xref: /freebsd/sys/kern/vfs_vnops.c (revision c4e127e24dc9f1322ebe7ade0991de7022010bf1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/sx.h>
74 #include <sys/sysctl.h>
75 #include <sys/ttycom.h>
76 #include <sys/conf.h>
77 #include <sys/syslog.h>
78 #include <sys/unistd.h>
79 #include <sys/user.h>
80 
81 #include <security/audit/audit.h>
82 #include <security/mac/mac_framework.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_extern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vnode_pager.h>
91 
92 #ifdef HWPMC_HOOKS
93 #include <sys/pmckern.h>
94 #endif
95 
96 static fo_rdwr_t	vn_read;
97 static fo_rdwr_t	vn_write;
98 static fo_rdwr_t	vn_io_fault;
99 static fo_truncate_t	vn_truncate;
100 static fo_ioctl_t	vn_ioctl;
101 static fo_poll_t	vn_poll;
102 static fo_kqfilter_t	vn_kqfilter;
103 static fo_stat_t	vn_statfile;
104 static fo_close_t	vn_closefile;
105 static fo_mmap_t	vn_mmap;
106 
107 struct 	fileops vnops = {
108 	.fo_read = vn_io_fault,
109 	.fo_write = vn_io_fault,
110 	.fo_truncate = vn_truncate,
111 	.fo_ioctl = vn_ioctl,
112 	.fo_poll = vn_poll,
113 	.fo_kqfilter = vn_kqfilter,
114 	.fo_stat = vn_statfile,
115 	.fo_close = vn_closefile,
116 	.fo_chmod = vn_chmod,
117 	.fo_chown = vn_chown,
118 	.fo_sendfile = vn_sendfile,
119 	.fo_seek = vn_seek,
120 	.fo_fill_kinfo = vn_fill_kinfo,
121 	.fo_mmap = vn_mmap,
122 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
123 };
124 
125 static const int io_hold_cnt = 16;
126 static int vn_io_fault_enable = 1;
127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
128     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
129 static int vn_io_fault_prefault = 0;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
131     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
132 static u_long vn_io_faults_cnt;
133 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
134     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
135 
136 /*
137  * Returns true if vn_io_fault mode of handling the i/o request should
138  * be used.
139  */
140 static bool
141 do_vn_io_fault(struct vnode *vp, struct uio *uio)
142 {
143 	struct mount *mp;
144 
145 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
146 	    (mp = vp->v_mount) != NULL &&
147 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
148 }
149 
150 /*
151  * Structure used to pass arguments to vn_io_fault1(), to do either
152  * file- or vnode-based I/O calls.
153  */
154 struct vn_io_fault_args {
155 	enum {
156 		VN_IO_FAULT_FOP,
157 		VN_IO_FAULT_VOP
158 	} kind;
159 	struct ucred *cred;
160 	int flags;
161 	union {
162 		struct fop_args_tag {
163 			struct file *fp;
164 			fo_rdwr_t *doio;
165 		} fop_args;
166 		struct vop_args_tag {
167 			struct vnode *vp;
168 		} vop_args;
169 	} args;
170 };
171 
172 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
173     struct vn_io_fault_args *args, struct thread *td);
174 
175 int
176 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
177 {
178 	struct thread *td = ndp->ni_cnd.cn_thread;
179 
180 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
181 }
182 
183 /*
184  * Common code for vnode open operations via a name lookup.
185  * Lookup the vnode and invoke VOP_CREATE if needed.
186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
187  *
188  * Note that this does NOT free nameidata for the successful case,
189  * due to the NDINIT being done elsewhere.
190  */
191 int
192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
193     struct ucred *cred, struct file *fp)
194 {
195 	struct vnode *vp;
196 	struct mount *mp;
197 	struct thread *td = ndp->ni_cnd.cn_thread;
198 	struct vattr vat;
199 	struct vattr *vap = &vat;
200 	int fmode, error;
201 
202 restart:
203 	fmode = *flagp;
204 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
205 	    O_EXCL | O_DIRECTORY))
206 		return (EINVAL);
207 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
208 		ndp->ni_cnd.cn_nameiop = CREATE;
209 		/*
210 		 * Set NOCACHE to avoid flushing the cache when
211 		 * rolling in many files at once.
212 		*/
213 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
214 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
215 			ndp->ni_cnd.cn_flags |= FOLLOW;
216 		if ((fmode & O_BENEATH) != 0)
217 			ndp->ni_cnd.cn_flags |= BENEATH;
218 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
219 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
220 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
221 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
222 		bwillwrite();
223 		if ((error = namei(ndp)) != 0)
224 			return (error);
225 		if (ndp->ni_vp == NULL) {
226 			VATTR_NULL(vap);
227 			vap->va_type = VREG;
228 			vap->va_mode = cmode;
229 			if (fmode & O_EXCL)
230 				vap->va_vaflags |= VA_EXCLUSIVE;
231 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
232 				NDFREE(ndp, NDF_ONLY_PNBUF);
233 				vput(ndp->ni_dvp);
234 				if ((error = vn_start_write(NULL, &mp,
235 				    V_XSLEEP | PCATCH)) != 0)
236 					return (error);
237 				goto restart;
238 			}
239 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
240 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
241 #ifdef MAC
242 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
243 			    &ndp->ni_cnd, vap);
244 			if (error == 0)
245 #endif
246 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
247 						   &ndp->ni_cnd, vap);
248 			vput(ndp->ni_dvp);
249 			vn_finished_write(mp);
250 			if (error) {
251 				NDFREE(ndp, NDF_ONLY_PNBUF);
252 				return (error);
253 			}
254 			fmode &= ~O_TRUNC;
255 			vp = ndp->ni_vp;
256 		} else {
257 			if (ndp->ni_dvp == ndp->ni_vp)
258 				vrele(ndp->ni_dvp);
259 			else
260 				vput(ndp->ni_dvp);
261 			ndp->ni_dvp = NULL;
262 			vp = ndp->ni_vp;
263 			if (fmode & O_EXCL) {
264 				error = EEXIST;
265 				goto bad;
266 			}
267 			fmode &= ~O_CREAT;
268 		}
269 	} else {
270 		ndp->ni_cnd.cn_nameiop = LOOKUP;
271 		ndp->ni_cnd.cn_flags = ISOPEN |
272 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
273 		if (!(fmode & FWRITE))
274 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
275 		if ((fmode & O_BENEATH) != 0)
276 			ndp->ni_cnd.cn_flags |= BENEATH;
277 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
278 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
279 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
280 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
281 		if ((error = namei(ndp)) != 0)
282 			return (error);
283 		vp = ndp->ni_vp;
284 	}
285 	error = vn_open_vnode(vp, fmode, cred, td, fp);
286 	if (error)
287 		goto bad;
288 	*flagp = fmode;
289 	return (0);
290 bad:
291 	NDFREE(ndp, NDF_ONLY_PNBUF);
292 	vput(vp);
293 	*flagp = fmode;
294 	ndp->ni_vp = NULL;
295 	return (error);
296 }
297 
298 static int
299 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
300 {
301 	struct flock lf;
302 	int error, lock_flags, type;
303 
304 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
305 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
306 		return (0);
307 	KASSERT(fp != NULL, ("open with flock requires fp"));
308 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
309 		return (EOPNOTSUPP);
310 
311 	lock_flags = VOP_ISLOCKED(vp);
312 	VOP_UNLOCK(vp, 0);
313 
314 	lf.l_whence = SEEK_SET;
315 	lf.l_start = 0;
316 	lf.l_len = 0;
317 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
318 	type = F_FLOCK;
319 	if ((fmode & FNONBLOCK) == 0)
320 		type |= F_WAIT;
321 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
322 	if (error == 0)
323 		fp->f_flag |= FHASLOCK;
324 
325 	vn_lock(vp, lock_flags | LK_RETRY);
326 	if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0)
327 		error = ENOENT;
328 	return (error);
329 }
330 
331 /*
332  * Common code for vnode open operations once a vnode is located.
333  * Check permissions, and call the VOP_OPEN routine.
334  */
335 int
336 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
337     struct thread *td, struct file *fp)
338 {
339 	accmode_t accmode;
340 	int error;
341 
342 	if (vp->v_type == VLNK)
343 		return (EMLINK);
344 	if (vp->v_type == VSOCK)
345 		return (EOPNOTSUPP);
346 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
347 		return (ENOTDIR);
348 	accmode = 0;
349 	if (fmode & (FWRITE | O_TRUNC)) {
350 		if (vp->v_type == VDIR)
351 			return (EISDIR);
352 		accmode |= VWRITE;
353 	}
354 	if (fmode & FREAD)
355 		accmode |= VREAD;
356 	if (fmode & FEXEC)
357 		accmode |= VEXEC;
358 	if ((fmode & O_APPEND) && (fmode & FWRITE))
359 		accmode |= VAPPEND;
360 #ifdef MAC
361 	if (fmode & O_CREAT)
362 		accmode |= VCREAT;
363 	if (fmode & O_VERIFY)
364 		accmode |= VVERIFY;
365 	error = mac_vnode_check_open(cred, vp, accmode);
366 	if (error)
367 		return (error);
368 
369 	accmode &= ~(VCREAT | VVERIFY);
370 #endif
371 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
372 		error = VOP_ACCESS(vp, accmode, cred, td);
373 		if (error != 0)
374 			return (error);
375 	}
376 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
377 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
378 	error = VOP_OPEN(vp, fmode, cred, td, fp);
379 	if (error != 0)
380 		return (error);
381 
382 	error = vn_open_vnode_advlock(vp, fmode, fp);
383 	if (error == 0 && (fmode & FWRITE) != 0) {
384 		error = VOP_ADD_WRITECOUNT(vp, 1);
385 		if (error == 0) {
386 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
387 			     __func__, vp, vp->v_writecount);
388 		}
389 	}
390 
391 	/*
392 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
393 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
394 	 * Arrange for that by having fdrop() to use vn_closefile().
