xref: /freebsd/sys/kern/vfs_vnops.c (revision daceb336172a6b0572de864b97e70b28451ca636)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/stat.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/mman.h>
63 #include <sys/mount.h>
64 #include <sys/mutex.h>
65 #include <sys/namei.h>
66 #include <sys/vnode.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/filio.h>
70 #include <sys/resourcevar.h>
71 #include <sys/rwlock.h>
72 #include <sys/sx.h>
73 #include <sys/sysctl.h>
74 #include <sys/ttycom.h>
75 #include <sys/conf.h>
76 #include <sys/syslog.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 
80 #include <security/audit/audit.h>
81 #include <security/mac/mac_framework.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vnode_pager.h>
90 
91 #ifdef HWPMC_HOOKS
92 #include <sys/pmckern.h>
93 #endif
94 
95 static fo_rdwr_t	vn_read;
96 static fo_rdwr_t	vn_write;
97 static fo_rdwr_t	vn_io_fault;
98 static fo_truncate_t	vn_truncate;
99 static fo_ioctl_t	vn_ioctl;
100 static fo_poll_t	vn_poll;
101 static fo_kqfilter_t	vn_kqfilter;
102 static fo_stat_t	vn_statfile;
103 static fo_close_t	vn_closefile;
104 static fo_mmap_t	vn_mmap;
105 
106 struct 	fileops vnops = {
107 	.fo_read = vn_io_fault,
108 	.fo_write = vn_io_fault,
109 	.fo_truncate = vn_truncate,
110 	.fo_ioctl = vn_ioctl,
111 	.fo_poll = vn_poll,
112 	.fo_kqfilter = vn_kqfilter,
113 	.fo_stat = vn_statfile,
114 	.fo_close = vn_closefile,
115 	.fo_chmod = vn_chmod,
116 	.fo_chown = vn_chown,
117 	.fo_sendfile = vn_sendfile,
118 	.fo_seek = vn_seek,
119 	.fo_fill_kinfo = vn_fill_kinfo,
120 	.fo_mmap = vn_mmap,
121 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
122 };
123 
124 static const int io_hold_cnt = 16;
125 static int vn_io_fault_enable = 1;
126 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
127     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
128 static int vn_io_fault_prefault = 0;
129 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
130     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
131 static u_long vn_io_faults_cnt;
132 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
133     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
134 
135 /*
136  * Returns true if vn_io_fault mode of handling the i/o request should
137  * be used.
138  */
139 static bool
140 do_vn_io_fault(struct vnode *vp, struct uio *uio)
141 {
142 	struct mount *mp;
143 
144 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
145 	    (mp = vp->v_mount) != NULL &&
146 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
147 }
148 
149 /*
150  * Structure used to pass arguments to vn_io_fault1(), to do either
151  * file- or vnode-based I/O calls.
152  */
153 struct vn_io_fault_args {
154 	enum {
155 		VN_IO_FAULT_FOP,
156 		VN_IO_FAULT_VOP
157 	} kind;
158 	struct ucred *cred;
159 	int flags;
160 	union {
161 		struct fop_args_tag {
162 			struct file *fp;
163 			fo_rdwr_t *doio;
164 		} fop_args;
165 		struct vop_args_tag {
166 			struct vnode *vp;
167 		} vop_args;
168 	} args;
169 };
170 
171 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
172     struct vn_io_fault_args *args, struct thread *td);
173 
174 int
175 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
176 {
177 	struct thread *td = ndp->ni_cnd.cn_thread;
178 
179 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
180 }
181 
182 /*
183  * Common code for vnode open operations via a name lookup.
184  * Lookup the vnode and invoke VOP_CREATE if needed.
185  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
186  *
187  * Note that this does NOT free nameidata for the successful case,
188  * due to the NDINIT being done elsewhere.
189  */
190 int
191 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
192     struct ucred *cred, struct file *fp)
193 {
194 	struct vnode *vp;
195 	struct mount *mp;
196 	struct thread *td = ndp->ni_cnd.cn_thread;
197 	struct vattr vat;
198 	struct vattr *vap = &vat;
199 	int fmode, error;
200 
201 restart:
202 	fmode = *flagp;
203 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
204 	    O_EXCL | O_DIRECTORY))
205 		return (EINVAL);
206 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
207 		ndp->ni_cnd.cn_nameiop = CREATE;
208 		/*
209 		 * Set NOCACHE to avoid flushing the cache when
210 		 * rolling in many files at once.
211 		*/
212 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
213 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
214 			ndp->ni_cnd.cn_flags |= FOLLOW;
215 		if ((fmode & O_BENEATH) != 0)
216 			ndp->ni_cnd.cn_flags |= BENEATH;
217 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
218 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
219 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
220 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
221 		bwillwrite();
222 		if ((error = namei(ndp)) != 0)
223 			return (error);
224 		if (ndp->ni_vp == NULL) {
225 			VATTR_NULL(vap);
226 			vap->va_type = VREG;
227 			vap->va_mode = cmode;
228 			if (fmode & O_EXCL)
229 				vap->va_vaflags |= VA_EXCLUSIVE;
230 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
231 				NDFREE(ndp, NDF_ONLY_PNBUF);
232 				vput(ndp->ni_dvp);
233 				if ((error = vn_start_write(NULL, &mp,
234 				    V_XSLEEP | PCATCH)) != 0)
235 					return (error);
236 				goto restart;
237 			}
238 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
239 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
240 #ifdef MAC
241 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
242 			    &ndp->ni_cnd, vap);
243 			if (error == 0)
244 #endif
245 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
246 						   &ndp->ni_cnd, vap);
247 			vput(ndp->ni_dvp);
248 			vn_finished_write(mp);
249 			if (error) {
250 				NDFREE(ndp, NDF_ONLY_PNBUF);
251 				return (error);
252 			}
253 			fmode &= ~O_TRUNC;
254 			vp = ndp->ni_vp;
255 		} else {
256 			if (ndp->ni_dvp == ndp->ni_vp)
257 				vrele(ndp->ni_dvp);
258 			else
259 				vput(ndp->ni_dvp);
260 			ndp->ni_dvp = NULL;
261 			vp = ndp->ni_vp;
262 			if (fmode & O_EXCL) {
263 				error = EEXIST;
264 				goto bad;
265 			}
266 			fmode &= ~O_CREAT;
267 		}
268 	} else {
269 		ndp->ni_cnd.cn_nameiop = LOOKUP;
270 		ndp->ni_cnd.cn_flags = ISOPEN |
271 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
272 		if (!(fmode & FWRITE))
273 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
274 		if ((fmode & O_BENEATH) != 0)
275 			ndp->ni_cnd.cn_flags |= BENEATH;
276 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
277 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
278 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
279 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
280 		if ((error = namei(ndp)) != 0)
281 			return (error);
282 		vp = ndp->ni_vp;
283 	}
284 	error = vn_open_vnode(vp, fmode, cred, td, fp);
285 	if (error)
286 		goto bad;
287 	*flagp = fmode;
288 	return (0);
289 bad:
290 	NDFREE(ndp, NDF_ONLY_PNBUF);
291 	vput(vp);
292 	*flagp = fmode;
293 	ndp->ni_vp = NULL;
294 	return (error);
295 }
296 
297 static int
298 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
299 {
300 	struct flock lf;
301 	int error, lock_flags, type;
302 
303 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
304 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
305 		return (0);
306 	KASSERT(fp != NULL, ("open with flock requires fp"));
307 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
308 		return (EOPNOTSUPP);
309 
310 	lock_flags = VOP_ISLOCKED(vp);
311 	VOP_UNLOCK(vp, 0);
312 
313 	lf.l_whence = SEEK_SET;
314 	lf.l_start = 0;
315 	lf.l_len = 0;
316 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
317 	type = F_FLOCK;
318 	if ((fmode & FNONBLOCK) == 0)
319 		type |= F_WAIT;
320 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
321 	if (error == 0)
322 		fp->f_flag |= FHASLOCK;
323 
324 	vn_lock(vp, lock_flags | LK_RETRY);
325 	if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0)
326 		error = ENOENT;
327 	return (error);
328 }
329 
330 /*
331  * Common code for vnode open operations once a vnode is located.
332  * Check permissions, and call the VOP_OPEN routine.
333  */
334 int
335 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
336     struct thread *td, struct file *fp)
337 {
338 	accmode_t accmode;
339 	int error;
340 
341 	if (vp->v_type == VLNK)
342 		return (EMLINK);
343 	if (vp->v_type == VSOCK)
344 		return (EOPNOTSUPP);
345 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
346 		return (ENOTDIR);
347 	accmode = 0;
348 	if (fmode & (FWRITE | O_TRUNC)) {
349 		if (vp->v_type == VDIR)
350 			return (EISDIR);
351 		accmode |= VWRITE;
352 	}
353 	if (fmode & FREAD)
354 		accmode |= VREAD;
355 	if (fmode & FEXEC)
356 		accmode |= VEXEC;
357 	if ((fmode & O_APPEND) && (fmode & FWRITE))
358 		accmode |= VAPPEND;
359 #ifdef MAC
360 	if (fmode & O_CREAT)
361 		accmode |= VCREAT;
362 	if (fmode & O_VERIFY)
363 		accmode |= VVERIFY;
364 	error = mac_vnode_check_open(cred, vp, accmode);
365 	if (error)
366 		return (error);
367 
368 	accmode &= ~(VCREAT | VVERIFY);
369 #endif
370 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
371 		error = VOP_ACCESS(vp, accmode, cred, td);
372 		if (error != 0)
373 			return (error);
374 	}
375 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
376 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
377 	error = VOP_OPEN(vp, fmode, cred, td, fp);
378 	if (error != 0)
379 		return (error);
380 
381 	error = vn_open_vnode_advlock(vp, fmode, fp);
382 	if (error == 0 && (fmode & FWRITE) != 0) {
383 		error = VOP_ADD_WRITECOUNT(vp, 1);
384 		if (error == 0) {
385 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
386 			     __func__, vp, vp->v_writecount);
387 		}
388 	}
389 
390 	/*
391 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
392 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
393 	 * Arrange for that by having fdrop() to use vn_closefile().
