xref: /freebsd/sys/kern/vfs_vnops.c (revision af593945362018207d01cd91668a2f4f5fe6712d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/sx.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/sysctl.h>
76 #include <sys/ttycom.h>
77 #include <sys/conf.h>
78 #include <sys/syslog.h>
79 #include <sys/unistd.h>
80 #include <sys/user.h>
81 
82 #include <security/audit/audit.h>
83 #include <security/mac/mac_framework.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pager.h>
92 
93 #ifdef HWPMC_HOOKS
94 #include <sys/pmckern.h>
95 #endif
96 
97 static fo_rdwr_t	vn_read;
98 static fo_rdwr_t	vn_write;
99 static fo_rdwr_t	vn_io_fault;
100 static fo_truncate_t	vn_truncate;
101 static fo_ioctl_t	vn_ioctl;
102 static fo_poll_t	vn_poll;
103 static fo_kqfilter_t	vn_kqfilter;
104 static fo_stat_t	vn_statfile;
105 static fo_close_t	vn_closefile;
106 static fo_mmap_t	vn_mmap;
107 static fo_fallocate_t	vn_fallocate;
108 
109 struct 	fileops vnops = {
110 	.fo_read = vn_io_fault,
111 	.fo_write = vn_io_fault,
112 	.fo_truncate = vn_truncate,
113 	.fo_ioctl = vn_ioctl,
114 	.fo_poll = vn_poll,
115 	.fo_kqfilter = vn_kqfilter,
116 	.fo_stat = vn_statfile,
117 	.fo_close = vn_closefile,
118 	.fo_chmod = vn_chmod,
119 	.fo_chown = vn_chown,
120 	.fo_sendfile = vn_sendfile,
121 	.fo_seek = vn_seek,
122 	.fo_fill_kinfo = vn_fill_kinfo,
123 	.fo_mmap = vn_mmap,
124 	.fo_fallocate = vn_fallocate,
125 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
126 };
127 
128 static const int io_hold_cnt = 16;
129 static int vn_io_fault_enable = 1;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
131     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
132 static int vn_io_fault_prefault = 0;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
134     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
135 static u_long vn_io_faults_cnt;
136 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
137     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
138 
139 static int vfs_allow_read_dir = 0;
140 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
141     &vfs_allow_read_dir, 0,
142     "Enable read(2) of directory by root for filesystems that support it");
143 
144 /*
145  * Returns true if vn_io_fault mode of handling the i/o request should
146  * be used.
147  */
148 static bool
149 do_vn_io_fault(struct vnode *vp, struct uio *uio)
150 {
151 	struct mount *mp;
152 
153 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
154 	    (mp = vp->v_mount) != NULL &&
155 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
156 }
157 
158 /*
159  * Structure used to pass arguments to vn_io_fault1(), to do either
160  * file- or vnode-based I/O calls.
161  */
162 struct vn_io_fault_args {
163 	enum {
164 		VN_IO_FAULT_FOP,
165 		VN_IO_FAULT_VOP
166 	} kind;
167 	struct ucred *cred;
168 	int flags;
169 	union {
170 		struct fop_args_tag {
171 			struct file *fp;
172 			fo_rdwr_t *doio;
173 		} fop_args;
174 		struct vop_args_tag {
175 			struct vnode *vp;
176 		} vop_args;
177 	} args;
178 };
179 
180 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
181     struct vn_io_fault_args *args, struct thread *td);
182 
183 int
184 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
185 {
186 	struct thread *td = ndp->ni_cnd.cn_thread;
187 
188 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
189 }
190 
191 /*
192  * Common code for vnode open operations via a name lookup.
193  * Lookup the vnode and invoke VOP_CREATE if needed.
194  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
195  *
196  * Note that this does NOT free nameidata for the successful case,
197  * due to the NDINIT being done elsewhere.