395 	 */
396 	if (error != 0) {
397 		fp->f_flag |= FOPENFAILED;
398 		fp->f_vnode = vp;
399 		if (fp->f_ops == &badfileops) {
400 			fp->f_type = DTYPE_VNODE;
401 			fp->f_ops = &vnops;
402 		}
403 		vref(vp);
404 	}
405 
406 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
407 	return (error);
408 
409 }
410 
411 /*
412  * Check for write permissions on the specified vnode.
413  * Prototype text segments cannot be written.
414  * It is racy.
415  */
416 int
417 vn_writechk(struct vnode *vp)
418 {
419 
420 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
421 	/*
422 	 * If there's shared text associated with
423 	 * the vnode, try to free it up once.  If
424 	 * we fail, we can't allow writing.
425 	 */
426 	if (VOP_IS_TEXT(vp))
427 		return (ETXTBSY);
428 
429 	return (0);
430 }
431 
432 /*
433  * Vnode close call
434  */
435 static int
436 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
437     struct thread *td, bool keep_ref)
438 {
439 	struct mount *mp;
440 	int error, lock_flags;
441 
442 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
443 	    MNT_EXTENDED_SHARED(vp->v_mount))
444 		lock_flags = LK_SHARED;
445 	else
446 		lock_flags = LK_EXCLUSIVE;
447 
448 	vn_start_write(vp, &mp, V_WAIT);
449 	vn_lock(vp, lock_flags | LK_RETRY);
450 	AUDIT_ARG_VNODE1(vp);
451 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
452 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
453 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
454 		    __func__, vp, vp->v_writecount);
455 	}
456 	error = VOP_CLOSE(vp, flags, file_cred, td);
457 	if (keep_ref)
458 		VOP_UNLOCK(vp, 0);
459 	else
460 		vput(vp);
461 	vn_finished_write(mp);
462 	return (error);
463 }
464 
465 int
466 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
467     struct thread *td)
468 {
469 
470 	return (vn_close1(vp, flags, file_cred, td, false));
471 }
472 
473 /*
474  * Heuristic to detect sequential operation.
475  */
476 static int
477 sequential_heuristic(struct uio *uio, struct file *fp)
478 {
479 
480 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
481 	if (fp->f_flag & FRDAHEAD)
482 		return (fp->f_seqcount << IO_SEQSHIFT);
483 
484 	/*
485 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
486 	 * that the first I/O is normally considered to be slightly
487 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
488 	 * unless previous seeks have reduced f_seqcount to 0, in which
489 	 * case offset 0 is not special.
490 	 */
491 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
492 	    uio->uio_offset == fp->f_nextoff) {
493 		/*
494 		 * f_seqcount is in units of fixed-size blocks so that it
495 		 * depends mainly on the amount of sequential I/O and not
496 		 * much on the number of sequential I/O's.  The fixed size
497 		 * of 16384 is hard-coded here since it is (not quite) just
498 		 * a magic size that works well here.  This size is more
499 		 * closely related to the best I/O size for real disks than
500 		 * to any block size used by software.
501 		 */
502 		fp->f_seqcount += lmin(IO_SEQMAX,
503 		    howmany(uio->uio_resid, 16384));
504 		return (fp->f_seqcount << IO_SEQSHIFT);
505 	}
506 
507 	/* Not sequential.  Quickly draw-down sequentiality. */
508 	if (fp->f_seqcount > 1)
509 		fp->f_seqcount = 1;
510 	else
511 		fp->f_seqcount = 0;
512 	return (0);
513 }
514 
515 /*
516  * Package up an I/O request on a vnode into a uio and do it.
517  */
518 int
519 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
520     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
521     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
522 {
523 	struct uio auio;
524 	struct iovec aiov;
525 	struct mount *mp;
526 	struct ucred *cred;
527 	void *rl_cookie;
528 	struct vn_io_fault_args args;
529 	int error, lock_flags;
530 
531 	if (offset < 0 && vp->v_type != VCHR)
532 		return (EINVAL);
533 	auio.uio_iov = &aiov;
534 	auio.uio_iovcnt = 1;
535 	aiov.iov_base = base;
536 	aiov.iov_len = len;
537 	auio.uio_resid = len;
538 	auio.uio_offset = offset;
539 	auio.uio_segflg = segflg;
540 	auio.uio_rw = rw;
541 	auio.uio_td = td;
542 	error = 0;
543 
544 	if ((ioflg & IO_NODELOCKED) == 0) {
545 		if ((ioflg & IO_RANGELOCKED) == 0) {
546 			if (rw == UIO_READ) {
547 				rl_cookie = vn_rangelock_rlock(vp, offset,
548 				    offset + len);
549 			} else {
550 				rl_cookie = vn_rangelock_wlock(vp, offset,
551 				    offset + len);
552 			}
553 		} else
554 			rl_cookie = NULL;
555 		mp = NULL;
556 		if (rw == UIO_WRITE) {
557 			if (vp->v_type != VCHR &&
558 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
559 			    != 0)
560 				goto out;
561 			if (MNT_SHARED_WRITES(mp) ||
562 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
563 				lock_flags = LK_SHARED;
564 			else
565 				lock_flags = LK_EXCLUSIVE;
566 		} else
567 			lock_flags = LK_SHARED;
568 		vn_lock(vp, lock_flags | LK_RETRY);
569 	} else
570 		rl_cookie = NULL;
571 
572 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
573 #ifdef MAC
574 	if ((ioflg & IO_NOMACCHECK) == 0) {
575 		if (rw == UIO_READ)
576 			error = mac_vnode_check_read(active_cred, file_cred,
577 			    vp);
578 		else
579 			error = mac_vnode_check_write(active_cred, file_cred,
580 			    vp);
581 	}
582 #endif
583 	if (error == 0) {
584 		if (file_cred != NULL)
585 			cred = file_cred;
586 		else
587 			cred = active_cred;
588 		if (do_vn_io_fault(vp, &auio)) {
589 			args.kind = VN_IO_FAULT_VOP;
590 			args.cred = cred;
591 			args.flags = ioflg;
592 			args.args.vop_args.vp = vp;
593 			error = vn_io_fault1(vp, &auio, &args, td);
594 		} else if (rw == UIO_READ) {
595 			error = VOP_READ(vp, &auio, ioflg, cred);
596 		} else /* if (rw == UIO_WRITE) */ {
597 			error = VOP_WRITE(vp, &auio, ioflg, cred);
598 		}
599 	}
600 	if (aresid)
601 		*aresid = auio.uio_resid;
602 	else
603 		if (auio.uio_resid && error == 0)
604 			error = EIO;
605 	if ((ioflg & IO_NODELOCKED) == 0) {
606 		VOP_UNLOCK(vp, 0);
607 		if (mp != NULL)
608 			vn_finished_write(mp);
609 	}
610  out:
611 	if (rl_cookie != NULL)
612 		vn_rangelock_unlock(vp, rl_cookie);
613 	return (error);
614 }
615 
616 /*
617  * Package up an I/O request on a vnode into a uio and do it.  The I/O
618  * request is split up into smaller chunks and we try to avoid saturating
619  * the buffer cache while potentially holding a vnode locked, so we
620  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
621  * to give other processes a chance to lock the vnode (either other processes
622  * core'ing the same binary, or unrelated processes scanning the directory).
623  */
624 int
625 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
626     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
627     struct ucred *file_cred, size_t *aresid, struct thread *td)
628 {
629 	int error = 0;
630 	ssize_t iaresid;
631 
632 	do {
633 		int chunk;
634 
635 		/*
636 		 * Force `offset' to a multiple of MAXBSIZE except possibly
637 		 * for the first chunk, so that filesystems only need to
638 		 * write full blocks except possibly for the first and last
639 		 * chunks.
640 		 */
641 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
642 
643 		if (chunk > len)
644 			chunk = len;
645 		if (rw != UIO_READ && vp->v_type == VREG)
646 			bwillwrite();
647 		iaresid = 0;
648 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
649 		    ioflg, active_cred, file_cred, &iaresid, td);
650 		len -= chunk;	/* aresid calc already includes length */
651 		if (error)
652 			break;
653 		offset += chunk;
654 		base = (char *)base + chunk;
655 		kern_yield(PRI_USER);
656 	} while (len);
657 	if (aresid)
658 		*aresid = len + iaresid;
659 	return (error);
660 }
661 
662 off_t
663 foffset_lock(struct file *fp, int flags)
664 {
665 	struct mtx *mtxp;
666 	off_t res;
667 
668 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
669 
670 #if OFF_MAX <= LONG_MAX
671 	/*
672 	 * Caller only wants the current f_offset value.  Assume that
673 	 * the long and shorter integer types reads are atomic.
674 	 */
675 	if ((flags & FOF_NOLOCK) != 0)
676 		return (fp->f_offset);
677 #endif
678 
679 	/*
680 	 * According to McKusick the vn lock was protecting f_offset here.
681 	 * It is now protected by the FOFFSET_LOCKED flag.