394 	 */
395 	if (error != 0) {
396 		fp->f_flag |= FOPENFAILED;
397 		fp->f_vnode = vp;
398 		if (fp->f_ops == &badfileops) {
399 			fp->f_type = DTYPE_VNODE;
400 			fp->f_ops = &vnops;
401 		}
402 		vref(vp);
403 	}
404 
405 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
406 	return (error);
407 
408 }
409 
410 /*
411  * Check for write permissions on the specified vnode.
412  * Prototype text segments cannot be written.
413  * It is racy.
414  */
415 int
416 vn_writechk(struct vnode *vp)
417 {
418 
419 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
420 	/*
421 	 * If there's shared text associated with
422 	 * the vnode, try to free it up once.  If
423 	 * we fail, we can't allow writing.
424 	 */
425 	if (VOP_IS_TEXT(vp))
426 		return (ETXTBSY);
427 
428 	return (0);
429 }
430 
431 /*
432  * Vnode close call
433  */
434 static int
435 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
436     struct thread *td, bool keep_ref)
437 {
438 	struct mount *mp;
439 	int error, lock_flags;
440 
441 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
442 	    MNT_EXTENDED_SHARED(vp->v_mount))
443 		lock_flags = LK_SHARED;
444 	else
445 		lock_flags = LK_EXCLUSIVE;
446 
447 	vn_start_write(vp, &mp, V_WAIT);
448 	vn_lock(vp, lock_flags | LK_RETRY);
449 	AUDIT_ARG_VNODE1(vp);
450 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
451 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
452 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
453 		    __func__, vp, vp->v_writecount);
454 	}
455 	error = VOP_CLOSE(vp, flags, file_cred, td);
456 	if (keep_ref)
457 		VOP_UNLOCK(vp, 0);
458 	else
459 		vput(vp);
460 	vn_finished_write(mp);
461 	return (error);
462 }
463 
464 int
465 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
466     struct thread *td)
467 {
468 
469 	return (vn_close1(vp, flags, file_cred, td, false));
470 }
471 
472 /*
473  * Heuristic to detect sequential operation.
474  */
475 static int
476 sequential_heuristic(struct uio *uio, struct file *fp)
477 {
478 
479 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
480 	if (fp->f_flag & FRDAHEAD)
481 		return (fp->f_seqcount << IO_SEQSHIFT);
482 
483 	/*
484 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
485 	 * that the first I/O is normally considered to be slightly
486 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
487 	 * unless previous seeks have reduced f_seqcount to 0, in which
488 	 * case offset 0 is not special.
489 	 */
490 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
491 	    uio->uio_offset == fp->f_nextoff) {
492 		/*
493 		 * f_seqcount is in units of fixed-size blocks so that it
494 		 * depends mainly on the amount of sequential I/O and not
495 		 * much on the number of sequential I/O's.  The fixed size
496 		 * of 16384 is hard-coded here since it is (not quite) just
497 		 * a magic size that works well here.  This size is more
498 		 * closely related to the best I/O size for real disks than
499 		 * to any block size used by software.
500 		 */
501 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
502 		if (fp->f_seqcount > IO_SEQMAX)
503 			fp->f_seqcount = IO_SEQMAX;
504 		return (fp->f_seqcount << IO_SEQSHIFT);
505 	}
506 
507 	/* Not sequential.  Quickly draw-down sequentiality. */
508 	if (fp->f_seqcount > 1)
509 		fp->f_seqcount = 1;
510 	else
511 		fp->f_seqcount = 0;
512 	return (0);
513 }
514 
515 /*
516  * Package up an I/O request on a vnode into a uio and do it.
517  */
518 int
519 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
520     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
521     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
522 {
523 	struct uio auio;
524 	struct iovec aiov;
525 	struct mount *mp;
526 	struct ucred *cred;
527 	void *rl_cookie;
528 	struct vn_io_fault_args args;
529 	int error, lock_flags;
530 
531 	if (offset < 0 && vp->v_type != VCHR)
532 		return (EINVAL);
533 	auio.uio_iov = &aiov;
534 	auio.uio_iovcnt = 1;
535 	aiov.iov_base = base;
536 	aiov.iov_len = len;
537 	auio.uio_resid = len;
538 	auio.uio_offset = offset;
539 	auio.uio_segflg = segflg;
540 	auio.uio_rw = rw;
541 	auio.uio_td = td;
542 	error = 0;
543 
544 	if ((ioflg & IO_NODELOCKED) == 0) {
545 		if ((ioflg & IO_RANGELOCKED) == 0) {
546 			if (rw == UIO_READ) {
547 				rl_cookie = vn_rangelock_rlock(vp, offset,
548 				    offset + len);
549 			} else {
550 				rl_cookie = vn_rangelock_wlock(vp, offset,
551 				    offset + len);
552 			}
553 		} else
554 			rl_cookie = NULL;
555 		mp = NULL;
556 		if (rw == UIO_WRITE) {
557 			if (vp->v_type != VCHR &&
558 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
559 			    != 0)
560 				goto out;
561 			if (MNT_SHARED_WRITES(mp) ||
562 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
563 				lock_flags = LK_SHARED;
564 			else
565 				lock_flags = LK_EXCLUSIVE;
566 		} else
567 			lock_flags = LK_SHARED;
568 		vn_lock(vp, lock_flags | LK_RETRY);
569 	} else
570 		rl_cookie = NULL;
571 
572 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
573 #ifdef MAC
574 	if ((ioflg & IO_NOMACCHECK) == 0) {
575 		if (rw == UIO_READ)
576 			error = mac_vnode_check_read(active_cred, file_cred,
577 			    vp);
578 		else
579 			error = mac_vnode_check_write(active_cred, file_cred,
580 			    vp);
581 	}
582 #endif
583 	if (error == 0) {
584 		if (file_cred != NULL)
585 			cred = file_cred;
586 		else
587 			cred = active_cred;
588 		if (do_vn_io_fault(vp, &auio)) {
589 			args.kind = VN_IO_FAULT_VOP;
590 			args.cred = cred;
591 			args.flags = ioflg;
592 			args.args.vop_args.vp = vp;
593 			error = vn_io_fault1(vp, &auio, &args, td);
594 		} else if (rw == UIO_READ) {
595 			error = VOP_READ(vp, &auio, ioflg, cred);
596 		} else /* if (rw == UIO_WRITE) */ {
597 			error = VOP_WRITE(vp, &auio, ioflg, cred);
598 		}
599 	}
600 	if (aresid)
601 		*aresid = auio.uio_resid;
602 	else
603 		if (auio.uio_resid && error == 0)
604 			error = EIO;
605 	if ((ioflg & IO_NODELOCKED) == 0) {
606 		VOP_UNLOCK(vp, 0);
607 		if (mp != NULL)
608 			vn_finished_write(mp);
609 	}
610  out:
611 	if (rl_cookie != NULL)
612 		vn_rangelock_unlock(vp, rl_cookie);
613 	return (error);
614 }
615 
616 /*
617  * Package up an I/O request on a vnode into a uio and do it.  The I/O
618  * request is split up into smaller chunks and we try to avoid saturating
619  * the buffer cache while potentially holding a vnode locked, so we
620  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
621  * to give other processes a chance to lock the vnode (either other processes
622  * core'ing the same binary, or unrelated processes scanning the directory).
623  */
624 int
625 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
626     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
627     struct ucred *file_cred, size_t *aresid, struct thread *td)
628 {
629 	int error = 0;
630 	ssize_t iaresid;
631 
632 	do {
633 		int chunk;
634 
635 		/*
636 		 * Force `offset' to a multiple of MAXBSIZE except possibly
637 		 * for the first chunk, so that filesystems only need to
638 		 * write full blocks except possibly for the first and last
639 		 * chunks.
640 		 */
641 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
642 
643 		if (chunk > len)
644 			chunk = len;
645 		if (rw != UIO_READ && vp->v_type == VREG)
646 			bwillwrite();
647 		iaresid = 0;
648 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
649 		    ioflg, active_cred, file_cred, &iaresid, td);
650 		len -= chunk;	/* aresid calc already includes length */
651 		if (error)
652 			break;
653 		offset += chunk;
654 		base = (char *)base + chunk;
655 		kern_yield(PRI_USER);
656 	} while (len);
657 	if (aresid)
658 		*aresid = len + iaresid;
659 	return (error);
660 }
661 
662 off_t
663 foffset_lock(struct file *fp, int flags)
664 {
665 	struct mtx *mtxp;
666 	off_t res;
667 
668 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
669 
670 #if OFF_MAX <= LONG_MAX
671 	/*
672 	 * Caller only wants the current f_offset value.  Assume that
673 	 * the long and shorter integer types reads are atomic.
674 	 */
675 	if ((flags & FOF_NOLOCK) != 0)
676 		return (fp->f_offset);
677 #endif
678 
679 	/*
680 	 * According to McKusick the vn lock was protecting f_offset here.
681 	 * It is now protected by the FOFFSET_LOCKED flag.
