xref: /freebsd/sys/kern/vfs_vnops.c (revision b0f79e328e18f454a54011ab1bb09e4910e73840)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/sx.h>
74 #include <sys/sysctl.h>
75 #include <sys/ttycom.h>
76 #include <sys/conf.h>
77 #include <sys/syslog.h>
78 #include <sys/unistd.h>
79 #include <sys/user.h>
80 
81 #include <security/audit/audit.h>
82 #include <security/mac/mac_framework.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_extern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vnode_pager.h>
91 
92 #ifdef HWPMC_HOOKS
93 #include <sys/pmckern.h>
94 #endif
95 
96 static fo_rdwr_t	vn_read;
97 static fo_rdwr_t	vn_write;
98 static fo_rdwr_t	vn_io_fault;
99 static fo_truncate_t	vn_truncate;
100 static fo_ioctl_t	vn_ioctl;
101 static fo_poll_t	vn_poll;
102 static fo_kqfilter_t	vn_kqfilter;
103 static fo_stat_t	vn_statfile;
104 static fo_close_t	vn_closefile;
105 static fo_mmap_t	vn_mmap;
106 
107 struct 	fileops vnops = {
108 	.fo_read = vn_io_fault,
109 	.fo_write = vn_io_fault,
110 	.fo_truncate = vn_truncate,
111 	.fo_ioctl = vn_ioctl,
112 	.fo_poll = vn_poll,
113 	.fo_kqfilter = vn_kqfilter,
114 	.fo_stat = vn_statfile,
115 	.fo_close = vn_closefile,
116 	.fo_chmod = vn_chmod,
117 	.fo_chown = vn_chown,
118 	.fo_sendfile = vn_sendfile,
119 	.fo_seek = vn_seek,
120 	.fo_fill_kinfo = vn_fill_kinfo,
121 	.fo_mmap = vn_mmap,
122 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
123 };
124 
125 static const int io_hold_cnt = 16;
126 static int vn_io_fault_enable = 1;
127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
128     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
129 static int vn_io_fault_prefault = 0;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
131     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
132 static u_long vn_io_faults_cnt;
133 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
134     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
135 
136 /*
137  * Returns true if vn_io_fault mode of handling the i/o request should
138  * be used.
139  */
140 static bool
141 do_vn_io_fault(struct vnode *vp, struct uio *uio)
142 {
143 	struct mount *mp;
144 
145 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
146 	    (mp = vp->v_mount) != NULL &&
147 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
148 }
149 
150 /*
151  * Structure used to pass arguments to vn_io_fault1(), to do either
152  * file- or vnode-based I/O calls.
153  */
154 struct vn_io_fault_args {
155 	enum {
156 		VN_IO_FAULT_FOP,
157 		VN_IO_FAULT_VOP
158 	} kind;
159 	struct ucred *cred;
160 	int flags;
161 	union {
162 		struct fop_args_tag {
163 			struct file *fp;
164 			fo_rdwr_t *doio;
165 		} fop_args;
166 		struct vop_args_tag {
167 			struct vnode *vp;
168 		} vop_args;
169 	} args;
170 };
171 
172 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
173     struct vn_io_fault_args *args, struct thread *td);
174 
175 int
176 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
177 {
178 	struct thread *td = ndp->ni_cnd.cn_thread;
179 
180 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
181 }
182 
183 /*
184  * Common code for vnode open operations via a name lookup.
185  * Lookup the vnode and invoke VOP_CREATE if needed.
186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
187  *
188  * Note that this does NOT free nameidata for the successful case,
189  * due to the NDINIT being done elsewhere.
190  */
191 int
192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
193     struct ucred *cred, struct file *fp)
194 {
195 	struct vnode *vp;
196 	struct mount *mp;
197 	struct thread *td = ndp->ni_cnd.cn_thread;
198 	struct vattr vat;
199 	struct vattr *vap = &vat;
200 	int fmode, error;
201 
202 restart:
203 	fmode = *flagp;
204 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
205 	    O_EXCL | O_DIRECTORY))
206 		return (EINVAL);
207 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
208 		ndp->ni_cnd.cn_nameiop = CREATE;
209 		/*
210 		 * Set NOCACHE to avoid flushing the cache when
211 		 * rolling in many files at once.
212 		*/
213 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
214 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
215 			ndp->ni_cnd.cn_flags |= FOLLOW;
216 		if ((fmode & O_BENEATH) != 0)
217 			ndp->ni_cnd.cn_flags |= BENEATH;
218 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
219 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
220 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
221 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
222 		bwillwrite();
223 		if ((error = namei(ndp)) != 0)
224 			return (error);
225 		if (ndp->ni_vp == NULL) {
226 			VATTR_NULL(vap);
227 			vap->va_type = VREG;
228 			vap->va_mode = cmode;
229 			if (fmode & O_EXCL)
230 				vap->va_vaflags |= VA_EXCLUSIVE;
231 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
232 				NDFREE(ndp, NDF_ONLY_PNBUF);
233 				vput(ndp->ni_dvp);
234 				if ((error = vn_start_write(NULL, &mp,
235 				    V_XSLEEP | PCATCH)) != 0)
236 					return (error);
237 				goto restart;
238 			}
239 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
240 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
241 #ifdef MAC
242 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
243 			    &ndp->ni_cnd, vap);
244 			if (error == 0)
245 #endif
246 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
247 						   &ndp->ni_cnd, vap);
248 			vput(ndp->ni_dvp);
249 			vn_finished_write(mp);
250 			if (error) {
251 				NDFREE(ndp, NDF_ONLY_PNBUF);
252 				return (error);
253 			}
254 			fmode &= ~O_TRUNC;
255 			vp = ndp->ni_vp;
256 		} else {
257 			if (ndp->ni_dvp == ndp->ni_vp)
258 				vrele(ndp->ni_dvp);
259 			else
260 				vput(ndp->ni_dvp);
261 			ndp->ni_dvp = NULL;
262 			vp = ndp->ni_vp;
263 			if (fmode & O_EXCL) {
264 				error = EEXIST;
265 				goto bad;
266 			}
267 			fmode &= ~O_CREAT;
268 		}
269 	} else {
270 		ndp->ni_cnd.cn_nameiop = LOOKUP;
271 		ndp->ni_cnd.cn_flags = ISOPEN |
272 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
273 		if (!(fmode & FWRITE))
274 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
275 		if ((fmode & O_BENEATH) != 0)
276 			ndp->ni_cnd.cn_flags |= BENEATH;
277 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
278 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
279 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
280 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
281 		if ((error = namei(ndp)) != 0)
282 			return (error);
283 		vp = ndp->ni_vp;
284 	}
285 	error = vn_open_vnode(vp, fmode, cred, td, fp);
286 	if (error)
287 		goto bad;
288 	*flagp = fmode;
289 	return (0);
290 bad:
291 	NDFREE(ndp, NDF_ONLY_PNBUF);
292 	vput(vp);
293 	*flagp = fmode;
294 	ndp->ni_vp = NULL;
295 	return (error);
296 }
297 
298 static int
299 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
300 {
301 	struct flock lf;
302 	int error, lock_flags, type;
303 
304 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
305 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
306 		return (0);
307 	KASSERT(fp != NULL, ("open with flock requires fp"));
308 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
309 		return (EOPNOTSUPP);
310 
311 	lock_flags = VOP_ISLOCKED(vp);
312 	VOP_UNLOCK(vp, 0);
313 
314 	lf.l_whence = SEEK_SET;
315 	lf.l_start = 0;
316 	lf.l_len = 0;
317 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
318 	type = F_FLOCK;
319 	if ((fmode & FNONBLOCK) == 0)
320 		type |= F_WAIT;
321 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
322 	if (error == 0)
323 		fp->f_flag |= FHASLOCK;
324 
325 	vn_lock(vp, lock_flags | LK_RETRY);
326 	if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0)
327 		error = ENOENT;
328 	return (error);
329 }
330 
331 /*
332  * Common code for vnode open operations once a vnode is located.
333  * Check permissions, and call the VOP_OPEN routine.
334  */
335 int
336 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
337     struct thread *td, struct file *fp)
338 {
339 	accmode_t accmode;
340 	int error;
341 
342 	if (vp->v_type == VLNK)
343 		return (EMLINK);
344 	if (vp->v_type == VSOCK)
345 		return (EOPNOTSUPP);
346 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
347 		return (ENOTDIR);
348 	accmode = 0;
349 	if (fmode & (FWRITE | O_TRUNC)) {
350 		if (vp->v_type == VDIR)
351 			return (EISDIR);
352 		accmode |= VWRITE;
353 	}
354 	if (fmode & FREAD)
355 		accmode |= VREAD;
356 	if (fmode & FEXEC)
357 		accmode |= VEXEC;
358 	if ((fmode & O_APPEND) && (fmode & FWRITE))
359 		accmode |= VAPPEND;
360 #ifdef MAC
361 	if (fmode & O_CREAT)
362 		accmode |= VCREAT;
363 	if (fmode & O_VERIFY)
364 		accmode |= VVERIFY;
365 	error = mac_vnode_check_open(cred, vp, accmode);
366 	if (error)
367 		return (error);
368 
369 	accmode &= ~(VCREAT | VVERIFY);
370 #endif
371 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
372 		error = VOP_ACCESS(vp, accmode, cred, td);
373 		if (error != 0)
374 			return (error);
375 	}
376 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
377 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
378 	error = VOP_OPEN(vp, fmode, cred, td, fp);
379 	if (error != 0)
380 		return (error);
381 
382 	error = vn_open_vnode_advlock(vp, fmode, fp);
383 	if (error == 0 && (fmode & FWRITE) != 0) {
384 		error = VOP_ADD_WRITECOUNT(vp, 1);
385 		if (error == 0) {
386 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
387 			     __func__, vp, vp->v_writecount);
388 		}
389 	}
390 
391 	/*
392 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
393 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
394 	 * Arrange for that by having fdrop() to use vn_closefile().
