xref: /freebsd/sys/kern/vfs_vnops.c (revision f02f7422801bb39f5eaab8fc383fa7b70c467ff9)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/disk.h>
49 #include <sys/fcntl.h>
50 #include <sys/file.h>
51 #include <sys/kdb.h>
52 #include <sys/stat.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/limits.h>
56 #include <sys/lock.h>
57 #include <sys/mount.h>
58 #include <sys/mutex.h>
59 #include <sys/namei.h>
60 #include <sys/vnode.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/filio.h>
64 #include <sys/resourcevar.h>
65 #include <sys/rwlock.h>
66 #include <sys/sx.h>
67 #include <sys/sysctl.h>
68 #include <sys/ttycom.h>
69 #include <sys/conf.h>
70 #include <sys/syslog.h>
71 #include <sys/unistd.h>
72 #include <sys/user.h>
73 
74 #include <security/audit/audit.h>
75 #include <security/mac/mac_framework.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_extern.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 
84 static fo_rdwr_t	vn_read;
85 static fo_rdwr_t	vn_write;
86 static fo_rdwr_t	vn_io_fault;
87 static fo_truncate_t	vn_truncate;
88 static fo_ioctl_t	vn_ioctl;
89 static fo_poll_t	vn_poll;
90 static fo_kqfilter_t	vn_kqfilter;
91 static fo_stat_t	vn_statfile;
92 static fo_close_t	vn_closefile;
93 
94 struct 	fileops vnops = {
95 	.fo_read = vn_io_fault,
96 	.fo_write = vn_io_fault,
97 	.fo_truncate = vn_truncate,
98 	.fo_ioctl = vn_ioctl,
99 	.fo_poll = vn_poll,
100 	.fo_kqfilter = vn_kqfilter,
101 	.fo_stat = vn_statfile,
102 	.fo_close = vn_closefile,
103 	.fo_chmod = vn_chmod,
104 	.fo_chown = vn_chown,
105 	.fo_sendfile = vn_sendfile,
106 	.fo_seek = vn_seek,
107 	.fo_fill_kinfo = vn_fill_kinfo,
108 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
109 };
110 
111 static const int io_hold_cnt = 16;
112 static int vn_io_fault_enable = 1;
113 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
114     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
115 static u_long vn_io_faults_cnt;
116 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
117     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
118 
119 /*
120  * Returns true if vn_io_fault mode of handling the i/o request should
121  * be used.
122  */
123 static bool
124 do_vn_io_fault(struct vnode *vp, struct uio *uio)
125 {
126 	struct mount *mp;
127 
128 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
129 	    (mp = vp->v_mount) != NULL &&
130 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
131 }
132 
133 /*
134  * Structure used to pass arguments to vn_io_fault1(), to do either
135  * file- or vnode-based I/O calls.
136  */
137 struct vn_io_fault_args {
138 	enum {
139 		VN_IO_FAULT_FOP,
140 		VN_IO_FAULT_VOP
141 	} kind;
142 	struct ucred *cred;
143 	int flags;
144 	union {
145 		struct fop_args_tag {
146 			struct file *fp;
147 			fo_rdwr_t *doio;
148 		} fop_args;
149 		struct vop_args_tag {
150 			struct vnode *vp;
151 		} vop_args;
152 	} args;
153 };
154 
155 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
156     struct vn_io_fault_args *args, struct thread *td);
157 
158 int
159 vn_open(ndp, flagp, cmode, fp)
160 	struct nameidata *ndp;
161 	int *flagp, cmode;
162 	struct file *fp;
163 {
164 	struct thread *td = ndp->ni_cnd.cn_thread;
165 
166 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
167 }
168 
169 /*
170  * Common code for vnode open operations via a name lookup.
171  * Lookup the vnode and invoke VOP_CREATE if needed.
172  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
173  *
174  * Note that this does NOT free nameidata for the successful case,
175  * due to the NDINIT being done elsewhere.
176  */
177 int
178 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
179     struct ucred *cred, struct file *fp)
180 {
181 	struct vnode *vp;
182 	struct mount *mp;
183 	struct thread *td = ndp->ni_cnd.cn_thread;
184 	struct vattr vat;
185 	struct vattr *vap = &vat;
186 	int fmode, error;
187 
188 restart:
189 	fmode = *flagp;
190 	if (fmode & O_CREAT) {
191 		ndp->ni_cnd.cn_nameiop = CREATE;
192 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
193 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
194 			ndp->ni_cnd.cn_flags |= FOLLOW;
195 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
196 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
197 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
198 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
199 		bwillwrite();
200 		if ((error = namei(ndp)) != 0)
201 			return (error);
202 		if (ndp->ni_vp == NULL) {
203 			VATTR_NULL(vap);
204 			vap->va_type = VREG;
205 			vap->va_mode = cmode;
206 			if (fmode & O_EXCL)
207 				vap->va_vaflags |= VA_EXCLUSIVE;
208 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
209 				NDFREE(ndp, NDF_ONLY_PNBUF);
210 				vput(ndp->ni_dvp);
211 				if ((error = vn_start_write(NULL, &mp,
212 				    V_XSLEEP | PCATCH)) != 0)
213 					return (error);
214 				goto restart;
215 			}
216 #ifdef MAC
217 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
218 			    &ndp->ni_cnd, vap);
219 			if (error == 0)
220 #endif
221 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
222 						   &ndp->ni_cnd, vap);
223 			vput(ndp->ni_dvp);
224 			vn_finished_write(mp);
225 			if (error) {
226 				NDFREE(ndp, NDF_ONLY_PNBUF);
227 				return (error);
228 			}
229 			fmode &= ~O_TRUNC;
230 			vp = ndp->ni_vp;
231 		} else {
232 			if (ndp->ni_dvp == ndp->ni_vp)
233 				vrele(ndp->ni_dvp);
234 			else
235 				vput(ndp->ni_dvp);
236 			ndp->ni_dvp = NULL;
237 			vp = ndp->ni_vp;
238 			if (fmode & O_EXCL) {
239 				error = EEXIST;
240 				goto bad;
241 			}
242 			fmode &= ~O_CREAT;
243 		}
244 	} else {
245 		ndp->ni_cnd.cn_nameiop = LOOKUP;
246 		ndp->ni_cnd.cn_flags = ISOPEN |
247 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
248 		if (!(fmode & FWRITE))
249 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
250 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
251 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
252 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
253 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
254 		if ((error = namei(ndp)) != 0)
255 			return (error);
256 		vp = ndp->ni_vp;
257 	}
258 	error = vn_open_vnode(vp, fmode, cred, td, fp);
259 	if (error)
260 		goto bad;
261 	*flagp = fmode;
262 	return (0);
263 bad:
264 	NDFREE(ndp, NDF_ONLY_PNBUF);
265 	vput(vp);
266 	*flagp = fmode;
267 	ndp->ni_vp = NULL;
268 	return (error);
269 }
270 
271 /*
272  * Common code for vnode open operations once a vnode is located.
273  * Check permissions, and call the VOP_OPEN routine.
274  */
275 int
276 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
277     struct thread *td, struct file *fp)
278 {
279 	struct mount *mp;
280 	accmode_t accmode;
281 	struct flock lf;
282 	int error, have_flock, lock_flags, type;
283 
284 	if (vp->v_type == VLNK)
285 		return (EMLINK);
286 	if (vp->v_type == VSOCK)
287 		return (EOPNOTSUPP);
288 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
289 		return (ENOTDIR);
290 	accmode = 0;
291 	if (fmode & (FWRITE | O_TRUNC)) {
292 		if (vp->v_type == VDIR)
293 			return (EISDIR);
294 		accmode |= VWRITE;
295 	}
296 	if (fmode & FREAD)
297 		accmode |= VREAD;
298 	if (fmode & FEXEC)
299 		accmode |= VEXEC;
300 	if ((fmode & O_APPEND) && (fmode & FWRITE))
301 		accmode |= VAPPEND;
302 #ifdef MAC
303 	error = mac_vnode_check_open(cred, vp, accmode);
304 	if (error)
305 		return (error);
306 #endif
307 	if ((fmode & O_CREAT) == 0) {
308 		if (accmode & VWRITE) {
309 			error = vn_writechk(vp);
310 			if (error)
311 				return (error);
312 		}
313 		if (accmode) {
314 		        error = VOP_ACCESS(vp, accmode, cred, td);
315 			if (error)
316 				return (error);
317 		}
318 	}
319 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
320 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
321 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
322 		return (error);
323 
324 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
325 		KASSERT(fp != NULL, ("open with flock requires fp"));
326 		lock_flags = VOP_ISLOCKED(vp);
327 		VOP_UNLOCK(vp, 0);
328 		lf.l_whence = SEEK_SET;
329 		lf.l_start = 0;
330 		lf.l_len = 0;
331 		if (fmode & O_EXLOCK)
332 			lf.l_type = F_WRLCK;
333 		else
334 			lf.l_type = F_RDLCK;
335 		type = F_FLOCK;
336 		if ((fmode & FNONBLOCK) == 0)
337 			type |= F_WAIT;
338 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
339 		have_flock = (error == 0);
340 		vn_lock(vp, lock_flags | LK_RETRY);
341 		if (error == 0 && vp->v_iflag & VI_DOOMED)
342 			error = ENOENT;
343 		/*
344 		 * Another thread might have used this vnode as an
345 		 * executable while the vnode lock was dropped.
