xref: /freebsd/sys/kern/vfs_vnops.c (revision eb9da1ada8b6b2c74378a5c17029ec5a7fb199e6)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_hwpmc_hooks.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/disk.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kdb.h>
55 #include <sys/stat.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/limits.h>
59 #include <sys/lock.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/vnode.h>
65 #include <sys/bio.h>
66 #include <sys/buf.h>
67 #include <sys/filio.h>
68 #include <sys/resourcevar.h>
69 #include <sys/rwlock.h>
70 #include <sys/sx.h>
71 #include <sys/sysctl.h>
72 #include <sys/ttycom.h>
73 #include <sys/conf.h>
74 #include <sys/syslog.h>
75 #include <sys/unistd.h>
76 #include <sys/user.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vnode_pager.h>
88 
89 #ifdef HWPMC_HOOKS
90 #include <sys/pmckern.h>
91 #endif
92 
93 static fo_rdwr_t	vn_read;
94 static fo_rdwr_t	vn_write;
95 static fo_rdwr_t	vn_io_fault;
96 static fo_truncate_t	vn_truncate;
97 static fo_ioctl_t	vn_ioctl;
98 static fo_poll_t	vn_poll;
99 static fo_kqfilter_t	vn_kqfilter;
100 static fo_stat_t	vn_statfile;
101 static fo_close_t	vn_closefile;
102 static fo_mmap_t	vn_mmap;
103 
104 struct 	fileops vnops = {
105 	.fo_read = vn_io_fault,
106 	.fo_write = vn_io_fault,
107 	.fo_truncate = vn_truncate,
108 	.fo_ioctl = vn_ioctl,
109 	.fo_poll = vn_poll,
110 	.fo_kqfilter = vn_kqfilter,
111 	.fo_stat = vn_statfile,
112 	.fo_close = vn_closefile,
113 	.fo_chmod = vn_chmod,
114 	.fo_chown = vn_chown,
115 	.fo_sendfile = vn_sendfile,
116 	.fo_seek = vn_seek,
117 	.fo_fill_kinfo = vn_fill_kinfo,
118 	.fo_mmap = vn_mmap,
119 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
120 };
121 
122 static const int io_hold_cnt = 16;
123 static int vn_io_fault_enable = 1;
124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
125     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
126 static int vn_io_fault_prefault = 0;
127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
128     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
129 static u_long vn_io_faults_cnt;
130 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
131     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
132 
133 /*
134  * Returns true if vn_io_fault mode of handling the i/o request should
135  * be used.
136  */
137 static bool
138 do_vn_io_fault(struct vnode *vp, struct uio *uio)
139 {
140 	struct mount *mp;
141 
142 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
143 	    (mp = vp->v_mount) != NULL &&
144 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
145 }
146 
147 /*
148  * Structure used to pass arguments to vn_io_fault1(), to do either
149  * file- or vnode-based I/O calls.
150  */
151 struct vn_io_fault_args {
152 	enum {
153 		VN_IO_FAULT_FOP,
154 		VN_IO_FAULT_VOP
155 	} kind;
156 	struct ucred *cred;
157 	int flags;
158 	union {
159 		struct fop_args_tag {
160 			struct file *fp;
161 			fo_rdwr_t *doio;
162 		} fop_args;
163 		struct vop_args_tag {
164 			struct vnode *vp;
165 		} vop_args;
166 	} args;
167 };
168 
169 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
170     struct vn_io_fault_args *args, struct thread *td);
171 
172 int
173 vn_open(ndp, flagp, cmode, fp)
174 	struct nameidata *ndp;
175 	int *flagp, cmode;
176 	struct file *fp;
177 {
178 	struct thread *td = ndp->ni_cnd.cn_thread;
179 
180 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
181 }
182 
183 /*
184  * Common code for vnode open operations via a name lookup.
185  * Lookup the vnode and invoke VOP_CREATE if needed.
186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
187  *
188  * Note that this does NOT free nameidata for the successful case,
189  * due to the NDINIT being done elsewhere.
190  */
191 int
192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
193     struct ucred *cred, struct file *fp)
194 {
195 	struct vnode *vp;
196 	struct mount *mp;
197 	struct thread *td = ndp->ni_cnd.cn_thread;
198 	struct vattr vat;
199 	struct vattr *vap = &vat;
200 	int fmode, error;
201 
202 restart:
203 	fmode = *flagp;
204 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
205 	    O_EXCL | O_DIRECTORY))
206 		return (EINVAL);
207 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
208 		ndp->ni_cnd.cn_nameiop = CREATE;
209 		/*
210 		 * Set NOCACHE to avoid flushing the cache when
211 		 * rolling in many files at once.
212 		*/
213 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
214 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
215 			ndp->ni_cnd.cn_flags |= FOLLOW;
216 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
217 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
218 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
219 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
220 		bwillwrite();
221 		if ((error = namei(ndp)) != 0)
222 			return (error);
223 		if (ndp->ni_vp == NULL) {
224 			VATTR_NULL(vap);
225 			vap->va_type = VREG;
226 			vap->va_mode = cmode;
227 			if (fmode & O_EXCL)
228 				vap->va_vaflags |= VA_EXCLUSIVE;
229 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
230 				NDFREE(ndp, NDF_ONLY_PNBUF);
231 				vput(ndp->ni_dvp);
232 				if ((error = vn_start_write(NULL, &mp,
233 				    V_XSLEEP | PCATCH)) != 0)
234 					return (error);
235 				goto restart;
236 			}
237 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
238 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
239 #ifdef MAC
240 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
241 			    &ndp->ni_cnd, vap);
242 			if (error == 0)
243 #endif
244 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
245 						   &ndp->ni_cnd, vap);
246 			vput(ndp->ni_dvp);
247 			vn_finished_write(mp);
248 			if (error) {
249 				NDFREE(ndp, NDF_ONLY_PNBUF);
250 				return (error);
251 			}
252 			fmode &= ~O_TRUNC;
253 			vp = ndp->ni_vp;
254 		} else {
255 			if (ndp->ni_dvp == ndp->ni_vp)
256 				vrele(ndp->ni_dvp);
257 			else
258 				vput(ndp->ni_dvp);
259 			ndp->ni_dvp = NULL;
260 			vp = ndp->ni_vp;
261 			if (fmode & O_EXCL) {
262 				error = EEXIST;
263 				goto bad;
264 			}
265 			fmode &= ~O_CREAT;
266 		}
267 	} else {
268 		ndp->ni_cnd.cn_nameiop = LOOKUP;
269 		ndp->ni_cnd.cn_flags = ISOPEN |
270 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
271 		if (!(fmode & FWRITE))
272 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
273 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
274 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
275 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
276 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
277 		if ((error = namei(ndp)) != 0)
278 			return (error);
279 		vp = ndp->ni_vp;
280 	}
281 	error = vn_open_vnode(vp, fmode, cred, td, fp);
282 	if (error)
283 		goto bad;
284 	*flagp = fmode;
285 	return (0);
286 bad:
287 	NDFREE(ndp, NDF_ONLY_PNBUF);
288 	vput(vp);
289 	*flagp = fmode;
290 	ndp->ni_vp = NULL;
291 	return (error);
292 }
293 
294 /*
295  * Common code for vnode open operations once a vnode is located.
296  * Check permissions, and call the VOP_OPEN routine.
297  */
298 int
299 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
300     struct thread *td, struct file *fp)
301 {
302 	accmode_t accmode;
303 	struct flock lf;
304 	int error, lock_flags, type;
305 
306 	if (vp->v_type == VLNK)
307 		return (EMLINK);
308 	if (vp->v_type == VSOCK)
309 		return (EOPNOTSUPP);
310 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
311 		return (ENOTDIR);
312 	accmode = 0;
313 	if (fmode & (FWRITE | O_TRUNC)) {
314 		if (vp->v_type == VDIR)
315 			return (EISDIR);
316 		accmode |= VWRITE;
317 	}
318 	if (fmode & FREAD)
319 		accmode |= VREAD;
320 	if (fmode & FEXEC)
321 		accmode |= VEXEC;
322 	if ((fmode & O_APPEND) && (fmode & FWRITE))
323 		accmode |= VAPPEND;
324 #ifdef MAC
325 	if (fmode & O_CREAT)
326 		accmode |= VCREAT;
327 	if (fmode & O_VERIFY)
328 		accmode |= VVERIFY;
329 	error = mac_vnode_check_open(cred, vp, accmode);
330 	if (error)
331 		return (error);
332 
333 	accmode &= ~(VCREAT | VVERIFY);
334 #endif
335 	if ((fmode & O_CREAT) == 0) {
336 		if (accmode & VWRITE) {
337 			error = vn_writechk(vp);
338 			if (error)
339 				return (error);
340 		}
341 		if (accmode) {
342 		        error = VOP_ACCESS(vp, accmode, cred, td);
343 			if (error)
344 				return (error);
345 		}
346 	}
347 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
348 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
349 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
350 		return (error);
351 
352 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
353 		KASSERT(fp != NULL, ("open with flock requires fp"));
354 		lock_flags = VOP_ISLOCKED(vp);
355 		VOP_UNLOCK(vp, 0);
356 		lf.l_whence = SEEK_SET;
357 		lf.l_start = 0;
358 		lf.l_len = 0;
359 		if (fmode & O_EXLOCK)
360 			lf.l_type = F_WRLCK;
361 		else
362 			lf.l_type = F_RDLCK;
363 		type = F_FLOCK;
364 		if ((fmode & FNONBLOCK) == 0)
365 			type |= F_WAIT;
366 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
367 		if (error == 0)
368 			fp->f_flag |= FHASLOCK;
369 		vn_lock(vp, lock_flags | LK_RETRY);
370 		if (error == 0 && vp->v_iflag & VI_DOOMED)
371 			error = ENOENT;
372 
373 		/*
374 		 * Another thread might have used this vnode as an
375 		 * executable while the vnode lock was dropped.
