xref: /freebsd/sys/kern/vfs_vnops.c (revision ce9de47260d4edc963a94140789e4a52642c28e6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/prng.h>
74 #include <sys/sx.h>
75 #include <sys/sleepqueue.h>
76 #include <sys/sysctl.h>
77 #include <sys/ttycom.h>
78 #include <sys/conf.h>
79 #include <sys/syslog.h>
80 #include <sys/unistd.h>
81 #include <sys/user.h>
82 
83 #include <security/audit/audit.h>
84 #include <security/mac/mac_framework.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pager.h>
93 
94 #ifdef HWPMC_HOOKS
95 #include <sys/pmckern.h>
96 #endif
97 
98 static fo_rdwr_t	vn_read;
99 static fo_rdwr_t	vn_write;
100 static fo_rdwr_t	vn_io_fault;
101 static fo_truncate_t	vn_truncate;
102 static fo_ioctl_t	vn_ioctl;
103 static fo_poll_t	vn_poll;
104 static fo_kqfilter_t	vn_kqfilter;
105 static fo_close_t	vn_closefile;
106 static fo_mmap_t	vn_mmap;
107 static fo_fallocate_t	vn_fallocate;
108 
109 struct 	fileops vnops = {
110 	.fo_read = vn_io_fault,
111 	.fo_write = vn_io_fault,
112 	.fo_truncate = vn_truncate,
113 	.fo_ioctl = vn_ioctl,
114 	.fo_poll = vn_poll,
115 	.fo_kqfilter = vn_kqfilter,
116 	.fo_stat = vn_statfile,
117 	.fo_close = vn_closefile,
118 	.fo_chmod = vn_chmod,
119 	.fo_chown = vn_chown,
120 	.fo_sendfile = vn_sendfile,
121 	.fo_seek = vn_seek,
122 	.fo_fill_kinfo = vn_fill_kinfo,
123 	.fo_mmap = vn_mmap,
124 	.fo_fallocate = vn_fallocate,
125 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
126 };
127 
128 const u_int io_hold_cnt = 16;
129 static int vn_io_fault_enable = 1;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
131     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
132 static int vn_io_fault_prefault = 0;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
134     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
135 static int vn_io_pgcache_read_enable = 1;
136 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
137     &vn_io_pgcache_read_enable, 0,
138     "Enable copying from page cache for reads, avoiding fs");
139 static u_long vn_io_faults_cnt;
140 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
141     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
142 
143 static int vfs_allow_read_dir = 0;
144 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
145     &vfs_allow_read_dir, 0,
146     "Enable read(2) of directory by root for filesystems that support it");
147 
148 /*
149  * Returns true if vn_io_fault mode of handling the i/o request should
150  * be used.
151  */
152 static bool
153 do_vn_io_fault(struct vnode *vp, struct uio *uio)
154 {
155 	struct mount *mp;
156 
157 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
158 	    (mp = vp->v_mount) != NULL &&
159 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
160 }
161 
162 /*
163  * Structure used to pass arguments to vn_io_fault1(), to do either
164  * file- or vnode-based I/O calls.
165  */
166 struct vn_io_fault_args {
167 	enum {
168 		VN_IO_FAULT_FOP,
169 		VN_IO_FAULT_VOP
170 	} kind;
171 	struct ucred *cred;
172 	int flags;
173 	union {
174 		struct fop_args_tag {
175 			struct file *fp;
176 			fo_rdwr_t *doio;
177 		} fop_args;
178 		struct vop_args_tag {
179 			struct vnode *vp;
180 		} vop_args;
181 	} args;
182 };
183 
184 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
185     struct vn_io_fault_args *args, struct thread *td);
186 
187 int
188 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
189 {
190 	struct thread *td = ndp->ni_cnd.cn_thread;
191 
192 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
193 }
194 
195 static uint64_t
196 open2nameif(int fmode, u_int vn_open_flags)
197 {
198 	uint64_t res;
199 
200 	res = ISOPEN | LOCKLEAF;
201 	if ((fmode & O_RESOLVE_BENEATH) != 0)
202 		res |= RBENEATH;
203 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
204 		res |= AUDITVNODE1;
205 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
206 		res |= NOCAPCHECK;
207 	return (res);
208 }
209 
210 /*
211  * Common code for vnode open operations via a name lookup.
212  * Lookup the vnode and invoke VOP_CREATE if needed.
213  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
214  *
215  * Note that this does NOT free nameidata for the successful case,
216  * due to the NDINIT being done elsewhere.
217  */
218 int
219 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
220     struct ucred *cred, struct file *fp)
221 {
222 	struct vnode *vp;
223 	struct mount *mp;
224 	struct thread *td = ndp->ni_cnd.cn_thread;
225 	struct vattr vat;
226 	struct vattr *vap = &vat;
227 	int fmode, error;
228 	bool first_open;
229 
230 restart:
231 	first_open = false;
232 	fmode = *flagp;
233 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
234 	    O_EXCL | O_DIRECTORY))
235 		return (EINVAL);
236 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
237 		ndp->ni_cnd.cn_nameiop = CREATE;
238 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
239 		/*
240 		 * Set NOCACHE to avoid flushing the cache when
241 		 * rolling in many files at once.
242 		 *
243 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
244 		 * exist despite NOCACHE.
245 		 */
246 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
247 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
248 			ndp->ni_cnd.cn_flags |= FOLLOW;
249 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
250 			bwillwrite();
251 		if ((error = namei(ndp)) != 0)
252 			return (error);
253 		if (ndp->ni_vp == NULL) {
254 			VATTR_NULL(vap);
255 			vap->va_type = VREG;
256 			vap->va_mode = cmode;
257 			if (fmode & O_EXCL)
258 				vap->va_vaflags |= VA_EXCLUSIVE;
259 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
260 				NDFREE(ndp, NDF_ONLY_PNBUF);
261 				vput(ndp->ni_dvp);
262 				if ((error = vn_start_write(NULL, &mp,
263 				    V_XSLEEP | PCATCH)) != 0)
264 					return (error);
265 				NDREINIT(ndp);
266 				goto restart;
267 			}
268 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
269 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
270 #ifdef MAC
271 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
272 			    &ndp->ni_cnd, vap);
273 			if (error == 0)
274 #endif
275 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
276 				    &ndp->ni_cnd, vap);
277 			vp = ndp->ni_vp;
278 			if (error == 0 && (fmode & O_EXCL) != 0 &&
279 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
280 				VI_LOCK(vp);
281 				vp->v_iflag |= VI_FOPENING;
282 				VI_UNLOCK(vp);
283 				first_open = true;
284 			}
285 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
286 			    false);
287 			vn_finished_write(mp);
288 			if (error) {
289 				NDFREE(ndp, NDF_ONLY_PNBUF);
290 				if (error == ERELOOKUP) {
291 					NDREINIT(ndp);
292 					goto restart;
293 				}
294 				return (error);
295 			}
296 			fmode &= ~O_TRUNC;
297 		} else {
298 			if (ndp->ni_dvp == ndp->ni_vp)
299 				vrele(ndp->ni_dvp);
300 			else
301 				vput(ndp->ni_dvp);
302 			ndp->ni_dvp = NULL;
303 			vp = ndp->ni_vp;
304 			if (fmode & O_EXCL) {
305 				error = EEXIST;
306 				goto bad;
307 			}
308 			if (vp->v_type == VDIR) {
309 				error = EISDIR;
310 				goto bad;
311 			}
312 			fmode &= ~O_CREAT;
313 		}
314 	} else {
315 		ndp->ni_cnd.cn_nameiop = LOOKUP;
316 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
317 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
318 		    FOLLOW;
319 		if ((fmode & FWRITE) == 0)
320 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
321 		if ((error = namei(ndp)) != 0)
322 			return (error);
323 		vp = ndp->ni_vp;
324 	}
325 	error = vn_open_vnode(vp, fmode, cred, td, fp);
326 	if (first_open) {
327 		VI_LOCK(vp);
328 		vp->v_iflag &= ~VI_FOPENING;
329 		wakeup(vp);
330 		VI_UNLOCK(vp);
331 	}
332 	if (error)
333 		goto bad;
334 	*flagp = fmode;
335 	return (0);
336 bad:
337 	NDFREE(ndp, NDF_ONLY_PNBUF);
338 	vput(vp);
339 	*flagp = fmode;
340 	ndp->ni_vp = NULL;
341 	return (error);
342 }
343 
344 static int
345 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
346 {
347 	struct flock lf;
348 	int error, lock_flags, type;
349 
350 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
351 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
352 		return (0);
353 	KASSERT(fp != NULL, ("open with flock requires fp"));
354 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
355 		return (EOPNOTSUPP);
356 
357 	lock_flags = VOP_ISLOCKED(vp);
358 	VOP_UNLOCK(vp);
359 
360 	lf.l_whence = SEEK_SET;
361 	lf.l_start = 0;
362 	lf.l_len = 0;
363 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
364 	type = F_FLOCK;
365 	if ((fmode & FNONBLOCK) == 0)
366 		type |= F_WAIT;
367 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
368 		type |= F_FIRSTOPEN;
369 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
370 	if (error == 0)
371 		fp->f_flag |= FHASLOCK;
372 
373 	vn_lock(vp, lock_flags | LK_RETRY);
374 	return (error);
375 }
376 
377 /*
378  * Common code for vnode open operations once a vnode is located.
379  * Check permissions, and call the VOP_OPEN routine.
380  */
381 int
382 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
383     struct thread *td, struct file *fp)
384 {
385 	accmode_t accmode;
386 	int error;
387 
388 	if (vp->v_type == VLNK) {
389 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
390 			return (EMLINK);
391 	}
392 	if (vp->v_type == VSOCK)
393 		return (EOPNOTSUPP);
394 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
395 		return (ENOTDIR);
396 
397 	accmode = 0;
398 	if ((fmode & O_PATH) == 0) {
399 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
400 			if (vp->v_type == VDIR)
401 				return (EISDIR);
402 			accmode |= VWRITE;
403 		}
404 		if ((fmode & FREAD) != 0)
405 			accmode |= VREAD;
406 		if ((fmode & O_APPEND) && (fmode & FWRITE))
407 			accmode |= VAPPEND;
408 #ifdef MAC
409 		if ((fmode & O_CREAT) != 0)
410 			accmode |= VCREAT;
411 #endif
412 	}
413 	if ((fmode & FEXEC) != 0)
414 		accmode |= VEXEC;
415 #ifdef MAC
416 	if ((fmode & O_VERIFY) != 0)
417 		accmode |= VVERIFY;
418 	error = mac_vnode_check_open(cred, vp, accmode);
419 	if (error != 0)
420 		return (error);
421 
422 	accmode &= ~(VCREAT | VVERIFY);
423 #endif
424 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
425 		error = VOP_ACCESS(vp, accmode, cred, td);
426 		if (error != 0)
427 			return (error);
428 	}
429 	if ((fmode & O_PATH) != 0) {
430 		if (vp->v_type == VFIFO)
431 			error = EPIPE;
432 		else
433 			error = VOP_ACCESS(vp, VREAD, cred, td);
434 		if (error == 0)
435 			fp->f_flag |= FKQALLOWED;
436 		return (0);
437 	}
438 
439 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
440 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
441 	error = VOP_OPEN(vp, fmode, cred, td, fp);
442 	if (error != 0)
443 		return (error);
444 
445 	error = vn_open_vnode_advlock(vp, fmode, fp);
446 	if (error == 0 && (fmode & FWRITE) != 0) {
447 		error = VOP_ADD_WRITECOUNT(vp, 1);
448 		if (error == 0) {
449 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
450 			     __func__, vp, vp->v_writecount);
451 		}
452 	}
453 
454 	/*
455 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
456 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
457 	 */
458 	if (error != 0) {
459 		if (fp != NULL) {
460 			/*
461 			 * Arrange the call by having fdrop() to use
462 			 * vn_closefile().  This is to satisfy
463 			 * filesystems like devfs or tmpfs, which
464 			 * override fo_close().
465 			 */
466 			fp->f_flag |= FOPENFAILED;
467 			fp->f_vnode = vp;
468 			if (fp->f_ops == &badfileops) {
469 				fp->f_type = DTYPE_VNODE;
470 				fp->f_ops = &vnops;
471 			}
472 			vref(vp);
473 		} else {
474 			/*
475 			 * If there is no fp, due to kernel-mode open,
476 			 * we can call VOP_CLOSE() now.
477 			 */
478 			if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 &&
479 			    !MNT_EXTENDED_SHARED(vp->v_mount) &&
480 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
481 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
482 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
483 			    cred, td);
484 		}
485 	}
486 
487 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
488 	return (error);
489 
490 }
491 
492 /*
493  * Check for write permissions on the specified vnode.
494  * Prototype text segments cannot be written.
495  * It is racy.
496  */
497 int
498 vn_writechk(struct vnode *vp)
499 {
500 
501 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
502 	/*
503 	 * If there's shared text associated with
504 	 * the vnode, try to free it up once.  If
505 	 * we fail, we can't allow writing.