395 	 */
396 	if (error != 0) {
397 		fp->f_flag |= FOPENFAILED;
398 		fp->f_vnode = vp;
399 		if (fp->f_ops == &badfileops) {
400 			fp->f_type = DTYPE_VNODE;
401 			fp->f_ops = &vnops;
402 		}
403 		vref(vp);
404 	}
405 
406 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
407 	return (error);
408 
409 }
410 
411 /*
412  * Check for write permissions on the specified vnode.
413  * Prototype text segments cannot be written.
414  * It is racy.
415  */
416 int
417 vn_writechk(struct vnode *vp)
418 {
419 
420 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
421 	/*
422 	 * If there's shared text associated with
423 	 * the vnode, try to free it up once.  If
424 	 * we fail, we can't allow writing.
425 	 */
426 	if (VOP_IS_TEXT(vp))
427 		return (ETXTBSY);
428 
429 	return (0);
430 }
431 
432 /*
433  * Vnode close call
434  */
435 static int
436 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
437     struct thread *td, bool keep_ref)
438 {
439 	struct mount *mp;
440 	int error, lock_flags;
441 
442 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
443 	    MNT_EXTENDED_SHARED(vp->v_mount))
444 		lock_flags = LK_SHARED;
445 	else
446 		lock_flags = LK_EXCLUSIVE;
447 
448 	vn_start_write(vp, &mp, V_WAIT);
449 	vn_lock(vp, lock_flags | LK_RETRY);
450 	AUDIT_ARG_VNODE1(vp);
451 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
452 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
453 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
454 		    __func__, vp, vp->v_writecount);
455 	}
456 	error = VOP_CLOSE(vp, flags, file_cred, td);
457 	if (keep_ref)
458 		VOP_UNLOCK(vp, 0);
459 	else
460 		vput(vp);
461 	vn_finished_write(mp);
462 	return (error);
463 }
464 
465 int
466 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
467     struct thread *td)
468 {
469 
470 	return (vn_close1(vp, flags, file_cred, td, false));
471 }
472 
473 /*
474  * Heuristic to detect sequential operation.
475  */
476 static int
477 sequential_heuristic(struct uio *uio, struct file *fp)
478 {
479 
480 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
481 	if (fp->f_flag & FRDAHEAD)
482 		return (fp->f_seqcount << IO_SEQSHIFT);
483 
484 	/*
485 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
486 	 * that the first I/O is normally considered to be slightly
487 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
488 	 * unless previous seeks have reduced f_seqcount to 0, in which
489 	 * case offset 0 is not special.
490 	 */
491 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
492 	    uio->uio_offset == fp->f_nextoff) {
493 		/*
494 		 * f_seqcount is in units of fixed-size blocks so that it
495 		 * depends mainly on the amount of sequential I/O and not
496 		 * much on the number of sequential I/O's.  The fixed size
497 		 * of 16384 is hard-coded here since it is (not quite) just
498 		 * a magic size that works well here.  This size is more
499 		 * closely related to the best I/O size for real disks than
500 		 * to any block size used by software.
501 		 */
502 		fp->f_seqcount += MIN(IO_SEQMAX,
503 		    howmany(uio->uio_resid, 16384));
504 		if (fp->f_seqcount > IO_SEQMAX)
505 			fp->f_seqcount = IO_SEQMAX;
506 		return (fp->f_seqcount << IO_SEQSHIFT);
507 	}
508 
509 	/* Not sequential.  Quickly draw-down sequentiality. */
510 	if (fp->f_seqcount > 1)
511 		fp->f_seqcount = 1;
512 	else
513 		fp->f_seqcount = 0;
514 	return (0);
515 }
516 
517 /*
518  * Package up an I/O request on a vnode into a uio and do it.
519  */
520 int
521 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
522     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
523     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
524 {
525 	struct uio auio;
526 	struct iovec aiov;
527 	struct mount *mp;
528 	struct ucred *cred;
529 	void *rl_cookie;
530 	struct vn_io_fault_args args;
531 	int error, lock_flags;
532 
533 	if (offset < 0 && vp->v_type != VCHR)
534 		return (EINVAL);
535 	auio.uio_iov = &aiov;
536 	auio.uio_iovcnt = 1;
537 	aiov.iov_base = base;
538 	aiov.iov_len = len;
539 	auio.uio_resid = len;
540 	auio.uio_offset = offset;
541 	auio.uio_segflg = segflg;
542 	auio.uio_rw = rw;
543 	auio.uio_td = td;
544 	error = 0;
545 
546 	if ((ioflg & IO_NODELOCKED) == 0) {
547 		if ((ioflg & IO_RANGELOCKED) == 0) {
548 			if (rw == UIO_READ) {
549 				rl_cookie = vn_rangelock_rlock(vp, offset,
550 				    offset + len);
551 			} else {
552 				rl_cookie = vn_rangelock_wlock(vp, offset,
553 				    offset + len);
554 			}
555 		} else
556 			rl_cookie = NULL;
557 		mp = NULL;
558 		if (rw == UIO_WRITE) {
559 			if (vp->v_type != VCHR &&
560 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
561 			    != 0)
562 				goto out;
563 			if (MNT_SHARED_WRITES(mp) ||
564 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
565 				lock_flags = LK_SHARED;
566 			else
567 				lock_flags = LK_EXCLUSIVE;
568 		} else
569 			lock_flags = LK_SHARED;
570 		vn_lock(vp, lock_flags | LK_RETRY);
571 	} else
572 		rl_cookie = NULL;
573 
574 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
575 #ifdef MAC
576 	if ((ioflg & IO_NOMACCHECK) == 0) {
577 		if (rw == UIO_READ)
578 			error = mac_vnode_check_read(active_cred, file_cred,
579 			    vp);
580 		else
581 			error = mac_vnode_check_write(active_cred, file_cred,
582 			    vp);
583 	}
584 #endif
585 	if (error == 0) {
586 		if (file_cred != NULL)
587 			cred = file_cred;
588 		else
589 			cred = active_cred;
590 		if (do_vn_io_fault(vp, &auio)) {
591 			args.kind = VN_IO_FAULT_VOP;
592 			args.cred = cred;
593 			args.flags = ioflg;
594 			args.args.vop_args.vp = vp;
595 			error = vn_io_fault1(vp, &auio, &args, td);
596 		} else if (rw == UIO_READ) {
597 			error = VOP_READ(vp, &auio, ioflg, cred);
598 		} else /* if (rw == UIO_WRITE) */ {
599 			error = VOP_WRITE(vp, &auio, ioflg, cred);
600 		}
601 	}
602 	if (aresid)
603 		*aresid = auio.uio_resid;
604 	else
605 		if (auio.uio_resid && error == 0)
606 			error = EIO;
607 	if ((ioflg & IO_NODELOCKED) == 0) {
608 		VOP_UNLOCK(vp, 0);
609 		if (mp != NULL)
610 			vn_finished_write(mp);
611 	}
612  out:
613 	if (rl_cookie != NULL)
614 		vn_rangelock_unlock(vp, rl_cookie);
615 	return (error);
616 }
617 
618 /*
619  * Package up an I/O request on a vnode into a uio and do it.  The I/O
620  * request is split up into smaller chunks and we try to avoid saturating
621  * the buffer cache while potentially holding a vnode locked, so we
622  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
623  * to give other processes a chance to lock the vnode (either other processes
624  * core'ing the same binary, or unrelated processes scanning the directory).
625  */
626 int
627 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
628     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
629     struct ucred *file_cred, size_t *aresid, struct thread *td)
630 {
631 	int error = 0;
632 	ssize_t iaresid;
633 
634 	do {
635 		int chunk;
636 
637 		/*
638 		 * Force `offset' to a multiple of MAXBSIZE except possibly
639 		 * for the first chunk, so that filesystems only need to
640 		 * write full blocks except possibly for the first and last
641 		 * chunks.
642 		 */
643 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
644 
645 		if (chunk > len)
646 			chunk = len;
647 		if (rw != UIO_READ && vp->v_type == VREG)
648 			bwillwrite();
649 		iaresid = 0;
650 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
651 		    ioflg, active_cred, file_cred, &iaresid, td);
652 		len -= chunk;	/* aresid calc already includes length */
653 		if (error)
654 			break;
655 		offset += chunk;
656 		base = (char *)base + chunk;
657 		kern_yield(PRI_USER);
658 	} while (len);
659 	if (aresid)
660 		*aresid = len + iaresid;
661 	return (error);
662 }
663 
664 off_t
665 foffset_lock(struct file *fp, int flags)
666 {
667 	struct mtx *mtxp;
668 	off_t res;
669 
670 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
671 
672 #if OFF_MAX <= LONG_MAX
673 	/*
674 	 * Caller only wants the current f_offset value.  Assume that
675 	 * the long and shorter integer types reads are atomic.
676 	 */
677 	if ((flags & FOF_NOLOCK) != 0)
678 		return (fp->f_offset);
679 #endif
680 
681 	/*
682 	 * According to McKusick the vn lock was protecting f_offset here.
683 	 * It is now protected by the FOFFSET_LOCKED flag.