682 	 */
683 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
684 	mtx_lock(mtxp);
685 	if ((flags & FOF_NOLOCK) == 0) {
686 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
687 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
688 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
689 			    "vofflock", 0);
690 		}
691 		fp->f_vnread_flags |= FOFFSET_LOCKED;
692 	}
693 	res = fp->f_offset;
694 	mtx_unlock(mtxp);
695 	return (res);
696 }
697 
698 void
699 foffset_unlock(struct file *fp, off_t val, int flags)
700 {
701 	struct mtx *mtxp;
702 
703 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
704 
705 #if OFF_MAX <= LONG_MAX
706 	if ((flags & FOF_NOLOCK) != 0) {
707 		if ((flags & FOF_NOUPDATE) == 0)
708 			fp->f_offset = val;
709 		if ((flags & FOF_NEXTOFF) != 0)
710 			fp->f_nextoff = val;
711 		return;
712 	}
713 #endif
714 
715 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
716 	mtx_lock(mtxp);
717 	if ((flags & FOF_NOUPDATE) == 0)
718 		fp->f_offset = val;
719 	if ((flags & FOF_NEXTOFF) != 0)
720 		fp->f_nextoff = val;
721 	if ((flags & FOF_NOLOCK) == 0) {
722 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
723 		    ("Lost FOFFSET_LOCKED"));
724 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
725 			wakeup(&fp->f_vnread_flags);
726 		fp->f_vnread_flags = 0;
727 	}
728 	mtx_unlock(mtxp);
729 }
730 
731 void
732 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
733 {
734 
735 	if ((flags & FOF_OFFSET) == 0)
736 		uio->uio_offset = foffset_lock(fp, flags);
737 }
738 
739 void
740 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
741 {
742 
743 	if ((flags & FOF_OFFSET) == 0)
744 		foffset_unlock(fp, uio->uio_offset, flags);
745 }
746 
747 static int
748 get_advice(struct file *fp, struct uio *uio)
749 {
750 	struct mtx *mtxp;
751 	int ret;
752 
753 	ret = POSIX_FADV_NORMAL;
754 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
755 		return (ret);
756 
757 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
758 	mtx_lock(mtxp);
759 	if (fp->f_advice != NULL &&
760 	    uio->uio_offset >= fp->f_advice->fa_start &&
761 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
762 		ret = fp->f_advice->fa_advice;
763 	mtx_unlock(mtxp);
764 	return (ret);
765 }
766 
767 /*
768  * File table vnode read routine.
769  */
770 static int
771 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
772     struct thread *td)
773 {
774 	struct vnode *vp;
775 	off_t orig_offset;
776 	int error, ioflag;
777 	int advice;
778 
779 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
780 	    uio->uio_td, td));
781 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
782 	vp = fp->f_vnode;
783 	ioflag = 0;
784 	if (fp->f_flag & FNONBLOCK)
785 		ioflag |= IO_NDELAY;
786 	if (fp->f_flag & O_DIRECT)
787 		ioflag |= IO_DIRECT;
788 	advice = get_advice(fp, uio);
789 	vn_lock(vp, LK_SHARED | LK_RETRY);
790 
791 	switch (advice) {
792 	case POSIX_FADV_NORMAL:
793 	case POSIX_FADV_SEQUENTIAL:
794 	case POSIX_FADV_NOREUSE:
795 		ioflag |= sequential_heuristic(uio, fp);
796 		break;
797 	case POSIX_FADV_RANDOM:
798 		/* Disable read-ahead for random I/O. */
799 		break;
800 	}
801 	orig_offset = uio->uio_offset;
802 
803 #ifdef MAC
804 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
805 	if (error == 0)
806 #endif
807 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
808 	fp->f_nextoff = uio->uio_offset;
809 	VOP_UNLOCK(vp, 0);
810 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
811 	    orig_offset != uio->uio_offset)
812 		/*
813 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
814 		 * for the backing file after a POSIX_FADV_NOREUSE
815 		 * read(2).
816 		 */
817 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
818 		    POSIX_FADV_DONTNEED);
819 	return (error);
820 }
821 
822 /*
823  * File table vnode write routine.
824  */
825 static int
826 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
827     struct thread *td)
828 {
829 	struct vnode *vp;
830 	struct mount *mp;
831 	off_t orig_offset;
832 	int error, ioflag, lock_flags;
833 	int advice;
834 
835 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
836 	    uio->uio_td, td));
837 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
838 	vp = fp->f_vnode;
839 	if (vp->v_type == VREG)
840 		bwillwrite();
841 	ioflag = IO_UNIT;
842 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
843 		ioflag |= IO_APPEND;
844 	if (fp->f_flag & FNONBLOCK)
845 		ioflag |= IO_NDELAY;
846 	if (fp->f_flag & O_DIRECT)
847 		ioflag |= IO_DIRECT;
848 	if ((fp->f_flag & O_FSYNC) ||
849 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
850 		ioflag |= IO_SYNC;
851 	mp = NULL;
852 	if (vp->v_type != VCHR &&
853 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
854 		goto unlock;
855 
856 	advice = get_advice(fp, uio);
857 
858 	if (MNT_SHARED_WRITES(mp) ||
859 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
860 		lock_flags = LK_SHARED;
861 	} else {
862 		lock_flags = LK_EXCLUSIVE;
863 	}
864 
865 	vn_lock(vp, lock_flags | LK_RETRY);
866 	switch (advice) {
867 	case POSIX_FADV_NORMAL:
868 	case POSIX_FADV_SEQUENTIAL:
869 	case POSIX_FADV_NOREUSE:
870 		ioflag |= sequential_heuristic(uio, fp);
871 		break;
872 	case POSIX_FADV_RANDOM:
873 		/* XXX: Is this correct? */
874 		break;
875 	}
876 	orig_offset = uio->uio_offset;
877 
878 #ifdef MAC
879 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
880 	if (error == 0)
881 #endif
882 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
883 	fp->f_nextoff = uio->uio_offset;
884 	VOP_UNLOCK(vp, 0);
885 	if (vp->v_type != VCHR)
886 		vn_finished_write(mp);
887 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
888 	    orig_offset != uio->uio_offset)
889 		/*
890 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
891 		 * for the backing file after a POSIX_FADV_NOREUSE
892 		 * write(2).
893 		 */
894 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
895 		    POSIX_FADV_DONTNEED);
896 unlock:
897 	return (error);
898 }
899 
900 /*
901  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
902  * prevent the following deadlock:
903  *
904  * Assume that the thread A reads from the vnode vp1 into userspace
905  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
906  * currently not resident, then system ends up with the call chain
907  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
908  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
909  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
910  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
911  * backed by the pages of vnode vp1, and some page in buf2 is not
912  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
913  *
914  * To prevent the lock order reversal and deadlock, vn_io_fault() does
915  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
916  * Instead, it first tries to do the whole range i/o with pagefaults
917  * disabled. If all pages in the i/o buffer are resident and mapped,
918  * VOP will succeed (ignoring the genuine filesystem errors).
919  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
920  * i/o in chunks, with all pages in the chunk prefaulted and held
921  * using vm_fault_quick_hold_pages().
922  *
923  * Filesystems using this deadlock avoidance scheme should use the
924  * array of the held pages from uio, saved in the curthread->td_ma,
925  * instead of doing uiomove().  A helper function
926  * vn_io_fault_uiomove() converts uiomove request into
927  * uiomove_fromphys() over td_ma array.
928  *
929  * Since vnode locks do not cover the whole i/o anymore, rangelocks
930  * make the current i/o request atomic with respect to other i/os and
931  * truncations.
932  */
933 
934 /*
935  * Decode vn_io_fault_args and perform the corresponding i/o.
936  */
937 static int
938 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
939     struct thread *td)
940 {
941 	int error, save;
942 
943 	error = 0;
944 	save = vm_fault_disable_pagefaults();
945 	switch (args->kind) {
946 	case VN_IO_FAULT_FOP:
947 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
948 		    uio, args->cred, args->flags, td);
949 		break;
950 	case VN_IO_FAULT_VOP:
951 		if (uio->uio_rw == UIO_READ) {
952 			error = VOP_READ(args->args.vop_args.vp, uio,
953 			    args->flags, args->cred);
954 		} else if (uio->uio_rw == UIO_WRITE) {
955 			error = VOP_WRITE(args->args.vop_args.vp, uio,
956 			    args->flags, args->cred);
957 		}
958 		break;
959 	default:
960 		panic("vn_io_fault_doio: unknown kind of io %d %d",
961 		    args->kind, uio->uio_rw);
962 	}
963 	vm_fault_enable_pagefaults(save);
964 	return (error);
965 }
966 
967 static int
968 vn_io_fault_touch(char *base, const struct uio *uio)
969 {
970 	int r;
971 
972 	r = fubyte(base);
973 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
974 		return (EFAULT);
975 	return (0);
976 }
977 
978 static int
979 vn_io_fault_prefault_user(const struct uio *uio)
980 {
981 	char *base;
982 	const struct iovec *iov;
983 	size_t len;
984 	ssize_t resid;
985 	int error, i;
986 
987 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
988 	    ("vn_io_fault_prefault userspace"));
989 
990 	error = i = 0;
991 	iov = uio->uio_iov;
992 	resid = uio->uio_resid;
993 	base = iov->iov_base;
994 	len = iov->iov_len;
995 	while (resid > 0) {
996 		error = vn_io_fault_touch(base, uio);
997 		if (error != 0)
998 			break;
999 		if (len < PAGE_SIZE) {
1000 			if (len != 0) {
1001 				error = vn_io_fault_touch(base + len - 1, uio);
1002 				if (error != 0)
1003 					break;
1004 				resid -= len;
1005 			}
1006 			if (++i >= uio->uio_iovcnt)
1007 				break;
1008 			iov = uio->uio_iov + i;
1009 			base = iov->iov_base;
1010 			len = iov->iov_len;
1011 		} else {
1012 			len -= PAGE_SIZE;
1013 			base += PAGE_SIZE;
1014 			resid -= PAGE_SIZE;
1015 		}
1016 	}
1017 	return (error);
1018 }
1019 
1020 /*
1021  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1022  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1023  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1024  * into args and call vn_io_fault1() to handle faults during the user
1025  * mode buffer accesses.
