xref: /freebsd/sys/kern/vfs_vnops.c (revision d09a955a605d03471c5ab7bd17b8a6186fdc148c)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/prng.h>
74 #include <sys/sx.h>
75 #include <sys/sleepqueue.h>
76 #include <sys/sysctl.h>
77 #include <sys/ttycom.h>
78 #include <sys/conf.h>
79 #include <sys/syslog.h>
80 #include <sys/unistd.h>
81 #include <sys/user.h>
82 #include <sys/ktrace.h>
83 
84 #include <security/audit/audit.h>
85 #include <security/mac/mac_framework.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_extern.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pager.h>
94 
95 #ifdef HWPMC_HOOKS
96 #include <sys/pmckern.h>
97 #endif
98 
99 static fo_rdwr_t	vn_read;
100 static fo_rdwr_t	vn_write;
101 static fo_rdwr_t	vn_io_fault;
102 static fo_truncate_t	vn_truncate;
103 static fo_ioctl_t	vn_ioctl;
104 static fo_poll_t	vn_poll;
105 static fo_kqfilter_t	vn_kqfilter;
106 static fo_close_t	vn_closefile;
107 static fo_mmap_t	vn_mmap;
108 static fo_fallocate_t	vn_fallocate;
109 static fo_fspacectl_t	vn_fspacectl;
110 
111 struct 	fileops vnops = {
112 	.fo_read = vn_io_fault,
113 	.fo_write = vn_io_fault,
114 	.fo_truncate = vn_truncate,
115 	.fo_ioctl = vn_ioctl,
116 	.fo_poll = vn_poll,
117 	.fo_kqfilter = vn_kqfilter,
118 	.fo_stat = vn_statfile,
119 	.fo_close = vn_closefile,
120 	.fo_chmod = vn_chmod,
121 	.fo_chown = vn_chown,
122 	.fo_sendfile = vn_sendfile,
123 	.fo_seek = vn_seek,
124 	.fo_fill_kinfo = vn_fill_kinfo,
125 	.fo_mmap = vn_mmap,
126 	.fo_fallocate = vn_fallocate,
127 	.fo_fspacectl = vn_fspacectl,
128 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
129 };
130 
131 const u_int io_hold_cnt = 16;
132 static int vn_io_fault_enable = 1;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
134     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
135 static int vn_io_fault_prefault = 0;
136 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
137     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
138 static int vn_io_pgcache_read_enable = 1;
139 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
140     &vn_io_pgcache_read_enable, 0,
141     "Enable copying from page cache for reads, avoiding fs");
142 static u_long vn_io_faults_cnt;
143 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
144     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
145 
146 static int vfs_allow_read_dir = 0;
147 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
148     &vfs_allow_read_dir, 0,
149     "Enable read(2) of directory by root for filesystems that support it");
150 
151 /*
152  * Returns true if vn_io_fault mode of handling the i/o request should
153  * be used.
154  */
155 static bool
156 do_vn_io_fault(struct vnode *vp, struct uio *uio)
157 {
158 	struct mount *mp;
159 
160 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
161 	    (mp = vp->v_mount) != NULL &&
162 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
163 }
164 
165 /*
166  * Structure used to pass arguments to vn_io_fault1(), to do either
167  * file- or vnode-based I/O calls.
168  */
169 struct vn_io_fault_args {
170 	enum {
171 		VN_IO_FAULT_FOP,
172 		VN_IO_FAULT_VOP
173 	} kind;
174 	struct ucred *cred;
175 	int flags;
176 	union {
177 		struct fop_args_tag {
178 			struct file *fp;
179 			fo_rdwr_t *doio;
180 		} fop_args;
181 		struct vop_args_tag {
182 			struct vnode *vp;
183 		} vop_args;
184 	} args;
185 };
186 
187 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
188     struct vn_io_fault_args *args, struct thread *td);
189 
190 int
191 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
192 {
193 	struct thread *td = curthread;
194 
195 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
196 }
197 
198 static uint64_t
199 open2nameif(int fmode, u_int vn_open_flags)
200 {
201 	uint64_t res;
202 
203 	res = ISOPEN | LOCKLEAF;
204 	if ((fmode & O_RESOLVE_BENEATH) != 0)
205 		res |= RBENEATH;
206 	if ((fmode & O_EMPTY_PATH) != 0)
207 		res |= EMPTYPATH;
208 	if ((fmode & FREAD) != 0)
209 		res |= OPENREAD;
210 	if ((fmode & FWRITE) != 0)
211 		res |= OPENWRITE;
212 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
213 		res |= AUDITVNODE1;
214 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
215 		res |= NOCAPCHECK;
216 	if ((vn_open_flags & VN_OPEN_WANTIOCTLCAPS) != 0)
217 		res |= WANTIOCTLCAPS;
218 	return (res);
219 }
220 
221 /*
222  * Common code for vnode open operations via a name lookup.
223  * Lookup the vnode and invoke VOP_CREATE if needed.
224  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
225  *
226  * Note that this does NOT free nameidata for the successful case,
227  * due to the NDINIT being done elsewhere.
228  */
229 int
230 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
231     struct ucred *cred, struct file *fp)
232 {
233 	struct vnode *vp;
234 	struct mount *mp;
235 	struct vattr vat;
236 	struct vattr *vap = &vat;
237 	int fmode, error;
238 	bool first_open;
239 
240 restart:
241 	first_open = false;
242 	fmode = *flagp;
243 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
244 	    O_EXCL | O_DIRECTORY) ||
245 	    (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
246 		return (EINVAL);
247 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
248 		ndp->ni_cnd.cn_nameiop = CREATE;
249 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
250 		/*
251 		 * Set NOCACHE to avoid flushing the cache when
252 		 * rolling in many files at once.
253 		 *
254 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
255 		 * exist despite NOCACHE.
256 		 */
257 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
258 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
259 			ndp->ni_cnd.cn_flags |= FOLLOW;
260 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
261 			bwillwrite();
262 		if ((error = namei(ndp)) != 0)
263 			return (error);
264 		if (ndp->ni_vp == NULL) {
265 			VATTR_NULL(vap);
266 			vap->va_type = VREG;
267 			vap->va_mode = cmode;
268 			if (fmode & O_EXCL)
269 				vap->va_vaflags |= VA_EXCLUSIVE;
270 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
271 				NDFREE_PNBUF(ndp);
272 				vput(ndp->ni_dvp);
273 				if ((error = vn_start_write(NULL, &mp,
274 				    V_XSLEEP | V_PCATCH)) != 0)
275 					return (error);
276 				NDREINIT(ndp);
277 				goto restart;
278 			}
279 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
280 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
281 #ifdef MAC
282 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
283 			    &ndp->ni_cnd, vap);
284 			if (error == 0)
285 #endif
286 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
287 				    &ndp->ni_cnd, vap);
288 			vp = ndp->ni_vp;
289 			if (error == 0 && (fmode & O_EXCL) != 0 &&
290 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
291 				VI_LOCK(vp);
292 				vp->v_iflag |= VI_FOPENING;
293 				VI_UNLOCK(vp);
294 				first_open = true;
295 			}
296 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
297 			    false);
298 			vn_finished_write(mp);
299 			if (error) {
300 				NDFREE_PNBUF(ndp);
301 				if (error == ERELOOKUP) {
302 					NDREINIT(ndp);
303 					goto restart;
304 				}
305 				return (error);
306 			}
307 			fmode &= ~O_TRUNC;
308 		} else {
309 			if (ndp->ni_dvp == ndp->ni_vp)
310 				vrele(ndp->ni_dvp);
311 			else
312 				vput(ndp->ni_dvp);
313 			ndp->ni_dvp = NULL;
314 			vp = ndp->ni_vp;
315 			if (fmode & O_EXCL) {
316 				error = EEXIST;
317 				goto bad;
318 			}
319 			if (vp->v_type == VDIR) {
320 				error = EISDIR;
321 				goto bad;
322 			}
323 			fmode &= ~O_CREAT;
324 		}
325 	} else {
326 		ndp->ni_cnd.cn_nameiop = LOOKUP;
327 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
328 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
329 		    FOLLOW;
330 		if ((fmode & FWRITE) == 0)
331 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
332 		if ((error = namei(ndp)) != 0)
333 			return (error);
334 		vp = ndp->ni_vp;
335 	}
336 	error = vn_open_vnode(vp, fmode, cred, curthread, fp);
337 	if (first_open) {
338 		VI_LOCK(vp);
339 		vp->v_iflag &= ~VI_FOPENING;
340 		wakeup(vp);
341 		VI_UNLOCK(vp);
342 	}
343 	if (error)
344 		goto bad;
345 	*flagp = fmode;
346 	return (0);
347 bad:
348 	NDFREE_PNBUF(ndp);
349 	vput(vp);
350 	*flagp = fmode;
351 	ndp->ni_vp = NULL;
352 	return (error);
353 }
354 
355 static int
356 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
357 {
358 	struct flock lf;
359 	int error, lock_flags, type;
360 
361 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
362 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
363 		return (0);
364 	KASSERT(fp != NULL, ("open with flock requires fp"));
365 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
366 		return (EOPNOTSUPP);
367 
368 	lock_flags = VOP_ISLOCKED(vp);
369 	VOP_UNLOCK(vp);
370 
371 	lf.l_whence = SEEK_SET;
372 	lf.l_start = 0;
373 	lf.l_len = 0;
374 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
375 	type = F_FLOCK;
376 	if ((fmode & FNONBLOCK) == 0)
377 		type |= F_WAIT;
378 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
379 		type |= F_FIRSTOPEN;
380 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
381 	if (error == 0)
382 		fp->f_flag |= FHASLOCK;
383 
384 	vn_lock(vp, lock_flags | LK_RETRY);
385 	return (error);
386 }
387 
388 /*
389  * Common code for vnode open operations once a vnode is located.
390  * Check permissions, and call the VOP_OPEN routine.
391  */
392 int
393 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
394     struct thread *td, struct file *fp)
395 {
396 	accmode_t accmode;
397 	int error;
398 
399 	if (vp->v_type == VLNK) {
400 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
401 			return (EMLINK);
402 	}
403 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
404 		return (ENOTDIR);
405 
406 	accmode = 0;
407 	if ((fmode & O_PATH) == 0) {
408 		if (vp->v_type == VSOCK)
409 			return (EOPNOTSUPP);
410 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
411 			if (vp->v_type == VDIR)
412 				return (EISDIR);
413 			accmode |= VWRITE;
414 		}
415 		if ((fmode & FREAD) != 0)
416 			accmode |= VREAD;
417 		if ((fmode & O_APPEND) && (fmode & FWRITE))
418 			accmode |= VAPPEND;
419 #ifdef MAC
420 		if ((fmode & O_CREAT) != 0)
421 			accmode |= VCREAT;
422 #endif
423 	}
424 	if ((fmode & FEXEC) != 0)
425 		accmode |= VEXEC;
426 #ifdef MAC
427 	if ((fmode & O_VERIFY) != 0)
428 		accmode |= VVERIFY;
429 	error = mac_vnode_check_open(cred, vp, accmode);
430 	if (error != 0)
431 		return (error);
432 
433 	accmode &= ~(VCREAT | VVERIFY);
434 #endif
435 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
436 		error = VOP_ACCESS(vp, accmode, cred, td);
437 		if (error != 0)
438 			return (error);
439 	}
440 	if ((fmode & O_PATH) != 0) {
441 		if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
442 		    VOP_ACCESS(vp, VREAD, cred, td) == 0)
443 			fp->f_flag |= FKQALLOWED;
444 		return (0);
445 	}
446 
447 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
448 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
449 	error = VOP_OPEN(vp, fmode, cred, td, fp);
450 	if (error != 0)
451 		return (error);
452 
453 	error = vn_open_vnode_advlock(vp, fmode, fp);
454 	if (error == 0 && (fmode & FWRITE) != 0) {
455 		error = VOP_ADD_WRITECOUNT(vp, 1);
456 		if (error == 0) {
457 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
458 			     __func__, vp, vp->v_writecount);
459 		}
460 	}
461 
462 	/*
463 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
464 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
465 	 */
466 	if (error != 0) {
467 		if (fp != NULL) {
468 			/*
469 			 * Arrange the call by having fdrop() to use
470 			 * vn_closefile().  This is to satisfy
471 			 * filesystems like devfs or tmpfs, which
472 			 * override fo_close().
473 			 */
474 			fp->f_flag |= FOPENFAILED;
475 			fp->f_vnode = vp;
476 			if (fp->f_ops == &badfileops) {
477 				fp->f_type = DTYPE_VNODE;
478 				fp->f_ops = &vnops;
479 			}
480 			vref(vp);
481 		} else {
482 			/*
483 			 * If there is no fp, due to kernel-mode open,
484 			 * we can call VOP_CLOSE() now.
485 			 */
486 			if ((vp->v_type == VFIFO ||
487 			    !MNT_EXTENDED_SHARED(vp->v_mount)) &&
488 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
489 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
490 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
491 			    cred, td);
492 		}
493 	}
494 
495 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
496 	return (error);
497 
498 }
499 
500 /*
501  * Check for write permissions on the specified vnode.
502  * Prototype text segments cannot be written.
503  * It is racy.
504  */
505 int
506 vn_writechk(struct vnode *vp)
507 {
508 
509 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
510 	/*
511 	 * If there's shared text associated with
512 	 * the vnode, try to free it up once.  If
513 	 * we fail, we can't allow writing.
514 	 */
515 	if (VOP_IS_TEXT(vp))
516 		return (ETXTBSY);
517 
518 	return (0);
519 }
520 
521 /*
522  * Vnode close call
523  */
524 static int
525 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
526     struct thread *td, bool keep_ref)
527 {
528 	struct mount *mp;
529 	int error, lock_flags;
530 
531 	lock_flags = vp->v_type != VFIFO && MNT_EXTENDED_SHARED(vp->v_mount) ?
532 	    LK_SHARED : LK_EXCLUSIVE;
533 
534 	vn_start_write(vp, &mp, V_WAIT);
535 	vn_lock(vp, lock_flags | LK_RETRY);
536 	AUDIT_ARG_VNODE1(vp);
537 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
538 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
539 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
540 		    __func__, vp, vp->v_writecount);
541 	}
542 	error = VOP_CLOSE(vp, flags, file_cred, td);
543 	if (keep_ref)
544 		VOP_UNLOCK(vp);
545 	else
546 		vput(vp);
547 	vn_finished_write(mp);
548 	return (error);
549 }
550 
551 int
552 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
553     struct thread *td)
554 {
555 
556 	return (vn_close1(vp, flags, file_cred, td, false));
557 }
558 
559 /*
560  * Heuristic to detect sequential operation.
561  */
562 static int
563 sequential_heuristic(struct uio *uio, struct file *fp)
564 {
565 	enum uio_rw rw;
566 
567 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
568 
569 	rw = uio->uio_rw;
570 	if (fp->f_flag & FRDAHEAD)
571 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
572 
573 	/*
574 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
575 	 * that the first I/O is normally considered to be slightly
576 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
577 	 * unless previous seeks have reduced f_seqcount to 0, in which
578 	 * case offset 0 is not special.
