xref: /freebsd/sys/kern/vfs_vnops.c (revision af71f40a983c21a3c4a5c7c3d88d566e721bae45)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/disk.h>
49 #include <sys/fail.h>
50 #include <sys/fcntl.h>
51 #include <sys/file.h>
52 #include <sys/kdb.h>
53 #include <sys/stat.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/limits.h>
57 #include <sys/lock.h>
58 #include <sys/mman.h>
59 #include <sys/mount.h>
60 #include <sys/mutex.h>
61 #include <sys/namei.h>
62 #include <sys/vnode.h>
63 #include <sys/bio.h>
64 #include <sys/buf.h>
65 #include <sys/filio.h>
66 #include <sys/resourcevar.h>
67 #include <sys/rwlock.h>
68 #include <sys/sx.h>
69 #include <sys/sysctl.h>
70 #include <sys/ttycom.h>
71 #include <sys/conf.h>
72 #include <sys/syslog.h>
73 #include <sys/unistd.h>
74 #include <sys/user.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_extern.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vnode_pager.h>
86 
87 static fo_rdwr_t	vn_read;
88 static fo_rdwr_t	vn_write;
89 static fo_rdwr_t	vn_io_fault;
90 static fo_truncate_t	vn_truncate;
91 static fo_ioctl_t	vn_ioctl;
92 static fo_poll_t	vn_poll;
93 static fo_kqfilter_t	vn_kqfilter;
94 static fo_stat_t	vn_statfile;
95 static fo_close_t	vn_closefile;
96 static fo_mmap_t	vn_mmap;
97 
98 struct 	fileops vnops = {
99 	.fo_read = vn_io_fault,
100 	.fo_write = vn_io_fault,
101 	.fo_truncate = vn_truncate,
102 	.fo_ioctl = vn_ioctl,
103 	.fo_poll = vn_poll,
104 	.fo_kqfilter = vn_kqfilter,
105 	.fo_stat = vn_statfile,
106 	.fo_close = vn_closefile,
107 	.fo_chmod = vn_chmod,
108 	.fo_chown = vn_chown,
109 	.fo_sendfile = vn_sendfile,
110 	.fo_seek = vn_seek,
111 	.fo_fill_kinfo = vn_fill_kinfo,
112 	.fo_mmap = vn_mmap,
113 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
114 };
115 
116 static const int io_hold_cnt = 16;
117 static int vn_io_fault_enable = 1;
118 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
119     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
120 static int vn_io_fault_prefault = 0;
121 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
122     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
123 static u_long vn_io_faults_cnt;
124 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
125     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
126 
127 /*
128  * Returns true if vn_io_fault mode of handling the i/o request should
129  * be used.
130  */
131 static bool
132 do_vn_io_fault(struct vnode *vp, struct uio *uio)
133 {
134 	struct mount *mp;
135 
136 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
137 	    (mp = vp->v_mount) != NULL &&
138 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
139 }
140 
141 /*
142  * Structure used to pass arguments to vn_io_fault1(), to do either
143  * file- or vnode-based I/O calls.
144  */
145 struct vn_io_fault_args {
146 	enum {
147 		VN_IO_FAULT_FOP,
148 		VN_IO_FAULT_VOP
149 	} kind;
150 	struct ucred *cred;
151 	int flags;
152 	union {
153 		struct fop_args_tag {
154 			struct file *fp;
155 			fo_rdwr_t *doio;
156 		} fop_args;
157 		struct vop_args_tag {
158 			struct vnode *vp;
159 		} vop_args;
160 	} args;
161 };
162 
163 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
164     struct vn_io_fault_args *args, struct thread *td);
165 
166 int
167 vn_open(ndp, flagp, cmode, fp)
168 	struct nameidata *ndp;
169 	int *flagp, cmode;
170 	struct file *fp;
171 {
172 	struct thread *td = ndp->ni_cnd.cn_thread;
173 
174 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
175 }
176 
177 /*
178  * Common code for vnode open operations via a name lookup.
179  * Lookup the vnode and invoke VOP_CREATE if needed.
180  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
181  *
182  * Note that this does NOT free nameidata for the successful case,
183  * due to the NDINIT being done elsewhere.
184  */
185 int
186 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
187     struct ucred *cred, struct file *fp)
188 {
189 	struct vnode *vp;
190 	struct mount *mp;
191 	struct thread *td = ndp->ni_cnd.cn_thread;
192 	struct vattr vat;
193 	struct vattr *vap = &vat;
194 	int fmode, error;
195 
196 restart:
197 	fmode = *flagp;
198 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
199 	    O_EXCL | O_DIRECTORY))
200 		return (EINVAL);
201 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
202 		ndp->ni_cnd.cn_nameiop = CREATE;
203 		/*
204 		 * Set NOCACHE to avoid flushing the cache when
205 		 * rolling in many files at once.
206 		*/
207 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
208 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
209 			ndp->ni_cnd.cn_flags |= FOLLOW;
210 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
211 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
212 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
213 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
214 		bwillwrite();
215 		if ((error = namei(ndp)) != 0)
216 			return (error);
217 		if (ndp->ni_vp == NULL) {
218 			VATTR_NULL(vap);
219 			vap->va_type = VREG;
220 			vap->va_mode = cmode;
221 			if (fmode & O_EXCL)
222 				vap->va_vaflags |= VA_EXCLUSIVE;
223 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
224 				NDFREE(ndp, NDF_ONLY_PNBUF);
225 				vput(ndp->ni_dvp);
226 				if ((error = vn_start_write(NULL, &mp,
227 				    V_XSLEEP | PCATCH)) != 0)
228 					return (error);
229 				goto restart;
230 			}
231 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
232 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
233 #ifdef MAC
234 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
235 			    &ndp->ni_cnd, vap);
236 			if (error == 0)
237 #endif
238 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
239 						   &ndp->ni_cnd, vap);
240 			vput(ndp->ni_dvp);
241 			vn_finished_write(mp);
242 			if (error) {
243 				NDFREE(ndp, NDF_ONLY_PNBUF);
244 				return (error);
245 			}
246 			fmode &= ~O_TRUNC;
247 			vp = ndp->ni_vp;
248 		} else {
249 			if (ndp->ni_dvp == ndp->ni_vp)
250 				vrele(ndp->ni_dvp);
251 			else
252 				vput(ndp->ni_dvp);
253 			ndp->ni_dvp = NULL;
254 			vp = ndp->ni_vp;
255 			if (fmode & O_EXCL) {
256 				error = EEXIST;
257 				goto bad;
258 			}
259 			fmode &= ~O_CREAT;
260 		}
261 	} else {
262 		ndp->ni_cnd.cn_nameiop = LOOKUP;
263 		ndp->ni_cnd.cn_flags = ISOPEN |
264 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
265 		if (!(fmode & FWRITE))
266 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
267 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
268 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
269 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
270 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
271 		if ((error = namei(ndp)) != 0)
272 			return (error);
273 		vp = ndp->ni_vp;
274 	}
275 	error = vn_open_vnode(vp, fmode, cred, td, fp);
276 	if (error)
277 		goto bad;
278 	*flagp = fmode;
279 	return (0);
280 bad:
281 	NDFREE(ndp, NDF_ONLY_PNBUF);
282 	vput(vp);
283 	*flagp = fmode;
284 	ndp->ni_vp = NULL;
285 	return (error);
286 }
287 
288 /*
289  * Common code for vnode open operations once a vnode is located.
290  * Check permissions, and call the VOP_OPEN routine.
291  */
292 int
293 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
294     struct thread *td, struct file *fp)
295 {
296 	struct mount *mp;
297 	accmode_t accmode;
298 	struct flock lf;
299 	int error, have_flock, lock_flags, type;
300 
301 	if (vp->v_type == VLNK)
302 		return (EMLINK);
303 	if (vp->v_type == VSOCK)
304 		return (EOPNOTSUPP);
305 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
306 		return (ENOTDIR);
307 	accmode = 0;
308 	if (fmode & (FWRITE | O_TRUNC)) {
309 		if (vp->v_type == VDIR)
310 			return (EISDIR);
311 		accmode |= VWRITE;
312 	}
313 	if (fmode & FREAD)
314 		accmode |= VREAD;
315 	if (fmode & FEXEC)
316 		accmode |= VEXEC;
317 	if ((fmode & O_APPEND) && (fmode & FWRITE))
318 		accmode |= VAPPEND;
319 #ifdef MAC
320 	if (fmode & O_CREAT)
321 		accmode |= VCREAT;
322 	if (fmode & O_VERIFY)
323 		accmode |= VVERIFY;
324 	error = mac_vnode_check_open(cred, vp, accmode);
325 	if (error)
326 		return (error);
327 
328 	accmode &= ~(VCREAT | VVERIFY);
329 #endif
330 	if ((fmode & O_CREAT) == 0) {
331 		if (accmode & VWRITE) {
332 			error = vn_writechk(vp);
333 			if (error)
334 				return (error);
335 		}
336 		if (accmode) {
337 		        error = VOP_ACCESS(vp, accmode, cred, td);
338 			if (error)
339 				return (error);
340 		}
341 	}
342 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
343 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
344 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
345 		return (error);
346 
347 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
348 		KASSERT(fp != NULL, ("open with flock requires fp"));
349 		lock_flags = VOP_ISLOCKED(vp);
350 		VOP_UNLOCK(vp, 0);
351 		lf.l_whence = SEEK_SET;
352 		lf.l_start = 0;
353 		lf.l_len = 0;
354 		if (fmode & O_EXLOCK)
355 			lf.l_type = F_WRLCK;
356 		else
357 			lf.l_type = F_RDLCK;
358 		type = F_FLOCK;
359 		if ((fmode & FNONBLOCK) == 0)
360 			type |= F_WAIT;
361 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
362 		have_flock = (error == 0);
363 		vn_lock(vp, lock_flags | LK_RETRY);
364 		if (error == 0 && vp->v_iflag & VI_DOOMED)
365 			error = ENOENT;
366 		/*
367 		 * Another thread might have used this vnode as an
368 		 * executable while the vnode lock was dropped.