684 	 */
685 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
686 	mtx_lock(mtxp);
687 	if ((flags & FOF_NOLOCK) == 0) {
688 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
689 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
690 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
691 			    "vofflock", 0);
692 		}
693 		fp->f_vnread_flags |= FOFFSET_LOCKED;
694 	}
695 	res = fp->f_offset;
696 	mtx_unlock(mtxp);
697 	return (res);
698 }
699 
700 void
701 foffset_unlock(struct file *fp, off_t val, int flags)
702 {
703 	struct mtx *mtxp;
704 
705 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
706 
707 #if OFF_MAX <= LONG_MAX
708 	if ((flags & FOF_NOLOCK) != 0) {
709 		if ((flags & FOF_NOUPDATE) == 0)
710 			fp->f_offset = val;
711 		if ((flags & FOF_NEXTOFF) != 0)
712 			fp->f_nextoff = val;
713 		return;
714 	}
715 #endif
716 
717 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
718 	mtx_lock(mtxp);
719 	if ((flags & FOF_NOUPDATE) == 0)
720 		fp->f_offset = val;
721 	if ((flags & FOF_NEXTOFF) != 0)
722 		fp->f_nextoff = val;
723 	if ((flags & FOF_NOLOCK) == 0) {
724 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
725 		    ("Lost FOFFSET_LOCKED"));
726 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
727 			wakeup(&fp->f_vnread_flags);
728 		fp->f_vnread_flags = 0;
729 	}
730 	mtx_unlock(mtxp);
731 }
732 
733 void
734 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
735 {
736 
737 	if ((flags & FOF_OFFSET) == 0)
738 		uio->uio_offset = foffset_lock(fp, flags);
739 }
740 
741 void
742 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
743 {
744 
745 	if ((flags & FOF_OFFSET) == 0)
746 		foffset_unlock(fp, uio->uio_offset, flags);
747 }
748 
749 static int
750 get_advice(struct file *fp, struct uio *uio)
751 {
752 	struct mtx *mtxp;
753 	int ret;
754 
755 	ret = POSIX_FADV_NORMAL;
756 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
757 		return (ret);
758 
759 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
760 	mtx_lock(mtxp);
761 	if (fp->f_advice != NULL &&
762 	    uio->uio_offset >= fp->f_advice->fa_start &&
763 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
764 		ret = fp->f_advice->fa_advice;
765 	mtx_unlock(mtxp);
766 	return (ret);
767 }
768 
769 /*
770  * File table vnode read routine.
771  */
772 static int
773 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
774     struct thread *td)
775 {
776 	struct vnode *vp;
777 	off_t orig_offset;
778 	int error, ioflag;
779 	int advice;
780 
781 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
782 	    uio->uio_td, td));
783 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
784 	vp = fp->f_vnode;
785 	ioflag = 0;
786 	if (fp->f_flag & FNONBLOCK)
787 		ioflag |= IO_NDELAY;
788 	if (fp->f_flag & O_DIRECT)
789 		ioflag |= IO_DIRECT;
790 	advice = get_advice(fp, uio);
791 	vn_lock(vp, LK_SHARED | LK_RETRY);
792 
793 	switch (advice) {
794 	case POSIX_FADV_NORMAL:
795 	case POSIX_FADV_SEQUENTIAL:
796 	case POSIX_FADV_NOREUSE:
797 		ioflag |= sequential_heuristic(uio, fp);
798 		break;
799 	case POSIX_FADV_RANDOM:
800 		/* Disable read-ahead for random I/O. */
801 		break;
802 	}
803 	orig_offset = uio->uio_offset;
804 
805 #ifdef MAC
806 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
807 	if (error == 0)
808 #endif
809 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
810 	fp->f_nextoff = uio->uio_offset;
811 	VOP_UNLOCK(vp, 0);
812 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
813 	    orig_offset != uio->uio_offset)
814 		/*
815 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
816 		 * for the backing file after a POSIX_FADV_NOREUSE
817 		 * read(2).
818 		 */
819 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
820 		    POSIX_FADV_DONTNEED);
821 	return (error);
822 }
823 
824 /*
825  * File table vnode write routine.
826  */
827 static int
828 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
829     struct thread *td)
830 {
831 	struct vnode *vp;
832 	struct mount *mp;
833 	off_t orig_offset;
834 	int error, ioflag, lock_flags;
835 	int advice;
836 
837 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
838 	    uio->uio_td, td));
839 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
840 	vp = fp->f_vnode;
841 	if (vp->v_type == VREG)
842 		bwillwrite();
843 	ioflag = IO_UNIT;
844 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
845 		ioflag |= IO_APPEND;
846 	if (fp->f_flag & FNONBLOCK)
847 		ioflag |= IO_NDELAY;
848 	if (fp->f_flag & O_DIRECT)
849 		ioflag |= IO_DIRECT;
850 	if ((fp->f_flag & O_FSYNC) ||
851 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
852 		ioflag |= IO_SYNC;
853 	mp = NULL;
854 	if (vp->v_type != VCHR &&
855 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
856 		goto unlock;
857 
858 	advice = get_advice(fp, uio);
859 
860 	if (MNT_SHARED_WRITES(mp) ||
861 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
862 		lock_flags = LK_SHARED;
863 	} else {
864 		lock_flags = LK_EXCLUSIVE;
865 	}
866 
867 	vn_lock(vp, lock_flags | LK_RETRY);
868 	switch (advice) {
869 	case POSIX_FADV_NORMAL:
870 	case POSIX_FADV_SEQUENTIAL:
871 	case POSIX_FADV_NOREUSE:
872 		ioflag |= sequential_heuristic(uio, fp);
873 		break;
874 	case POSIX_FADV_RANDOM:
875 		/* XXX: Is this correct? */
876 		break;
877 	}
878 	orig_offset = uio->uio_offset;
879 
880 #ifdef MAC
881 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
882 	if (error == 0)
883 #endif
884 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
885 	fp->f_nextoff = uio->uio_offset;
886 	VOP_UNLOCK(vp, 0);
887 	if (vp->v_type != VCHR)
888 		vn_finished_write(mp);
889 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
890 	    orig_offset != uio->uio_offset)
891 		/*
892 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
893 		 * for the backing file after a POSIX_FADV_NOREUSE
894 		 * write(2).
895 		 */
896 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
897 		    POSIX_FADV_DONTNEED);
898 unlock:
899 	return (error);
900 }
901 
902 /*
903  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
904  * prevent the following deadlock:
905  *
906  * Assume that the thread A reads from the vnode vp1 into userspace
907  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
908  * currently not resident, then system ends up with the call chain
909  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
910  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
911  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
912  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
913  * backed by the pages of vnode vp1, and some page in buf2 is not
914  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
915  *
916  * To prevent the lock order reversal and deadlock, vn_io_fault() does
917  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
918  * Instead, it first tries to do the whole range i/o with pagefaults
919  * disabled. If all pages in the i/o buffer are resident and mapped,
920  * VOP will succeed (ignoring the genuine filesystem errors).
921  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
922  * i/o in chunks, with all pages in the chunk prefaulted and held
923  * using vm_fault_quick_hold_pages().
924  *
925  * Filesystems using this deadlock avoidance scheme should use the
926  * array of the held pages from uio, saved in the curthread->td_ma,
927  * instead of doing uiomove().  A helper function
928  * vn_io_fault_uiomove() converts uiomove request into
929  * uiomove_fromphys() over td_ma array.
930  *
931  * Since vnode locks do not cover the whole i/o anymore, rangelocks
932  * make the current i/o request atomic with respect to other i/os and
933  * truncations.
934  */
935 
936 /*
937  * Decode vn_io_fault_args and perform the corresponding i/o.
938  */
939 static int
940 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
941     struct thread *td)
942 {
943 	int error, save;
944 
945 	error = 0;
946 	save = vm_fault_disable_pagefaults();
947 	switch (args->kind) {
948 	case VN_IO_FAULT_FOP:
949 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
950 		    uio, args->cred, args->flags, td);
951 		break;
952 	case VN_IO_FAULT_VOP:
953 		if (uio->uio_rw == UIO_READ) {
954 			error = VOP_READ(args->args.vop_args.vp, uio,
955 			    args->flags, args->cred);
956 		} else if (uio->uio_rw == UIO_WRITE) {
957 			error = VOP_WRITE(args->args.vop_args.vp, uio,
958 			    args->flags, args->cred);
959 		}
960 		break;
961 	default:
962 		panic("vn_io_fault_doio: unknown kind of io %d %d",
963 		    args->kind, uio->uio_rw);
964 	}
965 	vm_fault_enable_pagefaults(save);
966 	return (error);
967 }
968 
969 static int
970 vn_io_fault_touch(char *base, const struct uio *uio)
971 {
972 	int r;
973 
974 	r = fubyte(base);
975 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
976 		return (EFAULT);
977 	return (0);
978 }
979 
980 static int
981 vn_io_fault_prefault_user(const struct uio *uio)
982 {
983 	char *base;
984 	const struct iovec *iov;
985 	size_t len;
986 	ssize_t resid;
987 	int error, i;
988 
989 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
990 	    ("vn_io_fault_prefault userspace"));
991 
992 	error = i = 0;
993 	iov = uio->uio_iov;
994 	resid = uio->uio_resid;
995 	base = iov->iov_base;
996 	len = iov->iov_len;
997 	while (resid > 0) {
998 		error = vn_io_fault_touch(base, uio);
999 		if (error != 0)
1000 			break;
1001 		if (len < PAGE_SIZE) {
1002 			if (len != 0) {
1003 				error = vn_io_fault_touch(base + len - 1, uio);
1004 				if (error != 0)
1005 					break;
1006 				resid -= len;
1007 			}
1008 			if (++i >= uio->uio_iovcnt)
1009 				break;
1010 			iov = uio->uio_iov + i;
1011 			base = iov->iov_base;
1012 			len = iov->iov_len;
1013 		} else {
1014 			len -= PAGE_SIZE;
1015 			base += PAGE_SIZE;
1016 			resid -= PAGE_SIZE;
1017 		}
1018 	}
1019 	return (error);
1020 }
1021 
1022 /*
1023  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1024  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1025  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1026  * into args and call vn_io_fault1() to handle faults during the user
1027  * mode buffer accesses.