376 		 * Ensure the vnode is still able to be opened for
377 		 * writing after the lock has been obtained.
378 		 */
379 		if (error == 0 && accmode & VWRITE)
380 			error = vn_writechk(vp);
381 
382 		if (error != 0) {
383 			fp->f_flag |= FOPENFAILED;
384 			fp->f_vnode = vp;
385 			if (fp->f_ops == &badfileops) {
386 				fp->f_type = DTYPE_VNODE;
387 				fp->f_ops = &vnops;
388 			}
389 			vref(vp);
390 		}
391 	}
392 	if (error == 0 && fmode & FWRITE) {
393 		VOP_ADD_WRITECOUNT(vp, 1);
394 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
395 		    __func__, vp, vp->v_writecount);
396 	}
397 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
398 	return (error);
399 }
400 
401 /*
402  * Check for write permissions on the specified vnode.
403  * Prototype text segments cannot be written.
404  */
405 int
406 vn_writechk(vp)
407 	register struct vnode *vp;
408 {
409 
410 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
411 	/*
412 	 * If there's shared text associated with
413 	 * the vnode, try to free it up once.  If
414 	 * we fail, we can't allow writing.
415 	 */
416 	if (VOP_IS_TEXT(vp))
417 		return (ETXTBSY);
418 
419 	return (0);
420 }
421 
422 /*
423  * Vnode close call
424  */
425 int
426 vn_close(vp, flags, file_cred, td)
427 	register struct vnode *vp;
428 	int flags;
429 	struct ucred *file_cred;
430 	struct thread *td;
431 {
432 	struct mount *mp;
433 	int error, lock_flags;
434 
435 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
436 	    MNT_EXTENDED_SHARED(vp->v_mount))
437 		lock_flags = LK_SHARED;
438 	else
439 		lock_flags = LK_EXCLUSIVE;
440 
441 	vn_start_write(vp, &mp, V_WAIT);
442 	vn_lock(vp, lock_flags | LK_RETRY);
443 	AUDIT_ARG_VNODE1(vp);
444 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
445 		VNASSERT(vp->v_writecount > 0, vp,
446 		    ("vn_close: negative writecount"));
447 		VOP_ADD_WRITECOUNT(vp, -1);
448 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
449 		    __func__, vp, vp->v_writecount);
450 	}
451 	error = VOP_CLOSE(vp, flags, file_cred, td);
452 	vput(vp);
453 	vn_finished_write(mp);
454 	return (error);
455 }
456 
457 /*
458  * Heuristic to detect sequential operation.
459  */
460 static int
461 sequential_heuristic(struct uio *uio, struct file *fp)
462 {
463 
464 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
465 	if (fp->f_flag & FRDAHEAD)
466 		return (fp->f_seqcount << IO_SEQSHIFT);
467 
468 	/*
469 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
470 	 * that the first I/O is normally considered to be slightly
471 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
472 	 * unless previous seeks have reduced f_seqcount to 0, in which
473 	 * case offset 0 is not special.
474 	 */
475 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
476 	    uio->uio_offset == fp->f_nextoff) {
477 		/*
478 		 * f_seqcount is in units of fixed-size blocks so that it
479 		 * depends mainly on the amount of sequential I/O and not
480 		 * much on the number of sequential I/O's.  The fixed size
481 		 * of 16384 is hard-coded here since it is (not quite) just
482 		 * a magic size that works well here.  This size is more
483 		 * closely related to the best I/O size for real disks than
484 		 * to any block size used by software.
485 		 */
486 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
487 		if (fp->f_seqcount > IO_SEQMAX)
488 			fp->f_seqcount = IO_SEQMAX;
489 		return (fp->f_seqcount << IO_SEQSHIFT);
490 	}
491 
492 	/* Not sequential.  Quickly draw-down sequentiality. */
493 	if (fp->f_seqcount > 1)
494 		fp->f_seqcount = 1;
495 	else
496 		fp->f_seqcount = 0;
497 	return (0);
498 }
499 
500 /*
501  * Package up an I/O request on a vnode into a uio and do it.
502  */
503 int
504 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
505     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
506     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
507 {
508 	struct uio auio;
509 	struct iovec aiov;
510 	struct mount *mp;
511 	struct ucred *cred;
512 	void *rl_cookie;
513 	struct vn_io_fault_args args;
514 	int error, lock_flags;
515 
516 	auio.uio_iov = &aiov;
517 	auio.uio_iovcnt = 1;
518 	aiov.iov_base = base;
519 	aiov.iov_len = len;
520 	auio.uio_resid = len;
521 	auio.uio_offset = offset;
522 	auio.uio_segflg = segflg;
523 	auio.uio_rw = rw;
524 	auio.uio_td = td;
525 	error = 0;
526 
527 	if ((ioflg & IO_NODELOCKED) == 0) {
528 		if ((ioflg & IO_RANGELOCKED) == 0) {
529 			if (rw == UIO_READ) {
530 				rl_cookie = vn_rangelock_rlock(vp, offset,
531 				    offset + len);
532 			} else {
533 				rl_cookie = vn_rangelock_wlock(vp, offset,
534 				    offset + len);
535 			}
536 		} else
537 			rl_cookie = NULL;
538 		mp = NULL;
539 		if (rw == UIO_WRITE) {
540 			if (vp->v_type != VCHR &&
541 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
542 			    != 0)
543 				goto out;
544 			if (MNT_SHARED_WRITES(mp) ||
545 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
546 				lock_flags = LK_SHARED;
547 			else
548 				lock_flags = LK_EXCLUSIVE;
549 		} else
550 			lock_flags = LK_SHARED;
551 		vn_lock(vp, lock_flags | LK_RETRY);
552 	} else
553 		rl_cookie = NULL;
554 
555 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
556 #ifdef MAC
557 	if ((ioflg & IO_NOMACCHECK) == 0) {
558 		if (rw == UIO_READ)
559 			error = mac_vnode_check_read(active_cred, file_cred,
560 			    vp);
561 		else
562 			error = mac_vnode_check_write(active_cred, file_cred,
563 			    vp);
564 	}
565 #endif
566 	if (error == 0) {
567 		if (file_cred != NULL)
568 			cred = file_cred;
569 		else
570 			cred = active_cred;
571 		if (do_vn_io_fault(vp, &auio)) {
572 			args.kind = VN_IO_FAULT_VOP;
573 			args.cred = cred;
574 			args.flags = ioflg;
575 			args.args.vop_args.vp = vp;
576 			error = vn_io_fault1(vp, &auio, &args, td);
577 		} else if (rw == UIO_READ) {
578 			error = VOP_READ(vp, &auio, ioflg, cred);
579 		} else /* if (rw == UIO_WRITE) */ {
580 			error = VOP_WRITE(vp, &auio, ioflg, cred);
581 		}
582 	}
583 	if (aresid)
584 		*aresid = auio.uio_resid;
585 	else
586 		if (auio.uio_resid && error == 0)
587 			error = EIO;
588 	if ((ioflg & IO_NODELOCKED) == 0) {
589 		VOP_UNLOCK(vp, 0);
590 		if (mp != NULL)
591 			vn_finished_write(mp);
592 	}
593  out:
594 	if (rl_cookie != NULL)
595 		vn_rangelock_unlock(vp, rl_cookie);
596 	return (error);
597 }
598 
599 /*
600  * Package up an I/O request on a vnode into a uio and do it.  The I/O
601  * request is split up into smaller chunks and we try to avoid saturating
602  * the buffer cache while potentially holding a vnode locked, so we
603  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
604  * to give other processes a chance to lock the vnode (either other processes
605  * core'ing the same binary, or unrelated processes scanning the directory).
606  */
607 int
608 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
609     file_cred, aresid, td)
610 	enum uio_rw rw;
611 	struct vnode *vp;
612 	void *base;
613 	size_t len;
614 	off_t offset;
615 	enum uio_seg segflg;
616 	int ioflg;
617 	struct ucred *active_cred;
618 	struct ucred *file_cred;
619 	size_t *aresid;
620 	struct thread *td;
621 {
622 	int error = 0;
623 	ssize_t iaresid;
624 
625 	do {
626 		int chunk;
627 
628 		/*
629 		 * Force `offset' to a multiple of MAXBSIZE except possibly
630 		 * for the first chunk, so that filesystems only need to
631 		 * write full blocks except possibly for the first and last
632 		 * chunks.