346 		 * Ensure the vnode is still able to be opened for
347 		 * writing after the lock has been obtained.
348 		 */
349 		if (error == 0 && accmode & VWRITE)
350 			error = vn_writechk(vp);
351 		if (error) {
352 			VOP_UNLOCK(vp, 0);
353 			if (have_flock) {
354 				lf.l_whence = SEEK_SET;
355 				lf.l_start = 0;
356 				lf.l_len = 0;
357 				lf.l_type = F_UNLCK;
358 				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
359 				    F_FLOCK);
360 			}
361 			vn_start_write(vp, &mp, V_WAIT);
362 			vn_lock(vp, lock_flags | LK_RETRY);
363 			(void)VOP_CLOSE(vp, fmode, cred, td);
364 			vn_finished_write(mp);
365 			/* Prevent second close from fdrop()->vn_close(). */
366 			if (fp != NULL)
367 				fp->f_ops= &badfileops;
368 			return (error);
369 		}
370 		fp->f_flag |= FHASLOCK;
371 	}
372 	if (fmode & FWRITE) {
373 		VOP_ADD_WRITECOUNT(vp, 1);
374 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
375 		    __func__, vp, vp->v_writecount);
376 	}
377 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
378 	return (0);
379 }
380 
381 /*
382  * Check for write permissions on the specified vnode.
383  * Prototype text segments cannot be written.
384  */
385 int
386 vn_writechk(vp)
387 	register struct vnode *vp;
388 {
389 
390 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
391 	/*
392 	 * If there's shared text associated with
393 	 * the vnode, try to free it up once.  If
394 	 * we fail, we can't allow writing.
395 	 */
396 	if (VOP_IS_TEXT(vp))
397 		return (ETXTBSY);
398 
399 	return (0);
400 }
401 
402 /*
403  * Vnode close call
404  */
405 int
406 vn_close(vp, flags, file_cred, td)
407 	register struct vnode *vp;
408 	int flags;
409 	struct ucred *file_cred;
410 	struct thread *td;
411 {
412 	struct mount *mp;
413 	int error, lock_flags;
414 
415 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
416 	    MNT_EXTENDED_SHARED(vp->v_mount))
417 		lock_flags = LK_SHARED;
418 	else
419 		lock_flags = LK_EXCLUSIVE;
420 
421 	vn_start_write(vp, &mp, V_WAIT);
422 	vn_lock(vp, lock_flags | LK_RETRY);
423 	if (flags & FWRITE) {
424 		VNASSERT(vp->v_writecount > 0, vp,
425 		    ("vn_close: negative writecount"));
426 		VOP_ADD_WRITECOUNT(vp, -1);
427 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
428 		    __func__, vp, vp->v_writecount);
429 	}
430 	error = VOP_CLOSE(vp, flags, file_cred, td);
431 	vput(vp);
432 	vn_finished_write(mp);
433 	return (error);
434 }
435 
436 /*
437  * Heuristic to detect sequential operation.
438  */
439 static int
440 sequential_heuristic(struct uio *uio, struct file *fp)
441 {
442 
443 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
444 	if (fp->f_flag & FRDAHEAD)
445 		return (fp->f_seqcount << IO_SEQSHIFT);
446 
447 	/*
448 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
449 	 * that the first I/O is normally considered to be slightly
450 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
451 	 * unless previous seeks have reduced f_seqcount to 0, in which
452 	 * case offset 0 is not special.
453 	 */
454 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
455 	    uio->uio_offset == fp->f_nextoff) {
456 		/*
457 		 * f_seqcount is in units of fixed-size blocks so that it
458 		 * depends mainly on the amount of sequential I/O and not
459 		 * much on the number of sequential I/O's.  The fixed size
460 		 * of 16384 is hard-coded here since it is (not quite) just
461 		 * a magic size that works well here.  This size is more
462 		 * closely related to the best I/O size for real disks than
463 		 * to any block size used by software.
464 		 */
465 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
466 		if (fp->f_seqcount > IO_SEQMAX)
467 			fp->f_seqcount = IO_SEQMAX;
468 		return (fp->f_seqcount << IO_SEQSHIFT);
469 	}
470 
471 	/* Not sequential.  Quickly draw-down sequentiality. */
472 	if (fp->f_seqcount > 1)
473 		fp->f_seqcount = 1;
474 	else
475 		fp->f_seqcount = 0;
476 	return (0);
477 }
478 
479 /*
480  * Package up an I/O request on a vnode into a uio and do it.
481  */
482 int
483 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
484     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
485     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
486 {
487 	struct uio auio;
488 	struct iovec aiov;
489 	struct mount *mp;
490 	struct ucred *cred;
491 	void *rl_cookie;
492 	struct vn_io_fault_args args;
493 	int error, lock_flags;
494 
495 	auio.uio_iov = &aiov;
496 	auio.uio_iovcnt = 1;
497 	aiov.iov_base = base;
498 	aiov.iov_len = len;
499 	auio.uio_resid = len;
500 	auio.uio_offset = offset;
501 	auio.uio_segflg = segflg;
502 	auio.uio_rw = rw;
503 	auio.uio_td = td;
504 	error = 0;
505 
506 	if ((ioflg & IO_NODELOCKED) == 0) {
507 		if (rw == UIO_READ) {
508 			rl_cookie = vn_rangelock_rlock(vp, offset,
509 			    offset + len);
510 		} else {
511 			rl_cookie = vn_rangelock_wlock(vp, offset,
512 			    offset + len);
513 		}
514 		mp = NULL;
515 		if (rw == UIO_WRITE) {
516 			if (vp->v_type != VCHR &&
517 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
518 			    != 0)
519 				goto out;
520 			if (MNT_SHARED_WRITES(mp) ||
521 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
522 				lock_flags = LK_SHARED;
523 			else
524 				lock_flags = LK_EXCLUSIVE;
525 		} else
526 			lock_flags = LK_SHARED;
527 		vn_lock(vp, lock_flags | LK_RETRY);
528 	} else
529 		rl_cookie = NULL;
530 
531 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
532 #ifdef MAC
533 	if ((ioflg & IO_NOMACCHECK) == 0) {
534 		if (rw == UIO_READ)
535 			error = mac_vnode_check_read(active_cred, file_cred,
536 			    vp);
537 		else
538 			error = mac_vnode_check_write(active_cred, file_cred,
539 			    vp);
540 	}
541 #endif
542 	if (error == 0) {
543 		if (file_cred != NULL)
544 			cred = file_cred;
545 		else
546 			cred = active_cred;
547 		if (do_vn_io_fault(vp, &auio)) {
548 			args.kind = VN_IO_FAULT_VOP;
549 			args.cred = cred;
550 			args.flags = ioflg;
551 			args.args.vop_args.vp = vp;
552 			error = vn_io_fault1(vp, &auio, &args, td);
553 		} else if (rw == UIO_READ) {
554 			error = VOP_READ(vp, &auio, ioflg, cred);
555 		} else /* if (rw == UIO_WRITE) */ {
556 			error = VOP_WRITE(vp, &auio, ioflg, cred);
557 		}
558 	}
559 	if (aresid)
560 		*aresid = auio.uio_resid;
561 	else
562 		if (auio.uio_resid && error == 0)
563 			error = EIO;
564 	if ((ioflg & IO_NODELOCKED) == 0) {
565 		VOP_UNLOCK(vp, 0);
566 		if (mp != NULL)
567 			vn_finished_write(mp);
568 	}
569  out:
570 	if (rl_cookie != NULL)
571 		vn_rangelock_unlock(vp, rl_cookie);
572 	return (error);
573 }
574 
575 /*
576  * Package up an I/O request on a vnode into a uio and do it.  The I/O
577  * request is split up into smaller chunks and we try to avoid saturating
578  * the buffer cache while potentially holding a vnode locked, so we
579  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
580  * to give other processes a chance to lock the vnode (either other processes
581  * core'ing the same binary, or unrelated processes scanning the directory).