1028  */
1029 static int
1030 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1031     struct thread *td)
1032 {
1033 	vm_page_t ma[io_hold_cnt + 2];
1034 	struct uio *uio_clone, short_uio;
1035 	struct iovec short_iovec[1];
1036 	vm_page_t *prev_td_ma;
1037 	vm_prot_t prot;
1038 	vm_offset_t addr, end;
1039 	size_t len, resid;
1040 	ssize_t adv;
1041 	int error, cnt, saveheld, prev_td_ma_cnt;
1042 
1043 	if (vn_io_fault_prefault) {
1044 		error = vn_io_fault_prefault_user(uio);
1045 		if (error != 0)
1046 			return (error); /* Or ignore ? */
1047 	}
1048 
1049 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1050 
1051 	/*
1052 	 * The UFS follows IO_UNIT directive and replays back both
1053 	 * uio_offset and uio_resid if an error is encountered during the
1054 	 * operation.  But, since the iovec may be already advanced,
1055 	 * uio is still in an inconsistent state.
1056 	 *
1057 	 * Cache a copy of the original uio, which is advanced to the redo
1058 	 * point using UIO_NOCOPY below.
1059 	 */
1060 	uio_clone = cloneuio(uio);
1061 	resid = uio->uio_resid;
1062 
1063 	short_uio.uio_segflg = UIO_USERSPACE;
1064 	short_uio.uio_rw = uio->uio_rw;
1065 	short_uio.uio_td = uio->uio_td;
1066 
1067 	error = vn_io_fault_doio(args, uio, td);
1068 	if (error != EFAULT)
1069 		goto out;
1070 
1071 	atomic_add_long(&vn_io_faults_cnt, 1);
1072 	uio_clone->uio_segflg = UIO_NOCOPY;
1073 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1074 	uio_clone->uio_segflg = uio->uio_segflg;
1075 
1076 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1077 	prev_td_ma = td->td_ma;
1078 	prev_td_ma_cnt = td->td_ma_cnt;
1079 
1080 	while (uio_clone->uio_resid != 0) {
1081 		len = uio_clone->uio_iov->iov_len;
1082 		if (len == 0) {
1083 			KASSERT(uio_clone->uio_iovcnt >= 1,
1084 			    ("iovcnt underflow"));
1085 			uio_clone->uio_iov++;
1086 			uio_clone->uio_iovcnt--;
1087 			continue;
1088 		}
1089 		if (len > io_hold_cnt * PAGE_SIZE)
1090 			len = io_hold_cnt * PAGE_SIZE;
1091 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1092 		end = round_page(addr + len);
1093 		if (end < addr) {
1094 			error = EFAULT;
1095 			break;
1096 		}
1097 		cnt = atop(end - trunc_page(addr));
1098 		/*
1099 		 * A perfectly misaligned address and length could cause
1100 		 * both the start and the end of the chunk to use partial
1101 		 * page.  +2 accounts for such a situation.
1102 		 */
1103 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1104 		    addr, len, prot, ma, io_hold_cnt + 2);
1105 		if (cnt == -1) {
1106 			error = EFAULT;
1107 			break;
1108 		}
1109 		short_uio.uio_iov = &short_iovec[0];
1110 		short_iovec[0].iov_base = (void *)addr;
1111 		short_uio.uio_iovcnt = 1;
1112 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1113 		short_uio.uio_offset = uio_clone->uio_offset;
1114 		td->td_ma = ma;
1115 		td->td_ma_cnt = cnt;
1116 
1117 		error = vn_io_fault_doio(args, &short_uio, td);
1118 		vm_page_unhold_pages(ma, cnt);
1119 		adv = len - short_uio.uio_resid;
1120 
1121 		uio_clone->uio_iov->iov_base =
1122 		    (char *)uio_clone->uio_iov->iov_base + adv;
1123 		uio_clone->uio_iov->iov_len -= adv;
1124 		uio_clone->uio_resid -= adv;
1125 		uio_clone->uio_offset += adv;
1126 
1127 		uio->uio_resid -= adv;
1128 		uio->uio_offset += adv;
1129 
1130 		if (error != 0 || adv == 0)
1131 			break;
1132 	}
1133 	td->td_ma = prev_td_ma;
1134 	td->td_ma_cnt = prev_td_ma_cnt;
1135 	curthread_pflags_restore(saveheld);
1136 out:
1137 	free(uio_clone, M_IOV);
1138 	return (error);
1139 }
1140 
1141 static int
1142 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1143     int flags, struct thread *td)
1144 {
1145 	fo_rdwr_t *doio;
1146 	struct vnode *vp;
1147 	void *rl_cookie;
1148 	struct vn_io_fault_args args;
1149 	int error;
1150 
1151 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1152 	vp = fp->f_vnode;
1153 	foffset_lock_uio(fp, uio, flags);
1154 	if (do_vn_io_fault(vp, uio)) {
1155 		args.kind = VN_IO_FAULT_FOP;
1156 		args.args.fop_args.fp = fp;
1157 		args.args.fop_args.doio = doio;
1158 		args.cred = active_cred;
1159 		args.flags = flags | FOF_OFFSET;
1160 		if (uio->uio_rw == UIO_READ) {
1161 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1162 			    uio->uio_offset + uio->uio_resid);
1163 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1164 		    (flags & FOF_OFFSET) == 0) {
1165 			/* For appenders, punt and lock the whole range. */
1166 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1167 		} else {
1168 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1169 			    uio->uio_offset + uio->uio_resid);
1170 		}
1171 		error = vn_io_fault1(vp, uio, &args, td);
1172 		vn_rangelock_unlock(vp, rl_cookie);
1173 	} else {
1174 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1175 	}
1176 	foffset_unlock_uio(fp, uio, flags);
1177 	return (error);
1178 }
1179 
1180 /*
1181  * Helper function to perform the requested uiomove operation using
1182  * the held pages for io->uio_iov[0].iov_base buffer instead of
1183  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1184  * instead of iov_base prevents page faults that could occur due to
1185  * pmap_collect() invalidating the mapping created by
1186  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1187  * object cleanup revoking the write access from page mappings.
1188  *
1189  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1190  * instead of plain uiomove().
1191  */
1192 int
1193 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1194 {
1195 	struct uio transp_uio;
1196 	struct iovec transp_iov[1];
1197 	struct thread *td;
1198 	size_t adv;
1199 	int error, pgadv;
1200 
1201 	td = curthread;
1202 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1203 	    uio->uio_segflg != UIO_USERSPACE)
1204 		return (uiomove(data, xfersize, uio));
1205 
1206 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1207 	transp_iov[0].iov_base = data;
1208 	transp_uio.uio_iov = &transp_iov[0];
1209 	transp_uio.uio_iovcnt = 1;
1210 	if (xfersize > uio->uio_resid)
1211 		xfersize = uio->uio_resid;
1212 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1213 	transp_uio.uio_offset = 0;
1214 	transp_uio.uio_segflg = UIO_SYSSPACE;
1215 	/*
1216 	 * Since transp_iov points to data, and td_ma page array
1217 	 * corresponds to original uio->uio_iov, we need to invert the
1218 	 * direction of the i/o operation as passed to
1219 	 * uiomove_fromphys().
1220 	 */
1221 	switch (uio->uio_rw) {
1222 	case UIO_WRITE:
1223 		transp_uio.uio_rw = UIO_READ;
1224 		break;
1225 	case UIO_READ:
1226 		transp_uio.uio_rw = UIO_WRITE;
1227 		break;
1228 	}
1229 	transp_uio.uio_td = uio->uio_td;
1230 	error = uiomove_fromphys(td->td_ma,
1231 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1232 	    xfersize, &transp_uio);
1233 	adv = xfersize - transp_uio.uio_resid;
1234 	pgadv =
1235 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1236 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1237 	td->td_ma += pgadv;
1238 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1239 	    pgadv));
1240 	td->td_ma_cnt -= pgadv;
1241 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1242 	uio->uio_iov->iov_len -= adv;
1243 	uio->uio_resid -= adv;
1244 	uio->uio_offset += adv;
1245 	return (error);
1246 }
1247 
1248 int
1249 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1250     struct uio *uio)
1251 {
1252 	struct thread *td;
1253 	vm_offset_t iov_base;
1254 	int cnt, pgadv;
1255 
1256 	td = curthread;
1257 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1258 	    uio->uio_segflg != UIO_USERSPACE)
1259 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1260 
1261 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1262 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1263 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1264 	switch (uio->uio_rw) {
1265 	case UIO_WRITE:
1266 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1267 		    offset, cnt);
1268 		break;
1269 	case UIO_READ:
1270 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1271 		    cnt);
1272 		break;
1273 	}
1274 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1275 	td->td_ma += pgadv;
1276 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1277 	    pgadv));
1278 	td->td_ma_cnt -= pgadv;
1279 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1280 	uio->uio_iov->iov_len -= cnt;
1281 	uio->uio_resid -= cnt;
1282 	uio->uio_offset += cnt;
1283 	return (0);
1284 }
1285 
1286 
1287 /*
1288  * File table truncate routine.
1289  */
1290 static int
1291 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1292     struct thread *td)
1293 {
1294 	struct vattr vattr;
1295 	struct mount *mp;
1296 	struct vnode *vp;
1297 	void *rl_cookie;
1298 	int error;
1299 
1300 	vp = fp->f_vnode;
1301 
1302 	/*
1303 	 * Lock the whole range for truncation.  Otherwise split i/o
1304 	 * might happen partly before and partly after the truncation.
1305 	 */
1306 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1307 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1308 	if (error)
1309 		goto out1;
1310 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1311 	AUDIT_ARG_VNODE1(vp);
1312 	if (vp->v_type == VDIR) {
1313 		error = EISDIR;
1314 		goto out;
1315 	}
1316 #ifdef MAC
1317 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1318 	if (error)
1319 		goto out;
1320 #endif
1321 	error = VOP_ADD_WRITECOUNT(vp, 1);
1322 	if (error == 0) {
1323 		VATTR_NULL(&vattr);
1324 		vattr.va_size = length;
1325 		if ((fp->f_flag & O_FSYNC) != 0)
1326 			vattr.va_vaflags |= VA_SYNC;
1327 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1328 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1329 	}
1330 out:
1331 	VOP_UNLOCK(vp, 0);
1332 	vn_finished_write(mp);
1333 out1:
1334 	vn_rangelock_unlock(vp, rl_cookie);
1335 	return (error);
1336 }
1337 
1338 /*
1339  * File table vnode stat routine.
