xref: /freebsd/sys/kern/vfs_vnops.c (revision e72055b7feba695a760d45f01f0f8268b1cb4a74)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/disk.h>
49 #include <sys/fcntl.h>
50 #include <sys/file.h>
51 #include <sys/kdb.h>
52 #include <sys/stat.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/limits.h>
56 #include <sys/lock.h>
57 #include <sys/mount.h>
58 #include <sys/mutex.h>
59 #include <sys/namei.h>
60 #include <sys/vnode.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/filio.h>
64 #include <sys/resourcevar.h>
65 #include <sys/rwlock.h>
66 #include <sys/sx.h>
67 #include <sys/sysctl.h>
68 #include <sys/ttycom.h>
69 #include <sys/conf.h>
70 #include <sys/syslog.h>
71 #include <sys/unistd.h>
72 
73 #include <security/audit/audit.h>
74 #include <security/mac/mac_framework.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_extern.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 
83 static fo_rdwr_t	vn_read;
84 static fo_rdwr_t	vn_write;
85 static fo_rdwr_t	vn_io_fault;
86 static fo_truncate_t	vn_truncate;
87 static fo_ioctl_t	vn_ioctl;
88 static fo_poll_t	vn_poll;
89 static fo_kqfilter_t	vn_kqfilter;
90 static fo_stat_t	vn_statfile;
91 static fo_close_t	vn_closefile;
92 
93 struct 	fileops vnops = {
94 	.fo_read = vn_io_fault,
95 	.fo_write = vn_io_fault,
96 	.fo_truncate = vn_truncate,
97 	.fo_ioctl = vn_ioctl,
98 	.fo_poll = vn_poll,
99 	.fo_kqfilter = vn_kqfilter,
100 	.fo_stat = vn_statfile,
101 	.fo_close = vn_closefile,
102 	.fo_chmod = vn_chmod,
103 	.fo_chown = vn_chown,
104 	.fo_sendfile = vn_sendfile,
105 	.fo_seek = vn_seek,
106 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107 };
108 
109 static const int io_hold_cnt = 16;
110 static int vn_io_fault_enable = 1;
111 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
112     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
113 static u_long vn_io_faults_cnt;
114 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
115     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
116 
117 /*
118  * Returns true if vn_io_fault mode of handling the i/o request should
119  * be used.
120  */
121 static bool
122 do_vn_io_fault(struct vnode *vp, struct uio *uio)
123 {
124 	struct mount *mp;
125 
126 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
127 	    (mp = vp->v_mount) != NULL &&
128 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
129 }
130 
131 /*
132  * Structure used to pass arguments to vn_io_fault1(), to do either
133  * file- or vnode-based I/O calls.
134  */
135 struct vn_io_fault_args {
136 	enum {
137 		VN_IO_FAULT_FOP,
138 		VN_IO_FAULT_VOP
139 	} kind;
140 	struct ucred *cred;
141 	int flags;
142 	union {
143 		struct fop_args_tag {
144 			struct file *fp;
145 			fo_rdwr_t *doio;
146 		} fop_args;
147 		struct vop_args_tag {
148 			struct vnode *vp;
149 		} vop_args;
150 	} args;
151 };
152 
153 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
154     struct vn_io_fault_args *args, struct thread *td);
155 
156 int
157 vn_open(ndp, flagp, cmode, fp)
158 	struct nameidata *ndp;
159 	int *flagp, cmode;
160 	struct file *fp;
161 {
162 	struct thread *td = ndp->ni_cnd.cn_thread;
163 
164 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
165 }
166 
167 /*
168  * Common code for vnode open operations via a name lookup.
169  * Lookup the vnode and invoke VOP_CREATE if needed.
170  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
171  *
172  * Note that this does NOT free nameidata for the successful case,
173  * due to the NDINIT being done elsewhere.
174  */
175 int
176 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
177     struct ucred *cred, struct file *fp)
178 {
179 	struct vnode *vp;
180 	struct mount *mp;
181 	struct thread *td = ndp->ni_cnd.cn_thread;
182 	struct vattr vat;
183 	struct vattr *vap = &vat;
184 	int fmode, error;
185 
186 restart:
187 	fmode = *flagp;
188 	if (fmode & O_CREAT) {
189 		ndp->ni_cnd.cn_nameiop = CREATE;
190 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
191 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
192 			ndp->ni_cnd.cn_flags |= FOLLOW;
193 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
194 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
195 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
196 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
197 		bwillwrite();
198 		if ((error = namei(ndp)) != 0)
199 			return (error);
200 		if (ndp->ni_vp == NULL) {
201 			VATTR_NULL(vap);
202 			vap->va_type = VREG;
203 			vap->va_mode = cmode;
204 			if (fmode & O_EXCL)
205 				vap->va_vaflags |= VA_EXCLUSIVE;
206 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
207 				NDFREE(ndp, NDF_ONLY_PNBUF);
208 				vput(ndp->ni_dvp);
209 				if ((error = vn_start_write(NULL, &mp,
210 				    V_XSLEEP | PCATCH)) != 0)
211 					return (error);
212 				goto restart;
213 			}
214 #ifdef MAC
215 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
216 			    &ndp->ni_cnd, vap);
217 			if (error == 0)
218 #endif
219 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
220 						   &ndp->ni_cnd, vap);
221 			vput(ndp->ni_dvp);
222 			vn_finished_write(mp);
223 			if (error) {
224 				NDFREE(ndp, NDF_ONLY_PNBUF);
225 				return (error);
226 			}
227 			fmode &= ~O_TRUNC;
228 			vp = ndp->ni_vp;
229 		} else {
230 			if (ndp->ni_dvp == ndp->ni_vp)
231 				vrele(ndp->ni_dvp);
232 			else
233 				vput(ndp->ni_dvp);
234 			ndp->ni_dvp = NULL;
235 			vp = ndp->ni_vp;
236 			if (fmode & O_EXCL) {
237 				error = EEXIST;
238 				goto bad;
239 			}
240 			fmode &= ~O_CREAT;
241 		}
242 	} else {
243 		ndp->ni_cnd.cn_nameiop = LOOKUP;
244 		ndp->ni_cnd.cn_flags = ISOPEN |
245 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
246 		if (!(fmode & FWRITE))
247 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
248 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
249 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
250 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
251 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
252 		if ((error = namei(ndp)) != 0)
253 			return (error);
254 		vp = ndp->ni_vp;
255 	}
256 	error = vn_open_vnode(vp, fmode, cred, td, fp);
257 	if (error)
258 		goto bad;
259 	*flagp = fmode;
260 	return (0);
261 bad:
262 	NDFREE(ndp, NDF_ONLY_PNBUF);
263 	vput(vp);
264 	*flagp = fmode;
265 	ndp->ni_vp = NULL;
266 	return (error);
267 }
268 
269 /*
270  * Common code for vnode open operations once a vnode is located.
271  * Check permissions, and call the VOP_OPEN routine.
272  */
273 int
274 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
275     struct thread *td, struct file *fp)
276 {
277 	struct mount *mp;
278 	accmode_t accmode;
279 	struct flock lf;
280 	int error, have_flock, lock_flags, type;
281 
282 	if (vp->v_type == VLNK)
283 		return (EMLINK);
284 	if (vp->v_type == VSOCK)
285 		return (EOPNOTSUPP);
286 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
287 		return (ENOTDIR);
288 	accmode = 0;
289 	if (fmode & (FWRITE | O_TRUNC)) {
290 		if (vp->v_type == VDIR)
291 			return (EISDIR);
292 		accmode |= VWRITE;
293 	}
294 	if (fmode & FREAD)
295 		accmode |= VREAD;
296 	if (fmode & FEXEC)
297 		accmode |= VEXEC;
298 	if ((fmode & O_APPEND) && (fmode & FWRITE))
299 		accmode |= VAPPEND;
300 #ifdef MAC
301 	error = mac_vnode_check_open(cred, vp, accmode);
302 	if (error)
303 		return (error);
304 #endif
305 	if ((fmode & O_CREAT) == 0) {
306 		if (accmode & VWRITE) {
307 			error = vn_writechk(vp);
308 			if (error)
309 				return (error);
310 		}
311 		if (accmode) {
312 		        error = VOP_ACCESS(vp, accmode, cred, td);
313 			if (error)
314 				return (error);
315 		}
316 	}
317 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
318 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
319 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
320 		return (error);
321 
322 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
323 		KASSERT(fp != NULL, ("open with flock requires fp"));
324 		lock_flags = VOP_ISLOCKED(vp);
325 		VOP_UNLOCK(vp, 0);
326 		lf.l_whence = SEEK_SET;
327 		lf.l_start = 0;
328 		lf.l_len = 0;
329 		if (fmode & O_EXLOCK)
330 			lf.l_type = F_WRLCK;
331 		else
332 			lf.l_type = F_RDLCK;
333 		type = F_FLOCK;
334 		if ((fmode & FNONBLOCK) == 0)
335 			type |= F_WAIT;
336 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
337 		have_flock = (error == 0);
338 		vn_lock(vp, lock_flags | LK_RETRY);
339 		if (error == 0 && vp->v_iflag & VI_DOOMED)
340 			error = ENOENT;
341 		/*
342 		 * Another thread might have used this vnode as an
343 		 * executable while the vnode lock was dropped.