682 	 */
683 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
684 	mtx_lock(mtxp);
685 	if ((flags & FOF_NOLOCK) == 0) {
686 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
687 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
688 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
689 			    "vofflock", 0);
690 		}
691 		fp->f_vnread_flags |= FOFFSET_LOCKED;
692 	}
693 	res = fp->f_offset;
694 	mtx_unlock(mtxp);
695 	return (res);
696 }
697 
698 void
699 foffset_unlock(struct file *fp, off_t val, int flags)
700 {
701 	struct mtx *mtxp;
702 
703 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
704 
705 #if OFF_MAX <= LONG_MAX
706 	if ((flags & FOF_NOLOCK) != 0) {
707 		if ((flags & FOF_NOUPDATE) == 0)
708 			fp->f_offset = val;
709 		if ((flags & FOF_NEXTOFF) != 0)
710 			fp->f_nextoff = val;
711 		return;
712 	}
713 #endif
714 
715 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
716 	mtx_lock(mtxp);
717 	if ((flags & FOF_NOUPDATE) == 0)
718 		fp->f_offset = val;
719 	if ((flags & FOF_NEXTOFF) != 0)
720 		fp->f_nextoff = val;
721 	if ((flags & FOF_NOLOCK) == 0) {
722 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
723 		    ("Lost FOFFSET_LOCKED"));
724 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
725 			wakeup(&fp->f_vnread_flags);
726 		fp->f_vnread_flags = 0;
727 	}
728 	mtx_unlock(mtxp);
729 }
730 
731 void
732 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
733 {
734 
735 	if ((flags & FOF_OFFSET) == 0)
736 		uio->uio_offset = foffset_lock(fp, flags);
737 }
738 
739 void
740 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
741 {
742 
743 	if ((flags & FOF_OFFSET) == 0)
744 		foffset_unlock(fp, uio->uio_offset, flags);
745 }
746 
747 static int
748 get_advice(struct file *fp, struct uio *uio)
749 {
750 	struct mtx *mtxp;
751 	int ret;
752 
753 	ret = POSIX_FADV_NORMAL;
754 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
755 		return (ret);
756 
757 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
758 	mtx_lock(mtxp);
759 	if (fp->f_advice != NULL &&
760 	    uio->uio_offset >= fp->f_advice->fa_start &&
761 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
762 		ret = fp->f_advice->fa_advice;
763 	mtx_unlock(mtxp);
764 	return (ret);
765 }
766 
767 /*
768  * File table vnode read routine.
769  */
770 static int
771 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
772     struct thread *td)
773 {
774 	struct vnode *vp;
775 	off_t orig_offset;
776 	int error, ioflag;
777 	int advice;
778 
779 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
780 	    uio->uio_td, td));
781 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
782 	vp = fp->f_vnode;
783 	ioflag = 0;
784 	if (fp->f_flag & FNONBLOCK)
785 		ioflag |= IO_NDELAY;
786 	if (fp->f_flag & O_DIRECT)
787 		ioflag |= IO_DIRECT;
788 	advice = get_advice(fp, uio);
789 	vn_lock(vp, LK_SHARED | LK_RETRY);
790 
791 	switch (advice) {
792 	case POSIX_FADV_NORMAL:
793 	case POSIX_FADV_SEQUENTIAL:
794 	case POSIX_FADV_NOREUSE:
795 		ioflag |= sequential_heuristic(uio, fp);
796 		break;
797 	case POSIX_FADV_RANDOM:
798 		/* Disable read-ahead for random I/O. */
799 		break;
800 	}
801 	orig_offset = uio->uio_offset;
802 
803 #ifdef MAC
804 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
805 	if (error == 0)
806 #endif
807 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
808 	fp->f_nextoff = uio->uio_offset;
809 	VOP_UNLOCK(vp, 0);
810 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
811 	    orig_offset != uio->uio_offset)
812 		/*
813 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
814 		 * for the backing file after a POSIX_FADV_NOREUSE
815 		 * read(2).
816 		 */
817 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
818 		    POSIX_FADV_DONTNEED);
819 	return (error);
820 }
821 
822 /*
823  * File table vnode write routine.
824  */
825 static int
826 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
827     struct thread *td)
828 {
829 	struct vnode *vp;
830 	struct mount *mp;
831 	off_t orig_offset;
832 	int error, ioflag, lock_flags;
833 	int advice;
834 
835 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
836 	    uio->uio_td, td));
837 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
838 	vp = fp->f_vnode;
839 	if (vp->v_type == VREG)
840 		bwillwrite();
841 	ioflag = IO_UNIT;
842 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
843 		ioflag |= IO_APPEND;
844 	if (fp->f_flag & FNONBLOCK)
845 		ioflag |= IO_NDELAY;
846 	if (fp->f_flag & O_DIRECT)
847 		ioflag |= IO_DIRECT;
848 	if ((fp->f_flag & O_FSYNC) ||
849 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
850 		ioflag |= IO_SYNC;
851 	mp = NULL;
852 	if (vp->v_type != VCHR &&
853 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
854 		goto unlock;
855 
856 	advice = get_advice(fp, uio);
857 
858 	if (MNT_SHARED_WRITES(mp) ||
859 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
860 		lock_flags = LK_SHARED;
861 	} else {
862 		lock_flags = LK_EXCLUSIVE;
863 	}
864 
865 	vn_lock(vp, lock_flags | LK_RETRY);
866 	switch (advice) {
867 	case POSIX_FADV_NORMAL:
868 	case POSIX_FADV_SEQUENTIAL:
869 	case POSIX_FADV_NOREUSE:
870 		ioflag |= sequential_heuristic(uio, fp);
871 		break;
872 	case POSIX_FADV_RANDOM:
873 		/* XXX: Is this correct? */
874 		break;
875 	}
876 	orig_offset = uio->uio_offset;
877 
878 #ifdef MAC
879 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
880 	if (error == 0)
881 #endif
882 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
883 	fp->f_nextoff = uio->uio_offset;
884 	VOP_UNLOCK(vp, 0);
885 	if (vp->v_type != VCHR)
886 		vn_finished_write(mp);
887 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
888 	    orig_offset != uio->uio_offset)
889 		/*
890 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
891 		 * for the backing file after a POSIX_FADV_NOREUSE
892 		 * write(2).
893 		 */
894 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
895 		    POSIX_FADV_DONTNEED);
896 unlock:
897 	return (error);
898 }
899 
900 /*
901  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
902  * prevent the following deadlock:
903  *
904  * Assume that the thread A reads from the vnode vp1 into userspace
905  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
906  * currently not resident, then system ends up with the call chain
907  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
908  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
909  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
910  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
911  * backed by the pages of vnode vp1, and some page in buf2 is not
912  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
913  *
914  * To prevent the lock order reversal and deadlock, vn_io_fault() does
915  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
916  * Instead, it first tries to do the whole range i/o with pagefaults
917  * disabled. If all pages in the i/o buffer are resident and mapped,
918  * VOP will succeed (ignoring the genuine filesystem errors).
919  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
920  * i/o in chunks, with all pages in the chunk prefaulted and held
921  * using vm_fault_quick_hold_pages().
922  *
923  * Filesystems using this deadlock avoidance scheme should use the
924  * array of the held pages from uio, saved in the curthread->td_ma,
925  * instead of doing uiomove().  A helper function
926  * vn_io_fault_uiomove() converts uiomove request into
927  * uiomove_fromphys() over td_ma array.
928  *
929  * Since vnode locks do not cover the whole i/o anymore, rangelocks
930  * make the current i/o request atomic with respect to other i/os and
931  * truncations.
932  */
933 
934 /*
935  * Decode vn_io_fault_args and perform the corresponding i/o.
936  */
937 static int
938 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
939     struct thread *td)
940 {
941 	int error, save;
942 
943 	error = 0;
944 	save = vm_fault_disable_pagefaults();
945 	switch (args->kind) {
946 	case VN_IO_FAULT_FOP:
947 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
948 		    uio, args->cred, args->flags, td);
949 		break;
950 	case VN_IO_FAULT_VOP:
951 		if (uio->uio_rw == UIO_READ) {
952 			error = VOP_READ(args->args.vop_args.vp, uio,
953 			    args->flags, args->cred);
954 		} else if (uio->uio_rw == UIO_WRITE) {
955 			error = VOP_WRITE(args->args.vop_args.vp, uio,
956 			    args->flags, args->cred);
957 		}
958 		break;
959 	default:
960 		panic("vn_io_fault_doio: unknown kind of io %d %d",
961 		    args->kind, uio->uio_rw);
962 	}
963 	vm_fault_enable_pagefaults(save);
964 	return (error);
965 }
966 
967 static int
968 vn_io_fault_touch(char *base, const struct uio *uio)
969 {
970 	int r;
971 
972 	r = fubyte(base);
973 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
974 		return (EFAULT);
975 	return (0);
976 }
977 
978 static int
979 vn_io_fault_prefault_user(const struct uio *uio)
980 {
981 	char *base;
982 	const struct iovec *iov;
983 	size_t len;
984 	ssize_t resid;
985 	int error, i;
986 
987 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
988 	    ("vn_io_fault_prefault userspace"));
989 
990 	error = i = 0;
991 	iov = uio->uio_iov;
992 	resid = uio->uio_resid;
993 	base = iov->iov_base;
994 	len = iov->iov_len;
995 	while (resid > 0) {
996 		error = vn_io_fault_touch(base, uio);
997 		if (error != 0)
998 			break;
999 		if (len < PAGE_SIZE) {
1000 			if (len != 0) {
1001 				error = vn_io_fault_touch(base + len - 1, uio);
1002 				if (error != 0)
1003 					break;
1004 				resid -= len;
1005 			}
1006 			if (++i >= uio->uio_iovcnt)
1007 				break;
1008 			iov = uio->uio_iov + i;
1009 			base = iov->iov_base;
1010 			len = iov->iov_len;
1011 		} else {
1012 			len -= PAGE_SIZE;
1013 			base += PAGE_SIZE;
1014 			resid -= PAGE_SIZE;
1015 		}
1016 	}
1017 	return (error);
1018 }
1019 
1020 /*
1021  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1022  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1023  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1024  * into args and call vn_io_fault1() to handle faults during the user
1025  * mode buffer accesses.
