528 * Callers specify LK_RETRY if they wish to get dead vnodes. 1529 * If RETRY is not set, we return ENOENT instead. 1530 */ 1531 if (error == 0 && vp->v_iflag & VI_DOOMED && 1532 (flags & LK_RETRY) == 0) { 1533 VOP_UNLOCK(vp, 0); 1534 error = ENOENT; 1535 break; 1536 } 1537 } while (flags & LK_RETRY && error != 0); 1538 return (error); 1539 } 1540 1541 /* 1542 * File table vnode close routine. 1543 */ 1544 static int 1545 vn_closefile(fp, td) 1546 struct file *fp; 1547 struct thread *td; 1548 { 1549 struct vnode *vp; 1550 struct flock lf; 1551 int error; 1552 1553 vp = fp->f_vnode; 1554 fp->f_ops = &badfileops; 1555 1556 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) 1557 vref(vp); 1558 1559 error = vn_close(vp, fp->f_flag, fp->f_cred, td); 1560 1561 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) { 1562 lf.l_whence = SEEK_SET; 1563 lf.l_start = 0; 1564 lf.l_len = 0; 1565 lf.l_type = F_UNLCK; 1566 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); 1567 vrele(vp); 1568 } 1569 return (error); 1570 } 1571 1572 /* 1573 * Preparing to start a filesystem write operation. If the operation is 1574 * permitted, then we bump the count of operations in progress and 1575 * proceed. If a suspend request is in progress, we wait until the 1576 * suspension is over, and then proceed. 1577 */ 1578 static int 1579 vn_start_write_locked(struct mount *mp, int flags) 1580 { 1581 int error; 1582 1583 mtx_assert(MNT_MTX(mp), MA_OWNED); 1584 error = 0; 1585 1586 /* 1587 * Check on status of suspension. 1588 */ 1589 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || 1590 mp->mnt_susp_owner != curthread) { 1591 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1592 if (flags & V_NOWAIT) { 1593 error = EWOULDBLOCK; 1594 goto unlock; 1595 } 1596 error = msleep(&mp->mnt_flag, MNT_MTX(mp), 1597 (PUSER - 1) | (flags & PCATCH), "suspfs", 0); 1598 if (error) 1599 goto unlock; 1600 } 1601 } 1602 if (flags & V_XSLEEP) 1603 goto unlock; 1604 mp->mnt_writeopcount++; 1605 unlock: 1606 if (error != 0 || (flags & V_XSLEEP) != 0) 1607 MNT_REL(mp); 1608 MNT_IUNLOCK(mp); 1609 return (error); 1610 } 1611 1612 int 1613 vn_start_write(vp, mpp, flags) 1614 struct vnode *vp; 1615 struct mount **mpp; 1616 int flags; 1617 { 1618 struct mount *mp; 1619 int error; 1620 1621 error = 0; 1622 /* 1623 * If a vnode is provided, get and return the mount point that 1624 * to which it will write. 1625 */ 1626 if (vp != NULL) { 1627 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1628 *mpp = NULL; 1629 if (error != EOPNOTSUPP) 1630 return (error); 1631 return (0); 1632 } 1633 } 1634 if ((mp = *mpp) == NULL) 1635 return (0); 1636 1637 /* 1638 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1639 * a vfs_ref(). 1640 * As long as a vnode is not provided we need to acquire a 1641 * refcount for the provided mountpoint too, in order to 1642 * emulate a vfs_ref(). 1643 */ 1644 MNT_ILOCK(mp); 1645 if (vp == NULL) 1646 MNT_REF(mp); 1647 1648 return (vn_start_write_locked(mp, flags)); 1649 } 1650 1651 /* 1652 * Secondary suspension. Used by operations such as vop_inactive 1653 * routines that are needed by the higher level functions. These 1654 * are allowed to proceed until all the higher level functions have 1655 * completed (indicated by mnt_writeopcount dropping to zero). At that 1656 * time, these operations are halted until the suspension is over. 1657 */ 1658 int 1659 vn_start_secondary_write(vp, mpp, flags) 1660 struct vnode *vp; 1661 struct mount **mpp; 1662 int flags; 1663 { 1664 struct mount *mp; 1665 int error; 1666 1667 retry: 1668 if (vp != NULL) { 1669 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1670 *mpp = NULL; 1671 if (error != EOPNOTSUPP) 1672 return (error); 1673 return (0); 1674 } 1675 } 1676 /* 1677 * If we are not suspended or have not yet reached suspended 1678 * mode, then let the operation proceed. 