1340  */
1341 static int
1342 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1343     struct thread *td)
1344 {
1345 	struct vnode *vp = fp->f_vnode;
1346 	int error;
1347 
1348 	vn_lock(vp, LK_SHARED | LK_RETRY);
1349 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1350 	VOP_UNLOCK(vp, 0);
1351 
1352 	return (error);
1353 }
1354 
1355 /*
1356  * Stat a vnode; implementation for the stat syscall
1357  */
1358 int
1359 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1360     struct ucred *file_cred, struct thread *td)
1361 {
1362 	struct vattr vattr;
1363 	struct vattr *vap;
1364 	int error;
1365 	u_short mode;
1366 
1367 	AUDIT_ARG_VNODE1(vp);
1368 #ifdef MAC
1369 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1370 	if (error)
1371 		return (error);
1372 #endif
1373 
1374 	vap = &vattr;
1375 
1376 	/*
1377 	 * Initialize defaults for new and unusual fields, so that file
1378 	 * systems which don't support these fields don't need to know
1379 	 * about them.
1380 	 */
1381 	vap->va_birthtime.tv_sec = -1;
1382 	vap->va_birthtime.tv_nsec = 0;
1383 	vap->va_fsid = VNOVAL;
1384 	vap->va_rdev = NODEV;
1385 
1386 	error = VOP_GETATTR(vp, vap, active_cred);
1387 	if (error)
1388 		return (error);
1389 
1390 	/*
1391 	 * Zero the spare stat fields
1392 	 */
1393 	bzero(sb, sizeof *sb);
1394 
1395 	/*
1396 	 * Copy from vattr table
1397 	 */
1398 	if (vap->va_fsid != VNOVAL)
1399 		sb->st_dev = vap->va_fsid;
1400 	else
1401 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1402 	sb->st_ino = vap->va_fileid;
1403 	mode = vap->va_mode;
1404 	switch (vap->va_type) {
1405 	case VREG:
1406 		mode |= S_IFREG;
1407 		break;
1408 	case VDIR:
1409 		mode |= S_IFDIR;
1410 		break;
1411 	case VBLK:
1412 		mode |= S_IFBLK;
1413 		break;
1414 	case VCHR:
1415 		mode |= S_IFCHR;
1416 		break;
1417 	case VLNK:
1418 		mode |= S_IFLNK;
1419 		break;
1420 	case VSOCK:
1421 		mode |= S_IFSOCK;
1422 		break;
1423 	case VFIFO:
1424 		mode |= S_IFIFO;
1425 		break;
1426 	default:
1427 		return (EBADF);
1428 	}
1429 	sb->st_mode = mode;
1430 	sb->st_nlink = vap->va_nlink;
1431 	sb->st_uid = vap->va_uid;
1432 	sb->st_gid = vap->va_gid;
1433 	sb->st_rdev = vap->va_rdev;
1434 	if (vap->va_size > OFF_MAX)
1435 		return (EOVERFLOW);
1436 	sb->st_size = vap->va_size;
1437 	sb->st_atim = vap->va_atime;
1438 	sb->st_mtim = vap->va_mtime;
1439 	sb->st_ctim = vap->va_ctime;
1440 	sb->st_birthtim = vap->va_birthtime;
1441 
1442         /*
1443 	 * According to www.opengroup.org, the meaning of st_blksize is
1444 	 *   "a filesystem-specific preferred I/O block size for this
1445 	 *    object.  In some filesystem types, this may vary from file
1446 	 *    to file"
1447 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1448 	 */
1449 
1450 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1451 
1452 	sb->st_flags = vap->va_flags;
1453 	if (priv_check(td, PRIV_VFS_GENERATION))
1454 		sb->st_gen = 0;
1455 	else
1456 		sb->st_gen = vap->va_gen;
1457 
1458 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1459 	return (0);
1460 }
1461 
1462 /* generic FIOBMAP2 implementation */
1463 static int
1464 vn_ioc_bmap2(struct file *fp, struct fiobmap2_arg *arg, struct ucred *cred)
1465 {
1466 	struct vnode *vp = fp->f_vnode;
1467 	daddr_t lbn = arg->bn;
1468 	int error;
1469 
1470 	vn_lock(vp, LK_SHARED | LK_RETRY);
1471 #ifdef MAC
1472 	error = mac_vnode_check_read(cred, fp->f_cred, vp);
1473 	if (error == 0)
1474 #endif
1475 		error = VOP_BMAP(vp, lbn, NULL, &arg->bn, &arg->runp,
1476 			&arg->runb);
1477 	VOP_UNLOCK(vp, 0);
1478 	return (error);
1479 }
1480 
1481 /*
1482  * File table vnode ioctl routine.
1483  */
1484 static int
1485 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1486     struct thread *td)
1487 {
1488 	struct vattr vattr;
1489 	struct vnode *vp;
1490 	int error;
1491 
1492 	vp = fp->f_vnode;
1493 	switch (vp->v_type) {
1494 	case VDIR:
1495 	case VREG:
1496 		switch (com) {
1497 		case FIONREAD:
1498 			vn_lock(vp, LK_SHARED | LK_RETRY);
1499 			error = VOP_GETATTR(vp, &vattr, active_cred);
1500 			VOP_UNLOCK(vp, 0);
1501 			if (error == 0)
1502 				*(int *)data = vattr.va_size - fp->f_offset;
1503 			return (error);
1504 		case FIOBMAP2:
1505 			return (vn_ioc_bmap2(fp, (struct fiobmap2_arg*)data,
1506 				active_cred));
1507 		case FIONBIO:
1508 		case FIOASYNC:
1509 			return (0);
1510 		default:
1511 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1512 			    active_cred, td));
1513 		}
1514 		break;
1515 	case VCHR:
1516 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1517 		    active_cred, td));
1518 	default:
1519 		return (ENOTTY);
1520 	}
1521 }
1522 
1523 /*
1524  * File table vnode poll routine.
1525  */
1526 static int
1527 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1528     struct thread *td)
1529 {
1530 	struct vnode *vp;
1531 	int error;
1532 
1533 	vp = fp->f_vnode;
1534 #ifdef MAC
1535 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1536 	AUDIT_ARG_VNODE1(vp);
1537 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1538 	VOP_UNLOCK(vp, 0);
1539 	if (!error)
1540 #endif
1541 
1542 	error = VOP_POLL(vp, events, fp->f_cred, td);
1543 	return (error);
1544 }
1545 
1546 /*
1547  * Acquire the requested lock and then check for validity.  LK_RETRY
1548  * permits vn_lock to return doomed vnodes.
1549  */
1550 int
1551 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1552 {
1553 	int error;
1554 
1555 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1556 	    ("vn_lock: no locktype"));
1557 	VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
1558 retry:
1559 	error = VOP_LOCK1(vp, flags, file, line);
1560 	flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1561 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1562 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1563 
1564 	if ((flags & LK_RETRY) == 0) {
1565 		if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1566 			VOP_UNLOCK(vp, 0);
1567 			error = ENOENT;
1568 		}
1569 	} else if (error != 0)
1570 		goto retry;
1571 	return (error);
1572 }
1573 
1574 /*
1575  * File table vnode close routine.
1576  */
1577 static int
1578 vn_closefile(struct file *fp, struct thread *td)
1579 {
1580 	struct vnode *vp;
1581 	struct flock lf;
1582 	int error;
1583 	bool ref;
1584 
1585 	vp = fp->f_vnode;
1586 	fp->f_ops = &badfileops;
1587 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1588 
1589 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1590 
1591 	if (__predict_false(ref)) {
1592 		lf.l_whence = SEEK_SET;
1593 		lf.l_start = 0;
1594 		lf.l_len = 0;
1595 		lf.l_type = F_UNLCK;
1596 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1597 		vrele(vp);
1598 	}
1599 	return (error);
1600 }
1601 
1602 static bool
1603 vn_suspendable(struct mount *mp)
1604 {
1605 
1606 	return (mp->mnt_op->vfs_susp_clean != NULL);
1607 }
1608 
1609 /*
1610  * Preparing to start a filesystem write operation. If the operation is
1611  * permitted, then we bump the count of operations in progress and
1612  * proceed. If a suspend request is in progress, we wait until the
1613  * suspension is over, and then proceed.
1614  */
1615 static int
1616 vn_start_write_locked(struct mount *mp, int flags)
1617 {
1618 	int error, mflags;
1619 
1620 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1621 	error = 0;
1622 
1623 	/*
1624 	 * Check on status of suspension.
1625 	 */
1626 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1627 	    mp->mnt_susp_owner != curthread) {
1628 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1629 		    (flags & PCATCH) : 0) | (PUSER - 1);
1630 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1631 			if (flags & V_NOWAIT) {
1632 				error = EWOULDBLOCK;
1633 				goto unlock;
1634 			}
1635 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1636 			    "suspfs", 0);
1637 			if (error)
1638 				goto unlock;
1639 		}
1640 	}
1641 	if (flags & V_XSLEEP)
1642 		goto unlock;
1643 	mp->mnt_writeopcount++;
1644 unlock:
1645 	if (error != 0 || (flags & V_XSLEEP) != 0)
1646 		MNT_REL(mp);
1647 	MNT_IUNLOCK(mp);
1648 	return (error);
1649 }
1650 
1651 int
1652 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1653 {
1654 	struct mount *mp;
1655 	int error;
1656 
1657 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1658 	    ("V_MNTREF requires mp"));
1659 
1660 	error = 0;
1661 	/*
1662 	 * If a vnode is provided, get and return the mount point that
1663 	 * to which it will write.