1026  */
1027 static int
1028 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1029     struct thread *td)
1030 {
1031 	vm_page_t ma[io_hold_cnt + 2];
1032 	struct uio *uio_clone, short_uio;
1033 	struct iovec short_iovec[1];
1034 	vm_page_t *prev_td_ma;
1035 	vm_prot_t prot;
1036 	vm_offset_t addr, end;
1037 	size_t len, resid;
1038 	ssize_t adv;
1039 	int error, cnt, saveheld, prev_td_ma_cnt;
1040 
1041 	if (vn_io_fault_prefault) {
1042 		error = vn_io_fault_prefault_user(uio);
1043 		if (error != 0)
1044 			return (error); /* Or ignore ? */
1045 	}
1046 
1047 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1048 
1049 	/*
1050 	 * The UFS follows IO_UNIT directive and replays back both
1051 	 * uio_offset and uio_resid if an error is encountered during the
1052 	 * operation.  But, since the iovec may be already advanced,
1053 	 * uio is still in an inconsistent state.
1054 	 *
1055 	 * Cache a copy of the original uio, which is advanced to the redo
1056 	 * point using UIO_NOCOPY below.
1057 	 */
1058 	uio_clone = cloneuio(uio);
1059 	resid = uio->uio_resid;
1060 
1061 	short_uio.uio_segflg = UIO_USERSPACE;
1062 	short_uio.uio_rw = uio->uio_rw;
1063 	short_uio.uio_td = uio->uio_td;
1064 
1065 	error = vn_io_fault_doio(args, uio, td);
1066 	if (error != EFAULT)
1067 		goto out;
1068 
1069 	atomic_add_long(&vn_io_faults_cnt, 1);
1070 	uio_clone->uio_segflg = UIO_NOCOPY;
1071 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1072 	uio_clone->uio_segflg = uio->uio_segflg;
1073 
1074 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1075 	prev_td_ma = td->td_ma;
1076 	prev_td_ma_cnt = td->td_ma_cnt;
1077 
1078 	while (uio_clone->uio_resid != 0) {
1079 		len = uio_clone->uio_iov->iov_len;
1080 		if (len == 0) {
1081 			KASSERT(uio_clone->uio_iovcnt >= 1,
1082 			    ("iovcnt underflow"));
1083 			uio_clone->uio_iov++;
1084 			uio_clone->uio_iovcnt--;
1085 			continue;
1086 		}
1087 		if (len > io_hold_cnt * PAGE_SIZE)
1088 			len = io_hold_cnt * PAGE_SIZE;
1089 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1090 		end = round_page(addr + len);
1091 		if (end < addr) {
1092 			error = EFAULT;
1093 			break;
1094 		}
1095 		cnt = atop(end - trunc_page(addr));
1096 		/*
1097 		 * A perfectly misaligned address and length could cause
1098 		 * both the start and the end of the chunk to use partial
1099 		 * page.  +2 accounts for such a situation.
1100 		 */
1101 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1102 		    addr, len, prot, ma, io_hold_cnt + 2);
1103 		if (cnt == -1) {
1104 			error = EFAULT;
1105 			break;
1106 		}
1107 		short_uio.uio_iov = &short_iovec[0];
1108 		short_iovec[0].iov_base = (void *)addr;
1109 		short_uio.uio_iovcnt = 1;
1110 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1111 		short_uio.uio_offset = uio_clone->uio_offset;
1112 		td->td_ma = ma;
1113 		td->td_ma_cnt = cnt;
1114 
1115 		error = vn_io_fault_doio(args, &short_uio, td);
1116 		vm_page_unhold_pages(ma, cnt);
1117 		adv = len - short_uio.uio_resid;
1118 
1119 		uio_clone->uio_iov->iov_base =
1120 		    (char *)uio_clone->uio_iov->iov_base + adv;
1121 		uio_clone->uio_iov->iov_len -= adv;
1122 		uio_clone->uio_resid -= adv;
1123 		uio_clone->uio_offset += adv;
1124 
1125 		uio->uio_resid -= adv;
1126 		uio->uio_offset += adv;
1127 
1128 		if (error != 0 || adv == 0)
1129 			break;
1130 	}
1131 	td->td_ma = prev_td_ma;
1132 	td->td_ma_cnt = prev_td_ma_cnt;
1133 	curthread_pflags_restore(saveheld);
1134 out:
1135 	free(uio_clone, M_IOV);
1136 	return (error);
1137 }
1138 
1139 static int
1140 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1141     int flags, struct thread *td)
1142 {
1143 	fo_rdwr_t *doio;
1144 	struct vnode *vp;
1145 	void *rl_cookie;
1146 	struct vn_io_fault_args args;
1147 	int error;
1148 
1149 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1150 	vp = fp->f_vnode;
1151 	foffset_lock_uio(fp, uio, flags);
1152 	if (do_vn_io_fault(vp, uio)) {
1153 		args.kind = VN_IO_FAULT_FOP;
1154 		args.args.fop_args.fp = fp;
1155 		args.args.fop_args.doio = doio;
1156 		args.cred = active_cred;
1157 		args.flags = flags | FOF_OFFSET;
1158 		if (uio->uio_rw == UIO_READ) {
1159 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1160 			    uio->uio_offset + uio->uio_resid);
1161 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1162 		    (flags & FOF_OFFSET) == 0) {
1163 			/* For appenders, punt and lock the whole range. */
1164 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1165 		} else {
1166 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1167 			    uio->uio_offset + uio->uio_resid);
1168 		}
1169 		error = vn_io_fault1(vp, uio, &args, td);
1170 		vn_rangelock_unlock(vp, rl_cookie);
1171 	} else {
1172 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1173 	}
1174 	foffset_unlock_uio(fp, uio, flags);
1175 	return (error);
1176 }
1177 
1178 /*
1179  * Helper function to perform the requested uiomove operation using
1180  * the held pages for io->uio_iov[0].iov_base buffer instead of
1181  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1182  * instead of iov_base prevents page faults that could occur due to
1183  * pmap_collect() invalidating the mapping created by
1184  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1185  * object cleanup revoking the write access from page mappings.
1186  *
1187  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1188  * instead of plain uiomove().
1189  */
1190 int
1191 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1192 {
1193 	struct uio transp_uio;
1194 	struct iovec transp_iov[1];
1195 	struct thread *td;
1196 	size_t adv;
1197 	int error, pgadv;
1198 
1199 	td = curthread;
1200 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1201 	    uio->uio_segflg != UIO_USERSPACE)
1202 		return (uiomove(data, xfersize, uio));
1203 
1204 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1205 	transp_iov[0].iov_base = data;
1206 	transp_uio.uio_iov = &transp_iov[0];
1207 	transp_uio.uio_iovcnt = 1;
1208 	if (xfersize > uio->uio_resid)
1209 		xfersize = uio->uio_resid;
1210 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1211 	transp_uio.uio_offset = 0;
1212 	transp_uio.uio_segflg = UIO_SYSSPACE;
1213 	/*
1214 	 * Since transp_iov points to data, and td_ma page array
1215 	 * corresponds to original uio->uio_iov, we need to invert the
1216 	 * direction of the i/o operation as passed to
1217 	 * uiomove_fromphys().
1218 	 */
1219 	switch (uio->uio_rw) {
1220 	case UIO_WRITE:
1221 		transp_uio.uio_rw = UIO_READ;
1222 		break;
1223 	case UIO_READ:
1224 		transp_uio.uio_rw = UIO_WRITE;
1225 		break;
1226 	}
1227 	transp_uio.uio_td = uio->uio_td;
1228 	error = uiomove_fromphys(td->td_ma,
1229 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1230 	    xfersize, &transp_uio);
1231 	adv = xfersize - transp_uio.uio_resid;
1232 	pgadv =
1233 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1234 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1235 	td->td_ma += pgadv;
1236 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1237 	    pgadv));
1238 	td->td_ma_cnt -= pgadv;
1239 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1240 	uio->uio_iov->iov_len -= adv;
1241 	uio->uio_resid -= adv;
1242 	uio->uio_offset += adv;
1243 	return (error);
1244 }
1245 
1246 int
1247 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1248     struct uio *uio)
1249 {
1250 	struct thread *td;
1251 	vm_offset_t iov_base;
1252 	int cnt, pgadv;
1253 
1254 	td = curthread;
1255 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1256 	    uio->uio_segflg != UIO_USERSPACE)
1257 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1258 
1259 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1260 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1261 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1262 	switch (uio->uio_rw) {
1263 	case UIO_WRITE:
1264 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1265 		    offset, cnt);
1266 		break;
1267 	case UIO_READ:
1268 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1269 		    cnt);
1270 		break;
1271 	}
1272 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1273 	td->td_ma += pgadv;
1274 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1275 	    pgadv));
1276 	td->td_ma_cnt -= pgadv;
1277 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1278 	uio->uio_iov->iov_len -= cnt;
1279 	uio->uio_resid -= cnt;
1280 	uio->uio_offset += cnt;
1281 	return (0);
1282 }
1283 
1284 
1285 /*
1286  * File table truncate routine.
1287  */
1288 static int
1289 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1290     struct thread *td)
1291 {
1292 	struct vattr vattr;
1293 	struct mount *mp;
1294 	struct vnode *vp;
1295 	void *rl_cookie;
1296 	int error;
1297 
1298 	vp = fp->f_vnode;
1299 
1300 	/*
1301 	 * Lock the whole range for truncation.  Otherwise split i/o
1302 	 * might happen partly before and partly after the truncation.