579 	 */
580 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
581 	    uio->uio_offset == fp->f_nextoff[rw]) {
582 		/*
583 		 * f_seqcount is in units of fixed-size blocks so that it
584 		 * depends mainly on the amount of sequential I/O and not
585 		 * much on the number of sequential I/O's.  The fixed size
586 		 * of 16384 is hard-coded here since it is (not quite) just
587 		 * a magic size that works well here.  This size is more
588 		 * closely related to the best I/O size for real disks than
589 		 * to any block size used by software.
590 		 */
591 		if (uio->uio_resid >= IO_SEQMAX * 16384)
592 			fp->f_seqcount[rw] = IO_SEQMAX;
593 		else {
594 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
595 			if (fp->f_seqcount[rw] > IO_SEQMAX)
596 				fp->f_seqcount[rw] = IO_SEQMAX;
597 		}
598 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
599 	}
600 
601 	/* Not sequential.  Quickly draw-down sequentiality. */
602 	if (fp->f_seqcount[rw] > 1)
603 		fp->f_seqcount[rw] = 1;
604 	else
605 		fp->f_seqcount[rw] = 0;
606 	return (0);
607 }
608 
609 /*
610  * Package up an I/O request on a vnode into a uio and do it.
611  */
612 int
613 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
614     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
615     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
616 {
617 	struct uio auio;
618 	struct iovec aiov;
619 	struct mount *mp;
620 	struct ucred *cred;
621 	void *rl_cookie;
622 	struct vn_io_fault_args args;
623 	int error, lock_flags;
624 
625 	if (offset < 0 && vp->v_type != VCHR)
626 		return (EINVAL);
627 	auio.uio_iov = &aiov;
628 	auio.uio_iovcnt = 1;
629 	aiov.iov_base = base;
630 	aiov.iov_len = len;
631 	auio.uio_resid = len;
632 	auio.uio_offset = offset;
633 	auio.uio_segflg = segflg;
634 	auio.uio_rw = rw;
635 	auio.uio_td = td;
636 	error = 0;
637 
638 	if ((ioflg & IO_NODELOCKED) == 0) {
639 		if ((ioflg & IO_RANGELOCKED) == 0) {
640 			if (rw == UIO_READ) {
641 				rl_cookie = vn_rangelock_rlock(vp, offset,
642 				    offset + len);
643 			} else if ((ioflg & IO_APPEND) != 0) {
644 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
645 			} else {
646 				rl_cookie = vn_rangelock_wlock(vp, offset,
647 				    offset + len);
648 			}
649 		} else
650 			rl_cookie = NULL;
651 		mp = NULL;
652 		if (rw == UIO_WRITE) {
653 			if (vp->v_type != VCHR &&
654 			    (error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH))
655 			    != 0)
656 				goto out;
657 			lock_flags = vn_lktype_write(mp, vp);
658 		} else
659 			lock_flags = LK_SHARED;
660 		vn_lock(vp, lock_flags | LK_RETRY);
661 	} else
662 		rl_cookie = NULL;
663 
664 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
665 #ifdef MAC
666 	if ((ioflg & IO_NOMACCHECK) == 0) {
667 		if (rw == UIO_READ)
668 			error = mac_vnode_check_read(active_cred, file_cred,
669 			    vp);
670 		else
671 			error = mac_vnode_check_write(active_cred, file_cred,
672 			    vp);
673 	}
674 #endif
675 	if (error == 0) {
676 		if (file_cred != NULL)
677 			cred = file_cred;
678 		else
679 			cred = active_cred;
680 		if (do_vn_io_fault(vp, &auio)) {
681 			args.kind = VN_IO_FAULT_VOP;
682 			args.cred = cred;
683 			args.flags = ioflg;
684 			args.args.vop_args.vp = vp;
685 			error = vn_io_fault1(vp, &auio, &args, td);
686 		} else if (rw == UIO_READ) {
687 			error = VOP_READ(vp, &auio, ioflg, cred);
688 		} else /* if (rw == UIO_WRITE) */ {
689 			error = VOP_WRITE(vp, &auio, ioflg, cred);
690 		}
691 	}
692 	if (aresid)
693 		*aresid = auio.uio_resid;
694 	else
695 		if (auio.uio_resid && error == 0)
696 			error = EIO;
697 	if ((ioflg & IO_NODELOCKED) == 0) {
698 		VOP_UNLOCK(vp);
699 		if (mp != NULL)
700 			vn_finished_write(mp);
701 	}
702  out:
703 	if (rl_cookie != NULL)
704 		vn_rangelock_unlock(vp, rl_cookie);
705 	return (error);
706 }
707 
708 /*
709  * Package up an I/O request on a vnode into a uio and do it.  The I/O
710  * request is split up into smaller chunks and we try to avoid saturating
711  * the buffer cache while potentially holding a vnode locked, so we
712  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
713  * to give other processes a chance to lock the vnode (either other processes
714  * core'ing the same binary, or unrelated processes scanning the directory).
715  */
716 int
717 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
718     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
719     struct ucred *file_cred, size_t *aresid, struct thread *td)
720 {
721 	int error = 0;
722 	ssize_t iaresid;
723 
724 	do {
725 		int chunk;
726 
727 		/*
728 		 * Force `offset' to a multiple of MAXBSIZE except possibly
729 		 * for the first chunk, so that filesystems only need to
730 		 * write full blocks except possibly for the first and last
731 		 * chunks.
732 		 */
733 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
734 
735 		if (chunk > len)
736 			chunk = len;
737 		if (rw != UIO_READ && vp->v_type == VREG)
738 			bwillwrite();
739 		iaresid = 0;
740 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
741 		    ioflg, active_cred, file_cred, &iaresid, td);
742 		len -= chunk;	/* aresid calc already includes length */
743 		if (error)
744 			break;
745 		offset += chunk;
746 		base = (char *)base + chunk;
747 		kern_yield(PRI_USER);
748 	} while (len);
749 	if (aresid)
750 		*aresid = len + iaresid;
751 	return (error);
752 }
753 
754 #if OFF_MAX <= LONG_MAX
755 off_t
756 foffset_lock(struct file *fp, int flags)
757 {
758 	volatile short *flagsp;
759 	off_t res;
760 	short state;
761 
762 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
763 
764 	if ((flags & FOF_NOLOCK) != 0)
765 		return (atomic_load_long(&fp->f_offset));
766 
767 	/*
768 	 * According to McKusick the vn lock was protecting f_offset here.
769 	 * It is now protected by the FOFFSET_LOCKED flag.
770 	 */
771 	flagsp = &fp->f_vnread_flags;
772 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
773 		return (atomic_load_long(&fp->f_offset));
774 
775 	sleepq_lock(&fp->f_vnread_flags);
776 	state = atomic_load_16(flagsp);
777 	for (;;) {
778 		if ((state & FOFFSET_LOCKED) == 0) {
779 			if (!atomic_fcmpset_acq_16(flagsp, &state,
780 			    FOFFSET_LOCKED))
781 				continue;
782 			break;
783 		}
784 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
785 			if (!atomic_fcmpset_acq_16(flagsp, &state,
786 			    state | FOFFSET_LOCK_WAITING))
787 				continue;
788 		}
789 		DROP_GIANT();
790 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
791 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
792 		PICKUP_GIANT();
793 		sleepq_lock(&fp->f_vnread_flags);
794 		state = atomic_load_16(flagsp);
795 	}
796 	res = atomic_load_long(&fp->f_offset);
797 	sleepq_release(&fp->f_vnread_flags);
798 	return (res);
799 }
800 
801 void
802 foffset_unlock(struct file *fp, off_t val, int flags)
803 {
804 	volatile short *flagsp;
805 	short state;
806 
807 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
808 
809 	if ((flags & FOF_NOUPDATE) == 0)
810 		atomic_store_long(&fp->f_offset, val);
811 	if ((flags & FOF_NEXTOFF_R) != 0)
812 		fp->f_nextoff[UIO_READ] = val;
813 	if ((flags & FOF_NEXTOFF_W) != 0)
814 		fp->f_nextoff[UIO_WRITE] = val;
815 
816 	if ((flags & FOF_NOLOCK) != 0)
817 		return;
818 
819 	flagsp = &fp->f_vnread_flags;
820 	state = atomic_load_16(flagsp);
821 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
822 	    atomic_cmpset_rel_16(flagsp, state, 0))
823 		return;
824 
825 	sleepq_lock(&fp->f_vnread_flags);
826 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
827 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
828 	fp->f_vnread_flags = 0;
829 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
830 	sleepq_release(&fp->f_vnread_flags);
831 }
832 #else
833 off_t
834 foffset_lock(struct file *fp, int flags)
835 {
836 	struct mtx *mtxp;
837 	off_t res;
838 
839 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
840 
841 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
842 	mtx_lock(mtxp);
843 	if ((flags & FOF_NOLOCK) == 0) {
844 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
845 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
846 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
847 			    "vofflock", 0);
848 		}
849 		fp->f_vnread_flags |= FOFFSET_LOCKED;
850 	}
851 	res = fp->f_offset;
852 	mtx_unlock(mtxp);
853 	return (res);
854 }
855 
856 void
857 foffset_unlock(struct file *fp, off_t val, int flags)
858 {
859 	struct mtx *mtxp;
860 
861 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
862 
863 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
864 	mtx_lock(mtxp);
865 	if ((flags & FOF_NOUPDATE) == 0)
866 		fp->f_offset = val;
867 	if ((flags & FOF_NEXTOFF_R) != 0)
868 		fp->f_nextoff[UIO_READ] = val;
869 	if ((flags & FOF_NEXTOFF_W) != 0)
870 		fp->f_nextoff[UIO_WRITE] = val;
871 	if ((flags & FOF_NOLOCK) == 0) {
872 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
873 		    ("Lost FOFFSET_LOCKED"));
874 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
875 			wakeup(&fp->f_vnread_flags);
876 		fp->f_vnread_flags = 0;
877 	}
878 	mtx_unlock(mtxp);
879 }
880 #endif
881 
882 void
883 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
884 {
885 
886 	if ((flags & FOF_OFFSET) == 0)
887 		uio->uio_offset = foffset_lock(fp, flags);
888 }
889 
890 void
891 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
892 {
893 
894 	if ((flags & FOF_OFFSET) == 0)
895 		foffset_unlock(fp, uio->uio_offset, flags);
896 }
897 
898 static int
899 get_advice(struct file *fp, struct uio *uio)
900 {
901 	struct mtx *mtxp;
902 	int ret;
903 
904 	ret = POSIX_FADV_NORMAL;
905 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
906 		return (ret);
907 
908 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
909 	mtx_lock(mtxp);
910 	if (fp->f_advice != NULL &&
911 	    uio->uio_offset >= fp->f_advice->fa_start &&
912 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
913 		ret = fp->f_advice->fa_advice;
914 	mtx_unlock(mtxp);
915 	return (ret);
916 }
917 
918 static int
919 get_write_ioflag(struct file *fp)
920 {
921 	int ioflag;
922 	struct mount *mp;
923 	struct vnode *vp;
924 
925 	ioflag = 0;
926 	vp = fp->f_vnode;
927 	mp = atomic_load_ptr(&vp->v_mount);
928 
929 	if ((fp->f_flag & O_DIRECT) != 0)
930 		ioflag |= IO_DIRECT;
931 
932 	if ((fp->f_flag & O_FSYNC) != 0 ||
933 	    (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
934 		ioflag |= IO_SYNC;
935 
936 	/*
937 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
938 	 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
939 	 * fall back to full O_SYNC behavior.
940 	 */
941 	if ((fp->f_flag & O_DSYNC) != 0)
942 		ioflag |= IO_SYNC | IO_DATASYNC;
943 
944 	return (ioflag);
945 }
946 
947 int
948 vn_read_from_obj(struct vnode *vp, struct uio *uio)
949 {
950 	vm_object_t obj;
951 	vm_page_t ma[io_hold_cnt + 2];
952 	off_t off, vsz;
953 	ssize_t resid;
954 	int error, i, j;
955 
956 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
957 	obj = atomic_load_ptr(&vp->v_object);
958 	if (obj == NULL)
959 		return (EJUSTRETURN);
960 
961 	/*
962 	 * Depends on type stability of vm_objects.
963 	 */
964 	vm_object_pip_add(obj, 1);
965 	if ((obj->flags & OBJ_DEAD) != 0) {
966 		/*
967 		 * Note that object might be already reused from the
968 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
969 		 * we recheck for DOOMED vnode state after all pages
970 		 * are busied, and retract then.
971 		 *
972 		 * But we check for OBJ_DEAD to ensure that we do not
973 		 * busy pages while vm_object_terminate_pages()
974 		 * processes the queue.
975 		 */
976 		error = EJUSTRETURN;
977 		goto out_pip;
978 	}
979 
980 	resid = uio->uio_resid;
981 	off = uio->uio_offset;
982 	for (i = 0; resid > 0; i++) {
983 		MPASS(i < io_hold_cnt + 2);
984 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
985 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
986 		    VM_ALLOC_NOWAIT);
987 		if (ma[i] == NULL)
988 			break;
989 
990 		/*
991 		 * Skip invalid pages.  Valid mask can be partial only
992 		 * at EOF, and we clip later.
993 		 */
994 		if (vm_page_none_valid(ma[i])) {
995 			vm_page_sunbusy(ma[i]);
996 			break;
997 		}
998 
999 		resid -= PAGE_SIZE;
1000 		off += PAGE_SIZE;
1001 	}
1002 	if (i == 0) {
1003 		error = EJUSTRETURN;
1004 		goto out_pip;
1005 	}
1006 
1007 	/*
1008 	 * Check VIRF_DOOMED after we busied our pages.  Since
1009 	 * vgonel() terminates the vnode' vm_object, it cannot
1010 	 * process past pages busied by us.
1011 	 */
1012 	if (VN_IS_DOOMED(vp)) {
1013 		error = EJUSTRETURN;
1014 		goto out;
1015 	}
1016 
1017 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1018 	if (resid > uio->uio_resid)
1019 		resid = uio->uio_resid;
1020 
1021 	/*
1022 	 * Unlocked read of vnp_size is safe because truncation cannot
1023 	 * pass busied page.  But we load vnp_size into a local
1024 	 * variable so that possible concurrent extension does not
1025 	 * break calculation.
1026 	 */
1027 #if defined(__powerpc__) && !defined(__powerpc64__)
1028 	vsz = obj->un_pager.vnp.vnp_size;
1029 #else
1030 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1031 #endif
1032 	if (uio->uio_offset >= vsz) {
1033 		error = EJUSTRETURN;
1034 		goto out;
1035 	}
1036 	if (uio->uio_offset + resid > vsz)
1037 		resid = vsz - uio->uio_offset;
1038 
1039 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1040 
1041 out:
1042 	for (j = 0; j < i; j++) {
1043 		if (error == 0)
1044 			vm_page_reference(ma[j]);
1045 		vm_page_sunbusy(ma[j]);
1046 	}
1047 out_pip:
1048 	vm_object_pip_wakeup(obj);
1049 	if (error != 0)
1050 		return (error);
1051 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1052 }
1053 
1054 /*
1055  * File table vnode read routine.