369 		 * Ensure the vnode is still able to be opened for
370 		 * writing after the lock has been obtained.
371 		 */
372 		if (error == 0 && accmode & VWRITE)
373 			error = vn_writechk(vp);
374 		if (error) {
375 			VOP_UNLOCK(vp, 0);
376 			if (have_flock) {
377 				lf.l_whence = SEEK_SET;
378 				lf.l_start = 0;
379 				lf.l_len = 0;
380 				lf.l_type = F_UNLCK;
381 				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
382 				    F_FLOCK);
383 			}
384 			vn_start_write(vp, &mp, V_WAIT);
385 			vn_lock(vp, lock_flags | LK_RETRY);
386 			(void)VOP_CLOSE(vp, fmode, cred, td);
387 			vn_finished_write(mp);
388 			/* Prevent second close from fdrop()->vn_close(). */
389 			if (fp != NULL)
390 				fp->f_ops= &badfileops;
391 			return (error);
392 		}
393 		fp->f_flag |= FHASLOCK;
394 	}
395 	if (fmode & FWRITE) {
396 		VOP_ADD_WRITECOUNT(vp, 1);
397 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
398 		    __func__, vp, vp->v_writecount);
399 	}
400 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
401 	return (0);
402 }
403 
404 /*
405  * Check for write permissions on the specified vnode.
406  * Prototype text segments cannot be written.
407  */
408 int
409 vn_writechk(vp)
410 	register struct vnode *vp;
411 {
412 
413 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
414 	/*
415 	 * If there's shared text associated with
416 	 * the vnode, try to free it up once.  If
417 	 * we fail, we can't allow writing.
418 	 */
419 	if (VOP_IS_TEXT(vp))
420 		return (ETXTBSY);
421 
422 	return (0);
423 }
424 
425 /*
426  * Vnode close call
427  */
428 int
429 vn_close(vp, flags, file_cred, td)
430 	register struct vnode *vp;
431 	int flags;
432 	struct ucred *file_cred;
433 	struct thread *td;
434 {
435 	struct mount *mp;
436 	int error, lock_flags;
437 
438 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
439 	    MNT_EXTENDED_SHARED(vp->v_mount))
440 		lock_flags = LK_SHARED;
441 	else
442 		lock_flags = LK_EXCLUSIVE;
443 
444 	vn_start_write(vp, &mp, V_WAIT);
445 	vn_lock(vp, lock_flags | LK_RETRY);
446 	if (flags & FWRITE) {
447 		VNASSERT(vp->v_writecount > 0, vp,
448 		    ("vn_close: negative writecount"));
449 		VOP_ADD_WRITECOUNT(vp, -1);
450 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
451 		    __func__, vp, vp->v_writecount);
452 	}
453 	error = VOP_CLOSE(vp, flags, file_cred, td);
454 	vput(vp);
455 	vn_finished_write(mp);
456 	return (error);
457 }
458 
459 /*
460  * Heuristic to detect sequential operation.
461  */
462 static int
463 sequential_heuristic(struct uio *uio, struct file *fp)
464 {
465 
466 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
467 	if (fp->f_flag & FRDAHEAD)
468 		return (fp->f_seqcount << IO_SEQSHIFT);
469 
470 	/*
471 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
472 	 * that the first I/O is normally considered to be slightly
473 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
474 	 * unless previous seeks have reduced f_seqcount to 0, in which
475 	 * case offset 0 is not special.
476 	 */
477 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
478 	    uio->uio_offset == fp->f_nextoff) {
479 		/*
480 		 * f_seqcount is in units of fixed-size blocks so that it
481 		 * depends mainly on the amount of sequential I/O and not
482 		 * much on the number of sequential I/O's.  The fixed size
483 		 * of 16384 is hard-coded here since it is (not quite) just
484 		 * a magic size that works well here.  This size is more
485 		 * closely related to the best I/O size for real disks than
486 		 * to any block size used by software.
487 		 */
488 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
489 		if (fp->f_seqcount > IO_SEQMAX)
490 			fp->f_seqcount = IO_SEQMAX;
491 		return (fp->f_seqcount << IO_SEQSHIFT);
492 	}
493 
494 	/* Not sequential.  Quickly draw-down sequentiality. */
495 	if (fp->f_seqcount > 1)
496 		fp->f_seqcount = 1;
497 	else
498 		fp->f_seqcount = 0;
499 	return (0);
500 }
501 
502 /*
503  * Package up an I/O request on a vnode into a uio and do it.
504  */
505 int
506 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
507     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
508     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
509 {
510 	struct uio auio;
511 	struct iovec aiov;
512 	struct mount *mp;
513 	struct ucred *cred;
514 	void *rl_cookie;
515 	struct vn_io_fault_args args;
516 	int error, lock_flags;
517 
518 	auio.uio_iov = &aiov;
519 	auio.uio_iovcnt = 1;
520 	aiov.iov_base = base;
521 	aiov.iov_len = len;
522 	auio.uio_resid = len;
523 	auio.uio_offset = offset;
524 	auio.uio_segflg = segflg;
525 	auio.uio_rw = rw;
526 	auio.uio_td = td;
527 	error = 0;
528 
529 	if ((ioflg & IO_NODELOCKED) == 0) {
530 		if ((ioflg & IO_RANGELOCKED) == 0) {
531 			if (rw == UIO_READ) {
532 				rl_cookie = vn_rangelock_rlock(vp, offset,
533 				    offset + len);
534 			} else {
535 				rl_cookie = vn_rangelock_wlock(vp, offset,
536 				    offset + len);
537 			}
538 		} else
539 			rl_cookie = NULL;
540 		mp = NULL;
541 		if (rw == UIO_WRITE) {
542 			if (vp->v_type != VCHR &&
543 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
544 			    != 0)
545 				goto out;
546 			if (MNT_SHARED_WRITES(mp) ||
547 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
548 				lock_flags = LK_SHARED;
549 			else
550 				lock_flags = LK_EXCLUSIVE;
551 		} else
552 			lock_flags = LK_SHARED;
553 		vn_lock(vp, lock_flags | LK_RETRY);
554 	} else
555 		rl_cookie = NULL;
556 
557 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
558 #ifdef MAC
559 	if ((ioflg & IO_NOMACCHECK) == 0) {
560 		if (rw == UIO_READ)
561 			error = mac_vnode_check_read(active_cred, file_cred,
562 			    vp);
563 		else
564 			error = mac_vnode_check_write(active_cred, file_cred,
565 			    vp);
566 	}
567 #endif
568 	if (error == 0) {
569 		if (file_cred != NULL)
570 			cred = file_cred;
571 		else
572 			cred = active_cred;
573 		if (do_vn_io_fault(vp, &auio)) {
574 			args.kind = VN_IO_FAULT_VOP;
575 			args.cred = cred;
576 			args.flags = ioflg;
577 			args.args.vop_args.vp = vp;
578 			error = vn_io_fault1(vp, &auio, &args, td);
579 		} else if (rw == UIO_READ) {
580 			error = VOP_READ(vp, &auio, ioflg, cred);
581 		} else /* if (rw == UIO_WRITE) */ {
582 			error = VOP_WRITE(vp, &auio, ioflg, cred);
583 		}
584 	}
585 	if (aresid)
586 		*aresid = auio.uio_resid;
587 	else
588 		if (auio.uio_resid && error == 0)
589 			error = EIO;
590 	if ((ioflg & IO_NODELOCKED) == 0) {
591 		VOP_UNLOCK(vp, 0);
592 		if (mp != NULL)
593 			vn_finished_write(mp);
594 	}
595  out:
596 	if (rl_cookie != NULL)
597 		vn_rangelock_unlock(vp, rl_cookie);
598 	return (error);
599 }
600 
601 /*
602  * Package up an I/O request on a vnode into a uio and do it.  The I/O
603  * request is split up into smaller chunks and we try to avoid saturating
604  * the buffer cache while potentially holding a vnode locked, so we
605  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
606  * to give other processes a chance to lock the vnode (either other processes
607  * core'ing the same binary, or unrelated processes scanning the directory).
608  */
609 int
610 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
611     file_cred, aresid, td)
612 	enum uio_rw rw;
613 	struct vnode *vp;
614 	void *base;
615 	size_t len;
616 	off_t offset;
617 	enum uio_seg segflg;
618 	int ioflg;
619 	struct ucred *active_cred;
620 	struct ucred *file_cred;
621 	size_t *aresid;
622 	struct thread *td;
623 {
624 	int error = 0;
625 	ssize_t iaresid;
626 
627 	do {
628 		int chunk;
629 
630 		/*
631 		 * Force `offset' to a multiple of MAXBSIZE except possibly
632 		 * for the first chunk, so that filesystems only need to
633 		 * write full blocks except possibly for the first and last
634 		 * chunks.
