xref: /freebsd/sys/kern/vfs_vnops.c (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/prng.h>
74 #include <sys/sx.h>
75 #include <sys/sleepqueue.h>
76 #include <sys/sysctl.h>
77 #include <sys/ttycom.h>
78 #include <sys/conf.h>
79 #include <sys/syslog.h>
80 #include <sys/unistd.h>
81 #include <sys/user.h>
82 
83 #include <security/audit/audit.h>
84 #include <security/mac/mac_framework.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pager.h>
93 
94 #ifdef HWPMC_HOOKS
95 #include <sys/pmckern.h>
96 #endif
97 
98 static fo_rdwr_t	vn_read;
99 static fo_rdwr_t	vn_write;
100 static fo_rdwr_t	vn_io_fault;
101 static fo_truncate_t	vn_truncate;
102 static fo_ioctl_t	vn_ioctl;
103 static fo_poll_t	vn_poll;
104 static fo_kqfilter_t	vn_kqfilter;
105 static fo_stat_t	vn_statfile;
106 static fo_close_t	vn_closefile;
107 static fo_mmap_t	vn_mmap;
108 static fo_fallocate_t	vn_fallocate;
109 
110 struct 	fileops vnops = {
111 	.fo_read = vn_io_fault,
112 	.fo_write = vn_io_fault,
113 	.fo_truncate = vn_truncate,
114 	.fo_ioctl = vn_ioctl,
115 	.fo_poll = vn_poll,
116 	.fo_kqfilter = vn_kqfilter,
117 	.fo_stat = vn_statfile,
118 	.fo_close = vn_closefile,
119 	.fo_chmod = vn_chmod,
120 	.fo_chown = vn_chown,
121 	.fo_sendfile = vn_sendfile,
122 	.fo_seek = vn_seek,
123 	.fo_fill_kinfo = vn_fill_kinfo,
124 	.fo_mmap = vn_mmap,
125 	.fo_fallocate = vn_fallocate,
126 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
127 };
128 
129 const u_int io_hold_cnt = 16;
130 static int vn_io_fault_enable = 1;
131 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
132     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
133 static int vn_io_fault_prefault = 0;
134 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
135     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
136 static int vn_io_pgcache_read_enable = 1;
137 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
138     &vn_io_pgcache_read_enable, 0,
139     "Enable copying from page cache for reads, avoiding fs");
140 static u_long vn_io_faults_cnt;
141 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
142     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
143 
144 static int vfs_allow_read_dir = 0;
145 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
146     &vfs_allow_read_dir, 0,
147     "Enable read(2) of directory by root for filesystems that support it");
148 
149 /*
150  * Returns true if vn_io_fault mode of handling the i/o request should
151  * be used.
152  */
153 static bool
154 do_vn_io_fault(struct vnode *vp, struct uio *uio)
155 {
156 	struct mount *mp;
157 
158 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
159 	    (mp = vp->v_mount) != NULL &&
160 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
161 }
162 
163 /*
164  * Structure used to pass arguments to vn_io_fault1(), to do either
165  * file- or vnode-based I/O calls.
166  */
167 struct vn_io_fault_args {
168 	enum {
169 		VN_IO_FAULT_FOP,
170 		VN_IO_FAULT_VOP
171 	} kind;
172 	struct ucred *cred;
173 	int flags;
174 	union {
175 		struct fop_args_tag {
176 			struct file *fp;
177 			fo_rdwr_t *doio;
178 		} fop_args;
179 		struct vop_args_tag {
180 			struct vnode *vp;
181 		} vop_args;
182 	} args;
183 };
184 
185 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
186     struct vn_io_fault_args *args, struct thread *td);
187 
188 int
189 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
190 {
191 	struct thread *td = ndp->ni_cnd.cn_thread;
192 
193 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
194 }
195 
196 static uint64_t
197 open2nameif(int fmode, u_int vn_open_flags)
198 {
199 	uint64_t res;
200 
201 	res = ISOPEN | LOCKLEAF;
202 	if ((fmode & O_BENEATH) != 0)
203 		res |= BENEATH;
204 	if ((fmode & O_RESOLVE_BENEATH) != 0)
205 		res |= RBENEATH;
206 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
207 		res |= AUDITVNODE1;
208 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
209 		res |= NOCAPCHECK;
210 	return (res);
211 }
212 
213 /*
214  * Common code for vnode open operations via a name lookup.
215  * Lookup the vnode and invoke VOP_CREATE if needed.
216  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
217  *
218  * Note that this does NOT free nameidata for the successful case,
219  * due to the NDINIT being done elsewhere.
220  */
221 int
222 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
223     struct ucred *cred, struct file *fp)
224 {
225 	struct vnode *vp;
226 	struct mount *mp;
227 	struct thread *td = ndp->ni_cnd.cn_thread;
228 	struct vattr vat;
229 	struct vattr *vap = &vat;
230 	int fmode, error;
231 
232 restart:
233 	fmode = *flagp;
234 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
235 	    O_EXCL | O_DIRECTORY))
236 		return (EINVAL);
237 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
238 		ndp->ni_cnd.cn_nameiop = CREATE;
239 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
240 		/*
241 		 * Set NOCACHE to avoid flushing the cache when
242 		 * rolling in many files at once.
243 		 *
244 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
245 		 * exist despite NOCACHE.
246 		 */
247 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
248 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
249 			ndp->ni_cnd.cn_flags |= FOLLOW;
250 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
251 			bwillwrite();
252 		if ((error = namei(ndp)) != 0)
253 			return (error);
254 		if (ndp->ni_vp == NULL) {
255 			VATTR_NULL(vap);
256 			vap->va_type = VREG;
257 			vap->va_mode = cmode;
258 			if (fmode & O_EXCL)
259 				vap->va_vaflags |= VA_EXCLUSIVE;
260 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
261 				NDFREE(ndp, NDF_ONLY_PNBUF);
262 				vput(ndp->ni_dvp);
263 				if ((error = vn_start_write(NULL, &mp,
264 				    V_XSLEEP | PCATCH)) != 0)
265 					return (error);
266 				NDREINIT(ndp);
267 				goto restart;
268 			}
269 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
270 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
271 #ifdef MAC
272 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
273 			    &ndp->ni_cnd, vap);
274 			if (error == 0)
275 #endif
276 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
277 						   &ndp->ni_cnd, vap);
278 			vput(ndp->ni_dvp);
279 			vn_finished_write(mp);
280 			if (error) {
281 				NDFREE(ndp, NDF_ONLY_PNBUF);
282 				if (error == ERELOOKUP) {
283 					NDREINIT(ndp);
284 					goto restart;
285 				}
286 				return (error);
287 			}
288 			fmode &= ~O_TRUNC;
289 			vp = ndp->ni_vp;
290 		} else {
291 			if (ndp->ni_dvp == ndp->ni_vp)
292 				vrele(ndp->ni_dvp);
293 			else
294 				vput(ndp->ni_dvp);
295 			ndp->ni_dvp = NULL;
296 			vp = ndp->ni_vp;
297 			if (fmode & O_EXCL) {
298 				error = EEXIST;
299 				goto bad;
300 			}
301 			if (vp->v_type == VDIR) {
302 				error = EISDIR;
303 				goto bad;
304 			}
305 			fmode &= ~O_CREAT;
306 		}
307 	} else {
308 		ndp->ni_cnd.cn_nameiop = LOOKUP;
309 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
310 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
311 		    FOLLOW;
312 		if ((fmode & FWRITE) == 0)
313 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
314 		if ((error = namei(ndp)) != 0)
315 			return (error);
316 		vp = ndp->ni_vp;
317 	}
318 	error = vn_open_vnode(vp, fmode, cred, td, fp);
319 	if (error)
320 		goto bad;
321 	*flagp = fmode;
322 	return (0);
323 bad:
324 	NDFREE(ndp, NDF_ONLY_PNBUF);
325 	vput(vp);
326 	*flagp = fmode;
327 	ndp->ni_vp = NULL;
328 	return (error);
329 }
330 
331 static int
332 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
333 {
334 	struct flock lf;
335 	int error, lock_flags, type;
336 
337 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
338 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
339 		return (0);
340 	KASSERT(fp != NULL, ("open with flock requires fp"));
341 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
342 		return (EOPNOTSUPP);
343 
344 	lock_flags = VOP_ISLOCKED(vp);
345 	VOP_UNLOCK(vp);
346 
347 	lf.l_whence = SEEK_SET;
348 	lf.l_start = 0;
349 	lf.l_len = 0;
350 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
351 	type = F_FLOCK;
352 	if ((fmode & FNONBLOCK) == 0)
353 		type |= F_WAIT;
354 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
355 	if (error == 0)
356 		fp->f_flag |= FHASLOCK;
357 
358 	vn_lock(vp, lock_flags | LK_RETRY);
359 	if (error == 0 && VN_IS_DOOMED(vp))
360 		error = ENOENT;
361 	return (error);
362 }
363 
364 /*
365  * Common code for vnode open operations once a vnode is located.
366  * Check permissions, and call the VOP_OPEN routine.
367  */
368 int
369 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
370     struct thread *td, struct file *fp)
371 {
372 	accmode_t accmode;
373 	int error;
374 
375 	if (vp->v_type == VLNK)
376 		return (EMLINK);
377 	if (vp->v_type == VSOCK)
378 		return (EOPNOTSUPP);
379 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
380 		return (ENOTDIR);
381 	accmode = 0;
382 	if (fmode & (FWRITE | O_TRUNC)) {
383 		if (vp->v_type == VDIR)
384 			return (EISDIR);
385 		accmode |= VWRITE;
386 	}
387 	if (fmode & FREAD)
388 		accmode |= VREAD;
389 	if (fmode & FEXEC)
390 		accmode |= VEXEC;
391 	if ((fmode & O_APPEND) && (fmode & FWRITE))
392 		accmode |= VAPPEND;
393 #ifdef MAC
394 	if (fmode & O_CREAT)
395 		accmode |= VCREAT;
396 	if (fmode & O_VERIFY)
397 		accmode |= VVERIFY;
398 	error = mac_vnode_check_open(cred, vp, accmode);
399 	if (error)
400 		return (error);
401 
402 	accmode &= ~(VCREAT | VVERIFY);
403 #endif
404 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
405 		error = VOP_ACCESS(vp, accmode, cred, td);
406 		if (error != 0)
407 			return (error);
408 	}
409 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
410 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
411 	error = VOP_OPEN(vp, fmode, cred, td, fp);
412 	if (error != 0)
413 		return (error);
414 
415 	error = vn_open_vnode_advlock(vp, fmode, fp);
416 	if (error == 0 && (fmode & FWRITE) != 0) {
417 		error = VOP_ADD_WRITECOUNT(vp, 1);
418 		if (error == 0) {
419 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
420 			     __func__, vp, vp->v_writecount);
421 		}
422 	}
423 
424 	/*
425 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
426 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
427 	 * Arrange for that by having fdrop() to use vn_closefile().
428 	 */
429 	if (error != 0) {
430 		fp->f_flag |= FOPENFAILED;
431 		fp->f_vnode = vp;
432 		if (fp->f_ops == &badfileops) {
433 			fp->f_type = DTYPE_VNODE;
434 			fp->f_ops = &vnops;
435 		}
436 		vref(vp);
437 	}
438 
439 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
440 	return (error);
441 
442 }
443 
444 /*
445  * Check for write permissions on the specified vnode.
446  * Prototype text segments cannot be written.
447  * It is racy.
448  */
449 int
450 vn_writechk(struct vnode *vp)
451 {
452 
453 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
454 	/*
455 	 * If there's shared text associated with
456 	 * the vnode, try to free it up once.  If
457 	 * we fail, we can't allow writing.
458 	 */
459 	if (VOP_IS_TEXT(vp))
460 		return (ETXTBSY);
461 
462 	return (0);
463 }
464 
465 /*
466  * Vnode close call
467  */
468 static int
469 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
470     struct thread *td, bool keep_ref)
471 {
472 	struct mount *mp;
473 	int error, lock_flags;
474 
475 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
476 	    MNT_EXTENDED_SHARED(vp->v_mount))
477 		lock_flags = LK_SHARED;
478 	else
479 		lock_flags = LK_EXCLUSIVE;
480 
481 	vn_start_write(vp, &mp, V_WAIT);
482 	vn_lock(vp, lock_flags | LK_RETRY);
483 	AUDIT_ARG_VNODE1(vp);
484 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
485 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
486 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
487 		    __func__, vp, vp->v_writecount);
488 	}
489 	error = VOP_CLOSE(vp, flags, file_cred, td);
490 	if (keep_ref)
491 		VOP_UNLOCK(vp);
492 	else
493 		vput(vp);
494 	vn_finished_write(mp);
495 	return (error);
496 }
497 
498 int
499 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
500     struct thread *td)
501 {
502 
503 	return (vn_close1(vp, flags, file_cred, td, false));
504 }
505 
506 /*
507  * Heuristic to detect sequential operation.