1056  */
1057 static int
1058 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1059     struct thread *td)
1060 {
1061 	struct vnode *vp;
1062 	off_t orig_offset;
1063 	int error, ioflag;
1064 	int advice;
1065 
1066 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1067 	    uio->uio_td, td));
1068 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1069 	vp = fp->f_vnode;
1070 	ioflag = 0;
1071 	if (fp->f_flag & FNONBLOCK)
1072 		ioflag |= IO_NDELAY;
1073 	if (fp->f_flag & O_DIRECT)
1074 		ioflag |= IO_DIRECT;
1075 
1076 	/*
1077 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
1078 	 * allows us to avoid unneeded work outright.
1079 	 */
1080 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1081 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1082 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1083 		if (error == 0) {
1084 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1085 			return (0);
1086 		}
1087 		if (error != EJUSTRETURN)
1088 			return (error);
1089 	}
1090 
1091 	advice = get_advice(fp, uio);
1092 	vn_lock(vp, LK_SHARED | LK_RETRY);
1093 
1094 	switch (advice) {
1095 	case POSIX_FADV_NORMAL:
1096 	case POSIX_FADV_SEQUENTIAL:
1097 	case POSIX_FADV_NOREUSE:
1098 		ioflag |= sequential_heuristic(uio, fp);
1099 		break;
1100 	case POSIX_FADV_RANDOM:
1101 		/* Disable read-ahead for random I/O. */
1102 		break;
1103 	}
1104 	orig_offset = uio->uio_offset;
1105 
1106 #ifdef MAC
1107 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1108 	if (error == 0)
1109 #endif
1110 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1111 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1112 	VOP_UNLOCK(vp);
1113 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1114 	    orig_offset != uio->uio_offset)
1115 		/*
1116 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1117 		 * for the backing file after a POSIX_FADV_NOREUSE
1118 		 * read(2).
1119 		 */
1120 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1121 		    POSIX_FADV_DONTNEED);
1122 	return (error);
1123 }
1124 
1125 /*
1126  * File table vnode write routine.
1127  */
1128 static int
1129 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1130     struct thread *td)
1131 {
1132 	struct vnode *vp;
1133 	struct mount *mp;
1134 	off_t orig_offset;
1135 	int error, ioflag;
1136 	int advice;
1137 	bool need_finished_write;
1138 
1139 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1140 	    uio->uio_td, td));
1141 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1142 	vp = fp->f_vnode;
1143 	if (vp->v_type == VREG)
1144 		bwillwrite();
1145 	ioflag = IO_UNIT;
1146 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1147 		ioflag |= IO_APPEND;
1148 	if ((fp->f_flag & FNONBLOCK) != 0)
1149 		ioflag |= IO_NDELAY;
1150 	ioflag |= get_write_ioflag(fp);
1151 
1152 	mp = NULL;
1153 	need_finished_write = false;
1154 	if (vp->v_type != VCHR) {
1155 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1156 		if (error != 0)
1157 			goto unlock;
1158 		need_finished_write = true;
1159 	}
1160 
1161 	advice = get_advice(fp, uio);
1162 
1163 	vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1164 	switch (advice) {
1165 	case POSIX_FADV_NORMAL:
1166 	case POSIX_FADV_SEQUENTIAL:
1167 	case POSIX_FADV_NOREUSE:
1168 		ioflag |= sequential_heuristic(uio, fp);
1169 		break;
1170 	case POSIX_FADV_RANDOM:
1171 		/* XXX: Is this correct? */
1172 		break;
1173 	}
1174 	orig_offset = uio->uio_offset;
1175 
1176 #ifdef MAC
1177 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1178 	if (error == 0)
1179 #endif
1180 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1181 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1182 	VOP_UNLOCK(vp);
1183 	if (need_finished_write)
1184 		vn_finished_write(mp);
1185 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1186 	    orig_offset != uio->uio_offset)
1187 		/*
1188 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1189 		 * for the backing file after a POSIX_FADV_NOREUSE
1190 		 * write(2).
1191 		 */
1192 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1193 		    POSIX_FADV_DONTNEED);
1194 unlock:
1195 	return (error);
1196 }
1197 
1198 /*
1199  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1200  * prevent the following deadlock:
1201  *
1202  * Assume that the thread A reads from the vnode vp1 into userspace
1203  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1204  * currently not resident, then system ends up with the call chain
1205  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1206  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1207  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1208  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1209  * backed by the pages of vnode vp1, and some page in buf2 is not
1210  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1211  *
1212  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1213  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1214  * Instead, it first tries to do the whole range i/o with pagefaults
1215  * disabled. If all pages in the i/o buffer are resident and mapped,
1216  * VOP will succeed (ignoring the genuine filesystem errors).
1217  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1218  * i/o in chunks, with all pages in the chunk prefaulted and held
1219  * using vm_fault_quick_hold_pages().
1220  *
1221  * Filesystems using this deadlock avoidance scheme should use the
1222  * array of the held pages from uio, saved in the curthread->td_ma,
1223  * instead of doing uiomove().  A helper function
1224  * vn_io_fault_uiomove() converts uiomove request into
1225  * uiomove_fromphys() over td_ma array.
1226  *
1227  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1228  * make the current i/o request atomic with respect to other i/os and
1229  * truncations.
1230  */
1231 
1232 /*
1233  * Decode vn_io_fault_args and perform the corresponding i/o.
1234  */
1235 static int
1236 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1237     struct thread *td)
1238 {
1239 	int error, save;
1240 
1241 	error = 0;
1242 	save = vm_fault_disable_pagefaults();
1243 	switch (args->kind) {
1244 	case VN_IO_FAULT_FOP:
1245 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1246 		    uio, args->cred, args->flags, td);
1247 		break;
1248 	case VN_IO_FAULT_VOP:
1249 		if (uio->uio_rw == UIO_READ) {
1250 			error = VOP_READ(args->args.vop_args.vp, uio,
1251 			    args->flags, args->cred);
1252 		} else if (uio->uio_rw == UIO_WRITE) {
1253 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1254 			    args->flags, args->cred);
1255 		}
1256 		break;
1257 	default:
1258 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1259 		    args->kind, uio->uio_rw);
1260 	}
1261 	vm_fault_enable_pagefaults(save);
1262 	return (error);
1263 }
1264 
1265 static int
1266 vn_io_fault_touch(char *base, const struct uio *uio)
1267 {
1268 	int r;
1269 
1270 	r = fubyte(base);
1271 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1272 		return (EFAULT);
1273 	return (0);
1274 }
1275 
1276 static int
1277 vn_io_fault_prefault_user(const struct uio *uio)
1278 {
1279 	char *base;
1280 	const struct iovec *iov;
1281 	size_t len;
1282 	ssize_t resid;
1283 	int error, i;
1284 
1285 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1286 	    ("vn_io_fault_prefault userspace"));
1287 
1288 	error = i = 0;
1289 	iov = uio->uio_iov;
1290 	resid = uio->uio_resid;
1291 	base = iov->iov_base;
1292 	len = iov->iov_len;
1293 	while (resid > 0) {
1294 		error = vn_io_fault_touch(base, uio);
1295 		if (error != 0)
1296 			break;
1297 		if (len < PAGE_SIZE) {
1298 			if (len != 0) {
1299 				error = vn_io_fault_touch(base + len - 1, uio);
1300 				if (error != 0)
1301 					break;
1302 				resid -= len;
1303 			}
1304 			if (++i >= uio->uio_iovcnt)
1305 				break;
1306 			iov = uio->uio_iov + i;
1307 			base = iov->iov_base;
1308 			len = iov->iov_len;
1309 		} else {
1310 			len -= PAGE_SIZE;
1311 			base += PAGE_SIZE;
1312 			resid -= PAGE_SIZE;
1313 		}
1314 	}
1315 	return (error);
1316 }
1317 
1318 /*
1319  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1320  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1321  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1322  * into args and call vn_io_fault1() to handle faults during the user
1323  * mode buffer accesses.
1324  */
1325 static int
1326 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1327     struct thread *td)
1328 {
1329 	vm_page_t ma[io_hold_cnt + 2];
1330 	struct uio *uio_clone, short_uio;
1331 	struct iovec short_iovec[1];
1332 	vm_page_t *prev_td_ma;
1333 	vm_prot_t prot;
1334 	vm_offset_t addr, end;
1335 	size_t len, resid;
1336 	ssize_t adv;
1337 	int error, cnt, saveheld, prev_td_ma_cnt;
1338 
1339 	if (vn_io_fault_prefault) {
1340 		error = vn_io_fault_prefault_user(uio);
1341 		if (error != 0)
1342 			return (error); /* Or ignore ? */
1343 	}
1344 
1345 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1346 
1347 	/*
1348 	 * The UFS follows IO_UNIT directive and replays back both
1349 	 * uio_offset and uio_resid if an error is encountered during the
1350 	 * operation.  But, since the iovec may be already advanced,
1351 	 * uio is still in an inconsistent state.
1352 	 *
1353 	 * Cache a copy of the original uio, which is advanced to the redo
1354 	 * point using UIO_NOCOPY below.
1355 	 */
1356 	uio_clone = cloneuio(uio);
1357 	resid = uio->uio_resid;
1358 
1359 	short_uio.uio_segflg = UIO_USERSPACE;
1360 	short_uio.uio_rw = uio->uio_rw;
1361 	short_uio.uio_td = uio->uio_td;
1362 
1363 	error = vn_io_fault_doio(args, uio, td);
1364 	if (error != EFAULT)
1365 		goto out;
1366 
1367 	atomic_add_long(&vn_io_faults_cnt, 1);
1368 	uio_clone->uio_segflg = UIO_NOCOPY;
1369 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1370 	uio_clone->uio_segflg = uio->uio_segflg;
1371 
1372 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1373 	prev_td_ma = td->td_ma;
1374 	prev_td_ma_cnt = td->td_ma_cnt;
1375 
1376 	while (uio_clone->uio_resid != 0) {
1377 		len = uio_clone->uio_iov->iov_len;
1378 		if (len == 0) {
1379 			KASSERT(uio_clone->uio_iovcnt >= 1,
1380 			    ("iovcnt underflow"));
1381 			uio_clone->uio_iov++;
1382 			uio_clone->uio_iovcnt--;
1383 			continue;
1384 		}
1385 		if (len > ptoa(io_hold_cnt))
1386 			len = ptoa(io_hold_cnt);
1387 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1388 		end = round_page(addr + len);
1389 		if (end < addr) {
1390 			error = EFAULT;
1391 			break;
1392 		}
1393 		/*
1394 		 * A perfectly misaligned address and length could cause
1395 		 * both the start and the end of the chunk to use partial
1396 		 * page.  +2 accounts for such a situation.
1397 		 */
1398 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1399 		    addr, len, prot, ma, io_hold_cnt + 2);
1400 		if (cnt == -1) {
1401 			error = EFAULT;
1402 			break;
1403 		}
1404 		short_uio.uio_iov = &short_iovec[0];
1405 		short_iovec[0].iov_base = (void *)addr;
1406 		short_uio.uio_iovcnt = 1;
1407 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1408 		short_uio.uio_offset = uio_clone->uio_offset;
1409 		td->td_ma = ma;
1410 		td->td_ma_cnt = cnt;
1411 
1412 		error = vn_io_fault_doio(args, &short_uio, td);
1413 		vm_page_unhold_pages(ma, cnt);
1414 		adv = len - short_uio.uio_resid;
1415 
1416 		uio_clone->uio_iov->iov_base =
1417 		    (char *)uio_clone->uio_iov->iov_base + adv;
1418 		uio_clone->uio_iov->iov_len -= adv;
1419 		uio_clone->uio_resid -= adv;
1420 		uio_clone->uio_offset += adv;
1421 
1422 		uio->uio_resid -= adv;
1423 		uio->uio_offset += adv;
1424 
1425 		if (error != 0 || adv == 0)
1426 			break;
1427 	}
1428 	td->td_ma = prev_td_ma;
1429 	td->td_ma_cnt = prev_td_ma_cnt;
1430 	curthread_pflags_restore(saveheld);
1431 out:
1432 	free(uio_clone, M_IOV);
1433 	return (error);
1434 }
1435 
1436 static int
1437 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1438     int flags, struct thread *td)
1439 {
1440 	fo_rdwr_t *doio;
1441 	struct vnode *vp;
1442 	void *rl_cookie;
1443 	struct vn_io_fault_args args;
1444 	int error;
1445 
1446 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1447 	vp = fp->f_vnode;
1448 
1449 	/*
1450 	 * The ability to read(2) on a directory has historically been
1451 	 * allowed for all users, but this can and has been the source of
1452 	 * at least one security issue in the past.  As such, it is now hidden
1453 	 * away behind a sysctl for those that actually need it to use it, and
1454 	 * restricted to root when it's turned on to make it relatively safe to
1455 	 * leave on for longer sessions of need.
1456 	 */
1457 	if (vp->v_type == VDIR) {
1458 		KASSERT(uio->uio_rw == UIO_READ,
1459 		    ("illegal write attempted on a directory"));
1460 		if (!vfs_allow_read_dir)
1461 			return (EISDIR);
1462 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1463 			return (EISDIR);
1464 	}
1465 
1466 	foffset_lock_uio(fp, uio, flags);
1467 	if (do_vn_io_fault(vp, uio)) {
1468 		args.kind = VN_IO_FAULT_FOP;
1469 		args.args.fop_args.fp = fp;
1470 		args.args.fop_args.doio = doio;
1471 		args.cred = active_cred;
1472 		args.flags = flags | FOF_OFFSET;
1473 		if (uio->uio_rw == UIO_READ) {
1474 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1475 			    uio->uio_offset + uio->uio_resid);
1476 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1477 		    (flags & FOF_OFFSET) == 0) {
1478 			/* For appenders, punt and lock the whole range. */
1479 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1480 		} else {
1481 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1482 			    uio->uio_offset + uio->uio_resid);
1483 		}
1484 		error = vn_io_fault1(vp, uio, &args, td);
1485 		vn_rangelock_unlock(vp, rl_cookie);
1486 	} else {
1487 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1488 	}
1489 	foffset_unlock_uio(fp, uio, flags);
1490 	return (error);
1491 }
1492 
1493 /*
1494  * Helper function to perform the requested uiomove operation using
1495  * the held pages for io->uio_iov[0].iov_base buffer instead of
1496  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1497  * instead of iov_base prevents page faults that could occur due to
1498  * pmap_collect() invalidating the mapping created by
1499  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1500  * object cleanup revoking the write access from page mappings.
1501  *
1502  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1503  * instead of plain uiomove().