344 		 * Ensure the vnode is still able to be opened for
345 		 * writing after the lock has been obtained.
346 		 */
347 		if (error == 0 && accmode & VWRITE)
348 			error = vn_writechk(vp);
349 		if (error) {
350 			VOP_UNLOCK(vp, 0);
351 			if (have_flock) {
352 				lf.l_whence = SEEK_SET;
353 				lf.l_start = 0;
354 				lf.l_len = 0;
355 				lf.l_type = F_UNLCK;
356 				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
357 				    F_FLOCK);
358 			}
359 			vn_start_write(vp, &mp, V_WAIT);
360 			vn_lock(vp, lock_flags | LK_RETRY);
361 			(void)VOP_CLOSE(vp, fmode, cred, td);
362 			vn_finished_write(mp);
363 			/* Prevent second close from fdrop()->vn_close(). */
364 			if (fp != NULL)
365 				fp->f_ops= &badfileops;
366 			return (error);
367 		}
368 		fp->f_flag |= FHASLOCK;
369 	}
370 	if (fmode & FWRITE) {
371 		VOP_ADD_WRITECOUNT(vp, 1);
372 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
373 		    __func__, vp, vp->v_writecount);
374 	}
375 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
376 	return (0);
377 }
378 
379 /*
380  * Check for write permissions on the specified vnode.
381  * Prototype text segments cannot be written.
382  */
383 int
384 vn_writechk(vp)
385 	register struct vnode *vp;
386 {
387 
388 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
389 	/*
390 	 * If there's shared text associated with
391 	 * the vnode, try to free it up once.  If
392 	 * we fail, we can't allow writing.
393 	 */
394 	if (VOP_IS_TEXT(vp))
395 		return (ETXTBSY);
396 
397 	return (0);
398 }
399 
400 /*
401  * Vnode close call
402  */
403 int
404 vn_close(vp, flags, file_cred, td)
405 	register struct vnode *vp;
406 	int flags;
407 	struct ucred *file_cred;
408 	struct thread *td;
409 {
410 	struct mount *mp;
411 	int error, lock_flags;
412 
413 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
414 	    MNT_EXTENDED_SHARED(vp->v_mount))
415 		lock_flags = LK_SHARED;
416 	else
417 		lock_flags = LK_EXCLUSIVE;
418 
419 	vn_start_write(vp, &mp, V_WAIT);
420 	vn_lock(vp, lock_flags | LK_RETRY);
421 	if (flags & FWRITE) {
422 		VNASSERT(vp->v_writecount > 0, vp,
423 		    ("vn_close: negative writecount"));
424 		VOP_ADD_WRITECOUNT(vp, -1);
425 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
426 		    __func__, vp, vp->v_writecount);
427 	}
428 	error = VOP_CLOSE(vp, flags, file_cred, td);
429 	vput(vp);
430 	vn_finished_write(mp);
431 	return (error);
432 }
433 
434 /*
435  * Heuristic to detect sequential operation.
436  */
437 static int
438 sequential_heuristic(struct uio *uio, struct file *fp)
439 {
440 
441 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
442 	if (fp->f_flag & FRDAHEAD)
443 		return (fp->f_seqcount << IO_SEQSHIFT);
444 
445 	/*
446 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
447 	 * that the first I/O is normally considered to be slightly
448 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
449 	 * unless previous seeks have reduced f_seqcount to 0, in which
450 	 * case offset 0 is not special.
451 	 */
452 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
453 	    uio->uio_offset == fp->f_nextoff) {
454 		/*
455 		 * f_seqcount is in units of fixed-size blocks so that it
456 		 * depends mainly on the amount of sequential I/O and not
457 		 * much on the number of sequential I/O's.  The fixed size
458 		 * of 16384 is hard-coded here since it is (not quite) just
459 		 * a magic size that works well here.  This size is more
460 		 * closely related to the best I/O size for real disks than
461 		 * to any block size used by software.
462 		 */
463 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
464 		if (fp->f_seqcount > IO_SEQMAX)
465 			fp->f_seqcount = IO_SEQMAX;
466 		return (fp->f_seqcount << IO_SEQSHIFT);
467 	}
468 
469 	/* Not sequential.  Quickly draw-down sequentiality. */
470 	if (fp->f_seqcount > 1)
471 		fp->f_seqcount = 1;
472 	else
473 		fp->f_seqcount = 0;
474 	return (0);
475 }
476 
477 /*
478  * Package up an I/O request on a vnode into a uio and do it.
479  */
480 int
481 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
482     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
483     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
484 {
485 	struct uio auio;
486 	struct iovec aiov;
487 	struct mount *mp;
488 	struct ucred *cred;
489 	void *rl_cookie;
490 	struct vn_io_fault_args args;
491 	int error, lock_flags;
492 
493 	auio.uio_iov = &aiov;
494 	auio.uio_iovcnt = 1;
495 	aiov.iov_base = base;
496 	aiov.iov_len = len;
497 	auio.uio_resid = len;
498 	auio.uio_offset = offset;
499 	auio.uio_segflg = segflg;
500 	auio.uio_rw = rw;
501 	auio.uio_td = td;
502 	error = 0;
503 
504 	if ((ioflg & IO_NODELOCKED) == 0) {
505 		if (rw == UIO_READ) {
506 			rl_cookie = vn_rangelock_rlock(vp, offset,
507 			    offset + len);
508 		} else {
509 			rl_cookie = vn_rangelock_wlock(vp, offset,
510 			    offset + len);
511 		}
512 		mp = NULL;
513 		if (rw == UIO_WRITE) {
514 			if (vp->v_type != VCHR &&
515 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
516 			    != 0)
517 				goto out;
518 			if (MNT_SHARED_WRITES(mp) ||
519 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
520 				lock_flags = LK_SHARED;
521 			else
522 				lock_flags = LK_EXCLUSIVE;
523 		} else
524 			lock_flags = LK_SHARED;
525 		vn_lock(vp, lock_flags | LK_RETRY);
526 	} else
527 		rl_cookie = NULL;
528 
529 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
530 #ifdef MAC
531 	if ((ioflg & IO_NOMACCHECK) == 0) {
532 		if (rw == UIO_READ)
533 			error = mac_vnode_check_read(active_cred, file_cred,
534 			    vp);
535 		else
536 			error = mac_vnode_check_write(active_cred, file_cred,
537 			    vp);
538 	}
539 #endif
540 	if (error == 0) {
541 		if (file_cred != NULL)
542 			cred = file_cred;
543 		else
544 			cred = active_cred;
545 		if (do_vn_io_fault(vp, &auio)) {
546 			args.kind = VN_IO_FAULT_VOP;
547 			args.cred = cred;
548 			args.flags = ioflg;
549 			args.args.vop_args.vp = vp;
550 			error = vn_io_fault1(vp, &auio, &args, td);
551 		} else if (rw == UIO_READ) {
552 			error = VOP_READ(vp, &auio, ioflg, cred);
553 		} else /* if (rw == UIO_WRITE) */ {
554 			error = VOP_WRITE(vp, &auio, ioflg, cred);
555 		}
556 	}
557 	if (aresid)
558 		*aresid = auio.uio_resid;
559 	else
560 		if (auio.uio_resid && error == 0)
561 			error = EIO;
562 	if ((ioflg & IO_NODELOCKED) == 0) {
563 		VOP_UNLOCK(vp, 0);
564 		if (mp != NULL)
565 			vn_finished_write(mp);
566 	}
567  out:
568 	if (rl_cookie != NULL)
569 		vn_rangelock_unlock(vp, rl_cookie);
570 	return (error);
571 }
572 
573 /*
574  * Package up an I/O request on a vnode into a uio and do it.  The I/O
575  * request is split up into smaller chunks and we try to avoid saturating
576  * the buffer cache while potentially holding a vnode locked, so we
577  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
578  * to give other processes a chance to lock the vnode (either other processes
579  * core'ing the same binary, or unrelated processes scanning the directory).