1664 	 */
1665 	if (vp != NULL) {
1666 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1667 			*mpp = NULL;
1668 			if (error != EOPNOTSUPP)
1669 				return (error);
1670 			return (0);
1671 		}
1672 	}
1673 	if ((mp = *mpp) == NULL)
1674 		return (0);
1675 
1676 	if (!vn_suspendable(mp)) {
1677 		if (vp != NULL || (flags & V_MNTREF) != 0)
1678 			vfs_rel(mp);
1679 		return (0);
1680 	}
1681 
1682 	/*
1683 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1684 	 * a vfs_ref().
1685 	 * As long as a vnode is not provided we need to acquire a
1686 	 * refcount for the provided mountpoint too, in order to
1687 	 * emulate a vfs_ref().
1688 	 */
1689 	MNT_ILOCK(mp);
1690 	if (vp == NULL && (flags & V_MNTREF) == 0)
1691 		MNT_REF(mp);
1692 
1693 	return (vn_start_write_locked(mp, flags));
1694 }
1695 
1696 /*
1697  * Secondary suspension. Used by operations such as vop_inactive
1698  * routines that are needed by the higher level functions. These
1699  * are allowed to proceed until all the higher level functions have
1700  * completed (indicated by mnt_writeopcount dropping to zero). At that
1701  * time, these operations are halted until the suspension is over.
1702  */
1703 int
1704 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1705 {
1706 	struct mount *mp;
1707 	int error;
1708 
1709 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1710 	    ("V_MNTREF requires mp"));
1711 
1712  retry:
1713 	if (vp != NULL) {
1714 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1715 			*mpp = NULL;
1716 			if (error != EOPNOTSUPP)
1717 				return (error);
1718 			return (0);
1719 		}
1720 	}
1721 	/*
1722 	 * If we are not suspended or have not yet reached suspended
1723 	 * mode, then let the operation proceed.
1724 	 */
1725 	if ((mp = *mpp) == NULL)
1726 		return (0);
1727 
1728 	if (!vn_suspendable(mp)) {
1729 		if (vp != NULL || (flags & V_MNTREF) != 0)
1730 			vfs_rel(mp);
1731 		return (0);
1732 	}
1733 
1734 	/*
1735 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1736 	 * a vfs_ref().
1737 	 * As long as a vnode is not provided we need to acquire a
1738 	 * refcount for the provided mountpoint too, in order to
1739 	 * emulate a vfs_ref().
1740 	 */
1741 	MNT_ILOCK(mp);
1742 	if (vp == NULL && (flags & V_MNTREF) == 0)
1743 		MNT_REF(mp);
1744 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1745 		mp->mnt_secondary_writes++;
1746 		mp->mnt_secondary_accwrites++;
1747 		MNT_IUNLOCK(mp);
1748 		return (0);
1749 	}
1750 	if (flags & V_NOWAIT) {
1751 		MNT_REL(mp);
1752 		MNT_IUNLOCK(mp);
1753 		return (EWOULDBLOCK);
1754 	}
1755 	/*
1756 	 * Wait for the suspension to finish.
1757 	 */
1758 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1759 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1760 	    "suspfs", 0);
1761 	vfs_rel(mp);
1762 	if (error == 0)
1763 		goto retry;
1764 	return (error);
1765 }
1766 
1767 /*
1768  * Filesystem write operation has completed. If we are suspending and this
1769  * operation is the last one, notify the suspender that the suspension is
1770  * now in effect.
1771  */
1772 void
1773 vn_finished_write(struct mount *mp)
1774 {
1775 	if (mp == NULL || !vn_suspendable(mp))
1776 		return;
1777 	MNT_ILOCK(mp);
1778 	MNT_REL(mp);
1779 	mp->mnt_writeopcount--;
1780 	if (mp->mnt_writeopcount < 0)
1781 		panic("vn_finished_write: neg cnt");
1782 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1783 	    mp->mnt_writeopcount <= 0)
1784 		wakeup(&mp->mnt_writeopcount);
1785 	MNT_IUNLOCK(mp);
1786 }
1787 
1788 
1789 /*
1790  * Filesystem secondary write operation has completed. If we are
1791  * suspending and this operation is the last one, notify the suspender
1792  * that the suspension is now in effect.
1793  */
1794 void
1795 vn_finished_secondary_write(struct mount *mp)
1796 {
1797 	if (mp == NULL || !vn_suspendable(mp))
1798 		return;
1799 	MNT_ILOCK(mp);
1800 	MNT_REL(mp);
1801 	mp->mnt_secondary_writes--;
1802 	if (mp->mnt_secondary_writes < 0)
1803 		panic("vn_finished_secondary_write: neg cnt");
1804 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1805 	    mp->mnt_secondary_writes <= 0)
1806 		wakeup(&mp->mnt_secondary_writes);
1807 	MNT_IUNLOCK(mp);
1808 }
1809 
1810 
1811 
1812 /*
1813  * Request a filesystem to suspend write operations.
1814  */
1815 int
1816 vfs_write_suspend(struct mount *mp, int flags)
1817 {
1818 	int error;
1819 
1820 	MPASS(vn_suspendable(mp));
1821 
1822 	MNT_ILOCK(mp);
1823 	if (mp->mnt_susp_owner == curthread) {
1824 		MNT_IUNLOCK(mp);
1825 		return (EALREADY);
1826 	}
1827 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1828 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1829 
1830 	/*
1831 	 * Unmount holds a write reference on the mount point.  If we
1832 	 * own busy reference and drain for writers, we deadlock with
1833 	 * the reference draining in the unmount path.  Callers of
1834 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1835 	 * vfs_busy() reference is owned and caller is not in the
1836 	 * unmount context.
1837 	 */
1838 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1839 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1840 		MNT_IUNLOCK(mp);
1841 		return (EBUSY);
1842 	}
1843 
1844 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1845 	mp->mnt_susp_owner = curthread;
1846 	if (mp->mnt_writeopcount > 0)
1847 		(void) msleep(&mp->mnt_writeopcount,
1848 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1849 	else
1850 		MNT_IUNLOCK(mp);
1851 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1852 		vfs_write_resume(mp, 0);
1853 	return (error);
1854 }
1855 
1856 /*
1857  * Request a filesystem to resume write operations.
1858  */
1859 void
1860 vfs_write_resume(struct mount *mp, int flags)
1861 {
1862 
1863 	MPASS(vn_suspendable(mp));
1864 
1865 	MNT_ILOCK(mp);
1866 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1867 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1868 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1869 				       MNTK_SUSPENDED);
1870 		mp->mnt_susp_owner = NULL;
1871 		wakeup(&mp->mnt_writeopcount);
1872 		wakeup(&mp->mnt_flag);
1873 		curthread->td_pflags &= ~TDP_IGNSUSP;
1874 		if ((flags & VR_START_WRITE) != 0) {
1875 			MNT_REF(mp);
1876 			mp->mnt_writeopcount++;
1877 		}
1878 		MNT_IUNLOCK(mp);
1879 		if ((flags & VR_NO_SUSPCLR) == 0)
1880 			VFS_SUSP_CLEAN(mp);
1881 	} else if ((flags & VR_START_WRITE) != 0) {
1882 		MNT_REF(mp);
1883 		vn_start_write_locked(mp, 0);
1884 	} else {
1885 		MNT_IUNLOCK(mp);
1886 	}
1887 }
1888 
1889 /*
1890  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1891  * methods.
1892  */
1893 int
1894 vfs_write_suspend_umnt(struct mount *mp)
1895 {
1896 	int error;
1897 
1898 	MPASS(vn_suspendable(mp));
1899 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1900 	    ("vfs_write_suspend_umnt: recursed"));
1901 
1902 	/* dounmount() already called vn_start_write(). */
1903 	for (;;) {
1904 		vn_finished_write(mp);
1905 		error = vfs_write_suspend(mp, 0);
1906 		if (error != 0) {
1907 			vn_start_write(NULL, &mp, V_WAIT);
1908 			return (error);
1909 		}
1910 		MNT_ILOCK(mp);
1911 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1912 			break;
1913 		MNT_IUNLOCK(mp);
1914 		vn_start_write(NULL, &mp, V_WAIT);
1915 	}
1916 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1917 	wakeup(&mp->mnt_flag);
1918 	MNT_IUNLOCK(mp);
1919 	curthread->td_pflags |= TDP_IGNSUSP;
1920 	return (0);
1921 }
1922 
1923 /*
1924  * Implement kqueues for files by translating it to vnode operation.
1925  */
1926 static int
1927 vn_kqfilter(struct file *fp, struct knote *kn)
1928 {
1929 
1930 	return (VOP_KQFILTER(fp->f_vnode, kn));
1931 }
1932 
1933 /*
1934  * Simplified in-kernel wrapper calls for extended attribute access.
1935  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1936  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1937  */
1938 int
1939 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1940     const char *attrname, int *buflen, char *buf, struct thread *td)
1941 {
1942 	struct uio	auio;
1943 	struct iovec	iov;
1944 	int	error;
1945 
1946 	iov.iov_len = *buflen;
1947 	iov.iov_base = buf;
1948 
1949 	auio.uio_iov = &iov;
1950 	auio.uio_iovcnt = 1;
1951 	auio.uio_rw = UIO_READ;
1952 	auio.uio_segflg = UIO_SYSSPACE;
1953 	auio.uio_td = td;
1954 	auio.uio_offset = 0;
1955 	auio.uio_resid = *buflen;
1956 
1957 	if ((ioflg & IO_NODELOCKED) == 0)
1958 		vn_lock(vp, LK_SHARED | LK_RETRY);
1959 
1960 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1961 
1962 	/* authorize attribute retrieval as kernel */
1963 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1964 	    td);
1965 
1966 	if ((ioflg & IO_NODELOCKED) == 0)
1967 		VOP_UNLOCK(vp, 0);
1968 
1969 	if (error == 0) {
1970 		*buflen = *buflen - auio.uio_resid;
1971 	}
1972 
1973 	return (error);
1974 }
1975 
1976 /*
1977  * XXX failure mode if partially written?