508  */
509 static int
510 sequential_heuristic(struct uio *uio, struct file *fp)
511 {
512 	enum uio_rw rw;
513 
514 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
515 
516 	rw = uio->uio_rw;
517 	if (fp->f_flag & FRDAHEAD)
518 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
519 
520 	/*
521 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
522 	 * that the first I/O is normally considered to be slightly
523 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
524 	 * unless previous seeks have reduced f_seqcount to 0, in which
525 	 * case offset 0 is not special.
526 	 */
527 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
528 	    uio->uio_offset == fp->f_nextoff[rw]) {
529 		/*
530 		 * f_seqcount is in units of fixed-size blocks so that it
531 		 * depends mainly on the amount of sequential I/O and not
532 		 * much on the number of sequential I/O's.  The fixed size
533 		 * of 16384 is hard-coded here since it is (not quite) just
534 		 * a magic size that works well here.  This size is more
535 		 * closely related to the best I/O size for real disks than
536 		 * to any block size used by software.
537 		 */
538 		if (uio->uio_resid >= IO_SEQMAX * 16384)
539 			fp->f_seqcount[rw] = IO_SEQMAX;
540 		else {
541 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
542 			if (fp->f_seqcount[rw] > IO_SEQMAX)
543 				fp->f_seqcount[rw] = IO_SEQMAX;
544 		}
545 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
546 	}
547 
548 	/* Not sequential.  Quickly draw-down sequentiality. */
549 	if (fp->f_seqcount[rw] > 1)
550 		fp->f_seqcount[rw] = 1;
551 	else
552 		fp->f_seqcount[rw] = 0;
553 	return (0);
554 }
555 
556 /*
557  * Package up an I/O request on a vnode into a uio and do it.
558  */
559 int
560 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
561     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
562     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
563 {
564 	struct uio auio;
565 	struct iovec aiov;
566 	struct mount *mp;
567 	struct ucred *cred;
568 	void *rl_cookie;
569 	struct vn_io_fault_args args;
570 	int error, lock_flags;
571 
572 	if (offset < 0 && vp->v_type != VCHR)
573 		return (EINVAL);
574 	auio.uio_iov = &aiov;
575 	auio.uio_iovcnt = 1;
576 	aiov.iov_base = base;
577 	aiov.iov_len = len;
578 	auio.uio_resid = len;
579 	auio.uio_offset = offset;
580 	auio.uio_segflg = segflg;
581 	auio.uio_rw = rw;
582 	auio.uio_td = td;
583 	error = 0;
584 
585 	if ((ioflg & IO_NODELOCKED) == 0) {
586 		if ((ioflg & IO_RANGELOCKED) == 0) {
587 			if (rw == UIO_READ) {
588 				rl_cookie = vn_rangelock_rlock(vp, offset,
589 				    offset + len);
590 			} else if ((ioflg & IO_APPEND) != 0) {
591 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
592 			} else {
593 				rl_cookie = vn_rangelock_wlock(vp, offset,
594 				    offset + len);
595 			}
596 		} else
597 			rl_cookie = NULL;
598 		mp = NULL;
599 		if (rw == UIO_WRITE) {
600 			if (vp->v_type != VCHR &&
601 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
602 			    != 0)
603 				goto out;
604 			if (MNT_SHARED_WRITES(mp) ||
605 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
606 				lock_flags = LK_SHARED;
607 			else
608 				lock_flags = LK_EXCLUSIVE;
609 		} else
610 			lock_flags = LK_SHARED;
611 		vn_lock(vp, lock_flags | LK_RETRY);
612 	} else
613 		rl_cookie = NULL;
614 
615 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
616 #ifdef MAC
617 	if ((ioflg & IO_NOMACCHECK) == 0) {
618 		if (rw == UIO_READ)
619 			error = mac_vnode_check_read(active_cred, file_cred,
620 			    vp);
621 		else
622 			error = mac_vnode_check_write(active_cred, file_cred,
623 			    vp);
624 	}
625 #endif
626 	if (error == 0) {
627 		if (file_cred != NULL)
628 			cred = file_cred;
629 		else
630 			cred = active_cred;
631 		if (do_vn_io_fault(vp, &auio)) {
632 			args.kind = VN_IO_FAULT_VOP;
633 			args.cred = cred;
634 			args.flags = ioflg;
635 			args.args.vop_args.vp = vp;
636 			error = vn_io_fault1(vp, &auio, &args, td);
637 		} else if (rw == UIO_READ) {
638 			error = VOP_READ(vp, &auio, ioflg, cred);
639 		} else /* if (rw == UIO_WRITE) */ {
640 			error = VOP_WRITE(vp, &auio, ioflg, cred);
641 		}
642 	}
643 	if (aresid)
644 		*aresid = auio.uio_resid;
645 	else
646 		if (auio.uio_resid && error == 0)
647 			error = EIO;
648 	if ((ioflg & IO_NODELOCKED) == 0) {
649 		VOP_UNLOCK(vp);
650 		if (mp != NULL)
651 			vn_finished_write(mp);
652 	}
653  out:
654 	if (rl_cookie != NULL)
655 		vn_rangelock_unlock(vp, rl_cookie);
656 	return (error);
657 }
658 
659 /*
660  * Package up an I/O request on a vnode into a uio and do it.  The I/O
661  * request is split up into smaller chunks and we try to avoid saturating
662  * the buffer cache while potentially holding a vnode locked, so we
663  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
664  * to give other processes a chance to lock the vnode (either other processes
665  * core'ing the same binary, or unrelated processes scanning the directory).
666  */
667 int
668 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
669     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
670     struct ucred *file_cred, size_t *aresid, struct thread *td)
671 {
672 	int error = 0;
673 	ssize_t iaresid;
674 
675 	do {
676 		int chunk;
677 
678 		/*
679 		 * Force `offset' to a multiple of MAXBSIZE except possibly
680 		 * for the first chunk, so that filesystems only need to
681 		 * write full blocks except possibly for the first and last
682 		 * chunks.
683 		 */
684 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
685 
686 		if (chunk > len)
687 			chunk = len;
688 		if (rw != UIO_READ && vp->v_type == VREG)
689 			bwillwrite();
690 		iaresid = 0;
691 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
692 		    ioflg, active_cred, file_cred, &iaresid, td);
693 		len -= chunk;	/* aresid calc already includes length */
694 		if (error)
695 			break;
696 		offset += chunk;
697 		base = (char *)base + chunk;
698 		kern_yield(PRI_USER);
699 	} while (len);
700 	if (aresid)
701 		*aresid = len + iaresid;
702 	return (error);
703 }
704 
705 #if OFF_MAX <= LONG_MAX
706 off_t
707 foffset_lock(struct file *fp, int flags)
708 {
709 	volatile short *flagsp;
710 	off_t res;
711 	short state;
712 
713 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
714 
715 	if ((flags & FOF_NOLOCK) != 0)
716 		return (atomic_load_long(&fp->f_offset));
717 
718 	/*
719 	 * According to McKusick the vn lock was protecting f_offset here.
720 	 * It is now protected by the FOFFSET_LOCKED flag.
721 	 */
722 	flagsp = &fp->f_vnread_flags;
723 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
724 		return (atomic_load_long(&fp->f_offset));
725 
726 	sleepq_lock(&fp->f_vnread_flags);
727 	state = atomic_load_16(flagsp);
728 	for (;;) {
729 		if ((state & FOFFSET_LOCKED) == 0) {
730 			if (!atomic_fcmpset_acq_16(flagsp, &state,
731 			    FOFFSET_LOCKED))
732 				continue;
733 			break;
734 		}
735 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
736 			if (!atomic_fcmpset_acq_16(flagsp, &state,
737 			    state | FOFFSET_LOCK_WAITING))
738 				continue;
739 		}
740 		DROP_GIANT();
741 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
742 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
743 		PICKUP_GIANT();
744 		sleepq_lock(&fp->f_vnread_flags);
745 		state = atomic_load_16(flagsp);
746 	}
747 	res = atomic_load_long(&fp->f_offset);
748 	sleepq_release(&fp->f_vnread_flags);
749 	return (res);
750 }
751 
752 void
753 foffset_unlock(struct file *fp, off_t val, int flags)
754 {
755 	volatile short *flagsp;
756 	short state;
757 
758 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
759 
760 	if ((flags & FOF_NOUPDATE) == 0)
761 		atomic_store_long(&fp->f_offset, val);
762 	if ((flags & FOF_NEXTOFF_R) != 0)
763 		fp->f_nextoff[UIO_READ] = val;
764 	if ((flags & FOF_NEXTOFF_W) != 0)
765 		fp->f_nextoff[UIO_WRITE] = val;
766 
767 	if ((flags & FOF_NOLOCK) != 0)
768 		return;
769 
770 	flagsp = &fp->f_vnread_flags;
771 	state = atomic_load_16(flagsp);
772 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
773 	    atomic_cmpset_rel_16(flagsp, state, 0))
774 		return;
775 
776 	sleepq_lock(&fp->f_vnread_flags);
777 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
778 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
779 	fp->f_vnread_flags = 0;
780 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
781 	sleepq_release(&fp->f_vnread_flags);
782 }
783 #else
784 off_t
785 foffset_lock(struct file *fp, int flags)
786 {
787 	struct mtx *mtxp;
788 	off_t res;
789 
790 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
791 
792 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
793 	mtx_lock(mtxp);
794 	if ((flags & FOF_NOLOCK) == 0) {
795 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
796 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
797 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
798 			    "vofflock", 0);
799 		}
800 		fp->f_vnread_flags |= FOFFSET_LOCKED;
801 	}
802 	res = fp->f_offset;
803 	mtx_unlock(mtxp);
804 	return (res);
805 }
806 
807 void
808 foffset_unlock(struct file *fp, off_t val, int flags)
809 {
810 	struct mtx *mtxp;
811 
812 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
813 
814 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
815 	mtx_lock(mtxp);
816 	if ((flags & FOF_NOUPDATE) == 0)
817 		fp->f_offset = val;
818 	if ((flags & FOF_NEXTOFF_R) != 0)
819 		fp->f_nextoff[UIO_READ] = val;
820 	if ((flags & FOF_NEXTOFF_W) != 0)
821 		fp->f_nextoff[UIO_WRITE] = val;
822 	if ((flags & FOF_NOLOCK) == 0) {
823 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
824 		    ("Lost FOFFSET_LOCKED"));
825 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
826 			wakeup(&fp->f_vnread_flags);
827 		fp->f_vnread_flags = 0;
828 	}
829 	mtx_unlock(mtxp);
830 }
831 #endif
832 
833 void
834 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
835 {
836 
837 	if ((flags & FOF_OFFSET) == 0)
838 		uio->uio_offset = foffset_lock(fp, flags);
839 }
840 
841 void
842 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
843 {
844 
845 	if ((flags & FOF_OFFSET) == 0)
846 		foffset_unlock(fp, uio->uio_offset, flags);
847 }
848 
849 static int
850 get_advice(struct file *fp, struct uio *uio)
851 {
852 	struct mtx *mtxp;
853 	int ret;
854 
855 	ret = POSIX_FADV_NORMAL;
856 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
857 		return (ret);
858 
859 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
860 	mtx_lock(mtxp);
861 	if (fp->f_advice != NULL &&
862 	    uio->uio_offset >= fp->f_advice->fa_start &&
863 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
864 		ret = fp->f_advice->fa_advice;
865 	mtx_unlock(mtxp);
866 	return (ret);
867 }
868 
869 int
870 vn_read_from_obj(struct vnode *vp, struct uio *uio)
871 {
872 	vm_object_t obj;
873 	vm_page_t ma[io_hold_cnt + 2];
874 	off_t off, vsz;
875 	ssize_t resid;
876 	int error, i, j;
877 
878 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
879 	obj = atomic_load_ptr(&vp->v_object);
880 	if (obj == NULL)
881 		return (EJUSTRETURN);
882 
883 	/*
884 	 * Depends on type stability of vm_objects.
885 	 */
886 	vm_object_pip_add(obj, 1);
887 	if ((obj->flags & OBJ_DEAD) != 0) {
888 		/*
889 		 * Note that object might be already reused from the
890 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
891 		 * we recheck for DOOMED vnode state after all pages
892 		 * are busied, and retract then.
893 		 *
894 		 * But we check for OBJ_DEAD to ensure that we do not
895 		 * busy pages while vm_object_terminate_pages()
896 		 * processes the queue.
897 		 */
898 		error = EJUSTRETURN;
899 		goto out_pip;
900 	}
901 
902 	resid = uio->uio_resid;
903 	off = uio->uio_offset;
904 	for (i = 0; resid > 0; i++) {
905 		MPASS(i < io_hold_cnt + 2);
906 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
907 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
908 		    VM_ALLOC_NOWAIT);
909 		if (ma[i] == NULL)
910 			break;
911 
912 		/*
913 		 * Skip invalid pages.  Valid mask can be partial only
914 		 * at EOF, and we clip later.