580  */
581 int
582 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
583     file_cred, aresid, td)
584 	enum uio_rw rw;
585 	struct vnode *vp;
586 	void *base;
587 	size_t len;
588 	off_t offset;
589 	enum uio_seg segflg;
590 	int ioflg;
591 	struct ucred *active_cred;
592 	struct ucred *file_cred;
593 	size_t *aresid;
594 	struct thread *td;
595 {
596 	int error = 0;
597 	ssize_t iaresid;
598 
599 	do {
600 		int chunk;
601 
602 		/*
603 		 * Force `offset' to a multiple of MAXBSIZE except possibly
604 		 * for the first chunk, so that filesystems only need to
605 		 * write full blocks except possibly for the first and last
606 		 * chunks.
607 		 */
608 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
609 
610 		if (chunk > len)
611 			chunk = len;
612 		if (rw != UIO_READ && vp->v_type == VREG)
613 			bwillwrite();
614 		iaresid = 0;
615 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
616 		    ioflg, active_cred, file_cred, &iaresid, td);
617 		len -= chunk;	/* aresid calc already includes length */
618 		if (error)
619 			break;
620 		offset += chunk;
621 		base = (char *)base + chunk;
622 		kern_yield(PRI_USER);
623 	} while (len);
624 	if (aresid)
625 		*aresid = len + iaresid;
626 	return (error);
627 }
628 
629 off_t
630 foffset_lock(struct file *fp, int flags)
631 {
632 	struct mtx *mtxp;
633 	off_t res;
634 
635 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
636 
637 #if OFF_MAX <= LONG_MAX
638 	/*
639 	 * Caller only wants the current f_offset value.  Assume that
640 	 * the long and shorter integer types reads are atomic.
641 	 */
642 	if ((flags & FOF_NOLOCK) != 0)
643 		return (fp->f_offset);
644 #endif
645 
646 	/*
647 	 * According to McKusick the vn lock was protecting f_offset here.
648 	 * It is now protected by the FOFFSET_LOCKED flag.
649 	 */
650 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
651 	mtx_lock(mtxp);
652 	if ((flags & FOF_NOLOCK) == 0) {
653 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
654 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
655 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
656 			    "vofflock", 0);
657 		}
658 		fp->f_vnread_flags |= FOFFSET_LOCKED;
659 	}
660 	res = fp->f_offset;
661 	mtx_unlock(mtxp);
662 	return (res);
663 }
664 
665 void
666 foffset_unlock(struct file *fp, off_t val, int flags)
667 {
668 	struct mtx *mtxp;
669 
670 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
671 
672 #if OFF_MAX <= LONG_MAX
673 	if ((flags & FOF_NOLOCK) != 0) {
674 		if ((flags & FOF_NOUPDATE) == 0)
675 			fp->f_offset = val;
676 		if ((flags & FOF_NEXTOFF) != 0)
677 			fp->f_nextoff = val;
678 		return;
679 	}
680 #endif
681 
682 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
683 	mtx_lock(mtxp);
684 	if ((flags & FOF_NOUPDATE) == 0)
685 		fp->f_offset = val;
686 	if ((flags & FOF_NEXTOFF) != 0)
687 		fp->f_nextoff = val;
688 	if ((flags & FOF_NOLOCK) == 0) {
689 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
690 		    ("Lost FOFFSET_LOCKED"));
691 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
692 			wakeup(&fp->f_vnread_flags);
693 		fp->f_vnread_flags = 0;
694 	}
695 	mtx_unlock(mtxp);
696 }
697 
698 void
699 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
700 {
701 
702 	if ((flags & FOF_OFFSET) == 0)
703 		uio->uio_offset = foffset_lock(fp, flags);
704 }
705 
706 void
707 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
708 {
709 
710 	if ((flags & FOF_OFFSET) == 0)
711 		foffset_unlock(fp, uio->uio_offset, flags);
712 }
713 
714 static int
715 get_advice(struct file *fp, struct uio *uio)
716 {
717 	struct mtx *mtxp;
718 	int ret;
719 
720 	ret = POSIX_FADV_NORMAL;
721 	if (fp->f_advice == NULL)
722 		return (ret);
723 
724 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
725 	mtx_lock(mtxp);
726 	if (uio->uio_offset >= fp->f_advice->fa_start &&
727 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
728 		ret = fp->f_advice->fa_advice;
729 	mtx_unlock(mtxp);
730 	return (ret);
731 }
732 
733 /*
734  * File table vnode read routine.
735  */
736 static int
737 vn_read(fp, uio, active_cred, flags, td)
738 	struct file *fp;
739 	struct uio *uio;
740 	struct ucred *active_cred;
741 	int flags;
742 	struct thread *td;
743 {
744 	struct vnode *vp;
745 	struct mtx *mtxp;
746 	int error, ioflag;
747 	int advice;
748 	off_t offset, start, end;
749 
750 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
751 	    uio->uio_td, td));
752 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
753 	vp = fp->f_vnode;
754 	ioflag = 0;
755 	if (fp->f_flag & FNONBLOCK)
756 		ioflag |= IO_NDELAY;
757 	if (fp->f_flag & O_DIRECT)
758 		ioflag |= IO_DIRECT;
759 	advice = get_advice(fp, uio);
760 	vn_lock(vp, LK_SHARED | LK_RETRY);
761 
762 	switch (advice) {
763 	case POSIX_FADV_NORMAL:
764 	case POSIX_FADV_SEQUENTIAL:
765 	case POSIX_FADV_NOREUSE:
766 		ioflag |= sequential_heuristic(uio, fp);
767 		break;
768 	case POSIX_FADV_RANDOM:
769 		/* Disable read-ahead for random I/O. */
770 		break;
771 	}
772 	offset = uio->uio_offset;
773 
774 #ifdef MAC
775 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
776 	if (error == 0)
777 #endif
778 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
779 	fp->f_nextoff = uio->uio_offset;
780 	VOP_UNLOCK(vp, 0);
781 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
782 	    offset != uio->uio_offset) {
783 		/*
784 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
785 		 * buffers for the backing file after a
786 		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
787 		 * case of using POSIX_FADV_NOREUSE with sequential
788 		 * access, track the previous implicit DONTNEED
789 		 * request and grow this request to include the
790 		 * current read(2) in addition to the previous
791 		 * DONTNEED.  With purely sequential access this will
792 		 * cause the DONTNEED requests to continously grow to
793 		 * cover all of the previously read regions of the
794 		 * file.  This allows filesystem blocks that are
795 		 * accessed by multiple calls to read(2) to be flushed
796 		 * once the last read(2) finishes.
797 		 */
798 		start = offset;
799 		end = uio->uio_offset - 1;
800 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
801 		mtx_lock(mtxp);
802 		if (fp->f_advice != NULL &&
803 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
804 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
805 				start = fp->f_advice->fa_prevstart;
806 			else if (fp->f_advice->fa_prevstart != 0 &&
807 			    fp->f_advice->fa_prevstart == end + 1)
808 				end = fp->f_advice->fa_prevend;
809 			fp->f_advice->fa_prevstart = start;
810 			fp->f_advice->fa_prevend = end;
811 		}
812 		mtx_unlock(mtxp);
813 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
814 	}
815 	return (error);
816 }
817 
818 /*
819  * File table vnode write routine.