635 		 */
636 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
637 
638 		if (chunk > len)
639 			chunk = len;
640 		if (rw != UIO_READ && vp->v_type == VREG)
641 			bwillwrite();
642 		iaresid = 0;
643 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
644 		    ioflg, active_cred, file_cred, &iaresid, td);
645 		len -= chunk;	/* aresid calc already includes length */
646 		if (error)
647 			break;
648 		offset += chunk;
649 		base = (char *)base + chunk;
650 		kern_yield(PRI_USER);
651 	} while (len);
652 	if (aresid)
653 		*aresid = len + iaresid;
654 	return (error);
655 }
656 
657 off_t
658 foffset_lock(struct file *fp, int flags)
659 {
660 	struct mtx *mtxp;
661 	off_t res;
662 
663 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
664 
665 #if OFF_MAX <= LONG_MAX
666 	/*
667 	 * Caller only wants the current f_offset value.  Assume that
668 	 * the long and shorter integer types reads are atomic.
669 	 */
670 	if ((flags & FOF_NOLOCK) != 0)
671 		return (fp->f_offset);
672 #endif
673 
674 	/*
675 	 * According to McKusick the vn lock was protecting f_offset here.
676 	 * It is now protected by the FOFFSET_LOCKED flag.
677 	 */
678 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
679 	mtx_lock(mtxp);
680 	if ((flags & FOF_NOLOCK) == 0) {
681 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
682 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
683 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
684 			    "vofflock", 0);
685 		}
686 		fp->f_vnread_flags |= FOFFSET_LOCKED;
687 	}
688 	res = fp->f_offset;
689 	mtx_unlock(mtxp);
690 	return (res);
691 }
692 
693 void
694 foffset_unlock(struct file *fp, off_t val, int flags)
695 {
696 	struct mtx *mtxp;
697 
698 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
699 
700 #if OFF_MAX <= LONG_MAX
701 	if ((flags & FOF_NOLOCK) != 0) {
702 		if ((flags & FOF_NOUPDATE) == 0)
703 			fp->f_offset = val;
704 		if ((flags & FOF_NEXTOFF) != 0)
705 			fp->f_nextoff = val;
706 		return;
707 	}
708 #endif
709 
710 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
711 	mtx_lock(mtxp);
712 	if ((flags & FOF_NOUPDATE) == 0)
713 		fp->f_offset = val;
714 	if ((flags & FOF_NEXTOFF) != 0)
715 		fp->f_nextoff = val;
716 	if ((flags & FOF_NOLOCK) == 0) {
717 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
718 		    ("Lost FOFFSET_LOCKED"));
719 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
720 			wakeup(&fp->f_vnread_flags);
721 		fp->f_vnread_flags = 0;
722 	}
723 	mtx_unlock(mtxp);
724 }
725 
726 void
727 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
728 {
729 
730 	if ((flags & FOF_OFFSET) == 0)
731 		uio->uio_offset = foffset_lock(fp, flags);
732 }
733 
734 void
735 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
736 {
737 
738 	if ((flags & FOF_OFFSET) == 0)
739 		foffset_unlock(fp, uio->uio_offset, flags);
740 }
741 
742 static int
743 get_advice(struct file *fp, struct uio *uio)
744 {
745 	struct mtx *mtxp;
746 	int ret;
747 
748 	ret = POSIX_FADV_NORMAL;
749 	if (fp->f_advice == NULL)
750 		return (ret);
751 
752 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
753 	mtx_lock(mtxp);
754 	if (uio->uio_offset >= fp->f_advice->fa_start &&
755 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
756 		ret = fp->f_advice->fa_advice;
757 	mtx_unlock(mtxp);
758 	return (ret);
759 }
760 
761 /*
762  * File table vnode read routine.
763  */
764 static int
765 vn_read(fp, uio, active_cred, flags, td)
766 	struct file *fp;
767 	struct uio *uio;
768 	struct ucred *active_cred;
769 	int flags;
770 	struct thread *td;
771 {
772 	struct vnode *vp;
773 	off_t orig_offset;
774 	int error, ioflag;
775 	int advice;
776 
777 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
778 	    uio->uio_td, td));
779 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
780 	vp = fp->f_vnode;
781 	ioflag = 0;
782 	if (fp->f_flag & FNONBLOCK)
783 		ioflag |= IO_NDELAY;
784 	if (fp->f_flag & O_DIRECT)
785 		ioflag |= IO_DIRECT;
786 	advice = get_advice(fp, uio);
787 	vn_lock(vp, LK_SHARED | LK_RETRY);
788 
789 	switch (advice) {
790 	case POSIX_FADV_NORMAL:
791 	case POSIX_FADV_SEQUENTIAL:
792 	case POSIX_FADV_NOREUSE:
793 		ioflag |= sequential_heuristic(uio, fp);
794 		break;
795 	case POSIX_FADV_RANDOM:
796 		/* Disable read-ahead for random I/O. */
797 		break;
798 	}
799 	orig_offset = uio->uio_offset;
800 
801 #ifdef MAC
802 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
803 	if (error == 0)
804 #endif
805 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
806 	fp->f_nextoff = uio->uio_offset;
807 	VOP_UNLOCK(vp, 0);
808 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
809 	    orig_offset != uio->uio_offset)
810 		/*
811 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
812 		 * for the backing file after a POSIX_FADV_NOREUSE
813 		 * read(2).
814 		 */
815 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
816 		    POSIX_FADV_DONTNEED);
817 	return (error);
818 }
819 
820 /*
821  * File table vnode write routine.
822  */
823 static int
824 vn_write(fp, uio, active_cred, flags, td)
825 	struct file *fp;
826 	struct uio *uio;
827 	struct ucred *active_cred;
828 	int flags;
829 	struct thread *td;
830 {
831 	struct vnode *vp;
832 	struct mount *mp;
833 	off_t orig_offset;
834 	int error, ioflag, lock_flags;
835 	int advice;
836 
837 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
838 	    uio->uio_td, td));
839 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
840 	vp = fp->f_vnode;
841 	if (vp->v_type == VREG)
842 		bwillwrite();
843 	ioflag = IO_UNIT;
844 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
845 		ioflag |= IO_APPEND;
846 	if (fp->f_flag & FNONBLOCK)
847 		ioflag |= IO_NDELAY;
848 	if (fp->f_flag & O_DIRECT)
849 		ioflag |= IO_DIRECT;
850 	if ((fp->f_flag & O_FSYNC) ||
851 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
852 		ioflag |= IO_SYNC;
853 	mp = NULL;
854 	if (vp->v_type != VCHR &&
855 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
856 		goto unlock;
857 
858 	advice = get_advice(fp, uio);
859 
860 	if (MNT_SHARED_WRITES(mp) ||
861 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
862 		lock_flags = LK_SHARED;
863 	} else {
864 		lock_flags = LK_EXCLUSIVE;
865 	}
866 
867 	vn_lock(vp, lock_flags | LK_RETRY);
868 	switch (advice) {
869 	case POSIX_FADV_NORMAL:
870 	case POSIX_FADV_SEQUENTIAL:
871 	case POSIX_FADV_NOREUSE:
872 		ioflag |= sequential_heuristic(uio, fp);
873 		break;
874 	case POSIX_FADV_RANDOM:
875 		/* XXX: Is this correct? */
876 		break;
877 	}
878 	orig_offset = uio->uio_offset;
879 
880 #ifdef MAC
881 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
882 	if (error == 0)
883 #endif
884 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
885 	fp->f_nextoff = uio->uio_offset;
886 	VOP_UNLOCK(vp, 0);
887 	if (vp->v_type != VCHR)
888 		vn_finished_write(mp);
889 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
890 	    orig_offset != uio->uio_offset)
891 		/*
892 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
893 		 * for the backing file after a POSIX_FADV_NOREUSE
894 		 * write(2).
895 		 */
896 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
897 		    POSIX_FADV_DONTNEED);
898 unlock:
899 	return (error);
900 }
901 
902 /*
903  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
904  * prevent the following deadlock:
905  *
906  * Assume that the thread A reads from the vnode vp1 into userspace
907  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
908  * currently not resident, then system ends up with the call chain
909  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
910  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
911  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
912  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
913  * backed by the pages of vnode vp1, and some page in buf2 is not
914  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
915  *
916  * To prevent the lock order reversal and deadlock, vn_io_fault() does
917  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
918  * Instead, it first tries to do the whole range i/o with pagefaults
919  * disabled. If all pages in the i/o buffer are resident and mapped,
920  * VOP will succeed (ignoring the genuine filesystem errors).
921  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
922  * i/o in chunks, with all pages in the chunk prefaulted and held
923  * using vm_fault_quick_hold_pages().
924  *
925  * Filesystems using this deadlock avoidance scheme should use the
926  * array of the held pages from uio, saved in the curthread->td_ma,
927  * instead of doing uiomove().  A helper function
928  * vn_io_fault_uiomove() converts uiomove request into
929  * uiomove_fromphys() over td_ma array.
930  *
931  * Since vnode locks do not cover the whole i/o anymore, rangelocks
932  * make the current i/o request atomic with respect to other i/os and
933  * truncations.
934  */
935 
936 /*
937  * Decode vn_io_fault_args and perform the corresponding i/o.