633 		 */
634 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
635 
636 		if (chunk > len)
637 			chunk = len;
638 		if (rw != UIO_READ && vp->v_type == VREG)
639 			bwillwrite();
640 		iaresid = 0;
641 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
642 		    ioflg, active_cred, file_cred, &iaresid, td);
643 		len -= chunk;	/* aresid calc already includes length */
644 		if (error)
645 			break;
646 		offset += chunk;
647 		base = (char *)base + chunk;
648 		kern_yield(PRI_USER);
649 	} while (len);
650 	if (aresid)
651 		*aresid = len + iaresid;
652 	return (error);
653 }
654 
655 off_t
656 foffset_lock(struct file *fp, int flags)
657 {
658 	struct mtx *mtxp;
659 	off_t res;
660 
661 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
662 
663 #if OFF_MAX <= LONG_MAX
664 	/*
665 	 * Caller only wants the current f_offset value.  Assume that
666 	 * the long and shorter integer types reads are atomic.
667 	 */
668 	if ((flags & FOF_NOLOCK) != 0)
669 		return (fp->f_offset);
670 #endif
671 
672 	/*
673 	 * According to McKusick the vn lock was protecting f_offset here.
674 	 * It is now protected by the FOFFSET_LOCKED flag.
675 	 */
676 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
677 	mtx_lock(mtxp);
678 	if ((flags & FOF_NOLOCK) == 0) {
679 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
680 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
681 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
682 			    "vofflock", 0);
683 		}
684 		fp->f_vnread_flags |= FOFFSET_LOCKED;
685 	}
686 	res = fp->f_offset;
687 	mtx_unlock(mtxp);
688 	return (res);
689 }
690 
691 void
692 foffset_unlock(struct file *fp, off_t val, int flags)
693 {
694 	struct mtx *mtxp;
695 
696 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
697 
698 #if OFF_MAX <= LONG_MAX
699 	if ((flags & FOF_NOLOCK) != 0) {
700 		if ((flags & FOF_NOUPDATE) == 0)
701 			fp->f_offset = val;
702 		if ((flags & FOF_NEXTOFF) != 0)
703 			fp->f_nextoff = val;
704 		return;
705 	}
706 #endif
707 
708 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
709 	mtx_lock(mtxp);
710 	if ((flags & FOF_NOUPDATE) == 0)
711 		fp->f_offset = val;
712 	if ((flags & FOF_NEXTOFF) != 0)
713 		fp->f_nextoff = val;
714 	if ((flags & FOF_NOLOCK) == 0) {
715 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
716 		    ("Lost FOFFSET_LOCKED"));
717 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
718 			wakeup(&fp->f_vnread_flags);
719 		fp->f_vnread_flags = 0;
720 	}
721 	mtx_unlock(mtxp);
722 }
723 
724 void
725 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
726 {
727 
728 	if ((flags & FOF_OFFSET) == 0)
729 		uio->uio_offset = foffset_lock(fp, flags);
730 }
731 
732 void
733 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
734 {
735 
736 	if ((flags & FOF_OFFSET) == 0)
737 		foffset_unlock(fp, uio->uio_offset, flags);
738 }
739 
740 static int
741 get_advice(struct file *fp, struct uio *uio)
742 {
743 	struct mtx *mtxp;
744 	int ret;
745 
746 	ret = POSIX_FADV_NORMAL;
747 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
748 		return (ret);
749 
750 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
751 	mtx_lock(mtxp);
752 	if (fp->f_advice != NULL &&
753 	    uio->uio_offset >= fp->f_advice->fa_start &&
754 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
755 		ret = fp->f_advice->fa_advice;
756 	mtx_unlock(mtxp);
757 	return (ret);
758 }
759 
760 /*
761  * File table vnode read routine.
762  */
763 static int
764 vn_read(fp, uio, active_cred, flags, td)
765 	struct file *fp;
766 	struct uio *uio;
767 	struct ucred *active_cred;
768 	int flags;
769 	struct thread *td;
770 {
771 	struct vnode *vp;
772 	off_t orig_offset;
773 	int error, ioflag;
774 	int advice;
775 
776 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
777 	    uio->uio_td, td));
778 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
779 	vp = fp->f_vnode;
780 	ioflag = 0;
781 	if (fp->f_flag & FNONBLOCK)
782 		ioflag |= IO_NDELAY;
783 	if (fp->f_flag & O_DIRECT)
784 		ioflag |= IO_DIRECT;
785 	advice = get_advice(fp, uio);
786 	vn_lock(vp, LK_SHARED | LK_RETRY);
787 
788 	switch (advice) {
789 	case POSIX_FADV_NORMAL:
790 	case POSIX_FADV_SEQUENTIAL:
791 	case POSIX_FADV_NOREUSE:
792 		ioflag |= sequential_heuristic(uio, fp);
793 		break;
794 	case POSIX_FADV_RANDOM:
795 		/* Disable read-ahead for random I/O. */
796 		break;
797 	}
798 	orig_offset = uio->uio_offset;
799 
800 #ifdef MAC
801 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
802 	if (error == 0)
803 #endif
804 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
805 	fp->f_nextoff = uio->uio_offset;
806 	VOP_UNLOCK(vp, 0);
807 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
808 	    orig_offset != uio->uio_offset)
809 		/*
810 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
811 		 * for the backing file after a POSIX_FADV_NOREUSE
812 		 * read(2).
813 		 */
814 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
815 		    POSIX_FADV_DONTNEED);
816 	return (error);
817 }
818 
819 /*
820  * File table vnode write routine.
821  */
822 static int
823 vn_write(fp, uio, active_cred, flags, td)
824 	struct file *fp;
825 	struct uio *uio;
826 	struct ucred *active_cred;
827 	int flags;
828 	struct thread *td;
829 {
830 	struct vnode *vp;
831 	struct mount *mp;
832 	off_t orig_offset;
833 	int error, ioflag, lock_flags;
834 	int advice;
835 
836 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
837 	    uio->uio_td, td));
838 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
839 	vp = fp->f_vnode;
840 	if (vp->v_type == VREG)
841 		bwillwrite();
842 	ioflag = IO_UNIT;
843 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
844 		ioflag |= IO_APPEND;
845 	if (fp->f_flag & FNONBLOCK)
846 		ioflag |= IO_NDELAY;
847 	if (fp->f_flag & O_DIRECT)
848 		ioflag |= IO_DIRECT;
849 	if ((fp->f_flag & O_FSYNC) ||
850 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
851 		ioflag |= IO_SYNC;
852 	mp = NULL;
853 	if (vp->v_type != VCHR &&
854 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
855 		goto unlock;
856 
857 	advice = get_advice(fp, uio);
858 
859 	if (MNT_SHARED_WRITES(mp) ||
860 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
861 		lock_flags = LK_SHARED;
862 	} else {
863 		lock_flags = LK_EXCLUSIVE;
864 	}
865 
866 	vn_lock(vp, lock_flags | LK_RETRY);
867 	switch (advice) {
868 	case POSIX_FADV_NORMAL:
869 	case POSIX_FADV_SEQUENTIAL:
870 	case POSIX_FADV_NOREUSE:
871 		ioflag |= sequential_heuristic(uio, fp);
872 		break;
873 	case POSIX_FADV_RANDOM:
874 		/* XXX: Is this correct? */
875 		break;
876 	}
877 	orig_offset = uio->uio_offset;
878 
879 #ifdef MAC
880 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
881 	if (error == 0)
882 #endif
883 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
884 	fp->f_nextoff = uio->uio_offset;
885 	VOP_UNLOCK(vp, 0);
886 	if (vp->v_type != VCHR)
887 		vn_finished_write(mp);
888 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
889 	    orig_offset != uio->uio_offset)
890 		/*
891 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
892 		 * for the backing file after a POSIX_FADV_NOREUSE
893 		 * write(2).
894 		 */
895 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
896 		    POSIX_FADV_DONTNEED);
897 unlock:
898 	return (error);
899 }
900 
901 /*
902  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
903  * prevent the following deadlock:
904  *
905  * Assume that the thread A reads from the vnode vp1 into userspace
906  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
907  * currently not resident, then system ends up with the call chain
908  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
909  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
910  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
911  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
912  * backed by the pages of vnode vp1, and some page in buf2 is not
913  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
914  *
915  * To prevent the lock order reversal and deadlock, vn_io_fault() does
916  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
917  * Instead, it first tries to do the whole range i/o with pagefaults
918  * disabled. If all pages in the i/o buffer are resident and mapped,
919  * VOP will succeed (ignoring the genuine filesystem errors).
920  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
921  * i/o in chunks, with all pages in the chunk prefaulted and held
922  * using vm_fault_quick_hold_pages().
923  *
924  * Filesystems using this deadlock avoidance scheme should use the
925  * array of the held pages from uio, saved in the curthread->td_ma,
926  * instead of doing uiomove().  A helper function
927  * vn_io_fault_uiomove() converts uiomove request into
928  * uiomove_fromphys() over td_ma array.
929  *
930  * Since vnode locks do not cover the whole i/o anymore, rangelocks
931  * make the current i/o request atomic with respect to other i/os and
932  * truncations.
933  */
934 
935 /*
936  * Decode vn_io_fault_args and perform the corresponding i/o.