820  */
821 static int
822 vn_write(fp, uio, active_cred, flags, td)
823 	struct file *fp;
824 	struct uio *uio;
825 	struct ucred *active_cred;
826 	int flags;
827 	struct thread *td;
828 {
829 	struct vnode *vp;
830 	struct mount *mp;
831 	struct mtx *mtxp;
832 	int error, ioflag, lock_flags;
833 	int advice;
834 	off_t offset, start, end;
835 
836 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
837 	    uio->uio_td, td));
838 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
839 	vp = fp->f_vnode;
840 	if (vp->v_type == VREG)
841 		bwillwrite();
842 	ioflag = IO_UNIT;
843 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
844 		ioflag |= IO_APPEND;
845 	if (fp->f_flag & FNONBLOCK)
846 		ioflag |= IO_NDELAY;
847 	if (fp->f_flag & O_DIRECT)
848 		ioflag |= IO_DIRECT;
849 	if ((fp->f_flag & O_FSYNC) ||
850 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
851 		ioflag |= IO_SYNC;
852 	mp = NULL;
853 	if (vp->v_type != VCHR &&
854 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
855 		goto unlock;
856 
857 	advice = get_advice(fp, uio);
858 
859 	if (MNT_SHARED_WRITES(mp) ||
860 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
861 		lock_flags = LK_SHARED;
862 	} else {
863 		lock_flags = LK_EXCLUSIVE;
864 	}
865 
866 	vn_lock(vp, lock_flags | LK_RETRY);
867 	switch (advice) {
868 	case POSIX_FADV_NORMAL:
869 	case POSIX_FADV_SEQUENTIAL:
870 	case POSIX_FADV_NOREUSE:
871 		ioflag |= sequential_heuristic(uio, fp);
872 		break;
873 	case POSIX_FADV_RANDOM:
874 		/* XXX: Is this correct? */
875 		break;
876 	}
877 	offset = uio->uio_offset;
878 
879 #ifdef MAC
880 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
881 	if (error == 0)
882 #endif
883 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
884 	fp->f_nextoff = uio->uio_offset;
885 	VOP_UNLOCK(vp, 0);
886 	if (vp->v_type != VCHR)
887 		vn_finished_write(mp);
888 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
889 	    offset != uio->uio_offset) {
890 		/*
891 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
892 		 * buffers for the backing file after a
893 		 * POSIX_FADV_NOREUSE write(2).  To optimize the
894 		 * common case of using POSIX_FADV_NOREUSE with
895 		 * sequential access, track the previous implicit
896 		 * DONTNEED request and grow this request to include
897 		 * the current write(2) in addition to the previous
898 		 * DONTNEED.  With purely sequential access this will
899 		 * cause the DONTNEED requests to continously grow to
900 		 * cover all of the previously written regions of the
901 		 * file.
902 		 *
903 		 * Note that the blocks just written are almost
904 		 * certainly still dirty, so this only works when
905 		 * VOP_ADVISE() calls from subsequent writes push out
906 		 * the data written by this write(2) once the backing
907 		 * buffers are clean.  However, as compared to forcing
908 		 * IO_DIRECT, this gives much saner behavior.  Write
909 		 * clustering is still allowed, and clean pages are
910 		 * merely moved to the cache page queue rather than
911 		 * outright thrown away.  This means a subsequent
912 		 * read(2) can still avoid hitting the disk if the
913 		 * pages have not been reclaimed.
914 		 *
915 		 * This does make POSIX_FADV_NOREUSE largely useless
916 		 * with non-sequential access.  However, sequential
917 		 * access is the more common use case and the flag is
918 		 * merely advisory.
919 		 */
920 		start = offset;
921 		end = uio->uio_offset - 1;
922 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
923 		mtx_lock(mtxp);
924 		if (fp->f_advice != NULL &&
925 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
926 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
927 				start = fp->f_advice->fa_prevstart;
928 			else if (fp->f_advice->fa_prevstart != 0 &&
929 			    fp->f_advice->fa_prevstart == end + 1)
930 				end = fp->f_advice->fa_prevend;
931 			fp->f_advice->fa_prevstart = start;
932 			fp->f_advice->fa_prevend = end;
933 		}
934 		mtx_unlock(mtxp);
935 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
936 	}
937 
938 unlock:
939 	return (error);
940 }
941 
942 /*
943  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
944  * prevent the following deadlock:
945  *
946  * Assume that the thread A reads from the vnode vp1 into userspace
947  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
948  * currently not resident, then system ends up with the call chain
949  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
950  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
951  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
952  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
953  * backed by the pages of vnode vp1, and some page in buf2 is not
954  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
955  *
956  * To prevent the lock order reversal and deadlock, vn_io_fault() does
957  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
958  * Instead, it first tries to do the whole range i/o with pagefaults
959  * disabled. If all pages in the i/o buffer are resident and mapped,
960  * VOP will succeed (ignoring the genuine filesystem errors).
961  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
962  * i/o in chunks, with all pages in the chunk prefaulted and held
963  * using vm_fault_quick_hold_pages().
964  *
965  * Filesystems using this deadlock avoidance scheme should use the
966  * array of the held pages from uio, saved in the curthread->td_ma,
967  * instead of doing uiomove().  A helper function
968  * vn_io_fault_uiomove() converts uiomove request into
969  * uiomove_fromphys() over td_ma array.
970  *
971  * Since vnode locks do not cover the whole i/o anymore, rangelocks
972  * make the current i/o request atomic with respect to other i/os and
973  * truncations.
974  */
975 
976 /*
977  * Decode vn_io_fault_args and perform the corresponding i/o.
978  */
979 static int
980 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
981     struct thread *td)
982 {
983 
984 	switch (args->kind) {
985 	case VN_IO_FAULT_FOP:
986 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
987 		    uio, args->cred, args->flags, td));
988 	case VN_IO_FAULT_VOP:
989 		if (uio->uio_rw == UIO_READ) {
990 			return (VOP_READ(args->args.vop_args.vp, uio,
991 			    args->flags, args->cred));
992 		} else if (uio->uio_rw == UIO_WRITE) {
993 			return (VOP_WRITE(args->args.vop_args.vp, uio,
994 			    args->flags, args->cred));
995 		}
996 		break;
997 	}
998 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
999 	    uio->uio_rw);
1000 }
1001 
1002 /*
1003  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1004  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1005  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1006  * into args and call vn_io_fault1() to handle faults during the user
1007  * mode buffer accesses.
1008  */
1009 static int
1010 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1011     struct thread *td)
1012 {
1013 	vm_page_t ma[io_hold_cnt + 2];
1014 	struct uio *uio_clone, short_uio;
1015 	struct iovec short_iovec[1];
1016 	vm_page_t *prev_td_ma;
1017 	vm_prot_t prot;
1018 	vm_offset_t addr, end;
1019 	size_t len, resid;
1020 	ssize_t adv;
1021 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1022 
1023 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1024 
1025 	/*
1026 	 * The UFS follows IO_UNIT directive and replays back both
1027 	 * uio_offset and uio_resid if an error is encountered during the
1028 	 * operation.  But, since the iovec may be already advanced,
1029 	 * uio is still in an inconsistent state.
1030 	 *
1031 	 * Cache a copy of the original uio, which is advanced to the redo
1032 	 * point using UIO_NOCOPY below.
1033 	 */
1034 	uio_clone = cloneuio(uio);
1035 	resid = uio->uio_resid;
1036 
1037 	short_uio.uio_segflg = UIO_USERSPACE;
1038 	short_uio.uio_rw = uio->uio_rw;
1039 	short_uio.uio_td = uio->uio_td;
1040 
1041 	save = vm_fault_disable_pagefaults();
1042 	error = vn_io_fault_doio(args, uio, td);
1043 	if (error != EFAULT)
1044 		goto out;
1045 
1046 	atomic_add_long(&vn_io_faults_cnt, 1);
1047 	uio_clone->uio_segflg = UIO_NOCOPY;
1048 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1049 	uio_clone->uio_segflg = uio->uio_segflg;
1050 
1051 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1052 	prev_td_ma = td->td_ma;
1053 	prev_td_ma_cnt = td->td_ma_cnt;
1054 
1055 	while (uio_clone->uio_resid != 0) {
1056 		len = uio_clone->uio_iov->iov_len;
1057 		if (len == 0) {
1058 			KASSERT(uio_clone->uio_iovcnt >= 1,
1059 			    ("iovcnt underflow"));
1060 			uio_clone->uio_iov++;
1061 			uio_clone->uio_iovcnt--;
1062 			continue;
1063 		}
1064 		if (len > io_hold_cnt * PAGE_SIZE)
1065 			len = io_hold_cnt * PAGE_SIZE;
1066 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1067 		end = round_page(addr + len);
1068 		if (end < addr) {
1069 			error = EFAULT;
1070 			break;
1071 		}
1072 		cnt = atop(end - trunc_page(addr));
1073 		/*
1074 		 * A perfectly misaligned address and length could cause
1075 		 * both the start and the end of the chunk to use partial
1076 		 * page.  +2 accounts for such a situation.