1978  */
1979 int
1980 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1981     const char *attrname, int buflen, char *buf, struct thread *td)
1982 {
1983 	struct uio	auio;
1984 	struct iovec	iov;
1985 	struct mount	*mp;
1986 	int	error;
1987 
1988 	iov.iov_len = buflen;
1989 	iov.iov_base = buf;
1990 
1991 	auio.uio_iov = &iov;
1992 	auio.uio_iovcnt = 1;
1993 	auio.uio_rw = UIO_WRITE;
1994 	auio.uio_segflg = UIO_SYSSPACE;
1995 	auio.uio_td = td;
1996 	auio.uio_offset = 0;
1997 	auio.uio_resid = buflen;
1998 
1999 	if ((ioflg & IO_NODELOCKED) == 0) {
2000 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2001 			return (error);
2002 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2003 	}
2004 
2005 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2006 
2007 	/* authorize attribute setting as kernel */
2008 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2009 
2010 	if ((ioflg & IO_NODELOCKED) == 0) {
2011 		vn_finished_write(mp);
2012 		VOP_UNLOCK(vp, 0);
2013 	}
2014 
2015 	return (error);
2016 }
2017 
2018 int
2019 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2020     const char *attrname, struct thread *td)
2021 {
2022 	struct mount	*mp;
2023 	int	error;
2024 
2025 	if ((ioflg & IO_NODELOCKED) == 0) {
2026 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2027 			return (error);
2028 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2029 	}
2030 
2031 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2032 
2033 	/* authorize attribute removal as kernel */
2034 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2035 	if (error == EOPNOTSUPP)
2036 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2037 		    NULL, td);
2038 
2039 	if ((ioflg & IO_NODELOCKED) == 0) {
2040 		vn_finished_write(mp);
2041 		VOP_UNLOCK(vp, 0);
2042 	}
2043 
2044 	return (error);
2045 }
2046 
2047 static int
2048 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2049     struct vnode **rvp)
2050 {
2051 
2052 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2053 }
2054 
2055 int
2056 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2057 {
2058 
2059 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2060 	    lkflags, rvp));
2061 }
2062 
2063 int
2064 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2065     int lkflags, struct vnode **rvp)
2066 {
2067 	struct mount *mp;
2068 	int ltype, error;
2069 
2070 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2071 	mp = vp->v_mount;
2072 	ltype = VOP_ISLOCKED(vp);
2073 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2074 	    ("vn_vget_ino: vp not locked"));
2075 	error = vfs_busy(mp, MBF_NOWAIT);
2076 	if (error != 0) {
2077 		vfs_ref(mp);
2078 		VOP_UNLOCK(vp, 0);
2079 		error = vfs_busy(mp, 0);
2080 		vn_lock(vp, ltype | LK_RETRY);
2081 		vfs_rel(mp);
2082 		if (error != 0)
2083 			return (ENOENT);
2084 		if (vp->v_iflag & VI_DOOMED) {
2085 			vfs_unbusy(mp);
2086 			return (ENOENT);
2087 		}
2088 	}
2089 	VOP_UNLOCK(vp, 0);
2090 	error = alloc(mp, alloc_arg, lkflags, rvp);
2091 	vfs_unbusy(mp);
2092 	if (*rvp != vp)
2093 		vn_lock(vp, ltype | LK_RETRY);
2094 	if (vp->v_iflag & VI_DOOMED) {
2095 		if (error == 0) {
2096 			if (*rvp == vp)
2097 				vunref(vp);
2098 			else
2099 				vput(*rvp);
2100 		}
2101 		error = ENOENT;
2102 	}
2103 	return (error);
2104 }
2105 
2106 int
2107 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2108     struct thread *td)
2109 {
2110 
2111 	if (vp->v_type != VREG || td == NULL)
2112 		return (0);
2113 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2114 	    lim_cur(td, RLIMIT_FSIZE)) {
2115 		PROC_LOCK(td->td_proc);
2116 		kern_psignal(td->td_proc, SIGXFSZ);
2117 		PROC_UNLOCK(td->td_proc);
2118 		return (EFBIG);
2119 	}
2120 	return (0);
2121 }
2122 
2123 int
2124 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2125     struct thread *td)
2126 {
2127 	struct vnode *vp;
2128 
2129 	vp = fp->f_vnode;
2130 #ifdef AUDIT
2131 	vn_lock(vp, LK_SHARED | LK_RETRY);
2132 	AUDIT_ARG_VNODE1(vp);
2133 	VOP_UNLOCK(vp, 0);
2134 #endif
2135 	return (setfmode(td, active_cred, vp, mode));
2136 }
2137 
2138 int
2139 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2140     struct thread *td)
2141 {
2142 	struct vnode *vp;
2143 
2144 	vp = fp->f_vnode;
2145 #ifdef AUDIT
2146 	vn_lock(vp, LK_SHARED | LK_RETRY);
2147 	AUDIT_ARG_VNODE1(vp);
2148 	VOP_UNLOCK(vp, 0);
2149 #endif
2150 	return (setfown(td, active_cred, vp, uid, gid));
2151 }
2152 
2153 void
2154 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2155 {
2156 	vm_object_t object;
2157 
2158 	if ((object = vp->v_object) == NULL)
2159 		return;
2160 	VM_OBJECT_WLOCK(object);
2161 	vm_object_page_remove(object, start, end, 0);
2162 	VM_OBJECT_WUNLOCK(object);
2163 }
2164 
2165 int
2166 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2167 {
2168 	struct vattr va;
2169 	daddr_t bn, bnp;
2170 	uint64_t bsize;
2171 	off_t noff;
2172 	int error;
2173 
2174 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2175 	    ("Wrong command %lu", cmd));
2176 
2177 	if (vn_lock(vp, LK_SHARED) != 0)
2178 		return (EBADF);
2179 	if (vp->v_type != VREG) {
2180 		error = ENOTTY;
2181 		goto unlock;
2182 	}
2183 	error = VOP_GETATTR(vp, &va, cred);
2184 	if (error != 0)
2185 		goto unlock;
2186 	noff = *off;
2187 	if (noff >= va.va_size) {
2188 		error = ENXIO;
2189 		goto unlock;
2190 	}
2191 	bsize = vp->v_mount->mnt_stat.f_iosize;
2192 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2193 	    noff % bsize) {
2194 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2195 		if (error == EOPNOTSUPP) {
2196 			error = ENOTTY;
2197 			goto unlock;
2198 		}
2199 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2200 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2201 			noff = bn * bsize;
2202 			if (noff < *off)
2203 				noff = *off;
2204 			goto unlock;
2205 		}
2206 	}
2207 	if (noff > va.va_size)
2208 		noff = va.va_size;
2209 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2210 	if (cmd == FIOSEEKDATA)
2211 		error = ENXIO;
2212 unlock:
2213 	VOP_UNLOCK(vp, 0);
2214 	if (error == 0)
2215 		*off = noff;
2216 	return (error);
2217 }
2218 
2219 int
2220 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2221 {
2222 	struct ucred *cred;
2223 	struct vnode *vp;
2224 	struct vattr vattr;
2225 	off_t foffset, size;
2226 	int error, noneg;
2227 
2228 	cred = td->td_ucred;
2229 	vp = fp->f_vnode;
2230 	foffset = foffset_lock(fp, 0);
2231 	noneg = (vp->v_type != VCHR);
2232 	error = 0;
2233 	switch (whence) {
2234 	case L_INCR:
2235 		if (noneg &&
2236 		    (foffset < 0 ||
2237 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2238 			error = EOVERFLOW;
2239 			break;
2240 		}
2241 		offset += foffset;
2242 		break;
2243 	case L_XTND:
2244 		vn_lock(vp, LK_SHARED | LK_RETRY);
2245 		error = VOP_GETATTR(vp, &vattr, cred);
2246 		VOP_UNLOCK(vp, 0);
2247 		if (error)
2248 			break;
2249 
2250 		/*
2251 		 * If the file references a disk device, then fetch
2252 		 * the media size and use that to determine the ending
2253 		 * offset.
2254 		 */
2255 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2256 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2257 			vattr.va_size = size;
2258 		if (noneg &&
2259 		    (vattr.va_size > OFF_MAX ||
2260 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2261 			error = EOVERFLOW;
2262 			break;
2263 		}
2264 		offset += vattr.va_size;
2265 		break;
2266 	case L_SET:
2267 		break;
2268 	case SEEK_DATA:
2269 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2270 		break;
2271 	case SEEK_HOLE:
2272 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2273 		break;
2274 	default:
2275 		error = EINVAL;
2276 	}
2277 	if (error == 0 && noneg && offset < 0)
2278 		error = EINVAL;
2279 	if (error != 0)
2280 		goto drop;
2281 	VFS_KNOTE_UNLOCKED(vp, 0);
2282 	td->td_uretoff.tdu_off = offset;
2283 drop:
2284 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2285 	return (error);
2286 }
2287 
2288 int
2289 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2290     struct thread *td)
2291 {
2292 	int error;
2293 
2294 	/*
2295 	 * Grant permission if the caller is the owner of the file, or
2296 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2297 	 * on the file.  If the time pointer is null, then write
2298 	 * permission on the file is also sufficient.
2299 	 *
2300 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2301 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2302 	 * will be allowed to set the times [..] to the current
2303 	 * server time.