938  */
939 static int
940 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
941     struct thread *td)
942 {
943 
944 	switch (args->kind) {
945 	case VN_IO_FAULT_FOP:
946 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
947 		    uio, args->cred, args->flags, td));
948 	case VN_IO_FAULT_VOP:
949 		if (uio->uio_rw == UIO_READ) {
950 			return (VOP_READ(args->args.vop_args.vp, uio,
951 			    args->flags, args->cred));
952 		} else if (uio->uio_rw == UIO_WRITE) {
953 			return (VOP_WRITE(args->args.vop_args.vp, uio,
954 			    args->flags, args->cred));
955 		}
956 		break;
957 	}
958 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
959 	    uio->uio_rw);
960 }
961 
962 static int
963 vn_io_fault_touch(char *base, const struct uio *uio)
964 {
965 	int r;
966 
967 	r = fubyte(base);
968 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
969 		return (EFAULT);
970 	return (0);
971 }
972 
973 static int
974 vn_io_fault_prefault_user(const struct uio *uio)
975 {
976 	char *base;
977 	const struct iovec *iov;
978 	size_t len;
979 	ssize_t resid;
980 	int error, i;
981 
982 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
983 	    ("vn_io_fault_prefault userspace"));
984 
985 	error = i = 0;
986 	iov = uio->uio_iov;
987 	resid = uio->uio_resid;
988 	base = iov->iov_base;
989 	len = iov->iov_len;
990 	while (resid > 0) {
991 		error = vn_io_fault_touch(base, uio);
992 		if (error != 0)
993 			break;
994 		if (len < PAGE_SIZE) {
995 			if (len != 0) {
996 				error = vn_io_fault_touch(base + len - 1, uio);
997 				if (error != 0)
998 					break;
999 				resid -= len;
1000 			}
1001 			if (++i >= uio->uio_iovcnt)
1002 				break;
1003 			iov = uio->uio_iov + i;
1004 			base = iov->iov_base;
1005 			len = iov->iov_len;
1006 		} else {
1007 			len -= PAGE_SIZE;
1008 			base += PAGE_SIZE;
1009 			resid -= PAGE_SIZE;
1010 		}
1011 	}
1012 	return (error);
1013 }
1014 
1015 /*
1016  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1017  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1018  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1019  * into args and call vn_io_fault1() to handle faults during the user
1020  * mode buffer accesses.
1021  */
1022 static int
1023 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1024     struct thread *td)
1025 {
1026 	vm_page_t ma[io_hold_cnt + 2];
1027 	struct uio *uio_clone, short_uio;
1028 	struct iovec short_iovec[1];
1029 	vm_page_t *prev_td_ma;
1030 	vm_prot_t prot;
1031 	vm_offset_t addr, end;
1032 	size_t len, resid;
1033 	ssize_t adv;
1034 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1035 
1036 	if (vn_io_fault_prefault) {
1037 		error = vn_io_fault_prefault_user(uio);
1038 		if (error != 0)
1039 			return (error); /* Or ignore ? */
1040 	}
1041 
1042 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1043 
1044 	/*
1045 	 * The UFS follows IO_UNIT directive and replays back both
1046 	 * uio_offset and uio_resid if an error is encountered during the
1047 	 * operation.  But, since the iovec may be already advanced,
1048 	 * uio is still in an inconsistent state.
1049 	 *
1050 	 * Cache a copy of the original uio, which is advanced to the redo
1051 	 * point using UIO_NOCOPY below.
1052 	 */
1053 	uio_clone = cloneuio(uio);
1054 	resid = uio->uio_resid;
1055 
1056 	short_uio.uio_segflg = UIO_USERSPACE;
1057 	short_uio.uio_rw = uio->uio_rw;
1058 	short_uio.uio_td = uio->uio_td;
1059 
1060 	save = vm_fault_disable_pagefaults();
1061 	error = vn_io_fault_doio(args, uio, td);
1062 	if (error != EFAULT)
1063 		goto out;
1064 
1065 	atomic_add_long(&vn_io_faults_cnt, 1);
1066 	uio_clone->uio_segflg = UIO_NOCOPY;
1067 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1068 	uio_clone->uio_segflg = uio->uio_segflg;
1069 
1070 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1071 	prev_td_ma = td->td_ma;
1072 	prev_td_ma_cnt = td->td_ma_cnt;
1073 
1074 	while (uio_clone->uio_resid != 0) {
1075 		len = uio_clone->uio_iov->iov_len;
1076 		if (len == 0) {
1077 			KASSERT(uio_clone->uio_iovcnt >= 1,
1078 			    ("iovcnt underflow"));
1079 			uio_clone->uio_iov++;
1080 			uio_clone->uio_iovcnt--;
1081 			continue;
1082 		}
1083 		if (len > io_hold_cnt * PAGE_SIZE)
1084 			len = io_hold_cnt * PAGE_SIZE;
1085 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1086 		end = round_page(addr + len);
1087 		if (end < addr) {
1088 			error = EFAULT;
1089 			break;
1090 		}
1091 		cnt = atop(end - trunc_page(addr));
1092 		/*
1093 		 * A perfectly misaligned address and length could cause
1094 		 * both the start and the end of the chunk to use partial
1095 		 * page.  +2 accounts for such a situation.
1096 		 */
1097 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1098 		    addr, len, prot, ma, io_hold_cnt + 2);
1099 		if (cnt == -1) {
1100 			error = EFAULT;
1101 			break;
1102 		}
1103 		short_uio.uio_iov = &short_iovec[0];
1104 		short_iovec[0].iov_base = (void *)addr;
1105 		short_uio.uio_iovcnt = 1;
1106 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1107 		short_uio.uio_offset = uio_clone->uio_offset;
1108 		td->td_ma = ma;
1109 		td->td_ma_cnt = cnt;
1110 
1111 		error = vn_io_fault_doio(args, &short_uio, td);
1112 		vm_page_unhold_pages(ma, cnt);
1113 		adv = len - short_uio.uio_resid;
1114 
1115 		uio_clone->uio_iov->iov_base =
1116 		    (char *)uio_clone->uio_iov->iov_base + adv;
1117 		uio_clone->uio_iov->iov_len -= adv;
1118 		uio_clone->uio_resid -= adv;
1119 		uio_clone->uio_offset += adv;
1120 
1121 		uio->uio_resid -= adv;
1122 		uio->uio_offset += adv;
1123 
1124 		if (error != 0 || adv == 0)
1125 			break;
1126 	}
1127 	td->td_ma = prev_td_ma;
1128 	td->td_ma_cnt = prev_td_ma_cnt;
1129 	curthread_pflags_restore(saveheld);
1130 out:
1131 	vm_fault_enable_pagefaults(save);
1132 	free(uio_clone, M_IOV);
1133 	return (error);
1134 }
1135 
1136 static int
1137 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1138     int flags, struct thread *td)
1139 {
1140 	fo_rdwr_t *doio;
1141 	struct vnode *vp;
1142 	void *rl_cookie;
1143 	struct vn_io_fault_args args;
1144 	int error;
1145 
1146 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1147 	vp = fp->f_vnode;
1148 	foffset_lock_uio(fp, uio, flags);
1149 	if (do_vn_io_fault(vp, uio)) {
1150 		args.kind = VN_IO_FAULT_FOP;
1151 		args.args.fop_args.fp = fp;
1152 		args.args.fop_args.doio = doio;
1153 		args.cred = active_cred;
1154 		args.flags = flags | FOF_OFFSET;
1155 		if (uio->uio_rw == UIO_READ) {
1156 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1157 			    uio->uio_offset + uio->uio_resid);
1158 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1159 		    (flags & FOF_OFFSET) == 0) {
1160 			/* For appenders, punt and lock the whole range. */
1161 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1162 		} else {
1163 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1164 			    uio->uio_offset + uio->uio_resid);
1165 		}
1166 		error = vn_io_fault1(vp, uio, &args, td);
1167 		vn_rangelock_unlock(vp, rl_cookie);
1168 	} else {
1169 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1170 	}
1171 	foffset_unlock_uio(fp, uio, flags);
1172 	return (error);
1173 }
1174 
1175 /*
1176  * Helper function to perform the requested uiomove operation using
1177  * the held pages for io->uio_iov[0].iov_base buffer instead of
1178  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1179  * instead of iov_base prevents page faults that could occur due to
1180  * pmap_collect() invalidating the mapping created by
1181  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1182  * object cleanup revoking the write access from page mappings.
1183  *
1184  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1185  * instead of plain uiomove().
1186  */
1187 int
1188 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1189 {
1190 	struct uio transp_uio;
1191 	struct iovec transp_iov[1];
1192 	struct thread *td;
1193 	size_t adv;
1194 	int error, pgadv;
1195 
1196 	td = curthread;
1197 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1198 	    uio->uio_segflg != UIO_USERSPACE)
1199 		return (uiomove(data, xfersize, uio));
1200 
1201 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1202 	transp_iov[0].iov_base = data;
1203 	transp_uio.uio_iov = &transp_iov[0];
1204 	transp_uio.uio_iovcnt = 1;
1205 	if (xfersize > uio->uio_resid)
1206 		xfersize = uio->uio_resid;
1207 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1208 	transp_uio.uio_offset = 0;
1209 	transp_uio.uio_segflg = UIO_SYSSPACE;
1210 	/*
1211 	 * Since transp_iov points to data, and td_ma page array
1212 	 * corresponds to original uio->uio_iov, we need to invert the
1213 	 * direction of the i/o operation as passed to
1214 	 * uiomove_fromphys().