506 	 */
507 	if (VOP_IS_TEXT(vp))
508 		return (ETXTBSY);
509 
510 	return (0);
511 }
512 
513 /*
514  * Vnode close call
515  */
516 static int
517 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
518     struct thread *td, bool keep_ref)
519 {
520 	struct mount *mp;
521 	int error, lock_flags;
522 
523 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
524 	    MNT_EXTENDED_SHARED(vp->v_mount))
525 		lock_flags = LK_SHARED;
526 	else
527 		lock_flags = LK_EXCLUSIVE;
528 
529 	vn_start_write(vp, &mp, V_WAIT);
530 	vn_lock(vp, lock_flags | LK_RETRY);
531 	AUDIT_ARG_VNODE1(vp);
532 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
533 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
534 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
535 		    __func__, vp, vp->v_writecount);
536 	}
537 	error = VOP_CLOSE(vp, flags, file_cred, td);
538 	if (keep_ref)
539 		VOP_UNLOCK(vp);
540 	else
541 		vput(vp);
542 	vn_finished_write(mp);
543 	return (error);
544 }
545 
546 int
547 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
548     struct thread *td)
549 {
550 
551 	return (vn_close1(vp, flags, file_cred, td, false));
552 }
553 
554 /*
555  * Heuristic to detect sequential operation.
556  */
557 static int
558 sequential_heuristic(struct uio *uio, struct file *fp)
559 {
560 	enum uio_rw rw;
561 
562 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
563 
564 	rw = uio->uio_rw;
565 	if (fp->f_flag & FRDAHEAD)
566 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
567 
568 	/*
569 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
570 	 * that the first I/O is normally considered to be slightly
571 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
572 	 * unless previous seeks have reduced f_seqcount to 0, in which
573 	 * case offset 0 is not special.
574 	 */
575 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
576 	    uio->uio_offset == fp->f_nextoff[rw]) {
577 		/*
578 		 * f_seqcount is in units of fixed-size blocks so that it
579 		 * depends mainly on the amount of sequential I/O and not
580 		 * much on the number of sequential I/O's.  The fixed size
581 		 * of 16384 is hard-coded here since it is (not quite) just
582 		 * a magic size that works well here.  This size is more
583 		 * closely related to the best I/O size for real disks than
584 		 * to any block size used by software.
585 		 */
586 		if (uio->uio_resid >= IO_SEQMAX * 16384)
587 			fp->f_seqcount[rw] = IO_SEQMAX;
588 		else {
589 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
590 			if (fp->f_seqcount[rw] > IO_SEQMAX)
591 				fp->f_seqcount[rw] = IO_SEQMAX;
592 		}
593 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
594 	}
595 
596 	/* Not sequential.  Quickly draw-down sequentiality. */
597 	if (fp->f_seqcount[rw] > 1)
598 		fp->f_seqcount[rw] = 1;
599 	else
600 		fp->f_seqcount[rw] = 0;
601 	return (0);
602 }
603 
604 /*
605  * Package up an I/O request on a vnode into a uio and do it.
606  */
607 int
608 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
609     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
610     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
611 {
612 	struct uio auio;
613 	struct iovec aiov;
614 	struct mount *mp;
615 	struct ucred *cred;
616 	void *rl_cookie;
617 	struct vn_io_fault_args args;
618 	int error, lock_flags;
619 
620 	if (offset < 0 && vp->v_type != VCHR)
621 		return (EINVAL);
622 	auio.uio_iov = &aiov;
623 	auio.uio_iovcnt = 1;
624 	aiov.iov_base = base;
625 	aiov.iov_len = len;
626 	auio.uio_resid = len;
627 	auio.uio_offset = offset;
628 	auio.uio_segflg = segflg;
629 	auio.uio_rw = rw;
630 	auio.uio_td = td;
631 	error = 0;
632 
633 	if ((ioflg & IO_NODELOCKED) == 0) {
634 		if ((ioflg & IO_RANGELOCKED) == 0) {
635 			if (rw == UIO_READ) {
636 				rl_cookie = vn_rangelock_rlock(vp, offset,
637 				    offset + len);
638 			} else if ((ioflg & IO_APPEND) != 0) {
639 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
640 			} else {
641 				rl_cookie = vn_rangelock_wlock(vp, offset,
642 				    offset + len);
643 			}
644 		} else
645 			rl_cookie = NULL;
646 		mp = NULL;
647 		if (rw == UIO_WRITE) {
648 			if (vp->v_type != VCHR &&
649 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
650 			    != 0)
651 				goto out;
652 			if (MNT_SHARED_WRITES(mp) ||
653 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
654 				lock_flags = LK_SHARED;
655 			else
656 				lock_flags = LK_EXCLUSIVE;
657 		} else
658 			lock_flags = LK_SHARED;
659 		vn_lock(vp, lock_flags | LK_RETRY);
660 	} else
661 		rl_cookie = NULL;
662 
663 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
664 #ifdef MAC
665 	if ((ioflg & IO_NOMACCHECK) == 0) {
666 		if (rw == UIO_READ)
667 			error = mac_vnode_check_read(active_cred, file_cred,
668 			    vp);
669 		else
670 			error = mac_vnode_check_write(active_cred, file_cred,
671 			    vp);
672 	}
673 #endif
674 	if (error == 0) {
675 		if (file_cred != NULL)
676 			cred = file_cred;
677 		else
678 			cred = active_cred;
679 		if (do_vn_io_fault(vp, &auio)) {
680 			args.kind = VN_IO_FAULT_VOP;
681 			args.cred = cred;
682 			args.flags = ioflg;
683 			args.args.vop_args.vp = vp;
684 			error = vn_io_fault1(vp, &auio, &args, td);
685 		} else if (rw == UIO_READ) {
686 			error = VOP_READ(vp, &auio, ioflg, cred);
687 		} else /* if (rw == UIO_WRITE) */ {
688 			error = VOP_WRITE(vp, &auio, ioflg, cred);
689 		}
690 	}
691 	if (aresid)
692 		*aresid = auio.uio_resid;
693 	else
694 		if (auio.uio_resid && error == 0)
695 			error = EIO;
696 	if ((ioflg & IO_NODELOCKED) == 0) {
697 		VOP_UNLOCK(vp);
698 		if (mp != NULL)
699 			vn_finished_write(mp);
700 	}
701  out:
702 	if (rl_cookie != NULL)
703 		vn_rangelock_unlock(vp, rl_cookie);
704 	return (error);
705 }
706 
707 /*
708  * Package up an I/O request on a vnode into a uio and do it.  The I/O
709  * request is split up into smaller chunks and we try to avoid saturating
710  * the buffer cache while potentially holding a vnode locked, so we
711  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
712  * to give other processes a chance to lock the vnode (either other processes
713  * core'ing the same binary, or unrelated processes scanning the directory).
714  */
715 int
716 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
717     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
718     struct ucred *file_cred, size_t *aresid, struct thread *td)
719 {
720 	int error = 0;
721 	ssize_t iaresid;
722 
723 	do {
724 		int chunk;
725 
726 		/*
727 		 * Force `offset' to a multiple of MAXBSIZE except possibly
728 		 * for the first chunk, so that filesystems only need to
729 		 * write full blocks except possibly for the first and last
730 		 * chunks.
731 		 */
732 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
733 
734 		if (chunk > len)
735 			chunk = len;
736 		if (rw != UIO_READ && vp->v_type == VREG)
737 			bwillwrite();
738 		iaresid = 0;
739 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
740 		    ioflg, active_cred, file_cred, &iaresid, td);
741 		len -= chunk;	/* aresid calc already includes length */
742 		if (error)
743 			break;
744 		offset += chunk;
745 		base = (char *)base + chunk;
746 		kern_yield(PRI_USER);
747 	} while (len);
748 	if (aresid)
749 		*aresid = len + iaresid;
750 	return (error);
751 }
752 
753 #if OFF_MAX <= LONG_MAX
754 off_t
755 foffset_lock(struct file *fp, int flags)
756 {
757 	volatile short *flagsp;
758 	off_t res;
759 	short state;
760 
761 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
762 
763 	if ((flags & FOF_NOLOCK) != 0)
764 		return (atomic_load_long(&fp->f_offset));
765 
766 	/*
767 	 * According to McKusick the vn lock was protecting f_offset here.
768 	 * It is now protected by the FOFFSET_LOCKED flag.
769 	 */
770 	flagsp = &fp->f_vnread_flags;
771 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
772 		return (atomic_load_long(&fp->f_offset));
773 
774 	sleepq_lock(&fp->f_vnread_flags);
775 	state = atomic_load_16(flagsp);
776 	for (;;) {
777 		if ((state & FOFFSET_LOCKED) == 0) {
778 			if (!atomic_fcmpset_acq_16(flagsp, &state,
779 			    FOFFSET_LOCKED))
780 				continue;
781 			break;
782 		}
783 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
784 			if (!atomic_fcmpset_acq_16(flagsp, &state,
785 			    state | FOFFSET_LOCK_WAITING))
786 				continue;
787 		}
788 		DROP_GIANT();
789 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
790 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
791 		PICKUP_GIANT();
792 		sleepq_lock(&fp->f_vnread_flags);
793 		state = atomic_load_16(flagsp);
794 	}
795 	res = atomic_load_long(&fp->f_offset);
796 	sleepq_release(&fp->f_vnread_flags);
797 	return (res);
798 }
799 
800 void
801 foffset_unlock(struct file *fp, off_t val, int flags)
802 {
803 	volatile short *flagsp;
804 	short state;
805 
806 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
807 
808 	if ((flags & FOF_NOUPDATE) == 0)
809 		atomic_store_long(&fp->f_offset, val);
810 	if ((flags & FOF_NEXTOFF_R) != 0)
811 		fp->f_nextoff[UIO_READ] = val;
812 	if ((flags & FOF_NEXTOFF_W) != 0)
813 		fp->f_nextoff[UIO_WRITE] = val;
814 
815 	if ((flags & FOF_NOLOCK) != 0)
816 		return;
817 
818 	flagsp = &fp->f_vnread_flags;
819 	state = atomic_load_16(flagsp);
820 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
821 	    atomic_cmpset_rel_16(flagsp, state, 0))
822 		return;
823 
824 	sleepq_lock(&fp->f_vnread_flags);
825 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
826 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
827 	fp->f_vnread_flags = 0;
828 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
829 	sleepq_release(&fp->f_vnread_flags);
830 }
831 #else
832 off_t
833 foffset_lock(struct file *fp, int flags)
834 {
835 	struct mtx *mtxp;
836 	off_t res;
837 
838 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
839 
840 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
841 	mtx_lock(mtxp);
842 	if ((flags & FOF_NOLOCK) == 0) {
843 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
844 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
845 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
846 			    "vofflock", 0);
847 		}
848 		fp->f_vnread_flags |= FOFFSET_LOCKED;
849 	}
850 	res = fp->f_offset;
851 	mtx_unlock(mtxp);
852 	return (res);
853 }
854 
855 void
856 foffset_unlock(struct file *fp, off_t val, int flags)
857 {
858 	struct mtx *mtxp;
859 
860 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
861 
862 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
863 	mtx_lock(mtxp);
864 	if ((flags & FOF_NOUPDATE) == 0)
865 		fp->f_offset = val;
866 	if ((flags & FOF_NEXTOFF_R) != 0)
867 		fp->f_nextoff[UIO_READ] = val;
868 	if ((flags & FOF_NEXTOFF_W) != 0)
869 		fp->f_nextoff[UIO_WRITE] = val;
870 	if ((flags & FOF_NOLOCK) == 0) {
871 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
872 		    ("Lost FOFFSET_LOCKED"));
873 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
874 			wakeup(&fp->f_vnread_flags);
875 		fp->f_vnread_flags = 0;
876 	}
877 	mtx_unlock(mtxp);
878 }
879 #endif
880 
881 void
882 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
883 {
884 
885 	if ((flags & FOF_OFFSET) == 0)
886 		uio->uio_offset = foffset_lock(fp, flags);
887 }
888 
889 void
890 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
891 {
892 
893 	if ((flags & FOF_OFFSET) == 0)
894 		foffset_unlock(fp, uio->uio_offset, flags);
895 }
896 
897 static int
898 get_advice(struct file *fp, struct uio *uio)
899 {
900 	struct mtx *mtxp;
901 	int ret;
902 
903 	ret = POSIX_FADV_NORMAL;
904 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
905 		return (ret);
906 
907 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
908 	mtx_lock(mtxp);
909 	if (fp->f_advice != NULL &&
910 	    uio->uio_offset >= fp->f_advice->fa_start &&
911 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
912 		ret = fp->f_advice->fa_advice;
913 	mtx_unlock(mtxp);
914 	return (ret);
915 }
916 
917 int
918 vn_read_from_obj(struct vnode *vp, struct uio *uio)
919 {
920 	vm_object_t obj;
921 	vm_page_t ma[io_hold_cnt + 2];
922 	off_t off, vsz;
923 	ssize_t resid;
924 	int error, i, j;
925 
926 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
927 	obj = atomic_load_ptr(&vp->v_object);
928 	if (obj == NULL)
929 		return (EJUSTRETURN);
930 
931 	/*
932 	 * Depends on type stability of vm_objects.
933 	 */
934 	vm_object_pip_add(obj, 1);
935 	if ((obj->flags & OBJ_DEAD) != 0) {
936 		/*
937 		 * Note that object might be already reused from the
938 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
939 		 * we recheck for DOOMED vnode state after all pages
940 		 * are busied, and retract then.