1303 	 */
1304 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1305 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1306 	if (error)
1307 		goto out1;
1308 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1309 	AUDIT_ARG_VNODE1(vp);
1310 	if (vp->v_type == VDIR) {
1311 		error = EISDIR;
1312 		goto out;
1313 	}
1314 #ifdef MAC
1315 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1316 	if (error)
1317 		goto out;
1318 #endif
1319 	error = VOP_ADD_WRITECOUNT(vp, 1);
1320 	if (error == 0) {
1321 		VATTR_NULL(&vattr);
1322 		vattr.va_size = length;
1323 		if ((fp->f_flag & O_FSYNC) != 0)
1324 			vattr.va_vaflags |= VA_SYNC;
1325 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1326 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1327 	}
1328 out:
1329 	VOP_UNLOCK(vp, 0);
1330 	vn_finished_write(mp);
1331 out1:
1332 	vn_rangelock_unlock(vp, rl_cookie);
1333 	return (error);
1334 }
1335 
1336 /*
1337  * File table vnode stat routine.
1338  */
1339 static int
1340 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1341     struct thread *td)
1342 {
1343 	struct vnode *vp = fp->f_vnode;
1344 	int error;
1345 
1346 	vn_lock(vp, LK_SHARED | LK_RETRY);
1347 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1348 	VOP_UNLOCK(vp, 0);
1349 
1350 	return (error);
1351 }
1352 
1353 /*
1354  * Stat a vnode; implementation for the stat syscall
1355  */
1356 int
1357 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1358     struct ucred *file_cred, struct thread *td)
1359 {
1360 	struct vattr vattr;
1361 	struct vattr *vap;
1362 	int error;
1363 	u_short mode;
1364 
1365 	AUDIT_ARG_VNODE1(vp);
1366 #ifdef MAC
1367 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1368 	if (error)
1369 		return (error);
1370 #endif
1371 
1372 	vap = &vattr;
1373 
1374 	/*
1375 	 * Initialize defaults for new and unusual fields, so that file
1376 	 * systems which don't support these fields don't need to know
1377 	 * about them.
1378 	 */
1379 	vap->va_birthtime.tv_sec = -1;
1380 	vap->va_birthtime.tv_nsec = 0;
1381 	vap->va_fsid = VNOVAL;
1382 	vap->va_rdev = NODEV;
1383 
1384 	error = VOP_GETATTR(vp, vap, active_cred);
1385 	if (error)
1386 		return (error);
1387 
1388 	/*
1389 	 * Zero the spare stat fields
1390 	 */
1391 	bzero(sb, sizeof *sb);
1392 
1393 	/*
1394 	 * Copy from vattr table
1395 	 */
1396 	if (vap->va_fsid != VNOVAL)
1397 		sb->st_dev = vap->va_fsid;
1398 	else
1399 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1400 	sb->st_ino = vap->va_fileid;
1401 	mode = vap->va_mode;
1402 	switch (vap->va_type) {
1403 	case VREG:
1404 		mode |= S_IFREG;
1405 		break;
1406 	case VDIR:
1407 		mode |= S_IFDIR;
1408 		break;
1409 	case VBLK:
1410 		mode |= S_IFBLK;
1411 		break;
1412 	case VCHR:
1413 		mode |= S_IFCHR;
1414 		break;
1415 	case VLNK:
1416 		mode |= S_IFLNK;
1417 		break;
1418 	case VSOCK:
1419 		mode |= S_IFSOCK;
1420 		break;
1421 	case VFIFO:
1422 		mode |= S_IFIFO;
1423 		break;
1424 	default:
1425 		return (EBADF);
1426 	}
1427 	sb->st_mode = mode;
1428 	sb->st_nlink = vap->va_nlink;
1429 	sb->st_uid = vap->va_uid;
1430 	sb->st_gid = vap->va_gid;
1431 	sb->st_rdev = vap->va_rdev;
1432 	if (vap->va_size > OFF_MAX)
1433 		return (EOVERFLOW);
1434 	sb->st_size = vap->va_size;
1435 	sb->st_atim = vap->va_atime;
1436 	sb->st_mtim = vap->va_mtime;
1437 	sb->st_ctim = vap->va_ctime;
1438 	sb->st_birthtim = vap->va_birthtime;
1439 
1440         /*
1441 	 * According to www.opengroup.org, the meaning of st_blksize is
1442 	 *   "a filesystem-specific preferred I/O block size for this
1443 	 *    object.  In some filesystem types, this may vary from file
1444 	 *    to file"
1445 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1446 	 */
1447 
1448 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1449 
1450 	sb->st_flags = vap->va_flags;
1451 	if (priv_check(td, PRIV_VFS_GENERATION))
1452 		sb->st_gen = 0;
1453 	else
1454 		sb->st_gen = vap->va_gen;
1455 
1456 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1457 	return (0);
1458 }
1459 
1460 /*
1461  * File table vnode ioctl routine.
1462  */
1463 static int
1464 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1465     struct thread *td)
1466 {
1467 	struct vattr vattr;
1468 	struct vnode *vp;
1469 	int error;
1470 
1471 	vp = fp->f_vnode;
1472 	switch (vp->v_type) {
1473 	case VDIR:
1474 	case VREG:
1475 		switch (com) {
1476 		case FIONREAD:
1477 			vn_lock(vp, LK_SHARED | LK_RETRY);
1478 			error = VOP_GETATTR(vp, &vattr, active_cred);
1479 			VOP_UNLOCK(vp, 0);
1480 			if (error == 0)
1481 				*(int *)data = vattr.va_size - fp->f_offset;
1482 			return (error);
1483 		case FIONBIO:
1484 		case FIOASYNC:
1485 			return (0);
1486 		default:
1487 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1488 			    active_cred, td));
1489 		}
1490 		break;
1491 	case VCHR:
1492 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1493 		    active_cred, td));
1494 	default:
1495 		return (ENOTTY);
1496 	}
1497 }
1498 
1499 /*
1500  * File table vnode poll routine.
1501  */
1502 static int
1503 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1504     struct thread *td)
1505 {
1506 	struct vnode *vp;
1507 	int error;
1508 
1509 	vp = fp->f_vnode;
1510 #ifdef MAC
1511 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1512 	AUDIT_ARG_VNODE1(vp);
1513 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1514 	VOP_UNLOCK(vp, 0);
1515 	if (!error)
1516 #endif
1517 
1518 	error = VOP_POLL(vp, events, fp->f_cred, td);
1519 	return (error);
1520 }
1521 
1522 /*
1523  * Acquire the requested lock and then check for validity.  LK_RETRY
1524  * permits vn_lock to return doomed vnodes.
1525  */
1526 int
1527 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1528 {
1529 	int error;
1530 
1531 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1532 	    ("vn_lock: no locktype"));
1533 	VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
1534 retry:
1535 	error = VOP_LOCK1(vp, flags, file, line);
1536 	flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1537 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1538 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1539 
1540 	if ((flags & LK_RETRY) == 0) {
1541 		if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1542 			VOP_UNLOCK(vp, 0);
1543 			error = ENOENT;
1544 		}
1545 	} else if (error != 0)
1546 		goto retry;
1547 	return (error);
1548 }
1549 
1550 /*
1551  * File table vnode close routine.
1552  */
1553 static int
1554 vn_closefile(struct file *fp, struct thread *td)
1555 {
1556 	struct vnode *vp;
1557 	struct flock lf;
1558 	int error;
1559 	bool ref;
1560 
1561 	vp = fp->f_vnode;
1562 	fp->f_ops = &badfileops;
1563 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1564 
1565 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1566 
1567 	if (__predict_false(ref)) {
1568 		lf.l_whence = SEEK_SET;
1569 		lf.l_start = 0;
1570 		lf.l_len = 0;
1571 		lf.l_type = F_UNLCK;
1572 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1573 		vrele(vp);
1574 	}
1575 	return (error);
1576 }
1577 
1578 static bool
1579 vn_suspendable(struct mount *mp)
1580 {
1581 
1582 	return (mp->mnt_op->vfs_susp_clean != NULL);
1583 }
1584 
1585 /*
1586  * Preparing to start a filesystem write operation. If the operation is
1587  * permitted, then we bump the count of operations in progress and
1588  * proceed. If a suspend request is in progress, we wait until the
1589  * suspension is over, and then proceed.
1590  */
1591 static int
1592 vn_start_write_locked(struct mount *mp, int flags)
1593 {
1594 	int error, mflags;
1595 
1596 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1597 	error = 0;
1598 
1599 	/*
1600 	 * Check on status of suspension.
1601 	 */
1602 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1603 	    mp->mnt_susp_owner != curthread) {
1604 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1605 		    (flags & PCATCH) : 0) | (PUSER - 1);
1606 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1607 			if (flags & V_NOWAIT) {
1608 				error = EWOULDBLOCK;
1609 				goto unlock;
1610 			}
1611 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1612 			    "suspfs", 0);
1613 			if (error)
1614 				goto unlock;
1615 		}
1616 	}
1617 	if (flags & V_XSLEEP)
1618 		goto unlock;
1619 	mp->mnt_writeopcount++;
1620 unlock:
1621 	if (error != 0 || (flags & V_XSLEEP) != 0)
1622 		MNT_REL(mp);
1623 	MNT_IUNLOCK(mp);
1624 	return (error);
1625 }
1626 
1627 int
1628 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1629 {
1630 	struct mount *mp;
1631 	int error;
1632 
1633 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1634 	    ("V_MNTREF requires mp"));
1635 
1636 	error = 0;
1637 	/*
1638 	 * If a vnode is provided, get and return the mount point that
1639 	 * to which it will write.