1504  */
1505 int
1506 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1507 {
1508 	struct uio transp_uio;
1509 	struct iovec transp_iov[1];
1510 	struct thread *td;
1511 	size_t adv;
1512 	int error, pgadv;
1513 
1514 	td = curthread;
1515 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1516 	    uio->uio_segflg != UIO_USERSPACE)
1517 		return (uiomove(data, xfersize, uio));
1518 
1519 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1520 	transp_iov[0].iov_base = data;
1521 	transp_uio.uio_iov = &transp_iov[0];
1522 	transp_uio.uio_iovcnt = 1;
1523 	if (xfersize > uio->uio_resid)
1524 		xfersize = uio->uio_resid;
1525 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1526 	transp_uio.uio_offset = 0;
1527 	transp_uio.uio_segflg = UIO_SYSSPACE;
1528 	/*
1529 	 * Since transp_iov points to data, and td_ma page array
1530 	 * corresponds to original uio->uio_iov, we need to invert the
1531 	 * direction of the i/o operation as passed to
1532 	 * uiomove_fromphys().
1533 	 */
1534 	switch (uio->uio_rw) {
1535 	case UIO_WRITE:
1536 		transp_uio.uio_rw = UIO_READ;
1537 		break;
1538 	case UIO_READ:
1539 		transp_uio.uio_rw = UIO_WRITE;
1540 		break;
1541 	}
1542 	transp_uio.uio_td = uio->uio_td;
1543 	error = uiomove_fromphys(td->td_ma,
1544 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1545 	    xfersize, &transp_uio);
1546 	adv = xfersize - transp_uio.uio_resid;
1547 	pgadv =
1548 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1549 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1550 	td->td_ma += pgadv;
1551 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1552 	    pgadv));
1553 	td->td_ma_cnt -= pgadv;
1554 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1555 	uio->uio_iov->iov_len -= adv;
1556 	uio->uio_resid -= adv;
1557 	uio->uio_offset += adv;
1558 	return (error);
1559 }
1560 
1561 int
1562 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1563     struct uio *uio)
1564 {
1565 	struct thread *td;
1566 	vm_offset_t iov_base;
1567 	int cnt, pgadv;
1568 
1569 	td = curthread;
1570 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1571 	    uio->uio_segflg != UIO_USERSPACE)
1572 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1573 
1574 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1575 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1576 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1577 	switch (uio->uio_rw) {
1578 	case UIO_WRITE:
1579 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1580 		    offset, cnt);
1581 		break;
1582 	case UIO_READ:
1583 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1584 		    cnt);
1585 		break;
1586 	}
1587 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1588 	td->td_ma += pgadv;
1589 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1590 	    pgadv));
1591 	td->td_ma_cnt -= pgadv;
1592 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1593 	uio->uio_iov->iov_len -= cnt;
1594 	uio->uio_resid -= cnt;
1595 	uio->uio_offset += cnt;
1596 	return (0);
1597 }
1598 
1599 /*
1600  * File table truncate routine.
1601  */
1602 static int
1603 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1604     struct thread *td)
1605 {
1606 	struct mount *mp;
1607 	struct vnode *vp;
1608 	void *rl_cookie;
1609 	int error;
1610 
1611 	vp = fp->f_vnode;
1612 
1613 retry:
1614 	/*
1615 	 * Lock the whole range for truncation.  Otherwise split i/o
1616 	 * might happen partly before and partly after the truncation.
1617 	 */
1618 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1619 	error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
1620 	if (error)
1621 		goto out1;
1622 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1623 	AUDIT_ARG_VNODE1(vp);
1624 	if (vp->v_type == VDIR) {
1625 		error = EISDIR;
1626 		goto out;
1627 	}
1628 #ifdef MAC
1629 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1630 	if (error)
1631 		goto out;
1632 #endif
1633 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1634 	    fp->f_cred);
1635 out:
1636 	VOP_UNLOCK(vp);
1637 	vn_finished_write(mp);
1638 out1:
1639 	vn_rangelock_unlock(vp, rl_cookie);
1640 	if (error == ERELOOKUP)
1641 		goto retry;
1642 	return (error);
1643 }
1644 
1645 /*
1646  * Truncate a file that is already locked.
1647  */
1648 int
1649 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1650     struct ucred *cred)
1651 {
1652 	struct vattr vattr;
1653 	int error;
1654 
1655 	error = VOP_ADD_WRITECOUNT(vp, 1);
1656 	if (error == 0) {
1657 		VATTR_NULL(&vattr);
1658 		vattr.va_size = length;
1659 		if (sync)
1660 			vattr.va_vaflags |= VA_SYNC;
1661 		error = VOP_SETATTR(vp, &vattr, cred);
1662 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1663 	}
1664 	return (error);
1665 }
1666 
1667 /*
1668  * File table vnode stat routine.
1669  */
1670 int
1671 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1672 {
1673 	struct vnode *vp = fp->f_vnode;
1674 	int error;
1675 
1676 	vn_lock(vp, LK_SHARED | LK_RETRY);
1677 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1678 	VOP_UNLOCK(vp);
1679 
1680 	return (error);
1681 }
1682 
1683 /*
1684  * File table vnode ioctl routine.
1685  */
1686 static int
1687 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1688     struct thread *td)
1689 {
1690 	struct vnode *vp;
1691 	struct fiobmap2_arg *bmarg;
1692 	off_t size;
1693 	int error;
1694 
1695 	vp = fp->f_vnode;
1696 	switch (vp->v_type) {
1697 	case VDIR:
1698 	case VREG:
1699 		switch (com) {
1700 		case FIONREAD:
1701 			error = vn_getsize(vp, &size, active_cred);
1702 			if (error == 0)
1703 				*(int *)data = size - fp->f_offset;
1704 			return (error);
1705 		case FIOBMAP2:
1706 			bmarg = (struct fiobmap2_arg *)data;
1707 			vn_lock(vp, LK_SHARED | LK_RETRY);
1708 #ifdef MAC
1709 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1710 			    vp);
1711 			if (error == 0)
1712 #endif
1713 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1714 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1715 			VOP_UNLOCK(vp);
1716 			return (error);
1717 		case FIONBIO:
1718 		case FIOASYNC:
1719 			return (0);
1720 		default:
1721 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1722 			    active_cred, td));
1723 		}
1724 		break;
1725 	case VCHR:
1726 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1727 		    active_cred, td));
1728 	default:
1729 		return (ENOTTY);
1730 	}
1731 }
1732 
1733 /*
1734  * File table vnode poll routine.
1735  */
1736 static int
1737 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1738     struct thread *td)
1739 {
1740 	struct vnode *vp;
1741 	int error;
1742 
1743 	vp = fp->f_vnode;
1744 #if defined(MAC) || defined(AUDIT)
1745 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1746 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1747 		AUDIT_ARG_VNODE1(vp);
1748 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1749 		VOP_UNLOCK(vp);
1750 		if (error != 0)
1751 			return (error);
1752 	}
1753 #endif
1754 	error = VOP_POLL(vp, events, fp->f_cred, td);
1755 	return (error);
1756 }
1757 
1758 /*
1759  * Acquire the requested lock and then check for validity.  LK_RETRY
1760  * permits vn_lock to return doomed vnodes.
1761  */
1762 static int __noinline
1763 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1764     int error)
1765 {
1766 
1767 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1768 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1769 
1770 	if (error == 0)
1771 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1772 
1773 	if ((flags & LK_RETRY) == 0) {
1774 		if (error == 0) {
1775 			VOP_UNLOCK(vp);
1776 			error = ENOENT;
1777 		}
1778 		return (error);
1779 	}
1780 
1781 	/*
1782 	 * LK_RETRY case.
1783 	 *
1784 	 * Nothing to do if we got the lock.
1785 	 */
1786 	if (error == 0)
1787 		return (0);
1788 
1789 	/*
1790 	 * Interlock was dropped by the call in _vn_lock.
1791 	 */
1792 	flags &= ~LK_INTERLOCK;
1793 	do {
1794 		error = VOP_LOCK1(vp, flags, file, line);
1795 	} while (error != 0);
1796 	return (0);
1797 }
1798 
1799 int
1800 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1801 {
1802 	int error;
1803 
1804 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1805 	    ("vn_lock: no locktype (%d passed)", flags));
1806 	VNPASS(vp->v_holdcnt > 0, vp);
1807 	error = VOP_LOCK1(vp, flags, file, line);
1808 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1809 		return (_vn_lock_fallback(vp, flags, file, line, error));
1810 	return (0);
1811 }
1812 
1813 /*
1814  * File table vnode close routine.
1815  */
1816 static int
1817 vn_closefile(struct file *fp, struct thread *td)
1818 {
1819 	struct vnode *vp;
1820 	struct flock lf;
1821 	int error;
1822 	bool ref;
1823 
1824 	vp = fp->f_vnode;
1825 	fp->f_ops = &badfileops;
1826 	ref = (fp->f_flag & FHASLOCK) != 0;
1827 
1828 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1829 
1830 	if (__predict_false(ref)) {
1831 		lf.l_whence = SEEK_SET;
1832 		lf.l_start = 0;
1833 		lf.l_len = 0;
1834 		lf.l_type = F_UNLCK;
1835 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1836 		vrele(vp);
1837 	}
1838 	return (error);
1839 }
1840 
1841 /*
1842  * Preparing to start a filesystem write operation. If the operation is
1843  * permitted, then we bump the count of operations in progress and
1844  * proceed. If a suspend request is in progress, we wait until the
1845  * suspension is over, and then proceed.
1846  */
1847 static int
1848 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1849 {
1850 	struct mount_pcpu *mpcpu;
1851 	int error, mflags;
1852 
1853 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1854 	    vfs_op_thread_enter(mp, mpcpu)) {
1855 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1856 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1857 		vfs_op_thread_exit(mp, mpcpu);
1858 		return (0);
1859 	}
1860 
1861 	if (mplocked)
1862 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1863 	else
1864 		MNT_ILOCK(mp);
1865 
1866 	error = 0;
1867 
1868 	/*
1869 	 * Check on status of suspension.
1870 	 */
1871 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1872 	    mp->mnt_susp_owner != curthread) {
1873 		mflags = 0;
1874 		if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
1875 			if (flags & V_PCATCH)
1876 				mflags |= PCATCH;
1877 		}
1878 		mflags |= (PUSER - 1);
1879 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1880 			if ((flags & V_NOWAIT) != 0) {
1881 				error = EWOULDBLOCK;
1882 				goto unlock;
1883 			}
1884 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1885 			    "suspfs", 0);
1886 			if (error != 0)
1887 				goto unlock;
1888 		}
1889 	}
1890 	if ((flags & V_XSLEEP) != 0)
1891 		goto unlock;
1892 	mp->mnt_writeopcount++;
1893 unlock:
1894 	if (error != 0 || (flags & V_XSLEEP) != 0)
1895 		MNT_REL(mp);
1896 	MNT_IUNLOCK(mp);
1897 	return (error);
1898 }
1899 
1900 int
1901 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1902 {
1903 	struct mount *mp;
1904 	int error;
1905 
1906 	KASSERT((flags & ~V_VALID_FLAGS) == 0,
1907 	    ("%s: invalid flags passed %d\n", __func__, flags));
1908 
1909 	error = 0;
1910 	/*
1911 	 * If a vnode is provided, get and return the mount point that
1912 	 * to which it will write.
1913 	 */
1914 	if (vp != NULL) {
1915 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1916 			*mpp = NULL;
1917 			if (error != EOPNOTSUPP)
1918 				return (error);
1919 			return (0);
1920 		}
1921 	}
1922 	if ((mp = *mpp) == NULL)
1923 		return (0);
1924 
1925 	/*
1926 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1927 	 * a vfs_ref().
1928 	 * As long as a vnode is not provided we need to acquire a
1929 	 * refcount for the provided mountpoint too, in order to
1930 	 * emulate a vfs_ref().
1931 	 */
1932 	if (vp == NULL)
1933 		vfs_ref(mp);
1934 
1935 	error = vn_start_write_refed(mp, flags, false);
1936 	if (error != 0 && (flags & V_NOWAIT) == 0)
1937 		*mpp = NULL;
1938 	return (error);
1939 }
1940 
1941 /*
1942  * Secondary suspension. Used by operations such as vop_inactive
1943  * routines that are needed by the higher level functions. These
1944  * are allowed to proceed until all the higher level functions have
1945  * completed (indicated by mnt_writeopcount dropping to zero). At that
1946  * time, these operations are halted until the suspension is over.
1947  */
1948 int
1949 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1950 {
1951 	struct mount *mp;
1952 	int error, mflags;
1953 
1954 	KASSERT((flags & (~V_VALID_FLAGS | V_XSLEEP)) == 0,
1955 	    ("%s: invalid flags passed %d\n", __func__, flags));
1956 
1957  retry:
1958 	if (vp != NULL) {
1959 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1960 			*mpp = NULL;
1961 			if (error != EOPNOTSUPP)
1962 				return (error);
1963 			return (0);
1964 		}
1965 	}
1966 	/*
1967 	 * If we are not suspended or have not yet reached suspended
1968 	 * mode, then let the operation proceed.
1969 	 */
1970 	if ((mp = *mpp) == NULL)
1971 		return (0);
1972 
1973 	/*
1974 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1975 	 * a vfs_ref().
1976 	 * As long as a vnode is not provided we need to acquire a
1977 	 * refcount for the provided mountpoint too, in order to
1978 	 * emulate a vfs_ref().
1979 	 */
1980 	MNT_ILOCK(mp);
1981 	if (vp == NULL)
1982 		MNT_REF(mp);
1983 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1984 		mp->mnt_secondary_writes++;
1985 		mp->mnt_secondary_accwrites++;
1986 		MNT_IUNLOCK(mp);
1987 		return (0);
1988 	}
1989 	if ((flags & V_NOWAIT) != 0) {
1990 		MNT_REL(mp);
1991 		MNT_IUNLOCK(mp);
1992 		*mpp = NULL;
1993 		return (EWOULDBLOCK);
1994 	}
1995 	/*
1996 	 * Wait for the suspension to finish.
1997 	 */
1998 	mflags = 0;
1999 	if ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0) {
2000 		if ((flags & V_PCATCH) != 0)
2001 			mflags |= PCATCH;
2002 	}
2003 	mflags |= (PUSER - 1) | PDROP;
2004 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0);
2005 	vfs_rel(mp);
2006 	if (error == 0)
2007 		goto retry;
2008 	*mpp = NULL;
2009 	return (error);
2010 }
2011 
2012 /*
2013  * Filesystem write operation has completed. If we are suspending and this
2014  * operation is the last one, notify the suspender that the suspension is
2015  * now in effect.