1215 	 */
1216 	switch (uio->uio_rw) {
1217 	case UIO_WRITE:
1218 		transp_uio.uio_rw = UIO_READ;
1219 		break;
1220 	case UIO_READ:
1221 		transp_uio.uio_rw = UIO_WRITE;
1222 		break;
1223 	}
1224 	transp_uio.uio_td = uio->uio_td;
1225 	error = uiomove_fromphys(td->td_ma,
1226 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1227 	    xfersize, &transp_uio);
1228 	adv = xfersize - transp_uio.uio_resid;
1229 	pgadv =
1230 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1231 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1232 	td->td_ma += pgadv;
1233 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1234 	    pgadv));
1235 	td->td_ma_cnt -= pgadv;
1236 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1237 	uio->uio_iov->iov_len -= adv;
1238 	uio->uio_resid -= adv;
1239 	uio->uio_offset += adv;
1240 	return (error);
1241 }
1242 
1243 int
1244 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1245     struct uio *uio)
1246 {
1247 	struct thread *td;
1248 	vm_offset_t iov_base;
1249 	int cnt, pgadv;
1250 
1251 	td = curthread;
1252 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1253 	    uio->uio_segflg != UIO_USERSPACE)
1254 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1255 
1256 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1257 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1258 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1259 	switch (uio->uio_rw) {
1260 	case UIO_WRITE:
1261 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1262 		    offset, cnt);
1263 		break;
1264 	case UIO_READ:
1265 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1266 		    cnt);
1267 		break;
1268 	}
1269 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1270 	td->td_ma += pgadv;
1271 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1272 	    pgadv));
1273 	td->td_ma_cnt -= pgadv;
1274 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1275 	uio->uio_iov->iov_len -= cnt;
1276 	uio->uio_resid -= cnt;
1277 	uio->uio_offset += cnt;
1278 	return (0);
1279 }
1280 
1281 
1282 /*
1283  * File table truncate routine.
1284  */
1285 static int
1286 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1287     struct thread *td)
1288 {
1289 	struct vattr vattr;
1290 	struct mount *mp;
1291 	struct vnode *vp;
1292 	void *rl_cookie;
1293 	int error;
1294 
1295 	vp = fp->f_vnode;
1296 
1297 	/*
1298 	 * Lock the whole range for truncation.  Otherwise split i/o
1299 	 * might happen partly before and partly after the truncation.
1300 	 */
1301 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1302 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1303 	if (error)
1304 		goto out1;
1305 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1306 	if (vp->v_type == VDIR) {
1307 		error = EISDIR;
1308 		goto out;
1309 	}
1310 #ifdef MAC
1311 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1312 	if (error)
1313 		goto out;
1314 #endif
1315 	error = vn_writechk(vp);
1316 	if (error == 0) {
1317 		VATTR_NULL(&vattr);
1318 		vattr.va_size = length;
1319 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1320 	}
1321 out:
1322 	VOP_UNLOCK(vp, 0);
1323 	vn_finished_write(mp);
1324 out1:
1325 	vn_rangelock_unlock(vp, rl_cookie);
1326 	return (error);
1327 }
1328 
1329 /*
1330  * File table vnode stat routine.
1331  */
1332 static int
1333 vn_statfile(fp, sb, active_cred, td)
1334 	struct file *fp;
1335 	struct stat *sb;
1336 	struct ucred *active_cred;
1337 	struct thread *td;
1338 {
1339 	struct vnode *vp = fp->f_vnode;
1340 	int error;
1341 
1342 	vn_lock(vp, LK_SHARED | LK_RETRY);
1343 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1344 	VOP_UNLOCK(vp, 0);
1345 
1346 	return (error);
1347 }
1348 
1349 /*
1350  * Stat a vnode; implementation for the stat syscall
1351  */
1352 int
1353 vn_stat(vp, sb, active_cred, file_cred, td)
1354 	struct vnode *vp;
1355 	register struct stat *sb;
1356 	struct ucred *active_cred;
1357 	struct ucred *file_cred;
1358 	struct thread *td;
1359 {
1360 	struct vattr vattr;
1361 	register struct vattr *vap;
1362 	int error;
1363 	u_short mode;
1364 
1365 #ifdef MAC
1366 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1367 	if (error)
1368 		return (error);
1369 #endif
1370 
1371 	vap = &vattr;
1372 
1373 	/*
1374 	 * Initialize defaults for new and unusual fields, so that file
1375 	 * systems which don't support these fields don't need to know
1376 	 * about them.
1377 	 */
1378 	vap->va_birthtime.tv_sec = -1;
1379 	vap->va_birthtime.tv_nsec = 0;
1380 	vap->va_fsid = VNOVAL;
1381 	vap->va_rdev = NODEV;
1382 
1383 	error = VOP_GETATTR(vp, vap, active_cred);
1384 	if (error)
1385 		return (error);
1386 
1387 	/*
1388 	 * Zero the spare stat fields
1389 	 */
1390 	bzero(sb, sizeof *sb);
1391 
1392 	/*
1393 	 * Copy from vattr table
1394 	 */
1395 	if (vap->va_fsid != VNOVAL)
1396 		sb->st_dev = vap->va_fsid;
1397 	else
1398 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1399 	sb->st_ino = vap->va_fileid;
1400 	mode = vap->va_mode;
1401 	switch (vap->va_type) {
1402 	case VREG:
1403 		mode |= S_IFREG;
1404 		break;
1405 	case VDIR:
1406 		mode |= S_IFDIR;
1407 		break;
1408 	case VBLK:
1409 		mode |= S_IFBLK;
1410 		break;
1411 	case VCHR:
1412 		mode |= S_IFCHR;
1413 		break;
1414 	case VLNK:
1415 		mode |= S_IFLNK;
1416 		break;
1417 	case VSOCK:
1418 		mode |= S_IFSOCK;
1419 		break;
1420 	case VFIFO:
1421 		mode |= S_IFIFO;
1422 		break;
1423 	default:
1424 		return (EBADF);
1425 	};
1426 	sb->st_mode = mode;
1427 	sb->st_nlink = vap->va_nlink;
1428 	sb->st_uid = vap->va_uid;
1429 	sb->st_gid = vap->va_gid;
1430 	sb->st_rdev = vap->va_rdev;
1431 	if (vap->va_size > OFF_MAX)
1432 		return (EOVERFLOW);
1433 	sb->st_size = vap->va_size;
1434 	sb->st_atim = vap->va_atime;
1435 	sb->st_mtim = vap->va_mtime;
1436 	sb->st_ctim = vap->va_ctime;
1437 	sb->st_birthtim = vap->va_birthtime;
1438 
1439         /*
1440 	 * According to www.opengroup.org, the meaning of st_blksize is
1441 	 *   "a filesystem-specific preferred I/O block size for this
1442 	 *    object.  In some filesystem types, this may vary from file
1443 	 *    to file"
1444 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1445 	 */
1446 
1447 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1448 
1449 	sb->st_flags = vap->va_flags;
1450 	if (priv_check(td, PRIV_VFS_GENERATION))
1451 		sb->st_gen = 0;
1452 	else
1453 		sb->st_gen = vap->va_gen;
1454 
1455 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1456 	return (0);
1457 }
1458 
1459 /*
1460  * File table vnode ioctl routine.
1461  */
1462 static int
1463 vn_ioctl(fp, com, data, active_cred, td)
1464 	struct file *fp;
1465 	u_long com;
1466 	void *data;
1467 	struct ucred *active_cred;
1468 	struct thread *td;
1469 {
1470 	struct vattr vattr;
1471 	struct vnode *vp;
1472 	int error;
1473 
1474 	vp = fp->f_vnode;
1475 	switch (vp->v_type) {
1476 	case VDIR:
1477 	case VREG:
1478 		switch (com) {
1479 		case FIONREAD:
1480 			vn_lock(vp, LK_SHARED | LK_RETRY);
1481 			error = VOP_GETATTR(vp, &vattr, active_cred);
1482 			VOP_UNLOCK(vp, 0);
1483 			if (error == 0)
1484 				*(int *)data = vattr.va_size - fp->f_offset;
1485 			return (error);
1486 		case FIONBIO:
1487 		case FIOASYNC:
1488 			return (0);
1489 		default:
1490 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1491 			    active_cred, td));
1492 		}
1493 	default:
1494 		return (ENOTTY);
1495 	}
1496 }
1497 
1498 /*
1499  * File table vnode poll routine.
1500  */
1501 static int
1502 vn_poll(fp, events, active_cred, td)
1503 	struct file *fp;
1504 	int events;
1505 	struct ucred *active_cred;
1506 	struct thread *td;
1507 {
1508 	struct vnode *vp;
1509 	int error;
1510 
1511 	vp = fp->f_vnode;
1512 #ifdef MAC
1513 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1514 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1515 	VOP_UNLOCK(vp, 0);
1516 	if (!error)
1517 #endif
1518 
1519 	error = VOP_POLL(vp, events, fp->f_cred, td);
1520 	return (error);
1521 }
1522 
1523 /*
1524  * Acquire the requested lock and then check for validity.  LK_RETRY
1525  * permits vn_lock to return doomed vnodes.