941 		 *
942 		 * But we check for OBJ_DEAD to ensure that we do not
943 		 * busy pages while vm_object_terminate_pages()
944 		 * processes the queue.
945 		 */
946 		error = EJUSTRETURN;
947 		goto out_pip;
948 	}
949 
950 	resid = uio->uio_resid;
951 	off = uio->uio_offset;
952 	for (i = 0; resid > 0; i++) {
953 		MPASS(i < io_hold_cnt + 2);
954 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
955 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
956 		    VM_ALLOC_NOWAIT);
957 		if (ma[i] == NULL)
958 			break;
959 
960 		/*
961 		 * Skip invalid pages.  Valid mask can be partial only
962 		 * at EOF, and we clip later.
963 		 */
964 		if (vm_page_none_valid(ma[i])) {
965 			vm_page_sunbusy(ma[i]);
966 			break;
967 		}
968 
969 		resid -= PAGE_SIZE;
970 		off += PAGE_SIZE;
971 	}
972 	if (i == 0) {
973 		error = EJUSTRETURN;
974 		goto out_pip;
975 	}
976 
977 	/*
978 	 * Check VIRF_DOOMED after we busied our pages.  Since
979 	 * vgonel() terminates the vnode' vm_object, it cannot
980 	 * process past pages busied by us.
981 	 */
982 	if (VN_IS_DOOMED(vp)) {
983 		error = EJUSTRETURN;
984 		goto out;
985 	}
986 
987 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
988 	if (resid > uio->uio_resid)
989 		resid = uio->uio_resid;
990 
991 	/*
992 	 * Unlocked read of vnp_size is safe because truncation cannot
993 	 * pass busied page.  But we load vnp_size into a local
994 	 * variable so that possible concurrent extension does not
995 	 * break calculation.
996 	 */
997 #if defined(__powerpc__) && !defined(__powerpc64__)
998 	vsz = obj->un_pager.vnp.vnp_size;
999 #else
1000 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1001 #endif
1002 	if (uio->uio_offset >= vsz) {
1003 		error = EJUSTRETURN;
1004 		goto out;
1005 	}
1006 	if (uio->uio_offset + resid > vsz)
1007 		resid = vsz - uio->uio_offset;
1008 
1009 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1010 
1011 out:
1012 	for (j = 0; j < i; j++) {
1013 		if (error == 0)
1014 			vm_page_reference(ma[j]);
1015 		vm_page_sunbusy(ma[j]);
1016 	}
1017 out_pip:
1018 	vm_object_pip_wakeup(obj);
1019 	if (error != 0)
1020 		return (error);
1021 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1022 }
1023 
1024 /*
1025  * File table vnode read routine.
1026  */
1027 static int
1028 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1029     struct thread *td)
1030 {
1031 	struct vnode *vp;
1032 	off_t orig_offset;
1033 	int error, ioflag;
1034 	int advice;
1035 
1036 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1037 	    uio->uio_td, td));
1038 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1039 	vp = fp->f_vnode;
1040 	ioflag = 0;
1041 	if (fp->f_flag & FNONBLOCK)
1042 		ioflag |= IO_NDELAY;
1043 	if (fp->f_flag & O_DIRECT)
1044 		ioflag |= IO_DIRECT;
1045 
1046 	/*
1047 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
1048 	 * allows us to avoid unneeded work outright.
1049 	 */
1050 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1051 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1052 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1053 		if (error == 0) {
1054 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1055 			return (0);
1056 		}
1057 		if (error != EJUSTRETURN)
1058 			return (error);
1059 	}
1060 
1061 	advice = get_advice(fp, uio);
1062 	vn_lock(vp, LK_SHARED | LK_RETRY);
1063 
1064 	switch (advice) {
1065 	case POSIX_FADV_NORMAL:
1066 	case POSIX_FADV_SEQUENTIAL:
1067 	case POSIX_FADV_NOREUSE:
1068 		ioflag |= sequential_heuristic(uio, fp);
1069 		break;
1070 	case POSIX_FADV_RANDOM:
1071 		/* Disable read-ahead for random I/O. */
1072 		break;
1073 	}
1074 	orig_offset = uio->uio_offset;
1075 
1076 #ifdef MAC
1077 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1078 	if (error == 0)
1079 #endif
1080 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1081 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1082 	VOP_UNLOCK(vp);
1083 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1084 	    orig_offset != uio->uio_offset)
1085 		/*
1086 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1087 		 * for the backing file after a POSIX_FADV_NOREUSE
1088 		 * read(2).
1089 		 */
1090 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1091 		    POSIX_FADV_DONTNEED);
1092 	return (error);
1093 }
1094 
1095 /*
1096  * File table vnode write routine.
1097  */
1098 static int
1099 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1100     struct thread *td)
1101 {
1102 	struct vnode *vp;
1103 	struct mount *mp;
1104 	off_t orig_offset;
1105 	int error, ioflag, lock_flags;
1106 	int advice;
1107 
1108 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1109 	    uio->uio_td, td));
1110 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1111 	vp = fp->f_vnode;
1112 	if (vp->v_type == VREG)
1113 		bwillwrite();
1114 	ioflag = IO_UNIT;
1115 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
1116 		ioflag |= IO_APPEND;
1117 	if (fp->f_flag & FNONBLOCK)
1118 		ioflag |= IO_NDELAY;
1119 	if (fp->f_flag & O_DIRECT)
1120 		ioflag |= IO_DIRECT;
1121 	if ((fp->f_flag & O_FSYNC) ||
1122 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
1123 		ioflag |= IO_SYNC;
1124 	/*
1125 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
1126 	 * implementations that don't understand IO_DATASYNC fall back to full
1127 	 * O_SYNC behavior.
1128 	 */
1129 	if (fp->f_flag & O_DSYNC)
1130 		ioflag |= IO_SYNC | IO_DATASYNC;
1131 	mp = NULL;
1132 	if (vp->v_type != VCHR &&
1133 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
1134 		goto unlock;
1135 
1136 	advice = get_advice(fp, uio);
1137 
1138 	if (MNT_SHARED_WRITES(mp) ||
1139 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
1140 		lock_flags = LK_SHARED;
1141 	} else {
1142 		lock_flags = LK_EXCLUSIVE;
1143 	}
1144 
1145 	vn_lock(vp, lock_flags | LK_RETRY);
1146 	switch (advice) {
1147 	case POSIX_FADV_NORMAL:
1148 	case POSIX_FADV_SEQUENTIAL:
1149 	case POSIX_FADV_NOREUSE:
1150 		ioflag |= sequential_heuristic(uio, fp);
1151 		break;
1152 	case POSIX_FADV_RANDOM:
1153 		/* XXX: Is this correct? */
1154 		break;
1155 	}
1156 	orig_offset = uio->uio_offset;
1157 
1158 #ifdef MAC
1159 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1160 	if (error == 0)
1161 #endif
1162 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1163 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1164 	VOP_UNLOCK(vp);
1165 	if (vp->v_type != VCHR)
1166 		vn_finished_write(mp);
1167 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1168 	    orig_offset != uio->uio_offset)
1169 		/*
1170 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1171 		 * for the backing file after a POSIX_FADV_NOREUSE
1172 		 * write(2).
1173 		 */
1174 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1175 		    POSIX_FADV_DONTNEED);
1176 unlock:
1177 	return (error);
1178 }
1179 
1180 /*
1181  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1182  * prevent the following deadlock:
1183  *
1184  * Assume that the thread A reads from the vnode vp1 into userspace
1185  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1186  * currently not resident, then system ends up with the call chain
1187  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1188  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1189  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1190  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1191  * backed by the pages of vnode vp1, and some page in buf2 is not
1192  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1193  *
1194  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1195  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1196  * Instead, it first tries to do the whole range i/o with pagefaults
1197  * disabled. If all pages in the i/o buffer are resident and mapped,
1198  * VOP will succeed (ignoring the genuine filesystem errors).
1199  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1200  * i/o in chunks, with all pages in the chunk prefaulted and held
1201  * using vm_fault_quick_hold_pages().
1202  *
1203  * Filesystems using this deadlock avoidance scheme should use the
1204  * array of the held pages from uio, saved in the curthread->td_ma,
1205  * instead of doing uiomove().  A helper function
1206  * vn_io_fault_uiomove() converts uiomove request into
1207  * uiomove_fromphys() over td_ma array.
1208  *
1209  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1210  * make the current i/o request atomic with respect to other i/os and
1211  * truncations.
1212  */
1213 
1214 /*
1215  * Decode vn_io_fault_args and perform the corresponding i/o.
1216  */
1217 static int
1218 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1219     struct thread *td)
1220 {
1221 	int error, save;
1222 
1223 	error = 0;
1224 	save = vm_fault_disable_pagefaults();
1225 	switch (args->kind) {
1226 	case VN_IO_FAULT_FOP:
1227 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1228 		    uio, args->cred, args->flags, td);
1229 		break;
1230 	case VN_IO_FAULT_VOP:
1231 		if (uio->uio_rw == UIO_READ) {
1232 			error = VOP_READ(args->args.vop_args.vp, uio,
1233 			    args->flags, args->cred);
1234 		} else if (uio->uio_rw == UIO_WRITE) {
1235 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1236 			    args->flags, args->cred);
1237 		}
1238 		break;
1239 	default:
1240 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1241 		    args->kind, uio->uio_rw);
1242 	}
1243 	vm_fault_enable_pagefaults(save);
1244 	return (error);
1245 }
1246 
1247 static int
1248 vn_io_fault_touch(char *base, const struct uio *uio)
1249 {
1250 	int r;
1251 
1252 	r = fubyte(base);
1253 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1254 		return (EFAULT);
1255 	return (0);
1256 }
1257 
1258 static int
1259 vn_io_fault_prefault_user(const struct uio *uio)
1260 {
1261 	char *base;
1262 	const struct iovec *iov;
1263 	size_t len;
1264 	ssize_t resid;
1265 	int error, i;
1266 
1267 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1268 	    ("vn_io_fault_prefault userspace"));
1269 
1270 	error = i = 0;
1271 	iov = uio->uio_iov;
1272 	resid = uio->uio_resid;
1273 	base = iov->iov_base;
1274 	len = iov->iov_len;
1275 	while (resid > 0) {
1276 		error = vn_io_fault_touch(base, uio);
1277 		if (error != 0)
1278 			break;
1279 		if (len < PAGE_SIZE) {
1280 			if (len != 0) {
1281 				error = vn_io_fault_touch(base + len - 1, uio);
1282 				if (error != 0)
1283 					break;
1284 				resid -= len;
1285 			}
1286 			if (++i >= uio->uio_iovcnt)
1287 				break;
1288 			iov = uio->uio_iov + i;
1289 			base = iov->iov_base;
1290 			len = iov->iov_len;
1291 		} else {
1292 			len -= PAGE_SIZE;
1293 			base += PAGE_SIZE;
1294 			resid -= PAGE_SIZE;
1295 		}
1296 	}
1297 	return (error);
1298 }
1299 
1300 /*
1301  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1302  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1303  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1304  * into args and call vn_io_fault1() to handle faults during the user
1305  * mode buffer accesses.
1306  */
1307 static int
1308 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1309     struct thread *td)
1310 {
1311 	vm_page_t ma[io_hold_cnt + 2];
1312 	struct uio *uio_clone, short_uio;
1313 	struct iovec short_iovec[1];
1314 	vm_page_t *prev_td_ma;
1315 	vm_prot_t prot;
1316 	vm_offset_t addr, end;
1317 	size_t len, resid;
1318 	ssize_t adv;
1319 	int error, cnt, saveheld, prev_td_ma_cnt;
1320 
1321 	if (vn_io_fault_prefault) {
1322 		error = vn_io_fault_prefault_user(uio);
1323 		if (error != 0)
1324 			return (error); /* Or ignore ? */
1325 	}
1326 
1327 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1328 
1329 	/*
1330 	 * The UFS follows IO_UNIT directive and replays back both
1331 	 * uio_offset and uio_resid if an error is encountered during the
1332 	 * operation.  But, since the iovec may be already advanced,
1333 	 * uio is still in an inconsistent state.
1334 	 *
1335 	 * Cache a copy of the original uio, which is advanced to the redo
1336 	 * point using UIO_NOCOPY below.
1337 	 */
1338 	uio_clone = cloneuio(uio);
1339 	resid = uio->uio_resid;
1340 
1341 	short_uio.uio_segflg = UIO_USERSPACE;
1342 	short_uio.uio_rw = uio->uio_rw;
1343 	short_uio.uio_td = uio->uio_td;
1344 
1345 	error = vn_io_fault_doio(args, uio, td);
1346 	if (error != EFAULT)
1347 		goto out;
1348 
1349 	atomic_add_long(&vn_io_faults_cnt, 1);
1350 	uio_clone->uio_segflg = UIO_NOCOPY;
1351 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1352 	uio_clone->uio_segflg = uio->uio_segflg;
1353 
1354 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1355 	prev_td_ma = td->td_ma;
1356 	prev_td_ma_cnt = td->td_ma_cnt;
1357 
1358 	while (uio_clone->uio_resid != 0) {
1359 		len = uio_clone->uio_iov->iov_len;
1360 		if (len == 0) {
1361 			KASSERT(uio_clone->uio_iovcnt >= 1,
1362 			    ("iovcnt underflow"));
1363 			uio_clone->uio_iov++;
1364 			uio_clone->uio_iovcnt--;
1365 			continue;
1366 		}
1367 		if (len > ptoa(io_hold_cnt))
1368 			len = ptoa(io_hold_cnt);
1369 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1370 		end = round_page(addr + len);
1371 		if (end < addr) {
1372 			error = EFAULT;
1373 			break;
1374 		}
1375 		cnt = atop(end - trunc_page(addr));
1376 		/*
1377 		 * A perfectly misaligned address and length could cause
1378 		 * both the start and the end of the chunk to use partial
1379 		 * page.  +2 accounts for such a situation.