1026  */
1027 static int
1028 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1029     struct thread *td)
1030 {
1031 	vm_page_t ma[io_hold_cnt + 2];
1032 	struct uio *uio_clone, short_uio;
1033 	struct iovec short_iovec[1];
1034 	vm_page_t *prev_td_ma;
1035 	vm_prot_t prot;
1036 	vm_offset_t addr, end;
1037 	size_t len, resid;
1038 	ssize_t adv;
1039 	int error, cnt, saveheld, prev_td_ma_cnt;
1040 
1041 	if (vn_io_fault_prefault) {
1042 		error = vn_io_fault_prefault_user(uio);
1043 		if (error != 0)
1044 			return (error); /* Or ignore ? */
1045 	}
1046 
1047 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1048 
1049 	/*
1050 	 * The UFS follows IO_UNIT directive and replays back both
1051 	 * uio_offset and uio_resid if an error is encountered during the
1052 	 * operation.  But, since the iovec may be already advanced,
1053 	 * uio is still in an inconsistent state.
1054 	 *
1055 	 * Cache a copy of the original uio, which is advanced to the redo
1056 	 * point using UIO_NOCOPY below.
1057 	 */
1058 	uio_clone = cloneuio(uio);
1059 	resid = uio->uio_resid;
1060 
1061 	short_uio.uio_segflg = UIO_USERSPACE;
1062 	short_uio.uio_rw = uio->uio_rw;
1063 	short_uio.uio_td = uio->uio_td;
1064 
1065 	error = vn_io_fault_doio(args, uio, td);
1066 	if (error != EFAULT)
1067 		goto out;
1068 
1069 	atomic_add_long(&vn_io_faults_cnt, 1);
1070 	uio_clone->uio_segflg = UIO_NOCOPY;
1071 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1072 	uio_clone->uio_segflg = uio->uio_segflg;
1073 
1074 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1075 	prev_td_ma = td->td_ma;
1076 	prev_td_ma_cnt = td->td_ma_cnt;
1077 
1078 	while (uio_clone->uio_resid != 0) {
1079 		len = uio_clone->uio_iov->iov_len;
1080 		if (len == 0) {
1081 			KASSERT(uio_clone->uio_iovcnt >= 1,
1082 			    ("iovcnt underflow"));
1083 			uio_clone->uio_iov++;
1084 			uio_clone->uio_iovcnt--;
1085 			continue;
1086 		}
1087 		if (len > io_hold_cnt * PAGE_SIZE)
1088 			len = io_hold_cnt * PAGE_SIZE;
1089 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1090 		end = round_page(addr + len);
1091 		if (end < addr) {
1092 			error = EFAULT;
1093 			break;
1094 		}
1095 		cnt = atop(end - trunc_page(addr));
1096 		/*
1097 		 * A perfectly misaligned address and length could cause
1098 		 * both the start and the end of the chunk to use partial
1099 		 * page.  +2 accounts for such a situation.
1100 		 */
1101 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1102 		    addr, len, prot, ma, io_hold_cnt + 2);
1103 		if (cnt == -1) {
1104 			error = EFAULT;
1105 			break;
1106 		}
1107 		short_uio.uio_iov = &short_iovec[0];
1108 		short_iovec[0].iov_base = (void *)addr;
1109 		short_uio.uio_iovcnt = 1;
1110 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1111 		short_uio.uio_offset = uio_clone->uio_offset;
1112 		td->td_ma = ma;
1113 		td->td_ma_cnt = cnt;
1114 
1115 		error = vn_io_fault_doio(args, &short_uio, td);
1116 		vm_page_unhold_pages(ma, cnt);
1117 		adv = len - short_uio.uio_resid;
1118 
1119 		uio_clone->uio_iov->iov_base =
1120 		    (char *)uio_clone->uio_iov->iov_base + adv;
1121 		uio_clone->uio_iov->iov_len -= adv;
1122 		uio_clone->uio_resid -= adv;
1123 		uio_clone->uio_offset += adv;
1124 
1125 		uio->uio_resid -= adv;
1126 		uio->uio_offset += adv;
1127 
1128 		if (error != 0 || adv == 0)
1129 			break;
1130 	}
1131 	td->td_ma = prev_td_ma;
1132 	td->td_ma_cnt = prev_td_ma_cnt;
1133 	curthread_pflags_restore(saveheld);
1134 out:
1135 	free(uio_clone, M_IOV);
1136 	return (error);
1137 }
1138 
1139 static int
1140 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1141     int flags, struct thread *td)
1142 {
1143 	fo_rdwr_t *doio;
1144 	struct vnode *vp;
1145 	void *rl_cookie;
1146 	struct vn_io_fault_args args;
1147 	int error;
1148 
1149 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1150 	vp = fp->f_vnode;
1151 	foffset_lock_uio(fp, uio, flags);
1152 	if (do_vn_io_fault(vp, uio)) {
1153 		args.kind = VN_IO_FAULT_FOP;
1154 		args.args.fop_args.fp = fp;
1155 		args.args.fop_args.doio = doio;
1156 		args.cred = active_cred;
1157 		args.flags = flags | FOF_OFFSET;
1158 		if (uio->uio_rw == UIO_READ) {
1159 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1160 			    uio->uio_offset + uio->uio_resid);
1161 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1162 		    (flags & FOF_OFFSET) == 0) {
1163 			/* For appenders, punt and lock the whole range. */
1164 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1165 		} else {
1166 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1167 			    uio->uio_offset + uio->uio_resid);
1168 		}
1169 		error = vn_io_fault1(vp, uio, &args, td);
1170 		vn_rangelock_unlock(vp, rl_cookie);
1171 	} else {
1172 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1173 	}
1174 	foffset_unlock_uio(fp, uio, flags);
1175 	return (error);
1176 }
1177 
1178 /*
1179  * Helper function to perform the requested uiomove operation using
1180  * the held pages for io->uio_iov[0].iov_base buffer instead of
1181  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1182  * instead of iov_base prevents page faults that could occur due to
1183  * pmap_collect() invalidating the mapping created by
1184  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1185  * object cleanup revoking the write access from page mappings.
1186  *
1187  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1188  * instead of plain uiomove().
1189  */
1190 int
1191 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1192 {
1193 	struct uio transp_uio;
1194 	struct iovec transp_iov[1];
1195 	struct thread *td;
1196 	size_t adv;
1197 	int error, pgadv;
1198 
1199 	td = curthread;
1200 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1201 	    uio->uio_segflg != UIO_USERSPACE)
1202 		return (uiomove(data, xfersize, uio));
1203 
1204 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1205 	transp_iov[0].iov_base = data;
1206 	transp_uio.uio_iov = &transp_iov[0];
1207 	transp_uio.uio_iovcnt = 1;
1208 	if (xfersize > uio->uio_resid)
1209 		xfersize = uio->uio_resid;
1210 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1211 	transp_uio.uio_offset = 0;
1212 	transp_uio.uio_segflg = UIO_SYSSPACE;
1213 	/*
1214 	 * Since transp_iov points to data, and td_ma page array
1215 	 * corresponds to original uio->uio_iov, we need to invert the
1216 	 * direction of the i/o operation as passed to
1217 	 * uiomove_fromphys().
1218 	 */
1219 	switch (uio->uio_rw) {
1220 	case UIO_WRITE:
1221 		transp_uio.uio_rw = UIO_READ;
1222 		break;
1223 	case UIO_READ:
1224 		transp_uio.uio_rw = UIO_WRITE;
1225 		break;
1226 	}
1227 	transp_uio.uio_td = uio->uio_td;
1228 	error = uiomove_fromphys(td->td_ma,
1229 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1230 	    xfersize, &transp_uio);
1231 	adv = xfersize - transp_uio.uio_resid;
1232 	pgadv =
1233 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1234 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1235 	td->td_ma += pgadv;
1236 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1237 	    pgadv));
1238 	td->td_ma_cnt -= pgadv;
1239 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1240 	uio->uio_iov->iov_len -= adv;
1241 	uio->uio_resid -= adv;
1242 	uio->uio_offset += adv;
1243 	return (error);
1244 }
1245 
1246 int
1247 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1248     struct uio *uio)
1249 {
1250 	struct thread *td;
1251 	vm_offset_t iov_base;
1252 	int cnt, pgadv;
1253 
1254 	td = curthread;
1255 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1256 	    uio->uio_segflg != UIO_USERSPACE)
1257 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1258 
1259 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1260 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1261 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1262 	switch (uio->uio_rw) {
1263 	case UIO_WRITE:
1264 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1265 		    offset, cnt);
1266 		break;
1267 	case UIO_READ:
1268 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1269 		    cnt);
1270 		break;
1271 	}
1272 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1273 	td->td_ma += pgadv;
1274 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1275 	    pgadv));
1276 	td->td_ma_cnt -= pgadv;
1277 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1278 	uio->uio_iov->iov_len -= cnt;
1279 	uio->uio_resid -= cnt;
1280 	uio->uio_offset += cnt;
1281 	return (0);
1282 }
1283 
1284 
1285 /*
1286  * File table truncate routine.
1287  */
1288 static int
1289 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1290     struct thread *td)
1291 {
1292 	struct vattr vattr;
1293 	struct mount *mp;
1294 	struct vnode *vp;
1295 	void *rl_cookie;
1296 	int error;
1297 
1298 	vp = fp->f_vnode;
1299 
1300 	/*
1301 	 * Lock the whole range for truncation.  Otherwise split i/o
1302 	 * might happen partly before and partly after the truncation.