1077 		 */
1078 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1079 		    addr, len, prot, ma, io_hold_cnt + 2);
1080 		if (cnt == -1) {
1081 			error = EFAULT;
1082 			break;
1083 		}
1084 		short_uio.uio_iov = &short_iovec[0];
1085 		short_iovec[0].iov_base = (void *)addr;
1086 		short_uio.uio_iovcnt = 1;
1087 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1088 		short_uio.uio_offset = uio_clone->uio_offset;
1089 		td->td_ma = ma;
1090 		td->td_ma_cnt = cnt;
1091 
1092 		error = vn_io_fault_doio(args, &short_uio, td);
1093 		vm_page_unhold_pages(ma, cnt);
1094 		adv = len - short_uio.uio_resid;
1095 
1096 		uio_clone->uio_iov->iov_base =
1097 		    (char *)uio_clone->uio_iov->iov_base + adv;
1098 		uio_clone->uio_iov->iov_len -= adv;
1099 		uio_clone->uio_resid -= adv;
1100 		uio_clone->uio_offset += adv;
1101 
1102 		uio->uio_resid -= adv;
1103 		uio->uio_offset += adv;
1104 
1105 		if (error != 0 || adv == 0)
1106 			break;
1107 	}
1108 	td->td_ma = prev_td_ma;
1109 	td->td_ma_cnt = prev_td_ma_cnt;
1110 	curthread_pflags_restore(saveheld);
1111 out:
1112 	vm_fault_enable_pagefaults(save);
1113 	free(uio_clone, M_IOV);
1114 	return (error);
1115 }
1116 
1117 static int
1118 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1119     int flags, struct thread *td)
1120 {
1121 	fo_rdwr_t *doio;
1122 	struct vnode *vp;
1123 	void *rl_cookie;
1124 	struct vn_io_fault_args args;
1125 	int error;
1126 
1127 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1128 	vp = fp->f_vnode;
1129 	foffset_lock_uio(fp, uio, flags);
1130 	if (do_vn_io_fault(vp, uio)) {
1131 		args.kind = VN_IO_FAULT_FOP;
1132 		args.args.fop_args.fp = fp;
1133 		args.args.fop_args.doio = doio;
1134 		args.cred = active_cred;
1135 		args.flags = flags | FOF_OFFSET;
1136 		if (uio->uio_rw == UIO_READ) {
1137 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1138 			    uio->uio_offset + uio->uio_resid);
1139 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1140 		    (flags & FOF_OFFSET) == 0) {
1141 			/* For appenders, punt and lock the whole range. */
1142 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1143 		} else {
1144 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1145 			    uio->uio_offset + uio->uio_resid);
1146 		}
1147 		error = vn_io_fault1(vp, uio, &args, td);
1148 		vn_rangelock_unlock(vp, rl_cookie);
1149 	} else {
1150 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1151 	}
1152 	foffset_unlock_uio(fp, uio, flags);
1153 	return (error);
1154 }
1155 
1156 /*
1157  * Helper function to perform the requested uiomove operation using
1158  * the held pages for io->uio_iov[0].iov_base buffer instead of
1159  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1160  * instead of iov_base prevents page faults that could occur due to
1161  * pmap_collect() invalidating the mapping created by
1162  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1163  * object cleanup revoking the write access from page mappings.
1164  *
1165  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1166  * instead of plain uiomove().
1167  */
1168 int
1169 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1170 {
1171 	struct uio transp_uio;
1172 	struct iovec transp_iov[1];
1173 	struct thread *td;
1174 	size_t adv;
1175 	int error, pgadv;
1176 
1177 	td = curthread;
1178 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1179 	    uio->uio_segflg != UIO_USERSPACE)
1180 		return (uiomove(data, xfersize, uio));
1181 
1182 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1183 	transp_iov[0].iov_base = data;
1184 	transp_uio.uio_iov = &transp_iov[0];
1185 	transp_uio.uio_iovcnt = 1;
1186 	if (xfersize > uio->uio_resid)
1187 		xfersize = uio->uio_resid;
1188 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1189 	transp_uio.uio_offset = 0;
1190 	transp_uio.uio_segflg = UIO_SYSSPACE;
1191 	/*
1192 	 * Since transp_iov points to data, and td_ma page array
1193 	 * corresponds to original uio->uio_iov, we need to invert the
1194 	 * direction of the i/o operation as passed to
1195 	 * uiomove_fromphys().
1196 	 */
1197 	switch (uio->uio_rw) {
1198 	case UIO_WRITE:
1199 		transp_uio.uio_rw = UIO_READ;
1200 		break;
1201 	case UIO_READ:
1202 		transp_uio.uio_rw = UIO_WRITE;
1203 		break;
1204 	}
1205 	transp_uio.uio_td = uio->uio_td;
1206 	error = uiomove_fromphys(td->td_ma,
1207 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1208 	    xfersize, &transp_uio);
1209 	adv = xfersize - transp_uio.uio_resid;
1210 	pgadv =
1211 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1212 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1213 	td->td_ma += pgadv;
1214 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1215 	    pgadv));
1216 	td->td_ma_cnt -= pgadv;
1217 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1218 	uio->uio_iov->iov_len -= adv;
1219 	uio->uio_resid -= adv;
1220 	uio->uio_offset += adv;
1221 	return (error);
1222 }
1223 
1224 int
1225 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1226     struct uio *uio)
1227 {
1228 	struct thread *td;
1229 	vm_offset_t iov_base;
1230 	int cnt, pgadv;
1231 
1232 	td = curthread;
1233 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1234 	    uio->uio_segflg != UIO_USERSPACE)
1235 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1236 
1237 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1238 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1239 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1240 	switch (uio->uio_rw) {
1241 	case UIO_WRITE:
1242 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1243 		    offset, cnt);
1244 		break;
1245 	case UIO_READ:
1246 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1247 		    cnt);
1248 		break;
1249 	}
1250 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1251 	td->td_ma += pgadv;
1252 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1253 	    pgadv));
1254 	td->td_ma_cnt -= pgadv;
1255 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1256 	uio->uio_iov->iov_len -= cnt;
1257 	uio->uio_resid -= cnt;
1258 	uio->uio_offset += cnt;
1259 	return (0);
1260 }
1261 
1262 
1263 /*
1264  * File table truncate routine.
1265  */
1266 static int
1267 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1268     struct thread *td)
1269 {
1270 	struct vattr vattr;
1271 	struct mount *mp;
1272 	struct vnode *vp;
1273 	void *rl_cookie;
1274 	int error;
1275 
1276 	vp = fp->f_vnode;
1277 
1278 	/*
1279 	 * Lock the whole range for truncation.  Otherwise split i/o
1280 	 * might happen partly before and partly after the truncation.
1281 	 */
1282 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1283 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1284 	if (error)
1285 		goto out1;
1286 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1287 	if (vp->v_type == VDIR) {
1288 		error = EISDIR;
1289 		goto out;
1290 	}
1291 #ifdef MAC
1292 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1293 	if (error)
1294 		goto out;
1295 #endif
1296 	error = vn_writechk(vp);
1297 	if (error == 0) {
1298 		VATTR_NULL(&vattr);
1299 		vattr.va_size = length;
1300 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1301 	}
1302 out:
1303 	VOP_UNLOCK(vp, 0);
1304 	vn_finished_write(mp);
1305 out1:
1306 	vn_rangelock_unlock(vp, rl_cookie);
1307 	return (error);
1308 }
1309 
1310 /*
1311  * File table vnode stat routine.
1312  */
1313 static int
1314 vn_statfile(fp, sb, active_cred, td)
1315 	struct file *fp;
1316 	struct stat *sb;
1317 	struct ucred *active_cred;
1318 	struct thread *td;
1319 {
1320 	struct vnode *vp = fp->f_vnode;
1321 	int error;
1322 
1323 	vn_lock(vp, LK_SHARED | LK_RETRY);
1324 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1325 	VOP_UNLOCK(vp, 0);
1326 
1327 	return (error);
1328 }
1329 
1330 /*
1331  * Stat a vnode; implementation for the stat syscall
1332  */
1333 int
1334 vn_stat(vp, sb, active_cred, file_cred, td)
1335 	struct vnode *vp;
1336 	register struct stat *sb;
1337 	struct ucred *active_cred;
1338 	struct ucred *file_cred;
1339 	struct thread *td;
1340 {
1341 	struct vattr vattr;
1342 	register struct vattr *vap;
1343 	int error;
1344 	u_short mode;
1345 
1346 #ifdef MAC
1347 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1348 	if (error)
1349 		return (error);
1350 #endif
1351 
1352 	vap = &vattr;
1353 
1354 	/*
1355 	 * Initialize defaults for new and unusual fields, so that file
1356 	 * systems which don't support these fields don't need to know
1357 	 * about them.