1380 		 */
1381 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1382 		    addr, len, prot, ma, io_hold_cnt + 2);
1383 		if (cnt == -1) {
1384 			error = EFAULT;
1385 			break;
1386 		}
1387 		short_uio.uio_iov = &short_iovec[0];
1388 		short_iovec[0].iov_base = (void *)addr;
1389 		short_uio.uio_iovcnt = 1;
1390 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1391 		short_uio.uio_offset = uio_clone->uio_offset;
1392 		td->td_ma = ma;
1393 		td->td_ma_cnt = cnt;
1394 
1395 		error = vn_io_fault_doio(args, &short_uio, td);
1396 		vm_page_unhold_pages(ma, cnt);
1397 		adv = len - short_uio.uio_resid;
1398 
1399 		uio_clone->uio_iov->iov_base =
1400 		    (char *)uio_clone->uio_iov->iov_base + adv;
1401 		uio_clone->uio_iov->iov_len -= adv;
1402 		uio_clone->uio_resid -= adv;
1403 		uio_clone->uio_offset += adv;
1404 
1405 		uio->uio_resid -= adv;
1406 		uio->uio_offset += adv;
1407 
1408 		if (error != 0 || adv == 0)
1409 			break;
1410 	}
1411 	td->td_ma = prev_td_ma;
1412 	td->td_ma_cnt = prev_td_ma_cnt;
1413 	curthread_pflags_restore(saveheld);
1414 out:
1415 	free(uio_clone, M_IOV);
1416 	return (error);
1417 }
1418 
1419 static int
1420 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1421     int flags, struct thread *td)
1422 {
1423 	fo_rdwr_t *doio;
1424 	struct vnode *vp;
1425 	void *rl_cookie;
1426 	struct vn_io_fault_args args;
1427 	int error;
1428 
1429 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1430 	vp = fp->f_vnode;
1431 
1432 	/*
1433 	 * The ability to read(2) on a directory has historically been
1434 	 * allowed for all users, but this can and has been the source of
1435 	 * at least one security issue in the past.  As such, it is now hidden
1436 	 * away behind a sysctl for those that actually need it to use it, and
1437 	 * restricted to root when it's turned on to make it relatively safe to
1438 	 * leave on for longer sessions of need.
1439 	 */
1440 	if (vp->v_type == VDIR) {
1441 		KASSERT(uio->uio_rw == UIO_READ,
1442 		    ("illegal write attempted on a directory"));
1443 		if (!vfs_allow_read_dir)
1444 			return (EISDIR);
1445 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1446 			return (EISDIR);
1447 	}
1448 
1449 	foffset_lock_uio(fp, uio, flags);
1450 	if (do_vn_io_fault(vp, uio)) {
1451 		args.kind = VN_IO_FAULT_FOP;
1452 		args.args.fop_args.fp = fp;
1453 		args.args.fop_args.doio = doio;
1454 		args.cred = active_cred;
1455 		args.flags = flags | FOF_OFFSET;
1456 		if (uio->uio_rw == UIO_READ) {
1457 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1458 			    uio->uio_offset + uio->uio_resid);
1459 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1460 		    (flags & FOF_OFFSET) == 0) {
1461 			/* For appenders, punt and lock the whole range. */
1462 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1463 		} else {
1464 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1465 			    uio->uio_offset + uio->uio_resid);
1466 		}
1467 		error = vn_io_fault1(vp, uio, &args, td);
1468 		vn_rangelock_unlock(vp, rl_cookie);
1469 	} else {
1470 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1471 	}
1472 	foffset_unlock_uio(fp, uio, flags);
1473 	return (error);
1474 }
1475 
1476 /*
1477  * Helper function to perform the requested uiomove operation using
1478  * the held pages for io->uio_iov[0].iov_base buffer instead of
1479  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1480  * instead of iov_base prevents page faults that could occur due to
1481  * pmap_collect() invalidating the mapping created by
1482  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1483  * object cleanup revoking the write access from page mappings.
1484  *
1485  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1486  * instead of plain uiomove().
1487  */
1488 int
1489 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1490 {
1491 	struct uio transp_uio;
1492 	struct iovec transp_iov[1];
1493 	struct thread *td;
1494 	size_t adv;
1495 	int error, pgadv;
1496 
1497 	td = curthread;
1498 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1499 	    uio->uio_segflg != UIO_USERSPACE)
1500 		return (uiomove(data, xfersize, uio));
1501 
1502 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1503 	transp_iov[0].iov_base = data;
1504 	transp_uio.uio_iov = &transp_iov[0];
1505 	transp_uio.uio_iovcnt = 1;
1506 	if (xfersize > uio->uio_resid)
1507 		xfersize = uio->uio_resid;
1508 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1509 	transp_uio.uio_offset = 0;
1510 	transp_uio.uio_segflg = UIO_SYSSPACE;
1511 	/*
1512 	 * Since transp_iov points to data, and td_ma page array
1513 	 * corresponds to original uio->uio_iov, we need to invert the
1514 	 * direction of the i/o operation as passed to
1515 	 * uiomove_fromphys().
1516 	 */
1517 	switch (uio->uio_rw) {
1518 	case UIO_WRITE:
1519 		transp_uio.uio_rw = UIO_READ;
1520 		break;
1521 	case UIO_READ:
1522 		transp_uio.uio_rw = UIO_WRITE;
1523 		break;
1524 	}
1525 	transp_uio.uio_td = uio->uio_td;
1526 	error = uiomove_fromphys(td->td_ma,
1527 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1528 	    xfersize, &transp_uio);
1529 	adv = xfersize - transp_uio.uio_resid;
1530 	pgadv =
1531 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1532 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1533 	td->td_ma += pgadv;
1534 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1535 	    pgadv));
1536 	td->td_ma_cnt -= pgadv;
1537 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1538 	uio->uio_iov->iov_len -= adv;
1539 	uio->uio_resid -= adv;
1540 	uio->uio_offset += adv;
1541 	return (error);
1542 }
1543 
1544 int
1545 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1546     struct uio *uio)
1547 {
1548 	struct thread *td;
1549 	vm_offset_t iov_base;
1550 	int cnt, pgadv;
1551 
1552 	td = curthread;
1553 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1554 	    uio->uio_segflg != UIO_USERSPACE)
1555 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1556 
1557 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1558 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1559 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1560 	switch (uio->uio_rw) {
1561 	case UIO_WRITE:
1562 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1563 		    offset, cnt);
1564 		break;
1565 	case UIO_READ:
1566 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1567 		    cnt);
1568 		break;
1569 	}
1570 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1571 	td->td_ma += pgadv;
1572 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1573 	    pgadv));
1574 	td->td_ma_cnt -= pgadv;
1575 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1576 	uio->uio_iov->iov_len -= cnt;
1577 	uio->uio_resid -= cnt;
1578 	uio->uio_offset += cnt;
1579 	return (0);
1580 }
1581 
1582 /*
1583  * File table truncate routine.
1584  */
1585 static int
1586 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1587     struct thread *td)
1588 {
1589 	struct mount *mp;
1590 	struct vnode *vp;
1591 	void *rl_cookie;
1592 	int error;
1593 
1594 	vp = fp->f_vnode;
1595 
1596 retry:
1597 	/*
1598 	 * Lock the whole range for truncation.  Otherwise split i/o
1599 	 * might happen partly before and partly after the truncation.
1600 	 */
1601 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1602 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1603 	if (error)
1604 		goto out1;
1605 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1606 	AUDIT_ARG_VNODE1(vp);
1607 	if (vp->v_type == VDIR) {
1608 		error = EISDIR;
1609 		goto out;
1610 	}
1611 #ifdef MAC
1612 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1613 	if (error)
1614 		goto out;
1615 #endif
1616 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1617 	    fp->f_cred);
1618 out:
1619 	VOP_UNLOCK(vp);
1620 	vn_finished_write(mp);
1621 out1:
1622 	vn_rangelock_unlock(vp, rl_cookie);
1623 	if (error == ERELOOKUP)
1624 		goto retry;
1625 	return (error);
1626 }
1627 
1628 /*
1629  * Truncate a file that is already locked.
1630  */
1631 int
1632 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1633     struct ucred *cred)
1634 {
1635 	struct vattr vattr;
1636 	int error;
1637 
1638 	error = VOP_ADD_WRITECOUNT(vp, 1);
1639 	if (error == 0) {
1640 		VATTR_NULL(&vattr);
1641 		vattr.va_size = length;
1642 		if (sync)
1643 			vattr.va_vaflags |= VA_SYNC;
1644 		error = VOP_SETATTR(vp, &vattr, cred);
1645 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1646 	}
1647 	return (error);
1648 }
1649 
1650 /*
1651  * File table vnode stat routine.
1652  */
1653 int
1654 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1655     struct thread *td)
1656 {
1657 	struct vnode *vp = fp->f_vnode;
1658 	int error;
1659 
1660 	vn_lock(vp, LK_SHARED | LK_RETRY);
1661 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td);
1662 	VOP_UNLOCK(vp);
1663 
1664 	return (error);
1665 }
1666 
1667 /*
1668  * File table vnode ioctl routine.
1669  */
1670 static int
1671 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1672     struct thread *td)
1673 {
1674 	struct vattr vattr;
1675 	struct vnode *vp;
1676 	struct fiobmap2_arg *bmarg;
1677 	int error;
1678 
1679 	vp = fp->f_vnode;
1680 	switch (vp->v_type) {
1681 	case VDIR:
1682 	case VREG:
1683 		switch (com) {
1684 		case FIONREAD:
1685 			vn_lock(vp, LK_SHARED | LK_RETRY);
1686 			error = VOP_GETATTR(vp, &vattr, active_cred);
1687 			VOP_UNLOCK(vp);
1688 			if (error == 0)
1689 				*(int *)data = vattr.va_size - fp->f_offset;
1690 			return (error);
1691 		case FIOBMAP2:
1692 			bmarg = (struct fiobmap2_arg *)data;
1693 			vn_lock(vp, LK_SHARED | LK_RETRY);
1694 #ifdef MAC
1695 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1696 			    vp);
1697 			if (error == 0)
1698 #endif
1699 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1700 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1701 			VOP_UNLOCK(vp);
1702 			return (error);
1703 		case FIONBIO:
1704 		case FIOASYNC:
1705 			return (0);
1706 		default:
1707 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1708 			    active_cred, td));
1709 		}
1710 		break;
1711 	case VCHR:
1712 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1713 		    active_cred, td));
1714 	default:
1715 		return (ENOTTY);
1716 	}
1717 }
1718 
1719 /*
1720  * File table vnode poll routine.
1721  */
1722 static int
1723 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1724     struct thread *td)
1725 {
1726 	struct vnode *vp;
1727 	int error;
1728 
1729 	vp = fp->f_vnode;
1730 #if defined(MAC) || defined(AUDIT)
1731 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1732 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1733 		AUDIT_ARG_VNODE1(vp);
1734 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1735 		VOP_UNLOCK(vp);
1736 		if (error != 0)
1737 			return (error);
1738 	}
1739 #endif
1740 	error = VOP_POLL(vp, events, fp->f_cred, td);
1741 	return (error);
1742 }
1743 
1744 /*
1745  * Acquire the requested lock and then check for validity.  LK_RETRY
1746  * permits vn_lock to return doomed vnodes.
1747  */
1748 static int __noinline
1749 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1750     int error)
1751 {
1752 
1753 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1754 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1755 
1756 	if (error == 0)
1757 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1758 
1759 	if ((flags & LK_RETRY) == 0) {
1760 		if (error == 0) {
1761 			VOP_UNLOCK(vp);
1762 			error = ENOENT;
1763 		}
1764 		return (error);
1765 	}
1766 
1767 	/*
1768 	 * LK_RETRY case.
1769 	 *
1770 	 * Nothing to do if we got the lock.
1771 	 */
1772 	if (error == 0)
1773 		return (0);
1774 
1775 	/*
1776 	 * Interlock was dropped by the call in _vn_lock.
1777 	 */
1778 	flags &= ~LK_INTERLOCK;
1779 	do {
1780 		error = VOP_LOCK1(vp, flags, file, line);
1781 	} while (error != 0);
1782 	return (0);
1783 }
1784 
1785 int
1786 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1787 {
1788 	int error;
1789 
1790 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1791 	    ("vn_lock: no locktype (%d passed)", flags));
1792 	VNPASS(vp->v_holdcnt > 0, vp);
1793 	error = VOP_LOCK1(vp, flags, file, line);
1794 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1795 		return (_vn_lock_fallback(vp, flags, file, line, error));
1796 	return (0);
1797 }
1798 
1799 /*
1800  * File table vnode close routine.