2304 	 */
2305 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2306 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2307 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2308 	return (error);
2309 }
2310 
2311 int
2312 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2313 {
2314 	struct vnode *vp;
2315 	int error;
2316 
2317 	if (fp->f_type == DTYPE_FIFO)
2318 		kif->kf_type = KF_TYPE_FIFO;
2319 	else
2320 		kif->kf_type = KF_TYPE_VNODE;
2321 	vp = fp->f_vnode;
2322 	vref(vp);
2323 	FILEDESC_SUNLOCK(fdp);
2324 	error = vn_fill_kinfo_vnode(vp, kif);
2325 	vrele(vp);
2326 	FILEDESC_SLOCK(fdp);
2327 	return (error);
2328 }
2329 
2330 static inline void
2331 vn_fill_junk(struct kinfo_file *kif)
2332 {
2333 	size_t len, olen;
2334 
2335 	/*
2336 	 * Simulate vn_fullpath returning changing values for a given
2337 	 * vp during e.g. coredump.
2338 	 */
2339 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2340 	olen = strlen(kif->kf_path);
2341 	if (len < olen)
2342 		strcpy(&kif->kf_path[len - 1], "$");
2343 	else
2344 		for (; olen < len; olen++)
2345 			strcpy(&kif->kf_path[olen], "A");
2346 }
2347 
2348 int
2349 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2350 {
2351 	struct vattr va;
2352 	char *fullpath, *freepath;
2353 	int error;
2354 
2355 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2356 	freepath = NULL;
2357 	fullpath = "-";
2358 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2359 	if (error == 0) {
2360 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2361 	}
2362 	if (freepath != NULL)
2363 		free(freepath, M_TEMP);
2364 
2365 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2366 		vn_fill_junk(kif);
2367 	);
2368 
2369 	/*
2370 	 * Retrieve vnode attributes.
2371 	 */
2372 	va.va_fsid = VNOVAL;
2373 	va.va_rdev = NODEV;
2374 	vn_lock(vp, LK_SHARED | LK_RETRY);
2375 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2376 	VOP_UNLOCK(vp, 0);
2377 	if (error != 0)
2378 		return (error);
2379 	if (va.va_fsid != VNOVAL)
2380 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2381 	else
2382 		kif->kf_un.kf_file.kf_file_fsid =
2383 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2384 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2385 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2386 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2387 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2388 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2389 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2390 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2391 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2392 	return (0);
2393 }
2394 
2395 int
2396 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2397     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2398     struct thread *td)
2399 {
2400 #ifdef HWPMC_HOOKS
2401 	struct pmckern_map_in pkm;
2402 #endif
2403 	struct mount *mp;
2404 	struct vnode *vp;
2405 	vm_object_t object;
2406 	vm_prot_t maxprot;
2407 	boolean_t writecounted;
2408 	int error;
2409 
2410 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2411     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2412 	/*
2413 	 * POSIX shared-memory objects are defined to have
2414 	 * kernel persistence, and are not defined to support
2415 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2416 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2417 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2418 	 * flag to request this behavior.
2419 	 */
2420 	if ((fp->f_flag & FPOSIXSHM) != 0)
2421 		flags |= MAP_NOSYNC;
2422 #endif
2423 	vp = fp->f_vnode;
2424 
2425 	/*
2426 	 * Ensure that file and memory protections are
2427 	 * compatible.  Note that we only worry about
2428 	 * writability if mapping is shared; in this case,
2429 	 * current and max prot are dictated by the open file.
2430 	 * XXX use the vnode instead?  Problem is: what
2431 	 * credentials do we use for determination? What if
2432 	 * proc does a setuid?
2433 	 */
2434 	mp = vp->v_mount;
2435 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2436 		maxprot = VM_PROT_NONE;
2437 		if ((prot & VM_PROT_EXECUTE) != 0)
2438 			return (EACCES);
2439 	} else
2440 		maxprot = VM_PROT_EXECUTE;
2441 	if ((fp->f_flag & FREAD) != 0)
2442 		maxprot |= VM_PROT_READ;
2443 	else if ((prot & VM_PROT_READ) != 0)
2444 		return (EACCES);
2445 
2446 	/*
2447 	 * If we are sharing potential changes via MAP_SHARED and we
2448 	 * are trying to get write permission although we opened it
2449 	 * without asking for it, bail out.
2450 	 */
2451 	if ((flags & MAP_SHARED) != 0) {
2452 		if ((fp->f_flag & FWRITE) != 0)
2453 			maxprot |= VM_PROT_WRITE;
2454 		else if ((prot & VM_PROT_WRITE) != 0)
2455 			return (EACCES);
2456 	} else {
2457 		maxprot |= VM_PROT_WRITE;
2458 		cap_maxprot |= VM_PROT_WRITE;
2459 	}
2460 	maxprot &= cap_maxprot;
2461 
2462 	/*
2463 	 * For regular files and shared memory, POSIX requires that
2464 	 * the value of foff be a legitimate offset within the data
2465 	 * object.  In particular, negative offsets are invalid.
2466 	 * Blocking negative offsets and overflows here avoids
2467 	 * possible wraparound or user-level access into reserved
2468 	 * ranges of the data object later.  In contrast, POSIX does
2469 	 * not dictate how offsets are used by device drivers, so in
2470 	 * the case of a device mapping a negative offset is passed
2471 	 * on.
2472 	 */
2473 	if (
2474 #ifdef _LP64
2475 	    size > OFF_MAX ||
2476 #endif
2477 	    foff < 0 || foff > OFF_MAX - size)
2478 		return (EINVAL);
2479 
2480 	writecounted = FALSE;
2481 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2482 	    &foff, &object, &writecounted);
2483 	if (error != 0)
2484 		return (error);
2485 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2486 	    foff, writecounted, td);
2487 	if (error != 0) {
2488 		/*
2489 		 * If this mapping was accounted for in the vnode's
2490 		 * writecount, then undo that now.
2491 		 */
2492 		if (writecounted)
2493 			vnode_pager_release_writecount(object, 0, size);
2494 		vm_object_deallocate(object);
2495 	}
2496 #ifdef HWPMC_HOOKS
2497 	/* Inform hwpmc(4) if an executable is being mapped. */
2498 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2499 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2500 			pkm.pm_file = vp;
2501 			pkm.pm_address = (uintptr_t) *addr;
2502 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2503 		}
2504 	}
2505 #endif
2506 	return (error);
2507 }
2508 
2509 void
2510 vn_fsid(struct vnode *vp, struct vattr *va)
2511 {
2512 	fsid_t *f;
2513 
2514 	f = &vp->v_mount->mnt_stat.f_fsid;
2515 	va->va_fsid = (uint32_t)f->val[1];
2516 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2517 	va->va_fsid += (uint32_t)f->val[0];
2518 }
2519 
2520 int
2521 vn_fsync_buf(struct vnode *vp, int waitfor)
2522 {
2523 	struct buf *bp, *nbp;
2524 	struct bufobj *bo;
2525 	struct mount *mp;
2526 	int error, maxretry;
2527 
2528 	error = 0;
2529 	maxretry = 10000;     /* large, arbitrarily chosen */
2530 	mp = NULL;
2531 	if (vp->v_type == VCHR) {
2532 		VI_LOCK(vp);
2533 		mp = vp->v_rdev->si_mountpt;
2534 		VI_UNLOCK(vp);
2535 	}
2536 	bo = &vp->v_bufobj;
2537 	BO_LOCK(bo);
2538 loop1:
2539 	/*
2540 	 * MARK/SCAN initialization to avoid infinite loops.
2541 	 */
2542         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2543 		bp->b_vflags &= ~BV_SCANNED;
2544 		bp->b_error = 0;
2545 	}
2546 
2547 	/*
2548 	 * Flush all dirty buffers associated with a vnode.
2549 	 */
2550 loop2:
2551 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2552 		if ((bp->b_vflags & BV_SCANNED) != 0)
2553 			continue;
2554 		bp->b_vflags |= BV_SCANNED;
2555 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2556 			if (waitfor != MNT_WAIT)
2557 				continue;
2558 			if (BUF_LOCK(bp,
2559 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2560 			    BO_LOCKPTR(bo)) != 0) {
2561 				BO_LOCK(bo);
2562 				goto loop1;
2563 			}
2564 			BO_LOCK(bo);
2565 		}
2566 		BO_UNLOCK(bo);
2567 		KASSERT(bp->b_bufobj == bo,
2568 		    ("bp %p wrong b_bufobj %p should be %p",
2569 		    bp, bp->b_bufobj, bo));
2570 		if ((bp->b_flags & B_DELWRI) == 0)
2571 			panic("fsync: not dirty");
2572 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2573 			vfs_bio_awrite(bp);
2574 		} else {
2575 			bremfree(bp);
2576 			bawrite(bp);
2577 		}
2578 		if (maxretry < 1000)
2579 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2580 		BO_LOCK(bo);
2581 		goto loop2;
2582 	}
2583 
2584 	/*
2585 	 * If synchronous the caller expects us to completely resolve all
2586 	 * dirty buffers in the system.  Wait for in-progress I/O to
2587 	 * complete (which could include background bitmap writes), then
2588 	 * retry if dirty blocks still exist.
2589 	 */
2590 	if (waitfor == MNT_WAIT) {
2591 		bufobj_wwait(bo, 0, 0);
2592 		if (bo->bo_dirty.bv_cnt > 0) {
2593 			/*
2594 			 * If we are unable to write any of these buffers
2595 			 * then we fail now rather than trying endlessly
2596 			 * to write them out.
2597 			 */
2598 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2599 				if ((error = bp->b_error) != 0)
2600 					break;
2601 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2602 			    (error == 0 && --maxretry >= 0))
2603 				goto loop1;
2604 			if (error == 0)
2605 				error = EAGAIN;
2606 		}
2607 	}
2608 	BO_UNLOCK(bo);
2609 	if (error != 0)
2610 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2611 
2612 	return (error);
2613 }
2614