1358 	 */
1359 	vap->va_birthtime.tv_sec = -1;
1360 	vap->va_birthtime.tv_nsec = 0;
1361 	vap->va_fsid = VNOVAL;
1362 	vap->va_rdev = NODEV;
1363 
1364 	error = VOP_GETATTR(vp, vap, active_cred);
1365 	if (error)
1366 		return (error);
1367 
1368 	/*
1369 	 * Zero the spare stat fields
1370 	 */
1371 	bzero(sb, sizeof *sb);
1372 
1373 	/*
1374 	 * Copy from vattr table
1375 	 */
1376 	if (vap->va_fsid != VNOVAL)
1377 		sb->st_dev = vap->va_fsid;
1378 	else
1379 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1380 	sb->st_ino = vap->va_fileid;
1381 	mode = vap->va_mode;
1382 	switch (vap->va_type) {
1383 	case VREG:
1384 		mode |= S_IFREG;
1385 		break;
1386 	case VDIR:
1387 		mode |= S_IFDIR;
1388 		break;
1389 	case VBLK:
1390 		mode |= S_IFBLK;
1391 		break;
1392 	case VCHR:
1393 		mode |= S_IFCHR;
1394 		break;
1395 	case VLNK:
1396 		mode |= S_IFLNK;
1397 		break;
1398 	case VSOCK:
1399 		mode |= S_IFSOCK;
1400 		break;
1401 	case VFIFO:
1402 		mode |= S_IFIFO;
1403 		break;
1404 	default:
1405 		return (EBADF);
1406 	};
1407 	sb->st_mode = mode;
1408 	sb->st_nlink = vap->va_nlink;
1409 	sb->st_uid = vap->va_uid;
1410 	sb->st_gid = vap->va_gid;
1411 	sb->st_rdev = vap->va_rdev;
1412 	if (vap->va_size > OFF_MAX)
1413 		return (EOVERFLOW);
1414 	sb->st_size = vap->va_size;
1415 	sb->st_atim = vap->va_atime;
1416 	sb->st_mtim = vap->va_mtime;
1417 	sb->st_ctim = vap->va_ctime;
1418 	sb->st_birthtim = vap->va_birthtime;
1419 
1420         /*
1421 	 * According to www.opengroup.org, the meaning of st_blksize is
1422 	 *   "a filesystem-specific preferred I/O block size for this
1423 	 *    object.  In some filesystem types, this may vary from file
1424 	 *    to file"
1425 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1426 	 */
1427 
1428 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1429 
1430 	sb->st_flags = vap->va_flags;
1431 	if (priv_check(td, PRIV_VFS_GENERATION))
1432 		sb->st_gen = 0;
1433 	else
1434 		sb->st_gen = vap->va_gen;
1435 
1436 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1437 	return (0);
1438 }
1439 
1440 /*
1441  * File table vnode ioctl routine.
1442  */
1443 static int
1444 vn_ioctl(fp, com, data, active_cred, td)
1445 	struct file *fp;
1446 	u_long com;
1447 	void *data;
1448 	struct ucred *active_cred;
1449 	struct thread *td;
1450 {
1451 	struct vattr vattr;
1452 	struct vnode *vp;
1453 	int error;
1454 
1455 	vp = fp->f_vnode;
1456 	switch (vp->v_type) {
1457 	case VDIR:
1458 	case VREG:
1459 		switch (com) {
1460 		case FIONREAD:
1461 			vn_lock(vp, LK_SHARED | LK_RETRY);
1462 			error = VOP_GETATTR(vp, &vattr, active_cred);
1463 			VOP_UNLOCK(vp, 0);
1464 			if (error == 0)
1465 				*(int *)data = vattr.va_size - fp->f_offset;
1466 			return (error);
1467 		case FIONBIO:
1468 		case FIOASYNC:
1469 			return (0);
1470 		default:
1471 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1472 			    active_cred, td));
1473 		}
1474 	default:
1475 		return (ENOTTY);
1476 	}
1477 }
1478 
1479 /*
1480  * File table vnode poll routine.
1481  */
1482 static int
1483 vn_poll(fp, events, active_cred, td)
1484 	struct file *fp;
1485 	int events;
1486 	struct ucred *active_cred;
1487 	struct thread *td;
1488 {
1489 	struct vnode *vp;
1490 	int error;
1491 
1492 	vp = fp->f_vnode;
1493 #ifdef MAC
1494 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1495 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1496 	VOP_UNLOCK(vp, 0);
1497 	if (!error)
1498 #endif
1499 
1500 	error = VOP_POLL(vp, events, fp->f_cred, td);
1501 	return (error);
1502 }
1503 
1504 /*
1505  * Acquire the requested lock and then check for validity.  LK_RETRY
1506  * permits vn_lock to return doomed vnodes.
1507  */
1508 int
1509 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1510 {
1511 	int error;
1512 
1513 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1514 	    ("vn_lock called with no locktype."));
1515 	do {
1516 #ifdef DEBUG_VFS_LOCKS
1517 		KASSERT(vp->v_holdcnt != 0,
1518 		    ("vn_lock %p: zero hold count", vp));
1519 #endif
1520 		error = VOP_LOCK1(vp, flags, file, line);
1521 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1522 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1523 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1524 		    flags, error));
1525 		/*
1526 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1527 		 * If RETRY is not set, we return ENOENT instead.
1528 		 */
1529 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1530 		    (flags & LK_RETRY) == 0) {
1531 			VOP_UNLOCK(vp, 0);
1532 			error = ENOENT;
1533 			break;
1534 		}
1535 	} while (flags & LK_RETRY && error != 0);
1536 	return (error);
1537 }
1538 
1539 /*
1540  * File table vnode close routine.
1541  */
1542 static int
1543 vn_closefile(fp, td)
1544 	struct file *fp;
1545 	struct thread *td;
1546 {
1547 	struct vnode *vp;
1548 	struct flock lf;
1549 	int error;
1550 
1551 	vp = fp->f_vnode;
1552 	fp->f_ops = &badfileops;
1553 
1554 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1555 		vref(vp);
1556 
1557 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1558 
1559 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1560 		lf.l_whence = SEEK_SET;
1561 		lf.l_start = 0;
1562 		lf.l_len = 0;
1563 		lf.l_type = F_UNLCK;
1564 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1565 		vrele(vp);
1566 	}
1567 	return (error);
1568 }
1569 
1570 /*
1571  * Preparing to start a filesystem write operation. If the operation is
1572  * permitted, then we bump the count of operations in progress and
1573  * proceed. If a suspend request is in progress, we wait until the
1574  * suspension is over, and then proceed.
1575  */
1576 static int
1577 vn_start_write_locked(struct mount *mp, int flags)
1578 {
1579 	int error;
1580 
1581 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1582 	error = 0;
1583 
1584 	/*
1585 	 * Check on status of suspension.
1586 	 */
1587 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1588 	    mp->mnt_susp_owner != curthread) {
1589 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1590 			if (flags & V_NOWAIT) {
1591 				error = EWOULDBLOCK;
1592 				goto unlock;
1593 			}
1594 			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1595 			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1596 			if (error)
1597 				goto unlock;
1598 		}
1599 	}
1600 	if (flags & V_XSLEEP)
1601 		goto unlock;
1602 	mp->mnt_writeopcount++;
1603 unlock:
1604 	if (error != 0 || (flags & V_XSLEEP) != 0)
1605 		MNT_REL(mp);
1606 	MNT_IUNLOCK(mp);
1607 	return (error);
1608 }
1609 
1610 int
1611 vn_start_write(vp, mpp, flags)
1612 	struct vnode *vp;
1613 	struct mount **mpp;
1614 	int flags;
1615 {
1616 	struct mount *mp;
1617 	int error;
1618 
1619 	error = 0;
1620 	/*
1621 	 * If a vnode is provided, get and return the mount point that
1622 	 * to which it will write.
1623 	 */
1624 	if (vp != NULL) {
1625 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1626 			*mpp = NULL;
1627 			if (error != EOPNOTSUPP)
1628 				return (error);
1629 			return (0);
1630 		}
1631 	}
1632 	if ((mp = *mpp) == NULL)
1633 		return (0);
1634 
1635 	/*
1636 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1637 	 * a vfs_ref().
1638 	 * As long as a vnode is not provided we need to acquire a
1639 	 * refcount for the provided mountpoint too, in order to
1640 	 * emulate a vfs_ref().
1641 	 */
1642 	MNT_ILOCK(mp);
1643 	if (vp == NULL)
1644 		MNT_REF(mp);
1645 
1646 	return (vn_start_write_locked(mp, flags));
1647 }
1648 
1649 /*
1650  * Secondary suspension. Used by operations such as vop_inactive
1651  * routines that are needed by the higher level functions. These
1652  * are allowed to proceed until all the higher level functions have
1653  * completed (indicated by mnt_writeopcount dropping to zero). At that
1654  * time, these operations are halted until the suspension is over.
1655  */
1656 int
1657 vn_start_secondary_write(vp, mpp, flags)
1658 	struct vnode *vp;
1659 	struct mount **mpp;
1660 	int flags;
1661 {
1662 	struct mount *mp;
1663 	int error;
1664 
1665  retry:
1666 	if (vp != NULL) {
1667 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1668 			*mpp = NULL;
1669 			if (error != EOPNOTSUPP)
1670 				return (error);
1671 			return (0);
1672 		}
1673 	}
1674 	/*
1675 	 * If we are not suspended or have not yet reached suspended
1676 	 * mode, then let the operation proceed.