1801  */
1802 static int
1803 vn_closefile(struct file *fp, struct thread *td)
1804 {
1805 	struct vnode *vp;
1806 	struct flock lf;
1807 	int error;
1808 	bool ref;
1809 
1810 	vp = fp->f_vnode;
1811 	fp->f_ops = &badfileops;
1812 	ref = (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1813 
1814 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1815 
1816 	if (__predict_false(ref)) {
1817 		lf.l_whence = SEEK_SET;
1818 		lf.l_start = 0;
1819 		lf.l_len = 0;
1820 		lf.l_type = F_UNLCK;
1821 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1822 		vrele(vp);
1823 	}
1824 	return (error);
1825 }
1826 
1827 /*
1828  * Preparing to start a filesystem write operation. If the operation is
1829  * permitted, then we bump the count of operations in progress and
1830  * proceed. If a suspend request is in progress, we wait until the
1831  * suspension is over, and then proceed.
1832  */
1833 static int
1834 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1835 {
1836 	struct mount_pcpu *mpcpu;
1837 	int error, mflags;
1838 
1839 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1840 	    vfs_op_thread_enter(mp, mpcpu)) {
1841 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1842 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1843 		vfs_op_thread_exit(mp, mpcpu);
1844 		return (0);
1845 	}
1846 
1847 	if (mplocked)
1848 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1849 	else
1850 		MNT_ILOCK(mp);
1851 
1852 	error = 0;
1853 
1854 	/*
1855 	 * Check on status of suspension.
1856 	 */
1857 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1858 	    mp->mnt_susp_owner != curthread) {
1859 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1860 		    (flags & PCATCH) : 0) | (PUSER - 1);
1861 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1862 			if (flags & V_NOWAIT) {
1863 				error = EWOULDBLOCK;
1864 				goto unlock;
1865 			}
1866 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1867 			    "suspfs", 0);
1868 			if (error)
1869 				goto unlock;
1870 		}
1871 	}
1872 	if (flags & V_XSLEEP)
1873 		goto unlock;
1874 	mp->mnt_writeopcount++;
1875 unlock:
1876 	if (error != 0 || (flags & V_XSLEEP) != 0)
1877 		MNT_REL(mp);
1878 	MNT_IUNLOCK(mp);
1879 	return (error);
1880 }
1881 
1882 int
1883 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1884 {
1885 	struct mount *mp;
1886 	int error;
1887 
1888 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1889 	    ("V_MNTREF requires mp"));
1890 
1891 	error = 0;
1892 	/*
1893 	 * If a vnode is provided, get and return the mount point that
1894 	 * to which it will write.
1895 	 */
1896 	if (vp != NULL) {
1897 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1898 			*mpp = NULL;
1899 			if (error != EOPNOTSUPP)
1900 				return (error);
1901 			return (0);
1902 		}
1903 	}
1904 	if ((mp = *mpp) == NULL)
1905 		return (0);
1906 
1907 	/*
1908 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1909 	 * a vfs_ref().
1910 	 * As long as a vnode is not provided we need to acquire a
1911 	 * refcount for the provided mountpoint too, in order to
1912 	 * emulate a vfs_ref().
1913 	 */
1914 	if (vp == NULL && (flags & V_MNTREF) == 0)
1915 		vfs_ref(mp);
1916 
1917 	return (vn_start_write_refed(mp, flags, false));
1918 }
1919 
1920 /*
1921  * Secondary suspension. Used by operations such as vop_inactive
1922  * routines that are needed by the higher level functions. These
1923  * are allowed to proceed until all the higher level functions have
1924  * completed (indicated by mnt_writeopcount dropping to zero). At that
1925  * time, these operations are halted until the suspension is over.
1926  */
1927 int
1928 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1929 {
1930 	struct mount *mp;
1931 	int error;
1932 
1933 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1934 	    ("V_MNTREF requires mp"));
1935 
1936  retry:
1937 	if (vp != NULL) {
1938 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1939 			*mpp = NULL;
1940 			if (error != EOPNOTSUPP)
1941 				return (error);
1942 			return (0);
1943 		}
1944 	}
1945 	/*
1946 	 * If we are not suspended or have not yet reached suspended
1947 	 * mode, then let the operation proceed.
1948 	 */
1949 	if ((mp = *mpp) == NULL)
1950 		return (0);
1951 
1952 	/*
1953 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1954 	 * a vfs_ref().
1955 	 * As long as a vnode is not provided we need to acquire a
1956 	 * refcount for the provided mountpoint too, in order to
1957 	 * emulate a vfs_ref().
1958 	 */
1959 	MNT_ILOCK(mp);
1960 	if (vp == NULL && (flags & V_MNTREF) == 0)
1961 		MNT_REF(mp);
1962 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1963 		mp->mnt_secondary_writes++;
1964 		mp->mnt_secondary_accwrites++;
1965 		MNT_IUNLOCK(mp);
1966 		return (0);
1967 	}
1968 	if (flags & V_NOWAIT) {
1969 		MNT_REL(mp);
1970 		MNT_IUNLOCK(mp);
1971 		return (EWOULDBLOCK);
1972 	}
1973 	/*
1974 	 * Wait for the suspension to finish.
1975 	 */
1976 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1977 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1978 	    "suspfs", 0);
1979 	vfs_rel(mp);
1980 	if (error == 0)
1981 		goto retry;
1982 	return (error);
1983 }
1984 
1985 /*
1986  * Filesystem write operation has completed. If we are suspending and this
1987  * operation is the last one, notify the suspender that the suspension is
1988  * now in effect.
1989  */
1990 void
1991 vn_finished_write(struct mount *mp)
1992 {
1993 	struct mount_pcpu *mpcpu;
1994 	int c;
1995 
1996 	if (mp == NULL)
1997 		return;
1998 
1999 	if (vfs_op_thread_enter(mp, mpcpu)) {
2000 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2001 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2002 		vfs_op_thread_exit(mp, mpcpu);
2003 		return;
2004 	}
2005 
2006 	MNT_ILOCK(mp);
2007 	vfs_assert_mount_counters(mp);
2008 	MNT_REL(mp);
2009 	c = --mp->mnt_writeopcount;
2010 	if (mp->mnt_vfs_ops == 0) {
2011 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2012 		MNT_IUNLOCK(mp);
2013 		return;
2014 	}
2015 	if (c < 0)
2016 		vfs_dump_mount_counters(mp);
2017 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2018 		wakeup(&mp->mnt_writeopcount);
2019 	MNT_IUNLOCK(mp);
2020 }
2021 
2022 /*
2023  * Filesystem secondary write operation has completed. If we are
2024  * suspending and this operation is the last one, notify the suspender
2025  * that the suspension is now in effect.
2026  */
2027 void
2028 vn_finished_secondary_write(struct mount *mp)
2029 {
2030 	if (mp == NULL)
2031 		return;
2032 	MNT_ILOCK(mp);
2033 	MNT_REL(mp);
2034 	mp->mnt_secondary_writes--;
2035 	if (mp->mnt_secondary_writes < 0)
2036 		panic("vn_finished_secondary_write: neg cnt");
2037 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2038 	    mp->mnt_secondary_writes <= 0)
2039 		wakeup(&mp->mnt_secondary_writes);
2040 	MNT_IUNLOCK(mp);
2041 }
2042 
2043 /*
2044  * Request a filesystem to suspend write operations.
2045  */
2046 int
2047 vfs_write_suspend(struct mount *mp, int flags)
2048 {
2049 	int error;
2050 
2051 	vfs_op_enter(mp);
2052 
2053 	MNT_ILOCK(mp);
2054 	vfs_assert_mount_counters(mp);
2055 	if (mp->mnt_susp_owner == curthread) {
2056 		vfs_op_exit_locked(mp);
2057 		MNT_IUNLOCK(mp);
2058 		return (EALREADY);
2059 	}
2060 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2061 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2062 
2063 	/*
2064 	 * Unmount holds a write reference on the mount point.  If we
2065 	 * own busy reference and drain for writers, we deadlock with
2066 	 * the reference draining in the unmount path.  Callers of
2067 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2068 	 * vfs_busy() reference is owned and caller is not in the
2069 	 * unmount context.
2070 	 */
2071 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2072 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2073 		vfs_op_exit_locked(mp);
2074 		MNT_IUNLOCK(mp);
2075 		return (EBUSY);
2076 	}
2077 
2078 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2079 	mp->mnt_susp_owner = curthread;
2080 	if (mp->mnt_writeopcount > 0)
2081 		(void) msleep(&mp->mnt_writeopcount,
2082 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2083 	else
2084 		MNT_IUNLOCK(mp);
2085 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2086 		vfs_write_resume(mp, 0);
2087 		/* vfs_write_resume does vfs_op_exit() for us */
2088 	}
2089 	return (error);
2090 }
2091 
2092 /*
2093  * Request a filesystem to resume write operations.
2094  */
2095 void
2096 vfs_write_resume(struct mount *mp, int flags)
2097 {
2098 
2099 	MNT_ILOCK(mp);
2100 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2101 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2102 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2103 				       MNTK_SUSPENDED);
2104 		mp->mnt_susp_owner = NULL;
2105 		wakeup(&mp->mnt_writeopcount);
2106 		wakeup(&mp->mnt_flag);
2107 		curthread->td_pflags &= ~TDP_IGNSUSP;
2108 		if ((flags & VR_START_WRITE) != 0) {
2109 			MNT_REF(mp);
2110 			mp->mnt_writeopcount++;
2111 		}
2112 		MNT_IUNLOCK(mp);
2113 		if ((flags & VR_NO_SUSPCLR) == 0)
2114 			VFS_SUSP_CLEAN(mp);
2115 		vfs_op_exit(mp);
2116 	} else if ((flags & VR_START_WRITE) != 0) {
2117 		MNT_REF(mp);
2118 		vn_start_write_refed(mp, 0, true);
2119 	} else {
2120 		MNT_IUNLOCK(mp);
2121 	}
2122 }
2123 
2124 /*
2125  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2126  * methods.
2127  */
2128 int
2129 vfs_write_suspend_umnt(struct mount *mp)
2130 {
2131 	int error;
2132 
2133 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2134 	    ("vfs_write_suspend_umnt: recursed"));
2135 
2136 	/* dounmount() already called vn_start_write(). */
2137 	for (;;) {
2138 		vn_finished_write(mp);
2139 		error = vfs_write_suspend(mp, 0);
2140 		if (error != 0) {
2141 			vn_start_write(NULL, &mp, V_WAIT);
2142 			return (error);
2143 		}
2144 		MNT_ILOCK(mp);
2145 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2146 			break;
2147 		MNT_IUNLOCK(mp);
2148 		vn_start_write(NULL, &mp, V_WAIT);
2149 	}
2150 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2151 	wakeup(&mp->mnt_flag);
2152 	MNT_IUNLOCK(mp);
2153 	curthread->td_pflags |= TDP_IGNSUSP;
2154 	return (0);
2155 }
2156 
2157 /*
2158  * Implement kqueues for files by translating it to vnode operation.
2159  */
2160 static int
2161 vn_kqfilter(struct file *fp, struct knote *kn)
2162 {
2163 
2164 	return (VOP_KQFILTER(fp->f_vnode, kn));
2165 }
2166 
2167 int
2168 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2169 {
2170 	if ((fp->f_flag & FKQALLOWED) == 0)
2171 		return (EBADF);
2172 	return (vn_kqfilter(fp, kn));
2173 }
2174 
2175 /*
2176  * Simplified in-kernel wrapper calls for extended attribute access.
2177  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2178  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2179  */
2180 int
2181 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2182     const char *attrname, int *buflen, char *buf, struct thread *td)
2183 {
2184 	struct uio	auio;
2185 	struct iovec	iov;
2186 	int	error;
2187 
2188 	iov.iov_len = *buflen;
2189 	iov.iov_base = buf;
2190 
2191 	auio.uio_iov = &iov;
2192 	auio.uio_iovcnt = 1;
2193 	auio.uio_rw = UIO_READ;
2194 	auio.uio_segflg = UIO_SYSSPACE;
2195 	auio.uio_td = td;
2196 	auio.uio_offset = 0;
2197 	auio.uio_resid = *buflen;
2198 
2199 	if ((ioflg & IO_NODELOCKED) == 0)
2200 		vn_lock(vp, LK_SHARED | LK_RETRY);
2201 
2202 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2203 
2204 	/* authorize attribute retrieval as kernel */
2205 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2206 	    td);
2207 
2208 	if ((ioflg & IO_NODELOCKED) == 0)
2209 		VOP_UNLOCK(vp);
2210 
2211 	if (error == 0) {
2212 		*buflen = *buflen - auio.uio_resid;
2213 	}
2214 
2215 	return (error);
2216 }
2217 
2218 /*
2219  * XXX failure mode if partially written?