2016  */
2017 void
2018 vn_finished_write(struct mount *mp)
2019 {
2020 	struct mount_pcpu *mpcpu;
2021 	int c;
2022 
2023 	if (mp == NULL)
2024 		return;
2025 
2026 	if (vfs_op_thread_enter(mp, mpcpu)) {
2027 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2028 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2029 		vfs_op_thread_exit(mp, mpcpu);
2030 		return;
2031 	}
2032 
2033 	MNT_ILOCK(mp);
2034 	vfs_assert_mount_counters(mp);
2035 	MNT_REL(mp);
2036 	c = --mp->mnt_writeopcount;
2037 	if (mp->mnt_vfs_ops == 0) {
2038 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2039 		MNT_IUNLOCK(mp);
2040 		return;
2041 	}
2042 	if (c < 0)
2043 		vfs_dump_mount_counters(mp);
2044 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2045 		wakeup(&mp->mnt_writeopcount);
2046 	MNT_IUNLOCK(mp);
2047 }
2048 
2049 /*
2050  * Filesystem secondary write operation has completed. If we are
2051  * suspending and this operation is the last one, notify the suspender
2052  * that the suspension is now in effect.
2053  */
2054 void
2055 vn_finished_secondary_write(struct mount *mp)
2056 {
2057 	if (mp == NULL)
2058 		return;
2059 	MNT_ILOCK(mp);
2060 	MNT_REL(mp);
2061 	mp->mnt_secondary_writes--;
2062 	if (mp->mnt_secondary_writes < 0)
2063 		panic("vn_finished_secondary_write: neg cnt");
2064 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2065 	    mp->mnt_secondary_writes <= 0)
2066 		wakeup(&mp->mnt_secondary_writes);
2067 	MNT_IUNLOCK(mp);
2068 }
2069 
2070 /*
2071  * Request a filesystem to suspend write operations.
2072  */
2073 int
2074 vfs_write_suspend(struct mount *mp, int flags)
2075 {
2076 	int error;
2077 
2078 	vfs_op_enter(mp);
2079 
2080 	MNT_ILOCK(mp);
2081 	vfs_assert_mount_counters(mp);
2082 	if (mp->mnt_susp_owner == curthread) {
2083 		vfs_op_exit_locked(mp);
2084 		MNT_IUNLOCK(mp);
2085 		return (EALREADY);
2086 	}
2087 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2088 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2089 
2090 	/*
2091 	 * Unmount holds a write reference on the mount point.  If we
2092 	 * own busy reference and drain for writers, we deadlock with
2093 	 * the reference draining in the unmount path.  Callers of
2094 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2095 	 * vfs_busy() reference is owned and caller is not in the
2096 	 * unmount context.
2097 	 */
2098 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2099 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2100 		vfs_op_exit_locked(mp);
2101 		MNT_IUNLOCK(mp);
2102 		return (EBUSY);
2103 	}
2104 
2105 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2106 	mp->mnt_susp_owner = curthread;
2107 	if (mp->mnt_writeopcount > 0)
2108 		(void) msleep(&mp->mnt_writeopcount,
2109 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2110 	else
2111 		MNT_IUNLOCK(mp);
2112 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2113 		vfs_write_resume(mp, 0);
2114 		/* vfs_write_resume does vfs_op_exit() for us */
2115 	}
2116 	return (error);
2117 }
2118 
2119 /*
2120  * Request a filesystem to resume write operations.
2121  */
2122 void
2123 vfs_write_resume(struct mount *mp, int flags)
2124 {
2125 
2126 	MNT_ILOCK(mp);
2127 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2128 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2129 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2130 				       MNTK_SUSPENDED);
2131 		mp->mnt_susp_owner = NULL;
2132 		wakeup(&mp->mnt_writeopcount);
2133 		wakeup(&mp->mnt_flag);
2134 		curthread->td_pflags &= ~TDP_IGNSUSP;
2135 		if ((flags & VR_START_WRITE) != 0) {
2136 			MNT_REF(mp);
2137 			mp->mnt_writeopcount++;
2138 		}
2139 		MNT_IUNLOCK(mp);
2140 		if ((flags & VR_NO_SUSPCLR) == 0)
2141 			VFS_SUSP_CLEAN(mp);
2142 		vfs_op_exit(mp);
2143 	} else if ((flags & VR_START_WRITE) != 0) {
2144 		MNT_REF(mp);
2145 		vn_start_write_refed(mp, 0, true);
2146 	} else {
2147 		MNT_IUNLOCK(mp);
2148 	}
2149 }
2150 
2151 /*
2152  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2153  * methods.
2154  */
2155 int
2156 vfs_write_suspend_umnt(struct mount *mp)
2157 {
2158 	int error;
2159 
2160 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2161 	    ("vfs_write_suspend_umnt: recursed"));
2162 
2163 	/* dounmount() already called vn_start_write(). */
2164 	for (;;) {
2165 		vn_finished_write(mp);
2166 		error = vfs_write_suspend(mp, 0);
2167 		if (error != 0) {
2168 			vn_start_write(NULL, &mp, V_WAIT);
2169 			return (error);
2170 		}
2171 		MNT_ILOCK(mp);
2172 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2173 			break;
2174 		MNT_IUNLOCK(mp);
2175 		vn_start_write(NULL, &mp, V_WAIT);
2176 	}
2177 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2178 	wakeup(&mp->mnt_flag);
2179 	MNT_IUNLOCK(mp);
2180 	curthread->td_pflags |= TDP_IGNSUSP;
2181 	return (0);
2182 }
2183 
2184 /*
2185  * Implement kqueues for files by translating it to vnode operation.
2186  */
2187 static int
2188 vn_kqfilter(struct file *fp, struct knote *kn)
2189 {
2190 
2191 	return (VOP_KQFILTER(fp->f_vnode, kn));
2192 }
2193 
2194 int
2195 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2196 {
2197 	if ((fp->f_flag & FKQALLOWED) == 0)
2198 		return (EBADF);
2199 	return (vn_kqfilter(fp, kn));
2200 }
2201 
2202 /*
2203  * Simplified in-kernel wrapper calls for extended attribute access.
2204  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2205  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2206  */
2207 int
2208 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2209     const char *attrname, int *buflen, char *buf, struct thread *td)
2210 {
2211 	struct uio	auio;
2212 	struct iovec	iov;
2213 	int	error;
2214 
2215 	iov.iov_len = *buflen;
2216 	iov.iov_base = buf;
2217 
2218 	auio.uio_iov = &iov;
2219 	auio.uio_iovcnt = 1;
2220 	auio.uio_rw = UIO_READ;
2221 	auio.uio_segflg = UIO_SYSSPACE;
2222 	auio.uio_td = td;
2223 	auio.uio_offset = 0;
2224 	auio.uio_resid = *buflen;
2225 
2226 	if ((ioflg & IO_NODELOCKED) == 0)
2227 		vn_lock(vp, LK_SHARED | LK_RETRY);
2228 
2229 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2230 
2231 	/* authorize attribute retrieval as kernel */
2232 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2233 	    td);
2234 
2235 	if ((ioflg & IO_NODELOCKED) == 0)
2236 		VOP_UNLOCK(vp);
2237 
2238 	if (error == 0) {
2239 		*buflen = *buflen - auio.uio_resid;
2240 	}
2241 
2242 	return (error);
2243 }
2244 
2245 /*
2246  * XXX failure mode if partially written?
2247  */
2248 int
2249 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2250     const char *attrname, int buflen, char *buf, struct thread *td)
2251 {
2252 	struct uio	auio;
2253 	struct iovec	iov;
2254 	struct mount	*mp;
2255 	int	error;
2256 
2257 	iov.iov_len = buflen;
2258 	iov.iov_base = buf;
2259 
2260 	auio.uio_iov = &iov;
2261 	auio.uio_iovcnt = 1;
2262 	auio.uio_rw = UIO_WRITE;
2263 	auio.uio_segflg = UIO_SYSSPACE;
2264 	auio.uio_td = td;
2265 	auio.uio_offset = 0;
2266 	auio.uio_resid = buflen;
2267 
2268 	if ((ioflg & IO_NODELOCKED) == 0) {
2269 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2270 			return (error);
2271 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2272 	}
2273 
2274 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2275 
2276 	/* authorize attribute setting as kernel */
2277 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2278 
2279 	if ((ioflg & IO_NODELOCKED) == 0) {
2280 		vn_finished_write(mp);
2281 		VOP_UNLOCK(vp);
2282 	}
2283 
2284 	return (error);
2285 }
2286 
2287 int
2288 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2289     const char *attrname, struct thread *td)
2290 {
2291 	struct mount	*mp;
2292 	int	error;
2293 
2294 	if ((ioflg & IO_NODELOCKED) == 0) {
2295 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2296 			return (error);
2297 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2298 	}
2299 
2300 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2301 
2302 	/* authorize attribute removal as kernel */
2303 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2304 	if (error == EOPNOTSUPP)
2305 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2306 		    NULL, td);
2307 
2308 	if ((ioflg & IO_NODELOCKED) == 0) {
2309 		vn_finished_write(mp);
2310 		VOP_UNLOCK(vp);
2311 	}
2312 
2313 	return (error);
2314 }
2315 
2316 static int
2317 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2318     struct vnode **rvp)
2319 {
2320 
2321 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2322 }
2323 
2324 int
2325 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2326 {
2327 
2328 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2329 	    lkflags, rvp));
2330 }
2331 
2332 int
2333 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2334     int lkflags, struct vnode **rvp)
2335 {
2336 	struct mount *mp;
2337 	int ltype, error;
2338 
2339 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2340 	mp = vp->v_mount;
2341 	ltype = VOP_ISLOCKED(vp);
2342 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2343 	    ("vn_vget_ino: vp not locked"));
2344 	error = vfs_busy(mp, MBF_NOWAIT);
2345 	if (error != 0) {
2346 		vfs_ref(mp);
2347 		VOP_UNLOCK(vp);
2348 		error = vfs_busy(mp, 0);
2349 		vn_lock(vp, ltype | LK_RETRY);
2350 		vfs_rel(mp);
2351 		if (error != 0)
2352 			return (ENOENT);
2353 		if (VN_IS_DOOMED(vp)) {
2354 			vfs_unbusy(mp);
2355 			return (ENOENT);
2356 		}
2357 	}
2358 	VOP_UNLOCK(vp);
2359 	error = alloc(mp, alloc_arg, lkflags, rvp);
2360 	vfs_unbusy(mp);
2361 	if (error != 0 || *rvp != vp)
2362 		vn_lock(vp, ltype | LK_RETRY);
2363 	if (VN_IS_DOOMED(vp)) {
2364 		if (error == 0) {
2365 			if (*rvp == vp)
2366 				vunref(vp);
2367 			else
2368 				vput(*rvp);
2369 		}
2370 		error = ENOENT;
2371 	}
2372 	return (error);
2373 }
2374 
2375 static void
2376 vn_send_sigxfsz(struct proc *p)
2377 {
2378 	PROC_LOCK(p);
2379 	kern_psignal(p, SIGXFSZ);
2380 	PROC_UNLOCK(p);
2381 }
2382 
2383 int
2384 vn_rlimit_trunc(u_quad_t size, struct thread *td)
2385 {
2386 	if (size <= lim_cur(td, RLIMIT_FSIZE))
2387 		return (0);
2388 	vn_send_sigxfsz(td->td_proc);
2389 	return (EFBIG);
2390 }
2391 
2392 static int
2393 vn_rlimit_fsizex1(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2394     bool adj, struct thread *td)
2395 {
2396 	off_t lim;
2397 	bool ktr_write;
2398 
2399 	if (vp->v_type != VREG)
2400 		return (0);
2401 
2402 	/*
2403 	 * Handle file system maximum file size.
2404 	 */
2405 	if (maxfsz != 0 && uio->uio_offset + uio->uio_resid > maxfsz) {
2406 		if (!adj || uio->uio_offset >= maxfsz)
2407 			return (EFBIG);
2408 		uio->uio_resid = maxfsz - uio->uio_offset;
2409 	}
2410 
2411 	/*
2412 	 * This is kernel write (e.g. vnode_pager) or accounting
2413 	 * write, ignore limit.
2414 	 */
2415 	if (td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0)
2416 		return (0);
2417 
2418 	/*
2419 	 * Calculate file size limit.
2420 	 */
2421 	ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2422 	lim = __predict_false(ktr_write) ? td->td_ktr_io_lim :
2423 	    lim_cur(td, RLIMIT_FSIZE);
2424 
2425 	/*
2426 	 * Is the limit reached?
2427 	 */
2428 	if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2429 		return (0);
2430 
2431 	/*
2432 	 * Prepared filesystems can handle writes truncated to the
2433 	 * file size limit.
2434 	 */
2435 	if (adj && (uoff_t)uio->uio_offset < lim) {
2436 		uio->uio_resid = lim - (uoff_t)uio->uio_offset;
2437 		return (0);
2438 	}
2439 
2440 	if (!ktr_write || ktr_filesize_limit_signal)
2441 		vn_send_sigxfsz(td->td_proc);
2442 	return (EFBIG);
2443 }
2444 
2445 /*
2446  * Helper for VOP_WRITE() implementations, the common code to
2447  * handle maximum supported file size on the filesystem, and
2448  * RLIMIT_FSIZE, except for special writes from accounting subsystem
2449  * and ktrace.
2450  *
2451  * For maximum file size (maxfsz argument):
2452  * - return EFBIG if uio_offset is beyond it
2453  * - otherwise, clamp uio_resid if write would extend file beyond maxfsz.
2454  *
2455  * For RLIMIT_FSIZE:
2456  * - return EFBIG and send SIGXFSZ if uio_offset is beyond the limit
2457  * - otherwise, clamp uio_resid if write would extend file beyond limit.
2458  *
2459  * If clamping occured, the adjustment for uio_resid is stored in
2460  * *resid_adj, to be re-applied by vn_rlimit_fsizex_res() on return
2461  * from the VOP.
2462  */
2463 int
2464 vn_rlimit_fsizex(const struct vnode *vp, struct uio *uio, off_t maxfsz,
2465     ssize_t *resid_adj, struct thread *td)
2466 {
2467 	ssize_t resid_orig;
2468 	int error;
2469 	bool adj;
2470 
2471 	resid_orig = uio->uio_resid;
2472 	adj = resid_adj != NULL;
2473 	error = vn_rlimit_fsizex1(vp, uio, maxfsz, adj, td);
2474 	if (adj)
2475 		*resid_adj = resid_orig - uio->uio_resid;
2476 	return (error);
2477 }
2478 
2479 void
2480 vn_rlimit_fsizex_res(struct uio *uio, ssize_t resid_adj)
2481 {
2482 	uio->uio_resid += resid_adj;
2483 }
2484 
2485 int
2486 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2487     struct thread *td)
2488 {
2489 	return (vn_rlimit_fsizex(vp, __DECONST(struct uio *, uio), 0, NULL,
2490 	    td));
2491 }
2492 
2493 int
2494 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2495     struct thread *td)
2496 {
2497 	struct vnode *vp;
2498 
2499 	vp = fp->f_vnode;
2500 #ifdef AUDIT
2501 	vn_lock(vp, LK_SHARED | LK_RETRY);
2502 	AUDIT_ARG_VNODE1(vp);
2503 	VOP_UNLOCK(vp);
2504 #endif
2505 	return (setfmode(td, active_cred, vp, mode));
2506 }
2507 
2508 int
2509 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2510     struct thread *td)
2511 {
2512 	struct vnode *vp;
2513 
2514 	vp = fp->f_vnode;
2515 #ifdef AUDIT
2516 	vn_lock(vp, LK_SHARED | LK_RETRY);
2517 	AUDIT_ARG_VNODE1(vp);
2518 	VOP_UNLOCK(vp);
2519 #endif
2520 	return (setfown(td, active_cred, vp, uid, gid));
2521 }
2522 
2523 /*
2524  * Remove pages in the range ["start", "end") from the vnode's VM object.  If
2525  * "end" is 0, then the range extends to the end of the object.