1677 	 */
1678 	if ((mp = *mpp) == NULL)
1679 		return (0);
1680 
1681 	/*
1682 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1683 	 * a vfs_ref().
1684 	 * As long as a vnode is not provided we need to acquire a
1685 	 * refcount for the provided mountpoint too, in order to
1686 	 * emulate a vfs_ref().
1687 	 */
1688 	MNT_ILOCK(mp);
1689 	if (vp == NULL)
1690 		MNT_REF(mp);
1691 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1692 		mp->mnt_secondary_writes++;
1693 		mp->mnt_secondary_accwrites++;
1694 		MNT_IUNLOCK(mp);
1695 		return (0);
1696 	}
1697 	if (flags & V_NOWAIT) {
1698 		MNT_REL(mp);
1699 		MNT_IUNLOCK(mp);
1700 		return (EWOULDBLOCK);
1701 	}
1702 	/*
1703 	 * Wait for the suspension to finish.
1704 	 */
1705 	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1706 		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1707 	vfs_rel(mp);
1708 	if (error == 0)
1709 		goto retry;
1710 	return (error);
1711 }
1712 
1713 /*
1714  * Filesystem write operation has completed. If we are suspending and this
1715  * operation is the last one, notify the suspender that the suspension is
1716  * now in effect.
1717  */
1718 void
1719 vn_finished_write(mp)
1720 	struct mount *mp;
1721 {
1722 	if (mp == NULL)
1723 		return;
1724 	MNT_ILOCK(mp);
1725 	MNT_REL(mp);
1726 	mp->mnt_writeopcount--;
1727 	if (mp->mnt_writeopcount < 0)
1728 		panic("vn_finished_write: neg cnt");
1729 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1730 	    mp->mnt_writeopcount <= 0)
1731 		wakeup(&mp->mnt_writeopcount);
1732 	MNT_IUNLOCK(mp);
1733 }
1734 
1735 
1736 /*
1737  * Filesystem secondary write operation has completed. If we are
1738  * suspending and this operation is the last one, notify the suspender
1739  * that the suspension is now in effect.
1740  */
1741 void
1742 vn_finished_secondary_write(mp)
1743 	struct mount *mp;
1744 {
1745 	if (mp == NULL)
1746 		return;
1747 	MNT_ILOCK(mp);
1748 	MNT_REL(mp);
1749 	mp->mnt_secondary_writes--;
1750 	if (mp->mnt_secondary_writes < 0)
1751 		panic("vn_finished_secondary_write: neg cnt");
1752 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1753 	    mp->mnt_secondary_writes <= 0)
1754 		wakeup(&mp->mnt_secondary_writes);
1755 	MNT_IUNLOCK(mp);
1756 }
1757 
1758 
1759 
1760 /*
1761  * Request a filesystem to suspend write operations.
1762  */
1763 int
1764 vfs_write_suspend(struct mount *mp, int flags)
1765 {
1766 	int error;
1767 
1768 	MNT_ILOCK(mp);
1769 	if (mp->mnt_susp_owner == curthread) {
1770 		MNT_IUNLOCK(mp);
1771 		return (EALREADY);
1772 	}
1773 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1774 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1775 
1776 	/*
1777 	 * Unmount holds a write reference on the mount point.  If we
1778 	 * own busy reference and drain for writers, we deadlock with
1779 	 * the reference draining in the unmount path.  Callers of
1780 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1781 	 * vfs_busy() reference is owned and caller is not in the
1782 	 * unmount context.
1783 	 */
1784 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1785 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1786 		MNT_IUNLOCK(mp);
1787 		return (EBUSY);
1788 	}
1789 
1790 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1791 	mp->mnt_susp_owner = curthread;
1792 	if (mp->mnt_writeopcount > 0)
1793 		(void) msleep(&mp->mnt_writeopcount,
1794 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1795 	else
1796 		MNT_IUNLOCK(mp);
1797 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1798 		vfs_write_resume(mp, 0);
1799 	return (error);
1800 }
1801 
1802 /*
1803  * Request a filesystem to resume write operations.
1804  */
1805 void
1806 vfs_write_resume(struct mount *mp, int flags)
1807 {
1808 
1809 	MNT_ILOCK(mp);
1810 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1811 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1812 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1813 				       MNTK_SUSPENDED);
1814 		mp->mnt_susp_owner = NULL;
1815 		wakeup(&mp->mnt_writeopcount);
1816 		wakeup(&mp->mnt_flag);
1817 		curthread->td_pflags &= ~TDP_IGNSUSP;
1818 		if ((flags & VR_START_WRITE) != 0) {
1819 			MNT_REF(mp);
1820 			mp->mnt_writeopcount++;
1821 		}
1822 		MNT_IUNLOCK(mp);
1823 		if ((flags & VR_NO_SUSPCLR) == 0)
1824 			VFS_SUSP_CLEAN(mp);
1825 	} else if ((flags & VR_START_WRITE) != 0) {
1826 		MNT_REF(mp);
1827 		vn_start_write_locked(mp, 0);
1828 	} else {
1829 		MNT_IUNLOCK(mp);
1830 	}
1831 }
1832 
1833 /*
1834  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1835  * methods.
1836  */
1837 int
1838 vfs_write_suspend_umnt(struct mount *mp)
1839 {
1840 	int error;
1841 
1842 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1843 	    ("vfs_write_suspend_umnt: recursed"));
1844 
1845 	/* dounmount() already called vn_start_write(). */
1846 	for (;;) {
1847 		vn_finished_write(mp);
1848 		error = vfs_write_suspend(mp, 0);
1849 		if (error != 0)
1850 			return (error);
1851 		MNT_ILOCK(mp);
1852 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1853 			break;
1854 		MNT_IUNLOCK(mp);
1855 		vn_start_write(NULL, &mp, V_WAIT);
1856 	}
1857 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1858 	wakeup(&mp->mnt_flag);
1859 	MNT_IUNLOCK(mp);
1860 	curthread->td_pflags |= TDP_IGNSUSP;
1861 	return (0);
1862 }
1863 
1864 /*
1865  * Implement kqueues for files by translating it to vnode operation.
1866  */
1867 static int
1868 vn_kqfilter(struct file *fp, struct knote *kn)
1869 {
1870 
1871 	return (VOP_KQFILTER(fp->f_vnode, kn));
1872 }
1873 
1874 /*
1875  * Simplified in-kernel wrapper calls for extended attribute access.
1876  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1877  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1878  */
1879 int
1880 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1881     const char *attrname, int *buflen, char *buf, struct thread *td)
1882 {
1883 	struct uio	auio;
1884 	struct iovec	iov;
1885 	int	error;
1886 
1887 	iov.iov_len = *buflen;
1888 	iov.iov_base = buf;
1889 
1890 	auio.uio_iov = &iov;
1891 	auio.uio_iovcnt = 1;
1892 	auio.uio_rw = UIO_READ;
1893 	auio.uio_segflg = UIO_SYSSPACE;
1894 	auio.uio_td = td;
1895 	auio.uio_offset = 0;
1896 	auio.uio_resid = *buflen;
1897 
1898 	if ((ioflg & IO_NODELOCKED) == 0)
1899 		vn_lock(vp, LK_SHARED | LK_RETRY);
1900 
1901 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1902 
1903 	/* authorize attribute retrieval as kernel */
1904 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1905 	    td);
1906 
1907 	if ((ioflg & IO_NODELOCKED) == 0)
1908 		VOP_UNLOCK(vp, 0);
1909 
1910 	if (error == 0) {
1911 		*buflen = *buflen - auio.uio_resid;
1912 	}
1913 
1914 	return (error);
1915 }
1916 
1917 /*
1918  * XXX failure mode if partially written?