1640 	 */
1641 	if (vp != NULL) {
1642 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1643 			*mpp = NULL;
1644 			if (error != EOPNOTSUPP)
1645 				return (error);
1646 			return (0);
1647 		}
1648 	}
1649 	if ((mp = *mpp) == NULL)
1650 		return (0);
1651 
1652 	if (!vn_suspendable(mp)) {
1653 		if (vp != NULL || (flags & V_MNTREF) != 0)
1654 			vfs_rel(mp);
1655 		return (0);
1656 	}
1657 
1658 	/*
1659 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1660 	 * a vfs_ref().
1661 	 * As long as a vnode is not provided we need to acquire a
1662 	 * refcount for the provided mountpoint too, in order to
1663 	 * emulate a vfs_ref().
1664 	 */
1665 	MNT_ILOCK(mp);
1666 	if (vp == NULL && (flags & V_MNTREF) == 0)
1667 		MNT_REF(mp);
1668 
1669 	return (vn_start_write_locked(mp, flags));
1670 }
1671 
1672 /*
1673  * Secondary suspension. Used by operations such as vop_inactive
1674  * routines that are needed by the higher level functions. These
1675  * are allowed to proceed until all the higher level functions have
1676  * completed (indicated by mnt_writeopcount dropping to zero). At that
1677  * time, these operations are halted until the suspension is over.
1678  */
1679 int
1680 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1681 {
1682 	struct mount *mp;
1683 	int error;
1684 
1685 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1686 	    ("V_MNTREF requires mp"));
1687 
1688  retry:
1689 	if (vp != NULL) {
1690 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1691 			*mpp = NULL;
1692 			if (error != EOPNOTSUPP)
1693 				return (error);
1694 			return (0);
1695 		}
1696 	}
1697 	/*
1698 	 * If we are not suspended or have not yet reached suspended
1699 	 * mode, then let the operation proceed.
1700 	 */
1701 	if ((mp = *mpp) == NULL)
1702 		return (0);
1703 
1704 	if (!vn_suspendable(mp)) {
1705 		if (vp != NULL || (flags & V_MNTREF) != 0)
1706 			vfs_rel(mp);
1707 		return (0);
1708 	}
1709 
1710 	/*
1711 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1712 	 * a vfs_ref().
1713 	 * As long as a vnode is not provided we need to acquire a
1714 	 * refcount for the provided mountpoint too, in order to
1715 	 * emulate a vfs_ref().
1716 	 */
1717 	MNT_ILOCK(mp);
1718 	if (vp == NULL && (flags & V_MNTREF) == 0)
1719 		MNT_REF(mp);
1720 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1721 		mp->mnt_secondary_writes++;
1722 		mp->mnt_secondary_accwrites++;
1723 		MNT_IUNLOCK(mp);
1724 		return (0);
1725 	}
1726 	if (flags & V_NOWAIT) {
1727 		MNT_REL(mp);
1728 		MNT_IUNLOCK(mp);
1729 		return (EWOULDBLOCK);
1730 	}
1731 	/*
1732 	 * Wait for the suspension to finish.
1733 	 */
1734 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1735 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1736 	    "suspfs", 0);
1737 	vfs_rel(mp);
1738 	if (error == 0)
1739 		goto retry;
1740 	return (error);
1741 }
1742 
1743 /*
1744  * Filesystem write operation has completed. If we are suspending and this
1745  * operation is the last one, notify the suspender that the suspension is
1746  * now in effect.
1747  */
1748 void
1749 vn_finished_write(struct mount *mp)
1750 {
1751 	if (mp == NULL || !vn_suspendable(mp))
1752 		return;
1753 	MNT_ILOCK(mp);
1754 	MNT_REL(mp);
1755 	mp->mnt_writeopcount--;
1756 	if (mp->mnt_writeopcount < 0)
1757 		panic("vn_finished_write: neg cnt");
1758 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1759 	    mp->mnt_writeopcount <= 0)
1760 		wakeup(&mp->mnt_writeopcount);
1761 	MNT_IUNLOCK(mp);
1762 }
1763 
1764 
1765 /*
1766  * Filesystem secondary write operation has completed. If we are
1767  * suspending and this operation is the last one, notify the suspender
1768  * that the suspension is now in effect.
1769  */
1770 void
1771 vn_finished_secondary_write(struct mount *mp)
1772 {
1773 	if (mp == NULL || !vn_suspendable(mp))
1774 		return;
1775 	MNT_ILOCK(mp);
1776 	MNT_REL(mp);
1777 	mp->mnt_secondary_writes--;
1778 	if (mp->mnt_secondary_writes < 0)
1779 		panic("vn_finished_secondary_write: neg cnt");
1780 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1781 	    mp->mnt_secondary_writes <= 0)
1782 		wakeup(&mp->mnt_secondary_writes);
1783 	MNT_IUNLOCK(mp);
1784 }
1785 
1786 
1787 
1788 /*
1789  * Request a filesystem to suspend write operations.
1790  */
1791 int
1792 vfs_write_suspend(struct mount *mp, int flags)
1793 {
1794 	int error;
1795 
1796 	MPASS(vn_suspendable(mp));
1797 
1798 	MNT_ILOCK(mp);
1799 	if (mp->mnt_susp_owner == curthread) {
1800 		MNT_IUNLOCK(mp);
1801 		return (EALREADY);
1802 	}
1803 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1804 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1805 
1806 	/*
1807 	 * Unmount holds a write reference on the mount point.  If we
1808 	 * own busy reference and drain for writers, we deadlock with
1809 	 * the reference draining in the unmount path.  Callers of
1810 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1811 	 * vfs_busy() reference is owned and caller is not in the
1812 	 * unmount context.
1813 	 */
1814 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1815 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1816 		MNT_IUNLOCK(mp);
1817 		return (EBUSY);
1818 	}
1819 
1820 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1821 	mp->mnt_susp_owner = curthread;
1822 	if (mp->mnt_writeopcount > 0)
1823 		(void) msleep(&mp->mnt_writeopcount,
1824 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1825 	else
1826 		MNT_IUNLOCK(mp);
1827 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1828 		vfs_write_resume(mp, 0);
1829 	return (error);
1830 }
1831 
1832 /*
1833  * Request a filesystem to resume write operations.
1834  */
1835 void
1836 vfs_write_resume(struct mount *mp, int flags)
1837 {
1838 
1839 	MPASS(vn_suspendable(mp));
1840 
1841 	MNT_ILOCK(mp);
1842 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1843 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1844 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1845 				       MNTK_SUSPENDED);
1846 		mp->mnt_susp_owner = NULL;
1847 		wakeup(&mp->mnt_writeopcount);
1848 		wakeup(&mp->mnt_flag);
1849 		curthread->td_pflags &= ~TDP_IGNSUSP;
1850 		if ((flags & VR_START_WRITE) != 0) {
1851 			MNT_REF(mp);
1852 			mp->mnt_writeopcount++;
1853 		}
1854 		MNT_IUNLOCK(mp);
1855 		if ((flags & VR_NO_SUSPCLR) == 0)
1856 			VFS_SUSP_CLEAN(mp);
1857 	} else if ((flags & VR_START_WRITE) != 0) {
1858 		MNT_REF(mp);
1859 		vn_start_write_locked(mp, 0);
1860 	} else {
1861 		MNT_IUNLOCK(mp);
1862 	}
1863 }
1864 
1865 /*
1866  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1867  * methods.
1868  */
1869 int
1870 vfs_write_suspend_umnt(struct mount *mp)
1871 {
1872 	int error;
1873 
1874 	MPASS(vn_suspendable(mp));
1875 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1876 	    ("vfs_write_suspend_umnt: recursed"));
1877 
1878 	/* dounmount() already called vn_start_write(). */
1879 	for (;;) {
1880 		vn_finished_write(mp);
1881 		error = vfs_write_suspend(mp, 0);
1882 		if (error != 0) {
1883 			vn_start_write(NULL, &mp, V_WAIT);
1884 			return (error);
1885 		}
1886 		MNT_ILOCK(mp);
1887 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1888 			break;
1889 		MNT_IUNLOCK(mp);
1890 		vn_start_write(NULL, &mp, V_WAIT);
1891 	}
1892 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1893 	wakeup(&mp->mnt_flag);
1894 	MNT_IUNLOCK(mp);
1895 	curthread->td_pflags |= TDP_IGNSUSP;
1896 	return (0);
1897 }
1898 
1899 /*
1900  * Implement kqueues for files by translating it to vnode operation.
1901  */
1902 static int
1903 vn_kqfilter(struct file *fp, struct knote *kn)
1904 {
1905 
1906 	return (VOP_KQFILTER(fp->f_vnode, kn));
1907 }
1908 
1909 /*
1910  * Simplified in-kernel wrapper calls for extended attribute access.
1911  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1912  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1913  */
1914 int
1915 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1916     const char *attrname, int *buflen, char *buf, struct thread *td)
1917 {
1918 	struct uio	auio;
1919 	struct iovec	iov;
1920 	int	error;
1921 
1922 	iov.iov_len = *buflen;
1923 	iov.iov_base = buf;
1924 
1925 	auio.uio_iov = &iov;
1926 	auio.uio_iovcnt = 1;
1927 	auio.uio_rw = UIO_READ;
1928 	auio.uio_segflg = UIO_SYSSPACE;
1929 	auio.uio_td = td;
1930 	auio.uio_offset = 0;
1931 	auio.uio_resid = *buflen;
1932 
1933 	if ((ioflg & IO_NODELOCKED) == 0)
1934 		vn_lock(vp, LK_SHARED | LK_RETRY);
1935 
1936 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1937 
1938 	/* authorize attribute retrieval as kernel */
1939 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1940 	    td);
1941 
1942 	if ((ioflg & IO_NODELOCKED) == 0)
1943 		VOP_UNLOCK(vp, 0);
1944 
1945 	if (error == 0) {
1946 		*buflen = *buflen - auio.uio_resid;
1947 	}
1948 
1949 	return (error);
1950 }
1951 
1952 /*
1953  * XXX failure mode if partially written?