2220  */
2221 int
2222 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2223     const char *attrname, int buflen, char *buf, struct thread *td)
2224 {
2225 	struct uio	auio;
2226 	struct iovec	iov;
2227 	struct mount	*mp;
2228 	int	error;
2229 
2230 	iov.iov_len = buflen;
2231 	iov.iov_base = buf;
2232 
2233 	auio.uio_iov = &iov;
2234 	auio.uio_iovcnt = 1;
2235 	auio.uio_rw = UIO_WRITE;
2236 	auio.uio_segflg = UIO_SYSSPACE;
2237 	auio.uio_td = td;
2238 	auio.uio_offset = 0;
2239 	auio.uio_resid = buflen;
2240 
2241 	if ((ioflg & IO_NODELOCKED) == 0) {
2242 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2243 			return (error);
2244 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2245 	}
2246 
2247 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2248 
2249 	/* authorize attribute setting as kernel */
2250 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2251 
2252 	if ((ioflg & IO_NODELOCKED) == 0) {
2253 		vn_finished_write(mp);
2254 		VOP_UNLOCK(vp);
2255 	}
2256 
2257 	return (error);
2258 }
2259 
2260 int
2261 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2262     const char *attrname, struct thread *td)
2263 {
2264 	struct mount	*mp;
2265 	int	error;
2266 
2267 	if ((ioflg & IO_NODELOCKED) == 0) {
2268 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2269 			return (error);
2270 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2271 	}
2272 
2273 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2274 
2275 	/* authorize attribute removal as kernel */
2276 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2277 	if (error == EOPNOTSUPP)
2278 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2279 		    NULL, td);
2280 
2281 	if ((ioflg & IO_NODELOCKED) == 0) {
2282 		vn_finished_write(mp);
2283 		VOP_UNLOCK(vp);
2284 	}
2285 
2286 	return (error);
2287 }
2288 
2289 static int
2290 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2291     struct vnode **rvp)
2292 {
2293 
2294 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2295 }
2296 
2297 int
2298 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2299 {
2300 
2301 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2302 	    lkflags, rvp));
2303 }
2304 
2305 int
2306 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2307     int lkflags, struct vnode **rvp)
2308 {
2309 	struct mount *mp;
2310 	int ltype, error;
2311 
2312 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2313 	mp = vp->v_mount;
2314 	ltype = VOP_ISLOCKED(vp);
2315 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2316 	    ("vn_vget_ino: vp not locked"));
2317 	error = vfs_busy(mp, MBF_NOWAIT);
2318 	if (error != 0) {
2319 		vfs_ref(mp);
2320 		VOP_UNLOCK(vp);
2321 		error = vfs_busy(mp, 0);
2322 		vn_lock(vp, ltype | LK_RETRY);
2323 		vfs_rel(mp);
2324 		if (error != 0)
2325 			return (ENOENT);
2326 		if (VN_IS_DOOMED(vp)) {
2327 			vfs_unbusy(mp);
2328 			return (ENOENT);
2329 		}
2330 	}
2331 	VOP_UNLOCK(vp);
2332 	error = alloc(mp, alloc_arg, lkflags, rvp);
2333 	vfs_unbusy(mp);
2334 	if (error != 0 || *rvp != vp)
2335 		vn_lock(vp, ltype | LK_RETRY);
2336 	if (VN_IS_DOOMED(vp)) {
2337 		if (error == 0) {
2338 			if (*rvp == vp)
2339 				vunref(vp);
2340 			else
2341 				vput(*rvp);
2342 		}
2343 		error = ENOENT;
2344 	}
2345 	return (error);
2346 }
2347 
2348 int
2349 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2350     struct thread *td)
2351 {
2352 
2353 	if (vp->v_type != VREG || td == NULL)
2354 		return (0);
2355 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2356 	    lim_cur(td, RLIMIT_FSIZE)) {
2357 		PROC_LOCK(td->td_proc);
2358 		kern_psignal(td->td_proc, SIGXFSZ);
2359 		PROC_UNLOCK(td->td_proc);
2360 		return (EFBIG);
2361 	}
2362 	return (0);
2363 }
2364 
2365 int
2366 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2367     struct thread *td)
2368 {
2369 	struct vnode *vp;
2370 
2371 	vp = fp->f_vnode;
2372 #ifdef AUDIT
2373 	vn_lock(vp, LK_SHARED | LK_RETRY);
2374 	AUDIT_ARG_VNODE1(vp);
2375 	VOP_UNLOCK(vp);
2376 #endif
2377 	return (setfmode(td, active_cred, vp, mode));
2378 }
2379 
2380 int
2381 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2382     struct thread *td)
2383 {
2384 	struct vnode *vp;
2385 
2386 	vp = fp->f_vnode;
2387 #ifdef AUDIT
2388 	vn_lock(vp, LK_SHARED | LK_RETRY);
2389 	AUDIT_ARG_VNODE1(vp);
2390 	VOP_UNLOCK(vp);
2391 #endif
2392 	return (setfown(td, active_cred, vp, uid, gid));
2393 }
2394 
2395 void
2396 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2397 {
2398 	vm_object_t object;
2399 
2400 	if ((object = vp->v_object) == NULL)
2401 		return;
2402 	VM_OBJECT_WLOCK(object);
2403 	vm_object_page_remove(object, start, end, 0);
2404 	VM_OBJECT_WUNLOCK(object);
2405 }
2406 
2407 int
2408 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2409 {
2410 	struct vattr va;
2411 	daddr_t bn, bnp;
2412 	uint64_t bsize;
2413 	off_t noff;
2414 	int error;
2415 
2416 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2417 	    ("Wrong command %lu", cmd));
2418 
2419 	if (vn_lock(vp, LK_SHARED) != 0)
2420 		return (EBADF);
2421 	if (vp->v_type != VREG) {
2422 		error = ENOTTY;
2423 		goto unlock;
2424 	}
2425 	error = VOP_GETATTR(vp, &va, cred);
2426 	if (error != 0)
2427 		goto unlock;
2428 	noff = *off;
2429 	if (noff >= va.va_size) {
2430 		error = ENXIO;
2431 		goto unlock;
2432 	}
2433 	bsize = vp->v_mount->mnt_stat.f_iosize;
2434 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2435 	    noff % bsize) {
2436 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2437 		if (error == EOPNOTSUPP) {
2438 			error = ENOTTY;
2439 			goto unlock;
2440 		}
2441 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2442 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2443 			noff = bn * bsize;
2444 			if (noff < *off)
2445 				noff = *off;
2446 			goto unlock;
2447 		}
2448 	}
2449 	if (noff > va.va_size)
2450 		noff = va.va_size;
2451 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2452 	if (cmd == FIOSEEKDATA)
2453 		error = ENXIO;
2454 unlock:
2455 	VOP_UNLOCK(vp);
2456 	if (error == 0)
2457 		*off = noff;
2458 	return (error);
2459 }
2460 
2461 int
2462 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2463 {
2464 	struct ucred *cred;
2465 	struct vnode *vp;
2466 	struct vattr vattr;
2467 	off_t foffset, size;
2468 	int error, noneg;
2469 
2470 	cred = td->td_ucred;
2471 	vp = fp->f_vnode;
2472 	foffset = foffset_lock(fp, 0);
2473 	noneg = (vp->v_type != VCHR);
2474 	error = 0;
2475 	switch (whence) {
2476 	case L_INCR:
2477 		if (noneg &&
2478 		    (foffset < 0 ||
2479 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2480 			error = EOVERFLOW;
2481 			break;
2482 		}
2483 		offset += foffset;
2484 		break;
2485 	case L_XTND:
2486 		vn_lock(vp, LK_SHARED | LK_RETRY);
2487 		error = VOP_GETATTR(vp, &vattr, cred);
2488 		VOP_UNLOCK(vp);
2489 		if (error)
2490 			break;
2491 
2492 		/*
2493 		 * If the file references a disk device, then fetch
2494 		 * the media size and use that to determine the ending
2495 		 * offset.
2496 		 */
2497 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2498 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2499 			vattr.va_size = size;
2500 		if (noneg &&
2501 		    (vattr.va_size > OFF_MAX ||
2502 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2503 			error = EOVERFLOW;
2504 			break;
2505 		}
2506 		offset += vattr.va_size;
2507 		break;
2508 	case L_SET:
2509 		break;
2510 	case SEEK_DATA:
2511 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2512 		if (error == ENOTTY)
2513 			error = EINVAL;
2514 		break;
2515 	case SEEK_HOLE:
2516 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2517 		if (error == ENOTTY)
2518 			error = EINVAL;
2519 		break;
2520 	default:
2521 		error = EINVAL;
2522 	}
2523 	if (error == 0 && noneg && offset < 0)
2524 		error = EINVAL;
2525 	if (error != 0)
2526 		goto drop;
2527 	VFS_KNOTE_UNLOCKED(vp, 0);
2528 	td->td_uretoff.tdu_off = offset;
2529 drop:
2530 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2531 	return (error);
2532 }
2533 
2534 int
2535 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2536     struct thread *td)
2537 {
2538 	int error;
2539 
2540 	/*
2541 	 * Grant permission if the caller is the owner of the file, or
2542 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2543 	 * on the file.  If the time pointer is null, then write
2544 	 * permission on the file is also sufficient.
2545 	 *
2546 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2547 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2548 	 * will be allowed to set the times [..] to the current
2549 	 * server time.
2550 	 */
2551 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2552 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2553 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2554 	return (error);
2555 }
2556 
2557 int
2558 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2559 {
2560 	struct vnode *vp;
2561 	int error;
2562 
2563 	if (fp->f_type == DTYPE_FIFO)
2564 		kif->kf_type = KF_TYPE_FIFO;
2565 	else
2566 		kif->kf_type = KF_TYPE_VNODE;
2567 	vp = fp->f_vnode;
2568 	vref(vp);
2569 	FILEDESC_SUNLOCK(fdp);
2570 	error = vn_fill_kinfo_vnode(vp, kif);
2571 	vrele(vp);
2572 	FILEDESC_SLOCK(fdp);
2573 	return (error);
2574 }
2575 
2576 static inline void
2577 vn_fill_junk(struct kinfo_file *kif)
2578 {
2579 	size_t len, olen;
2580 
2581 	/*
2582 	 * Simulate vn_fullpath returning changing values for a given
2583 	 * vp during e.g. coredump.
2584 	 */
2585 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2586 	olen = strlen(kif->kf_path);
2587 	if (len < olen)
2588 		strcpy(&kif->kf_path[len - 1], "$");
2589 	else
2590 		for (; olen < len; olen++)
2591 			strcpy(&kif->kf_path[olen], "A");
2592 }
2593 
2594 int
2595 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2596 {
2597 	struct vattr va;
2598 	char *fullpath, *freepath;
2599 	int error;
2600 
2601 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2602 	freepath = NULL;
2603 	fullpath = "-";
2604 	error = vn_fullpath(vp, &fullpath, &freepath);
2605 	if (error == 0) {
2606 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2607 	}
2608 	if (freepath != NULL)
2609 		free(freepath, M_TEMP);
2610 
2611 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2612 		vn_fill_junk(kif);
2613 	);
2614 
2615 	/*
2616 	 * Retrieve vnode attributes.
2617 	 */
2618 	va.va_fsid = VNOVAL;
2619 	va.va_rdev = NODEV;
2620 	vn_lock(vp, LK_SHARED | LK_RETRY);
2621 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2622 	VOP_UNLOCK(vp);
2623 	if (error != 0)
2624 		return (error);
2625 	if (va.va_fsid != VNOVAL)
2626 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2627 	else
2628 		kif->kf_un.kf_file.kf_file_fsid =
2629 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2630 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2631 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2632 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2633 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2634 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2635 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2636 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2637 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2638 	return (0);
2639 }
2640 
2641 int
2642 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2643     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2644     struct thread *td)
2645 {
2646 #ifdef HWPMC_HOOKS
2647 	struct pmckern_map_in pkm;
2648 #endif
2649 	struct mount *mp;
2650 	struct vnode *vp;
2651 	vm_object_t object;
2652 	vm_prot_t maxprot;
2653 	boolean_t writecounted;
2654 	int error;
2655 
2656 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2657     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2658 	/*
2659 	 * POSIX shared-memory objects are defined to have
2660 	 * kernel persistence, and are not defined to support
2661 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2662 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2663 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2664 	 * flag to request this behavior.
2665 	 */
2666 	if ((fp->f_flag & FPOSIXSHM) != 0)
2667 		flags |= MAP_NOSYNC;
2668 #endif
2669 	vp = fp->f_vnode;
2670 
2671 	/*
2672 	 * Ensure that file and memory protections are
2673 	 * compatible.  Note that we only worry about
2674 	 * writability if mapping is shared; in this case,
2675 	 * current and max prot are dictated by the open file.
2676 	 * XXX use the vnode instead?  Problem is: what
2677 	 * credentials do we use for determination? What if
2678 	 * proc does a setuid?
2679 	 */
2680 	mp = vp->v_mount;
2681 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2682 		maxprot = VM_PROT_NONE;
2683 		if ((prot & VM_PROT_EXECUTE) != 0)
2684 			return (EACCES);
2685 	} else
2686 		maxprot = VM_PROT_EXECUTE;
2687 	if ((fp->f_flag & FREAD) != 0)
2688 		maxprot |= VM_PROT_READ;
2689 	else if ((prot & VM_PROT_READ) != 0)
2690 		return (EACCES);
2691 
2692 	/*
2693 	 * If we are sharing potential changes via MAP_SHARED and we
2694 	 * are trying to get write permission although we opened it
2695 	 * without asking for it, bail out.