2526  */
2527 void
2528 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2529 {
2530 	vm_object_t object;
2531 
2532 	if ((object = vp->v_object) == NULL)
2533 		return;
2534 	VM_OBJECT_WLOCK(object);
2535 	vm_object_page_remove(object, start, end, 0);
2536 	VM_OBJECT_WUNLOCK(object);
2537 }
2538 
2539 /*
2540  * Like vn_pages_remove(), but skips invalid pages, which by definition are not
2541  * mapped into any process' address space.  Filesystems may use this in
2542  * preference to vn_pages_remove() to avoid blocking on pages busied in
2543  * preparation for a VOP_GETPAGES.
2544  */
2545 void
2546 vn_pages_remove_valid(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2547 {
2548 	vm_object_t object;
2549 
2550 	if ((object = vp->v_object) == NULL)
2551 		return;
2552 	VM_OBJECT_WLOCK(object);
2553 	vm_object_page_remove(object, start, end, OBJPR_VALIDONLY);
2554 	VM_OBJECT_WUNLOCK(object);
2555 }
2556 
2557 int
2558 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2559     struct ucred *cred)
2560 {
2561 	vm_object_t obj;
2562 	off_t size;
2563 	daddr_t bn, bnp;
2564 	uint64_t bsize;
2565 	off_t noff;
2566 	int error;
2567 
2568 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2569 	    ("%s: Wrong command %lu", __func__, cmd));
2570 	ASSERT_VOP_ELOCKED(vp, "vn_bmap_seekhole_locked");
2571 
2572 	if (vp->v_type != VREG) {
2573 		error = ENOTTY;
2574 		goto out;
2575 	}
2576 	error = vn_getsize_locked(vp, &size, cred);
2577 	if (error != 0)
2578 		goto out;
2579 	noff = *off;
2580 	if (noff < 0 || noff >= size) {
2581 		error = ENXIO;
2582 		goto out;
2583 	}
2584 
2585 	/* See the comment in ufs_bmap_seekdata(). */
2586 	obj = vp->v_object;
2587 	if (obj != NULL) {
2588 		VM_OBJECT_WLOCK(obj);
2589 		vm_object_page_clean(obj, 0, 0, OBJPC_SYNC);
2590 		VM_OBJECT_WUNLOCK(obj);
2591 	}
2592 
2593 	bsize = vp->v_mount->mnt_stat.f_iosize;
2594 	for (bn = noff / bsize; noff < size; bn++, noff += bsize -
2595 	    noff % bsize) {
2596 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2597 		if (error == EOPNOTSUPP) {
2598 			error = ENOTTY;
2599 			goto out;
2600 		}
2601 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2602 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2603 			noff = bn * bsize;
2604 			if (noff < *off)
2605 				noff = *off;
2606 			goto out;
2607 		}
2608 	}
2609 	if (noff > size)
2610 		noff = size;
2611 	/* noff == size. There is an implicit hole at the end of file. */
2612 	if (cmd == FIOSEEKDATA)
2613 		error = ENXIO;
2614 out:
2615 	if (error == 0)
2616 		*off = noff;
2617 	return (error);
2618 }
2619 
2620 int
2621 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2622 {
2623 	int error;
2624 
2625 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2626 	    ("%s: Wrong command %lu", __func__, cmd));
2627 
2628 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
2629 		return (EBADF);
2630 	error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2631 	VOP_UNLOCK(vp);
2632 	return (error);
2633 }
2634 
2635 int
2636 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2637 {
2638 	struct ucred *cred;
2639 	struct vnode *vp;
2640 	off_t foffset, fsize, size;
2641 	int error, noneg;
2642 
2643 	cred = td->td_ucred;
2644 	vp = fp->f_vnode;
2645 	foffset = foffset_lock(fp, 0);
2646 	noneg = (vp->v_type != VCHR);
2647 	error = 0;
2648 	switch (whence) {
2649 	case L_INCR:
2650 		if (noneg &&
2651 		    (foffset < 0 ||
2652 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2653 			error = EOVERFLOW;
2654 			break;
2655 		}
2656 		offset += foffset;
2657 		break;
2658 	case L_XTND:
2659 		error = vn_getsize(vp, &fsize, cred);
2660 		if (error != 0)
2661 			break;
2662 
2663 		/*
2664 		 * If the file references a disk device, then fetch
2665 		 * the media size and use that to determine the ending
2666 		 * offset.
2667 		 */
2668 		if (fsize == 0 && vp->v_type == VCHR &&
2669 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2670 			fsize = size;
2671 		if (noneg && offset > 0 && fsize > OFF_MAX - offset) {
2672 			error = EOVERFLOW;
2673 			break;
2674 		}
2675 		offset += fsize;
2676 		break;
2677 	case L_SET:
2678 		break;
2679 	case SEEK_DATA:
2680 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2681 		if (error == ENOTTY)
2682 			error = EINVAL;
2683 		break;
2684 	case SEEK_HOLE:
2685 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2686 		if (error == ENOTTY)
2687 			error = EINVAL;
2688 		break;
2689 	default:
2690 		error = EINVAL;
2691 	}
2692 	if (error == 0 && noneg && offset < 0)
2693 		error = EINVAL;
2694 	if (error != 0)
2695 		goto drop;
2696 	VFS_KNOTE_UNLOCKED(vp, 0);
2697 	td->td_uretoff.tdu_off = offset;
2698 drop:
2699 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2700 	return (error);
2701 }
2702 
2703 int
2704 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2705     struct thread *td)
2706 {
2707 	int error;
2708 
2709 	/*
2710 	 * Grant permission if the caller is the owner of the file, or
2711 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2712 	 * on the file.  If the time pointer is null, then write
2713 	 * permission on the file is also sufficient.
2714 	 *
2715 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2716 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2717 	 * will be allowed to set the times [..] to the current
2718 	 * server time.
2719 	 */
2720 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2721 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2722 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2723 	return (error);
2724 }
2725 
2726 int
2727 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2728 {
2729 	struct vnode *vp;
2730 	int error;
2731 
2732 	if (fp->f_type == DTYPE_FIFO)
2733 		kif->kf_type = KF_TYPE_FIFO;
2734 	else
2735 		kif->kf_type = KF_TYPE_VNODE;
2736 	vp = fp->f_vnode;
2737 	vref(vp);
2738 	FILEDESC_SUNLOCK(fdp);
2739 	error = vn_fill_kinfo_vnode(vp, kif);
2740 	vrele(vp);
2741 	FILEDESC_SLOCK(fdp);
2742 	return (error);
2743 }
2744 
2745 static inline void
2746 vn_fill_junk(struct kinfo_file *kif)
2747 {
2748 	size_t len, olen;
2749 
2750 	/*
2751 	 * Simulate vn_fullpath returning changing values for a given
2752 	 * vp during e.g. coredump.
2753 	 */
2754 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2755 	olen = strlen(kif->kf_path);
2756 	if (len < olen)
2757 		strcpy(&kif->kf_path[len - 1], "$");
2758 	else
2759 		for (; olen < len; olen++)
2760 			strcpy(&kif->kf_path[olen], "A");
2761 }
2762 
2763 int
2764 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2765 {
2766 	struct vattr va;
2767 	char *fullpath, *freepath;
2768 	int error;
2769 
2770 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2771 	freepath = NULL;
2772 	fullpath = "-";
2773 	error = vn_fullpath(vp, &fullpath, &freepath);
2774 	if (error == 0) {
2775 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2776 	}
2777 	if (freepath != NULL)
2778 		free(freepath, M_TEMP);
2779 
2780 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2781 		vn_fill_junk(kif);
2782 	);
2783 
2784 	/*
2785 	 * Retrieve vnode attributes.
2786 	 */
2787 	va.va_fsid = VNOVAL;
2788 	va.va_rdev = NODEV;
2789 	vn_lock(vp, LK_SHARED | LK_RETRY);
2790 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2791 	VOP_UNLOCK(vp);
2792 	if (error != 0)
2793 		return (error);
2794 	if (va.va_fsid != VNOVAL)
2795 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2796 	else
2797 		kif->kf_un.kf_file.kf_file_fsid =
2798 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2799 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2800 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2801 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2802 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2803 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2804 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2805 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2806 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2807 	kif->kf_un.kf_file.kf_file_nlink = va.va_nlink;
2808 	return (0);
2809 }
2810 
2811 int
2812 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2813     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2814     struct thread *td)
2815 {
2816 #ifdef HWPMC_HOOKS
2817 	struct pmckern_map_in pkm;
2818 #endif
2819 	struct mount *mp;
2820 	struct vnode *vp;
2821 	vm_object_t object;
2822 	vm_prot_t maxprot;
2823 	boolean_t writecounted;
2824 	int error;
2825 
2826 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2827     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2828 	/*
2829 	 * POSIX shared-memory objects are defined to have
2830 	 * kernel persistence, and are not defined to support
2831 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2832 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2833 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2834 	 * flag to request this behavior.
2835 	 */
2836 	if ((fp->f_flag & FPOSIXSHM) != 0)
2837 		flags |= MAP_NOSYNC;
2838 #endif
2839 	vp = fp->f_vnode;
2840 
2841 	/*
2842 	 * Ensure that file and memory protections are
2843 	 * compatible.  Note that we only worry about
2844 	 * writability if mapping is shared; in this case,
2845 	 * current and max prot are dictated by the open file.
2846 	 * XXX use the vnode instead?  Problem is: what
2847 	 * credentials do we use for determination? What if
2848 	 * proc does a setuid?
2849 	 */
2850 	mp = vp->v_mount;
2851 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2852 		maxprot = VM_PROT_NONE;
2853 		if ((prot & VM_PROT_EXECUTE) != 0)
2854 			return (EACCES);
2855 	} else
2856 		maxprot = VM_PROT_EXECUTE;
2857 	if ((fp->f_flag & FREAD) != 0)
2858 		maxprot |= VM_PROT_READ;
2859 	else if ((prot & VM_PROT_READ) != 0)
2860 		return (EACCES);
2861 
2862 	/*
2863 	 * If we are sharing potential changes via MAP_SHARED and we
2864 	 * are trying to get write permission although we opened it
2865 	 * without asking for it, bail out.
2866 	 */
2867 	if ((flags & MAP_SHARED) != 0) {
2868 		if ((fp->f_flag & FWRITE) != 0)
2869 			maxprot |= VM_PROT_WRITE;
2870 		else if ((prot & VM_PROT_WRITE) != 0)
2871 			return (EACCES);
2872 	} else {
2873 		maxprot |= VM_PROT_WRITE;
2874 		cap_maxprot |= VM_PROT_WRITE;
2875 	}
2876 	maxprot &= cap_maxprot;
2877 
2878 	/*
2879 	 * For regular files and shared memory, POSIX requires that
2880 	 * the value of foff be a legitimate offset within the data
2881 	 * object.  In particular, negative offsets are invalid.
2882 	 * Blocking negative offsets and overflows here avoids
2883 	 * possible wraparound or user-level access into reserved
2884 	 * ranges of the data object later.  In contrast, POSIX does
2885 	 * not dictate how offsets are used by device drivers, so in
2886 	 * the case of a device mapping a negative offset is passed
2887 	 * on.
2888 	 */
2889 	if (
2890 #ifdef _LP64
2891 	    size > OFF_MAX ||
2892 #endif
2893 	    foff > OFF_MAX - size)
2894 		return (EINVAL);
2895 
2896 	writecounted = FALSE;
2897 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2898 	    &foff, &object, &writecounted);
2899 	if (error != 0)
2900 		return (error);
2901 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2902 	    foff, writecounted, td);
2903 	if (error != 0) {
2904 		/*
2905 		 * If this mapping was accounted for in the vnode's
2906 		 * writecount, then undo that now.
2907 		 */
2908 		if (writecounted)
2909 			vm_pager_release_writecount(object, 0, size);
2910 		vm_object_deallocate(object);
2911 	}
2912 #ifdef HWPMC_HOOKS
2913 	/* Inform hwpmc(4) if an executable is being mapped. */
2914 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2915 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2916 			pkm.pm_file = vp;
2917 			pkm.pm_address = (uintptr_t) *addr;
2918 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2919 		}
2920 	}
2921 #endif
2922 	return (error);
2923 }
2924 
2925 void
2926 vn_fsid(struct vnode *vp, struct vattr *va)
2927 {
2928 	fsid_t *f;
2929 
2930 	f = &vp->v_mount->mnt_stat.f_fsid;
2931 	va->va_fsid = (uint32_t)f->val[1];
2932 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2933 	va->va_fsid += (uint32_t)f->val[0];
2934 }
2935 
2936 int
2937 vn_fsync_buf(struct vnode *vp, int waitfor)
2938 {
2939 	struct buf *bp, *nbp;
2940 	struct bufobj *bo;
2941 	struct mount *mp;
2942 	int error, maxretry;
2943 
2944 	error = 0;
2945 	maxretry = 10000;     /* large, arbitrarily chosen */
2946 	mp = NULL;
2947 	if (vp->v_type == VCHR) {
2948 		VI_LOCK(vp);
2949 		mp = vp->v_rdev->si_mountpt;
2950 		VI_UNLOCK(vp);
2951 	}
2952 	bo = &vp->v_bufobj;
2953 	BO_LOCK(bo);
2954 loop1:
2955 	/*
2956 	 * MARK/SCAN initialization to avoid infinite loops.
2957 	 */
2958         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2959 		bp->b_vflags &= ~BV_SCANNED;
2960 		bp->b_error = 0;
2961 	}
2962 
2963 	/*
2964 	 * Flush all dirty buffers associated with a vnode.