1919  */
1920 int
1921 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1922     const char *attrname, int buflen, char *buf, struct thread *td)
1923 {
1924 	struct uio	auio;
1925 	struct iovec	iov;
1926 	struct mount	*mp;
1927 	int	error;
1928 
1929 	iov.iov_len = buflen;
1930 	iov.iov_base = buf;
1931 
1932 	auio.uio_iov = &iov;
1933 	auio.uio_iovcnt = 1;
1934 	auio.uio_rw = UIO_WRITE;
1935 	auio.uio_segflg = UIO_SYSSPACE;
1936 	auio.uio_td = td;
1937 	auio.uio_offset = 0;
1938 	auio.uio_resid = buflen;
1939 
1940 	if ((ioflg & IO_NODELOCKED) == 0) {
1941 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1942 			return (error);
1943 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1944 	}
1945 
1946 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1947 
1948 	/* authorize attribute setting as kernel */
1949 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1950 
1951 	if ((ioflg & IO_NODELOCKED) == 0) {
1952 		vn_finished_write(mp);
1953 		VOP_UNLOCK(vp, 0);
1954 	}
1955 
1956 	return (error);
1957 }
1958 
1959 int
1960 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1961     const char *attrname, struct thread *td)
1962 {
1963 	struct mount	*mp;
1964 	int	error;
1965 
1966 	if ((ioflg & IO_NODELOCKED) == 0) {
1967 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1968 			return (error);
1969 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1970 	}
1971 
1972 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1973 
1974 	/* authorize attribute removal as kernel */
1975 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1976 	if (error == EOPNOTSUPP)
1977 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1978 		    NULL, td);
1979 
1980 	if ((ioflg & IO_NODELOCKED) == 0) {
1981 		vn_finished_write(mp);
1982 		VOP_UNLOCK(vp, 0);
1983 	}
1984 
1985 	return (error);
1986 }
1987 
1988 static int
1989 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
1990     struct vnode **rvp)
1991 {
1992 
1993 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
1994 }
1995 
1996 int
1997 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1998 {
1999 
2000 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2001 	    lkflags, rvp));
2002 }
2003 
2004 int
2005 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2006     int lkflags, struct vnode **rvp)
2007 {
2008 	struct mount *mp;
2009 	int ltype, error;
2010 
2011 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2012 	mp = vp->v_mount;
2013 	ltype = VOP_ISLOCKED(vp);
2014 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2015 	    ("vn_vget_ino: vp not locked"));
2016 	error = vfs_busy(mp, MBF_NOWAIT);
2017 	if (error != 0) {
2018 		vfs_ref(mp);
2019 		VOP_UNLOCK(vp, 0);
2020 		error = vfs_busy(mp, 0);
2021 		vn_lock(vp, ltype | LK_RETRY);
2022 		vfs_rel(mp);
2023 		if (error != 0)
2024 			return (ENOENT);
2025 		if (vp->v_iflag & VI_DOOMED) {
2026 			vfs_unbusy(mp);
2027 			return (ENOENT);
2028 		}
2029 	}
2030 	VOP_UNLOCK(vp, 0);
2031 	error = alloc(mp, alloc_arg, lkflags, rvp);
2032 	vfs_unbusy(mp);
2033 	if (*rvp != vp)
2034 		vn_lock(vp, ltype | LK_RETRY);
2035 	if (vp->v_iflag & VI_DOOMED) {
2036 		if (error == 0) {
2037 			if (*rvp == vp)
2038 				vunref(vp);
2039 			else
2040 				vput(*rvp);
2041 		}
2042 		error = ENOENT;
2043 	}
2044 	return (error);
2045 }
2046 
2047 int
2048 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2049     const struct thread *td)
2050 {
2051 
2052 	if (vp->v_type != VREG || td == NULL)
2053 		return (0);
2054 	PROC_LOCK(td->td_proc);
2055 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2056 	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
2057 		kern_psignal(td->td_proc, SIGXFSZ);
2058 		PROC_UNLOCK(td->td_proc);
2059 		return (EFBIG);
2060 	}
2061 	PROC_UNLOCK(td->td_proc);
2062 	return (0);
2063 }
2064 
2065 int
2066 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2067     struct thread *td)
2068 {
2069 	struct vnode *vp;
2070 
2071 	vp = fp->f_vnode;
2072 #ifdef AUDIT
2073 	vn_lock(vp, LK_SHARED | LK_RETRY);
2074 	AUDIT_ARG_VNODE1(vp);
2075 	VOP_UNLOCK(vp, 0);
2076 #endif
2077 	return (setfmode(td, active_cred, vp, mode));
2078 }
2079 
2080 int
2081 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2082     struct thread *td)
2083 {
2084 	struct vnode *vp;
2085 
2086 	vp = fp->f_vnode;
2087 #ifdef AUDIT
2088 	vn_lock(vp, LK_SHARED | LK_RETRY);
2089 	AUDIT_ARG_VNODE1(vp);
2090 	VOP_UNLOCK(vp, 0);
2091 #endif
2092 	return (setfown(td, active_cred, vp, uid, gid));
2093 }
2094 
2095 void
2096 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2097 {
2098 	vm_object_t object;
2099 
2100 	if ((object = vp->v_object) == NULL)
2101 		return;
2102 	VM_OBJECT_WLOCK(object);
2103 	vm_object_page_remove(object, start, end, 0);
2104 	VM_OBJECT_WUNLOCK(object);
2105 }
2106 
2107 int
2108 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2109 {
2110 	struct vattr va;
2111 	daddr_t bn, bnp;
2112 	uint64_t bsize;
2113 	off_t noff;
2114 	int error;
2115 
2116 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2117 	    ("Wrong command %lu", cmd));
2118 
2119 	if (vn_lock(vp, LK_SHARED) != 0)
2120 		return (EBADF);
2121 	if (vp->v_type != VREG) {
2122 		error = ENOTTY;
2123 		goto unlock;
2124 	}
2125 	error = VOP_GETATTR(vp, &va, cred);
2126 	if (error != 0)
2127 		goto unlock;
2128 	noff = *off;
2129 	if (noff >= va.va_size) {
2130 		error = ENXIO;
2131 		goto unlock;
2132 	}
2133 	bsize = vp->v_mount->mnt_stat.f_iosize;
2134 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2135 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2136 		if (error == EOPNOTSUPP) {
2137 			error = ENOTTY;
2138 			goto unlock;
2139 		}
2140 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2141 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2142 			noff = bn * bsize;
2143 			if (noff < *off)
2144 				noff = *off;
2145 			goto unlock;
2146 		}
2147 	}
2148 	if (noff > va.va_size)
2149 		noff = va.va_size;
2150 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2151 	if (cmd == FIOSEEKDATA)
2152 		error = ENXIO;
2153 unlock:
2154 	VOP_UNLOCK(vp, 0);
2155 	if (error == 0)
2156 		*off = noff;
2157 	return (error);
2158 }
2159 
2160 int
2161 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2162 {
2163 	struct ucred *cred;
2164 	struct vnode *vp;
2165 	struct vattr vattr;
2166 	off_t foffset, size;
2167 	int error, noneg;
2168 
2169 	cred = td->td_ucred;
2170 	vp = fp->f_vnode;
2171 	foffset = foffset_lock(fp, 0);
2172 	noneg = (vp->v_type != VCHR);
2173 	error = 0;
2174 	switch (whence) {
2175 	case L_INCR:
2176 		if (noneg &&
2177 		    (foffset < 0 ||
2178 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2179 			error = EOVERFLOW;
2180 			break;
2181 		}
2182 		offset += foffset;
2183 		break;
2184 	case L_XTND:
2185 		vn_lock(vp, LK_SHARED | LK_RETRY);
2186 		error = VOP_GETATTR(vp, &vattr, cred);
2187 		VOP_UNLOCK(vp, 0);
2188 		if (error)
2189 			break;
2190 
2191 		/*
2192 		 * If the file references a disk device, then fetch
2193 		 * the media size and use that to determine the ending
2194 		 * offset.
2195 		 */
2196 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2197 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2198 			vattr.va_size = size;
2199 		if (noneg &&
2200 		    (vattr.va_size > OFF_MAX ||
2201 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2202 			error = EOVERFLOW;
2203 			break;
2204 		}
2205 		offset += vattr.va_size;
2206 		break;
2207 	case L_SET:
2208 		break;
2209 	case SEEK_DATA:
2210 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2211 		break;
2212 	case SEEK_HOLE:
2213 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2214 		break;
2215 	default:
2216 		error = EINVAL;
2217 	}
2218 	if (error == 0 && noneg && offset < 0)
2219 		error = EINVAL;
2220 	if (error != 0)
2221 		goto drop;
2222 	VFS_KNOTE_UNLOCKED(vp, 0);
2223 	td->td_uretoff.tdu_off = offset;
2224 drop:
2225 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2226 	return (error);
2227 }
2228 
2229 int
2230 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2231     struct thread *td)
2232 {
2233 	int error;
2234 
2235 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2236 
2237 	/*
2238 	 * From utimes(2):
2239 	 * Grant permission if the caller is the owner of the file or
2240 	 * the super-user.  If the time pointer is null, then write
2241 	 * permission on the file is also sufficient.
2242 	 *
2243 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2244 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2245 	 * will be allowed to set the times [..] to the current
2246 	 * server time.
2247 	 */
2248 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2249 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2250 	return (error);
2251 }
2252