582  */
583 int
584 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
585     file_cred, aresid, td)
586 	enum uio_rw rw;
587 	struct vnode *vp;
588 	void *base;
589 	size_t len;
590 	off_t offset;
591 	enum uio_seg segflg;
592 	int ioflg;
593 	struct ucred *active_cred;
594 	struct ucred *file_cred;
595 	size_t *aresid;
596 	struct thread *td;
597 {
598 	int error = 0;
599 	ssize_t iaresid;
600 
601 	do {
602 		int chunk;
603 
604 		/*
605 		 * Force `offset' to a multiple of MAXBSIZE except possibly
606 		 * for the first chunk, so that filesystems only need to
607 		 * write full blocks except possibly for the first and last
608 		 * chunks.
609 		 */
610 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
611 
612 		if (chunk > len)
613 			chunk = len;
614 		if (rw != UIO_READ && vp->v_type == VREG)
615 			bwillwrite();
616 		iaresid = 0;
617 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
618 		    ioflg, active_cred, file_cred, &iaresid, td);
619 		len -= chunk;	/* aresid calc already includes length */
620 		if (error)
621 			break;
622 		offset += chunk;
623 		base = (char *)base + chunk;
624 		kern_yield(PRI_USER);
625 	} while (len);
626 	if (aresid)
627 		*aresid = len + iaresid;
628 	return (error);
629 }
630 
631 off_t
632 foffset_lock(struct file *fp, int flags)
633 {
634 	struct mtx *mtxp;
635 	off_t res;
636 
637 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
638 
639 #if OFF_MAX <= LONG_MAX
640 	/*
641 	 * Caller only wants the current f_offset value.  Assume that
642 	 * the long and shorter integer types reads are atomic.
643 	 */
644 	if ((flags & FOF_NOLOCK) != 0)
645 		return (fp->f_offset);
646 #endif
647 
648 	/*
649 	 * According to McKusick the vn lock was protecting f_offset here.
650 	 * It is now protected by the FOFFSET_LOCKED flag.
651 	 */
652 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
653 	mtx_lock(mtxp);
654 	if ((flags & FOF_NOLOCK) == 0) {
655 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
656 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
657 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
658 			    "vofflock", 0);
659 		}
660 		fp->f_vnread_flags |= FOFFSET_LOCKED;
661 	}
662 	res = fp->f_offset;
663 	mtx_unlock(mtxp);
664 	return (res);
665 }
666 
667 void
668 foffset_unlock(struct file *fp, off_t val, int flags)
669 {
670 	struct mtx *mtxp;
671 
672 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
673 
674 #if OFF_MAX <= LONG_MAX
675 	if ((flags & FOF_NOLOCK) != 0) {
676 		if ((flags & FOF_NOUPDATE) == 0)
677 			fp->f_offset = val;
678 		if ((flags & FOF_NEXTOFF) != 0)
679 			fp->f_nextoff = val;
680 		return;
681 	}
682 #endif
683 
684 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
685 	mtx_lock(mtxp);
686 	if ((flags & FOF_NOUPDATE) == 0)
687 		fp->f_offset = val;
688 	if ((flags & FOF_NEXTOFF) != 0)
689 		fp->f_nextoff = val;
690 	if ((flags & FOF_NOLOCK) == 0) {
691 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
692 		    ("Lost FOFFSET_LOCKED"));
693 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
694 			wakeup(&fp->f_vnread_flags);
695 		fp->f_vnread_flags = 0;
696 	}
697 	mtx_unlock(mtxp);
698 }
699 
700 void
701 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
702 {
703 
704 	if ((flags & FOF_OFFSET) == 0)
705 		uio->uio_offset = foffset_lock(fp, flags);
706 }
707 
708 void
709 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
710 {
711 
712 	if ((flags & FOF_OFFSET) == 0)
713 		foffset_unlock(fp, uio->uio_offset, flags);
714 }
715 
716 static int
717 get_advice(struct file *fp, struct uio *uio)
718 {
719 	struct mtx *mtxp;
720 	int ret;
721 
722 	ret = POSIX_FADV_NORMAL;
723 	if (fp->f_advice == NULL)
724 		return (ret);
725 
726 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
727 	mtx_lock(mtxp);
728 	if (uio->uio_offset >= fp->f_advice->fa_start &&
729 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
730 		ret = fp->f_advice->fa_advice;
731 	mtx_unlock(mtxp);
732 	return (ret);
733 }
734 
735 /*
736  * File table vnode read routine.
737  */
738 static int
739 vn_read(fp, uio, active_cred, flags, td)
740 	struct file *fp;
741 	struct uio *uio;
742 	struct ucred *active_cred;
743 	int flags;
744 	struct thread *td;
745 {
746 	struct vnode *vp;
747 	struct mtx *mtxp;
748 	int error, ioflag;
749 	int advice;
750 	off_t offset, start, end;
751 
752 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
753 	    uio->uio_td, td));
754 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
755 	vp = fp->f_vnode;
756 	ioflag = 0;
757 	if (fp->f_flag & FNONBLOCK)
758 		ioflag |= IO_NDELAY;
759 	if (fp->f_flag & O_DIRECT)
760 		ioflag |= IO_DIRECT;
761 	advice = get_advice(fp, uio);
762 	vn_lock(vp, LK_SHARED | LK_RETRY);
763 
764 	switch (advice) {
765 	case POSIX_FADV_NORMAL:
766 	case POSIX_FADV_SEQUENTIAL:
767 	case POSIX_FADV_NOREUSE:
768 		ioflag |= sequential_heuristic(uio, fp);
769 		break;
770 	case POSIX_FADV_RANDOM:
771 		/* Disable read-ahead for random I/O. */
772 		break;
773 	}
774 	offset = uio->uio_offset;
775 
776 #ifdef MAC
777 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
778 	if (error == 0)
779 #endif
780 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
781 	fp->f_nextoff = uio->uio_offset;
782 	VOP_UNLOCK(vp, 0);
783 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
784 	    offset != uio->uio_offset) {
785 		/*
786 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
787 		 * buffers for the backing file after a
788 		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
789 		 * case of using POSIX_FADV_NOREUSE with sequential
790 		 * access, track the previous implicit DONTNEED
791 		 * request and grow this request to include the
792 		 * current read(2) in addition to the previous
793 		 * DONTNEED.  With purely sequential access this will
794 		 * cause the DONTNEED requests to continously grow to
795 		 * cover all of the previously read regions of the
796 		 * file.  This allows filesystem blocks that are
797 		 * accessed by multiple calls to read(2) to be flushed
798 		 * once the last read(2) finishes.
799 		 */
800 		start = offset;
801 		end = uio->uio_offset - 1;
802 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
803 		mtx_lock(mtxp);
804 		if (fp->f_advice != NULL &&
805 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
806 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
807 				start = fp->f_advice->fa_prevstart;
808 			else if (fp->f_advice->fa_prevstart != 0 &&
809 			    fp->f_advice->fa_prevstart == end + 1)
810 				end = fp->f_advice->fa_prevend;
811 			fp->f_advice->fa_prevstart = start;
812 			fp->f_advice->fa_prevend = end;
813 		}
814 		mtx_unlock(mtxp);
815 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
816 	}
817 	return (error);
818 }
819 
820 /*
821  * File table vnode write routine.
822  */
823 static int
824 vn_write(fp, uio, active_cred, flags, td)
825 	struct file *fp;
826 	struct uio *uio;
827 	struct ucred *active_cred;
828 	int flags;
829 	struct thread *td;
830 {
831 	struct vnode *vp;
832 	struct mount *mp;
833 	struct mtx *mtxp;
834 	int error, ioflag, lock_flags;
835 	int advice;
836 	off_t offset, start, end;
837 
838 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
839 	    uio->uio_td, td));
840 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
841 	vp = fp->f_vnode;
842 	if (vp->v_type == VREG)
843 		bwillwrite();
844 	ioflag = IO_UNIT;
845 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
846 		ioflag |= IO_APPEND;
847 	if (fp->f_flag & FNONBLOCK)
848 		ioflag |= IO_NDELAY;
849 	if (fp->f_flag & O_DIRECT)
850 		ioflag |= IO_DIRECT;
851 	if ((fp->f_flag & O_FSYNC) ||
852 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
853 		ioflag |= IO_SYNC;
854 	mp = NULL;
855 	if (vp->v_type != VCHR &&
856 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
857 		goto unlock;
858 
859 	advice = get_advice(fp, uio);
860 
861 	if (MNT_SHARED_WRITES(mp) ||
862 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
863 		lock_flags = LK_SHARED;
864 	} else {
865 		lock_flags = LK_EXCLUSIVE;
866 	}
867 
868 	vn_lock(vp, lock_flags | LK_RETRY);
869 	switch (advice) {
870 	case POSIX_FADV_NORMAL:
871 	case POSIX_FADV_SEQUENTIAL:
872 	case POSIX_FADV_NOREUSE:
873 		ioflag |= sequential_heuristic(uio, fp);
874 		break;
875 	case POSIX_FADV_RANDOM:
876 		/* XXX: Is this correct? */
877 		break;
878 	}
879 	offset = uio->uio_offset;
880 
881 #ifdef MAC
882 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
883 	if (error == 0)
884 #endif
885 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
886 	fp->f_nextoff = uio->uio_offset;
887 	VOP_UNLOCK(vp, 0);
888 	if (vp->v_type != VCHR)
889 		vn_finished_write(mp);
890 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
891 	    offset != uio->uio_offset) {
892 		/*
893 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
894 		 * buffers for the backing file after a
895 		 * POSIX_FADV_NOREUSE write(2).  To optimize the
896 		 * common case of using POSIX_FADV_NOREUSE with
897 		 * sequential access, track the previous implicit
898 		 * DONTNEED request and grow this request to include
899 		 * the current write(2) in addition to the previous
900 		 * DONTNEED.  With purely sequential access this will
901 		 * cause the DONTNEED requests to continously grow to
902 		 * cover all of the previously written regions of the
903 		 * file.