1954  */
1955 int
1956 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1957     const char *attrname, int buflen, char *buf, struct thread *td)
1958 {
1959 	struct uio	auio;
1960 	struct iovec	iov;
1961 	struct mount	*mp;
1962 	int	error;
1963 
1964 	iov.iov_len = buflen;
1965 	iov.iov_base = buf;
1966 
1967 	auio.uio_iov = &iov;
1968 	auio.uio_iovcnt = 1;
1969 	auio.uio_rw = UIO_WRITE;
1970 	auio.uio_segflg = UIO_SYSSPACE;
1971 	auio.uio_td = td;
1972 	auio.uio_offset = 0;
1973 	auio.uio_resid = buflen;
1974 
1975 	if ((ioflg & IO_NODELOCKED) == 0) {
1976 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1977 			return (error);
1978 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1979 	}
1980 
1981 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1982 
1983 	/* authorize attribute setting as kernel */
1984 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1985 
1986 	if ((ioflg & IO_NODELOCKED) == 0) {
1987 		vn_finished_write(mp);
1988 		VOP_UNLOCK(vp, 0);
1989 	}
1990 
1991 	return (error);
1992 }
1993 
1994 int
1995 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1996     const char *attrname, struct thread *td)
1997 {
1998 	struct mount	*mp;
1999 	int	error;
2000 
2001 	if ((ioflg & IO_NODELOCKED) == 0) {
2002 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2003 			return (error);
2004 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2005 	}
2006 
2007 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2008 
2009 	/* authorize attribute removal as kernel */
2010 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2011 	if (error == EOPNOTSUPP)
2012 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2013 		    NULL, td);
2014 
2015 	if ((ioflg & IO_NODELOCKED) == 0) {
2016 		vn_finished_write(mp);
2017 		VOP_UNLOCK(vp, 0);
2018 	}
2019 
2020 	return (error);
2021 }
2022 
2023 static int
2024 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2025     struct vnode **rvp)
2026 {
2027 
2028 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2029 }
2030 
2031 int
2032 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2033 {
2034 
2035 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2036 	    lkflags, rvp));
2037 }
2038 
2039 int
2040 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2041     int lkflags, struct vnode **rvp)
2042 {
2043 	struct mount *mp;
2044 	int ltype, error;
2045 
2046 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2047 	mp = vp->v_mount;
2048 	ltype = VOP_ISLOCKED(vp);
2049 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2050 	    ("vn_vget_ino: vp not locked"));
2051 	error = vfs_busy(mp, MBF_NOWAIT);
2052 	if (error != 0) {
2053 		vfs_ref(mp);
2054 		VOP_UNLOCK(vp, 0);
2055 		error = vfs_busy(mp, 0);
2056 		vn_lock(vp, ltype | LK_RETRY);
2057 		vfs_rel(mp);
2058 		if (error != 0)
2059 			return (ENOENT);
2060 		if (vp->v_iflag & VI_DOOMED) {
2061 			vfs_unbusy(mp);
2062 			return (ENOENT);
2063 		}
2064 	}
2065 	VOP_UNLOCK(vp, 0);
2066 	error = alloc(mp, alloc_arg, lkflags, rvp);
2067 	vfs_unbusy(mp);
2068 	if (*rvp != vp)
2069 		vn_lock(vp, ltype | LK_RETRY);
2070 	if (vp->v_iflag & VI_DOOMED) {
2071 		if (error == 0) {
2072 			if (*rvp == vp)
2073 				vunref(vp);
2074 			else
2075 				vput(*rvp);
2076 		}
2077 		error = ENOENT;
2078 	}
2079 	return (error);
2080 }
2081 
2082 int
2083 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2084     struct thread *td)
2085 {
2086 
2087 	if (vp->v_type != VREG || td == NULL)
2088 		return (0);
2089 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2090 	    lim_cur(td, RLIMIT_FSIZE)) {
2091 		PROC_LOCK(td->td_proc);
2092 		kern_psignal(td->td_proc, SIGXFSZ);
2093 		PROC_UNLOCK(td->td_proc);
2094 		return (EFBIG);
2095 	}
2096 	return (0);
2097 }
2098 
2099 int
2100 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2101     struct thread *td)
2102 {
2103 	struct vnode *vp;
2104 
2105 	vp = fp->f_vnode;
2106 #ifdef AUDIT
2107 	vn_lock(vp, LK_SHARED | LK_RETRY);
2108 	AUDIT_ARG_VNODE1(vp);
2109 	VOP_UNLOCK(vp, 0);
2110 #endif
2111 	return (setfmode(td, active_cred, vp, mode));
2112 }
2113 
2114 int
2115 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2116     struct thread *td)
2117 {
2118 	struct vnode *vp;
2119 
2120 	vp = fp->f_vnode;
2121 #ifdef AUDIT
2122 	vn_lock(vp, LK_SHARED | LK_RETRY);
2123 	AUDIT_ARG_VNODE1(vp);
2124 	VOP_UNLOCK(vp, 0);
2125 #endif
2126 	return (setfown(td, active_cred, vp, uid, gid));
2127 }
2128 
2129 void
2130 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2131 {
2132 	vm_object_t object;
2133 
2134 	if ((object = vp->v_object) == NULL)
2135 		return;
2136 	VM_OBJECT_WLOCK(object);
2137 	vm_object_page_remove(object, start, end, 0);
2138 	VM_OBJECT_WUNLOCK(object);
2139 }
2140 
2141 int
2142 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2143 {
2144 	struct vattr va;
2145 	daddr_t bn, bnp;
2146 	uint64_t bsize;
2147 	off_t noff;
2148 	int error;
2149 
2150 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2151 	    ("Wrong command %lu", cmd));
2152 
2153 	if (vn_lock(vp, LK_SHARED) != 0)
2154 		return (EBADF);
2155 	if (vp->v_type != VREG) {
2156 		error = ENOTTY;
2157 		goto unlock;
2158 	}
2159 	error = VOP_GETATTR(vp, &va, cred);
2160 	if (error != 0)
2161 		goto unlock;
2162 	noff = *off;
2163 	if (noff >= va.va_size) {
2164 		error = ENXIO;
2165 		goto unlock;
2166 	}
2167 	bsize = vp->v_mount->mnt_stat.f_iosize;
2168 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2169 	    noff % bsize) {
2170 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2171 		if (error == EOPNOTSUPP) {
2172 			error = ENOTTY;
2173 			goto unlock;
2174 		}
2175 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2176 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2177 			noff = bn * bsize;
2178 			if (noff < *off)
2179 				noff = *off;
2180 			goto unlock;
2181 		}
2182 	}
2183 	if (noff > va.va_size)
2184 		noff = va.va_size;
2185 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2186 	if (cmd == FIOSEEKDATA)
2187 		error = ENXIO;
2188 unlock:
2189 	VOP_UNLOCK(vp, 0);
2190 	if (error == 0)
2191 		*off = noff;
2192 	return (error);
2193 }
2194 
2195 int
2196 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2197 {
2198 	struct ucred *cred;
2199 	struct vnode *vp;
2200 	struct vattr vattr;
2201 	off_t foffset, size;
2202 	int error, noneg;
2203 
2204 	cred = td->td_ucred;
2205 	vp = fp->f_vnode;
2206 	foffset = foffset_lock(fp, 0);
2207 	noneg = (vp->v_type != VCHR);
2208 	error = 0;
2209 	switch (whence) {
2210 	case L_INCR:
2211 		if (noneg &&
2212 		    (foffset < 0 ||
2213 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2214 			error = EOVERFLOW;
2215 			break;
2216 		}
2217 		offset += foffset;
2218 		break;
2219 	case L_XTND:
2220 		vn_lock(vp, LK_SHARED | LK_RETRY);
2221 		error = VOP_GETATTR(vp, &vattr, cred);
2222 		VOP_UNLOCK(vp, 0);
2223 		if (error)
2224 			break;
2225 
2226 		/*
2227 		 * If the file references a disk device, then fetch
2228 		 * the media size and use that to determine the ending
2229 		 * offset.
2230 		 */
2231 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2232 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2233 			vattr.va_size = size;
2234 		if (noneg &&
2235 		    (vattr.va_size > OFF_MAX ||
2236 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2237 			error = EOVERFLOW;
2238 			break;
2239 		}
2240 		offset += vattr.va_size;
2241 		break;
2242 	case L_SET:
2243 		break;
2244 	case SEEK_DATA:
2245 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2246 		break;
2247 	case SEEK_HOLE:
2248 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2249 		break;
2250 	default:
2251 		error = EINVAL;
2252 	}
2253 	if (error == 0 && noneg && offset < 0)
2254 		error = EINVAL;
2255 	if (error != 0)
2256 		goto drop;
2257 	VFS_KNOTE_UNLOCKED(vp, 0);
2258 	td->td_uretoff.tdu_off = offset;
2259 drop:
2260 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2261 	return (error);
2262 }
2263 
2264 int
2265 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2266     struct thread *td)
2267 {
2268 	int error;
2269 
2270 	/*
2271 	 * Grant permission if the caller is the owner of the file, or
2272 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2273 	 * on the file.  If the time pointer is null, then write
2274 	 * permission on the file is also sufficient.
2275 	 *
2276 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2277 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2278 	 * will be allowed to set the times [..] to the current
2279 	 * server time.