915 		 */
916 		if (vm_page_none_valid(ma[i])) {
917 			vm_page_sunbusy(ma[i]);
918 			break;
919 		}
920 
921 		resid -= PAGE_SIZE;
922 		off += PAGE_SIZE;
923 	}
924 	if (i == 0) {
925 		error = EJUSTRETURN;
926 		goto out_pip;
927 	}
928 
929 	/*
930 	 * Check VIRF_DOOMED after we busied our pages.  Since
931 	 * vgonel() terminates the vnode' vm_object, it cannot
932 	 * process past pages busied by us.
933 	 */
934 	if (VN_IS_DOOMED(vp)) {
935 		error = EJUSTRETURN;
936 		goto out;
937 	}
938 
939 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
940 	if (resid > uio->uio_resid)
941 		resid = uio->uio_resid;
942 
943 	/*
944 	 * Unlocked read of vnp_size is safe because truncation cannot
945 	 * pass busied page.  But we load vnp_size into a local
946 	 * variable so that possible concurrent extension does not
947 	 * break calculation.
948 	 */
949 #if defined(__powerpc__) && !defined(__powerpc64__)
950 	vsz = obj->un_pager.vnp.vnp_size;
951 #else
952 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
953 #endif
954 	if (uio->uio_offset + resid > vsz)
955 		resid = vsz - uio->uio_offset;
956 
957 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
958 
959 out:
960 	for (j = 0; j < i; j++) {
961 		if (error == 0)
962 			vm_page_reference(ma[j]);
963 		vm_page_sunbusy(ma[j]);
964 	}
965 out_pip:
966 	vm_object_pip_wakeup(obj);
967 	if (error != 0)
968 		return (error);
969 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
970 }
971 
972 /*
973  * File table vnode read routine.
974  */
975 static int
976 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
977     struct thread *td)
978 {
979 	struct vnode *vp;
980 	off_t orig_offset;
981 	int error, ioflag;
982 	int advice;
983 
984 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
985 	    uio->uio_td, td));
986 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
987 	vp = fp->f_vnode;
988 	ioflag = 0;
989 	if (fp->f_flag & FNONBLOCK)
990 		ioflag |= IO_NDELAY;
991 	if (fp->f_flag & O_DIRECT)
992 		ioflag |= IO_DIRECT;
993 
994 	/*
995 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
996 	 * allows us to avoid unneeded work outright.
997 	 */
998 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
999 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1000 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1001 		if (error == 0) {
1002 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1003 			return (0);
1004 		}
1005 		if (error != EJUSTRETURN)
1006 			return (error);
1007 	}
1008 
1009 	advice = get_advice(fp, uio);
1010 	vn_lock(vp, LK_SHARED | LK_RETRY);
1011 
1012 	switch (advice) {
1013 	case POSIX_FADV_NORMAL:
1014 	case POSIX_FADV_SEQUENTIAL:
1015 	case POSIX_FADV_NOREUSE:
1016 		ioflag |= sequential_heuristic(uio, fp);
1017 		break;
1018 	case POSIX_FADV_RANDOM:
1019 		/* Disable read-ahead for random I/O. */
1020 		break;
1021 	}
1022 	orig_offset = uio->uio_offset;
1023 
1024 #ifdef MAC
1025 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1026 	if (error == 0)
1027 #endif
1028 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1029 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1030 	VOP_UNLOCK(vp);
1031 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1032 	    orig_offset != uio->uio_offset)
1033 		/*
1034 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1035 		 * for the backing file after a POSIX_FADV_NOREUSE
1036 		 * read(2).
1037 		 */
1038 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1039 		    POSIX_FADV_DONTNEED);
1040 	return (error);
1041 }
1042 
1043 /*
1044  * File table vnode write routine.
1045  */
1046 static int
1047 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1048     struct thread *td)
1049 {
1050 	struct vnode *vp;
1051 	struct mount *mp;
1052 	off_t orig_offset;
1053 	int error, ioflag, lock_flags;
1054 	int advice;
1055 
1056 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1057 	    uio->uio_td, td));
1058 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1059 	vp = fp->f_vnode;
1060 	if (vp->v_type == VREG)
1061 		bwillwrite();
1062 	ioflag = IO_UNIT;
1063 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
1064 		ioflag |= IO_APPEND;
1065 	if (fp->f_flag & FNONBLOCK)
1066 		ioflag |= IO_NDELAY;
1067 	if (fp->f_flag & O_DIRECT)
1068 		ioflag |= IO_DIRECT;
1069 	if ((fp->f_flag & O_FSYNC) ||
1070 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
1071 		ioflag |= IO_SYNC;
1072 	/*
1073 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
1074 	 * implementations that don't understand IO_DATASYNC fall back to full
1075 	 * O_SYNC behavior.
1076 	 */
1077 	if (fp->f_flag & O_DSYNC)
1078 		ioflag |= IO_SYNC | IO_DATASYNC;
1079 	mp = NULL;
1080 	if (vp->v_type != VCHR &&
1081 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
1082 		goto unlock;
1083 
1084 	advice = get_advice(fp, uio);
1085 
1086 	if (MNT_SHARED_WRITES(mp) ||
1087 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
1088 		lock_flags = LK_SHARED;
1089 	} else {
1090 		lock_flags = LK_EXCLUSIVE;
1091 	}
1092 
1093 	vn_lock(vp, lock_flags | LK_RETRY);
1094 	switch (advice) {
1095 	case POSIX_FADV_NORMAL:
1096 	case POSIX_FADV_SEQUENTIAL:
1097 	case POSIX_FADV_NOREUSE:
1098 		ioflag |= sequential_heuristic(uio, fp);
1099 		break;
1100 	case POSIX_FADV_RANDOM:
1101 		/* XXX: Is this correct? */
1102 		break;
1103 	}
1104 	orig_offset = uio->uio_offset;
1105 
1106 #ifdef MAC
1107 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1108 	if (error == 0)
1109 #endif
1110 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1111 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1112 	VOP_UNLOCK(vp);
1113 	if (vp->v_type != VCHR)
1114 		vn_finished_write(mp);
1115 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1116 	    orig_offset != uio->uio_offset)
1117 		/*
1118 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1119 		 * for the backing file after a POSIX_FADV_NOREUSE
1120 		 * write(2).
1121 		 */
1122 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1123 		    POSIX_FADV_DONTNEED);
1124 unlock:
1125 	return (error);
1126 }
1127 
1128 /*
1129  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1130  * prevent the following deadlock:
1131  *
1132  * Assume that the thread A reads from the vnode vp1 into userspace
1133  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1134  * currently not resident, then system ends up with the call chain
1135  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1136  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1137  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1138  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1139  * backed by the pages of vnode vp1, and some page in buf2 is not
1140  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1141  *
1142  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1143  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1144  * Instead, it first tries to do the whole range i/o with pagefaults
1145  * disabled. If all pages in the i/o buffer are resident and mapped,
1146  * VOP will succeed (ignoring the genuine filesystem errors).
1147  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1148  * i/o in chunks, with all pages in the chunk prefaulted and held
1149  * using vm_fault_quick_hold_pages().
1150  *
1151  * Filesystems using this deadlock avoidance scheme should use the
1152  * array of the held pages from uio, saved in the curthread->td_ma,
1153  * instead of doing uiomove().  A helper function
1154  * vn_io_fault_uiomove() converts uiomove request into
1155  * uiomove_fromphys() over td_ma array.
1156  *
1157  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1158  * make the current i/o request atomic with respect to other i/os and
1159  * truncations.
1160  */
1161 
1162 /*
1163  * Decode vn_io_fault_args and perform the corresponding i/o.
1164  */
1165 static int
1166 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1167     struct thread *td)
1168 {
1169 	int error, save;
1170 
1171 	error = 0;
1172 	save = vm_fault_disable_pagefaults();
1173 	switch (args->kind) {
1174 	case VN_IO_FAULT_FOP:
1175 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1176 		    uio, args->cred, args->flags, td);
1177 		break;
1178 	case VN_IO_FAULT_VOP:
1179 		if (uio->uio_rw == UIO_READ) {
1180 			error = VOP_READ(args->args.vop_args.vp, uio,
1181 			    args->flags, args->cred);
1182 		} else if (uio->uio_rw == UIO_WRITE) {
1183 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1184 			    args->flags, args->cred);
1185 		}
1186 		break;
1187 	default:
1188 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1189 		    args->kind, uio->uio_rw);
1190 	}
1191 	vm_fault_enable_pagefaults(save);
1192 	return (error);
1193 }
1194 
1195 static int
1196 vn_io_fault_touch(char *base, const struct uio *uio)
1197 {
1198 	int r;
1199 
1200 	r = fubyte(base);
1201 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1202 		return (EFAULT);
1203 	return (0);
1204 }
1205 
1206 static int
1207 vn_io_fault_prefault_user(const struct uio *uio)
1208 {
1209 	char *base;
1210 	const struct iovec *iov;
1211 	size_t len;
1212 	ssize_t resid;
1213 	int error, i;
1214 
1215 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1216 	    ("vn_io_fault_prefault userspace"));
1217 
1218 	error = i = 0;
1219 	iov = uio->uio_iov;
1220 	resid = uio->uio_resid;
1221 	base = iov->iov_base;
1222 	len = iov->iov_len;
1223 	while (resid > 0) {
1224 		error = vn_io_fault_touch(base, uio);
1225 		if (error != 0)
1226 			break;
1227 		if (len < PAGE_SIZE) {
1228 			if (len != 0) {
1229 				error = vn_io_fault_touch(base + len - 1, uio);
1230 				if (error != 0)
1231 					break;
1232 				resid -= len;
1233 			}
1234 			if (++i >= uio->uio_iovcnt)
1235 				break;
1236 			iov = uio->uio_iov + i;
1237 			base = iov->iov_base;
1238 			len = iov->iov_len;
1239 		} else {
1240 			len -= PAGE_SIZE;
1241 			base += PAGE_SIZE;
1242 			resid -= PAGE_SIZE;
1243 		}
1244 	}
1245 	return (error);
1246 }
1247 
1248 /*
1249  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1250  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1251  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1252  * into args and call vn_io_fault1() to handle faults during the user
1253  * mode buffer accesses.
1254  */
1255 static int
1256 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1257     struct thread *td)
1258 {
1259 	vm_page_t ma[io_hold_cnt + 2];
1260 	struct uio *uio_clone, short_uio;
1261 	struct iovec short_iovec[1];
1262 	vm_page_t *prev_td_ma;
1263 	vm_prot_t prot;
1264 	vm_offset_t addr, end;
1265 	size_t len, resid;
1266 	ssize_t adv;
1267 	int error, cnt, saveheld, prev_td_ma_cnt;
1268 
1269 	if (vn_io_fault_prefault) {
1270 		error = vn_io_fault_prefault_user(uio);
1271 		if (error != 0)
1272 			return (error); /* Or ignore ? */
1273 	}
1274 
1275 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1276 
1277 	/*
1278 	 * The UFS follows IO_UNIT directive and replays back both
1279 	 * uio_offset and uio_resid if an error is encountered during the
1280 	 * operation.  But, since the iovec may be already advanced,
1281 	 * uio is still in an inconsistent state.
1282 	 *
1283 	 * Cache a copy of the original uio, which is advanced to the redo
1284 	 * point using UIO_NOCOPY below.
1285 	 */
1286 	uio_clone = cloneuio(uio);
1287 	resid = uio->uio_resid;
1288 
1289 	short_uio.uio_segflg = UIO_USERSPACE;
1290 	short_uio.uio_rw = uio->uio_rw;
1291 	short_uio.uio_td = uio->uio_td;
1292 
1293 	error = vn_io_fault_doio(args, uio, td);
1294 	if (error != EFAULT)
1295 		goto out;
1296 
1297 	atomic_add_long(&vn_io_faults_cnt, 1);
1298 	uio_clone->uio_segflg = UIO_NOCOPY;
1299 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1300 	uio_clone->uio_segflg = uio->uio_segflg;
1301 
1302 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1303 	prev_td_ma = td->td_ma;
1304 	prev_td_ma_cnt = td->td_ma_cnt;
1305 
1306 	while (uio_clone->uio_resid != 0) {
1307 		len = uio_clone->uio_iov->iov_len;
1308 		if (len == 0) {
1309 			KASSERT(uio_clone->uio_iovcnt >= 1,
1310 			    ("iovcnt underflow"));
1311 			uio_clone->uio_iov++;
1312 			uio_clone->uio_iovcnt--;
1313 			continue;
1314 		}
1315 		if (len > ptoa(io_hold_cnt))
1316 			len = ptoa(io_hold_cnt);
1317 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1318 		end = round_page(addr + len);
1319 		if (end < addr) {
1320 			error = EFAULT;
1321 			break;
1322 		}
1323 		cnt = atop(end - trunc_page(addr));
1324 		/*
1325 		 * A perfectly misaligned address and length could cause
1326 		 * both the start and the end of the chunk to use partial
1327 		 * page.  +2 accounts for such a situation.