904 		 *
905 		 * Note that the blocks just written are almost
906 		 * certainly still dirty, so this only works when
907 		 * VOP_ADVISE() calls from subsequent writes push out
908 		 * the data written by this write(2) once the backing
909 		 * buffers are clean.  However, as compared to forcing
910 		 * IO_DIRECT, this gives much saner behavior.  Write
911 		 * clustering is still allowed, and clean pages are
912 		 * merely moved to the cache page queue rather than
913 		 * outright thrown away.  This means a subsequent
914 		 * read(2) can still avoid hitting the disk if the
915 		 * pages have not been reclaimed.
916 		 *
917 		 * This does make POSIX_FADV_NOREUSE largely useless
918 		 * with non-sequential access.  However, sequential
919 		 * access is the more common use case and the flag is
920 		 * merely advisory.
921 		 */
922 		start = offset;
923 		end = uio->uio_offset - 1;
924 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
925 		mtx_lock(mtxp);
926 		if (fp->f_advice != NULL &&
927 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
928 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
929 				start = fp->f_advice->fa_prevstart;
930 			else if (fp->f_advice->fa_prevstart != 0 &&
931 			    fp->f_advice->fa_prevstart == end + 1)
932 				end = fp->f_advice->fa_prevend;
933 			fp->f_advice->fa_prevstart = start;
934 			fp->f_advice->fa_prevend = end;
935 		}
936 		mtx_unlock(mtxp);
937 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
938 	}
939 
940 unlock:
941 	return (error);
942 }
943 
944 /*
945  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
946  * prevent the following deadlock:
947  *
948  * Assume that the thread A reads from the vnode vp1 into userspace
949  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
950  * currently not resident, then system ends up with the call chain
951  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
952  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
953  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
954  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
955  * backed by the pages of vnode vp1, and some page in buf2 is not
956  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
957  *
958  * To prevent the lock order reversal and deadlock, vn_io_fault() does
959  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
960  * Instead, it first tries to do the whole range i/o with pagefaults
961  * disabled. If all pages in the i/o buffer are resident and mapped,
962  * VOP will succeed (ignoring the genuine filesystem errors).
963  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
964  * i/o in chunks, with all pages in the chunk prefaulted and held
965  * using vm_fault_quick_hold_pages().
966  *
967  * Filesystems using this deadlock avoidance scheme should use the
968  * array of the held pages from uio, saved in the curthread->td_ma,
969  * instead of doing uiomove().  A helper function
970  * vn_io_fault_uiomove() converts uiomove request into
971  * uiomove_fromphys() over td_ma array.
972  *
973  * Since vnode locks do not cover the whole i/o anymore, rangelocks
974  * make the current i/o request atomic with respect to other i/os and
975  * truncations.
976  */
977 
978 /*
979  * Decode vn_io_fault_args and perform the corresponding i/o.
980  */
981 static int
982 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
983     struct thread *td)
984 {
985 
986 	switch (args->kind) {
987 	case VN_IO_FAULT_FOP:
988 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
989 		    uio, args->cred, args->flags, td));
990 	case VN_IO_FAULT_VOP:
991 		if (uio->uio_rw == UIO_READ) {
992 			return (VOP_READ(args->args.vop_args.vp, uio,
993 			    args->flags, args->cred));
994 		} else if (uio->uio_rw == UIO_WRITE) {
995 			return (VOP_WRITE(args->args.vop_args.vp, uio,
996 			    args->flags, args->cred));
997 		}
998 		break;
999 	}
1000 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
1001 	    uio->uio_rw);
1002 }
1003 
1004 /*
1005  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1006  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1007  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1008  * into args and call vn_io_fault1() to handle faults during the user
1009  * mode buffer accesses.
1010  */
1011 static int
1012 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1013     struct thread *td)
1014 {
1015 	vm_page_t ma[io_hold_cnt + 2];
1016 	struct uio *uio_clone, short_uio;
1017 	struct iovec short_iovec[1];
1018 	vm_page_t *prev_td_ma;
1019 	vm_prot_t prot;
1020 	vm_offset_t addr, end;
1021 	size_t len, resid;
1022 	ssize_t adv;
1023 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1024 
1025 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1026 
1027 	/*
1028 	 * The UFS follows IO_UNIT directive and replays back both
1029 	 * uio_offset and uio_resid if an error is encountered during the
1030 	 * operation.  But, since the iovec may be already advanced,
1031 	 * uio is still in an inconsistent state.
1032 	 *
1033 	 * Cache a copy of the original uio, which is advanced to the redo
1034 	 * point using UIO_NOCOPY below.
1035 	 */
1036 	uio_clone = cloneuio(uio);
1037 	resid = uio->uio_resid;
1038 
1039 	short_uio.uio_segflg = UIO_USERSPACE;
1040 	short_uio.uio_rw = uio->uio_rw;
1041 	short_uio.uio_td = uio->uio_td;
1042 
1043 	save = vm_fault_disable_pagefaults();
1044 	error = vn_io_fault_doio(args, uio, td);
1045 	if (error != EFAULT)
1046 		goto out;
1047 
1048 	atomic_add_long(&vn_io_faults_cnt, 1);
1049 	uio_clone->uio_segflg = UIO_NOCOPY;
1050 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1051 	uio_clone->uio_segflg = uio->uio_segflg;
1052 
1053 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1054 	prev_td_ma = td->td_ma;
1055 	prev_td_ma_cnt = td->td_ma_cnt;
1056 
1057 	while (uio_clone->uio_resid != 0) {
1058 		len = uio_clone->uio_iov->iov_len;
1059 		if (len == 0) {
1060 			KASSERT(uio_clone->uio_iovcnt >= 1,
1061 			    ("iovcnt underflow"));
1062 			uio_clone->uio_iov++;
1063 			uio_clone->uio_iovcnt--;
1064 			continue;
1065 		}
1066 		if (len > io_hold_cnt * PAGE_SIZE)
1067 			len = io_hold_cnt * PAGE_SIZE;
1068 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1069 		end = round_page(addr + len);
1070 		if (end < addr) {
1071 			error = EFAULT;
1072 			break;
1073 		}
1074 		cnt = atop(end - trunc_page(addr));
1075 		/*
1076 		 * A perfectly misaligned address and length could cause
1077 		 * both the start and the end of the chunk to use partial
1078 		 * page.  +2 accounts for such a situation.
1079 		 */
1080 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1081 		    addr, len, prot, ma, io_hold_cnt + 2);
1082 		if (cnt == -1) {
1083 			error = EFAULT;
1084 			break;
1085 		}
1086 		short_uio.uio_iov = &short_iovec[0];
1087 		short_iovec[0].iov_base = (void *)addr;
1088 		short_uio.uio_iovcnt = 1;
1089 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1090 		short_uio.uio_offset = uio_clone->uio_offset;
1091 		td->td_ma = ma;
1092 		td->td_ma_cnt = cnt;
1093 
1094 		error = vn_io_fault_doio(args, &short_uio, td);
1095 		vm_page_unhold_pages(ma, cnt);
1096 		adv = len - short_uio.uio_resid;
1097 
1098 		uio_clone->uio_iov->iov_base =
1099 		    (char *)uio_clone->uio_iov->iov_base + adv;
1100 		uio_clone->uio_iov->iov_len -= adv;
1101 		uio_clone->uio_resid -= adv;
1102 		uio_clone->uio_offset += adv;
1103 
1104 		uio->uio_resid -= adv;
1105 		uio->uio_offset += adv;
1106 
1107 		if (error != 0 || adv == 0)
1108 			break;
1109 	}
1110 	td->td_ma = prev_td_ma;
1111 	td->td_ma_cnt = prev_td_ma_cnt;
1112 	curthread_pflags_restore(saveheld);
1113 out:
1114 	vm_fault_enable_pagefaults(save);
1115 	free(uio_clone, M_IOV);
1116 	return (error);
1117 }
1118 
1119 static int
1120 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1121     int flags, struct thread *td)
1122 {
1123 	fo_rdwr_t *doio;
1124 	struct vnode *vp;
1125 	void *rl_cookie;
1126 	struct vn_io_fault_args args;
1127 	int error;
1128 
1129 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1130 	vp = fp->f_vnode;
1131 	foffset_lock_uio(fp, uio, flags);
1132 	if (do_vn_io_fault(vp, uio)) {
1133 		args.kind = VN_IO_FAULT_FOP;
1134 		args.args.fop_args.fp = fp;
1135 		args.args.fop_args.doio = doio;
1136 		args.cred = active_cred;
1137 		args.flags = flags | FOF_OFFSET;
1138 		if (uio->uio_rw == UIO_READ) {
1139 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1140 			    uio->uio_offset + uio->uio_resid);
1141 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1142 		    (flags & FOF_OFFSET) == 0) {
1143 			/* For appenders, punt and lock the whole range. */
1144 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1145 		} else {
1146 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1147 			    uio->uio_offset + uio->uio_resid);
1148 		}
1149 		error = vn_io_fault1(vp, uio, &args, td);
1150 		vn_rangelock_unlock(vp, rl_cookie);
1151 	} else {
1152 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1153 	}
1154 	foffset_unlock_uio(fp, uio, flags);
1155 	return (error);
1156 }
1157 
1158 /*
1159  * Helper function to perform the requested uiomove operation using
1160  * the held pages for io->uio_iov[0].iov_base buffer instead of
1161  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1162  * instead of iov_base prevents page faults that could occur due to
1163  * pmap_collect() invalidating the mapping created by
1164  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1165  * object cleanup revoking the write access from page mappings.