2696 	 */
2697 	if ((flags & MAP_SHARED) != 0) {
2698 		if ((fp->f_flag & FWRITE) != 0)
2699 			maxprot |= VM_PROT_WRITE;
2700 		else if ((prot & VM_PROT_WRITE) != 0)
2701 			return (EACCES);
2702 	} else {
2703 		maxprot |= VM_PROT_WRITE;
2704 		cap_maxprot |= VM_PROT_WRITE;
2705 	}
2706 	maxprot &= cap_maxprot;
2707 
2708 	/*
2709 	 * For regular files and shared memory, POSIX requires that
2710 	 * the value of foff be a legitimate offset within the data
2711 	 * object.  In particular, negative offsets are invalid.
2712 	 * Blocking negative offsets and overflows here avoids
2713 	 * possible wraparound or user-level access into reserved
2714 	 * ranges of the data object later.  In contrast, POSIX does
2715 	 * not dictate how offsets are used by device drivers, so in
2716 	 * the case of a device mapping a negative offset is passed
2717 	 * on.
2718 	 */
2719 	if (
2720 #ifdef _LP64
2721 	    size > OFF_MAX ||
2722 #endif
2723 	    foff > OFF_MAX - size)
2724 		return (EINVAL);
2725 
2726 	writecounted = FALSE;
2727 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2728 	    &foff, &object, &writecounted);
2729 	if (error != 0)
2730 		return (error);
2731 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2732 	    foff, writecounted, td);
2733 	if (error != 0) {
2734 		/*
2735 		 * If this mapping was accounted for in the vnode's
2736 		 * writecount, then undo that now.
2737 		 */
2738 		if (writecounted)
2739 			vm_pager_release_writecount(object, 0, size);
2740 		vm_object_deallocate(object);
2741 	}
2742 #ifdef HWPMC_HOOKS
2743 	/* Inform hwpmc(4) if an executable is being mapped. */
2744 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2745 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2746 			pkm.pm_file = vp;
2747 			pkm.pm_address = (uintptr_t) *addr;
2748 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2749 		}
2750 	}
2751 #endif
2752 	return (error);
2753 }
2754 
2755 void
2756 vn_fsid(struct vnode *vp, struct vattr *va)
2757 {
2758 	fsid_t *f;
2759 
2760 	f = &vp->v_mount->mnt_stat.f_fsid;
2761 	va->va_fsid = (uint32_t)f->val[1];
2762 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2763 	va->va_fsid += (uint32_t)f->val[0];
2764 }
2765 
2766 int
2767 vn_fsync_buf(struct vnode *vp, int waitfor)
2768 {
2769 	struct buf *bp, *nbp;
2770 	struct bufobj *bo;
2771 	struct mount *mp;
2772 	int error, maxretry;
2773 
2774 	error = 0;
2775 	maxretry = 10000;     /* large, arbitrarily chosen */
2776 	mp = NULL;
2777 	if (vp->v_type == VCHR) {
2778 		VI_LOCK(vp);
2779 		mp = vp->v_rdev->si_mountpt;
2780 		VI_UNLOCK(vp);
2781 	}
2782 	bo = &vp->v_bufobj;
2783 	BO_LOCK(bo);
2784 loop1:
2785 	/*
2786 	 * MARK/SCAN initialization to avoid infinite loops.
2787 	 */
2788         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2789 		bp->b_vflags &= ~BV_SCANNED;
2790 		bp->b_error = 0;
2791 	}
2792 
2793 	/*
2794 	 * Flush all dirty buffers associated with a vnode.
2795 	 */
2796 loop2:
2797 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2798 		if ((bp->b_vflags & BV_SCANNED) != 0)
2799 			continue;
2800 		bp->b_vflags |= BV_SCANNED;
2801 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2802 			if (waitfor != MNT_WAIT)
2803 				continue;
2804 			if (BUF_LOCK(bp,
2805 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2806 			    BO_LOCKPTR(bo)) != 0) {
2807 				BO_LOCK(bo);
2808 				goto loop1;
2809 			}
2810 			BO_LOCK(bo);
2811 		}
2812 		BO_UNLOCK(bo);
2813 		KASSERT(bp->b_bufobj == bo,
2814 		    ("bp %p wrong b_bufobj %p should be %p",
2815 		    bp, bp->b_bufobj, bo));
2816 		if ((bp->b_flags & B_DELWRI) == 0)
2817 			panic("fsync: not dirty");
2818 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2819 			vfs_bio_awrite(bp);
2820 		} else {
2821 			bremfree(bp);
2822 			bawrite(bp);
2823 		}
2824 		if (maxretry < 1000)
2825 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2826 		BO_LOCK(bo);
2827 		goto loop2;
2828 	}
2829 
2830 	/*
2831 	 * If synchronous the caller expects us to completely resolve all
2832 	 * dirty buffers in the system.  Wait for in-progress I/O to
2833 	 * complete (which could include background bitmap writes), then
2834 	 * retry if dirty blocks still exist.
2835 	 */
2836 	if (waitfor == MNT_WAIT) {
2837 		bufobj_wwait(bo, 0, 0);
2838 		if (bo->bo_dirty.bv_cnt > 0) {
2839 			/*
2840 			 * If we are unable to write any of these buffers
2841 			 * then we fail now rather than trying endlessly
2842 			 * to write them out.
2843 			 */
2844 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2845 				if ((error = bp->b_error) != 0)
2846 					break;
2847 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2848 			    (error == 0 && --maxretry >= 0))
2849 				goto loop1;
2850 			if (error == 0)
2851 				error = EAGAIN;
2852 		}
2853 	}
2854 	BO_UNLOCK(bo);
2855 	if (error != 0)
2856 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2857 
2858 	return (error);
2859 }
2860 
2861 /*
2862  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
2863  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
2864  * to do the actual copy.
2865  * vn_generic_copy_file_range() is factored out, so it can be called
2866  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
2867  * different file systems.
2868  */
2869 int
2870 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
2871     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
2872     struct ucred *outcred, struct thread *fsize_td)
2873 {
2874 	int error;
2875 	size_t len;
2876 	uint64_t uval;
2877 
2878 	len = *lenp;
2879 	*lenp = 0;		/* For error returns. */
2880 	error = 0;
2881 
2882 	/* Do some sanity checks on the arguments. */
2883 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
2884 		error = EISDIR;
2885 	else if (*inoffp < 0 || *outoffp < 0 ||
2886 	    invp->v_type != VREG || outvp->v_type != VREG)
2887 		error = EINVAL;
2888 	if (error != 0)
2889 		goto out;
2890 
2891 	/* Ensure offset + len does not wrap around. */
2892 	uval = *inoffp;
2893 	uval += len;
2894 	if (uval > INT64_MAX)
2895 		len = INT64_MAX - *inoffp;
2896 	uval = *outoffp;
2897 	uval += len;
2898 	if (uval > INT64_MAX)
2899 		len = INT64_MAX - *outoffp;
2900 	if (len == 0)
2901 		goto out;
2902 
2903 	/*
2904 	 * If the two vnode are for the same file system, call
2905 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
2906 	 * which can handle copies across multiple file systems.
2907 	 */
2908 	*lenp = len;
2909 	if (invp->v_mount == outvp->v_mount)
2910 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
2911 		    lenp, flags, incred, outcred, fsize_td);
2912 	else
2913 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
2914 		    outoffp, lenp, flags, incred, outcred, fsize_td);
2915 out:
2916 	return (error);
2917 }
2918 
2919 /*
2920  * Test len bytes of data starting at dat for all bytes == 0.
2921  * Return true if all bytes are zero, false otherwise.
2922  * Expects dat to be well aligned.
2923  */
2924 static bool
2925 mem_iszero(void *dat, int len)
2926 {
2927 	int i;
2928 	const u_int *p;
2929 	const char *cp;
2930 
2931 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
2932 		if (len >= sizeof(*p)) {
2933 			if (*p != 0)
2934 				return (false);
2935 		} else {
2936 			cp = (const char *)p;
2937 			for (i = 0; i < len; i++, cp++)
2938 				if (*cp != '\0')
2939 					return (false);
2940 		}
2941 	}
2942 	return (true);
2943 }
2944 
2945 /*
2946  * Look for a hole in the output file and, if found, adjust *outoffp
2947  * and *xferp to skip past the hole.
2948  * *xferp is the entire hole length to be written and xfer2 is how many bytes
2949  * to be written as 0's upon return.
2950  */
2951 static off_t
2952 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
2953     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
2954 {
2955 	int error;
2956 	off_t delta;
2957 
2958 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
2959 		*dataoffp = *outoffp;
2960 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
2961 		    curthread);
2962 		if (error == 0) {
2963 			*holeoffp = *dataoffp;
2964 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
2965 			    curthread);
2966 		}
2967 		if (error != 0 || *holeoffp == *dataoffp) {
2968 			/*
2969 			 * Since outvp is unlocked, it may be possible for
2970 			 * another thread to do a truncate(), lseek(), write()
2971 			 * creating a hole at startoff between the above
2972 			 * VOP_IOCTL() calls, if the other thread does not do
2973 			 * rangelocking.
2974 			 * If that happens, *holeoffp == *dataoffp and finding
2975 			 * the hole has failed, so disable vn_skip_hole().
2976 			 */
2977 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
2978 			return (xfer2);
2979 		}
2980 		KASSERT(*dataoffp >= *outoffp,
2981 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
2982 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
2983 		KASSERT(*holeoffp > *dataoffp,
2984 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
2985 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
2986 	}
2987 
2988 	/*
2989 	 * If there is a hole before the data starts, advance *outoffp and
2990 	 * *xferp past the hole.
2991 	 */
2992 	if (*dataoffp > *outoffp) {
2993 		delta = *dataoffp - *outoffp;
2994 		if (delta >= *xferp) {
2995 			/* Entire *xferp is a hole. */
2996 			*outoffp += *xferp;
2997 			*xferp = 0;
2998 			return (0);
2999 		}
3000 		*xferp -= delta;
3001 		*outoffp += delta;
3002 		xfer2 = MIN(xfer2, *xferp);
3003 	}
3004 
3005 	/*
3006 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3007 	 * that the write ends at the start of the hole.
3008 	 * *holeoffp should always be greater than *outoffp, but for the
3009 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3010 	 * value.
3011 	 */
3012 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3013 		xfer2 = *holeoffp - *outoffp;
3014 	return (xfer2);
3015 }
3016 
3017 /*
3018  * Write an xfer sized chunk to outvp in blksize blocks from dat.
3019  * dat is a maximum of blksize in length and can be written repeatedly in
3020  * the chunk.
3021  * If growfile == true, just grow the file via vn_truncate_locked() instead
3022  * of doing actual writes.
3023  * If checkhole == true, a hole is being punched, so skip over any hole
3024  * already in the output file.
3025  */
3026 static int
3027 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3028     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3029 {
3030 	struct mount *mp;
3031 	off_t dataoff, holeoff, xfer2;
3032 	int error, lckf;
3033 
3034 	/*
3035 	 * Loop around doing writes of blksize until write has been completed.
3036 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3037 	 * done for each iteration, since the xfer argument can be very
3038 	 * large if there is a large hole to punch in the output file.
3039 	 */
3040 	error = 0;
3041 	holeoff = 0;
3042 	do {
3043 		xfer2 = MIN(xfer, blksize);
3044 		if (checkhole) {
3045 			/*
3046 			 * Punching a hole.  Skip writing if there is
3047 			 * already a hole in the output file.
3048 			 */
3049 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3050 			    &dataoff, &holeoff, cred);
3051 			if (xfer == 0)
3052 				break;
3053 			if (holeoff < 0)
3054 				checkhole = false;
3055 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3056 			    (intmax_t)xfer2));
3057 		}
3058 		bwillwrite();
3059 		mp = NULL;
3060 		error = vn_start_write(outvp, &mp, V_WAIT);
3061 		if (error != 0)
3062 			break;
3063 		if (growfile) {
3064 			error = vn_lock(outvp, LK_EXCLUSIVE);
3065 			if (error == 0) {
3066 				error = vn_truncate_locked(outvp, outoff + xfer,
3067 				    false, cred);
3068 				VOP_UNLOCK(outvp);
3069 			}
3070 		} else {
3071 			if (MNT_SHARED_WRITES(mp))
3072 				lckf = LK_SHARED;
3073 			else
3074 				lckf = LK_EXCLUSIVE;
3075 			error = vn_lock(outvp, lckf);
3076 			if (error == 0) {
3077 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3078 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3079 				    curthread->td_ucred, cred, NULL, curthread);
3080 				outoff += xfer2;
3081 				xfer -= xfer2;
3082 				VOP_UNLOCK(outvp);
3083 			}
3084 		}
3085 		if (mp != NULL)
3086 			vn_finished_write(mp);
3087 	} while (!growfile && xfer > 0 && error == 0);
3088 	return (error);
3089 }
3090 
3091 /*
3092  * Copy a byte range of one file to another.  This function can handle the
3093  * case where invp and outvp are on different file systems.
3094  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3095  * is no better file system specific way to do it.