1526  */
1527 int
1528 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1529 {
1530 	int error;
1531 
1532 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1533 	    ("vn_lock called with no locktype."));
1534 	do {
1535 #ifdef DEBUG_VFS_LOCKS
1536 		KASSERT(vp->v_holdcnt != 0,
1537 		    ("vn_lock %p: zero hold count", vp));
1538 #endif
1539 		error = VOP_LOCK1(vp, flags, file, line);
1540 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1541 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1542 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1543 		    flags, error));
1544 		/*
1545 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1546 		 * If RETRY is not set, we return ENOENT instead.
1547 		 */
1548 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1549 		    (flags & LK_RETRY) == 0) {
1550 			VOP_UNLOCK(vp, 0);
1551 			error = ENOENT;
1552 			break;
1553 		}
1554 	} while (flags & LK_RETRY && error != 0);
1555 	return (error);
1556 }
1557 
1558 /*
1559  * File table vnode close routine.
1560  */
1561 static int
1562 vn_closefile(fp, td)
1563 	struct file *fp;
1564 	struct thread *td;
1565 {
1566 	struct vnode *vp;
1567 	struct flock lf;
1568 	int error;
1569 
1570 	vp = fp->f_vnode;
1571 	fp->f_ops = &badfileops;
1572 
1573 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1574 		vref(vp);
1575 
1576 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1577 
1578 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1579 		lf.l_whence = SEEK_SET;
1580 		lf.l_start = 0;
1581 		lf.l_len = 0;
1582 		lf.l_type = F_UNLCK;
1583 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1584 		vrele(vp);
1585 	}
1586 	return (error);
1587 }
1588 
1589 static bool
1590 vn_suspendable(struct mount *mp)
1591 {
1592 
1593 	return (mp->mnt_op->vfs_susp_clean != NULL);
1594 }
1595 
1596 /*
1597  * Preparing to start a filesystem write operation. If the operation is
1598  * permitted, then we bump the count of operations in progress and
1599  * proceed. If a suspend request is in progress, we wait until the
1600  * suspension is over, and then proceed.
1601  */
1602 static int
1603 vn_start_write_locked(struct mount *mp, int flags)
1604 {
1605 	int error, mflags;
1606 
1607 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1608 	error = 0;
1609 
1610 	/*
1611 	 * Check on status of suspension.
1612 	 */
1613 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1614 	    mp->mnt_susp_owner != curthread) {
1615 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1616 		    (flags & PCATCH) : 0) | (PUSER - 1);
1617 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1618 			if (flags & V_NOWAIT) {
1619 				error = EWOULDBLOCK;
1620 				goto unlock;
1621 			}
1622 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1623 			    "suspfs", 0);
1624 			if (error)
1625 				goto unlock;
1626 		}
1627 	}
1628 	if (flags & V_XSLEEP)
1629 		goto unlock;
1630 	mp->mnt_writeopcount++;
1631 unlock:
1632 	if (error != 0 || (flags & V_XSLEEP) != 0)
1633 		MNT_REL(mp);
1634 	MNT_IUNLOCK(mp);
1635 	return (error);
1636 }
1637 
1638 int
1639 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1640 {
1641 	struct mount *mp;
1642 	int error;
1643 
1644 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1645 	    ("V_MNTREF requires mp"));
1646 
1647 	error = 0;
1648 	/*
1649 	 * If a vnode is provided, get and return the mount point that
1650 	 * to which it will write.
1651 	 */
1652 	if (vp != NULL) {
1653 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1654 			*mpp = NULL;
1655 			if (error != EOPNOTSUPP)
1656 				return (error);
1657 			return (0);
1658 		}
1659 	}
1660 	if ((mp = *mpp) == NULL)
1661 		return (0);
1662 
1663 	if (!vn_suspendable(mp)) {
1664 		if (vp != NULL || (flags & V_MNTREF) != 0)
1665 			vfs_rel(mp);
1666 		return (0);
1667 	}
1668 
1669 	/*
1670 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1671 	 * a vfs_ref().
1672 	 * As long as a vnode is not provided we need to acquire a
1673 	 * refcount for the provided mountpoint too, in order to
1674 	 * emulate a vfs_ref().
1675 	 */
1676 	MNT_ILOCK(mp);
1677 	if (vp == NULL && (flags & V_MNTREF) == 0)
1678 		MNT_REF(mp);
1679 
1680 	return (vn_start_write_locked(mp, flags));
1681 }
1682 
1683 /*
1684  * Secondary suspension. Used by operations such as vop_inactive
1685  * routines that are needed by the higher level functions. These
1686  * are allowed to proceed until all the higher level functions have
1687  * completed (indicated by mnt_writeopcount dropping to zero). At that
1688  * time, these operations are halted until the suspension is over.
1689  */
1690 int
1691 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1692 {
1693 	struct mount *mp;
1694 	int error;
1695 
1696 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1697 	    ("V_MNTREF requires mp"));
1698 
1699  retry:
1700 	if (vp != NULL) {
1701 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1702 			*mpp = NULL;
1703 			if (error != EOPNOTSUPP)
1704 				return (error);
1705 			return (0);
1706 		}
1707 	}
1708 	/*
1709 	 * If we are not suspended or have not yet reached suspended
1710 	 * mode, then let the operation proceed.
1711 	 */
1712 	if ((mp = *mpp) == NULL)
1713 		return (0);
1714 
1715 	if (!vn_suspendable(mp)) {
1716 		if (vp != NULL || (flags & V_MNTREF) != 0)
1717 			vfs_rel(mp);
1718 		return (0);
1719 	}
1720 
1721 	/*
1722 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1723 	 * a vfs_ref().
1724 	 * As long as a vnode is not provided we need to acquire a
1725 	 * refcount for the provided mountpoint too, in order to
1726 	 * emulate a vfs_ref().
1727 	 */
1728 	MNT_ILOCK(mp);
1729 	if (vp == NULL && (flags & V_MNTREF) == 0)
1730 		MNT_REF(mp);
1731 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1732 		mp->mnt_secondary_writes++;
1733 		mp->mnt_secondary_accwrites++;
1734 		MNT_IUNLOCK(mp);
1735 		return (0);
1736 	}
1737 	if (flags & V_NOWAIT) {
1738 		MNT_REL(mp);
1739 		MNT_IUNLOCK(mp);
1740 		return (EWOULDBLOCK);
1741 	}
1742 	/*
1743 	 * Wait for the suspension to finish.
1744 	 */
1745 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1746 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1747 	    "suspfs", 0);
1748 	vfs_rel(mp);
1749 	if (error == 0)
1750 		goto retry;
1751 	return (error);
1752 }
1753 
1754 /*
1755  * Filesystem write operation has completed. If we are suspending and this
1756  * operation is the last one, notify the suspender that the suspension is
1757  * now in effect.
1758  */
1759 void
1760 vn_finished_write(mp)
1761 	struct mount *mp;
1762 {
1763 	if (mp == NULL || !vn_suspendable(mp))
1764 		return;
1765 	MNT_ILOCK(mp);
1766 	MNT_REL(mp);
1767 	mp->mnt_writeopcount--;
1768 	if (mp->mnt_writeopcount < 0)
1769 		panic("vn_finished_write: neg cnt");
1770 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1771 	    mp->mnt_writeopcount <= 0)
1772 		wakeup(&mp->mnt_writeopcount);
1773 	MNT_IUNLOCK(mp);
1774 }
1775 
1776 
1777 /*
1778  * Filesystem secondary write operation has completed. If we are
1779  * suspending and this operation is the last one, notify the suspender
1780  * that the suspension is now in effect.
1781  */
1782 void
1783 vn_finished_secondary_write(mp)
1784 	struct mount *mp;
1785 {
1786 	if (mp == NULL || !vn_suspendable(mp))
1787 		return;
1788 	MNT_ILOCK(mp);
1789 	MNT_REL(mp);
1790 	mp->mnt_secondary_writes--;
1791 	if (mp->mnt_secondary_writes < 0)
1792 		panic("vn_finished_secondary_write: neg cnt");
1793 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1794 	    mp->mnt_secondary_writes <= 0)
1795 		wakeup(&mp->mnt_secondary_writes);
1796 	MNT_IUNLOCK(mp);
1797 }
1798 
1799 
1800 
1801 /*
1802  * Request a filesystem to suspend write operations.
1803  */
1804 int
1805 vfs_write_suspend(struct mount *mp, int flags)
1806 {
1807 	int error;
1808 
1809 	MPASS(vn_suspendable(mp));
1810 
1811 	MNT_ILOCK(mp);
1812 	if (mp->mnt_susp_owner == curthread) {
1813 		MNT_IUNLOCK(mp);
1814 		return (EALREADY);
1815 	}
1816 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1817 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1818 
1819 	/*
1820 	 * Unmount holds a write reference on the mount point.  If we
1821 	 * own busy reference and drain for writers, we deadlock with
1822 	 * the reference draining in the unmount path.  Callers of
1823 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1824 	 * vfs_busy() reference is owned and caller is not in the
1825 	 * unmount context.
1826 	 */
1827 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1828 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1829 		MNT_IUNLOCK(mp);
1830 		return (EBUSY);
1831 	}
1832 
1833 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1834 	mp->mnt_susp_owner = curthread;
1835 	if (mp->mnt_writeopcount > 0)
1836 		(void) msleep(&mp->mnt_writeopcount,
1837 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1838 	else
1839 		MNT_IUNLOCK(mp);
1840 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1841 		vfs_write_resume(mp, 0);
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Request a filesystem to resume write operations.