1679 */ 1680 if ((mp = *mpp) == NULL) 1681 return (0); 1682 1683 /* 1684 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1685 * a vfs_ref(). 1686 * As long as a vnode is not provided we need to acquire a 1687 * refcount for the provided mountpoint too, in order to 1688 * emulate a vfs_ref(). 1689 */ 1690 MNT_ILOCK(mp); 1691 if (vp == NULL) 1692 MNT_REF(mp); 1693 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { 1694 mp->mnt_secondary_writes++; 1695 mp->mnt_secondary_accwrites++; 1696 MNT_IUNLOCK(mp); 1697 return (0); 1698 } 1699 if (flags & V_NOWAIT) { 1700 MNT_REL(mp); 1701 MNT_IUNLOCK(mp); 1702 return (EWOULDBLOCK); 1703 } 1704 /* 1705 * Wait for the suspension to finish. 1706 */ 1707 error = msleep(&mp->mnt_flag, MNT_MTX(mp), 1708 (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0); 1709 vfs_rel(mp); 1710 if (error == 0) 1711 goto retry; 1712 return (error); 1713 } 1714 1715 /* 1716 * Filesystem write operation has completed. If we are suspending and this 1717 * operation is the last one, notify the suspender that the suspension is 1718 * now in effect. 1719 */ 1720 void 1721 vn_finished_write(mp) 1722 struct mount *mp; 1723 { 1724 if (mp == NULL) 1725 return; 1726 MNT_ILOCK(mp); 1727 MNT_REL(mp); 1728 mp->mnt_writeopcount--; 1729 if (mp->mnt_writeopcount < 0) 1730 panic("vn_finished_write: neg cnt"); 1731 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1732 mp->mnt_writeopcount <= 0) 1733 wakeup(&mp->mnt_writeopcount); 1734 MNT_IUNLOCK(mp); 1735 } 1736 1737 1738 /* 1739 * Filesystem secondary write operation has completed. If we are 1740 * suspending and this operation is the last one, notify the suspender 1741 * that the suspension is now in effect. 1742 */ 1743 void 1744 vn_finished_secondary_write(mp) 1745 struct mount *mp; 1746 { 1747 if (mp == NULL) 1748 return; 1749 MNT_ILOCK(mp); 1750 MNT_REL(mp); 1751 mp->mnt_secondary_writes--; 1752 if (mp->mnt_secondary_writes < 0) 1753 panic("vn_finished_secondary_write: neg cnt"); 1754 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1755 mp->mnt_secondary_writes <= 0) 1756 wakeup(&mp->mnt_secondary_writes); 1757 MNT_IUNLOCK(mp); 1758 } 1759 1760 1761 1762 /* 1763 * Request a filesystem to suspend write operations. 1764 */ 1765 int 1766 vfs_write_suspend(struct mount *mp, int flags) 1767 { 1768 int error; 1769 1770 MNT_ILOCK(mp); 1771 if (mp->mnt_susp_owner == curthread) { 1772 MNT_IUNLOCK(mp); 1773 return (EALREADY); 1774 } 1775 while (mp->mnt_kern_flag & MNTK_SUSPEND) 1776 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); 1777 1778 /* 1779 * Unmount holds a write reference on the mount point. If we 1780 * own busy reference and drain for writers, we deadlock with 1781 * the reference draining in the unmount path. Callers of 1782 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if 1783 * vfs_busy() reference is owned and caller is not in the 1784 * unmount context. 