1328 		 */
1329 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1330 		    addr, len, prot, ma, io_hold_cnt + 2);
1331 		if (cnt == -1) {
1332 			error = EFAULT;
1333 			break;
1334 		}
1335 		short_uio.uio_iov = &short_iovec[0];
1336 		short_iovec[0].iov_base = (void *)addr;
1337 		short_uio.uio_iovcnt = 1;
1338 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1339 		short_uio.uio_offset = uio_clone->uio_offset;
1340 		td->td_ma = ma;
1341 		td->td_ma_cnt = cnt;
1342 
1343 		error = vn_io_fault_doio(args, &short_uio, td);
1344 		vm_page_unhold_pages(ma, cnt);
1345 		adv = len - short_uio.uio_resid;
1346 
1347 		uio_clone->uio_iov->iov_base =
1348 		    (char *)uio_clone->uio_iov->iov_base + adv;
1349 		uio_clone->uio_iov->iov_len -= adv;
1350 		uio_clone->uio_resid -= adv;
1351 		uio_clone->uio_offset += adv;
1352 
1353 		uio->uio_resid -= adv;
1354 		uio->uio_offset += adv;
1355 
1356 		if (error != 0 || adv == 0)
1357 			break;
1358 	}
1359 	td->td_ma = prev_td_ma;
1360 	td->td_ma_cnt = prev_td_ma_cnt;
1361 	curthread_pflags_restore(saveheld);
1362 out:
1363 	free(uio_clone, M_IOV);
1364 	return (error);
1365 }
1366 
1367 static int
1368 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1369     int flags, struct thread *td)
1370 {
1371 	fo_rdwr_t *doio;
1372 	struct vnode *vp;
1373 	void *rl_cookie;
1374 	struct vn_io_fault_args args;
1375 	int error;
1376 
1377 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1378 	vp = fp->f_vnode;
1379 
1380 	/*
1381 	 * The ability to read(2) on a directory has historically been
1382 	 * allowed for all users, but this can and has been the source of
1383 	 * at least one security issue in the past.  As such, it is now hidden
1384 	 * away behind a sysctl for those that actually need it to use it, and
1385 	 * restricted to root when it's turned on to make it relatively safe to
1386 	 * leave on for longer sessions of need.
1387 	 */
1388 	if (vp->v_type == VDIR) {
1389 		KASSERT(uio->uio_rw == UIO_READ,
1390 		    ("illegal write attempted on a directory"));
1391 		if (!vfs_allow_read_dir)
1392 			return (EISDIR);
1393 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1394 			return (EISDIR);
1395 	}
1396 
1397 	foffset_lock_uio(fp, uio, flags);
1398 	if (do_vn_io_fault(vp, uio)) {
1399 		args.kind = VN_IO_FAULT_FOP;
1400 		args.args.fop_args.fp = fp;
1401 		args.args.fop_args.doio = doio;
1402 		args.cred = active_cred;
1403 		args.flags = flags | FOF_OFFSET;
1404 		if (uio->uio_rw == UIO_READ) {
1405 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1406 			    uio->uio_offset + uio->uio_resid);
1407 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1408 		    (flags & FOF_OFFSET) == 0) {
1409 			/* For appenders, punt and lock the whole range. */
1410 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1411 		} else {
1412 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1413 			    uio->uio_offset + uio->uio_resid);
1414 		}
1415 		error = vn_io_fault1(vp, uio, &args, td);
1416 		vn_rangelock_unlock(vp, rl_cookie);
1417 	} else {
1418 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1419 	}
1420 	foffset_unlock_uio(fp, uio, flags);
1421 	return (error);
1422 }
1423 
1424 /*
1425  * Helper function to perform the requested uiomove operation using
1426  * the held pages for io->uio_iov[0].iov_base buffer instead of
1427  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1428  * instead of iov_base prevents page faults that could occur due to
1429  * pmap_collect() invalidating the mapping created by
1430  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1431  * object cleanup revoking the write access from page mappings.
1432  *
1433  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1434  * instead of plain uiomove().
1435  */
1436 int
1437 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1438 {
1439 	struct uio transp_uio;
1440 	struct iovec transp_iov[1];
1441 	struct thread *td;
1442 	size_t adv;
1443 	int error, pgadv;
1444 
1445 	td = curthread;
1446 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1447 	    uio->uio_segflg != UIO_USERSPACE)
1448 		return (uiomove(data, xfersize, uio));
1449 
1450 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1451 	transp_iov[0].iov_base = data;
1452 	transp_uio.uio_iov = &transp_iov[0];
1453 	transp_uio.uio_iovcnt = 1;
1454 	if (xfersize > uio->uio_resid)
1455 		xfersize = uio->uio_resid;
1456 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1457 	transp_uio.uio_offset = 0;
1458 	transp_uio.uio_segflg = UIO_SYSSPACE;
1459 	/*
1460 	 * Since transp_iov points to data, and td_ma page array
1461 	 * corresponds to original uio->uio_iov, we need to invert the
1462 	 * direction of the i/o operation as passed to
1463 	 * uiomove_fromphys().
1464 	 */
1465 	switch (uio->uio_rw) {
1466 	case UIO_WRITE:
1467 		transp_uio.uio_rw = UIO_READ;
1468 		break;
1469 	case UIO_READ:
1470 		transp_uio.uio_rw = UIO_WRITE;
1471 		break;
1472 	}
1473 	transp_uio.uio_td = uio->uio_td;
1474 	error = uiomove_fromphys(td->td_ma,
1475 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1476 	    xfersize, &transp_uio);
1477 	adv = xfersize - transp_uio.uio_resid;
1478 	pgadv =
1479 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1480 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1481 	td->td_ma += pgadv;
1482 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1483 	    pgadv));
1484 	td->td_ma_cnt -= pgadv;
1485 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1486 	uio->uio_iov->iov_len -= adv;
1487 	uio->uio_resid -= adv;
1488 	uio->uio_offset += adv;
1489 	return (error);
1490 }
1491 
1492 int
1493 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1494     struct uio *uio)
1495 {
1496 	struct thread *td;
1497 	vm_offset_t iov_base;
1498 	int cnt, pgadv;
1499 
1500 	td = curthread;
1501 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1502 	    uio->uio_segflg != UIO_USERSPACE)
1503 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1504 
1505 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1506 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1507 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1508 	switch (uio->uio_rw) {
1509 	case UIO_WRITE:
1510 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1511 		    offset, cnt);
1512 		break;
1513 	case UIO_READ:
1514 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1515 		    cnt);
1516 		break;
1517 	}
1518 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1519 	td->td_ma += pgadv;
1520 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1521 	    pgadv));
1522 	td->td_ma_cnt -= pgadv;
1523 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1524 	uio->uio_iov->iov_len -= cnt;
1525 	uio->uio_resid -= cnt;
1526 	uio->uio_offset += cnt;
1527 	return (0);
1528 }
1529 
1530 /*
1531  * File table truncate routine.
1532  */
1533 static int
1534 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1535     struct thread *td)
1536 {
1537 	struct mount *mp;
1538 	struct vnode *vp;
1539 	void *rl_cookie;
1540 	int error;
1541 
1542 	vp = fp->f_vnode;
1543 
1544 retry:
1545 	/*
1546 	 * Lock the whole range for truncation.  Otherwise split i/o
1547 	 * might happen partly before and partly after the truncation.
1548 	 */
1549 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1550 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1551 	if (error)
1552 		goto out1;
1553 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1554 	AUDIT_ARG_VNODE1(vp);
1555 	if (vp->v_type == VDIR) {
1556 		error = EISDIR;
1557 		goto out;
1558 	}
1559 #ifdef MAC
1560 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1561 	if (error)
1562 		goto out;
1563 #endif
1564 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1565 	    fp->f_cred);
1566 out:
1567 	VOP_UNLOCK(vp);
1568 	vn_finished_write(mp);
1569 out1:
1570 	vn_rangelock_unlock(vp, rl_cookie);
1571 	if (error == ERELOOKUP)
1572 		goto retry;
1573 	return (error);
1574 }
1575 
1576 /*
1577  * Truncate a file that is already locked.
1578  */
1579 int
1580 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1581     struct ucred *cred)
1582 {
1583 	struct vattr vattr;
1584 	int error;
1585 
1586 	error = VOP_ADD_WRITECOUNT(vp, 1);
1587 	if (error == 0) {
1588 		VATTR_NULL(&vattr);
1589 		vattr.va_size = length;
1590 		if (sync)
1591 			vattr.va_vaflags |= VA_SYNC;
1592 		error = VOP_SETATTR(vp, &vattr, cred);
1593 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1594 	}
1595 	return (error);
1596 }
1597 
1598 /*
1599  * File table vnode stat routine.
1600  */
1601 static int
1602 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1603     struct thread *td)
1604 {
1605 	struct vnode *vp = fp->f_vnode;
1606 	int error;
1607 
1608 	vn_lock(vp, LK_SHARED | LK_RETRY);
1609 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td);
1610 	VOP_UNLOCK(vp);
1611 
1612 	return (error);
1613 }
1614 
1615 /*
1616  * File table vnode ioctl routine.
1617  */
1618 static int
1619 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1620     struct thread *td)
1621 {
1622 	struct vattr vattr;
1623 	struct vnode *vp;
1624 	struct fiobmap2_arg *bmarg;
1625 	int error;
1626 
1627 	vp = fp->f_vnode;
1628 	switch (vp->v_type) {
1629 	case VDIR:
1630 	case VREG:
1631 		switch (com) {
1632 		case FIONREAD:
1633 			vn_lock(vp, LK_SHARED | LK_RETRY);
1634 			error = VOP_GETATTR(vp, &vattr, active_cred);
1635 			VOP_UNLOCK(vp);
1636 			if (error == 0)
1637 				*(int *)data = vattr.va_size - fp->f_offset;
1638 			return (error);
1639 		case FIOBMAP2:
1640 			bmarg = (struct fiobmap2_arg *)data;
1641 			vn_lock(vp, LK_SHARED | LK_RETRY);
1642 #ifdef MAC
1643 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1644 			    vp);
1645 			if (error == 0)
1646 #endif
1647 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1648 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1649 			VOP_UNLOCK(vp);
1650 			return (error);
1651 		case FIONBIO:
1652 		case FIOASYNC:
1653 			return (0);
1654 		default:
1655 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1656 			    active_cred, td));
1657 		}
1658 		break;
1659 	case VCHR:
1660 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1661 		    active_cred, td));
1662 	default:
1663 		return (ENOTTY);
1664 	}
1665 }
1666 
1667 /*
1668  * File table vnode poll routine.
1669  */
1670 static int
1671 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1672     struct thread *td)
1673 {
1674 	struct vnode *vp;
1675 	int error;
1676 
1677 	vp = fp->f_vnode;
1678 #if defined(MAC) || defined(AUDIT)
1679 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1680 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1681 		AUDIT_ARG_VNODE1(vp);
1682 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1683 		VOP_UNLOCK(vp);
1684 		if (error != 0)
1685 			return (error);
1686 	}
1687 #endif
1688 	error = VOP_POLL(vp, events, fp->f_cred, td);
1689 	return (error);
1690 }
1691 
1692 /*
1693  * Acquire the requested lock and then check for validity.  LK_RETRY
1694  * permits vn_lock to return doomed vnodes.
1695  */
1696 static int __noinline
1697 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1698     int error)
1699 {
1700 
1701 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1702 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1703 
1704 	if (error == 0)
1705 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1706 
1707 	if ((flags & LK_RETRY) == 0) {
1708 		if (error == 0) {
1709 			VOP_UNLOCK(vp);
1710 			error = ENOENT;
1711 		}
1712 		return (error);
1713 	}
1714 
1715 	/*
1716 	 * LK_RETRY case.
1717 	 *
1718 	 * Nothing to do if we got the lock.
1719 	 */
1720 	if (error == 0)
1721 		return (0);
1722 
1723 	/*
1724 	 * Interlock was dropped by the call in _vn_lock.
1725 	 */
1726 	flags &= ~LK_INTERLOCK;
1727 	do {
1728 		error = VOP_LOCK1(vp, flags, file, line);
1729 	} while (error != 0);
1730 	return (0);
1731 }
1732 
1733 int
1734 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1735 {
1736 	int error;
1737 
1738 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1739 	    ("vn_lock: no locktype (%d passed)", flags));
1740 	VNPASS(vp->v_holdcnt > 0, vp);
1741 	error = VOP_LOCK1(vp, flags, file, line);
1742 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1743 		return (_vn_lock_fallback(vp, flags, file, line, error));
1744 	return (0);
1745 }
1746 
1747 /*
1748  * File table vnode close routine.
1749  */
1750 static int
1751 vn_closefile(struct file *fp, struct thread *td)
1752 {
1753 	struct vnode *vp;
1754 	struct flock lf;
1755 	int error;
1756 	bool ref;
1757 
1758 	vp = fp->f_vnode;
1759 	fp->f_ops = &badfileops;
1760 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1761 
1762 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1763 
1764 	if (__predict_false(ref)) {
1765 		lf.l_whence = SEEK_SET;
1766 		lf.l_start = 0;
1767 		lf.l_len = 0;
1768 		lf.l_type = F_UNLCK;
1769 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1770 		vrele(vp);
1771 	}
1772 	return (error);
1773 }
1774 
1775 /*
1776  * Preparing to start a filesystem write operation. If the operation is
1777  * permitted, then we bump the count of operations in progress and
1778  * proceed. If a suspend request is in progress, we wait until the
1779  * suspension is over, and then proceed.