937  */
938 static int
939 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
940     struct thread *td)
941 {
942 
943 	switch (args->kind) {
944 	case VN_IO_FAULT_FOP:
945 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
946 		    uio, args->cred, args->flags, td));
947 	case VN_IO_FAULT_VOP:
948 		if (uio->uio_rw == UIO_READ) {
949 			return (VOP_READ(args->args.vop_args.vp, uio,
950 			    args->flags, args->cred));
951 		} else if (uio->uio_rw == UIO_WRITE) {
952 			return (VOP_WRITE(args->args.vop_args.vp, uio,
953 			    args->flags, args->cred));
954 		}
955 		break;
956 	}
957 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
958 	    uio->uio_rw);
959 }
960 
961 static int
962 vn_io_fault_touch(char *base, const struct uio *uio)
963 {
964 	int r;
965 
966 	r = fubyte(base);
967 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
968 		return (EFAULT);
969 	return (0);
970 }
971 
972 static int
973 vn_io_fault_prefault_user(const struct uio *uio)
974 {
975 	char *base;
976 	const struct iovec *iov;
977 	size_t len;
978 	ssize_t resid;
979 	int error, i;
980 
981 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
982 	    ("vn_io_fault_prefault userspace"));
983 
984 	error = i = 0;
985 	iov = uio->uio_iov;
986 	resid = uio->uio_resid;
987 	base = iov->iov_base;
988 	len = iov->iov_len;
989 	while (resid > 0) {
990 		error = vn_io_fault_touch(base, uio);
991 		if (error != 0)
992 			break;
993 		if (len < PAGE_SIZE) {
994 			if (len != 0) {
995 				error = vn_io_fault_touch(base + len - 1, uio);
996 				if (error != 0)
997 					break;
998 				resid -= len;
999 			}
1000 			if (++i >= uio->uio_iovcnt)
1001 				break;
1002 			iov = uio->uio_iov + i;
1003 			base = iov->iov_base;
1004 			len = iov->iov_len;
1005 		} else {
1006 			len -= PAGE_SIZE;
1007 			base += PAGE_SIZE;
1008 			resid -= PAGE_SIZE;
1009 		}
1010 	}
1011 	return (error);
1012 }
1013 
1014 /*
1015  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1016  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1017  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1018  * into args and call vn_io_fault1() to handle faults during the user
1019  * mode buffer accesses.
1020  */
1021 static int
1022 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1023     struct thread *td)
1024 {
1025 	vm_page_t ma[io_hold_cnt + 2];
1026 	struct uio *uio_clone, short_uio;
1027 	struct iovec short_iovec[1];
1028 	vm_page_t *prev_td_ma;
1029 	vm_prot_t prot;
1030 	vm_offset_t addr, end;
1031 	size_t len, resid;
1032 	ssize_t adv;
1033 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1034 
1035 	if (vn_io_fault_prefault) {
1036 		error = vn_io_fault_prefault_user(uio);
1037 		if (error != 0)
1038 			return (error); /* Or ignore ? */
1039 	}
1040 
1041 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1042 
1043 	/*
1044 	 * The UFS follows IO_UNIT directive and replays back both
1045 	 * uio_offset and uio_resid if an error is encountered during the
1046 	 * operation.  But, since the iovec may be already advanced,
1047 	 * uio is still in an inconsistent state.
1048 	 *
1049 	 * Cache a copy of the original uio, which is advanced to the redo
1050 	 * point using UIO_NOCOPY below.
1051 	 */
1052 	uio_clone = cloneuio(uio);
1053 	resid = uio->uio_resid;
1054 
1055 	short_uio.uio_segflg = UIO_USERSPACE;
1056 	short_uio.uio_rw = uio->uio_rw;
1057 	short_uio.uio_td = uio->uio_td;
1058 
1059 	save = vm_fault_disable_pagefaults();
1060 	error = vn_io_fault_doio(args, uio, td);
1061 	if (error != EFAULT)
1062 		goto out;
1063 
1064 	atomic_add_long(&vn_io_faults_cnt, 1);
1065 	uio_clone->uio_segflg = UIO_NOCOPY;
1066 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1067 	uio_clone->uio_segflg = uio->uio_segflg;
1068 
1069 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1070 	prev_td_ma = td->td_ma;
1071 	prev_td_ma_cnt = td->td_ma_cnt;
1072 
1073 	while (uio_clone->uio_resid != 0) {
1074 		len = uio_clone->uio_iov->iov_len;
1075 		if (len == 0) {
1076 			KASSERT(uio_clone->uio_iovcnt >= 1,
1077 			    ("iovcnt underflow"));
1078 			uio_clone->uio_iov++;
1079 			uio_clone->uio_iovcnt--;
1080 			continue;
1081 		}
1082 		if (len > io_hold_cnt * PAGE_SIZE)
1083 			len = io_hold_cnt * PAGE_SIZE;
1084 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1085 		end = round_page(addr + len);
1086 		if (end < addr) {
1087 			error = EFAULT;
1088 			break;
1089 		}
1090 		cnt = atop(end - trunc_page(addr));
1091 		/*
1092 		 * A perfectly misaligned address and length could cause
1093 		 * both the start and the end of the chunk to use partial
1094 		 * page.  +2 accounts for such a situation.
1095 		 */
1096 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1097 		    addr, len, prot, ma, io_hold_cnt + 2);
1098 		if (cnt == -1) {
1099 			error = EFAULT;
1100 			break;
1101 		}
1102 		short_uio.uio_iov = &short_iovec[0];
1103 		short_iovec[0].iov_base = (void *)addr;
1104 		short_uio.uio_iovcnt = 1;
1105 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1106 		short_uio.uio_offset = uio_clone->uio_offset;
1107 		td->td_ma = ma;
1108 		td->td_ma_cnt = cnt;
1109 
1110 		error = vn_io_fault_doio(args, &short_uio, td);
1111 		vm_page_unhold_pages(ma, cnt);
1112 		adv = len - short_uio.uio_resid;
1113 
1114 		uio_clone->uio_iov->iov_base =
1115 		    (char *)uio_clone->uio_iov->iov_base + adv;
1116 		uio_clone->uio_iov->iov_len -= adv;
1117 		uio_clone->uio_resid -= adv;
1118 		uio_clone->uio_offset += adv;
1119 
1120 		uio->uio_resid -= adv;
1121 		uio->uio_offset += adv;
1122 
1123 		if (error != 0 || adv == 0)
1124 			break;
1125 	}
1126 	td->td_ma = prev_td_ma;
1127 	td->td_ma_cnt = prev_td_ma_cnt;
1128 	curthread_pflags_restore(saveheld);
1129 out:
1130 	vm_fault_enable_pagefaults(save);
1131 	free(uio_clone, M_IOV);
1132 	return (error);
1133 }
1134 
1135 static int
1136 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1137     int flags, struct thread *td)
1138 {
1139 	fo_rdwr_t *doio;
1140 	struct vnode *vp;
1141 	void *rl_cookie;
1142 	struct vn_io_fault_args args;
1143 	int error;
1144 
1145 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1146 	vp = fp->f_vnode;
1147 	foffset_lock_uio(fp, uio, flags);
1148 	if (do_vn_io_fault(vp, uio)) {
1149 		args.kind = VN_IO_FAULT_FOP;
1150 		args.args.fop_args.fp = fp;
1151 		args.args.fop_args.doio = doio;
1152 		args.cred = active_cred;
1153 		args.flags = flags | FOF_OFFSET;
1154 		if (uio->uio_rw == UIO_READ) {
1155 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1156 			    uio->uio_offset + uio->uio_resid);
1157 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1158 		    (flags & FOF_OFFSET) == 0) {
1159 			/* For appenders, punt and lock the whole range. */
1160 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1161 		} else {
1162 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1163 			    uio->uio_offset + uio->uio_resid);
1164 		}
1165 		error = vn_io_fault1(vp, uio, &args, td);
1166 		vn_rangelock_unlock(vp, rl_cookie);
1167 	} else {
1168 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1169 	}
1170 	foffset_unlock_uio(fp, uio, flags);
1171 	return (error);
1172 }
1173 
1174 /*
1175  * Helper function to perform the requested uiomove operation using
1176  * the held pages for io->uio_iov[0].iov_base buffer instead of
1177  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1178  * instead of iov_base prevents page faults that could occur due to
1179  * pmap_collect() invalidating the mapping created by
1180  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1181  * object cleanup revoking the write access from page mappings.
1182  *
1183  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1184  * instead of plain uiomove().
1185  */
1186 int
1187 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1188 {
1189 	struct uio transp_uio;
1190 	struct iovec transp_iov[1];
1191 	struct thread *td;
1192 	size_t adv;
1193 	int error, pgadv;
1194 
1195 	td = curthread;
1196 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1197 	    uio->uio_segflg != UIO_USERSPACE)
1198 		return (uiomove(data, xfersize, uio));
1199 
1200 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1201 	transp_iov[0].iov_base = data;
1202 	transp_uio.uio_iov = &transp_iov[0];
1203 	transp_uio.uio_iovcnt = 1;
1204 	if (xfersize > uio->uio_resid)
1205 		xfersize = uio->uio_resid;
1206 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1207 	transp_uio.uio_offset = 0;
1208 	transp_uio.uio_segflg = UIO_SYSSPACE;
1209 	/*
1210 	 * Since transp_iov points to data, and td_ma page array
1211 	 * corresponds to original uio->uio_iov, we need to invert the
1212 	 * direction of the i/o operation as passed to
1213 	 * uiomove_fromphys().