1785 */ 1786 if ((flags & VS_SKIP_UNMOUNT) != 0 && 1787 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 1788 MNT_IUNLOCK(mp); 1789 return (EBUSY); 1790 } 1791 1792 mp->mnt_kern_flag |= MNTK_SUSPEND; 1793 mp->mnt_susp_owner = curthread; 1794 if (mp->mnt_writeopcount > 0) 1795 (void) msleep(&mp->mnt_writeopcount, 1796 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); 1797 else 1798 MNT_IUNLOCK(mp); 1799 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) 1800 vfs_write_resume(mp, 0); 1801 return (error); 1802 } 1803 1804 /* 1805 * Request a filesystem to resume write operations. 1806 */ 1807 void 1808 vfs_write_resume(struct mount *mp, int flags) 1809 { 1810 1811 MNT_ILOCK(mp); 1812 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1813 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); 1814 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | 1815 MNTK_SUSPENDED); 1816 mp->mnt_susp_owner = NULL; 1817 wakeup(&mp->mnt_writeopcount); 1818 wakeup(&mp->mnt_flag); 1819 curthread->td_pflags &= ~TDP_IGNSUSP; 1820 if ((flags & VR_START_WRITE) != 0) { 1821 MNT_REF(mp); 1822 mp->mnt_writeopcount++; 1823 } 1824 MNT_IUNLOCK(mp); 1825 if ((flags & VR_NO_SUSPCLR) == 0) 1826 VFS_SUSP_CLEAN(mp); 1827 } else if ((flags & VR_START_WRITE) != 0) { 1828 MNT_REF(mp); 1829 vn_start_write_locked(mp, 0); 1830 } else { 1831 MNT_IUNLOCK(mp); 1832 } 1833 } 1834 1835 /* 1836 * Helper loop around vfs_write_suspend() for filesystem unmount VFS 1837 * methods. 1838 */ 1839 int 1840 vfs_write_suspend_umnt(struct mount *mp) 1841 { 1842 int error; 1843 1844 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0, 1845 ("vfs_write_suspend_umnt: recursed")); 1846 1847 /* dounmount() already called vn_start_write(). */ 1848 for (;;) { 1849 vn_finished_write(mp); 1850 error = vfs_write_suspend(mp, 0); 1851 if (error != 0) 1852 return (error); 1853 MNT_ILOCK(mp); 1854 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0) 1855 break; 1856 MNT_IUNLOCK(mp); 1857 vn_start_write(NULL, &mp, V_WAIT); 1858 } 1859 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 1860 wakeup(&mp->mnt_flag); 1861 MNT_IUNLOCK(mp); 1862 curthread->td_pflags |= TDP_IGNSUSP; 1863 return (0); 1864 } 1865 1866 /* 1867 * Implement kqueues for files by translating it to vnode operation. 1868 */ 1869 static int 1870 vn_kqfilter(struct file *fp, struct knote *kn) 1871 { 1872 1873 return (VOP_KQFILTER(fp->f_vnode, kn)); 1874 } 1875 1876 /* 1877 * Simplified in-kernel wrapper calls for extended attribute access. 1878 * Both calls pass in a NULL credential, authorizing as "kernel" access. 1879 * Set IO_NODELOCKED in ioflg if the vnode is already locked. 1880 */ 1881 int 1882 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, 1883 const char *attrname, int *buflen, char *buf, struct thread *td) 1884 { 1885 struct uio auio; 1886 struct iovec iov; 1887 int error; 1888 1889 iov.iov_len = *buflen; 1890 iov.iov_base = buf; 1891 1892 auio.uio_iov = &iov; 1893 auio.uio_iovcnt = 1; 1894 auio.uio_rw = UIO_READ; 1895 auio.uio_segflg = UIO_SYSSPACE; 1896 auio.uio_td = td; 1897 auio.uio_offset = 0; 1898 auio.uio_resid = *buflen; 1899 1900 if ((ioflg & IO_NODELOCKED) == 0) 1901 vn_lock(vp, LK_SHARED | LK_RETRY); 1902 1903 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1904 1905 /* authorize attribute retrieval as kernel */ 1906 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, 1907 td); 1908 1909 if ((ioflg & IO_NODELOCKED) == 0) 1910 VOP_UNLOCK(vp, 0); 1911 1912 if (error == 0) { 1913 *buflen = *buflen - auio.uio_resid; 1914 } 1915 1916 return (error); 1917 } 1918 1919 /* 1920 * XXX failure mode if partially written? 