1847  */
1848 void
1849 vfs_write_resume(struct mount *mp, int flags)
1850 {
1851 
1852 	MPASS(vn_suspendable(mp));
1853 
1854 	MNT_ILOCK(mp);
1855 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1856 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1857 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1858 				       MNTK_SUSPENDED);
1859 		mp->mnt_susp_owner = NULL;
1860 		wakeup(&mp->mnt_writeopcount);
1861 		wakeup(&mp->mnt_flag);
1862 		curthread->td_pflags &= ~TDP_IGNSUSP;
1863 		if ((flags & VR_START_WRITE) != 0) {
1864 			MNT_REF(mp);
1865 			mp->mnt_writeopcount++;
1866 		}
1867 		MNT_IUNLOCK(mp);
1868 		if ((flags & VR_NO_SUSPCLR) == 0)
1869 			VFS_SUSP_CLEAN(mp);
1870 	} else if ((flags & VR_START_WRITE) != 0) {
1871 		MNT_REF(mp);
1872 		vn_start_write_locked(mp, 0);
1873 	} else {
1874 		MNT_IUNLOCK(mp);
1875 	}
1876 }
1877 
1878 /*
1879  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1880  * methods.
1881  */
1882 int
1883 vfs_write_suspend_umnt(struct mount *mp)
1884 {
1885 	int error;
1886 
1887 	MPASS(vn_suspendable(mp));
1888 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1889 	    ("vfs_write_suspend_umnt: recursed"));
1890 
1891 	/* dounmount() already called vn_start_write(). */
1892 	for (;;) {
1893 		vn_finished_write(mp);
1894 		error = vfs_write_suspend(mp, 0);
1895 		if (error != 0) {
1896 			vn_start_write(NULL, &mp, V_WAIT);
1897 			return (error);
1898 		}
1899 		MNT_ILOCK(mp);
1900 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1901 			break;
1902 		MNT_IUNLOCK(mp);
1903 		vn_start_write(NULL, &mp, V_WAIT);
1904 	}
1905 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1906 	wakeup(&mp->mnt_flag);
1907 	MNT_IUNLOCK(mp);
1908 	curthread->td_pflags |= TDP_IGNSUSP;
1909 	return (0);
1910 }
1911 
1912 /*
1913  * Implement kqueues for files by translating it to vnode operation.
1914  */
1915 static int
1916 vn_kqfilter(struct file *fp, struct knote *kn)
1917 {
1918 
1919 	return (VOP_KQFILTER(fp->f_vnode, kn));
1920 }
1921 
1922 /*
1923  * Simplified in-kernel wrapper calls for extended attribute access.
1924  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1925  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1926  */
1927 int
1928 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1929     const char *attrname, int *buflen, char *buf, struct thread *td)
1930 {
1931 	struct uio	auio;
1932 	struct iovec	iov;
1933 	int	error;
1934 
1935 	iov.iov_len = *buflen;
1936 	iov.iov_base = buf;
1937 
1938 	auio.uio_iov = &iov;
1939 	auio.uio_iovcnt = 1;
1940 	auio.uio_rw = UIO_READ;
1941 	auio.uio_segflg = UIO_SYSSPACE;
1942 	auio.uio_td = td;
1943 	auio.uio_offset = 0;
1944 	auio.uio_resid = *buflen;
1945 
1946 	if ((ioflg & IO_NODELOCKED) == 0)
1947 		vn_lock(vp, LK_SHARED | LK_RETRY);
1948 
1949 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1950 
1951 	/* authorize attribute retrieval as kernel */
1952 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1953 	    td);
1954 
1955 	if ((ioflg & IO_NODELOCKED) == 0)
1956 		VOP_UNLOCK(vp, 0);
1957 
1958 	if (error == 0) {
1959 		*buflen = *buflen - auio.uio_resid;
1960 	}
1961 
1962 	return (error);
1963 }
1964 
1965 /*
1966  * XXX failure mode if partially written?
1967  */
1968 int
1969 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1970     const char *attrname, int buflen, char *buf, struct thread *td)
1971 {
1972 	struct uio	auio;
1973 	struct iovec	iov;
1974 	struct mount	*mp;
1975 	int	error;
1976 
1977 	iov.iov_len = buflen;
1978 	iov.iov_base = buf;
1979 
1980 	auio.uio_iov = &iov;
1981 	auio.uio_iovcnt = 1;
1982 	auio.uio_rw = UIO_WRITE;
1983 	auio.uio_segflg = UIO_SYSSPACE;
1984 	auio.uio_td = td;
1985 	auio.uio_offset = 0;
1986 	auio.uio_resid = buflen;
1987 
1988 	if ((ioflg & IO_NODELOCKED) == 0) {
1989 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1990 			return (error);
1991 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1992 	}
1993 
1994 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1995 
1996 	/* authorize attribute setting as kernel */
1997 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1998 
1999 	if ((ioflg & IO_NODELOCKED) == 0) {
2000 		vn_finished_write(mp);
2001 		VOP_UNLOCK(vp, 0);
2002 	}
2003 
2004 	return (error);
2005 }
2006 
2007 int
2008 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2009     const char *attrname, struct thread *td)
2010 {
2011 	struct mount	*mp;
2012 	int	error;
2013 
2014 	if ((ioflg & IO_NODELOCKED) == 0) {
2015 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2016 			return (error);
2017 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2018 	}
2019 
2020 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2021 
2022 	/* authorize attribute removal as kernel */
2023 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2024 	if (error == EOPNOTSUPP)
2025 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2026 		    NULL, td);
2027 
2028 	if ((ioflg & IO_NODELOCKED) == 0) {
2029 		vn_finished_write(mp);
2030 		VOP_UNLOCK(vp, 0);
2031 	}
2032 
2033 	return (error);
2034 }
2035 
2036 static int
2037 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2038     struct vnode **rvp)
2039 {
2040 
2041 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2042 }
2043 
2044 int
2045 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2046 {
2047 
2048 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2049 	    lkflags, rvp));
2050 }
2051 
2052 int
2053 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2054     int lkflags, struct vnode **rvp)
2055 {
2056 	struct mount *mp;
2057 	int ltype, error;
2058 
2059 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2060 	mp = vp->v_mount;
2061 	ltype = VOP_ISLOCKED(vp);
2062 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2063 	    ("vn_vget_ino: vp not locked"));
2064 	error = vfs_busy(mp, MBF_NOWAIT);
2065 	if (error != 0) {
2066 		vfs_ref(mp);
2067 		VOP_UNLOCK(vp, 0);
2068 		error = vfs_busy(mp, 0);
2069 		vn_lock(vp, ltype | LK_RETRY);
2070 		vfs_rel(mp);
2071 		if (error != 0)
2072 			return (ENOENT);
2073 		if (vp->v_iflag & VI_DOOMED) {
2074 			vfs_unbusy(mp);
2075 			return (ENOENT);
2076 		}
2077 	}
2078 	VOP_UNLOCK(vp, 0);
2079 	error = alloc(mp, alloc_arg, lkflags, rvp);
2080 	vfs_unbusy(mp);
2081 	if (*rvp != vp)
2082 		vn_lock(vp, ltype | LK_RETRY);
2083 	if (vp->v_iflag & VI_DOOMED) {
2084 		if (error == 0) {
2085 			if (*rvp == vp)
2086 				vunref(vp);
2087 			else
2088 				vput(*rvp);
2089 		}
2090 		error = ENOENT;
2091 	}
2092 	return (error);
2093 }
2094 
2095 int
2096 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2097     struct thread *td)
2098 {
2099 
2100 	if (vp->v_type != VREG || td == NULL)
2101 		return (0);
2102 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2103 	    lim_cur(td, RLIMIT_FSIZE)) {
2104 		PROC_LOCK(td->td_proc);
2105 		kern_psignal(td->td_proc, SIGXFSZ);
2106 		PROC_UNLOCK(td->td_proc);
2107 		return (EFBIG);
2108 	}
2109 	return (0);
2110 }
2111 
2112 int
2113 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2114     struct thread *td)
2115 {
2116 	struct vnode *vp;
2117 
2118 	vp = fp->f_vnode;
2119 #ifdef AUDIT
2120 	vn_lock(vp, LK_SHARED | LK_RETRY);
2121 	AUDIT_ARG_VNODE1(vp);
2122 	VOP_UNLOCK(vp, 0);
2123 #endif
2124 	return (setfmode(td, active_cred, vp, mode));
2125 }
2126 
2127 int
2128 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2129     struct thread *td)
2130 {
2131 	struct vnode *vp;
2132 
2133 	vp = fp->f_vnode;
2134 #ifdef AUDIT
2135 	vn_lock(vp, LK_SHARED | LK_RETRY);
2136 	AUDIT_ARG_VNODE1(vp);
2137 	VOP_UNLOCK(vp, 0);
2138 #endif
2139 	return (setfown(td, active_cred, vp, uid, gid));
2140 }
2141 
2142 void
2143 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2144 {
2145 	vm_object_t object;
2146 
2147 	if ((object = vp->v_object) == NULL)
2148 		return;
2149 	VM_OBJECT_WLOCK(object);
2150 	vm_object_page_remove(object, start, end, 0);
2151 	VM_OBJECT_WUNLOCK(object);
2152 }
2153 
2154 int
2155 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2156 {
2157 	struct vattr va;
2158 	daddr_t bn, bnp;
2159 	uint64_t bsize;
2160 	off_t noff;
2161 	int error;
2162 
2163 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2164 	    ("Wrong command %lu", cmd));
2165 
2166 	if (vn_lock(vp, LK_SHARED) != 0)
2167 		return (EBADF);
2168 	if (vp->v_type != VREG) {
2169 		error = ENOTTY;
2170 		goto unlock;
2171 	}
2172 	error = VOP_GETATTR(vp, &va, cred);
2173 	if (error != 0)
2174 		goto unlock;
2175 	noff = *off;
2176 	if (noff >= va.va_size) {
2177 		error = ENXIO;
2178 		goto unlock;
2179 	}
2180 	bsize = vp->v_mount->mnt_stat.f_iosize;
2181 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2182 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2183 		if (error == EOPNOTSUPP) {
2184 			error = ENOTTY;
2185 			goto unlock;
2186 		}
2187 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2188 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2189 			noff = bn * bsize;
2190 			if (noff < *off)
2191 				noff = *off;
2192 			goto unlock;
2193 		}
2194 	}
2195 	if (noff > va.va_size)
2196 		noff = va.va_size;
2197 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2198 	if (cmd == FIOSEEKDATA)
2199 		error = ENXIO;
2200 unlock:
2201 	VOP_UNLOCK(vp, 0);
2202 	if (error == 0)
2203 		*off = noff;
2204 	return (error);
2205 }
2206 
2207 int
2208 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2209 {
2210 	struct ucred *cred;
2211 	struct vnode *vp;
2212 	struct vattr vattr;
2213 	off_t foffset, size;
2214 	int error, noneg;
2215 
2216 	cred = td->td_ucred;
2217 	vp = fp->f_vnode;
2218 	foffset = foffset_lock(fp, 0);
2219 	noneg = (vp->v_type != VCHR);
2220 	error = 0;
2221 	switch (whence) {
2222 	case L_INCR:
2223 		if (noneg &&
2224 		    (foffset < 0 ||
2225 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2226 			error = EOVERFLOW;
2227 			break;
2228 		}
2229 		offset += foffset;
2230 		break;
2231 	case L_XTND:
2232 		vn_lock(vp, LK_SHARED | LK_RETRY);
2233 		error = VOP_GETATTR(vp, &vattr, cred);
2234 		VOP_UNLOCK(vp, 0);
2235 		if (error)
2236 			break;
2237 
2238 		/*
2239 		 * If the file references a disk device, then fetch
2240 		 * the media size and use that to determine the ending
2241 		 * offset.