2280 	 */
2281 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2282 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2283 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2284 	return (error);
2285 }
2286 
2287 int
2288 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2289 {
2290 	struct vnode *vp;
2291 	int error;
2292 
2293 	if (fp->f_type == DTYPE_FIFO)
2294 		kif->kf_type = KF_TYPE_FIFO;
2295 	else
2296 		kif->kf_type = KF_TYPE_VNODE;
2297 	vp = fp->f_vnode;
2298 	vref(vp);
2299 	FILEDESC_SUNLOCK(fdp);
2300 	error = vn_fill_kinfo_vnode(vp, kif);
2301 	vrele(vp);
2302 	FILEDESC_SLOCK(fdp);
2303 	return (error);
2304 }
2305 
2306 static inline void
2307 vn_fill_junk(struct kinfo_file *kif)
2308 {
2309 	size_t len, olen;
2310 
2311 	/*
2312 	 * Simulate vn_fullpath returning changing values for a given
2313 	 * vp during e.g. coredump.
2314 	 */
2315 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2316 	olen = strlen(kif->kf_path);
2317 	if (len < olen)
2318 		strcpy(&kif->kf_path[len - 1], "$");
2319 	else
2320 		for (; olen < len; olen++)
2321 			strcpy(&kif->kf_path[olen], "A");
2322 }
2323 
2324 int
2325 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2326 {
2327 	struct vattr va;
2328 	char *fullpath, *freepath;
2329 	int error;
2330 
2331 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2332 	freepath = NULL;
2333 	fullpath = "-";
2334 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2335 	if (error == 0) {
2336 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2337 	}
2338 	if (freepath != NULL)
2339 		free(freepath, M_TEMP);
2340 
2341 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2342 		vn_fill_junk(kif);
2343 	);
2344 
2345 	/*
2346 	 * Retrieve vnode attributes.
2347 	 */
2348 	va.va_fsid = VNOVAL;
2349 	va.va_rdev = NODEV;
2350 	vn_lock(vp, LK_SHARED | LK_RETRY);
2351 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2352 	VOP_UNLOCK(vp, 0);
2353 	if (error != 0)
2354 		return (error);
2355 	if (va.va_fsid != VNOVAL)
2356 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2357 	else
2358 		kif->kf_un.kf_file.kf_file_fsid =
2359 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2360 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2361 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2362 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2363 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2364 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2365 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2366 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2367 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2368 	return (0);
2369 }
2370 
2371 int
2372 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2373     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2374     struct thread *td)
2375 {
2376 #ifdef HWPMC_HOOKS
2377 	struct pmckern_map_in pkm;
2378 #endif
2379 	struct mount *mp;
2380 	struct vnode *vp;
2381 	vm_object_t object;
2382 	vm_prot_t maxprot;
2383 	boolean_t writecounted;
2384 	int error;
2385 
2386 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2387     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2388 	/*
2389 	 * POSIX shared-memory objects are defined to have
2390 	 * kernel persistence, and are not defined to support
2391 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2392 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2393 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2394 	 * flag to request this behavior.
2395 	 */
2396 	if ((fp->f_flag & FPOSIXSHM) != 0)
2397 		flags |= MAP_NOSYNC;
2398 #endif
2399 	vp = fp->f_vnode;
2400 
2401 	/*
2402 	 * Ensure that file and memory protections are
2403 	 * compatible.  Note that we only worry about
2404 	 * writability if mapping is shared; in this case,
2405 	 * current and max prot are dictated by the open file.
2406 	 * XXX use the vnode instead?  Problem is: what
2407 	 * credentials do we use for determination? What if
2408 	 * proc does a setuid?
2409 	 */
2410 	mp = vp->v_mount;
2411 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2412 		maxprot = VM_PROT_NONE;
2413 		if ((prot & VM_PROT_EXECUTE) != 0)
2414 			return (EACCES);
2415 	} else
2416 		maxprot = VM_PROT_EXECUTE;
2417 	if ((fp->f_flag & FREAD) != 0)
2418 		maxprot |= VM_PROT_READ;
2419 	else if ((prot & VM_PROT_READ) != 0)
2420 		return (EACCES);
2421 
2422 	/*
2423 	 * If we are sharing potential changes via MAP_SHARED and we
2424 	 * are trying to get write permission although we opened it
2425 	 * without asking for it, bail out.
2426 	 */
2427 	if ((flags & MAP_SHARED) != 0) {
2428 		if ((fp->f_flag & FWRITE) != 0)
2429 			maxprot |= VM_PROT_WRITE;
2430 		else if ((prot & VM_PROT_WRITE) != 0)
2431 			return (EACCES);
2432 	} else {
2433 		maxprot |= VM_PROT_WRITE;
2434 		cap_maxprot |= VM_PROT_WRITE;
2435 	}
2436 	maxprot &= cap_maxprot;
2437 
2438 	/*
2439 	 * For regular files and shared memory, POSIX requires that
2440 	 * the value of foff be a legitimate offset within the data
2441 	 * object.  In particular, negative offsets are invalid.
2442 	 * Blocking negative offsets and overflows here avoids
2443 	 * possible wraparound or user-level access into reserved
2444 	 * ranges of the data object later.  In contrast, POSIX does
2445 	 * not dictate how offsets are used by device drivers, so in
2446 	 * the case of a device mapping a negative offset is passed
2447 	 * on.
2448 	 */
2449 	if (
2450 #ifdef _LP64
2451 	    size > OFF_MAX ||
2452 #endif
2453 	    foff < 0 || foff > OFF_MAX - size)
2454 		return (EINVAL);
2455 
2456 	writecounted = FALSE;
2457 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2458 	    &foff, &object, &writecounted);
2459 	if (error != 0)
2460 		return (error);
2461 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2462 	    foff, writecounted, td);
2463 	if (error != 0) {
2464 		/*
2465 		 * If this mapping was accounted for in the vnode's
2466 		 * writecount, then undo that now.
2467 		 */
2468 		if (writecounted)
2469 			vnode_pager_release_writecount(object, 0, size);
2470 		vm_object_deallocate(object);
2471 	}
2472 #ifdef HWPMC_HOOKS
2473 	/* Inform hwpmc(4) if an executable is being mapped. */
2474 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2475 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2476 			pkm.pm_file = vp;
2477 			pkm.pm_address = (uintptr_t) *addr;
2478 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2479 		}
2480 	}
2481 #endif
2482 	return (error);
2483 }
2484 
2485 void
2486 vn_fsid(struct vnode *vp, struct vattr *va)
2487 {
2488 	fsid_t *f;
2489 
2490 	f = &vp->v_mount->mnt_stat.f_fsid;
2491 	va->va_fsid = (uint32_t)f->val[1];
2492 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2493 	va->va_fsid += (uint32_t)f->val[0];
2494 }
2495 
2496 int
2497 vn_fsync_buf(struct vnode *vp, int waitfor)
2498 {
2499 	struct buf *bp, *nbp;
2500 	struct bufobj *bo;
2501 	struct mount *mp;
2502 	int error, maxretry;
2503 
2504 	error = 0;
2505 	maxretry = 10000;     /* large, arbitrarily chosen */
2506 	mp = NULL;
2507 	if (vp->v_type == VCHR) {
2508 		VI_LOCK(vp);
2509 		mp = vp->v_rdev->si_mountpt;
2510 		VI_UNLOCK(vp);
2511 	}
2512 	bo = &vp->v_bufobj;
2513 	BO_LOCK(bo);
2514 loop1:
2515 	/*
2516 	 * MARK/SCAN initialization to avoid infinite loops.
2517 	 */
2518         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2519 		bp->b_vflags &= ~BV_SCANNED;
2520 		bp->b_error = 0;
2521 	}
2522 
2523 	/*
2524 	 * Flush all dirty buffers associated with a vnode.
2525 	 */
2526 loop2:
2527 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2528 		if ((bp->b_vflags & BV_SCANNED) != 0)
2529 			continue;
2530 		bp->b_vflags |= BV_SCANNED;
2531 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2532 			if (waitfor != MNT_WAIT)
2533 				continue;
2534 			if (BUF_LOCK(bp,
2535 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2536 			    BO_LOCKPTR(bo)) != 0) {
2537 				BO_LOCK(bo);
2538 				goto loop1;
2539 			}
2540 			BO_LOCK(bo);
2541 		}
2542 		BO_UNLOCK(bo);
2543 		KASSERT(bp->b_bufobj == bo,
2544 		    ("bp %p wrong b_bufobj %p should be %p",
2545 		    bp, bp->b_bufobj, bo));
2546 		if ((bp->b_flags & B_DELWRI) == 0)
2547 			panic("fsync: not dirty");
2548 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2549 			vfs_bio_awrite(bp);
2550 		} else {
2551 			bremfree(bp);
2552 			bawrite(bp);
2553 		}
2554 		if (maxretry < 1000)
2555 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2556 		BO_LOCK(bo);
2557 		goto loop2;
2558 	}
2559 
2560 	/*
2561 	 * If synchronous the caller expects us to completely resolve all
2562 	 * dirty buffers in the system.  Wait for in-progress I/O to
2563 	 * complete (which could include background bitmap writes), then
2564 	 * retry if dirty blocks still exist.
2565 	 */
2566 	if (waitfor == MNT_WAIT) {
2567 		bufobj_wwait(bo, 0, 0);
2568 		if (bo->bo_dirty.bv_cnt > 0) {
2569 			/*
2570 			 * If we are unable to write any of these buffers
2571 			 * then we fail now rather than trying endlessly
2572 			 * to write them out.
2573 			 */
2574 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2575 				if ((error = bp->b_error) != 0)
2576 					break;
2577 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2578 			    (error == 0 && --maxretry >= 0))
2579 				goto loop1;
2580 			if (error == 0)
2581 				error = EAGAIN;
2582 		}
2583 	}
2584 	BO_UNLOCK(bo);
2585 	if (error != 0)
2586 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2587 
2588 	return (error);
2589 }
2590