1921 */ 1922 int 1923 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, 1924 const char *attrname, int buflen, char *buf, struct thread *td) 1925 { 1926 struct uio auio; 1927 struct iovec iov; 1928 struct mount *mp; 1929 int error; 1930 1931 iov.iov_len = buflen; 1932 iov.iov_base = buf; 1933 1934 auio.uio_iov = &iov; 1935 auio.uio_iovcnt = 1; 1936 auio.uio_rw = UIO_WRITE; 1937 auio.uio_segflg = UIO_SYSSPACE; 1938 auio.uio_td = td; 1939 auio.uio_offset = 0; 1940 auio.uio_resid = buflen; 1941 1942 if ((ioflg & IO_NODELOCKED) == 0) { 1943 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 1944 return (error); 1945 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1946 } 1947 1948 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1949 1950 /* authorize attribute setting as kernel */ 1951 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); 1952 1953 if ((ioflg & IO_NODELOCKED) == 0) { 1954 vn_finished_write(mp); 1955 VOP_UNLOCK(vp, 0); 1956 } 1957 1958 return (error); 1959 } 1960 1961 int 1962 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, 1963 const char *attrname, struct thread *td) 1964 { 1965 struct mount *mp; 1966 int error; 1967 1968 if ((ioflg & IO_NODELOCKED) == 0) { 1969 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 1970 return (error); 1971 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1972 } 1973 1974 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1975 1976 /* authorize attribute removal as kernel */ 1977 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); 1978 if (error == EOPNOTSUPP) 1979 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, 1980 NULL, td); 1981 1982 if ((ioflg & IO_NODELOCKED) == 0) { 1983 vn_finished_write(mp); 1984 VOP_UNLOCK(vp, 0); 1985 } 1986 1987 return (error); 1988 } 1989 1990 static int 1991 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags, 1992 struct vnode **rvp) 1993 { 1994 1995 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp)); 1996 } 1997 1998 int 1999 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) 2000 { 2001 2002 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino, 2003 lkflags, rvp)); 2004 } 2005 2006 int 2007 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, 2008 int lkflags, struct vnode **rvp) 2009 { 2010 struct mount *mp; 2011 int ltype, error; 2012 2013 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get"); 2014 mp = vp->v_mount; 2015 ltype = VOP_ISLOCKED(vp); 2016 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, 2017 ("vn_vget_ino: vp not locked")); 2018 error = vfs_busy(mp, MBF_NOWAIT); 2019 if (error != 0) { 2020 vfs_ref(mp); 2021 VOP_UNLOCK(vp, 0); 2022 error = vfs_busy(mp, 0); 2023 vn_lock(vp, ltype | LK_RETRY); 2024 vfs_rel(mp); 2025 if (error != 0) 2026 return (ENOENT); 2027 if (vp->v_iflag & VI_DOOMED) { 2028 vfs_unbusy(mp); 2029 return (ENOENT); 2030 } 2031 } 2032 VOP_UNLOCK(vp, 0); 2033 error = alloc(mp, alloc_arg, lkflags, rvp); 2034 vfs_unbusy(mp); 2035 if (*rvp != vp) 2036 vn_lock(vp, ltype | LK_RETRY); 2037 if (vp->v_iflag & VI_DOOMED) { 2038 if (error == 0) { 2039 if (*rvp == vp) 2040 vunref(vp); 2041 else 2042 vput(*rvp); 2043 } 2044 error = ENOENT; 2045 } 2046 return (error); 2047 } 2048 