198  */
199 int
200 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
201     struct ucred *cred, struct file *fp)
202 {
203 	struct vnode *vp;
204 	struct mount *mp;
205 	struct thread *td = ndp->ni_cnd.cn_thread;
206 	struct vattr vat;
207 	struct vattr *vap = &vat;
208 	int fmode, error;
209 
210 restart:
211 	fmode = *flagp;
212 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
213 	    O_EXCL | O_DIRECTORY))
214 		return (EINVAL);
215 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
216 		ndp->ni_cnd.cn_nameiop = CREATE;
217 		/*
218 		 * Set NOCACHE to avoid flushing the cache when
219 		 * rolling in many files at once.
220 		*/
221 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
222 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
223 			ndp->ni_cnd.cn_flags |= FOLLOW;
224 		if ((fmode & O_BENEATH) != 0)
225 			ndp->ni_cnd.cn_flags |= BENEATH;
226 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
227 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
228 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
229 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
230 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
231 			bwillwrite();
232 		if ((error = namei(ndp)) != 0)
233 			return (error);
234 		if (ndp->ni_vp == NULL) {
235 			VATTR_NULL(vap);
236 			vap->va_type = VREG;
237 			vap->va_mode = cmode;
238 			if (fmode & O_EXCL)
239 				vap->va_vaflags |= VA_EXCLUSIVE;
240 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
241 				NDFREE(ndp, NDF_ONLY_PNBUF);
242 				vput(ndp->ni_dvp);
243 				if ((error = vn_start_write(NULL, &mp,
244 				    V_XSLEEP | PCATCH)) != 0)
245 					return (error);
246 				goto restart;
247 			}
248 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
249 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
250 #ifdef MAC
251 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
252 			    &ndp->ni_cnd, vap);
253 			if (error == 0)
254 #endif
255 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
256 						   &ndp->ni_cnd, vap);
257 			vput(ndp->ni_dvp);
258 			vn_finished_write(mp);
259 			if (error) {
260 				NDFREE(ndp, NDF_ONLY_PNBUF);
261 				return (error);
262 			}
263 			fmode &= ~O_TRUNC;
264 			vp = ndp->ni_vp;
265 		} else {
266 			if (ndp->ni_dvp == ndp->ni_vp)
267 				vrele(ndp->ni_dvp);
268 			else
269 				vput(ndp->ni_dvp);
270 			ndp->ni_dvp = NULL;
271 			vp = ndp->ni_vp;
272 			if (fmode & O_EXCL) {
273 				error = EEXIST;
274 				goto bad;
275 			}
276 			if (vp->v_type == VDIR) {
277 				error = EISDIR;
278 				goto bad;
279 			}
280 			fmode &= ~O_CREAT;
281 		}
282 	} else {
283 		ndp->ni_cnd.cn_nameiop = LOOKUP;
284 		ndp->ni_cnd.cn_flags = ISOPEN |
285 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
286 		if (!(fmode & FWRITE))
287 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
288 		if ((fmode & O_BENEATH) != 0)
289 			ndp->ni_cnd.cn_flags |= BENEATH;
290 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
291 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
292 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
293 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
294 		if ((error = namei(ndp)) != 0)
295 			return (error);
296 		vp = ndp->ni_vp;
297 	}
298 	error = vn_open_vnode(vp, fmode, cred, td, fp);
299 	if (error)
300 		goto bad;
301 	*flagp = fmode;
302 	return (0);
303 bad:
304 	NDFREE(ndp, NDF_ONLY_PNBUF);
305 	vput(vp);
306 	*flagp = fmode;
307 	ndp->ni_vp = NULL;
308 	return (error);
309 }
310 
311 static int
312 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
313 {
314 	struct flock lf;
315 	int error, lock_flags, type;
316 
317 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
318 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
319 		return (0);
320 	KASSERT(fp != NULL, ("open with flock requires fp"));
321 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
322 		return (EOPNOTSUPP);
323 
324 	lock_flags = VOP_ISLOCKED(vp);
325 	VOP_UNLOCK(vp);
326 
327 	lf.l_whence = SEEK_SET;
328 	lf.l_start = 0;
329 	lf.l_len = 0;
330 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
331 	type = F_FLOCK;
332 	if ((fmode & FNONBLOCK) == 0)
333 		type |= F_WAIT;
334 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
335 	if (error == 0)
336 		fp->f_flag |= FHASLOCK;
337 
338 	vn_lock(vp, lock_flags | LK_RETRY);
339 	if (error == 0 && VN_IS_DOOMED(vp))
340 		error = ENOENT;
341 	return (error);
342 }
343 
344 /*
345  * Common code for vnode open operations once a vnode is located.