1166  *
1167  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1168  * instead of plain uiomove().
1169  */
1170 int
1171 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1172 {
1173 	struct uio transp_uio;
1174 	struct iovec transp_iov[1];
1175 	struct thread *td;
1176 	size_t adv;
1177 	int error, pgadv;
1178 
1179 	td = curthread;
1180 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1181 	    uio->uio_segflg != UIO_USERSPACE)
1182 		return (uiomove(data, xfersize, uio));
1183 
1184 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1185 	transp_iov[0].iov_base = data;
1186 	transp_uio.uio_iov = &transp_iov[0];
1187 	transp_uio.uio_iovcnt = 1;
1188 	if (xfersize > uio->uio_resid)
1189 		xfersize = uio->uio_resid;
1190 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1191 	transp_uio.uio_offset = 0;
1192 	transp_uio.uio_segflg = UIO_SYSSPACE;
1193 	/*
1194 	 * Since transp_iov points to data, and td_ma page array
1195 	 * corresponds to original uio->uio_iov, we need to invert the
1196 	 * direction of the i/o operation as passed to
1197 	 * uiomove_fromphys().
1198 	 */
1199 	switch (uio->uio_rw) {
1200 	case UIO_WRITE:
1201 		transp_uio.uio_rw = UIO_READ;
1202 		break;
1203 	case UIO_READ:
1204 		transp_uio.uio_rw = UIO_WRITE;
1205 		break;
1206 	}
1207 	transp_uio.uio_td = uio->uio_td;
1208 	error = uiomove_fromphys(td->td_ma,
1209 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1210 	    xfersize, &transp_uio);
1211 	adv = xfersize - transp_uio.uio_resid;
1212 	pgadv =
1213 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1214 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1215 	td->td_ma += pgadv;
1216 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1217 	    pgadv));
1218 	td->td_ma_cnt -= pgadv;
1219 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1220 	uio->uio_iov->iov_len -= adv;
1221 	uio->uio_resid -= adv;
1222 	uio->uio_offset += adv;
1223 	return (error);
1224 }
1225 
1226 int
1227 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1228     struct uio *uio)
1229 {
1230 	struct thread *td;
1231 	vm_offset_t iov_base;
1232 	int cnt, pgadv;
1233 
1234 	td = curthread;
1235 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1236 	    uio->uio_segflg != UIO_USERSPACE)
1237 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1238 
1239 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1240 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1241 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1242 	switch (uio->uio_rw) {
1243 	case UIO_WRITE:
1244 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1245 		    offset, cnt);
1246 		break;
1247 	case UIO_READ:
1248 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1249 		    cnt);
1250 		break;
1251 	}
1252 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1253 	td->td_ma += pgadv;
1254 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1255 	    pgadv));
1256 	td->td_ma_cnt -= pgadv;
1257 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1258 	uio->uio_iov->iov_len -= cnt;
1259 	uio->uio_resid -= cnt;
1260 	uio->uio_offset += cnt;
1261 	return (0);
1262 }
1263 
1264 
1265 /*
1266  * File table truncate routine.
1267  */
1268 static int
1269 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1270     struct thread *td)
1271 {
1272 	struct vattr vattr;
1273 	struct mount *mp;
1274 	struct vnode *vp;
1275 	void *rl_cookie;
1276 	int error;
1277 
1278 	vp = fp->f_vnode;
1279 
1280 	/*
1281 	 * Lock the whole range for truncation.  Otherwise split i/o
1282 	 * might happen partly before and partly after the truncation.
1283 	 */
1284 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1285 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1286 	if (error)
1287 		goto out1;
1288 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1289 	if (vp->v_type == VDIR) {
1290 		error = EISDIR;
1291 		goto out;
1292 	}
1293 #ifdef MAC
1294 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1295 	if (error)
1296 		goto out;
1297 #endif
1298 	error = vn_writechk(vp);
1299 	if (error == 0) {
1300 		VATTR_NULL(&vattr);
1301 		vattr.va_size = length;
1302 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1303 	}
1304 out:
1305 	VOP_UNLOCK(vp, 0);
1306 	vn_finished_write(mp);
1307 out1:
1308 	vn_rangelock_unlock(vp, rl_cookie);
1309 	return (error);
1310 }
1311 
1312 /*
1313  * File table vnode stat routine.
1314  */
1315 static int
1316 vn_statfile(fp, sb, active_cred, td)
1317 	struct file *fp;
1318 	struct stat *sb;
1319 	struct ucred *active_cred;
1320 	struct thread *td;
1321 {
1322 	struct vnode *vp = fp->f_vnode;
1323 	int error;
1324 
1325 	vn_lock(vp, LK_SHARED | LK_RETRY);
1326 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1327 	VOP_UNLOCK(vp, 0);
1328 
1329 	return (error);
1330 }
1331 
1332 /*
1333  * Stat a vnode; implementation for the stat syscall
1334  */
1335 int
1336 vn_stat(vp, sb, active_cred, file_cred, td)
1337 	struct vnode *vp;
1338 	register struct stat *sb;
1339 	struct ucred *active_cred;
1340 	struct ucred *file_cred;
1341 	struct thread *td;
1342 {
1343 	struct vattr vattr;
1344 	register struct vattr *vap;
1345 	int error;
1346 	u_short mode;
1347 
1348 #ifdef MAC
1349 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1350 	if (error)
1351 		return (error);
1352 #endif
1353 
1354 	vap = &vattr;
1355 
1356 	/*
1357 	 * Initialize defaults for new and unusual fields, so that file
1358 	 * systems which don't support these fields don't need to know
1359 	 * about them.
1360 	 */
1361 	vap->va_birthtime.tv_sec = -1;
1362 	vap->va_birthtime.tv_nsec = 0;
1363 	vap->va_fsid = VNOVAL;
1364 	vap->va_rdev = NODEV;
1365 
1366 	error = VOP_GETATTR(vp, vap, active_cred);
1367 	if (error)
1368 		return (error);
1369 
1370 	/*
1371 	 * Zero the spare stat fields
1372 	 */
1373 	bzero(sb, sizeof *sb);
1374 
1375 	/*
1376 	 * Copy from vattr table
1377 	 */
1378 	if (vap->va_fsid != VNOVAL)
1379 		sb->st_dev = vap->va_fsid;
1380 	else
1381 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1382 	sb->st_ino = vap->va_fileid;
1383 	mode = vap->va_mode;
1384 	switch (vap->va_type) {
1385 	case VREG:
1386 		mode |= S_IFREG;
1387 		break;
1388 	case VDIR:
1389 		mode |= S_IFDIR;
1390 		break;
1391 	case VBLK:
1392 		mode |= S_IFBLK;
1393 		break;
1394 	case VCHR:
1395 		mode |= S_IFCHR;
1396 		break;
1397 	case VLNK:
1398 		mode |= S_IFLNK;
1399 		break;
1400 	case VSOCK:
1401 		mode |= S_IFSOCK;
1402 		break;
1403 	case VFIFO:
1404 		mode |= S_IFIFO;
1405 		break;
1406 	default:
1407 		return (EBADF);
1408 	};
1409 	sb->st_mode = mode;
1410 	sb->st_nlink = vap->va_nlink;
1411 	sb->st_uid = vap->va_uid;
1412 	sb->st_gid = vap->va_gid;
1413 	sb->st_rdev = vap->va_rdev;
1414 	if (vap->va_size > OFF_MAX)
1415 		return (EOVERFLOW);
1416 	sb->st_size = vap->va_size;
1417 	sb->st_atim = vap->va_atime;
1418 	sb->st_mtim = vap->va_mtime;
1419 	sb->st_ctim = vap->va_ctime;
1420 	sb->st_birthtim = vap->va_birthtime;
1421 
1422         /*
1423 	 * According to www.opengroup.org, the meaning of st_blksize is
1424 	 *   "a filesystem-specific preferred I/O block size for this
1425 	 *    object.  In some filesystem types, this may vary from file
1426 	 *    to file"
1427 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1428 	 */
1429 
1430 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1431 
1432 	sb->st_flags = vap->va_flags;
1433 	if (priv_check(td, PRIV_VFS_GENERATION))
1434 		sb->st_gen = 0;
1435 	else
1436 		sb->st_gen = vap->va_gen;
1437 
1438 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1439 	return (0);
1440 }
1441 
1442 /*
1443  * File table vnode ioctl routine.