1303 	 */
1304 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1305 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1306 	if (error)
1307 		goto out1;
1308 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1309 	AUDIT_ARG_VNODE1(vp);
1310 	if (vp->v_type == VDIR) {
1311 		error = EISDIR;
1312 		goto out;
1313 	}
1314 #ifdef MAC
1315 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1316 	if (error)
1317 		goto out;
1318 #endif
1319 	error = VOP_ADD_WRITECOUNT(vp, 1);
1320 	if (error == 0) {
1321 		VATTR_NULL(&vattr);
1322 		vattr.va_size = length;
1323 		if ((fp->f_flag & O_FSYNC) != 0)
1324 			vattr.va_vaflags |= VA_SYNC;
1325 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1326 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1327 	}
1328 out:
1329 	VOP_UNLOCK(vp, 0);
1330 	vn_finished_write(mp);
1331 out1:
1332 	vn_rangelock_unlock(vp, rl_cookie);
1333 	return (error);
1334 }
1335 
1336 /*
1337  * File table vnode stat routine.
1338  */
1339 static int
1340 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1341     struct thread *td)
1342 {
1343 	struct vnode *vp = fp->f_vnode;
1344 	int error;
1345 
1346 	vn_lock(vp, LK_SHARED | LK_RETRY);
1347 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1348 	VOP_UNLOCK(vp, 0);
1349 
1350 	return (error);
1351 }
1352 
1353 /*
1354  * Stat a vnode; implementation for the stat syscall
1355  */
1356 int
1357 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1358     struct ucred *file_cred, struct thread *td)
1359 {
1360 	struct vattr vattr;
1361 	struct vattr *vap;
1362 	int error;
1363 	u_short mode;
1364 
1365 	AUDIT_ARG_VNODE1(vp);
1366 #ifdef MAC
1367 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1368 	if (error)
1369 		return (error);
1370 #endif
1371 
1372 	vap = &vattr;
1373 
1374 	/*
1375 	 * Initialize defaults for new and unusual fields, so that file
1376 	 * systems which don't support these fields don't need to know
1377 	 * about them.
1378 	 */
1379 	vap->va_birthtime.tv_sec = -1;
1380 	vap->va_birthtime.tv_nsec = 0;
1381 	vap->va_fsid = VNOVAL;
1382 	vap->va_rdev = NODEV;
1383 
1384 	error = VOP_GETATTR(vp, vap, active_cred);
1385 	if (error)
1386 		return (error);
1387 
1388 	/*
1389 	 * Zero the spare stat fields
1390 	 */
1391 	bzero(sb, sizeof *sb);
1392 
1393 	/*
1394 	 * Copy from vattr table
1395 	 */
1396 	if (vap->va_fsid != VNOVAL)
1397 		sb->st_dev = vap->va_fsid;
1398 	else
1399 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1400 	sb->st_ino = vap->va_fileid;
1401 	mode = vap->va_mode;
1402 	switch (vap->va_type) {
1403 	case VREG:
1404 		mode |= S_IFREG;
1405 		break;
1406 	case VDIR:
1407 		mode |= S_IFDIR;
1408 		break;
1409 	case VBLK:
1410 		mode |= S_IFBLK;
1411 		break;
1412 	case VCHR:
1413 		mode |= S_IFCHR;
1414 		break;
1415 	case VLNK:
1416 		mode |= S_IFLNK;
1417 		break;
1418 	case VSOCK:
1419 		mode |= S_IFSOCK;
1420 		break;
1421 	case VFIFO:
1422 		mode |= S_IFIFO;
1423 		break;
1424 	default:
1425 		return (EBADF);
1426 	}
1427 	sb->st_mode = mode;
1428 	sb->st_nlink = vap->va_nlink;
1429 	sb->st_uid = vap->va_uid;
1430 	sb->st_gid = vap->va_gid;
1431 	sb->st_rdev = vap->va_rdev;
1432 	if (vap->va_size > OFF_MAX)
1433 		return (EOVERFLOW);
1434 	sb->st_size = vap->va_size;
1435 	sb->st_atim = vap->va_atime;
1436 	sb->st_mtim = vap->va_mtime;
1437 	sb->st_ctim = vap->va_ctime;
1438 	sb->st_birthtim = vap->va_birthtime;
1439 
1440         /*
1441 	 * According to www.opengroup.org, the meaning of st_blksize is
1442 	 *   "a filesystem-specific preferred I/O block size for this
1443 	 *    object.  In some filesystem types, this may vary from file
1444 	 *    to file"
1445 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1446 	 */
1447 
1448 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1449 
1450 	sb->st_flags = vap->va_flags;
1451 	if (priv_check(td, PRIV_VFS_GENERATION))
1452 		sb->st_gen = 0;
1453 	else
1454 		sb->st_gen = vap->va_gen;
1455 
1456 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1457 	return (0);
1458 }
1459 
1460 /*
1461  * File table vnode ioctl routine.
1462  */
1463 static int
1464 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1465     struct thread *td)
1466 {
1467 	struct vattr vattr;
1468 	struct vnode *vp;
1469 	struct fiobmap2_arg *bmarg;
1470 	int error;
1471 
1472 	vp = fp->f_vnode;
1473 	switch (vp->v_type) {
1474 	case VDIR:
1475 	case VREG:
1476 		switch (com) {
1477 		case FIONREAD:
1478 			vn_lock(vp, LK_SHARED | LK_RETRY);
1479 			error = VOP_GETATTR(vp, &vattr, active_cred);
1480 			VOP_UNLOCK(vp, 0);
1481 			if (error == 0)
1482 				*(int *)data = vattr.va_size - fp->f_offset;
1483 			return (error);
1484 		case FIOBMAP2:
1485 			bmarg = (struct fiobmap2_arg *)data;
1486 			vn_lock(vp, LK_SHARED | LK_RETRY);
1487 #ifdef MAC
1488 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1489 			    vp);
1490 			if (error == 0)
1491 #endif
1492 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1493 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1494 			VOP_UNLOCK(vp, 0);
1495 			return (error);
1496 		case FIONBIO:
1497 		case FIOASYNC:
1498 			return (0);
1499 		default:
1500 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1501 			    active_cred, td));
1502 		}
1503 		break;
1504 	case VCHR:
1505 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1506 		    active_cred, td));
1507 	default:
1508 		return (ENOTTY);
1509 	}
1510 }
1511 
1512 /*
1513  * File table vnode poll routine.
1514  */
1515 static int
1516 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1517     struct thread *td)
1518 {
1519 	struct vnode *vp;
1520 	int error;
1521 
1522 	vp = fp->f_vnode;
1523 #ifdef MAC
1524 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1525 	AUDIT_ARG_VNODE1(vp);
1526 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1527 	VOP_UNLOCK(vp, 0);
1528 	if (!error)
1529 #endif
1530 
1531 	error = VOP_POLL(vp, events, fp->f_cred, td);
1532 	return (error);
1533 }
1534 
1535 /*
1536  * Acquire the requested lock and then check for validity.  LK_RETRY
1537  * permits vn_lock to return doomed vnodes.
1538  */
1539 int
1540 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1541 {
1542 	int error;
1543 
1544 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1545 	    ("vn_lock: no locktype"));
1546 	VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
1547 retry:
1548 	error = VOP_LOCK1(vp, flags, file, line);
1549 	flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1550 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1551 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1552 
1553 	if ((flags & LK_RETRY) == 0) {
1554 		if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1555 			VOP_UNLOCK(vp, 0);
1556 			error = ENOENT;
1557 		}
1558 	} else if (error != 0)
1559 		goto retry;
1560 	return (error);
1561 }
1562 
1563 /*
1564  * File table vnode close routine.
1565  */
1566 static int
1567 vn_closefile(struct file *fp, struct thread *td)
1568 {
1569 	struct vnode *vp;
1570 	struct flock lf;
1571 	int error;
1572 	bool ref;
1573 
1574 	vp = fp->f_vnode;
1575 	fp->f_ops = &badfileops;
1576 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1577 
1578 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1579 
1580 	if (__predict_false(ref)) {
1581 		lf.l_whence = SEEK_SET;
1582 		lf.l_start = 0;
1583 		lf.l_len = 0;
1584 		lf.l_type = F_UNLCK;
1585 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1586 		vrele(vp);
1587 	}
1588 	return (error);
1589 }
1590 
1591 static bool
1592 vn_suspendable(struct mount *mp)
1593 {
1594 
1595 	return (mp->mnt_op->vfs_susp_clean != NULL);
1596 }
1597 
1598 /*
1599  * Preparing to start a filesystem write operation. If the operation is
1600  * permitted, then we bump the count of operations in progress and
1601  * proceed. If a suspend request is in progress, we wait until the
1602  * suspension is over, and then proceed.
1603  */
1604 static int
1605 vn_start_write_locked(struct mount *mp, int flags)
1606 {
1607 	int error, mflags;
1608 
1609 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1610 	error = 0;
1611 
1612 	/*
1613 	 * Check on status of suspension.
1614 	 */
1615 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1616 	    mp->mnt_susp_owner != curthread) {
1617 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1618 		    (flags & PCATCH) : 0) | (PUSER - 1);
1619 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1620 			if (flags & V_NOWAIT) {
1621 				error = EWOULDBLOCK;
1622 				goto unlock;
1623 			}
1624 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1625 			    "suspfs", 0);
1626 			if (error)
1627 				goto unlock;
1628 		}
1629 	}
1630 	if (flags & V_XSLEEP)
1631 		goto unlock;
1632 	mp->mnt_writeopcount++;
1633 unlock:
1634 	if (error != 0 || (flags & V_XSLEEP) != 0)
1635 		MNT_REL(mp);
1636 	MNT_IUNLOCK(mp);
1637 	return (error);
1638 }
1639 
1640 int
1641 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1642 {
1643 	struct mount *mp;
1644 	int error;
1645 
1646 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1647 	    ("V_MNTREF requires mp"));
1648 
1649 	error = 0;
1650 	/*
1651 	 * If a vnode is provided, get and return the mount point that
1652 	 * to which it will write.