1214 	 */
1215 	switch (uio->uio_rw) {
1216 	case UIO_WRITE:
1217 		transp_uio.uio_rw = UIO_READ;
1218 		break;
1219 	case UIO_READ:
1220 		transp_uio.uio_rw = UIO_WRITE;
1221 		break;
1222 	}
1223 	transp_uio.uio_td = uio->uio_td;
1224 	error = uiomove_fromphys(td->td_ma,
1225 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1226 	    xfersize, &transp_uio);
1227 	adv = xfersize - transp_uio.uio_resid;
1228 	pgadv =
1229 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1230 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1231 	td->td_ma += pgadv;
1232 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1233 	    pgadv));
1234 	td->td_ma_cnt -= pgadv;
1235 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1236 	uio->uio_iov->iov_len -= adv;
1237 	uio->uio_resid -= adv;
1238 	uio->uio_offset += adv;
1239 	return (error);
1240 }
1241 
1242 int
1243 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1244     struct uio *uio)
1245 {
1246 	struct thread *td;
1247 	vm_offset_t iov_base;
1248 	int cnt, pgadv;
1249 
1250 	td = curthread;
1251 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1252 	    uio->uio_segflg != UIO_USERSPACE)
1253 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1254 
1255 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1256 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1257 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1258 	switch (uio->uio_rw) {
1259 	case UIO_WRITE:
1260 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1261 		    offset, cnt);
1262 		break;
1263 	case UIO_READ:
1264 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1265 		    cnt);
1266 		break;
1267 	}
1268 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1269 	td->td_ma += pgadv;
1270 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1271 	    pgadv));
1272 	td->td_ma_cnt -= pgadv;
1273 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1274 	uio->uio_iov->iov_len -= cnt;
1275 	uio->uio_resid -= cnt;
1276 	uio->uio_offset += cnt;
1277 	return (0);
1278 }
1279 
1280 
1281 /*
1282  * File table truncate routine.
1283  */
1284 static int
1285 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1286     struct thread *td)
1287 {
1288 	struct vattr vattr;
1289 	struct mount *mp;
1290 	struct vnode *vp;
1291 	void *rl_cookie;
1292 	int error;
1293 
1294 	vp = fp->f_vnode;
1295 
1296 	/*
1297 	 * Lock the whole range for truncation.  Otherwise split i/o
1298 	 * might happen partly before and partly after the truncation.
1299 	 */
1300 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1301 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1302 	if (error)
1303 		goto out1;
1304 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1305 	if (vp->v_type == VDIR) {
1306 		error = EISDIR;
1307 		goto out;
1308 	}
1309 #ifdef MAC
1310 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1311 	if (error)
1312 		goto out;
1313 #endif
1314 	error = vn_writechk(vp);
1315 	if (error == 0) {
1316 		VATTR_NULL(&vattr);
1317 		vattr.va_size = length;
1318 		if ((fp->f_flag & O_FSYNC) != 0)
1319 			vattr.va_vaflags |= VA_SYNC;
1320 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1321 	}
1322 out:
1323 	VOP_UNLOCK(vp, 0);
1324 	vn_finished_write(mp);
1325 out1:
1326 	vn_rangelock_unlock(vp, rl_cookie);
1327 	return (error);
1328 }
1329 
1330 /*
1331  * File table vnode stat routine.
1332  */
1333 static int
1334 vn_statfile(fp, sb, active_cred, td)
1335 	struct file *fp;
1336 	struct stat *sb;
1337 	struct ucred *active_cred;
1338 	struct thread *td;
1339 {
1340 	struct vnode *vp = fp->f_vnode;
1341 	int error;
1342 
1343 	vn_lock(vp, LK_SHARED | LK_RETRY);
1344 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1345 	VOP_UNLOCK(vp, 0);
1346 
1347 	return (error);
1348 }
1349 
1350 /*
1351  * Stat a vnode; implementation for the stat syscall
1352  */
1353 int
1354 vn_stat(vp, sb, active_cred, file_cred, td)
1355 	struct vnode *vp;
1356 	register struct stat *sb;
1357 	struct ucred *active_cred;
1358 	struct ucred *file_cred;
1359 	struct thread *td;
1360 {
1361 	struct vattr vattr;
1362 	register struct vattr *vap;
1363 	int error;
1364 	u_short mode;
1365 
1366 	AUDIT_ARG_VNODE1(vp);
1367 #ifdef MAC
1368 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1369 	if (error)
1370 		return (error);
1371 #endif
1372 
1373 	vap = &vattr;
1374 
1375 	/*
1376 	 * Initialize defaults for new and unusual fields, so that file
1377 	 * systems which don't support these fields don't need to know
1378 	 * about them.
1379 	 */
1380 	vap->va_birthtime.tv_sec = -1;
1381 	vap->va_birthtime.tv_nsec = 0;
1382 	vap->va_fsid = VNOVAL;
1383 	vap->va_rdev = NODEV;
1384 
1385 	error = VOP_GETATTR(vp, vap, active_cred);
1386 	if (error)
1387 		return (error);
1388 
1389 	/*
1390 	 * Zero the spare stat fields
1391 	 */
1392 	bzero(sb, sizeof *sb);
1393 
1394 	/*
1395 	 * Copy from vattr table
1396 	 */
1397 	if (vap->va_fsid != VNOVAL)
1398 		sb->st_dev = vap->va_fsid;
1399 	else
1400 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1401 	sb->st_ino = vap->va_fileid;
1402 	mode = vap->va_mode;
1403 	switch (vap->va_type) {
1404 	case VREG:
1405 		mode |= S_IFREG;
1406 		break;
1407 	case VDIR:
1408 		mode |= S_IFDIR;
1409 		break;
1410 	case VBLK:
1411 		mode |= S_IFBLK;
1412 		break;
1413 	case VCHR:
1414 		mode |= S_IFCHR;
1415 		break;
1416 	case VLNK:
1417 		mode |= S_IFLNK;
1418 		break;
1419 	case VSOCK:
1420 		mode |= S_IFSOCK;
1421 		break;
1422 	case VFIFO:
1423 		mode |= S_IFIFO;
1424 		break;
1425 	default:
1426 		return (EBADF);
1427 	}
1428 	sb->st_mode = mode;
1429 	sb->st_nlink = vap->va_nlink;
1430 	sb->st_uid = vap->va_uid;
1431 	sb->st_gid = vap->va_gid;
1432 	sb->st_rdev = vap->va_rdev;
1433 	if (vap->va_size > OFF_MAX)
1434 		return (EOVERFLOW);
1435 	sb->st_size = vap->va_size;
1436 	sb->st_atim = vap->va_atime;
1437 	sb->st_mtim = vap->va_mtime;
1438 	sb->st_ctim = vap->va_ctime;
1439 	sb->st_birthtim = vap->va_birthtime;
1440 
1441         /*
1442 	 * According to www.opengroup.org, the meaning of st_blksize is
1443 	 *   "a filesystem-specific preferred I/O block size for this
1444 	 *    object.  In some filesystem types, this may vary from file
1445 	 *    to file"
1446 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1447 	 */
1448 
1449 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1450 
1451 	sb->st_flags = vap->va_flags;
1452 	if (priv_check(td, PRIV_VFS_GENERATION))
1453 		sb->st_gen = 0;
1454 	else
1455 		sb->st_gen = vap->va_gen;
1456 
1457 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1458 	return (0);
1459 }
1460 
1461 /*
1462  * File table vnode ioctl routine.
1463  */
1464 static int
1465 vn_ioctl(fp, com, data, active_cred, td)
1466 	struct file *fp;
1467 	u_long com;
1468 	void *data;
1469 	struct ucred *active_cred;
1470 	struct thread *td;
1471 {
1472 	struct vattr vattr;
1473 	struct vnode *vp;
1474 	int error;
1475 
1476 	vp = fp->f_vnode;
1477 	switch (vp->v_type) {
1478 	case VDIR:
1479 	case VREG:
1480 		switch (com) {
1481 		case FIONREAD:
1482 			vn_lock(vp, LK_SHARED | LK_RETRY);
1483 			error = VOP_GETATTR(vp, &vattr, active_cred);
1484 			VOP_UNLOCK(vp, 0);
1485 			if (error == 0)
1486 				*(int *)data = vattr.va_size - fp->f_offset;
1487 			return (error);
1488 		case FIONBIO:
1489 		case FIOASYNC:
1490 			return (0);
1491 		default:
1492 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1493 			    active_cred, td));
1494 		}
1495 		break;
1496 	case VCHR:
1497 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1498 		    active_cred, td));
1499 	default:
1500 		return (ENOTTY);
1501 	}
1502 }
1503 
1504 /*
1505  * File table vnode poll routine.
1506  */
1507 static int
1508 vn_poll(fp, events, active_cred, td)
1509 	struct file *fp;
1510 	int events;
1511 	struct ucred *active_cred;
1512 	struct thread *td;
1513 {
1514 	struct vnode *vp;
1515 	int error;
1516 
1517 	vp = fp->f_vnode;
1518 #ifdef MAC
1519 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1520 	AUDIT_ARG_VNODE1(vp);
1521 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1522 	VOP_UNLOCK(vp, 0);
1523 	if (!error)
1524 #endif
1525 
1526 	error = VOP_POLL(vp, events, fp->f_cred, td);
1527 	return (error);
1528 }
1529 
1530 /*
1531  * Acquire the requested lock and then check for validity.  LK_RETRY
1532  * permits vn_lock to return doomed vnodes.