2965 	 */
2966 loop2:
2967 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2968 		if ((bp->b_vflags & BV_SCANNED) != 0)
2969 			continue;
2970 		bp->b_vflags |= BV_SCANNED;
2971 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2972 			if (waitfor != MNT_WAIT)
2973 				continue;
2974 			if (BUF_LOCK(bp,
2975 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2976 			    BO_LOCKPTR(bo)) != 0) {
2977 				BO_LOCK(bo);
2978 				goto loop1;
2979 			}
2980 			BO_LOCK(bo);
2981 		}
2982 		BO_UNLOCK(bo);
2983 		KASSERT(bp->b_bufobj == bo,
2984 		    ("bp %p wrong b_bufobj %p should be %p",
2985 		    bp, bp->b_bufobj, bo));
2986 		if ((bp->b_flags & B_DELWRI) == 0)
2987 			panic("fsync: not dirty");
2988 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2989 			vfs_bio_awrite(bp);
2990 		} else {
2991 			bremfree(bp);
2992 			bawrite(bp);
2993 		}
2994 		if (maxretry < 1000)
2995 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2996 		BO_LOCK(bo);
2997 		goto loop2;
2998 	}
2999 
3000 	/*
3001 	 * If synchronous the caller expects us to completely resolve all
3002 	 * dirty buffers in the system.  Wait for in-progress I/O to
3003 	 * complete (which could include background bitmap writes), then
3004 	 * retry if dirty blocks still exist.
3005 	 */
3006 	if (waitfor == MNT_WAIT) {
3007 		bufobj_wwait(bo, 0, 0);
3008 		if (bo->bo_dirty.bv_cnt > 0) {
3009 			/*
3010 			 * If we are unable to write any of these buffers
3011 			 * then we fail now rather than trying endlessly
3012 			 * to write them out.
3013 			 */
3014 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
3015 				if ((error = bp->b_error) != 0)
3016 					break;
3017 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
3018 			    (error == 0 && --maxretry >= 0))
3019 				goto loop1;
3020 			if (error == 0)
3021 				error = EAGAIN;
3022 		}
3023 	}
3024 	BO_UNLOCK(bo);
3025 	if (error != 0)
3026 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
3027 
3028 	return (error);
3029 }
3030 
3031 /*
3032  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
3033  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
3034  * to do the actual copy.
3035  * vn_generic_copy_file_range() is factored out, so it can be called
3036  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
3037  * different file systems.
3038  */
3039 int
3040 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
3041     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
3042     struct ucred *outcred, struct thread *fsize_td)
3043 {
3044 	int error;
3045 	size_t len;
3046 	uint64_t uval;
3047 
3048 	len = *lenp;
3049 	*lenp = 0;		/* For error returns. */
3050 	error = 0;
3051 
3052 	/* Do some sanity checks on the arguments. */
3053 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
3054 		error = EISDIR;
3055 	else if (*inoffp < 0 || *outoffp < 0 ||
3056 	    invp->v_type != VREG || outvp->v_type != VREG)
3057 		error = EINVAL;
3058 	if (error != 0)
3059 		goto out;
3060 
3061 	/* Ensure offset + len does not wrap around. */
3062 	uval = *inoffp;
3063 	uval += len;
3064 	if (uval > INT64_MAX)
3065 		len = INT64_MAX - *inoffp;
3066 	uval = *outoffp;
3067 	uval += len;
3068 	if (uval > INT64_MAX)
3069 		len = INT64_MAX - *outoffp;
3070 	if (len == 0)
3071 		goto out;
3072 
3073 	/*
3074 	 * If the two vnode are for the same file system, call
3075 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
3076 	 * which can handle copies across multiple file systems.
3077 	 */
3078 	*lenp = len;
3079 	if (invp->v_mount == outvp->v_mount)
3080 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
3081 		    lenp, flags, incred, outcred, fsize_td);
3082 	else
3083 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
3084 		    outoffp, lenp, flags, incred, outcred, fsize_td);
3085 out:
3086 	return (error);
3087 }
3088 
3089 /*
3090  * Test len bytes of data starting at dat for all bytes == 0.
3091  * Return true if all bytes are zero, false otherwise.
3092  * Expects dat to be well aligned.
3093  */
3094 static bool
3095 mem_iszero(void *dat, int len)
3096 {
3097 	int i;
3098 	const u_int *p;
3099 	const char *cp;
3100 
3101 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
3102 		if (len >= sizeof(*p)) {
3103 			if (*p != 0)
3104 				return (false);
3105 		} else {
3106 			cp = (const char *)p;
3107 			for (i = 0; i < len; i++, cp++)
3108 				if (*cp != '\0')
3109 					return (false);
3110 		}
3111 	}
3112 	return (true);
3113 }
3114 
3115 /*
3116  * Look for a hole in the output file and, if found, adjust *outoffp
3117  * and *xferp to skip past the hole.
3118  * *xferp is the entire hole length to be written and xfer2 is how many bytes
3119  * to be written as 0's upon return.
3120  */
3121 static off_t
3122 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3123     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3124 {
3125 	int error;
3126 	off_t delta;
3127 
3128 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3129 		*dataoffp = *outoffp;
3130 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3131 		    curthread);
3132 		if (error == 0) {
3133 			*holeoffp = *dataoffp;
3134 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3135 			    curthread);
3136 		}
3137 		if (error != 0 || *holeoffp == *dataoffp) {
3138 			/*
3139 			 * Since outvp is unlocked, it may be possible for
3140 			 * another thread to do a truncate(), lseek(), write()
3141 			 * creating a hole at startoff between the above
3142 			 * VOP_IOCTL() calls, if the other thread does not do
3143 			 * rangelocking.
3144 			 * If that happens, *holeoffp == *dataoffp and finding
3145 			 * the hole has failed, so disable vn_skip_hole().
3146 			 */
3147 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
3148 			return (xfer2);
3149 		}
3150 		KASSERT(*dataoffp >= *outoffp,
3151 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3152 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
3153 		KASSERT(*holeoffp > *dataoffp,
3154 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3155 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3156 	}
3157 
3158 	/*
3159 	 * If there is a hole before the data starts, advance *outoffp and
3160 	 * *xferp past the hole.
3161 	 */
3162 	if (*dataoffp > *outoffp) {
3163 		delta = *dataoffp - *outoffp;
3164 		if (delta >= *xferp) {
3165 			/* Entire *xferp is a hole. */
3166 			*outoffp += *xferp;
3167 			*xferp = 0;
3168 			return (0);
3169 		}
3170 		*xferp -= delta;
3171 		*outoffp += delta;
3172 		xfer2 = MIN(xfer2, *xferp);
3173 	}
3174 
3175 	/*
3176 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3177 	 * that the write ends at the start of the hole.
3178 	 * *holeoffp should always be greater than *outoffp, but for the
3179 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3180 	 * value.
3181 	 */
3182 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3183 		xfer2 = *holeoffp - *outoffp;
3184 	return (xfer2);
3185 }
3186 
3187 /*
3188  * Write an xfer sized chunk to outvp in blksize blocks from dat.
3189  * dat is a maximum of blksize in length and can be written repeatedly in
3190  * the chunk.
3191  * If growfile == true, just grow the file via vn_truncate_locked() instead
3192  * of doing actual writes.
3193  * If checkhole == true, a hole is being punched, so skip over any hole
3194  * already in the output file.
3195  */
3196 static int
3197 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3198     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3199 {
3200 	struct mount *mp;
3201 	off_t dataoff, holeoff, xfer2;
3202 	int error;
3203 
3204 	/*
3205 	 * Loop around doing writes of blksize until write has been completed.
3206 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3207 	 * done for each iteration, since the xfer argument can be very
3208 	 * large if there is a large hole to punch in the output file.
3209 	 */
3210 	error = 0;
3211 	holeoff = 0;
3212 	do {
3213 		xfer2 = MIN(xfer, blksize);
3214 		if (checkhole) {
3215 			/*
3216 			 * Punching a hole.  Skip writing if there is
3217 			 * already a hole in the output file.
3218 			 */
3219 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3220 			    &dataoff, &holeoff, cred);
3221 			if (xfer == 0)
3222 				break;
3223 			if (holeoff < 0)
3224 				checkhole = false;
3225 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3226 			    (intmax_t)xfer2));
3227 		}
3228 		bwillwrite();
3229 		mp = NULL;
3230 		error = vn_start_write(outvp, &mp, V_WAIT);
3231 		if (error != 0)
3232 			break;
3233 		if (growfile) {
3234 			error = vn_lock(outvp, LK_EXCLUSIVE);
3235 			if (error == 0) {
3236 				error = vn_truncate_locked(outvp, outoff + xfer,
3237 				    false, cred);
3238 				VOP_UNLOCK(outvp);
3239 			}
3240 		} else {
3241 			error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3242 			if (error == 0) {
3243 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3244 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3245 				    curthread->td_ucred, cred, NULL, curthread);
3246 				outoff += xfer2;
3247 				xfer -= xfer2;
3248 				VOP_UNLOCK(outvp);
3249 			}
3250 		}
3251 		if (mp != NULL)
3252 			vn_finished_write(mp);
3253 	} while (!growfile && xfer > 0 && error == 0);
3254 	return (error);
3255 }
3256 
3257 /*
3258  * Copy a byte range of one file to another.  This function can handle the
3259  * case where invp and outvp are on different file systems.
3260  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3261  * is no better file system specific way to do it.
3262  */
3263 int
3264 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3265     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3266     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3267 {
3268 	struct mount *mp;
3269 	off_t startoff, endoff, xfer, xfer2;
3270 	u_long blksize;
3271 	int error, interrupted;
3272 	bool cantseek, readzeros, eof, lastblock, holetoeof;
3273 	ssize_t aresid, r = 0;
3274 	size_t copylen, len, savlen;
3275 	off_t insize, outsize;
3276 	char *dat;
3277 	long holein, holeout;
3278 	struct timespec curts, endts;
3279 
3280 	holein = holeout = 0;
3281 	savlen = len = *lenp;
3282 	error = 0;
3283 	interrupted = 0;
3284 	dat = NULL;
3285 
3286 	error = vn_lock(invp, LK_SHARED);
3287 	if (error != 0)
3288 		goto out;
3289 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3290 		holein = 0;
3291 	if (holein > 0)
3292 		error = vn_getsize_locked(invp, &insize, incred);
3293 	VOP_UNLOCK(invp);
3294 	if (error != 0)
3295 		goto out;
3296 
3297 	mp = NULL;
3298 	error = vn_start_write(outvp, &mp, V_WAIT);
3299 	if (error == 0)
3300 		error = vn_lock(outvp, LK_EXCLUSIVE);
3301 	if (error == 0) {
3302 		/*
3303 		 * If fsize_td != NULL, do a vn_rlimit_fsizex() call,
3304 		 * now that outvp is locked.
3305 		 */
3306 		if (fsize_td != NULL) {
3307 			struct uio io;
3308 
3309 			io.uio_offset = *outoffp;
3310 			io.uio_resid = len;
3311 			error = vn_rlimit_fsizex(outvp, &io, 0, &r, fsize_td);
3312 			len = savlen = io.uio_resid;
3313 			/*
3314 			 * No need to call vn_rlimit_fsizex_res before return,
3315 			 * since the uio is local.
3316 			 */
3317 		}
3318 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3319 			holeout = 0;
3320 		/*
3321 		 * Holes that are past EOF do not need to be written as a block
3322 		 * of zero bytes.  So, truncate the output file as far as
3323 		 * possible and then use size to decide if writing 0
3324 		 * bytes is necessary in the loop below.
3325 		 */
3326 		if (error == 0)
3327 			error = vn_getsize_locked(outvp, &outsize, outcred);
3328 		if (error == 0 && outsize > *outoffp && outsize <= *outoffp + len) {
3329 #ifdef MAC
3330 			error = mac_vnode_check_write(curthread->td_ucred,
3331 			    outcred, outvp);
3332 			if (error == 0)
3333 #endif
3334 				error = vn_truncate_locked(outvp, *outoffp,
3335 				    false, outcred);
3336 			if (error == 0)
3337 				outsize = *outoffp;
3338 		}
3339 		VOP_UNLOCK(outvp);
3340 	}
3341 	if (mp != NULL)
3342 		vn_finished_write(mp);
3343 	if (error != 0)
3344 		goto out;
3345 
3346 	if (holein == 0 && holeout > 0) {
3347 		/*
3348 		 * For this special case, the input data will be scanned
3349 		 * for blocks of all 0 bytes.  For these blocks, the
3350 		 * write can be skipped for the output file to create
3351 		 * an unallocated region.
3352 		 * Therefore, use the appropriate size for the output file.
3353 		 */
3354 		blksize = holeout;
3355 		if (blksize <= 512) {
3356 			/*
3357 			 * Use f_iosize, since ZFS reports a _PC_MIN_HOLE_SIZE
3358 			 * of 512, although it actually only creates
3359 			 * unallocated regions for blocks >= f_iosize.
3360 			 */
3361 			blksize = outvp->v_mount->mnt_stat.f_iosize;
3362 		}
3363 	} else {
3364 		/*
3365 		 * Use the larger of the two f_iosize values.  If they are
3366 		 * not the same size, one will normally be an exact multiple of
3367 		 * the other, since they are both likely to be a power of 2.
3368 		 */
3369 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3370 		    outvp->v_mount->mnt_stat.f_iosize);
3371 	}
3372 
3373 	/* Clip to sane limits. */
3374 	if (blksize < 4096)
3375 		blksize = 4096;
3376 	else if (blksize > maxphys)
3377 		blksize = maxphys;
3378 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3379 
3380 	/*
3381 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3382 	 * to find holes.  Otherwise, just scan the read block for all 0s
3383 	 * in the inner loop where the data copying is done.
3384 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3385 	 * support holes on the server, but do not support FIOSEEKHOLE.
3386 	 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3387 	 * that this function should return after 1second with a partial
3388 	 * completion.
3389 	 */
3390 	if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3391 		getnanouptime(&endts);
3392 		endts.tv_sec++;
3393 	} else
3394 		timespecclear(&endts);
3395 	holetoeof = eof = false;
3396 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3397 		endoff = 0;			/* To shut up compilers. */
3398 		cantseek = true;
3399 		startoff = *inoffp;
3400 		copylen = len;
3401 
3402 		/*
3403 		 * Find the next data area.  If there is just a hole to EOF,
3404 		 * FIOSEEKDATA should fail with ENXIO.
3405 		 * (I do not know if any file system will report a hole to
3406 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3407 		 *  will fail for those file systems.)
3408 		 *
3409 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3410 		 * the code just falls through to the inner copy loop.
3411 		 */
3412 		error = EINVAL;
3413 		if (holein > 0) {
3414 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3415 			    incred, curthread);
3416 			if (error == ENXIO) {
3417 				startoff = endoff = insize;
3418 				eof = holetoeof = true;
3419 				error = 0;
3420 			}
3421 		}
3422 		if (error == 0 && !holetoeof) {
3423 			endoff = startoff;
3424 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3425 			    incred, curthread);
3426 			/*
3427 			 * Since invp is unlocked, it may be possible for
3428 			 * another thread to do a truncate(), lseek(), write()
3429 			 * creating a hole at startoff between the above
3430 			 * VOP_IOCTL() calls, if the other thread does not do
3431 			 * rangelocking.
3432 			 * If that happens, startoff == endoff and finding
3433 			 * the hole has failed, so set an error.