346  * Check permissions, and call the VOP_OPEN routine.
347  */
348 int
349 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
350     struct thread *td, struct file *fp)
351 {
352 	accmode_t accmode;
353 	int error;
354 
355 	if (vp->v_type == VLNK)
356 		return (EMLINK);
357 	if (vp->v_type == VSOCK)
358 		return (EOPNOTSUPP);
359 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
360 		return (ENOTDIR);
361 	accmode = 0;
362 	if (fmode & (FWRITE | O_TRUNC)) {
363 		if (vp->v_type == VDIR)
364 			return (EISDIR);
365 		accmode |= VWRITE;
366 	}
367 	if (fmode & FREAD)
368 		accmode |= VREAD;
369 	if (fmode & FEXEC)
370 		accmode |= VEXEC;
371 	if ((fmode & O_APPEND) && (fmode & FWRITE))
372 		accmode |= VAPPEND;
373 #ifdef MAC
374 	if (fmode & O_CREAT)
375 		accmode |= VCREAT;
376 	if (fmode & O_VERIFY)
377 		accmode |= VVERIFY;
378 	error = mac_vnode_check_open(cred, vp, accmode);
379 	if (error)
380 		return (error);
381 
382 	accmode &= ~(VCREAT | VVERIFY);
383 #endif
384 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
385 		error = VOP_ACCESS(vp, accmode, cred, td);
386 		if (error != 0)
387 			return (error);
388 	}
389 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
390 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
391 	error = VOP_OPEN(vp, fmode, cred, td, fp);
392 	if (error != 0)
393 		return (error);
394 
395 	error = vn_open_vnode_advlock(vp, fmode, fp);
396 	if (error == 0 && (fmode & FWRITE) != 0) {
397 		error = VOP_ADD_WRITECOUNT(vp, 1);
398 		if (error == 0) {
399 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
400 			     __func__, vp, vp->v_writecount);
401 		}
402 	}
403 
404 	/*
405 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
406 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
407 	 * Arrange for that by having fdrop() to use vn_closefile().
408 	 */
409 	if (error != 0) {
410 		fp->f_flag |= FOPENFAILED;
411 		fp->f_vnode = vp;
412 		if (fp->f_ops == &badfileops) {
413 			fp->f_type = DTYPE_VNODE;
414 			fp->f_ops = &vnops;
415 		}
416 		vref(vp);
417 	}
418 
419 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
420 	return (error);
421 
422 }
423 
424 /*
425  * Check for write permissions on the specified vnode.
426  * Prototype text segments cannot be written.
427  * It is racy.
428  */
429 int
430 vn_writechk(struct vnode *vp)
431 {
432 
433 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
434 	/*
435 	 * If there's shared text associated with
436 	 * the vnode, try to free it up once.  If
437 	 * we fail, we can't allow writing.
438 	 */
439 	if (VOP_IS_TEXT(vp))
440 		return (ETXTBSY);
441 
442 	return (0);
443 }
444 
445 /*
446  * Vnode close call
447  */
448 static int
449 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
450     struct thread *td, bool keep_ref)
451 {
452 	struct mount *mp;
453 	int error, lock_flags;
454 
455 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
456 	    MNT_EXTENDED_SHARED(vp->v_mount))
457 		lock_flags = LK_SHARED;
458 	else
459 		lock_flags = LK_EXCLUSIVE;
460 
461 	vn_start_write(vp, &mp, V_WAIT);
462 	vn_lock(vp, lock_flags | LK_RETRY);
463 	AUDIT_ARG_VNODE1(vp);
464 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
465 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
466 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
467 		    __func__, vp, vp->v_writecount);
468 	}
469 	error = VOP_CLOSE(vp, flags, file_cred, td);
470 	if (keep_ref)
471 		VOP_UNLOCK(vp);
472 	else
473 		vput(vp);
474 	vn_finished_write(mp);
475 	return (error);
476 }
477 
478 int
479 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
480     struct thread *td)
481 {
482 
483 	return (vn_close1(vp, flags, file_cred, td, false));
484 }
485 
486 /*
487  * Heuristic to detect sequential operation.