1780  */
1781 static int
1782 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1783 {
1784 	struct mount_pcpu *mpcpu;
1785 	int error, mflags;
1786 
1787 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1788 	    vfs_op_thread_enter(mp, mpcpu)) {
1789 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1790 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1791 		vfs_op_thread_exit(mp, mpcpu);
1792 		return (0);
1793 	}
1794 
1795 	if (mplocked)
1796 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1797 	else
1798 		MNT_ILOCK(mp);
1799 
1800 	error = 0;
1801 
1802 	/*
1803 	 * Check on status of suspension.
1804 	 */
1805 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1806 	    mp->mnt_susp_owner != curthread) {
1807 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1808 		    (flags & PCATCH) : 0) | (PUSER - 1);
1809 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1810 			if (flags & V_NOWAIT) {
1811 				error = EWOULDBLOCK;
1812 				goto unlock;
1813 			}
1814 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1815 			    "suspfs", 0);
1816 			if (error)
1817 				goto unlock;
1818 		}
1819 	}
1820 	if (flags & V_XSLEEP)
1821 		goto unlock;
1822 	mp->mnt_writeopcount++;
1823 unlock:
1824 	if (error != 0 || (flags & V_XSLEEP) != 0)
1825 		MNT_REL(mp);
1826 	MNT_IUNLOCK(mp);
1827 	return (error);
1828 }
1829 
1830 int
1831 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1832 {
1833 	struct mount *mp;
1834 	int error;
1835 
1836 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1837 	    ("V_MNTREF requires mp"));
1838 
1839 	error = 0;
1840 	/*
1841 	 * If a vnode is provided, get and return the mount point that
1842 	 * to which it will write.
1843 	 */
1844 	if (vp != NULL) {
1845 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1846 			*mpp = NULL;
1847 			if (error != EOPNOTSUPP)
1848 				return (error);
1849 			return (0);
1850 		}
1851 	}
1852 	if ((mp = *mpp) == NULL)
1853 		return (0);
1854 
1855 	/*
1856 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1857 	 * a vfs_ref().
1858 	 * As long as a vnode is not provided we need to acquire a
1859 	 * refcount for the provided mountpoint too, in order to
1860 	 * emulate a vfs_ref().
1861 	 */
1862 	if (vp == NULL && (flags & V_MNTREF) == 0)
1863 		vfs_ref(mp);
1864 
1865 	return (vn_start_write_refed(mp, flags, false));
1866 }
1867 
1868 /*
1869  * Secondary suspension. Used by operations such as vop_inactive
1870  * routines that are needed by the higher level functions. These
1871  * are allowed to proceed until all the higher level functions have
1872  * completed (indicated by mnt_writeopcount dropping to zero). At that
1873  * time, these operations are halted until the suspension is over.
1874  */
1875 int
1876 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1877 {
1878 	struct mount *mp;
1879 	int error;
1880 
1881 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1882 	    ("V_MNTREF requires mp"));
1883 
1884  retry:
1885 	if (vp != NULL) {
1886 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1887 			*mpp = NULL;
1888 			if (error != EOPNOTSUPP)
1889 				return (error);
1890 			return (0);
1891 		}
1892 	}
1893 	/*
1894 	 * If we are not suspended or have not yet reached suspended
1895 	 * mode, then let the operation proceed.
1896 	 */
1897 	if ((mp = *mpp) == NULL)
1898 		return (0);
1899 
1900 	/*
1901 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1902 	 * a vfs_ref().
1903 	 * As long as a vnode is not provided we need to acquire a
1904 	 * refcount for the provided mountpoint too, in order to
1905 	 * emulate a vfs_ref().
1906 	 */
1907 	MNT_ILOCK(mp);
1908 	if (vp == NULL && (flags & V_MNTREF) == 0)
1909 		MNT_REF(mp);
1910 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1911 		mp->mnt_secondary_writes++;
1912 		mp->mnt_secondary_accwrites++;
1913 		MNT_IUNLOCK(mp);
1914 		return (0);
1915 	}
1916 	if (flags & V_NOWAIT) {
1917 		MNT_REL(mp);
1918 		MNT_IUNLOCK(mp);
1919 		return (EWOULDBLOCK);
1920 	}
1921 	/*
1922 	 * Wait for the suspension to finish.
1923 	 */
1924 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1925 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1926 	    "suspfs", 0);
1927 	vfs_rel(mp);
1928 	if (error == 0)
1929 		goto retry;
1930 	return (error);
1931 }
1932 
1933 /*
1934  * Filesystem write operation has completed. If we are suspending and this
1935  * operation is the last one, notify the suspender that the suspension is
1936  * now in effect.
1937  */
1938 void
1939 vn_finished_write(struct mount *mp)
1940 {
1941 	struct mount_pcpu *mpcpu;
1942 	int c;
1943 
1944 	if (mp == NULL)
1945 		return;
1946 
1947 	if (vfs_op_thread_enter(mp, mpcpu)) {
1948 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
1949 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
1950 		vfs_op_thread_exit(mp, mpcpu);
1951 		return;
1952 	}
1953 
1954 	MNT_ILOCK(mp);
1955 	vfs_assert_mount_counters(mp);
1956 	MNT_REL(mp);
1957 	c = --mp->mnt_writeopcount;
1958 	if (mp->mnt_vfs_ops == 0) {
1959 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1960 		MNT_IUNLOCK(mp);
1961 		return;
1962 	}
1963 	if (c < 0)
1964 		vfs_dump_mount_counters(mp);
1965 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
1966 		wakeup(&mp->mnt_writeopcount);
1967 	MNT_IUNLOCK(mp);
1968 }
1969 
1970 /*
1971  * Filesystem secondary write operation has completed. If we are
1972  * suspending and this operation is the last one, notify the suspender
1973  * that the suspension is now in effect.
1974  */
1975 void
1976 vn_finished_secondary_write(struct mount *mp)
1977 {
1978 	if (mp == NULL)
1979 		return;
1980 	MNT_ILOCK(mp);
1981 	MNT_REL(mp);
1982 	mp->mnt_secondary_writes--;
1983 	if (mp->mnt_secondary_writes < 0)
1984 		panic("vn_finished_secondary_write: neg cnt");
1985 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1986 	    mp->mnt_secondary_writes <= 0)
1987 		wakeup(&mp->mnt_secondary_writes);
1988 	MNT_IUNLOCK(mp);
1989 }
1990 
1991 /*
1992  * Request a filesystem to suspend write operations.
1993  */
1994 int
1995 vfs_write_suspend(struct mount *mp, int flags)
1996 {
1997 	int error;
1998 
1999 	vfs_op_enter(mp);
2000 
2001 	MNT_ILOCK(mp);
2002 	vfs_assert_mount_counters(mp);
2003 	if (mp->mnt_susp_owner == curthread) {
2004 		vfs_op_exit_locked(mp);
2005 		MNT_IUNLOCK(mp);
2006 		return (EALREADY);
2007 	}
2008 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2009 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2010 
2011 	/*
2012 	 * Unmount holds a write reference on the mount point.  If we
2013 	 * own busy reference and drain for writers, we deadlock with
2014 	 * the reference draining in the unmount path.  Callers of
2015 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2016 	 * vfs_busy() reference is owned and caller is not in the
2017 	 * unmount context.
2018 	 */
2019 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2020 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2021 		vfs_op_exit_locked(mp);
2022 		MNT_IUNLOCK(mp);
2023 		return (EBUSY);
2024 	}
2025 
2026 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2027 	mp->mnt_susp_owner = curthread;
2028 	if (mp->mnt_writeopcount > 0)
2029 		(void) msleep(&mp->mnt_writeopcount,
2030 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2031 	else
2032 		MNT_IUNLOCK(mp);
2033 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2034 		vfs_write_resume(mp, 0);
2035 		/* vfs_write_resume does vfs_op_exit() for us */
2036 	}
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Request a filesystem to resume write operations.
2042  */
2043 void
2044 vfs_write_resume(struct mount *mp, int flags)
2045 {
2046 
2047 	MNT_ILOCK(mp);
2048 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2049 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2050 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2051 				       MNTK_SUSPENDED);
2052 		mp->mnt_susp_owner = NULL;
2053 		wakeup(&mp->mnt_writeopcount);
2054 		wakeup(&mp->mnt_flag);
2055 		curthread->td_pflags &= ~TDP_IGNSUSP;
2056 		if ((flags & VR_START_WRITE) != 0) {
2057 			MNT_REF(mp);
2058 			mp->mnt_writeopcount++;
2059 		}
2060 		MNT_IUNLOCK(mp);
2061 		if ((flags & VR_NO_SUSPCLR) == 0)
2062 			VFS_SUSP_CLEAN(mp);
2063 		vfs_op_exit(mp);
2064 	} else if ((flags & VR_START_WRITE) != 0) {
2065 		MNT_REF(mp);
2066 		vn_start_write_refed(mp, 0, true);
2067 	} else {
2068 		MNT_IUNLOCK(mp);
2069 	}
2070 }
2071 
2072 /*
2073  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2074  * methods.
2075  */
2076 int
2077 vfs_write_suspend_umnt(struct mount *mp)
2078 {
2079 	int error;
2080 
2081 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2082 	    ("vfs_write_suspend_umnt: recursed"));
2083 
2084 	/* dounmount() already called vn_start_write(). */
2085 	for (;;) {
2086 		vn_finished_write(mp);
2087 		error = vfs_write_suspend(mp, 0);
2088 		if (error != 0) {
2089 			vn_start_write(NULL, &mp, V_WAIT);
2090 			return (error);
2091 		}
2092 		MNT_ILOCK(mp);
2093 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2094 			break;
2095 		MNT_IUNLOCK(mp);
2096 		vn_start_write(NULL, &mp, V_WAIT);
2097 	}
2098 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2099 	wakeup(&mp->mnt_flag);
2100 	MNT_IUNLOCK(mp);
2101 	curthread->td_pflags |= TDP_IGNSUSP;
2102 	return (0);
2103 }
2104 
2105 /*
2106  * Implement kqueues for files by translating it to vnode operation.
2107  */
2108 static int
2109 vn_kqfilter(struct file *fp, struct knote *kn)
2110 {
2111 
2112 	return (VOP_KQFILTER(fp->f_vnode, kn));
2113 }
2114 
2115 /*
2116  * Simplified in-kernel wrapper calls for extended attribute access.
2117  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2118  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2119  */
2120 int
2121 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2122     const char *attrname, int *buflen, char *buf, struct thread *td)
2123 {
2124 	struct uio	auio;
2125 	struct iovec	iov;
2126 	int	error;
2127 
2128 	iov.iov_len = *buflen;
2129 	iov.iov_base = buf;
2130 
2131 	auio.uio_iov = &iov;
2132 	auio.uio_iovcnt = 1;
2133 	auio.uio_rw = UIO_READ;
2134 	auio.uio_segflg = UIO_SYSSPACE;
2135 	auio.uio_td = td;
2136 	auio.uio_offset = 0;
2137 	auio.uio_resid = *buflen;
2138 
2139 	if ((ioflg & IO_NODELOCKED) == 0)
2140 		vn_lock(vp, LK_SHARED | LK_RETRY);
2141 
2142 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2143 
2144 	/* authorize attribute retrieval as kernel */
2145 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2146 	    td);
2147 
2148 	if ((ioflg & IO_NODELOCKED) == 0)
2149 		VOP_UNLOCK(vp);
2150 
2151 	if (error == 0) {
2152 		*buflen = *buflen - auio.uio_resid;
2153 	}
2154 
2155 	return (error);
2156 }
2157 
2158 /*
2159  * XXX failure mode if partially written?