1533  */
1534 int
1535 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1536 {
1537 	int error;
1538 
1539 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1540 	    ("vn_lock called with no locktype."));
1541 	do {
1542 #ifdef DEBUG_VFS_LOCKS
1543 		KASSERT(vp->v_holdcnt != 0,
1544 		    ("vn_lock %p: zero hold count", vp));
1545 #endif
1546 		error = VOP_LOCK1(vp, flags, file, line);
1547 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1548 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1549 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occurred (%d)",
1550 		    flags, error));
1551 		/*
1552 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1553 		 * If RETRY is not set, we return ENOENT instead.
1554 		 */
1555 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1556 		    (flags & LK_RETRY) == 0) {
1557 			VOP_UNLOCK(vp, 0);
1558 			error = ENOENT;
1559 			break;
1560 		}
1561 	} while (flags & LK_RETRY && error != 0);
1562 	return (error);
1563 }
1564 
1565 /*
1566  * File table vnode close routine.
1567  */
1568 static int
1569 vn_closefile(fp, td)
1570 	struct file *fp;
1571 	struct thread *td;
1572 {
1573 	struct vnode *vp;
1574 	struct flock lf;
1575 	int error;
1576 
1577 	vp = fp->f_vnode;
1578 	fp->f_ops = &badfileops;
1579 
1580 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1581 		vref(vp);
1582 
1583 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1584 
1585 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1586 		lf.l_whence = SEEK_SET;
1587 		lf.l_start = 0;
1588 		lf.l_len = 0;
1589 		lf.l_type = F_UNLCK;
1590 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1591 		vrele(vp);
1592 	}
1593 	return (error);
1594 }
1595 
1596 static bool
1597 vn_suspendable(struct mount *mp)
1598 {
1599 
1600 	return (mp->mnt_op->vfs_susp_clean != NULL);
1601 }
1602 
1603 /*
1604  * Preparing to start a filesystem write operation. If the operation is
1605  * permitted, then we bump the count of operations in progress and
1606  * proceed. If a suspend request is in progress, we wait until the
1607  * suspension is over, and then proceed.
1608  */
1609 static int
1610 vn_start_write_locked(struct mount *mp, int flags)
1611 {
1612 	int error, mflags;
1613 
1614 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1615 	error = 0;
1616 
1617 	/*
1618 	 * Check on status of suspension.
1619 	 */
1620 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1621 	    mp->mnt_susp_owner != curthread) {
1622 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1623 		    (flags & PCATCH) : 0) | (PUSER - 1);
1624 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1625 			if (flags & V_NOWAIT) {
1626 				error = EWOULDBLOCK;
1627 				goto unlock;
1628 			}
1629 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1630 			    "suspfs", 0);
1631 			if (error)
1632 				goto unlock;
1633 		}
1634 	}
1635 	if (flags & V_XSLEEP)
1636 		goto unlock;
1637 	mp->mnt_writeopcount++;
1638 unlock:
1639 	if (error != 0 || (flags & V_XSLEEP) != 0)
1640 		MNT_REL(mp);
1641 	MNT_IUNLOCK(mp);
1642 	return (error);
1643 }
1644 
1645 int
1646 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1647 {
1648 	struct mount *mp;
1649 	int error;
1650 
1651 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1652 	    ("V_MNTREF requires mp"));
1653 
1654 	error = 0;
1655 	/*
1656 	 * If a vnode is provided, get and return the mount point that
1657 	 * to which it will write.
1658 	 */
1659 	if (vp != NULL) {
1660 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1661 			*mpp = NULL;
1662 			if (error != EOPNOTSUPP)
1663 				return (error);
1664 			return (0);
1665 		}
1666 	}
1667 	if ((mp = *mpp) == NULL)
1668 		return (0);
1669 
1670 	if (!vn_suspendable(mp)) {
1671 		if (vp != NULL || (flags & V_MNTREF) != 0)
1672 			vfs_rel(mp);
1673 		return (0);
1674 	}
1675 
1676 	/*
1677 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1678 	 * a vfs_ref().
1679 	 * As long as a vnode is not provided we need to acquire a
1680 	 * refcount for the provided mountpoint too, in order to
1681 	 * emulate a vfs_ref().
1682 	 */
1683 	MNT_ILOCK(mp);
1684 	if (vp == NULL && (flags & V_MNTREF) == 0)
1685 		MNT_REF(mp);
1686 
1687 	return (vn_start_write_locked(mp, flags));
1688 }
1689 
1690 /*
1691  * Secondary suspension. Used by operations such as vop_inactive
1692  * routines that are needed by the higher level functions. These
1693  * are allowed to proceed until all the higher level functions have
1694  * completed (indicated by mnt_writeopcount dropping to zero). At that
1695  * time, these operations are halted until the suspension is over.
1696  */
1697 int
1698 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1699 {
1700 	struct mount *mp;
1701 	int error;
1702 
1703 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1704 	    ("V_MNTREF requires mp"));
1705 
1706  retry:
1707 	if (vp != NULL) {
1708 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1709 			*mpp = NULL;
1710 			if (error != EOPNOTSUPP)
1711 				return (error);
1712 			return (0);
1713 		}
1714 	}
1715 	/*
1716 	 * If we are not suspended or have not yet reached suspended
1717 	 * mode, then let the operation proceed.
1718 	 */
1719 	if ((mp = *mpp) == NULL)
1720 		return (0);
1721 
1722 	if (!vn_suspendable(mp)) {
1723 		if (vp != NULL || (flags & V_MNTREF) != 0)
1724 			vfs_rel(mp);
1725 		return (0);
1726 	}
1727 
1728 	/*
1729 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1730 	 * a vfs_ref().
1731 	 * As long as a vnode is not provided we need to acquire a
1732 	 * refcount for the provided mountpoint too, in order to
1733 	 * emulate a vfs_ref().
1734 	 */
1735 	MNT_ILOCK(mp);
1736 	if (vp == NULL && (flags & V_MNTREF) == 0)
1737 		MNT_REF(mp);
1738 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1739 		mp->mnt_secondary_writes++;
1740 		mp->mnt_secondary_accwrites++;
1741 		MNT_IUNLOCK(mp);
1742 		return (0);
1743 	}
1744 	if (flags & V_NOWAIT) {
1745 		MNT_REL(mp);
1746 		MNT_IUNLOCK(mp);
1747 		return (EWOULDBLOCK);
1748 	}
1749 	/*
1750 	 * Wait for the suspension to finish.
1751 	 */
1752 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1753 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1754 	    "suspfs", 0);
1755 	vfs_rel(mp);
1756 	if (error == 0)
1757 		goto retry;
1758 	return (error);
1759 }
1760 
1761 /*
1762  * Filesystem write operation has completed. If we are suspending and this
1763  * operation is the last one, notify the suspender that the suspension is
1764  * now in effect.
1765  */
1766 void
1767 vn_finished_write(mp)
1768 	struct mount *mp;
1769 {
1770 	if (mp == NULL || !vn_suspendable(mp))
1771 		return;
1772 	MNT_ILOCK(mp);
1773 	MNT_REL(mp);
1774 	mp->mnt_writeopcount--;
1775 	if (mp->mnt_writeopcount < 0)
1776 		panic("vn_finished_write: neg cnt");
1777 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1778 	    mp->mnt_writeopcount <= 0)
1779 		wakeup(&mp->mnt_writeopcount);
1780 	MNT_IUNLOCK(mp);
1781 }
1782 
1783 
1784 /*
1785  * Filesystem secondary write operation has completed. If we are
1786  * suspending and this operation is the last one, notify the suspender
1787  * that the suspension is now in effect.
1788  */
1789 void
1790 vn_finished_secondary_write(mp)
1791 	struct mount *mp;
1792 {
1793 	if (mp == NULL || !vn_suspendable(mp))
1794 		return;
1795 	MNT_ILOCK(mp);
1796 	MNT_REL(mp);
1797 	mp->mnt_secondary_writes--;
1798 	if (mp->mnt_secondary_writes < 0)
1799 		panic("vn_finished_secondary_write: neg cnt");
1800 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1801 	    mp->mnt_secondary_writes <= 0)
1802 		wakeup(&mp->mnt_secondary_writes);
1803 	MNT_IUNLOCK(mp);
1804 }
1805 
1806 
1807 
1808 /*
1809  * Request a filesystem to suspend write operations.
1810  */
1811 int
1812 vfs_write_suspend(struct mount *mp, int flags)
1813 {
1814 	int error;
1815 
1816 	MPASS(vn_suspendable(mp));
1817 
1818 	MNT_ILOCK(mp);
1819 	if (mp->mnt_susp_owner == curthread) {
1820 		MNT_IUNLOCK(mp);
1821 		return (EALREADY);
1822 	}
1823 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1824 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1825 
1826 	/*
1827 	 * Unmount holds a write reference on the mount point.  If we
1828 	 * own busy reference and drain for writers, we deadlock with
1829 	 * the reference draining in the unmount path.  Callers of
1830 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1831 	 * vfs_busy() reference is owned and caller is not in the
1832 	 * unmount context.
1833 	 */
1834 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1835 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1836 		MNT_IUNLOCK(mp);
1837 		return (EBUSY);
1838 	}
1839 
1840 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1841 	mp->mnt_susp_owner = curthread;
1842 	if (mp->mnt_writeopcount > 0)
1843 		(void) msleep(&mp->mnt_writeopcount,
1844 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1845 	else
1846 		MNT_IUNLOCK(mp);
1847 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1848 		vfs_write_resume(mp, 0);
1849 	return (error);
1850 }
1851 
1852 /*
1853  * Request a filesystem to resume write operations.