3096  */
3097 int
3098 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3099     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3100     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3101 {
3102 	struct vattr va, inva;
3103 	struct mount *mp;
3104 	struct uio io;
3105 	off_t startoff, endoff, xfer, xfer2;
3106 	u_long blksize;
3107 	int error, interrupted;
3108 	bool cantseek, readzeros, eof, lastblock, holetoeof;
3109 	ssize_t aresid;
3110 	size_t copylen, len, rem, savlen;
3111 	char *dat;
3112 	long holein, holeout;
3113 
3114 	holein = holeout = 0;
3115 	savlen = len = *lenp;
3116 	error = 0;
3117 	interrupted = 0;
3118 	dat = NULL;
3119 
3120 	error = vn_lock(invp, LK_SHARED);
3121 	if (error != 0)
3122 		goto out;
3123 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3124 		holein = 0;
3125 	if (holein > 0)
3126 		error = VOP_GETATTR(invp, &inva, incred);
3127 	VOP_UNLOCK(invp);
3128 	if (error != 0)
3129 		goto out;
3130 
3131 	mp = NULL;
3132 	error = vn_start_write(outvp, &mp, V_WAIT);
3133 	if (error == 0)
3134 		error = vn_lock(outvp, LK_EXCLUSIVE);
3135 	if (error == 0) {
3136 		/*
3137 		 * If fsize_td != NULL, do a vn_rlimit_fsize() call,
3138 		 * now that outvp is locked.
3139 		 */
3140 		if (fsize_td != NULL) {
3141 			io.uio_offset = *outoffp;
3142 			io.uio_resid = len;
3143 			error = vn_rlimit_fsize(outvp, &io, fsize_td);
3144 			if (error != 0)
3145 				error = EFBIG;
3146 		}
3147 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3148 			holeout = 0;
3149 		/*
3150 		 * Holes that are past EOF do not need to be written as a block
3151 		 * of zero bytes.  So, truncate the output file as far as
3152 		 * possible and then use va.va_size to decide if writing 0
3153 		 * bytes is necessary in the loop below.
3154 		 */
3155 		if (error == 0)
3156 			error = VOP_GETATTR(outvp, &va, outcred);
3157 		if (error == 0 && va.va_size > *outoffp && va.va_size <=
3158 		    *outoffp + len) {
3159 #ifdef MAC
3160 			error = mac_vnode_check_write(curthread->td_ucred,
3161 			    outcred, outvp);
3162 			if (error == 0)
3163 #endif
3164 				error = vn_truncate_locked(outvp, *outoffp,
3165 				    false, outcred);
3166 			if (error == 0)
3167 				va.va_size = *outoffp;
3168 		}
3169 		VOP_UNLOCK(outvp);
3170 	}
3171 	if (mp != NULL)
3172 		vn_finished_write(mp);
3173 	if (error != 0)
3174 		goto out;
3175 
3176 	/*
3177 	 * Set the blksize to the larger of the hole sizes for invp and outvp.
3178 	 * If hole sizes aren't available, set the blksize to the larger
3179 	 * f_iosize of invp and outvp.
3180 	 * This code expects the hole sizes and f_iosizes to be powers of 2.
3181 	 * This value is clipped at 4Kbytes and 1Mbyte.
3182 	 */
3183 	blksize = MAX(holein, holeout);
3184 
3185 	/* Clip len to end at an exact multiple of hole size. */
3186 	if (blksize > 1) {
3187 		rem = *inoffp % blksize;
3188 		if (rem > 0)
3189 			rem = blksize - rem;
3190 		if (len > rem && len - rem > blksize)
3191 			len = savlen = rounddown(len - rem, blksize) + rem;
3192 	}
3193 
3194 	if (blksize <= 1)
3195 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3196 		    outvp->v_mount->mnt_stat.f_iosize);
3197 	if (blksize < 4096)
3198 		blksize = 4096;
3199 	else if (blksize > 1024 * 1024)
3200 		blksize = 1024 * 1024;
3201 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3202 
3203 	/*
3204 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3205 	 * to find holes.  Otherwise, just scan the read block for all 0s
3206 	 * in the inner loop where the data copying is done.
3207 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3208 	 * support holes on the server, but do not support FIOSEEKHOLE.
3209 	 */
3210 	holetoeof = eof = false;
3211 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3212 		endoff = 0;			/* To shut up compilers. */
3213 		cantseek = true;
3214 		startoff = *inoffp;
3215 		copylen = len;
3216 
3217 		/*
3218 		 * Find the next data area.  If there is just a hole to EOF,
3219 		 * FIOSEEKDATA should fail with ENXIO.
3220 		 * (I do not know if any file system will report a hole to
3221 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3222 		 *  will fail for those file systems.)
3223 		 *
3224 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3225 		 * the code just falls through to the inner copy loop.
3226 		 */
3227 		error = EINVAL;
3228 		if (holein > 0) {
3229 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3230 			    incred, curthread);
3231 			if (error == ENXIO) {
3232 				startoff = endoff = inva.va_size;
3233 				eof = holetoeof = true;
3234 				error = 0;
3235 			}
3236 		}
3237 		if (error == 0 && !holetoeof) {
3238 			endoff = startoff;
3239 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3240 			    incred, curthread);
3241 			/*
3242 			 * Since invp is unlocked, it may be possible for
3243 			 * another thread to do a truncate(), lseek(), write()
3244 			 * creating a hole at startoff between the above
3245 			 * VOP_IOCTL() calls, if the other thread does not do
3246 			 * rangelocking.
3247 			 * If that happens, startoff == endoff and finding
3248 			 * the hole has failed, so set an error.
3249 			 */
3250 			if (error == 0 && startoff == endoff)
3251 				error = EINVAL; /* Any error. Reset to 0. */
3252 		}
3253 		if (error == 0) {
3254 			if (startoff > *inoffp) {
3255 				/* Found hole before data block. */
3256 				xfer = MIN(startoff - *inoffp, len);
3257 				if (*outoffp < va.va_size) {
3258 					/* Must write 0s to punch hole. */
3259 					xfer2 = MIN(va.va_size - *outoffp,
3260 					    xfer);
3261 					memset(dat, 0, MIN(xfer2, blksize));
3262 					error = vn_write_outvp(outvp, dat,
3263 					    *outoffp, xfer2, blksize, false,
3264 					    holeout > 0, outcred);
3265 				}
3266 
3267 				if (error == 0 && *outoffp + xfer >
3268 				    va.va_size && (xfer == len || holetoeof)) {
3269 					/* Grow output file (hole at end). */
3270 					error = vn_write_outvp(outvp, dat,
3271 					    *outoffp, xfer, blksize, true,
3272 					    false, outcred);
3273 				}
3274 				if (error == 0) {
3275 					*inoffp += xfer;
3276 					*outoffp += xfer;
3277 					len -= xfer;
3278 					if (len < savlen)
3279 						interrupted = sig_intr();
3280 				}
3281 			}
3282 			copylen = MIN(len, endoff - startoff);
3283 			cantseek = false;
3284 		} else {
3285 			cantseek = true;
3286 			startoff = *inoffp;
3287 			copylen = len;
3288 			error = 0;
3289 		}
3290 
3291 		xfer = blksize;
3292 		if (cantseek) {
3293 			/*
3294 			 * Set first xfer to end at a block boundary, so that
3295 			 * holes are more likely detected in the loop below via
3296 			 * the for all bytes 0 method.
3297 			 */
3298 			xfer -= (*inoffp % blksize);
3299 		}
3300 		/* Loop copying the data block. */
3301 		while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
3302 			if (copylen < xfer)
3303 				xfer = copylen;
3304 			error = vn_lock(invp, LK_SHARED);
3305 			if (error != 0)
3306 				goto out;
3307 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3308 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3309 			    curthread->td_ucred, incred, &aresid,
3310 			    curthread);
3311 			VOP_UNLOCK(invp);
3312 			lastblock = false;
3313 			if (error == 0 && aresid > 0) {
3314 				/* Stop the copy at EOF on the input file. */
3315 				xfer -= aresid;
3316 				eof = true;
3317 				lastblock = true;
3318 			}
3319 			if (error == 0) {
3320 				/*
3321 				 * Skip the write for holes past the initial EOF
3322 				 * of the output file, unless this is the last
3323 				 * write of the output file at EOF.
3324 				 */
3325 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3326 				    false;
3327 				if (xfer == len)
3328 					lastblock = true;
3329 				if (!cantseek || *outoffp < va.va_size ||
3330 				    lastblock || !readzeros)
3331 					error = vn_write_outvp(outvp, dat,
3332 					    *outoffp, xfer, blksize,
3333 					    readzeros && lastblock &&
3334 					    *outoffp >= va.va_size, false,
3335 					    outcred);
3336 				if (error == 0) {
3337 					*inoffp += xfer;
3338 					startoff += xfer;
3339 					*outoffp += xfer;
3340 					copylen -= xfer;
3341 					len -= xfer;
3342 					if (len < savlen)
3343 						interrupted = sig_intr();
3344 				}
3345 			}
3346 			xfer = blksize;
3347 		}
3348 	}
3349 out:
3350 	*lenp = savlen - len;
3351 	free(dat, M_TEMP);
3352 	return (error);
3353 }
3354 
3355 static int
3356 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3357 {
3358 	struct mount *mp;
3359 	struct vnode *vp;
3360 	off_t olen, ooffset;
3361 	int error;
3362 #ifdef AUDIT
3363 	int audited_vnode1 = 0;
3364 #endif
3365 
3366 	vp = fp->f_vnode;
3367 	if (vp->v_type != VREG)
3368 		return (ENODEV);
3369 
3370 	/* Allocating blocks may take a long time, so iterate. */
3371 	for (;;) {
3372 		olen = len;
3373 		ooffset = offset;
3374 
3375 		bwillwrite();
3376 		mp = NULL;
3377 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
3378 		if (error != 0)
3379 			break;
3380 		error = vn_lock(vp, LK_EXCLUSIVE);
3381 		if (error != 0) {
3382 			vn_finished_write(mp);
3383 			break;
3384 		}
3385 #ifdef AUDIT
3386 		if (!audited_vnode1) {
3387 			AUDIT_ARG_VNODE1(vp);
3388 			audited_vnode1 = 1;
3389 		}
3390 #endif
3391 #ifdef MAC
3392 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3393 		if (error == 0)
3394 #endif
3395 			error = VOP_ALLOCATE(vp, &offset, &len);
3396 		VOP_UNLOCK(vp);
3397 		vn_finished_write(mp);
3398 
3399 		if (olen + ooffset != offset + len) {
3400 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3401 			    ooffset, olen, offset, len);
3402 		}
3403 		if (error != 0 || len == 0)
3404 			break;
3405 		KASSERT(olen > len, ("Iteration did not make progress?"));
3406 		maybe_yield();
3407 	}
3408 
3409 	return (error);
3410 }
3411 
3412 static u_long vn_lock_pair_pause_cnt;
3413 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
3414     &vn_lock_pair_pause_cnt, 0,
3415     "Count of vn_lock_pair deadlocks");
3416 
3417 u_int vn_lock_pair_pause_max;
3418 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
3419     &vn_lock_pair_pause_max, 0,
3420     "Max ticks for vn_lock_pair deadlock avoidance sleep");
3421 
3422 static void
3423 vn_lock_pair_pause(const char *wmesg)
3424 {
3425 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
3426 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
3427 }
3428 
3429 /*
3430  * Lock pair of vnodes vp1, vp2, avoiding lock order reversal.
3431  * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1
3432  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
3433  * can be NULL.
3434  *
3435  * The function returns with both vnodes exclusively locked, and
3436  * guarantees that it does not create lock order reversal with other
3437  * threads during its execution.  Both vnodes could be unlocked
3438  * temporary (and reclaimed).
3439  */
3440 void
3441 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2,
3442     bool vp2_locked)
3443 {
3444 	int error;
3445 
3446 	if (vp1 == NULL && vp2 == NULL)
3447 		return;
3448 	if (vp1 != NULL) {
3449 		if (vp1_locked)
3450 			ASSERT_VOP_ELOCKED(vp1, "vp1");
3451 		else
3452 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
3453 	} else {
3454 		vp1_locked = true;
3455 	}
3456 	if (vp2 != NULL) {
3457 		if (vp2_locked)
3458 			ASSERT_VOP_ELOCKED(vp2, "vp2");
3459 		else
3460 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
3461 	} else {
3462 		vp2_locked = true;
3463 	}
3464 	if (!vp1_locked && !vp2_locked) {
3465 		vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3466 		vp1_locked = true;
3467 	}
3468 
3469 	for (;;) {
3470 		if (vp1_locked && vp2_locked)
3471 			break;
3472 		if (vp1_locked && vp2 != NULL) {
3473 			if (vp1 != NULL) {
3474 				error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT,
3475 				    __FILE__, __LINE__);
3476 				if (error == 0)
3477 					break;
3478 				VOP_UNLOCK(vp1);
3479 				vp1_locked = false;
3480 				vn_lock_pair_pause("vlp1");
3481 			}
3482 			vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3483 			vp2_locked = true;
3484 		}
3485 		if (vp2_locked && vp1 != NULL) {
3486 			if (vp2 != NULL) {
3487 				error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT,
3488 				    __FILE__, __LINE__);
3489 				if (error == 0)
3490 					break;
3491 				VOP_UNLOCK(vp2);
3492 				vp2_locked = false;
3493 				vn_lock_pair_pause("vlp2");
3494 			}
3495 			vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3496 			vp1_locked = true;
3497 		}
3498 	}
3499 	if (vp1 != NULL)
3500 		ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
3501 	if (vp2 != NULL)
3502 		ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
3503 }
3504