2160  */
2161 int
2162 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2163     const char *attrname, int buflen, char *buf, struct thread *td)
2164 {
2165 	struct uio	auio;
2166 	struct iovec	iov;
2167 	struct mount	*mp;
2168 	int	error;
2169 
2170 	iov.iov_len = buflen;
2171 	iov.iov_base = buf;
2172 
2173 	auio.uio_iov = &iov;
2174 	auio.uio_iovcnt = 1;
2175 	auio.uio_rw = UIO_WRITE;
2176 	auio.uio_segflg = UIO_SYSSPACE;
2177 	auio.uio_td = td;
2178 	auio.uio_offset = 0;
2179 	auio.uio_resid = buflen;
2180 
2181 	if ((ioflg & IO_NODELOCKED) == 0) {
2182 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2183 			return (error);
2184 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2185 	}
2186 
2187 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2188 
2189 	/* authorize attribute setting as kernel */
2190 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2191 
2192 	if ((ioflg & IO_NODELOCKED) == 0) {
2193 		vn_finished_write(mp);
2194 		VOP_UNLOCK(vp);
2195 	}
2196 
2197 	return (error);
2198 }
2199 
2200 int
2201 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2202     const char *attrname, struct thread *td)
2203 {
2204 	struct mount	*mp;
2205 	int	error;
2206 
2207 	if ((ioflg & IO_NODELOCKED) == 0) {
2208 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2209 			return (error);
2210 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2211 	}
2212 
2213 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2214 
2215 	/* authorize attribute removal as kernel */
2216 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2217 	if (error == EOPNOTSUPP)
2218 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2219 		    NULL, td);
2220 
2221 	if ((ioflg & IO_NODELOCKED) == 0) {
2222 		vn_finished_write(mp);
2223 		VOP_UNLOCK(vp);
2224 	}
2225 
2226 	return (error);
2227 }
2228 
2229 static int
2230 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2231     struct vnode **rvp)
2232 {
2233 
2234 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2235 }
2236 
2237 int
2238 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2239 {
2240 
2241 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2242 	    lkflags, rvp));
2243 }
2244 
2245 int
2246 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2247     int lkflags, struct vnode **rvp)
2248 {
2249 	struct mount *mp;
2250 	int ltype, error;
2251 
2252 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2253 	mp = vp->v_mount;
2254 	ltype = VOP_ISLOCKED(vp);
2255 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2256 	    ("vn_vget_ino: vp not locked"));
2257 	error = vfs_busy(mp, MBF_NOWAIT);
2258 	if (error != 0) {
2259 		vfs_ref(mp);
2260 		VOP_UNLOCK(vp);
2261 		error = vfs_busy(mp, 0);
2262 		vn_lock(vp, ltype | LK_RETRY);
2263 		vfs_rel(mp);
2264 		if (error != 0)
2265 			return (ENOENT);
2266 		if (VN_IS_DOOMED(vp)) {
2267 			vfs_unbusy(mp);
2268 			return (ENOENT);
2269 		}
2270 	}
2271 	VOP_UNLOCK(vp);
2272 	error = alloc(mp, alloc_arg, lkflags, rvp);
2273 	vfs_unbusy(mp);
2274 	if (error != 0 || *rvp != vp)
2275 		vn_lock(vp, ltype | LK_RETRY);
2276 	if (VN_IS_DOOMED(vp)) {
2277 		if (error == 0) {
2278 			if (*rvp == vp)
2279 				vunref(vp);
2280 			else
2281 				vput(*rvp);
2282 		}
2283 		error = ENOENT;
2284 	}
2285 	return (error);
2286 }
2287 
2288 int
2289 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2290     struct thread *td)
2291 {
2292 
2293 	if (vp->v_type != VREG || td == NULL)
2294 		return (0);
2295 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2296 	    lim_cur(td, RLIMIT_FSIZE)) {
2297 		PROC_LOCK(td->td_proc);
2298 		kern_psignal(td->td_proc, SIGXFSZ);
2299 		PROC_UNLOCK(td->td_proc);
2300 		return (EFBIG);
2301 	}
2302 	return (0);
2303 }
2304 
2305 int
2306 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2307     struct thread *td)
2308 {
2309 	struct vnode *vp;
2310 
2311 	vp = fp->f_vnode;
2312 #ifdef AUDIT
2313 	vn_lock(vp, LK_SHARED | LK_RETRY);
2314 	AUDIT_ARG_VNODE1(vp);
2315 	VOP_UNLOCK(vp);
2316 #endif
2317 	return (setfmode(td, active_cred, vp, mode));
2318 }
2319 
2320 int
2321 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2322     struct thread *td)
2323 {
2324 	struct vnode *vp;
2325 
2326 	vp = fp->f_vnode;
2327 #ifdef AUDIT
2328 	vn_lock(vp, LK_SHARED | LK_RETRY);
2329 	AUDIT_ARG_VNODE1(vp);
2330 	VOP_UNLOCK(vp);
2331 #endif
2332 	return (setfown(td, active_cred, vp, uid, gid));
2333 }
2334 
2335 void
2336 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2337 {
2338 	vm_object_t object;
2339 
2340 	if ((object = vp->v_object) == NULL)
2341 		return;
2342 	VM_OBJECT_WLOCK(object);
2343 	vm_object_page_remove(object, start, end, 0);
2344 	VM_OBJECT_WUNLOCK(object);
2345 }
2346 
2347 int
2348 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2349 {
2350 	struct vattr va;
2351 	daddr_t bn, bnp;
2352 	uint64_t bsize;
2353 	off_t noff;
2354 	int error;
2355 
2356 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2357 	    ("Wrong command %lu", cmd));
2358 
2359 	if (vn_lock(vp, LK_SHARED) != 0)
2360 		return (EBADF);
2361 	if (vp->v_type != VREG) {
2362 		error = ENOTTY;
2363 		goto unlock;
2364 	}
2365 	error = VOP_GETATTR(vp, &va, cred);
2366 	if (error != 0)
2367 		goto unlock;
2368 	noff = *off;
2369 	if (noff >= va.va_size) {
2370 		error = ENXIO;
2371 		goto unlock;
2372 	}
2373 	bsize = vp->v_mount->mnt_stat.f_iosize;
2374 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2375 	    noff % bsize) {
2376 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2377 		if (error == EOPNOTSUPP) {
2378 			error = ENOTTY;
2379 			goto unlock;
2380 		}
2381 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2382 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2383 			noff = bn * bsize;
2384 			if (noff < *off)
2385 				noff = *off;
2386 			goto unlock;
2387 		}
2388 	}
2389 	if (noff > va.va_size)
2390 		noff = va.va_size;
2391 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2392 	if (cmd == FIOSEEKDATA)
2393 		error = ENXIO;
2394 unlock:
2395 	VOP_UNLOCK(vp);
2396 	if (error == 0)
2397 		*off = noff;
2398 	return (error);
2399 }
2400 
2401 int
2402 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2403 {
2404 	struct ucred *cred;
2405 	struct vnode *vp;
2406 	struct vattr vattr;
2407 	off_t foffset, size;
2408 	int error, noneg;
2409 
2410 	cred = td->td_ucred;
2411 	vp = fp->f_vnode;
2412 	foffset = foffset_lock(fp, 0);
2413 	noneg = (vp->v_type != VCHR);
2414 	error = 0;
2415 	switch (whence) {
2416 	case L_INCR:
2417 		if (noneg &&
2418 		    (foffset < 0 ||
2419 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2420 			error = EOVERFLOW;
2421 			break;
2422 		}
2423 		offset += foffset;
2424 		break;
2425 	case L_XTND:
2426 		vn_lock(vp, LK_SHARED | LK_RETRY);
2427 		error = VOP_GETATTR(vp, &vattr, cred);
2428 		VOP_UNLOCK(vp);
2429 		if (error)
2430 			break;
2431 
2432 		/*
2433 		 * If the file references a disk device, then fetch
2434 		 * the media size and use that to determine the ending
2435 		 * offset.
2436 		 */
2437 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2438 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2439 			vattr.va_size = size;
2440 		if (noneg &&
2441 		    (vattr.va_size > OFF_MAX ||
2442 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2443 			error = EOVERFLOW;
2444 			break;
2445 		}
2446 		offset += vattr.va_size;
2447 		break;
2448 	case L_SET:
2449 		break;
2450 	case SEEK_DATA:
2451 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2452 		if (error == ENOTTY)
2453 			error = EINVAL;
2454 		break;
2455 	case SEEK_HOLE:
2456 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2457 		if (error == ENOTTY)
2458 			error = EINVAL;
2459 		break;
2460 	default:
2461 		error = EINVAL;
2462 	}
2463 	if (error == 0 && noneg && offset < 0)
2464 		error = EINVAL;
2465 	if (error != 0)
2466 		goto drop;
2467 	VFS_KNOTE_UNLOCKED(vp, 0);
2468 	td->td_uretoff.tdu_off = offset;
2469 drop:
2470 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2471 	return (error);
2472 }
2473 
2474 int
2475 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2476     struct thread *td)
2477 {
2478 	int error;
2479 
2480 	/*
2481 	 * Grant permission if the caller is the owner of the file, or
2482 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2483 	 * on the file.  If the time pointer is null, then write
2484 	 * permission on the file is also sufficient.
2485 	 *
2486 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2487 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2488 	 * will be allowed to set the times [..] to the current
2489 	 * server time.
2490 	 */
2491 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2492 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2493 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2494 	return (error);
2495 }
2496 
2497 int
2498 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2499 {
2500 	struct vnode *vp;
2501 	int error;
2502 
2503 	if (fp->f_type == DTYPE_FIFO)
2504 		kif->kf_type = KF_TYPE_FIFO;
2505 	else
2506 		kif->kf_type = KF_TYPE_VNODE;
2507 	vp = fp->f_vnode;
2508 	vref(vp);
2509 	FILEDESC_SUNLOCK(fdp);
2510 	error = vn_fill_kinfo_vnode(vp, kif);
2511 	vrele(vp);
2512 	FILEDESC_SLOCK(fdp);
2513 	return (error);
2514 }
2515 
2516 static inline void
2517 vn_fill_junk(struct kinfo_file *kif)
2518 {
2519 	size_t len, olen;
2520 
2521 	/*
2522 	 * Simulate vn_fullpath returning changing values for a given
2523 	 * vp during e.g. coredump.
2524 	 */
2525 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2526 	olen = strlen(kif->kf_path);
2527 	if (len < olen)
2528 		strcpy(&kif->kf_path[len - 1], "$");
2529 	else
2530 		for (; olen < len; olen++)
2531 			strcpy(&kif->kf_path[olen], "A");
2532 }
2533 
2534 int
2535 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2536 {
2537 	struct vattr va;
2538 	char *fullpath, *freepath;
2539 	int error;
2540 
2541 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2542 	freepath = NULL;
2543 	fullpath = "-";
2544 	error = vn_fullpath(vp, &fullpath, &freepath);
2545 	if (error == 0) {
2546 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2547 	}
2548 	if (freepath != NULL)
2549 		free(freepath, M_TEMP);
2550 
2551 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2552 		vn_fill_junk(kif);
2553 	);
2554 
2555 	/*
2556 	 * Retrieve vnode attributes.
2557 	 */
2558 	va.va_fsid = VNOVAL;
2559 	va.va_rdev = NODEV;
2560 	vn_lock(vp, LK_SHARED | LK_RETRY);
2561 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2562 	VOP_UNLOCK(vp);
2563 	if (error != 0)
2564 		return (error);
2565 	if (va.va_fsid != VNOVAL)
2566 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2567 	else
2568 		kif->kf_un.kf_file.kf_file_fsid =
2569 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2570 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2571 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2572 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2573 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2574 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2575 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2576 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2577 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2578 	return (0);
2579 }
2580 
2581 int
2582 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2583     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2584     struct thread *td)
2585 {
2586 #ifdef HWPMC_HOOKS
2587 	struct pmckern_map_in pkm;
2588 #endif
2589 	struct mount *mp;
2590 	struct vnode *vp;
2591 	vm_object_t object;
2592 	vm_prot_t maxprot;
2593 	boolean_t writecounted;
2594 	int error;
2595 
2596 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2597     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2598 	/*
2599 	 * POSIX shared-memory objects are defined to have
2600 	 * kernel persistence, and are not defined to support
2601 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2602 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2603 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2604 	 * flag to request this behavior.
2605 	 */
2606 	if ((fp->f_flag & FPOSIXSHM) != 0)
2607 		flags |= MAP_NOSYNC;
2608 #endif
2609 	vp = fp->f_vnode;
2610 
2611 	/*
2612 	 * Ensure that file and memory protections are
2613 	 * compatible.  Note that we only worry about
2614 	 * writability if mapping is shared; in this case,
2615 	 * current and max prot are dictated by the open file.
2616 	 * XXX use the vnode instead?  Problem is: what
2617 	 * credentials do we use for determination? What if
2618 	 * proc does a setuid?
2619 	 */
2620 	mp = vp->v_mount;
2621 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2622 		maxprot = VM_PROT_NONE;
2623 		if ((prot & VM_PROT_EXECUTE) != 0)
2624 			return (EACCES);
2625 	} else
2626 		maxprot = VM_PROT_EXECUTE;
2627 	if ((fp->f_flag & FREAD) != 0)
2628 		maxprot |= VM_PROT_READ;
2629 	else if ((prot & VM_PROT_READ) != 0)
2630 		return (EACCES);
2631 
2632 	/*
2633 	 * If we are sharing potential changes via MAP_SHARED and we
2634 	 * are trying to get write permission although we opened it
2635 	 * without asking for it, bail out.