1653 	 */
1654 	if (vp != NULL) {
1655 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1656 			*mpp = NULL;
1657 			if (error != EOPNOTSUPP)
1658 				return (error);
1659 			return (0);
1660 		}
1661 	}
1662 	if ((mp = *mpp) == NULL)
1663 		return (0);
1664 
1665 	if (!vn_suspendable(mp)) {
1666 		if (vp != NULL || (flags & V_MNTREF) != 0)
1667 			vfs_rel(mp);
1668 		return (0);
1669 	}
1670 
1671 	/*
1672 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1673 	 * a vfs_ref().
1674 	 * As long as a vnode is not provided we need to acquire a
1675 	 * refcount for the provided mountpoint too, in order to
1676 	 * emulate a vfs_ref().
1677 	 */
1678 	MNT_ILOCK(mp);
1679 	if (vp == NULL && (flags & V_MNTREF) == 0)
1680 		MNT_REF(mp);
1681 
1682 	return (vn_start_write_locked(mp, flags));
1683 }
1684 
1685 /*
1686  * Secondary suspension. Used by operations such as vop_inactive
1687  * routines that are needed by the higher level functions. These
1688  * are allowed to proceed until all the higher level functions have
1689  * completed (indicated by mnt_writeopcount dropping to zero). At that
1690  * time, these operations are halted until the suspension is over.
1691  */
1692 int
1693 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1694 {
1695 	struct mount *mp;
1696 	int error;
1697 
1698 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1699 	    ("V_MNTREF requires mp"));
1700 
1701  retry:
1702 	if (vp != NULL) {
1703 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1704 			*mpp = NULL;
1705 			if (error != EOPNOTSUPP)
1706 				return (error);
1707 			return (0);
1708 		}
1709 	}
1710 	/*
1711 	 * If we are not suspended or have not yet reached suspended
1712 	 * mode, then let the operation proceed.
1713 	 */
1714 	if ((mp = *mpp) == NULL)
1715 		return (0);
1716 
1717 	if (!vn_suspendable(mp)) {
1718 		if (vp != NULL || (flags & V_MNTREF) != 0)
1719 			vfs_rel(mp);
1720 		return (0);
1721 	}
1722 
1723 	/*
1724 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1725 	 * a vfs_ref().
1726 	 * As long as a vnode is not provided we need to acquire a
1727 	 * refcount for the provided mountpoint too, in order to
1728 	 * emulate a vfs_ref().
1729 	 */
1730 	MNT_ILOCK(mp);
1731 	if (vp == NULL && (flags & V_MNTREF) == 0)
1732 		MNT_REF(mp);
1733 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1734 		mp->mnt_secondary_writes++;
1735 		mp->mnt_secondary_accwrites++;
1736 		MNT_IUNLOCK(mp);
1737 		return (0);
1738 	}
1739 	if (flags & V_NOWAIT) {
1740 		MNT_REL(mp);
1741 		MNT_IUNLOCK(mp);
1742 		return (EWOULDBLOCK);
1743 	}
1744 	/*
1745 	 * Wait for the suspension to finish.
1746 	 */
1747 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1748 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1749 	    "suspfs", 0);
1750 	vfs_rel(mp);
1751 	if (error == 0)
1752 		goto retry;
1753 	return (error);
1754 }
1755 
1756 /*
1757  * Filesystem write operation has completed. If we are suspending and this
1758  * operation is the last one, notify the suspender that the suspension is
1759  * now in effect.
1760  */
1761 void
1762 vn_finished_write(struct mount *mp)
1763 {
1764 	if (mp == NULL || !vn_suspendable(mp))
1765 		return;
1766 	MNT_ILOCK(mp);
1767 	MNT_REL(mp);
1768 	mp->mnt_writeopcount--;
1769 	if (mp->mnt_writeopcount < 0)
1770 		panic("vn_finished_write: neg cnt");
1771 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1772 	    mp->mnt_writeopcount <= 0)
1773 		wakeup(&mp->mnt_writeopcount);
1774 	MNT_IUNLOCK(mp);
1775 }
1776 
1777 
1778 /*
1779  * Filesystem secondary write operation has completed. If we are
1780  * suspending and this operation is the last one, notify the suspender
1781  * that the suspension is now in effect.
1782  */
1783 void
1784 vn_finished_secondary_write(struct mount *mp)
1785 {
1786 	if (mp == NULL || !vn_suspendable(mp))
1787 		return;
1788 	MNT_ILOCK(mp);
1789 	MNT_REL(mp);
1790 	mp->mnt_secondary_writes--;
1791 	if (mp->mnt_secondary_writes < 0)
1792 		panic("vn_finished_secondary_write: neg cnt");
1793 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1794 	    mp->mnt_secondary_writes <= 0)
1795 		wakeup(&mp->mnt_secondary_writes);
1796 	MNT_IUNLOCK(mp);
1797 }
1798 
1799 
1800 
1801 /*
1802  * Request a filesystem to suspend write operations.
1803  */
1804 int
1805 vfs_write_suspend(struct mount *mp, int flags)
1806 {
1807 	int error;
1808 
1809 	MPASS(vn_suspendable(mp));
1810 
1811 	MNT_ILOCK(mp);
1812 	if (mp->mnt_susp_owner == curthread) {
1813 		MNT_IUNLOCK(mp);
1814 		return (EALREADY);
1815 	}
1816 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1817 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1818 
1819 	/*
1820 	 * Unmount holds a write reference on the mount point.  If we
1821 	 * own busy reference and drain for writers, we deadlock with
1822 	 * the reference draining in the unmount path.  Callers of
1823 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1824 	 * vfs_busy() reference is owned and caller is not in the
1825 	 * unmount context.
1826 	 */
1827 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1828 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1829 		MNT_IUNLOCK(mp);
1830 		return (EBUSY);
1831 	}
1832 
1833 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1834 	mp->mnt_susp_owner = curthread;
1835 	if (mp->mnt_writeopcount > 0)
1836 		(void) msleep(&mp->mnt_writeopcount,
1837 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1838 	else
1839 		MNT_IUNLOCK(mp);
1840 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1841 		vfs_write_resume(mp, 0);
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Request a filesystem to resume write operations.
1847  */
1848 void
1849 vfs_write_resume(struct mount *mp, int flags)
1850 {
1851 
1852 	MPASS(vn_suspendable(mp));
1853 
1854 	MNT_ILOCK(mp);
1855 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1856 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1857 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1858 				       MNTK_SUSPENDED);
1859 		mp->mnt_susp_owner = NULL;
1860 		wakeup(&mp->mnt_writeopcount);
1861 		wakeup(&mp->mnt_flag);
1862 		curthread->td_pflags &= ~TDP_IGNSUSP;
1863 		if ((flags & VR_START_WRITE) != 0) {
1864 			MNT_REF(mp);
1865 			mp->mnt_writeopcount++;
1866 		}
1867 		MNT_IUNLOCK(mp);
1868 		if ((flags & VR_NO_SUSPCLR) == 0)
1869 			VFS_SUSP_CLEAN(mp);
1870 	} else if ((flags & VR_START_WRITE) != 0) {
1871 		MNT_REF(mp);
1872 		vn_start_write_locked(mp, 0);
1873 	} else {
1874 		MNT_IUNLOCK(mp);
1875 	}
1876 }
1877 
1878 /*
1879  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1880  * methods.
1881  */
1882 int
1883 vfs_write_suspend_umnt(struct mount *mp)
1884 {
1885 	int error;
1886 
1887 	MPASS(vn_suspendable(mp));
1888 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1889 	    ("vfs_write_suspend_umnt: recursed"));
1890 
1891 	/* dounmount() already called vn_start_write(). */
1892 	for (;;) {
1893 		vn_finished_write(mp);
1894 		error = vfs_write_suspend(mp, 0);
1895 		if (error != 0) {
1896 			vn_start_write(NULL, &mp, V_WAIT);
1897 			return (error);
1898 		}
1899 		MNT_ILOCK(mp);
1900 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1901 			break;
1902 		MNT_IUNLOCK(mp);
1903 		vn_start_write(NULL, &mp, V_WAIT);
1904 	}
1905 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1906 	wakeup(&mp->mnt_flag);
1907 	MNT_IUNLOCK(mp);
1908 	curthread->td_pflags |= TDP_IGNSUSP;
1909 	return (0);
1910 }
1911 
1912 /*
1913  * Implement kqueues for files by translating it to vnode operation.
1914  */
1915 static int
1916 vn_kqfilter(struct file *fp, struct knote *kn)
1917 {
1918 
1919 	return (VOP_KQFILTER(fp->f_vnode, kn));
1920 }
1921 
1922 /*
1923  * Simplified in-kernel wrapper calls for extended attribute access.
1924  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1925  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1926  */
1927 int
1928 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1929     const char *attrname, int *buflen, char *buf, struct thread *td)
1930 {
1931 	struct uio	auio;
1932 	struct iovec	iov;
1933 	int	error;
1934 
1935 	iov.iov_len = *buflen;
1936 	iov.iov_base = buf;
1937 
1938 	auio.uio_iov = &iov;
1939 	auio.uio_iovcnt = 1;
1940 	auio.uio_rw = UIO_READ;
1941 	auio.uio_segflg = UIO_SYSSPACE;
1942 	auio.uio_td = td;
1943 	auio.uio_offset = 0;
1944 	auio.uio_resid = *buflen;
1945 
1946 	if ((ioflg & IO_NODELOCKED) == 0)
1947 		vn_lock(vp, LK_SHARED | LK_RETRY);
1948 
1949 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1950 
1951 	/* authorize attribute retrieval as kernel */
1952 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1953 	    td);
1954 
1955 	if ((ioflg & IO_NODELOCKED) == 0)
1956 		VOP_UNLOCK(vp, 0);
1957 
1958 	if (error == 0) {
1959 		*buflen = *buflen - auio.uio_resid;
1960 	}
1961 
1962 	return (error);
1963 }
1964 
1965 /*
1966  * XXX failure mode if partially written?