1854  */
1855 void
1856 vfs_write_resume(struct mount *mp, int flags)
1857 {
1858 
1859 	MPASS(vn_suspendable(mp));
1860 
1861 	MNT_ILOCK(mp);
1862 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1863 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1864 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1865 				       MNTK_SUSPENDED);
1866 		mp->mnt_susp_owner = NULL;
1867 		wakeup(&mp->mnt_writeopcount);
1868 		wakeup(&mp->mnt_flag);
1869 		curthread->td_pflags &= ~TDP_IGNSUSP;
1870 		if ((flags & VR_START_WRITE) != 0) {
1871 			MNT_REF(mp);
1872 			mp->mnt_writeopcount++;
1873 		}
1874 		MNT_IUNLOCK(mp);
1875 		if ((flags & VR_NO_SUSPCLR) == 0)
1876 			VFS_SUSP_CLEAN(mp);
1877 	} else if ((flags & VR_START_WRITE) != 0) {
1878 		MNT_REF(mp);
1879 		vn_start_write_locked(mp, 0);
1880 	} else {
1881 		MNT_IUNLOCK(mp);
1882 	}
1883 }
1884 
1885 /*
1886  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1887  * methods.
1888  */
1889 int
1890 vfs_write_suspend_umnt(struct mount *mp)
1891 {
1892 	int error;
1893 
1894 	MPASS(vn_suspendable(mp));
1895 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1896 	    ("vfs_write_suspend_umnt: recursed"));
1897 
1898 	/* dounmount() already called vn_start_write(). */
1899 	for (;;) {
1900 		vn_finished_write(mp);
1901 		error = vfs_write_suspend(mp, 0);
1902 		if (error != 0) {
1903 			vn_start_write(NULL, &mp, V_WAIT);
1904 			return (error);
1905 		}
1906 		MNT_ILOCK(mp);
1907 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1908 			break;
1909 		MNT_IUNLOCK(mp);
1910 		vn_start_write(NULL, &mp, V_WAIT);
1911 	}
1912 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1913 	wakeup(&mp->mnt_flag);
1914 	MNT_IUNLOCK(mp);
1915 	curthread->td_pflags |= TDP_IGNSUSP;
1916 	return (0);
1917 }
1918 
1919 /*
1920  * Implement kqueues for files by translating it to vnode operation.
1921  */
1922 static int
1923 vn_kqfilter(struct file *fp, struct knote *kn)
1924 {
1925 
1926 	return (VOP_KQFILTER(fp->f_vnode, kn));
1927 }
1928 
1929 /*
1930  * Simplified in-kernel wrapper calls for extended attribute access.
1931  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1932  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1933  */
1934 int
1935 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1936     const char *attrname, int *buflen, char *buf, struct thread *td)
1937 {
1938 	struct uio	auio;
1939 	struct iovec	iov;
1940 	int	error;
1941 
1942 	iov.iov_len = *buflen;
1943 	iov.iov_base = buf;
1944 
1945 	auio.uio_iov = &iov;
1946 	auio.uio_iovcnt = 1;
1947 	auio.uio_rw = UIO_READ;
1948 	auio.uio_segflg = UIO_SYSSPACE;
1949 	auio.uio_td = td;
1950 	auio.uio_offset = 0;
1951 	auio.uio_resid = *buflen;
1952 
1953 	if ((ioflg & IO_NODELOCKED) == 0)
1954 		vn_lock(vp, LK_SHARED | LK_RETRY);
1955 
1956 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1957 
1958 	/* authorize attribute retrieval as kernel */
1959 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1960 	    td);
1961 
1962 	if ((ioflg & IO_NODELOCKED) == 0)
1963 		VOP_UNLOCK(vp, 0);
1964 
1965 	if (error == 0) {
1966 		*buflen = *buflen - auio.uio_resid;
1967 	}
1968 
1969 	return (error);
1970 }
1971 
1972 /*
1973  * XXX failure mode if partially written?
1974  */
1975 int
1976 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1977     const char *attrname, int buflen, char *buf, struct thread *td)
1978 {
1979 	struct uio	auio;
1980 	struct iovec	iov;
1981 	struct mount	*mp;
1982 	int	error;
1983 
1984 	iov.iov_len = buflen;
1985 	iov.iov_base = buf;
1986 
1987 	auio.uio_iov = &iov;
1988 	auio.uio_iovcnt = 1;
1989 	auio.uio_rw = UIO_WRITE;
1990 	auio.uio_segflg = UIO_SYSSPACE;
1991 	auio.uio_td = td;
1992 	auio.uio_offset = 0;
1993 	auio.uio_resid = buflen;
1994 
1995 	if ((ioflg & IO_NODELOCKED) == 0) {
1996 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1997 			return (error);
1998 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1999 	}
2000 
2001 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2002 
2003 	/* authorize attribute setting as kernel */
2004 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2005 
2006 	if ((ioflg & IO_NODELOCKED) == 0) {
2007 		vn_finished_write(mp);
2008 		VOP_UNLOCK(vp, 0);
2009 	}
2010 
2011 	return (error);
2012 }
2013 
2014 int
2015 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2016     const char *attrname, struct thread *td)
2017 {
2018 	struct mount	*mp;
2019 	int	error;
2020 
2021 	if ((ioflg & IO_NODELOCKED) == 0) {
2022 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2023 			return (error);
2024 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2025 	}
2026 
2027 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2028 
2029 	/* authorize attribute removal as kernel */
2030 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2031 	if (error == EOPNOTSUPP)
2032 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2033 		    NULL, td);
2034 
2035 	if ((ioflg & IO_NODELOCKED) == 0) {
2036 		vn_finished_write(mp);
2037 		VOP_UNLOCK(vp, 0);
2038 	}
2039 
2040 	return (error);
2041 }
2042 
2043 static int
2044 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2045     struct vnode **rvp)
2046 {
2047 
2048 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2049 }
2050 
2051 int
2052 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2053 {
2054 
2055 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2056 	    lkflags, rvp));
2057 }
2058 
2059 int
2060 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2061     int lkflags, struct vnode **rvp)
2062 {
2063 	struct mount *mp;
2064 	int ltype, error;
2065 
2066 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2067 	mp = vp->v_mount;
2068 	ltype = VOP_ISLOCKED(vp);
2069 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2070 	    ("vn_vget_ino: vp not locked"));
2071 	error = vfs_busy(mp, MBF_NOWAIT);
2072 	if (error != 0) {
2073 		vfs_ref(mp);
2074 		VOP_UNLOCK(vp, 0);
2075 		error = vfs_busy(mp, 0);
2076 		vn_lock(vp, ltype | LK_RETRY);
2077 		vfs_rel(mp);
2078 		if (error != 0)
2079 			return (ENOENT);
2080 		if (vp->v_iflag & VI_DOOMED) {
2081 			vfs_unbusy(mp);
2082 			return (ENOENT);
2083 		}
2084 	}
2085 	VOP_UNLOCK(vp, 0);
2086 	error = alloc(mp, alloc_arg, lkflags, rvp);
2087 	vfs_unbusy(mp);
2088 	if (*rvp != vp)
2089 		vn_lock(vp, ltype | LK_RETRY);
2090 	if (vp->v_iflag & VI_DOOMED) {
2091 		if (error == 0) {
2092 			if (*rvp == vp)
2093 				vunref(vp);
2094 			else
2095 				vput(*rvp);
2096 		}
2097 		error = ENOENT;
2098 	}
2099 	return (error);
2100 }
2101 
2102 int
2103 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2104     struct thread *td)
2105 {
2106 
2107 	if (vp->v_type != VREG || td == NULL)
2108 		return (0);
2109 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2110 	    lim_cur(td, RLIMIT_FSIZE)) {
2111 		PROC_LOCK(td->td_proc);
2112 		kern_psignal(td->td_proc, SIGXFSZ);
2113 		PROC_UNLOCK(td->td_proc);
2114 		return (EFBIG);
2115 	}
2116 	return (0);
2117 }
2118 
2119 int
2120 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2121     struct thread *td)
2122 {
2123 	struct vnode *vp;
2124 
2125 	vp = fp->f_vnode;
2126 #ifdef AUDIT
2127 	vn_lock(vp, LK_SHARED | LK_RETRY);
2128 	AUDIT_ARG_VNODE1(vp);
2129 	VOP_UNLOCK(vp, 0);
2130 #endif
2131 	return (setfmode(td, active_cred, vp, mode));
2132 }
2133 
2134 int
2135 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2136     struct thread *td)
2137 {
2138 	struct vnode *vp;
2139 
2140 	vp = fp->f_vnode;
2141 #ifdef AUDIT
2142 	vn_lock(vp, LK_SHARED | LK_RETRY);
2143 	AUDIT_ARG_VNODE1(vp);
2144 	VOP_UNLOCK(vp, 0);
2145 #endif
2146 	return (setfown(td, active_cred, vp, uid, gid));
2147 }
2148 
2149 void
2150 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2151 {
2152 	vm_object_t object;
2153 
2154 	if ((object = vp->v_object) == NULL)
2155 		return;
2156 	VM_OBJECT_WLOCK(object);
2157 	vm_object_page_remove(object, start, end, 0);
2158 	VM_OBJECT_WUNLOCK(object);
2159 }
2160 
2161 int
2162 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2163 {
2164 	struct vattr va;
2165 	daddr_t bn, bnp;
2166 	uint64_t bsize;
2167 	off_t noff;
2168 	int error;
2169 
2170 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2171 	    ("Wrong command %lu", cmd));
2172 
2173 	if (vn_lock(vp, LK_SHARED) != 0)
2174 		return (EBADF);
2175 	if (vp->v_type != VREG) {
2176 		error = ENOTTY;
2177 		goto unlock;
2178 	}
2179 	error = VOP_GETATTR(vp, &va, cred);
2180 	if (error != 0)
2181 		goto unlock;
2182 	noff = *off;
2183 	if (noff >= va.va_size) {
2184 		error = ENXIO;
2185 		goto unlock;
2186 	}
2187 	bsize = vp->v_mount->mnt_stat.f_iosize;
2188 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2189 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2190 		if (error == EOPNOTSUPP) {
2191 			error = ENOTTY;
2192 			goto unlock;
2193 		}
2194 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2195 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2196 			noff = bn * bsize;
2197 			if (noff < *off)
2198 				noff = *off;
2199 			goto unlock;
2200 		}
2201 	}
2202 	if (noff > va.va_size)
2203 		noff = va.va_size;
2204 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2205 	if (cmd == FIOSEEKDATA)
2206 		error = ENXIO;
2207 unlock:
2208 	VOP_UNLOCK(vp, 0);
2209 	if (error == 0)
2210 		*off = noff;
2211 	return (error);
2212 }
2213 
2214 int
2215 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2216 {
2217 	struct ucred *cred;
2218 	struct vnode *vp;
2219 	struct vattr vattr;
2220 	off_t foffset, size;
2221 	int error, noneg;
2222 
2223 	cred = td->td_ucred;
2224 	vp = fp->f_vnode;
2225 	foffset = foffset_lock(fp, 0);
2226 	noneg = (vp->v_type != VCHR);
2227 	error = 0;
2228 	switch (whence) {
2229 	case L_INCR:
2230 		if (noneg &&
2231 		    (foffset < 0 ||
2232 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2233 			error = EOVERFLOW;
2234 			break;
2235 		}
2236 		offset += foffset;
2237 		break;
2238 	case L_XTND:
2239 		vn_lock(vp, LK_SHARED | LK_RETRY);
2240 		error = VOP_GETATTR(vp, &vattr, cred);
2241 		VOP_UNLOCK(vp, 0);
2242 		if (error)
2243 			break;
2244 
2245 		/*
2246 		 * If the file references a disk device, then fetch
2247 		 * the media size and use that to determine the ending
2248 		 * offset.