1444  */
1445 static int
1446 vn_ioctl(fp, com, data, active_cred, td)
1447 	struct file *fp;
1448 	u_long com;
1449 	void *data;
1450 	struct ucred *active_cred;
1451 	struct thread *td;
1452 {
1453 	struct vattr vattr;
1454 	struct vnode *vp;
1455 	int error;
1456 
1457 	vp = fp->f_vnode;
1458 	switch (vp->v_type) {
1459 	case VDIR:
1460 	case VREG:
1461 		switch (com) {
1462 		case FIONREAD:
1463 			vn_lock(vp, LK_SHARED | LK_RETRY);
1464 			error = VOP_GETATTR(vp, &vattr, active_cred);
1465 			VOP_UNLOCK(vp, 0);
1466 			if (error == 0)
1467 				*(int *)data = vattr.va_size - fp->f_offset;
1468 			return (error);
1469 		case FIONBIO:
1470 		case FIOASYNC:
1471 			return (0);
1472 		default:
1473 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1474 			    active_cred, td));
1475 		}
1476 	default:
1477 		return (ENOTTY);
1478 	}
1479 }
1480 
1481 /*
1482  * File table vnode poll routine.
1483  */
1484 static int
1485 vn_poll(fp, events, active_cred, td)
1486 	struct file *fp;
1487 	int events;
1488 	struct ucred *active_cred;
1489 	struct thread *td;
1490 {
1491 	struct vnode *vp;
1492 	int error;
1493 
1494 	vp = fp->f_vnode;
1495 #ifdef MAC
1496 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1497 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1498 	VOP_UNLOCK(vp, 0);
1499 	if (!error)
1500 #endif
1501 
1502 	error = VOP_POLL(vp, events, fp->f_cred, td);
1503 	return (error);
1504 }
1505 
1506 /*
1507  * Acquire the requested lock and then check for validity.  LK_RETRY
1508  * permits vn_lock to return doomed vnodes.
1509  */
1510 int
1511 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1512 {
1513 	int error;
1514 
1515 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1516 	    ("vn_lock called with no locktype."));
1517 	do {
1518 #ifdef DEBUG_VFS_LOCKS
1519 		KASSERT(vp->v_holdcnt != 0,
1520 		    ("vn_lock %p: zero hold count", vp));
1521 #endif
1522 		error = VOP_LOCK1(vp, flags, file, line);
1523 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1524 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1525 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1526 		    flags, error));
1527 		/*
1528 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1529 		 * If RETRY is not set, we return ENOENT instead.
1530 		 */
1531 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1532 		    (flags & LK_RETRY) == 0) {
1533 			VOP_UNLOCK(vp, 0);
1534 			error = ENOENT;
1535 			break;
1536 		}
1537 	} while (flags & LK_RETRY && error != 0);
1538 	return (error);
1539 }
1540 
1541 /*
1542  * File table vnode close routine.
1543  */
1544 static int
1545 vn_closefile(fp, td)
1546 	struct file *fp;
1547 	struct thread *td;
1548 {
1549 	struct vnode *vp;
1550 	struct flock lf;
1551 	int error;
1552 
1553 	vp = fp->f_vnode;
1554 	fp->f_ops = &badfileops;
1555 
1556 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1557 		vref(vp);
1558 
1559 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1560 
1561 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1562 		lf.l_whence = SEEK_SET;
1563 		lf.l_start = 0;
1564 		lf.l_len = 0;
1565 		lf.l_type = F_UNLCK;
1566 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1567 		vrele(vp);
1568 	}
1569 	return (error);
1570 }
1571 
1572 /*
1573  * Preparing to start a filesystem write operation. If the operation is
1574  * permitted, then we bump the count of operations in progress and
1575  * proceed. If a suspend request is in progress, we wait until the
1576  * suspension is over, and then proceed.
1577  */
1578 static int
1579 vn_start_write_locked(struct mount *mp, int flags)
1580 {
1581 	int error;
1582 
1583 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1584 	error = 0;
1585 
1586 	/*
1587 	 * Check on status of suspension.
1588 	 */
1589 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1590 	    mp->mnt_susp_owner != curthread) {
1591 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1592 			if (flags & V_NOWAIT) {
1593 				error = EWOULDBLOCK;
1594 				goto unlock;
1595 			}
1596 			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1597 			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1598 			if (error)
1599 				goto unlock;
1600 		}
1601 	}
1602 	if (flags & V_XSLEEP)
1603 		goto unlock;
1604 	mp->mnt_writeopcount++;
1605 unlock:
1606 	if (error != 0 || (flags & V_XSLEEP) != 0)
1607 		MNT_REL(mp);
1608 	MNT_IUNLOCK(mp);
1609 	return (error);
1610 }
1611 
1612 int
1613 vn_start_write(vp, mpp, flags)
1614 	struct vnode *vp;
1615 	struct mount **mpp;
1616 	int flags;
1617 {
1618 	struct mount *mp;
1619 	int error;
1620 
1621 	error = 0;
1622 	/*
1623 	 * If a vnode is provided, get and return the mount point that
1624 	 * to which it will write.
1625 	 */
1626 	if (vp != NULL) {
1627 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1628 			*mpp = NULL;
1629 			if (error != EOPNOTSUPP)
1630 				return (error);
1631 			return (0);
1632 		}
1633 	}
1634 	if ((mp = *mpp) == NULL)
1635 		return (0);
1636 
1637 	/*
1638 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1639 	 * a vfs_ref().
1640 	 * As long as a vnode is not provided we need to acquire a
1641 	 * refcount for the provided mountpoint too, in order to
1642 	 * emulate a vfs_ref().
1643 	 */
1644 	MNT_ILOCK(mp);
1645 	if (vp == NULL)
1646 		MNT_REF(mp);
1647 
1648 	return (vn_start_write_locked(mp, flags));
1649 }
1650 
1651 /*
1652  * Secondary suspension. Used by operations such as vop_inactive
1653  * routines that are needed by the higher level functions. These
1654  * are allowed to proceed until all the higher level functions have
1655  * completed (indicated by mnt_writeopcount dropping to zero). At that
1656  * time, these operations are halted until the suspension is over.
1657  */
1658 int
1659 vn_start_secondary_write(vp, mpp, flags)
1660 	struct vnode *vp;
1661 	struct mount **mpp;
1662 	int flags;
1663 {
1664 	struct mount *mp;
1665 	int error;
1666 
1667  retry:
1668 	if (vp != NULL) {
1669 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1670 			*mpp = NULL;
1671 			if (error != EOPNOTSUPP)
1672 				return (error);
1673 			return (0);
1674 		}
1675 	}
1676 	/*
1677 	 * If we are not suspended or have not yet reached suspended
1678 	 * mode, then let the operation proceed.
1679 	 */
1680 	if ((mp = *mpp) == NULL)
1681 		return (0);
1682 
1683 	/*
1684 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1685 	 * a vfs_ref().
1686 	 * As long as a vnode is not provided we need to acquire a
1687 	 * refcount for the provided mountpoint too, in order to
1688 	 * emulate a vfs_ref().
1689 	 */
1690 	MNT_ILOCK(mp);
1691 	if (vp == NULL)
1692 		MNT_REF(mp);
1693 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1694 		mp->mnt_secondary_writes++;
1695 		mp->mnt_secondary_accwrites++;
1696 		MNT_IUNLOCK(mp);
1697 		return (0);
1698 	}
1699 	if (flags & V_NOWAIT) {
1700 		MNT_REL(mp);
1701 		MNT_IUNLOCK(mp);
1702 		return (EWOULDBLOCK);
1703 	}
1704 	/*
1705 	 * Wait for the suspension to finish.