1967  */
1968 int
1969 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1970     const char *attrname, int buflen, char *buf, struct thread *td)
1971 {
1972 	struct uio	auio;
1973 	struct iovec	iov;
1974 	struct mount	*mp;
1975 	int	error;
1976 
1977 	iov.iov_len = buflen;
1978 	iov.iov_base = buf;
1979 
1980 	auio.uio_iov = &iov;
1981 	auio.uio_iovcnt = 1;
1982 	auio.uio_rw = UIO_WRITE;
1983 	auio.uio_segflg = UIO_SYSSPACE;
1984 	auio.uio_td = td;
1985 	auio.uio_offset = 0;
1986 	auio.uio_resid = buflen;
1987 
1988 	if ((ioflg & IO_NODELOCKED) == 0) {
1989 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1990 			return (error);
1991 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1992 	}
1993 
1994 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1995 
1996 	/* authorize attribute setting as kernel */
1997 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1998 
1999 	if ((ioflg & IO_NODELOCKED) == 0) {
2000 		vn_finished_write(mp);
2001 		VOP_UNLOCK(vp, 0);
2002 	}
2003 
2004 	return (error);
2005 }
2006 
2007 int
2008 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2009     const char *attrname, struct thread *td)
2010 {
2011 	struct mount	*mp;
2012 	int	error;
2013 
2014 	if ((ioflg & IO_NODELOCKED) == 0) {
2015 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2016 			return (error);
2017 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2018 	}
2019 
2020 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2021 
2022 	/* authorize attribute removal as kernel */
2023 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2024 	if (error == EOPNOTSUPP)
2025 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2026 		    NULL, td);
2027 
2028 	if ((ioflg & IO_NODELOCKED) == 0) {
2029 		vn_finished_write(mp);
2030 		VOP_UNLOCK(vp, 0);
2031 	}
2032 
2033 	return (error);
2034 }
2035 
2036 static int
2037 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2038     struct vnode **rvp)
2039 {
2040 
2041 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2042 }
2043 
2044 int
2045 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2046 {
2047 
2048 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2049 	    lkflags, rvp));
2050 }
2051 
2052 int
2053 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2054     int lkflags, struct vnode **rvp)
2055 {
2056 	struct mount *mp;
2057 	int ltype, error;
2058 
2059 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2060 	mp = vp->v_mount;
2061 	ltype = VOP_ISLOCKED(vp);
2062 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2063 	    ("vn_vget_ino: vp not locked"));
2064 	error = vfs_busy(mp, MBF_NOWAIT);
2065 	if (error != 0) {
2066 		vfs_ref(mp);
2067 		VOP_UNLOCK(vp, 0);
2068 		error = vfs_busy(mp, 0);
2069 		vn_lock(vp, ltype | LK_RETRY);
2070 		vfs_rel(mp);
2071 		if (error != 0)
2072 			return (ENOENT);
2073 		if (vp->v_iflag & VI_DOOMED) {
2074 			vfs_unbusy(mp);
2075 			return (ENOENT);
2076 		}
2077 	}
2078 	VOP_UNLOCK(vp, 0);
2079 	error = alloc(mp, alloc_arg, lkflags, rvp);
2080 	vfs_unbusy(mp);
2081 	if (*rvp != vp)
2082 		vn_lock(vp, ltype | LK_RETRY);
2083 	if (vp->v_iflag & VI_DOOMED) {
2084 		if (error == 0) {
2085 			if (*rvp == vp)
2086 				vunref(vp);
2087 			else
2088 				vput(*rvp);
2089 		}
2090 		error = ENOENT;
2091 	}
2092 	return (error);
2093 }
2094 
2095 int
2096 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2097     struct thread *td)
2098 {
2099 
2100 	if (vp->v_type != VREG || td == NULL)
2101 		return (0);
2102 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2103 	    lim_cur(td, RLIMIT_FSIZE)) {
2104 		PROC_LOCK(td->td_proc);
2105 		kern_psignal(td->td_proc, SIGXFSZ);
2106 		PROC_UNLOCK(td->td_proc);
2107 		return (EFBIG);
2108 	}
2109 	return (0);
2110 }
2111 
2112 int
2113 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2114     struct thread *td)
2115 {
2116 	struct vnode *vp;
2117 
2118 	vp = fp->f_vnode;
2119 #ifdef AUDIT
2120 	vn_lock(vp, LK_SHARED | LK_RETRY);
2121 	AUDIT_ARG_VNODE1(vp);
2122 	VOP_UNLOCK(vp, 0);
2123 #endif
2124 	return (setfmode(td, active_cred, vp, mode));
2125 }
2126 
2127 int
2128 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2129     struct thread *td)
2130 {
2131 	struct vnode *vp;
2132 
2133 	vp = fp->f_vnode;
2134 #ifdef AUDIT
2135 	vn_lock(vp, LK_SHARED | LK_RETRY);
2136 	AUDIT_ARG_VNODE1(vp);
2137 	VOP_UNLOCK(vp, 0);
2138 #endif
2139 	return (setfown(td, active_cred, vp, uid, gid));
2140 }
2141 
2142 void
2143 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2144 {
2145 	vm_object_t object;
2146 
2147 	if ((object = vp->v_object) == NULL)
2148 		return;
2149 	VM_OBJECT_WLOCK(object);
2150 	vm_object_page_remove(object, start, end, 0);
2151 	VM_OBJECT_WUNLOCK(object);
2152 }
2153 
2154 int
2155 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2156 {
2157 	struct vattr va;
2158 	daddr_t bn, bnp;
2159 	uint64_t bsize;
2160 	off_t noff;
2161 	int error;
2162 
2163 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2164 	    ("Wrong command %lu", cmd));
2165 
2166 	if (vn_lock(vp, LK_SHARED) != 0)
2167 		return (EBADF);
2168 	if (vp->v_type != VREG) {
2169 		error = ENOTTY;
2170 		goto unlock;
2171 	}
2172 	error = VOP_GETATTR(vp, &va, cred);
2173 	if (error != 0)
2174 		goto unlock;
2175 	noff = *off;
2176 	if (noff >= va.va_size) {
2177 		error = ENXIO;
2178 		goto unlock;
2179 	}
2180 	bsize = vp->v_mount->mnt_stat.f_iosize;
2181 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2182 	    noff % bsize) {
2183 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2184 		if (error == EOPNOTSUPP) {
2185 			error = ENOTTY;
2186 			goto unlock;
2187 		}
2188 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2189 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2190 			noff = bn * bsize;
2191 			if (noff < *off)
2192 				noff = *off;
2193 			goto unlock;
2194 		}
2195 	}
2196 	if (noff > va.va_size)
2197 		noff = va.va_size;
2198 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2199 	if (cmd == FIOSEEKDATA)
2200 		error = ENXIO;
2201 unlock:
2202 	VOP_UNLOCK(vp, 0);
2203 	if (error == 0)
2204 		*off = noff;
2205 	return (error);
2206 }
2207 
2208 int
2209 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2210 {
2211 	struct ucred *cred;
2212 	struct vnode *vp;
2213 	struct vattr vattr;
2214 	off_t foffset, size;
2215 	int error, noneg;
2216 
2217 	cred = td->td_ucred;
2218 	vp = fp->f_vnode;
2219 	foffset = foffset_lock(fp, 0);
2220 	noneg = (vp->v_type != VCHR);
2221 	error = 0;
2222 	switch (whence) {
2223 	case L_INCR:
2224 		if (noneg &&
2225 		    (foffset < 0 ||
2226 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2227 			error = EOVERFLOW;
2228 			break;
2229 		}
2230 		offset += foffset;
2231 		break;
2232 	case L_XTND:
2233 		vn_lock(vp, LK_SHARED | LK_RETRY);
2234 		error = VOP_GETATTR(vp, &vattr, cred);
2235 		VOP_UNLOCK(vp, 0);
2236 		if (error)
2237 			break;
2238 
2239 		/*
2240 		 * If the file references a disk device, then fetch
2241 		 * the media size and use that to determine the ending
2242 		 * offset.
2243 		 */
2244 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2245 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2246 			vattr.va_size = size;
2247 		if (noneg &&
2248 		    (vattr.va_size > OFF_MAX ||
2249 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2250 			error = EOVERFLOW;
2251 			break;
2252 		}
2253 		offset += vattr.va_size;
2254 		break;
2255 	case L_SET:
2256 		break;
2257 	case SEEK_DATA:
2258 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2259 		break;
2260 	case SEEK_HOLE:
2261 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2262 		break;
2263 	default:
2264 		error = EINVAL;
2265 	}
2266 	if (error == 0 && noneg && offset < 0)
2267 		error = EINVAL;
2268 	if (error != 0)
2269 		goto drop;
2270 	VFS_KNOTE_UNLOCKED(vp, 0);
2271 	td->td_uretoff.tdu_off = offset;
2272 drop:
2273 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2274 	return (error);
2275 }
2276 
2277 int
2278 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2279     struct thread *td)
2280 {
2281 	int error;
2282 
2283 	/*
2284 	 * Grant permission if the caller is the owner of the file, or
2285 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2286 	 * on the file.  If the time pointer is null, then write
2287 	 * permission on the file is also sufficient.
2288 	 *
2289 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2290 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2291 	 * will be allowed to set the times [..] to the current
2292 	 * server time.