2242 		 */
2243 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2244 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2245 			vattr.va_size = size;
2246 		if (noneg &&
2247 		    (vattr.va_size > OFF_MAX ||
2248 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2249 			error = EOVERFLOW;
2250 			break;
2251 		}
2252 		offset += vattr.va_size;
2253 		break;
2254 	case L_SET:
2255 		break;
2256 	case SEEK_DATA:
2257 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2258 		break;
2259 	case SEEK_HOLE:
2260 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2261 		break;
2262 	default:
2263 		error = EINVAL;
2264 	}
2265 	if (error == 0 && noneg && offset < 0)
2266 		error = EINVAL;
2267 	if (error != 0)
2268 		goto drop;
2269 	VFS_KNOTE_UNLOCKED(vp, 0);
2270 	td->td_uretoff.tdu_off = offset;
2271 drop:
2272 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2273 	return (error);
2274 }
2275 
2276 int
2277 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2278     struct thread *td)
2279 {
2280 	int error;
2281 
2282 	/*
2283 	 * Grant permission if the caller is the owner of the file, or
2284 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2285 	 * on the file.  If the time pointer is null, then write
2286 	 * permission on the file is also sufficient.
2287 	 *
2288 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2289 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2290 	 * will be allowed to set the times [..] to the current
2291 	 * server time.
2292 	 */
2293 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2294 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2295 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2296 	return (error);
2297 }
2298 
2299 int
2300 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2301 {
2302 	struct vnode *vp;
2303 	int error;
2304 
2305 	if (fp->f_type == DTYPE_FIFO)
2306 		kif->kf_type = KF_TYPE_FIFO;
2307 	else
2308 		kif->kf_type = KF_TYPE_VNODE;
2309 	vp = fp->f_vnode;
2310 	vref(vp);
2311 	FILEDESC_SUNLOCK(fdp);
2312 	error = vn_fill_kinfo_vnode(vp, kif);
2313 	vrele(vp);
2314 	FILEDESC_SLOCK(fdp);
2315 	return (error);
2316 }
2317 
2318 static inline void
2319 vn_fill_junk(struct kinfo_file *kif)
2320 {
2321 	size_t len, olen;
2322 
2323 	/*
2324 	 * Simulate vn_fullpath returning changing values for a given
2325 	 * vp during e.g. coredump.
2326 	 */
2327 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2328 	olen = strlen(kif->kf_path);
2329 	if (len < olen)
2330 		strcpy(&kif->kf_path[len - 1], "$");
2331 	else
2332 		for (; olen < len; olen++)
2333 			strcpy(&kif->kf_path[olen], "A");
2334 }
2335 
2336 int
2337 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2338 {
2339 	struct vattr va;
2340 	char *fullpath, *freepath;
2341 	int error;
2342 
2343 	kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
2344 	freepath = NULL;
2345 	fullpath = "-";
2346 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2347 	if (error == 0) {
2348 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2349 	}
2350 	if (freepath != NULL)
2351 		free(freepath, M_TEMP);
2352 
2353 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2354 		vn_fill_junk(kif);
2355 	);
2356 
2357 	/*
2358 	 * Retrieve vnode attributes.
2359 	 */
2360 	va.va_fsid = VNOVAL;
2361 	va.va_rdev = NODEV;
2362 	vn_lock(vp, LK_SHARED | LK_RETRY);
2363 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2364 	VOP_UNLOCK(vp, 0);
2365 	if (error != 0)
2366 		return (error);
2367 	if (va.va_fsid != VNOVAL)
2368 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2369 	else
2370 		kif->kf_un.kf_file.kf_file_fsid =
2371 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2372 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2373 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2374 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2375 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2376 	return (0);
2377 }
2378 
2379 int
2380 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2381     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2382     struct thread *td)
2383 {
2384 #ifdef HWPMC_HOOKS
2385 	struct pmckern_map_in pkm;
2386 #endif
2387 	struct mount *mp;
2388 	struct vnode *vp;
2389 	vm_object_t object;
2390 	vm_prot_t maxprot;
2391 	boolean_t writecounted;
2392 	int error;
2393 
2394 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2395     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2396 	/*
2397 	 * POSIX shared-memory objects are defined to have
2398 	 * kernel persistence, and are not defined to support
2399 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2400 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2401 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2402 	 * flag to request this behavior.
2403 	 */
2404 	if ((fp->f_flag & FPOSIXSHM) != 0)
2405 		flags |= MAP_NOSYNC;
2406 #endif
2407 	vp = fp->f_vnode;
2408 
2409 	/*
2410 	 * Ensure that file and memory protections are
2411 	 * compatible.  Note that we only worry about
2412 	 * writability if mapping is shared; in this case,
2413 	 * current and max prot are dictated by the open file.
2414 	 * XXX use the vnode instead?  Problem is: what
2415 	 * credentials do we use for determination? What if
2416 	 * proc does a setuid?
2417 	 */
2418 	mp = vp->v_mount;
2419 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0)
2420 		maxprot = VM_PROT_NONE;
2421 	else
2422 		maxprot = VM_PROT_EXECUTE;
2423 	if ((fp->f_flag & FREAD) != 0)
2424 		maxprot |= VM_PROT_READ;
2425 	else if ((prot & VM_PROT_READ) != 0)
2426 		return (EACCES);
2427 
2428 	/*
2429 	 * If we are sharing potential changes via MAP_SHARED and we
2430 	 * are trying to get write permission although we opened it
2431 	 * without asking for it, bail out.
2432 	 */
2433 	if ((flags & MAP_SHARED) != 0) {
2434 		if ((fp->f_flag & FWRITE) != 0)
2435 			maxprot |= VM_PROT_WRITE;
2436 		else if ((prot & VM_PROT_WRITE) != 0)
2437 			return (EACCES);
2438 	} else {
2439 		maxprot |= VM_PROT_WRITE;
2440 		cap_maxprot |= VM_PROT_WRITE;
2441 	}
2442 	maxprot &= cap_maxprot;
2443 
2444 	writecounted = FALSE;
2445 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2446 	    &foff, &object, &writecounted);
2447 	if (error != 0)
2448 		return (error);
2449 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2450 	    foff, writecounted, td);
2451 	if (error != 0) {
2452 		/*
2453 		 * If this mapping was accounted for in the vnode's
2454 		 * writecount, then undo that now.
2455 		 */
2456 		if (writecounted)
2457 			vnode_pager_release_writecount(object, 0, size);
2458 		vm_object_deallocate(object);
2459 	}
2460 #ifdef HWPMC_HOOKS
2461 	/* Inform hwpmc(4) if an executable is being mapped. */
2462 	if (error == 0 && (prot & VM_PROT_EXECUTE) != 0) {
2463 		pkm.pm_file = vp;
2464 		pkm.pm_address = (uintptr_t) addr;
2465 		PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2466 	}
2467 #endif
2468 	return (error);
2469 }
2470