1706 	 */
1707 	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1708 		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1709 	vfs_rel(mp);
1710 	if (error == 0)
1711 		goto retry;
1712 	return (error);
1713 }
1714 
1715 /*
1716  * Filesystem write operation has completed. If we are suspending and this
1717  * operation is the last one, notify the suspender that the suspension is
1718  * now in effect.
1719  */
1720 void
1721 vn_finished_write(mp)
1722 	struct mount *mp;
1723 {
1724 	if (mp == NULL)
1725 		return;
1726 	MNT_ILOCK(mp);
1727 	MNT_REL(mp);
1728 	mp->mnt_writeopcount--;
1729 	if (mp->mnt_writeopcount < 0)
1730 		panic("vn_finished_write: neg cnt");
1731 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1732 	    mp->mnt_writeopcount <= 0)
1733 		wakeup(&mp->mnt_writeopcount);
1734 	MNT_IUNLOCK(mp);
1735 }
1736 
1737 
1738 /*
1739  * Filesystem secondary write operation has completed. If we are
1740  * suspending and this operation is the last one, notify the suspender
1741  * that the suspension is now in effect.
1742  */
1743 void
1744 vn_finished_secondary_write(mp)
1745 	struct mount *mp;
1746 {
1747 	if (mp == NULL)
1748 		return;
1749 	MNT_ILOCK(mp);
1750 	MNT_REL(mp);
1751 	mp->mnt_secondary_writes--;
1752 	if (mp->mnt_secondary_writes < 0)
1753 		panic("vn_finished_secondary_write: neg cnt");
1754 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1755 	    mp->mnt_secondary_writes <= 0)
1756 		wakeup(&mp->mnt_secondary_writes);
1757 	MNT_IUNLOCK(mp);
1758 }
1759 
1760 
1761 
1762 /*
1763  * Request a filesystem to suspend write operations.
1764  */
1765 int
1766 vfs_write_suspend(struct mount *mp, int flags)
1767 {
1768 	int error;
1769 
1770 	MNT_ILOCK(mp);
1771 	if (mp->mnt_susp_owner == curthread) {
1772 		MNT_IUNLOCK(mp);
1773 		return (EALREADY);
1774 	}
1775 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1776 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1777 
1778 	/*
1779 	 * Unmount holds a write reference on the mount point.  If we
1780 	 * own busy reference and drain for writers, we deadlock with
1781 	 * the reference draining in the unmount path.  Callers of
1782 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1783 	 * vfs_busy() reference is owned and caller is not in the
1784 	 * unmount context.
1785 	 */
1786 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1787 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1788 		MNT_IUNLOCK(mp);
1789 		return (EBUSY);
1790 	}
1791 
1792 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1793 	mp->mnt_susp_owner = curthread;
1794 	if (mp->mnt_writeopcount > 0)
1795 		(void) msleep(&mp->mnt_writeopcount,
1796 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1797 	else
1798 		MNT_IUNLOCK(mp);
1799 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1800 		vfs_write_resume(mp, 0);
1801 	return (error);
1802 }
1803 
1804 /*
1805  * Request a filesystem to resume write operations.
1806  */
1807 void
1808 vfs_write_resume(struct mount *mp, int flags)
1809 {
1810 
1811 	MNT_ILOCK(mp);
1812 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1813 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1814 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1815 				       MNTK_SUSPENDED);
1816 		mp->mnt_susp_owner = NULL;
1817 		wakeup(&mp->mnt_writeopcount);
1818 		wakeup(&mp->mnt_flag);
1819 		curthread->td_pflags &= ~TDP_IGNSUSP;
1820 		if ((flags & VR_START_WRITE) != 0) {
1821 			MNT_REF(mp);
1822 			mp->mnt_writeopcount++;
1823 		}
1824 		MNT_IUNLOCK(mp);
1825 		if ((flags & VR_NO_SUSPCLR) == 0)
1826 			VFS_SUSP_CLEAN(mp);
1827 	} else if ((flags & VR_START_WRITE) != 0) {
1828 		MNT_REF(mp);
1829 		vn_start_write_locked(mp, 0);
1830 	} else {
1831 		MNT_IUNLOCK(mp);
1832 	}
1833 }
1834 
1835 /*
1836  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1837  * methods.
1838  */
1839 int
1840 vfs_write_suspend_umnt(struct mount *mp)
1841 {
1842 	int error;
1843 
1844 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1845 	    ("vfs_write_suspend_umnt: recursed"));
1846 
1847 	/* dounmount() already called vn_start_write(). */
1848 	for (;;) {
1849 		vn_finished_write(mp);
1850 		error = vfs_write_suspend(mp, 0);
1851 		if (error != 0)
1852 			return (error);
1853 		MNT_ILOCK(mp);
1854 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1855 			break;
1856 		MNT_IUNLOCK(mp);
1857 		vn_start_write(NULL, &mp, V_WAIT);
1858 	}
1859 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1860 	wakeup(&mp->mnt_flag);
1861 	MNT_IUNLOCK(mp);
1862 	curthread->td_pflags |= TDP_IGNSUSP;
1863 	return (0);
1864 }
1865 
1866 /*
1867  * Implement kqueues for files by translating it to vnode operation.
1868  */
1869 static int
1870 vn_kqfilter(struct file *fp, struct knote *kn)
1871 {
1872 
1873 	return (VOP_KQFILTER(fp->f_vnode, kn));
1874 }
1875 
1876 /*
1877  * Simplified in-kernel wrapper calls for extended attribute access.
1878  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1879  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1880  */
1881 int
1882 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1883     const char *attrname, int *buflen, char *buf, struct thread *td)
1884 {
1885 	struct uio	auio;
1886 	struct iovec	iov;
1887 	int	error;
1888 
1889 	iov.iov_len = *buflen;
1890 	iov.iov_base = buf;
1891 
1892 	auio.uio_iov = &iov;
1893 	auio.uio_iovcnt = 1;
1894 	auio.uio_rw = UIO_READ;
1895 	auio.uio_segflg = UIO_SYSSPACE;
1896 	auio.uio_td = td;
1897 	auio.uio_offset = 0;
1898 	auio.uio_resid = *buflen;
1899 
1900 	if ((ioflg & IO_NODELOCKED) == 0)
1901 		vn_lock(vp, LK_SHARED | LK_RETRY);
1902 
1903 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1904 
1905 	/* authorize attribute retrieval as kernel */
1906 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1907 	    td);
1908 
1909 	if ((ioflg & IO_NODELOCKED) == 0)
1910 		VOP_UNLOCK(vp, 0);
1911 
1912 	if (error == 0) {
1913 		*buflen = *buflen - auio.uio_resid;
1914 	}
1915 
1916 	return (error);
1917 }
1918 
1919 /*
1920  * XXX failure mode if partially written?