2293 	 */
2294 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2295 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2296 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2297 	return (error);
2298 }
2299 
2300 int
2301 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2302 {
2303 	struct vnode *vp;
2304 	int error;
2305 
2306 	if (fp->f_type == DTYPE_FIFO)
2307 		kif->kf_type = KF_TYPE_FIFO;
2308 	else
2309 		kif->kf_type = KF_TYPE_VNODE;
2310 	vp = fp->f_vnode;
2311 	vref(vp);
2312 	FILEDESC_SUNLOCK(fdp);
2313 	error = vn_fill_kinfo_vnode(vp, kif);
2314 	vrele(vp);
2315 	FILEDESC_SLOCK(fdp);
2316 	return (error);
2317 }
2318 
2319 static inline void
2320 vn_fill_junk(struct kinfo_file *kif)
2321 {
2322 	size_t len, olen;
2323 
2324 	/*
2325 	 * Simulate vn_fullpath returning changing values for a given
2326 	 * vp during e.g. coredump.
2327 	 */
2328 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2329 	olen = strlen(kif->kf_path);
2330 	if (len < olen)
2331 		strcpy(&kif->kf_path[len - 1], "$");
2332 	else
2333 		for (; olen < len; olen++)
2334 			strcpy(&kif->kf_path[olen], "A");
2335 }
2336 
2337 int
2338 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2339 {
2340 	struct vattr va;
2341 	char *fullpath, *freepath;
2342 	int error;
2343 
2344 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2345 	freepath = NULL;
2346 	fullpath = "-";
2347 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2348 	if (error == 0) {
2349 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2350 	}
2351 	if (freepath != NULL)
2352 		free(freepath, M_TEMP);
2353 
2354 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2355 		vn_fill_junk(kif);
2356 	);
2357 
2358 	/*
2359 	 * Retrieve vnode attributes.
2360 	 */
2361 	va.va_fsid = VNOVAL;
2362 	va.va_rdev = NODEV;
2363 	vn_lock(vp, LK_SHARED | LK_RETRY);
2364 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2365 	VOP_UNLOCK(vp, 0);
2366 	if (error != 0)
2367 		return (error);
2368 	if (va.va_fsid != VNOVAL)
2369 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2370 	else
2371 		kif->kf_un.kf_file.kf_file_fsid =
2372 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2373 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2374 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2375 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2376 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2377 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2378 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2379 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2380 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2381 	return (0);
2382 }
2383 
2384 int
2385 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2386     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2387     struct thread *td)
2388 {
2389 #ifdef HWPMC_HOOKS
2390 	struct pmckern_map_in pkm;
2391 #endif
2392 	struct mount *mp;
2393 	struct vnode *vp;
2394 	vm_object_t object;
2395 	vm_prot_t maxprot;
2396 	boolean_t writecounted;
2397 	int error;
2398 
2399 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2400     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2401 	/*
2402 	 * POSIX shared-memory objects are defined to have
2403 	 * kernel persistence, and are not defined to support
2404 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2405 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2406 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2407 	 * flag to request this behavior.
2408 	 */
2409 	if ((fp->f_flag & FPOSIXSHM) != 0)
2410 		flags |= MAP_NOSYNC;
2411 #endif
2412 	vp = fp->f_vnode;
2413 
2414 	/*
2415 	 * Ensure that file and memory protections are
2416 	 * compatible.  Note that we only worry about
2417 	 * writability if mapping is shared; in this case,
2418 	 * current and max prot are dictated by the open file.
2419 	 * XXX use the vnode instead?  Problem is: what
2420 	 * credentials do we use for determination? What if
2421 	 * proc does a setuid?
2422 	 */
2423 	mp = vp->v_mount;
2424 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2425 		maxprot = VM_PROT_NONE;
2426 		if ((prot & VM_PROT_EXECUTE) != 0)
2427 			return (EACCES);
2428 	} else
2429 		maxprot = VM_PROT_EXECUTE;
2430 	if ((fp->f_flag & FREAD) != 0)
2431 		maxprot |= VM_PROT_READ;
2432 	else if ((prot & VM_PROT_READ) != 0)
2433 		return (EACCES);
2434 
2435 	/*
2436 	 * If we are sharing potential changes via MAP_SHARED and we
2437 	 * are trying to get write permission although we opened it
2438 	 * without asking for it, bail out.
2439 	 */
2440 	if ((flags & MAP_SHARED) != 0) {
2441 		if ((fp->f_flag & FWRITE) != 0)
2442 			maxprot |= VM_PROT_WRITE;
2443 		else if ((prot & VM_PROT_WRITE) != 0)
2444 			return (EACCES);
2445 	} else {
2446 		maxprot |= VM_PROT_WRITE;
2447 		cap_maxprot |= VM_PROT_WRITE;
2448 	}
2449 	maxprot &= cap_maxprot;
2450 
2451 	/*
2452 	 * For regular files and shared memory, POSIX requires that
2453 	 * the value of foff be a legitimate offset within the data
2454 	 * object.  In particular, negative offsets are invalid.
2455 	 * Blocking negative offsets and overflows here avoids
2456 	 * possible wraparound or user-level access into reserved
2457 	 * ranges of the data object later.  In contrast, POSIX does
2458 	 * not dictate how offsets are used by device drivers, so in
2459 	 * the case of a device mapping a negative offset is passed
2460 	 * on.
2461 	 */
2462 	if (
2463 #ifdef _LP64
2464 	    size > OFF_MAX ||
2465 #endif
2466 	    foff < 0 || foff > OFF_MAX - size)
2467 		return (EINVAL);
2468 
2469 	writecounted = FALSE;
2470 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2471 	    &foff, &object, &writecounted);
2472 	if (error != 0)
2473 		return (error);
2474 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2475 	    foff, writecounted, td);
2476 	if (error != 0) {
2477 		/*
2478 		 * If this mapping was accounted for in the vnode's
2479 		 * writecount, then undo that now.
2480 		 */
2481 		if (writecounted)
2482 			vnode_pager_release_writecount(object, 0, size);
2483 		vm_object_deallocate(object);
2484 	}
2485 #ifdef HWPMC_HOOKS
2486 	/* Inform hwpmc(4) if an executable is being mapped. */
2487 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2488 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2489 			pkm.pm_file = vp;
2490 			pkm.pm_address = (uintptr_t) *addr;
2491 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2492 		}
2493 	}
2494 #endif
2495 	return (error);
2496 }
2497 
2498 void
2499 vn_fsid(struct vnode *vp, struct vattr *va)
2500 {
2501 	fsid_t *f;
2502 
2503 	f = &vp->v_mount->mnt_stat.f_fsid;
2504 	va->va_fsid = (uint32_t)f->val[1];
2505 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2506 	va->va_fsid += (uint32_t)f->val[0];
2507 }
2508 
2509 int
2510 vn_fsync_buf(struct vnode *vp, int waitfor)
2511 {
2512 	struct buf *bp, *nbp;
2513 	struct bufobj *bo;
2514 	struct mount *mp;
2515 	int error, maxretry;
2516 
2517 	error = 0;
2518 	maxretry = 10000;     /* large, arbitrarily chosen */
2519 	mp = NULL;
2520 	if (vp->v_type == VCHR) {
2521 		VI_LOCK(vp);
2522 		mp = vp->v_rdev->si_mountpt;
2523 		VI_UNLOCK(vp);
2524 	}
2525 	bo = &vp->v_bufobj;
2526 	BO_LOCK(bo);
2527 loop1:
2528 	/*
2529 	 * MARK/SCAN initialization to avoid infinite loops.
2530 	 */
2531         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2532 		bp->b_vflags &= ~BV_SCANNED;
2533 		bp->b_error = 0;
2534 	}
2535 
2536 	/*
2537 	 * Flush all dirty buffers associated with a vnode.
2538 	 */
2539 loop2:
2540 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2541 		if ((bp->b_vflags & BV_SCANNED) != 0)
2542 			continue;
2543 		bp->b_vflags |= BV_SCANNED;
2544 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2545 			if (waitfor != MNT_WAIT)
2546 				continue;
2547 			if (BUF_LOCK(bp,
2548 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2549 			    BO_LOCKPTR(bo)) != 0) {
2550 				BO_LOCK(bo);
2551 				goto loop1;
2552 			}
2553 			BO_LOCK(bo);
2554 		}
2555 		BO_UNLOCK(bo);
2556 		KASSERT(bp->b_bufobj == bo,
2557 		    ("bp %p wrong b_bufobj %p should be %p",
2558 		    bp, bp->b_bufobj, bo));
2559 		if ((bp->b_flags & B_DELWRI) == 0)
2560 			panic("fsync: not dirty");
2561 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2562 			vfs_bio_awrite(bp);
2563 		} else {
2564 			bremfree(bp);
2565 			bawrite(bp);
2566 		}
2567 		if (maxretry < 1000)
2568 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2569 		BO_LOCK(bo);
2570 		goto loop2;
2571 	}
2572 
2573 	/*
2574 	 * If synchronous the caller expects us to completely resolve all
2575 	 * dirty buffers in the system.  Wait for in-progress I/O to
2576 	 * complete (which could include background bitmap writes), then
2577 	 * retry if dirty blocks still exist.
2578 	 */
2579 	if (waitfor == MNT_WAIT) {
2580 		bufobj_wwait(bo, 0, 0);
2581 		if (bo->bo_dirty.bv_cnt > 0) {
2582 			/*
2583 			 * If we are unable to write any of these buffers
2584 			 * then we fail now rather than trying endlessly
2585 			 * to write them out.
2586 			 */
2587 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2588 				if ((error = bp->b_error) != 0)
2589 					break;
2590 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2591 			    (error == 0 && --maxretry >= 0))
2592 				goto loop1;
2593 			if (error == 0)
2594 				error = EAGAIN;
2595 		}
2596 	}
2597 	BO_UNLOCK(bo);
2598 	if (error != 0)
2599 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2600 
2601 	return (error);
2602 }
2603