2636 	 */
2637 	if ((flags & MAP_SHARED) != 0) {
2638 		if ((fp->f_flag & FWRITE) != 0)
2639 			maxprot |= VM_PROT_WRITE;
2640 		else if ((prot & VM_PROT_WRITE) != 0)
2641 			return (EACCES);
2642 	} else {
2643 		maxprot |= VM_PROT_WRITE;
2644 		cap_maxprot |= VM_PROT_WRITE;
2645 	}
2646 	maxprot &= cap_maxprot;
2647 
2648 	/*
2649 	 * For regular files and shared memory, POSIX requires that
2650 	 * the value of foff be a legitimate offset within the data
2651 	 * object.  In particular, negative offsets are invalid.
2652 	 * Blocking negative offsets and overflows here avoids
2653 	 * possible wraparound or user-level access into reserved
2654 	 * ranges of the data object later.  In contrast, POSIX does
2655 	 * not dictate how offsets are used by device drivers, so in
2656 	 * the case of a device mapping a negative offset is passed
2657 	 * on.
2658 	 */
2659 	if (
2660 #ifdef _LP64
2661 	    size > OFF_MAX ||
2662 #endif
2663 	    foff > OFF_MAX - size)
2664 		return (EINVAL);
2665 
2666 	writecounted = FALSE;
2667 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2668 	    &foff, &object, &writecounted);
2669 	if (error != 0)
2670 		return (error);
2671 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2672 	    foff, writecounted, td);
2673 	if (error != 0) {
2674 		/*
2675 		 * If this mapping was accounted for in the vnode's
2676 		 * writecount, then undo that now.
2677 		 */
2678 		if (writecounted)
2679 			vm_pager_release_writecount(object, 0, size);
2680 		vm_object_deallocate(object);
2681 	}
2682 #ifdef HWPMC_HOOKS
2683 	/* Inform hwpmc(4) if an executable is being mapped. */
2684 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2685 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2686 			pkm.pm_file = vp;
2687 			pkm.pm_address = (uintptr_t) *addr;
2688 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2689 		}
2690 	}
2691 #endif
2692 	return (error);
2693 }
2694 
2695 void
2696 vn_fsid(struct vnode *vp, struct vattr *va)
2697 {
2698 	fsid_t *f;
2699 
2700 	f = &vp->v_mount->mnt_stat.f_fsid;
2701 	va->va_fsid = (uint32_t)f->val[1];
2702 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2703 	va->va_fsid += (uint32_t)f->val[0];
2704 }
2705 
2706 int
2707 vn_fsync_buf(struct vnode *vp, int waitfor)
2708 {
2709 	struct buf *bp, *nbp;
2710 	struct bufobj *bo;
2711 	struct mount *mp;
2712 	int error, maxretry;
2713 
2714 	error = 0;
2715 	maxretry = 10000;     /* large, arbitrarily chosen */
2716 	mp = NULL;
2717 	if (vp->v_type == VCHR) {
2718 		VI_LOCK(vp);
2719 		mp = vp->v_rdev->si_mountpt;
2720 		VI_UNLOCK(vp);
2721 	}
2722 	bo = &vp->v_bufobj;
2723 	BO_LOCK(bo);
2724 loop1:
2725 	/*
2726 	 * MARK/SCAN initialization to avoid infinite loops.
2727 	 */
2728         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2729 		bp->b_vflags &= ~BV_SCANNED;
2730 		bp->b_error = 0;
2731 	}
2732 
2733 	/*
2734 	 * Flush all dirty buffers associated with a vnode.
2735 	 */
2736 loop2:
2737 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2738 		if ((bp->b_vflags & BV_SCANNED) != 0)
2739 			continue;
2740 		bp->b_vflags |= BV_SCANNED;
2741 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2742 			if (waitfor != MNT_WAIT)
2743 				continue;
2744 			if (BUF_LOCK(bp,
2745 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2746 			    BO_LOCKPTR(bo)) != 0) {
2747 				BO_LOCK(bo);
2748 				goto loop1;
2749 			}
2750 			BO_LOCK(bo);
2751 		}
2752 		BO_UNLOCK(bo);
2753 		KASSERT(bp->b_bufobj == bo,
2754 		    ("bp %p wrong b_bufobj %p should be %p",
2755 		    bp, bp->b_bufobj, bo));
2756 		if ((bp->b_flags & B_DELWRI) == 0)
2757 			panic("fsync: not dirty");
2758 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2759 			vfs_bio_awrite(bp);
2760 		} else {
2761 			bremfree(bp);
2762 			bawrite(bp);
2763 		}
2764 		if (maxretry < 1000)
2765 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2766 		BO_LOCK(bo);
2767 		goto loop2;
2768 	}
2769 
2770 	/*
2771 	 * If synchronous the caller expects us to completely resolve all
2772 	 * dirty buffers in the system.  Wait for in-progress I/O to
2773 	 * complete (which could include background bitmap writes), then
2774 	 * retry if dirty blocks still exist.
2775 	 */
2776 	if (waitfor == MNT_WAIT) {
2777 		bufobj_wwait(bo, 0, 0);
2778 		if (bo->bo_dirty.bv_cnt > 0) {
2779 			/*
2780 			 * If we are unable to write any of these buffers
2781 			 * then we fail now rather than trying endlessly
2782 			 * to write them out.
2783 			 */
2784 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2785 				if ((error = bp->b_error) != 0)
2786 					break;
2787 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2788 			    (error == 0 && --maxretry >= 0))
2789 				goto loop1;
2790 			if (error == 0)
2791 				error = EAGAIN;
2792 		}
2793 	}
2794 	BO_UNLOCK(bo);
2795 	if (error != 0)
2796 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2797 
2798 	return (error);
2799 }
2800 
2801 /*
2802  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
2803  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
2804  * to do the actual copy.
2805  * vn_generic_copy_file_range() is factored out, so it can be called
2806  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
2807  * different file systems.
2808  */
2809 int
2810 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
2811     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
2812     struct ucred *outcred, struct thread *fsize_td)
2813 {
2814 	int error;
2815 	size_t len;
2816 	uint64_t uval;
2817 
2818 	len = *lenp;
2819 	*lenp = 0;		/* For error returns. */
2820 	error = 0;
2821 
2822 	/* Do some sanity checks on the arguments. */
2823 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
2824 		error = EISDIR;
2825 	else if (*inoffp < 0 || *outoffp < 0 ||
2826 	    invp->v_type != VREG || outvp->v_type != VREG)
2827 		error = EINVAL;
2828 	if (error != 0)
2829 		goto out;
2830 
2831 	/* Ensure offset + len does not wrap around. */
2832 	uval = *inoffp;
2833 	uval += len;
2834 	if (uval > INT64_MAX)
2835 		len = INT64_MAX - *inoffp;
2836 	uval = *outoffp;
2837 	uval += len;
2838 	if (uval > INT64_MAX)
2839 		len = INT64_MAX - *outoffp;
2840 	if (len == 0)
2841 		goto out;
2842 
2843 	/*
2844 	 * If the two vnode are for the same file system, call
2845 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
2846 	 * which can handle copies across multiple file systems.
2847 	 */
2848 	*lenp = len;
2849 	if (invp->v_mount == outvp->v_mount)
2850 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
2851 		    lenp, flags, incred, outcred, fsize_td);
2852 	else
2853 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
2854 		    outoffp, lenp, flags, incred, outcred, fsize_td);
2855 out:
2856 	return (error);
2857 }
2858 
2859 /*
2860  * Test len bytes of data starting at dat for all bytes == 0.
2861  * Return true if all bytes are zero, false otherwise.
2862  * Expects dat to be well aligned.
2863  */
2864 static bool
2865 mem_iszero(void *dat, int len)
2866 {
2867 	int i;
2868 	const u_int *p;
2869 	const char *cp;
2870 
2871 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
2872 		if (len >= sizeof(*p)) {
2873 			if (*p != 0)
2874 				return (false);
2875 		} else {
2876 			cp = (const char *)p;
2877 			for (i = 0; i < len; i++, cp++)
2878 				if (*cp != '\0')
2879 					return (false);
2880 		}
2881 	}
2882 	return (true);
2883 }
2884 
2885 /*
2886  * Look for a hole in the output file and, if found, adjust *outoffp
2887  * and *xferp to skip past the hole.
2888  * *xferp is the entire hole length to be written and xfer2 is how many bytes
2889  * to be written as 0's upon return.
2890  */
2891 static off_t
2892 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
2893     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
2894 {
2895 	int error;
2896 	off_t delta;
2897 
2898 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
2899 		*dataoffp = *outoffp;
2900 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
2901 		    curthread);
2902 		if (error == 0) {
2903 			*holeoffp = *dataoffp;
2904 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
2905 			    curthread);
2906 		}
2907 		if (error != 0 || *holeoffp == *dataoffp) {
2908 			/*
2909 			 * Since outvp is unlocked, it may be possible for
2910 			 * another thread to do a truncate(), lseek(), write()
2911 			 * creating a hole at startoff between the above
2912 			 * VOP_IOCTL() calls, if the other thread does not do
2913 			 * rangelocking.
2914 			 * If that happens, *holeoffp == *dataoffp and finding
2915 			 * the hole has failed, so disable vn_skip_hole().
2916 			 */
2917 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
2918 			return (xfer2);
2919 		}
2920 		KASSERT(*dataoffp >= *outoffp,
2921 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
2922 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
2923 		KASSERT(*holeoffp > *dataoffp,
2924 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
2925 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
2926 	}
2927 
2928 	/*
2929 	 * If there is a hole before the data starts, advance *outoffp and
2930 	 * *xferp past the hole.
2931 	 */
2932 	if (*dataoffp > *outoffp) {
2933 		delta = *dataoffp - *outoffp;
2934 		if (delta >= *xferp) {
2935 			/* Entire *xferp is a hole. */
2936 			*outoffp += *xferp;
2937 			*xferp = 0;
2938 			return (0);
2939 		}
2940 		*xferp -= delta;
2941 		*outoffp += delta;
2942 		xfer2 = MIN(xfer2, *xferp);
2943 	}
2944 
2945 	/*
2946 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
2947 	 * that the write ends at the start of the hole.
2948 	 * *holeoffp should always be greater than *outoffp, but for the
2949 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
2950 	 * value.
2951 	 */
2952 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
2953 		xfer2 = *holeoffp - *outoffp;
2954 	return (xfer2);
2955 }
2956 
2957 /*
2958  * Write an xfer sized chunk to outvp in blksize blocks from dat.
2959  * dat is a maximum of blksize in length and can be written repeatedly in
2960  * the chunk.
2961  * If growfile == true, just grow the file via vn_truncate_locked() instead
2962  * of doing actual writes.
2963  * If checkhole == true, a hole is being punched, so skip over any hole
2964  * already in the output file.
2965  */
2966 static int
2967 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
2968     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
2969 {
2970 	struct mount *mp;
2971 	off_t dataoff, holeoff, xfer2;
2972 	int error, lckf;
2973 
2974 	/*
2975 	 * Loop around doing writes of blksize until write has been completed.
2976 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
2977 	 * done for each iteration, since the xfer argument can be very
2978 	 * large if there is a large hole to punch in the output file.
2979 	 */
2980 	error = 0;
2981 	holeoff = 0;
2982 	do {
2983 		xfer2 = MIN(xfer, blksize);
2984 		if (checkhole) {
2985 			/*
2986 			 * Punching a hole.  Skip writing if there is
2987 			 * already a hole in the output file.
2988 			 */
2989 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
2990 			    &dataoff, &holeoff, cred);
2991 			if (xfer == 0)
2992 				break;
2993 			if (holeoff < 0)
2994 				checkhole = false;
2995 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
2996 			    (intmax_t)xfer2));
2997 		}
2998 		bwillwrite();
2999 		mp = NULL;
3000 		error = vn_start_write(outvp, &mp, V_WAIT);
3001 		if (error != 0)
3002 			break;
3003 		if (growfile) {
3004 			error = vn_lock(outvp, LK_EXCLUSIVE);
3005 			if (error == 0) {
3006 				error = vn_truncate_locked(outvp, outoff + xfer,
3007 				    false, cred);
3008 				VOP_UNLOCK(outvp);
3009 			}
3010 		} else {
3011 			if (MNT_SHARED_WRITES(mp))
3012 				lckf = LK_SHARED;
3013 			else
3014 				lckf = LK_EXCLUSIVE;
3015 			error = vn_lock(outvp, lckf);
3016 			if (error == 0) {
3017 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3018 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3019 				    curthread->td_ucred, cred, NULL, curthread);
3020 				outoff += xfer2;
3021 				xfer -= xfer2;
3022 				VOP_UNLOCK(outvp);
3023 			}
3024 		}
3025 		if (mp != NULL)
3026 			vn_finished_write(mp);
3027 	} while (!growfile && xfer > 0 && error == 0);
3028 	return (error);
3029 }
3030 
3031 /*
3032  * Copy a byte range of one file to another.  This function can handle the
3033  * case where invp and outvp are on different file systems.
3034  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3035  * is no better file system specific way to do it.