2049 int 2050 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, 2051 const struct thread *td) 2052 { 2053 2054 if (vp->v_type != VREG || td == NULL) 2055 return (0); 2056 PROC_LOCK(td->td_proc); 2057 if ((uoff_t)uio->uio_offset + uio->uio_resid > 2058 lim_cur(td->td_proc, RLIMIT_FSIZE)) { 2059 kern_psignal(td->td_proc, SIGXFSZ); 2060 PROC_UNLOCK(td->td_proc); 2061 return (EFBIG); 2062 } 2063 PROC_UNLOCK(td->td_proc); 2064 return (0); 2065 } 2066 2067 int 2068 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 2069 struct thread *td) 2070 { 2071 struct vnode *vp; 2072 2073 vp = fp->f_vnode; 2074 #ifdef AUDIT 2075 vn_lock(vp, LK_SHARED | LK_RETRY); 2076 AUDIT_ARG_VNODE1(vp); 2077 VOP_UNLOCK(vp, 0); 2078 #endif 2079 return (setfmode(td, active_cred, vp, mode)); 2080 } 2081 2082 int 2083 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 2084 struct thread *td) 2085 { 2086 struct vnode *vp; 2087 2088 vp = fp->f_vnode; 2089 #ifdef AUDIT 2090 vn_lock(vp, LK_SHARED | LK_RETRY); 2091 AUDIT_ARG_VNODE1(vp); 2092 VOP_UNLOCK(vp, 0); 2093 #endif 2094 return (setfown(td, active_cred, vp, uid, gid)); 2095 } 2096 2097 void 2098 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 2099 { 2100 vm_object_t object; 2101 2102 if ((object = vp->v_object) == NULL) 2103 return; 2104 VM_OBJECT_WLOCK(object); 2105 vm_object_page_remove(object, start, end, 0); 2106 VM_OBJECT_WUNLOCK(object); 2107 } 2108 2109 int 2110 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) 2111 { 2112 struct vattr va; 2113 daddr_t bn, bnp; 2114 uint64_t bsize; 2115 off_t noff; 2116 int error; 2117 2118 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 2119 ("Wrong command %lu", cmd)); 2120 2121 if (vn_lock(vp, LK_SHARED) != 0) 2122 return (EBADF); 2123 if (vp->v_type != VREG) { 2124 error = ENOTTY; 2125 goto unlock; 2126 } 2127 error = VOP_GETATTR(vp, &va, cred); 2128 if (error != 0) 2129 goto unlock; 2130 noff = *off; 2131 if (noff >= va.va_size) { 2132 error = ENXIO; 2133 goto unlock; 2134 } 2135 bsize = vp->v_mount->mnt_stat.f_iosize; 2136 for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) { 2137 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); 2138 if (error == EOPNOTSUPP) { 2139 error = ENOTTY; 2140 goto unlock; 2141 } 2142 if ((bnp == -1 && cmd == FIOSEEKHOLE) || 2143 (bnp != -1 && cmd == FIOSEEKDATA)) { 2144 noff = bn * bsize; 2145 if (noff < *off) 2146 noff = *off; 2147 goto unlock; 2148 } 2149 } 2150 if (noff > va.va_size) 2151 noff = va.va_size; 2152 /* noff == va.va_size. There is an implicit hole at the end of file. */ 2153 if (cmd == FIOSEEKDATA) 2154 error = ENXIO; 2155 unlock: 2156 VOP_UNLOCK(vp, 0); 2157 if (error == 0) 2158 *off = noff; 2159 return (error); 2160 } 2161 2162 int 2163 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td) 2164 { 2165 struct ucred *cred; 2166 struct vnode *vp; 2167 struct vattr vattr; 2168 off_t foffset, size; 2169 int error, noneg; 2170 2171 cred = td->td_ucred; 2172 vp = fp->f_vnode; 2173 foffset = foffset_lock(fp, 0); 2174 noneg = (vp->v_type != VCHR); 2175 error = 0; 2176 switch (whence) { 2177 case L_INCR: 2178 if (noneg && 2179 (foffset < 0 || 2180 (offset > 0 && foffset > OFF_MAX - offset))) { 2181 error = EOVERFLOW; 2182 break; 2183 } 2184 offset += foffset; 2185 break; 2186 case L_XTND: 2187 vn_lock(vp, LK_SHARED | LK_RETRY); 2188 error = VOP_GETATTR(vp, &vattr, cred); 2189 VOP_UNLOCK(vp, 0); 2190 if (error) 2191 break; 2192 2193 /* 2194 * If the file references a disk device, then fetch 2195 * the media size and use that to determine the ending 2196 * offset. 