488  */
489 static int
490 sequential_heuristic(struct uio *uio, struct file *fp)
491 {
492 	enum uio_rw rw;
493 
494 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
495 
496 	rw = uio->uio_rw;
497 	if (fp->f_flag & FRDAHEAD)
498 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
499 
500 	/*
501 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
502 	 * that the first I/O is normally considered to be slightly
503 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
504 	 * unless previous seeks have reduced f_seqcount to 0, in which
505 	 * case offset 0 is not special.
506 	 */
507 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
508 	    uio->uio_offset == fp->f_nextoff[rw]) {
509 		/*
510 		 * f_seqcount is in units of fixed-size blocks so that it
511 		 * depends mainly on the amount of sequential I/O and not
512 		 * much on the number of sequential I/O's.  The fixed size
513 		 * of 16384 is hard-coded here since it is (not quite) just
514 		 * a magic size that works well here.  This size is more
515 		 * closely related to the best I/O size for real disks than
516 		 * to any block size used by software.
517 		 */
518 		if (uio->uio_resid >= IO_SEQMAX * 16384)
519 			fp->f_seqcount[rw] = IO_SEQMAX;
520 		else {
521 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
522 			if (fp->f_seqcount[rw] > IO_SEQMAX)
523 				fp->f_seqcount[rw] = IO_SEQMAX;
524 		}
525 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
526 	}
527 
528 	/* Not sequential.  Quickly draw-down sequentiality. */
529 	if (fp->f_seqcount[rw] > 1)
530 		fp->f_seqcount[rw] = 1;
531 	else
532 		fp->f_seqcount[rw] = 0;
533 	return (0);
534 }
535 
536 /*
537  * Package up an I/O request on a vnode into a uio and do it.
538  */
539 int
540 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
541     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
542     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
543 {
544 	struct uio auio;
545 	struct iovec aiov;
546 	struct mount *mp;
547 	struct ucred *cred;
548 	void *rl_cookie;
549 	struct vn_io_fault_args args;
550 	int error, lock_flags;
551 
552 	if (offset < 0 && vp->v_type != VCHR)
553 		return (EINVAL);
554 	auio.uio_iov = &aiov;
555 	auio.uio_iovcnt = 1;
556 	aiov.iov_base = base;
557 	aiov.iov_len = len;
558 	auio.uio_resid = len;
559 	auio.uio_offset = offset;
560 	auio.uio_segflg = segflg;
561 	auio.uio_rw = rw;
562 	auio.uio_td = td;
563 	error = 0;
564 
565 	if ((ioflg & IO_NODELOCKED) == 0) {
566 		if ((ioflg & IO_RANGELOCKED) == 0) {
567 			if (rw == UIO_READ) {
568 				rl_cookie = vn_rangelock_rlock(vp, offset,
569 				    offset + len);
570 			} else {
571 				rl_cookie = vn_rangelock_wlock(vp, offset,
572 				    offset + len);
573 			}
574 		} else
575 			rl_cookie = NULL;
576 		mp = NULL;
577 		if (rw == UIO_WRITE) {
578 			if (vp->v_type != VCHR &&
579 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
580 			    != 0)
581 				goto out;
582 			if (MNT_SHARED_WRITES(mp) ||
583 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
584 				lock_flags = LK_SHARED;
585 			else
586 				lock_flags = LK_EXCLUSIVE;
587 		} else
588 			lock_flags = LK_SHARED;
589 		vn_lock(vp, lock_flags | LK_RETRY);
590 	} else