3036  */
3037 int
3038 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3039     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3040     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3041 {
3042 	struct vattr va;
3043 	struct mount *mp;
3044 	struct uio io;
3045 	off_t startoff, endoff, xfer, xfer2;
3046 	u_long blksize;
3047 	int error, interrupted;
3048 	bool cantseek, readzeros, eof, lastblock;
3049 	ssize_t aresid;
3050 	size_t copylen, len, rem, savlen;
3051 	char *dat;
3052 	long holein, holeout;
3053 
3054 	holein = holeout = 0;
3055 	savlen = len = *lenp;
3056 	error = 0;
3057 	interrupted = 0;
3058 	dat = NULL;
3059 
3060 	error = vn_lock(invp, LK_SHARED);
3061 	if (error != 0)
3062 		goto out;
3063 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3064 		holein = 0;
3065 	VOP_UNLOCK(invp);
3066 
3067 	mp = NULL;
3068 	error = vn_start_write(outvp, &mp, V_WAIT);
3069 	if (error == 0)
3070 		error = vn_lock(outvp, LK_EXCLUSIVE);
3071 	if (error == 0) {
3072 		/*
3073 		 * If fsize_td != NULL, do a vn_rlimit_fsize() call,
3074 		 * now that outvp is locked.
3075 		 */
3076 		if (fsize_td != NULL) {
3077 			io.uio_offset = *outoffp;
3078 			io.uio_resid = len;
3079 			error = vn_rlimit_fsize(outvp, &io, fsize_td);
3080 			if (error != 0)
3081 				error = EFBIG;
3082 		}
3083 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3084 			holeout = 0;
3085 		/*
3086 		 * Holes that are past EOF do not need to be written as a block
3087 		 * of zero bytes.  So, truncate the output file as far as
3088 		 * possible and then use va.va_size to decide if writing 0
3089 		 * bytes is necessary in the loop below.
3090 		 */
3091 		if (error == 0)
3092 			error = VOP_GETATTR(outvp, &va, outcred);
3093 		if (error == 0 && va.va_size > *outoffp && va.va_size <=
3094 		    *outoffp + len) {
3095 #ifdef MAC
3096 			error = mac_vnode_check_write(curthread->td_ucred,
3097 			    outcred, outvp);
3098 			if (error == 0)
3099 #endif
3100 				error = vn_truncate_locked(outvp, *outoffp,
3101 				    false, outcred);
3102 			if (error == 0)
3103 				va.va_size = *outoffp;
3104 		}
3105 		VOP_UNLOCK(outvp);
3106 	}
3107 	if (mp != NULL)
3108 		vn_finished_write(mp);
3109 	if (error != 0)
3110 		goto out;
3111 
3112 	/*
3113 	 * Set the blksize to the larger of the hole sizes for invp and outvp.
3114 	 * If hole sizes aren't available, set the blksize to the larger
3115 	 * f_iosize of invp and outvp.
3116 	 * This code expects the hole sizes and f_iosizes to be powers of 2.
3117 	 * This value is clipped at 4Kbytes and 1Mbyte.
3118 	 */
3119 	blksize = MAX(holein, holeout);
3120 
3121 	/* Clip len to end at an exact multiple of hole size. */
3122 	if (blksize > 1) {
3123 		rem = *inoffp % blksize;
3124 		if (rem > 0)
3125 			rem = blksize - rem;
3126 		if (len - rem > blksize)
3127 			len = savlen = rounddown(len - rem, blksize) + rem;
3128 	}
3129 
3130 	if (blksize <= 1)
3131 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3132 		    outvp->v_mount->mnt_stat.f_iosize);
3133 	if (blksize < 4096)
3134 		blksize = 4096;
3135 	else if (blksize > 1024 * 1024)
3136 		blksize = 1024 * 1024;
3137 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3138 
3139 	/*
3140 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3141 	 * to find holes.  Otherwise, just scan the read block for all 0s
3142 	 * in the inner loop where the data copying is done.
3143 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3144 	 * support holes on the server, but do not support FIOSEEKHOLE.
3145 	 */
3146 	eof = false;
3147 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3148 		endoff = 0;			/* To shut up compilers. */
3149 		cantseek = true;
3150 		startoff = *inoffp;
3151 		copylen = len;
3152 
3153 		/*
3154 		 * Find the next data area.  If there is just a hole to EOF,
3155 		 * FIOSEEKDATA should fail and then we drop down into the
3156 		 * inner loop and create the hole on the outvp file.
3157 		 * (I do not know if any file system will report a hole to
3158 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3159 		 *  will fail for those file systems.)
3160 		 *
3161 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3162 		 * the code just falls through to the inner copy loop.
3163 		 */
3164 		error = EINVAL;
3165 		if (holein > 0)
3166 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3167 			    incred, curthread);
3168 		if (error == 0) {
3169 			endoff = startoff;
3170 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3171 			    incred, curthread);
3172 			/*
3173 			 * Since invp is unlocked, it may be possible for
3174 			 * another thread to do a truncate(), lseek(), write()
3175 			 * creating a hole at startoff between the above
3176 			 * VOP_IOCTL() calls, if the other thread does not do
3177 			 * rangelocking.
3178 			 * If that happens, startoff == endoff and finding
3179 			 * the hole has failed, so set an error.
3180 			 */
3181 			if (error == 0 && startoff == endoff)
3182 				error = EINVAL; /* Any error. Reset to 0. */
3183 		}
3184 		if (error == 0) {
3185 			if (startoff > *inoffp) {
3186 				/* Found hole before data block. */
3187 				xfer = MIN(startoff - *inoffp, len);
3188 				if (*outoffp < va.va_size) {
3189 					/* Must write 0s to punch hole. */
3190 					xfer2 = MIN(va.va_size - *outoffp,
3191 					    xfer);
3192 					memset(dat, 0, MIN(xfer2, blksize));
3193 					error = vn_write_outvp(outvp, dat,
3194 					    *outoffp, xfer2, blksize, false,
3195 					    holeout > 0, outcred);
3196 				}
3197 
3198 				if (error == 0 && *outoffp + xfer >
3199 				    va.va_size && xfer == len)
3200 					/* Grow last block. */
3201 					error = vn_write_outvp(outvp, dat,
3202 					    *outoffp, xfer, blksize, true,
3203 					    false, outcred);
3204 				if (error == 0) {
3205 					*inoffp += xfer;
3206 					*outoffp += xfer;
3207 					len -= xfer;
3208 					if (len < savlen)
3209 						interrupted = sig_intr();
3210 				}
3211 			}
3212 			copylen = MIN(len, endoff - startoff);
3213 			cantseek = false;
3214 		} else {
3215 			cantseek = true;
3216 			startoff = *inoffp;
3217 			copylen = len;
3218 			error = 0;
3219 		}
3220 
3221 		xfer = blksize;
3222 		if (cantseek) {
3223 			/*
3224 			 * Set first xfer to end at a block boundary, so that
3225 			 * holes are more likely detected in the loop below via
3226 			 * the for all bytes 0 method.
3227 			 */
3228 			xfer -= (*inoffp % blksize);
3229 		}
3230 		/* Loop copying the data block. */
3231 		while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
3232 			if (copylen < xfer)
3233 				xfer = copylen;
3234 			error = vn_lock(invp, LK_SHARED);
3235 			if (error != 0)
3236 				goto out;
3237 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3238 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3239 			    curthread->td_ucred, incred, &aresid,
3240 			    curthread);
3241 			VOP_UNLOCK(invp);
3242 			lastblock = false;
3243 			if (error == 0 && aresid > 0) {
3244 				/* Stop the copy at EOF on the input file. */
3245 				xfer -= aresid;
3246 				eof = true;
3247 				lastblock = true;
3248 			}
3249 			if (error == 0) {
3250 				/*
3251 				 * Skip the write for holes past the initial EOF
3252 				 * of the output file, unless this is the last
3253 				 * write of the output file at EOF.
3254 				 */
3255 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3256 				    false;
3257 				if (xfer == len)
3258 					lastblock = true;
3259 				if (!cantseek || *outoffp < va.va_size ||
3260 				    lastblock || !readzeros)
3261 					error = vn_write_outvp(outvp, dat,
3262 					    *outoffp, xfer, blksize,
3263 					    readzeros && lastblock &&
3264 					    *outoffp >= va.va_size, false,
3265 					    outcred);
3266 				if (error == 0) {
3267 					*inoffp += xfer;
3268 					startoff += xfer;
3269 					*outoffp += xfer;
3270 					copylen -= xfer;
3271 					len -= xfer;
3272 					if (len < savlen)
3273 						interrupted = sig_intr();
3274 				}
3275 			}
3276 			xfer = blksize;
3277 		}
3278 	}
3279 out:
3280 	*lenp = savlen - len;
3281 	free(dat, M_TEMP);
3282 	return (error);
3283 }
3284 
3285 static int
3286 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3287 {
3288 	struct mount *mp;
3289 	struct vnode *vp;
3290 	off_t olen, ooffset;
3291 	int error;
3292 #ifdef AUDIT
3293 	int audited_vnode1 = 0;
3294 #endif
3295 
3296 	vp = fp->f_vnode;
3297 	if (vp->v_type != VREG)
3298 		return (ENODEV);
3299 
3300 	/* Allocating blocks may take a long time, so iterate. */
3301 	for (;;) {
3302 		olen = len;
3303 		ooffset = offset;
3304 
3305 		bwillwrite();
3306 		mp = NULL;
3307 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
3308 		if (error != 0)
3309 			break;
3310 		error = vn_lock(vp, LK_EXCLUSIVE);
3311 		if (error != 0) {
3312 			vn_finished_write(mp);
3313 			break;
3314 		}
3315 #ifdef AUDIT
3316 		if (!audited_vnode1) {
3317 			AUDIT_ARG_VNODE1(vp);
3318 			audited_vnode1 = 1;
3319 		}
3320 #endif
3321 #ifdef MAC
3322 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3323 		if (error == 0)
3324 #endif
3325 			error = VOP_ALLOCATE(vp, &offset, &len);
3326 		VOP_UNLOCK(vp);
3327 		vn_finished_write(mp);
3328 
3329 		if (olen + ooffset != offset + len) {
3330 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3331 			    ooffset, olen, offset, len);
3332 		}
3333 		if (error != 0 || len == 0)
3334 			break;
3335 		KASSERT(olen > len, ("Iteration did not make progress?"));
3336 		maybe_yield();
3337 	}
3338 
3339 	return (error);
3340 }
3341 
3342 static u_long vn_lock_pair_pause_cnt;
3343 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
3344     &vn_lock_pair_pause_cnt, 0,
3345     "Count of vn_lock_pair deadlocks");
3346 
3347 u_int vn_lock_pair_pause_max;
3348 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
3349     &vn_lock_pair_pause_max, 0,
3350     "Max ticks for vn_lock_pair deadlock avoidance sleep");
3351 
3352 static void
3353 vn_lock_pair_pause(const char *wmesg)
3354 {
3355 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
3356 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
3357 }
3358 
3359 /*
3360  * Lock pair of vnodes vp1, vp2, avoiding lock order reversal.
3361  * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1
3362  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
3363  * can be NULL.
3364  *
3365  * The function returns with both vnodes exclusively locked, and
3366  * guarantees that it does not create lock order reversal with other
3367  * threads during its execution.  Both vnodes could be unlocked
3368  * temporary (and reclaimed).
3369  */
3370 void
3371 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2,
3372     bool vp2_locked)
3373 {
3374 	int error;
3375 
3376 	if (vp1 == NULL && vp2 == NULL)
3377 		return;
3378 	if (vp1 != NULL) {
3379 		if (vp1_locked)
3380 			ASSERT_VOP_ELOCKED(vp1, "vp1");
3381 		else
3382 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
3383 	} else {
3384 		vp1_locked = true;
3385 	}
3386 	if (vp2 != NULL) {
3387 		if (vp2_locked)
3388 			ASSERT_VOP_ELOCKED(vp2, "vp2");
3389 		else
3390 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
3391 	} else {
3392 		vp2_locked = true;
3393 	}
3394 	if (!vp1_locked && !vp2_locked) {
3395 		vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3396 		vp1_locked = true;
3397 	}
3398 
3399 	for (;;) {
3400 		if (vp1_locked && vp2_locked)
3401 			break;
3402 		if (vp1_locked && vp2 != NULL) {
3403 			if (vp1 != NULL) {
3404 				error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT,
3405 				    __FILE__, __LINE__);
3406 				if (error == 0)
3407 					break;
3408 				VOP_UNLOCK(vp1);
3409 				vp1_locked = false;
3410 				vn_lock_pair_pause("vlp1");
3411 			}
3412 			vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3413 			vp2_locked = true;
3414 		}
3415 		if (vp2_locked && vp1 != NULL) {
3416 			if (vp2 != NULL) {
3417 				error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT,
3418 				    __FILE__, __LINE__);
3419 				if (error == 0)
3420 					break;
3421 				VOP_UNLOCK(vp2);
3422 				vp2_locked = false;
3423 				vn_lock_pair_pause("vlp2");
3424 			}
3425 			vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3426 			vp1_locked = true;
3427 		}
3428 	}
3429 	if (vp1 != NULL)
3430 		ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
3431 	if (vp2 != NULL)
3432 		ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
3433 }
3434