3434 			 */
3435 			if (error == 0 && startoff == endoff)
3436 				error = EINVAL; /* Any error. Reset to 0. */
3437 		}
3438 		if (error == 0) {
3439 			if (startoff > *inoffp) {
3440 				/* Found hole before data block. */
3441 				xfer = MIN(startoff - *inoffp, len);
3442 				if (*outoffp < outsize) {
3443 					/* Must write 0s to punch hole. */
3444 					xfer2 = MIN(outsize - *outoffp,
3445 					    xfer);
3446 					memset(dat, 0, MIN(xfer2, blksize));
3447 					error = vn_write_outvp(outvp, dat,
3448 					    *outoffp, xfer2, blksize, false,
3449 					    holeout > 0, outcred);
3450 				}
3451 
3452 				if (error == 0 && *outoffp + xfer >
3453 				    outsize && (xfer == len || holetoeof)) {
3454 					/* Grow output file (hole at end). */
3455 					error = vn_write_outvp(outvp, dat,
3456 					    *outoffp, xfer, blksize, true,
3457 					    false, outcred);
3458 				}
3459 				if (error == 0) {
3460 					*inoffp += xfer;
3461 					*outoffp += xfer;
3462 					len -= xfer;
3463 					if (len < savlen) {
3464 						interrupted = sig_intr();
3465 						if (timespecisset(&endts) &&
3466 						    interrupted == 0) {
3467 							getnanouptime(&curts);
3468 							if (timespeccmp(&curts,
3469 							    &endts, >=))
3470 								interrupted =
3471 								    EINTR;
3472 						}
3473 					}
3474 				}
3475 			}
3476 			copylen = MIN(len, endoff - startoff);
3477 			cantseek = false;
3478 		} else {
3479 			cantseek = true;
3480 			startoff = *inoffp;
3481 			copylen = len;
3482 			error = 0;
3483 		}
3484 
3485 		xfer = blksize;
3486 		if (cantseek) {
3487 			/*
3488 			 * Set first xfer to end at a block boundary, so that
3489 			 * holes are more likely detected in the loop below via
3490 			 * the for all bytes 0 method.
3491 			 */
3492 			xfer -= (*inoffp % blksize);
3493 		}
3494 		/* Loop copying the data block. */
3495 		while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
3496 			if (copylen < xfer)
3497 				xfer = copylen;
3498 			error = vn_lock(invp, LK_SHARED);
3499 			if (error != 0)
3500 				goto out;
3501 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3502 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3503 			    curthread->td_ucred, incred, &aresid,
3504 			    curthread);
3505 			VOP_UNLOCK(invp);
3506 			lastblock = false;
3507 			if (error == 0 && aresid > 0) {
3508 				/* Stop the copy at EOF on the input file. */
3509 				xfer -= aresid;
3510 				eof = true;
3511 				lastblock = true;
3512 			}
3513 			if (error == 0) {
3514 				/*
3515 				 * Skip the write for holes past the initial EOF
3516 				 * of the output file, unless this is the last
3517 				 * write of the output file at EOF.
3518 				 */
3519 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3520 				    false;
3521 				if (xfer == len)
3522 					lastblock = true;
3523 				if (!cantseek || *outoffp < outsize ||
3524 				    lastblock || !readzeros)
3525 					error = vn_write_outvp(outvp, dat,
3526 					    *outoffp, xfer, blksize,
3527 					    readzeros && lastblock &&
3528 					    *outoffp >= outsize, false,
3529 					    outcred);
3530 				if (error == 0) {
3531 					*inoffp += xfer;
3532 					startoff += xfer;
3533 					*outoffp += xfer;
3534 					copylen -= xfer;
3535 					len -= xfer;
3536 					if (len < savlen) {
3537 						interrupted = sig_intr();
3538 						if (timespecisset(&endts) &&
3539 						    interrupted == 0) {
3540 							getnanouptime(&curts);
3541 							if (timespeccmp(&curts,
3542 							    &endts, >=))
3543 								interrupted =
3544 								    EINTR;
3545 						}
3546 					}
3547 				}
3548 			}
3549 			xfer = blksize;
3550 		}
3551 	}
3552 out:
3553 	*lenp = savlen - len;
3554 	free(dat, M_TEMP);
3555 	return (error);
3556 }
3557 
3558 static int
3559 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3560 {
3561 	struct mount *mp;
3562 	struct vnode *vp;
3563 	off_t olen, ooffset;
3564 	int error;
3565 #ifdef AUDIT
3566 	int audited_vnode1 = 0;
3567 #endif
3568 
3569 	vp = fp->f_vnode;
3570 	if (vp->v_type != VREG)
3571 		return (ENODEV);
3572 
3573 	/* Allocating blocks may take a long time, so iterate. */
3574 	for (;;) {
3575 		olen = len;
3576 		ooffset = offset;
3577 
3578 		bwillwrite();
3579 		mp = NULL;
3580 		error = vn_start_write(vp, &mp, V_WAIT | V_PCATCH);
3581 		if (error != 0)
3582 			break;
3583 		error = vn_lock(vp, LK_EXCLUSIVE);
3584 		if (error != 0) {
3585 			vn_finished_write(mp);
3586 			break;
3587 		}
3588 #ifdef AUDIT
3589 		if (!audited_vnode1) {
3590 			AUDIT_ARG_VNODE1(vp);
3591 			audited_vnode1 = 1;
3592 		}
3593 #endif
3594 #ifdef MAC
3595 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3596 		if (error == 0)
3597 #endif
3598 			error = VOP_ALLOCATE(vp, &offset, &len, 0,
3599 			    td->td_ucred);
3600 		VOP_UNLOCK(vp);
3601 		vn_finished_write(mp);
3602 
3603 		if (olen + ooffset != offset + len) {
3604 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3605 			    ooffset, olen, offset, len);
3606 		}
3607 		if (error != 0 || len == 0)
3608 			break;
3609 		KASSERT(olen > len, ("Iteration did not make progress?"));
3610 		maybe_yield();
3611 	}
3612 
3613 	return (error);
3614 }
3615 
3616 static int
3617 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3618     int ioflag, struct ucred *cred, struct ucred *active_cred,
3619     struct ucred *file_cred)
3620 {
3621 	struct mount *mp;
3622 	void *rl_cookie;
3623 	off_t off, len;
3624 	int error;
3625 #ifdef AUDIT
3626 	bool audited_vnode1 = false;
3627 #endif
3628 
3629 	rl_cookie = NULL;
3630 	error = 0;
3631 	mp = NULL;
3632 	off = *offset;
3633 	len = *length;
3634 
3635 	if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3636 		rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3637 	while (len > 0 && error == 0) {
3638 		/*
3639 		 * Try to deallocate the longest range in one pass.
3640 		 * In case a pass takes too long to be executed, it returns
3641 		 * partial result. The residue will be proceeded in the next
3642 		 * pass.
3643 		 */
3644 
3645 		if ((ioflag & IO_NODELOCKED) == 0) {
3646 			bwillwrite();
3647 			if ((error = vn_start_write(vp, &mp,
3648 			    V_WAIT | V_PCATCH)) != 0)
3649 				goto out;
3650 			vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3651 		}
3652 #ifdef AUDIT
3653 		if (!audited_vnode1) {
3654 			AUDIT_ARG_VNODE1(vp);
3655 			audited_vnode1 = true;
3656 		}
3657 #endif
3658 
3659 #ifdef MAC
3660 		if ((ioflag & IO_NOMACCHECK) == 0)
3661 			error = mac_vnode_check_write(active_cred, file_cred,
3662 			    vp);
3663 #endif
3664 		if (error == 0)
3665 			error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3666 			    cred);
3667 
3668 		if ((ioflag & IO_NODELOCKED) == 0) {
3669 			VOP_UNLOCK(vp);
3670 			if (mp != NULL) {
3671 				vn_finished_write(mp);
3672 				mp = NULL;
3673 			}
3674 		}
3675 		if (error == 0 && len != 0)
3676 			maybe_yield();
3677 	}
3678 out:
3679 	if (rl_cookie != NULL)
3680 		vn_rangelock_unlock(vp, rl_cookie);
3681 	*offset = off;
3682 	*length = len;
3683 	return (error);
3684 }
3685 
3686 /*
3687  * This function is supposed to be used in the situations where the deallocation
3688  * is not triggered by a user request.
3689  */
3690 int
3691 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3692     int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3693 {
3694 	struct ucred *cred;
3695 
3696 	if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3697 	    flags != 0)
3698 		return (EINVAL);
3699 	if (vp->v_type != VREG)
3700 		return (ENODEV);
3701 
3702 	cred = file_cred != NOCRED ? file_cred : active_cred;
3703 	return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3704 	    active_cred, file_cred));
3705 }
3706 
3707 static int
3708 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3709     struct ucred *active_cred, struct thread *td)
3710 {
3711 	int error;
3712 	struct vnode *vp;
3713 	int ioflag;
3714 
3715 	KASSERT(cmd == SPACECTL_DEALLOC, ("vn_fspacectl: Invalid cmd"));
3716 	KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
3717 	    ("vn_fspacectl: non-zero flags"));
3718 	KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
3719 	    ("vn_fspacectl: offset/length overflow or underflow"));
3720 	vp = fp->f_vnode;
3721 
3722 	if (vp->v_type != VREG)
3723 		return (ENODEV);
3724 
3725 	ioflag = get_write_ioflag(fp);
3726 
3727 	switch (cmd) {
3728 	case SPACECTL_DEALLOC:
3729 		error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3730 		    active_cred, active_cred, fp->f_cred);
3731 		break;
3732 	default:
3733 		panic("vn_fspacectl: unknown cmd %d", cmd);
3734 	}
3735 
3736 	return (error);
3737 }
3738 
3739 static u_long vn_lock_pair_pause_cnt;
3740 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
3741     &vn_lock_pair_pause_cnt, 0,
3742     "Count of vn_lock_pair deadlocks");
3743 
3744 u_int vn_lock_pair_pause_max;
3745 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
3746     &vn_lock_pair_pause_max, 0,
3747     "Max ticks for vn_lock_pair deadlock avoidance sleep");
3748 
3749 static void
3750 vn_lock_pair_pause(const char *wmesg)
3751 {
3752 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
3753 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
3754 }
3755 
3756 /*
3757  * Lock pair of vnodes vp1, vp2, avoiding lock order reversal.
3758  * vp1_locked indicates whether vp1 is locked; if not, vp1 must be
3759  * unlocked.  Same for vp2 and vp2_locked.  One of the vnodes can be
3760  * NULL.
3761  *
3762  * The function returns with both vnodes exclusively or shared locked,
3763  * according to corresponding lkflags, and guarantees that it does not
3764  * create lock order reversal with other threads during its execution.
3765  * Both vnodes could be unlocked temporary (and reclaimed).
3766  *
3767  * If requesting shared locking, locked vnode lock must not be recursed.
3768  */
3769 void
3770 vn_lock_pair(struct vnode *vp1, bool vp1_locked, int lkflags1,
3771     struct vnode *vp2, bool vp2_locked, int lkflags2)
3772 {
3773 	int error;
3774 
3775 	MPASS(lkflags1 == LK_SHARED || lkflags1 == LK_EXCLUSIVE);
3776 	MPASS(lkflags2 == LK_SHARED || lkflags2 == LK_EXCLUSIVE);
3777 
3778 	if (vp1 == NULL && vp2 == NULL)
3779 		return;
3780 
3781 	if (vp1 != NULL) {
3782 		if (lkflags1 == LK_SHARED &&
3783 		    (vp1->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
3784 			lkflags1 = LK_EXCLUSIVE;
3785 		if (vp1_locked && VOP_ISLOCKED(vp1) != LK_EXCLUSIVE) {
3786 			ASSERT_VOP_LOCKED(vp1, "vp1");
3787 			if (lkflags1 == LK_EXCLUSIVE) {
3788 				VOP_UNLOCK(vp1);
3789 				ASSERT_VOP_UNLOCKED(vp1,
3790 				    "vp1 shared recursed");
3791 				vp1_locked = false;
3792 			}
3793 		} else if (!vp1_locked)
3794 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
3795 	} else {
3796 		vp1_locked = true;
3797 	}
3798 
3799 	if (vp2 != NULL) {
3800 		if (lkflags2 == LK_SHARED &&
3801 		    (vp2->v_vnlock->lock_object.lo_flags & LK_NOSHARE) != 0)
3802 			lkflags2 = LK_EXCLUSIVE;
3803 		if (vp2_locked && VOP_ISLOCKED(vp2) != LK_EXCLUSIVE) {
3804 			ASSERT_VOP_LOCKED(vp2, "vp2");
3805 			if (lkflags2 == LK_EXCLUSIVE) {
3806 				VOP_UNLOCK(vp2);
3807 				ASSERT_VOP_UNLOCKED(vp2,
3808 				    "vp2 shared recursed");
3809 				vp2_locked = false;
3810 			}
3811 		} else if (!vp2_locked)
3812 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
3813 	} else {
3814 		vp2_locked = true;
3815 	}
3816 
3817 	if (!vp1_locked && !vp2_locked) {
3818 		vn_lock(vp1, lkflags1 | LK_RETRY);
3819 		vp1_locked = true;
3820 	}
3821 
3822 	while (!vp1_locked || !vp2_locked) {
3823 		if (vp1_locked && vp2 != NULL) {
3824 			if (vp1 != NULL) {
3825 				error = VOP_LOCK1(vp2, lkflags2 | LK_NOWAIT,
3826 				    __FILE__, __LINE__);
3827 				if (error == 0)
3828 					break;
3829 				VOP_UNLOCK(vp1);
3830 				vp1_locked = false;
3831 				vn_lock_pair_pause("vlp1");
3832 			}
3833 			vn_lock(vp2, lkflags2 | LK_RETRY);
3834 			vp2_locked = true;
3835 		}
3836 		if (vp2_locked && vp1 != NULL) {
3837 			if (vp2 != NULL) {
3838 				error = VOP_LOCK1(vp1, lkflags1 | LK_NOWAIT,
3839 				    __FILE__, __LINE__);
3840 				if (error == 0)
3841 					break;
3842 				VOP_UNLOCK(vp2);
3843 				vp2_locked = false;
3844 				vn_lock_pair_pause("vlp2");
3845 			}
3846 			vn_lock(vp1, lkflags1 | LK_RETRY);
3847 			vp1_locked = true;
3848 		}
3849 	}
3850 	if (vp1 != NULL) {
3851 		if (lkflags1 == LK_EXCLUSIVE)
3852 			ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
3853 		else
3854 			ASSERT_VOP_LOCKED(vp1, "vp1 ret");
3855 	}
3856 	if (vp2 != NULL) {
3857 		if (lkflags2 == LK_EXCLUSIVE)
3858 			ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
3859 		else
3860 			ASSERT_VOP_LOCKED(vp2, "vp2 ret");
3861 	}
3862 }
3863 
3864 int
3865 vn_lktype_write(struct mount *mp, struct vnode *vp)
3866 {
3867 	if (MNT_SHARED_WRITES(mp) ||
3868 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
3869 		return (LK_SHARED);
3870 	return (LK_EXCLUSIVE);
3871 }
3872