591 		rl_cookie = NULL;
592 
593 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
594 #ifdef MAC
595 	if ((ioflg & IO_NOMACCHECK) == 0) {
596 		if (rw == UIO_READ)
597 			error = mac_vnode_check_read(active_cred, file_cred,
598 			    vp);
599 		else
600 			error = mac_vnode_check_write(active_cred, file_cred,
601 			    vp);
602 	}
603 #endif
604 	if (error == 0) {
605 		if (file_cred != NULL)
606 			cred = file_cred;
607 		else
608 			cred = active_cred;
609 		if (do_vn_io_fault(vp, &auio)) {
610 			args.kind = VN_IO_FAULT_VOP;
611 			args.cred = cred;
612 			args.flags = ioflg;
613 			args.args.vop_args.vp = vp;
614 			error = vn_io_fault1(vp, &auio, &args, td);
615 		} else if (rw == UIO_READ) {
616 			error = VOP_READ(vp, &auio, ioflg, cred);
617 		} else /* if (rw == UIO_WRITE) */ {
618 			error = VOP_WRITE(vp, &auio, ioflg, cred);
619 		}
620 	}
621 	if (aresid)
622 		*aresid = auio.uio_resid;
623 	else
624 		if (auio.uio_resid && error == 0)
625 			error = EIO;
626 	if ((ioflg & IO_NODELOCKED) == 0) {
627 		VOP_UNLOCK(vp);
628 		if (mp != NULL)
629 			vn_finished_write(mp);
630 	}
631  out:
632 	if (rl_cookie != NULL)
633 		vn_rangelock_unlock(vp, rl_cookie);
634 	return (error);
635 }
636 
637 /*
638  * Package up an I/O request on a vnode into a uio and do it.  The I/O
639  * request is split up into smaller chunks and we try to avoid saturating
640  * the buffer cache while potentially holding a vnode locked, so we
641  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
642  * to give other processes a chance to lock the vnode (either other processes
643  * core'ing the same binary, or unrelated processes scanning the directory).
644  */
645 int
646 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
647     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
648     struct ucred *file_cred, size_t *aresid, struct thread *td)
649 {
650 	int error = 0;
651 	ssize_t iaresid;
652 
653 	do {
654 		int chunk;
655 
656 		/*
657 		 * Force `offset' to a multiple of MAXBSIZE except possibly
658 		 * for the first chunk, so that filesystems only need to
659 		 * write full blocks except possibly for the first and last
660 		 * chunks.
661 		 */
662 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
663 
664 		if (chunk > len)
665 			chunk = len;
666 		if (rw != UIO_READ && vp->v_type == VREG)
667 			bwillwrite();
668 		iaresid = 0;
669 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
670 		    ioflg, active_cred, file_cred, &iaresid, td);
671 		len -= chunk;	/* aresid calc already includes length */
672 		if (error)
673 			break;
674 		offset += chunk;
675 		base = (char *)base + chunk;
676 		kern_yield(PRI_USER);
677 	} while (len);
678 	if (aresid)
679 		*aresid = len + iaresid;
680 	return (error);
681 }
682 
683 #if OFF_MAX <= LONG_MAX
684 off_t
685 foffset_lock(struct file *fp, int flags)
686 {
687 	volatile short *flagsp;
688 	off_t res;
689 	short state;
690 
691 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
692 
693 	if ((flags & FOF_NOLOCK) != 0)
694 		return (atomic_load_long(&fp->f_offset));
695 
696 	/*
697 	 * According to McKusick the vn lock was protecting f_offset here.
698 	 * It is now protected by the FOFFSET_LOCKED flag.