2197 */ 2198 if (vattr.va_size == 0 && vp->v_type == VCHR && 2199 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0) 2200 vattr.va_size = size; 2201 if (noneg && 2202 (vattr.va_size > OFF_MAX || 2203 (offset > 0 && vattr.va_size > OFF_MAX - offset))) { 2204 error = EOVERFLOW; 2205 break; 2206 } 2207 offset += vattr.va_size; 2208 break; 2209 case L_SET: 2210 break; 2211 case SEEK_DATA: 2212 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td); 2213 break; 2214 case SEEK_HOLE: 2215 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td); 2216 break; 2217 default: 2218 error = EINVAL; 2219 } 2220 if (error == 0 && noneg && offset < 0) 2221 error = EINVAL; 2222 if (error != 0) 2223 goto drop; 2224 VFS_KNOTE_UNLOCKED(vp, 0); 2225 td->td_uretoff.tdu_off = offset; 2226 drop: 2227 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0); 2228 return (error); 2229 } 2230 2231 int 2232 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, 2233 struct thread *td) 2234 { 2235 int error; 2236 2237 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td); 2238 2239 /* 2240 * From utimes(2): 2241 * Grant permission if the caller is the owner of the file or 2242 * the super-user. If the time pointer is null, then write 2243 * permission on the file is also sufficient. 2244 * 2245 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes: 2246 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES 2247 * will be allowed to set the times [..] to the current 2248 * server time. 2249 */ 2250 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0) 2251 error = VOP_ACCESS(vp, VWRITE, cred, td); 2252 return (error); 2253 } 2254 2255 int 2256 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 2257 { 2258 struct vnode *vp; 2259 int error; 2260 2261 if (fp->f_type == DTYPE_FIFO) 2262 kif->kf_type = KF_TYPE_FIFO; 2263 else 2264 kif->kf_type = KF_TYPE_VNODE; 2265 vp = fp->f_vnode; 2266 vref(vp); 2267 FILEDESC_SUNLOCK(fdp); 2268 error = vn_fill_kinfo_vnode(vp, kif); 2269 vrele(vp); 2270 FILEDESC_SLOCK(fdp); 2271 return (error); 2272 } 2273 2274 int 2275 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif) 2276 { 2277 struct vattr va; 2278 char *fullpath, *freepath; 2279 int error; 2280 2281 kif->kf_vnode_type = vntype_to_kinfo(vp->v_type); 2282 freepath = NULL; 2283 fullpath = "-"; 2284 error = vn_fullpath(curthread, vp, &fullpath, &freepath); 2285 if (error == 0) { 2286 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); 2287 } 2288 if (freepath != NULL) 2289 free(freepath, M_TEMP); 2290 2291 /* 2292 * Retrieve vnode attributes. 2293 */ 2294 va.va_fsid = VNOVAL; 2295 va.va_rdev = NODEV; 2296 vn_lock(vp, LK_SHARED | LK_RETRY); 2297 error = VOP_GETATTR(vp, &va, curthread->td_ucred); 2298 VOP_UNLOCK(vp, 0); 2299 if (error != 0) 2300 return (error); 2301 if (va.va_fsid != VNOVAL) 2302 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid; 2303 else 2304 kif->kf_un.kf_file.kf_file_fsid = 2305 vp->v_mount->mnt_stat.f_fsid.val[0]; 2306 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid; 2307 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode); 2308 kif->kf_un.kf_file.kf_file_size = va.va_size; 2309 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev; 2310 return (0); 2311 } 2312