2249 		 */
2250 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2251 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2252 			vattr.va_size = size;
2253 		if (noneg &&
2254 		    (vattr.va_size > OFF_MAX ||
2255 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2256 			error = EOVERFLOW;
2257 			break;
2258 		}
2259 		offset += vattr.va_size;
2260 		break;
2261 	case L_SET:
2262 		break;
2263 	case SEEK_DATA:
2264 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2265 		break;
2266 	case SEEK_HOLE:
2267 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2268 		break;
2269 	default:
2270 		error = EINVAL;
2271 	}
2272 	if (error == 0 && noneg && offset < 0)
2273 		error = EINVAL;
2274 	if (error != 0)
2275 		goto drop;
2276 	VFS_KNOTE_UNLOCKED(vp, 0);
2277 	td->td_uretoff.tdu_off = offset;
2278 drop:
2279 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2280 	return (error);
2281 }
2282 
2283 int
2284 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2285     struct thread *td)
2286 {
2287 	int error;
2288 
2289 	/*
2290 	 * Grant permission if the caller is the owner of the file, or
2291 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2292 	 * on the file.  If the time pointer is null, then write
2293 	 * permission on the file is also sufficient.
2294 	 *
2295 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2296 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2297 	 * will be allowed to set the times [..] to the current
2298 	 * server time.
2299 	 */
2300 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2301 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2302 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2303 	return (error);
2304 }
2305 
2306 int
2307 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2308 {
2309 	struct vnode *vp;
2310 	int error;
2311 
2312 	if (fp->f_type == DTYPE_FIFO)
2313 		kif->kf_type = KF_TYPE_FIFO;
2314 	else
2315 		kif->kf_type = KF_TYPE_VNODE;
2316 	vp = fp->f_vnode;
2317 	vref(vp);
2318 	FILEDESC_SUNLOCK(fdp);
2319 	error = vn_fill_kinfo_vnode(vp, kif);
2320 	vrele(vp);
2321 	FILEDESC_SLOCK(fdp);
2322 	return (error);
2323 }
2324 
2325 static inline void
2326 vn_fill_junk(struct kinfo_file *kif)
2327 {
2328 	size_t len, olen;
2329 
2330 	/*
2331 	 * Simulate vn_fullpath returning changing values for a given
2332 	 * vp during e.g. coredump.
2333 	 */
2334 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2335 	olen = strlen(kif->kf_path);
2336 	if (len < olen)
2337 		strcpy(&kif->kf_path[len - 1], "$");
2338 	else
2339 		for (; olen < len; olen++)
2340 			strcpy(&kif->kf_path[olen], "A");
2341 }
2342 
2343 int
2344 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2345 {
2346 	struct vattr va;
2347 	char *fullpath, *freepath;
2348 	int error;
2349 
2350 	kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
2351 	freepath = NULL;
2352 	fullpath = "-";
2353 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2354 	if (error == 0) {
2355 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2356 	}
2357 	if (freepath != NULL)
2358 		free(freepath, M_TEMP);
2359 
2360 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2361 		vn_fill_junk(kif);
2362 	);
2363 
2364 	/*
2365 	 * Retrieve vnode attributes.
2366 	 */
2367 	va.va_fsid = VNOVAL;
2368 	va.va_rdev = NODEV;
2369 	vn_lock(vp, LK_SHARED | LK_RETRY);
2370 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2371 	VOP_UNLOCK(vp, 0);
2372 	if (error != 0)
2373 		return (error);
2374 	if (va.va_fsid != VNOVAL)
2375 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2376 	else
2377 		kif->kf_un.kf_file.kf_file_fsid =
2378 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2379 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2380 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2381 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2382 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2383 	return (0);
2384 }
2385 
2386 int
2387 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2388     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2389     struct thread *td)
2390 {
2391 #ifdef HWPMC_HOOKS
2392 	struct pmckern_map_in pkm;
2393 #endif
2394 	struct mount *mp;
2395 	struct vnode *vp;
2396 	vm_object_t object;
2397 	vm_prot_t maxprot;
2398 	boolean_t writecounted;
2399 	int error;
2400 
2401 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2402     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2403 	/*
2404 	 * POSIX shared-memory objects are defined to have
2405 	 * kernel persistence, and are not defined to support
2406 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2407 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2408 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2409 	 * flag to request this behavior.
2410 	 */
2411 	if ((fp->f_flag & FPOSIXSHM) != 0)
2412 		flags |= MAP_NOSYNC;
2413 #endif
2414 	vp = fp->f_vnode;
2415 
2416 	/*
2417 	 * Ensure that file and memory protections are
2418 	 * compatible.  Note that we only worry about
2419 	 * writability if mapping is shared; in this case,
2420 	 * current and max prot are dictated by the open file.
2421 	 * XXX use the vnode instead?  Problem is: what
2422 	 * credentials do we use for determination? What if
2423 	 * proc does a setuid?
2424 	 */
2425 	mp = vp->v_mount;
2426 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0)
2427 		maxprot = VM_PROT_NONE;
2428 	else
2429 		maxprot = VM_PROT_EXECUTE;
2430 	if ((fp->f_flag & FREAD) != 0)
2431 		maxprot |= VM_PROT_READ;
2432 	else if ((prot & VM_PROT_READ) != 0)
2433 		return (EACCES);
2434 
2435 	/*
2436 	 * If we are sharing potential changes via MAP_SHARED and we
2437 	 * are trying to get write permission although we opened it
2438 	 * without asking for it, bail out.
2439 	 */
2440 	if ((flags & MAP_SHARED) != 0) {
2441 		if ((fp->f_flag & FWRITE) != 0)
2442 			maxprot |= VM_PROT_WRITE;
2443 		else if ((prot & VM_PROT_WRITE) != 0)
2444 			return (EACCES);
2445 	} else {
2446 		maxprot |= VM_PROT_WRITE;
2447 		cap_maxprot |= VM_PROT_WRITE;
2448 	}
2449 	maxprot &= cap_maxprot;
2450 
2451 	writecounted = FALSE;
2452 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2453 	    &foff, &object, &writecounted);
2454 	if (error != 0)
2455 		return (error);
2456 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2457 	    foff, writecounted, td);
2458 	if (error != 0) {
2459 		/*
2460 		 * If this mapping was accounted for in the vnode's
2461 		 * writecount, then undo that now.
2462 		 */
2463 		if (writecounted)
2464 			vnode_pager_release_writecount(object, 0, size);
2465 		vm_object_deallocate(object);
2466 	}
2467 #ifdef HWPMC_HOOKS
2468 	/* Inform hwpmc(4) if an executable is being mapped. */
2469 	if (error == 0 && (prot & VM_PROT_EXECUTE) != 0) {
2470 		pkm.pm_file = vp;
2471 		pkm.pm_address = (uintptr_t) *addr;
2472 		PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2473 	}
2474 #endif
2475 	return (error);
2476 }
2477