1921  */
1922 int
1923 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1924     const char *attrname, int buflen, char *buf, struct thread *td)
1925 {
1926 	struct uio	auio;
1927 	struct iovec	iov;
1928 	struct mount	*mp;
1929 	int	error;
1930 
1931 	iov.iov_len = buflen;
1932 	iov.iov_base = buf;
1933 
1934 	auio.uio_iov = &iov;
1935 	auio.uio_iovcnt = 1;
1936 	auio.uio_rw = UIO_WRITE;
1937 	auio.uio_segflg = UIO_SYSSPACE;
1938 	auio.uio_td = td;
1939 	auio.uio_offset = 0;
1940 	auio.uio_resid = buflen;
1941 
1942 	if ((ioflg & IO_NODELOCKED) == 0) {
1943 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1944 			return (error);
1945 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1946 	}
1947 
1948 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1949 
1950 	/* authorize attribute setting as kernel */
1951 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1952 
1953 	if ((ioflg & IO_NODELOCKED) == 0) {
1954 		vn_finished_write(mp);
1955 		VOP_UNLOCK(vp, 0);
1956 	}
1957 
1958 	return (error);
1959 }
1960 
1961 int
1962 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1963     const char *attrname, struct thread *td)
1964 {
1965 	struct mount	*mp;
1966 	int	error;
1967 
1968 	if ((ioflg & IO_NODELOCKED) == 0) {
1969 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1970 			return (error);
1971 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1972 	}
1973 
1974 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1975 
1976 	/* authorize attribute removal as kernel */
1977 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1978 	if (error == EOPNOTSUPP)
1979 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1980 		    NULL, td);
1981 
1982 	if ((ioflg & IO_NODELOCKED) == 0) {
1983 		vn_finished_write(mp);
1984 		VOP_UNLOCK(vp, 0);
1985 	}
1986 
1987 	return (error);
1988 }
1989 
1990 static int
1991 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
1992     struct vnode **rvp)
1993 {
1994 
1995 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
1996 }
1997 
1998 int
1999 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2000 {
2001 
2002 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2003 	    lkflags, rvp));
2004 }
2005 
2006 int
2007 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2008     int lkflags, struct vnode **rvp)
2009 {
2010 	struct mount *mp;
2011 	int ltype, error;
2012 
2013 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2014 	mp = vp->v_mount;
2015 	ltype = VOP_ISLOCKED(vp);
2016 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2017 	    ("vn_vget_ino: vp not locked"));
2018 	error = vfs_busy(mp, MBF_NOWAIT);
2019 	if (error != 0) {
2020 		vfs_ref(mp);
2021 		VOP_UNLOCK(vp, 0);
2022 		error = vfs_busy(mp, 0);
2023 		vn_lock(vp, ltype | LK_RETRY);
2024 		vfs_rel(mp);
2025 		if (error != 0)
2026 			return (ENOENT);
2027 		if (vp->v_iflag & VI_DOOMED) {
2028 			vfs_unbusy(mp);
2029 			return (ENOENT);
2030 		}
2031 	}
2032 	VOP_UNLOCK(vp, 0);
2033 	error = alloc(mp, alloc_arg, lkflags, rvp);
2034 	vfs_unbusy(mp);
2035 	if (*rvp != vp)
2036 		vn_lock(vp, ltype | LK_RETRY);
2037 	if (vp->v_iflag & VI_DOOMED) {
2038 		if (error == 0) {
2039 			if (*rvp == vp)
2040 				vunref(vp);
2041 			else
2042 				vput(*rvp);
2043 		}
2044 		error = ENOENT;
2045 	}
2046 	return (error);
2047 }
2048 
2049 int
2050 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2051     const struct thread *td)
2052 {
2053 
2054 	if (vp->v_type != VREG || td == NULL)
2055 		return (0);
2056 	PROC_LOCK(td->td_proc);
2057 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2058 	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
2059 		kern_psignal(td->td_proc, SIGXFSZ);
2060 		PROC_UNLOCK(td->td_proc);
2061 		return (EFBIG);
2062 	}
2063 	PROC_UNLOCK(td->td_proc);
2064 	return (0);
2065 }
2066 
2067 int
2068 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2069     struct thread *td)
2070 {
2071 	struct vnode *vp;
2072 
2073 	vp = fp->f_vnode;
2074 #ifdef AUDIT
2075 	vn_lock(vp, LK_SHARED | LK_RETRY);
2076 	AUDIT_ARG_VNODE1(vp);
2077 	VOP_UNLOCK(vp, 0);
2078 #endif
2079 	return (setfmode(td, active_cred, vp, mode));
2080 }
2081 
2082 int
2083 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2084     struct thread *td)
2085 {
2086 	struct vnode *vp;
2087 
2088 	vp = fp->f_vnode;
2089 #ifdef AUDIT
2090 	vn_lock(vp, LK_SHARED | LK_RETRY);
2091 	AUDIT_ARG_VNODE1(vp);
2092 	VOP_UNLOCK(vp, 0);
2093 #endif
2094 	return (setfown(td, active_cred, vp, uid, gid));
2095 }
2096 
2097 void
2098 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2099 {
2100 	vm_object_t object;
2101 
2102 	if ((object = vp->v_object) == NULL)
2103 		return;
2104 	VM_OBJECT_WLOCK(object);
2105 	vm_object_page_remove(object, start, end, 0);
2106 	VM_OBJECT_WUNLOCK(object);
2107 }
2108 
2109 int
2110 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2111 {
2112 	struct vattr va;
2113 	daddr_t bn, bnp;
2114 	uint64_t bsize;
2115 	off_t noff;
2116 	int error;
2117 
2118 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2119 	    ("Wrong command %lu", cmd));
2120 
2121 	if (vn_lock(vp, LK_SHARED) != 0)
2122 		return (EBADF);
2123 	if (vp->v_type != VREG) {
2124 		error = ENOTTY;
2125 		goto unlock;
2126 	}
2127 	error = VOP_GETATTR(vp, &va, cred);
2128 	if (error != 0)
2129 		goto unlock;
2130 	noff = *off;
2131 	if (noff >= va.va_size) {
2132 		error = ENXIO;
2133 		goto unlock;
2134 	}
2135 	bsize = vp->v_mount->mnt_stat.f_iosize;
2136 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2137 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2138 		if (error == EOPNOTSUPP) {
2139 			error = ENOTTY;
2140 			goto unlock;
2141 		}
2142 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2143 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2144 			noff = bn * bsize;
2145 			if (noff < *off)
2146 				noff = *off;
2147 			goto unlock;
2148 		}
2149 	}
2150 	if (noff > va.va_size)
2151 		noff = va.va_size;
2152 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2153 	if (cmd == FIOSEEKDATA)
2154 		error = ENXIO;
2155 unlock:
2156 	VOP_UNLOCK(vp, 0);
2157 	if (error == 0)
2158 		*off = noff;
2159 	return (error);
2160 }
2161 
2162 int
2163 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2164 {
2165 	struct ucred *cred;
2166 	struct vnode *vp;
2167 	struct vattr vattr;
2168 	off_t foffset, size;
2169 	int error, noneg;
2170 
2171 	cred = td->td_ucred;
2172 	vp = fp->f_vnode;
2173 	foffset = foffset_lock(fp, 0);
2174 	noneg = (vp->v_type != VCHR);
2175 	error = 0;
2176 	switch (whence) {
2177 	case L_INCR:
2178 		if (noneg &&
2179 		    (foffset < 0 ||
2180 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2181 			error = EOVERFLOW;
2182 			break;
2183 		}
2184 		offset += foffset;
2185 		break;
2186 	case L_XTND:
2187 		vn_lock(vp, LK_SHARED | LK_RETRY);
2188 		error = VOP_GETATTR(vp, &vattr, cred);
2189 		VOP_UNLOCK(vp, 0);
2190 		if (error)
2191 			break;
2192 
2193 		/*
2194 		 * If the file references a disk device, then fetch
2195 		 * the media size and use that to determine the ending
2196 		 * offset.
2197 		 */
2198 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2199 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2200 			vattr.va_size = size;
2201 		if (noneg &&
2202 		    (vattr.va_size > OFF_MAX ||
2203 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2204 			error = EOVERFLOW;
2205 			break;
2206 		}
2207 		offset += vattr.va_size;
2208 		break;
2209 	case L_SET:
2210 		break;
2211 	case SEEK_DATA:
2212 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2213 		break;
2214 	case SEEK_HOLE:
2215 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2216 		break;
2217 	default:
2218 		error = EINVAL;
2219 	}
2220 	if (error == 0 && noneg && offset < 0)
2221 		error = EINVAL;
2222 	if (error != 0)
2223 		goto drop;
2224 	VFS_KNOTE_UNLOCKED(vp, 0);
2225 	td->td_uretoff.tdu_off = offset;
2226 drop:
2227 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2228 	return (error);
2229 }
2230 
2231 int
2232 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2233     struct thread *td)
2234 {
2235 	int error;
2236 
2237 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2238 
2239 	/*
2240 	 * From utimes(2):
2241 	 * Grant permission if the caller is the owner of the file or
2242 	 * the super-user.  If the time pointer is null, then write
2243 	 * permission on the file is also sufficient.
2244 	 *
2245 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2246 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2247 	 * will be allowed to set the times [..] to the current
2248 	 * server time.
2249 	 */
2250 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2251 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2252 	return (error);
2253 }
2254 
2255 int
2256 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2257 {
2258 	struct vnode *vp;
2259 	int error;
2260 
2261 	if (fp->f_type == DTYPE_FIFO)
2262 		kif->kf_type = KF_TYPE_FIFO;
2263 	else
2264 		kif->kf_type = KF_TYPE_VNODE;
2265 	vp = fp->f_vnode;
2266 	vref(vp);
2267 	FILEDESC_SUNLOCK(fdp);
2268 	error = vn_fill_kinfo_vnode(vp, kif);
2269 	vrele(vp);
2270 	FILEDESC_SLOCK(fdp);
2271 	return (error);
2272 }
2273 
2274 int
2275 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2276 {
2277 	struct vattr va;
2278 	char *fullpath, *freepath;
2279 	int error;
2280 
2281 	kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
2282 	freepath = NULL;
2283 	fullpath = "-";
2284 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2285 	if (error == 0) {
2286 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2287 	}
2288 	if (freepath != NULL)
2289 		free(freepath, M_TEMP);
2290 
2291 	/*
2292 	 * Retrieve vnode attributes.
2293 	 */
2294 	va.va_fsid = VNOVAL;
2295 	va.va_rdev = NODEV;
2296 	vn_lock(vp, LK_SHARED | LK_RETRY);
2297 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2298 	VOP_UNLOCK(vp, 0);
2299 	if (error != 0)
2300 		return (error);
2301 	if (va.va_fsid != VNOVAL)
2302 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2303 	else
2304 		kif->kf_un.kf_file.kf_file_fsid =
2305 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2306 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2307 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2308 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2309 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2310 	return (0);
2311 }
2312