699 	 */
700 	flagsp = &fp->f_vnread_flags;
701 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
702 		return (atomic_load_long(&fp->f_offset));
703 
704 	sleepq_lock(&fp->f_vnread_flags);
705 	state = atomic_load_16(flagsp);
706 	for (;;) {
707 		if ((state & FOFFSET_LOCKED) == 0) {
708 			if (!atomic_fcmpset_acq_16(flagsp, &state,
709 			    FOFFSET_LOCKED))
710 				continue;
711 			break;
712 		}
713 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
714 			if (!atomic_fcmpset_acq_16(flagsp, &state,
715 			    state | FOFFSET_LOCK_WAITING))
716 				continue;
717 		}
718 		DROP_GIANT();
719 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
720 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
721 		PICKUP_GIANT();
722 		sleepq_lock(&fp->f_vnread_flags);
723 		state = atomic_load_16(flagsp);
724 	}
725 	res = atomic_load_long(&fp->f_offset);
726 	sleepq_release(&fp->f_vnread_flags);
727 	return (res);
728 }
729 
730 void
731 foffset_unlock(struct file *fp, off_t val, int flags)
732 {
733 	volatile short *flagsp;
734 	short state;
735 
736 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
737 
738 	if ((flags & FOF_NOUPDATE) == 0)
739 		atomic_store_long(&fp->f_offset, val);
740 	if ((flags & FOF_NEXTOFF_R) != 0)
741 		fp->f_nextoff[UIO_READ] = val;
742 	if ((flags & FOF_NEXTOFF_W) != 0)
743 		fp->f_nextoff[UIO_WRITE] = val;
744 
745 	if ((flags & FOF_NOLOCK) != 0)
746 		return;
747 
748 	flagsp = &fp->f_vnread_flags;
749 	state = atomic_load_16(flagsp);
750 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
751 	    atomic_cmpset_rel_16(flagsp, state, 0))
752 		return;
753 
754 	sleepq_lock(&fp->f_vnread_flags);
755 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
756 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
757 	fp->f_vnread_flags = 0;
758 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
759 	sleepq_release(&fp->f_vnread_flags);
760 }
761 #else
762 off_t
763 foffset_lock(struct file *fp, int flags)
764 {
765 	struct mtx *mtxp;
766 	off_t res;
767 
768 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
769 
770 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
771 	mtx_lock(mtxp);
772 	if ((flags & FOF_NOLOCK) == 0) {
773 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
774 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
775 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
776 			    "vofflock", 0);
777 		}
778 		fp->f_vnread_flags |= FOFFSET_LOCKED;
779 	}
780 	res = fp->f_offset;
781 	mtx_unlock(mtxp);
782 	return (res);
783 }
784 
785 void
786 foffset_unlock(struct file *fp, off_t val, int flags)
787 {
788 	struct mtx *mtxp;
789 
790 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
791 
792 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
793 	mtx_lock(mtxp);
794 	if ((flags & FOF_NOUPDATE) == 0)
795 		fp->f_offset = val;
796 	if ((flags & FOF_NEXTOFF_R) != 0)
797 		fp->f_nextoff[UIO_READ] = val;
798 	if ((flags & FOF_NEXTOFF_W) != 0)
799 		fp->f_nextoff[UIO_WRITE] = val;
800 	if ((flags & FOF_NOLOCK) == 0) {
801 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
802 		    ("Lost FOFFSET_LOCKED"));
803 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
804 			wakeup(&fp->f_vnread_flags);
805 		fp->f_vnread_flags = 0;
806 	}
807 	mtx_unlock(mtxp);
808 }
809 #endif
810 
811 void
812 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
813 {
814 
815 	if ((flags & FOF_OFFSET) == 0)
816 		uio->uio_offset = foffset_lock(fp, flags);
817 }
818 
819 void
820 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
821 {
822 
823 	if ((flags & FOF_OFFSET) == 0)
824 		foffset_unlock(fp, uio->uio_offset, flags);
825 }
826 
827 static int
828 get_advice(struct file *fp, struct uio *uio)
829 {
830 	struct mtx *mtxp;
831 	int ret;
832 
833 	ret = POSIX_FADV_NORMAL;
834 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
835 		return (ret);
836 
837 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
838 	mtx_lock(mtxp);
839 	if (fp->f_advice != NULL &&
840 	    uio->uio_offset >= fp->f_advice->fa_start &&
841 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
842 		ret = fp->f_advice->fa_advice;
843 	mtx_unlock(mtxp);
844 	return (ret);
845 }
846 
847 /*
848  * File table vnode read routine.
849  */
850 static int
851 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
852     struct thread *td)
853 {
854 	struct vnode *vp;
855 	off_t orig_offset;
856 	int error, ioflag;
857 	int advice;
858 
859 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
860 	    uio->uio_td, td));
861 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
862 	vp = fp->f_vnode;
863 	ioflag = 0;
864 	if (fp->f_flag & FNONBLOCK)
865 		ioflag |= IO_NDELAY;
866 	if (fp->f_flag & O_DIRECT)
867 		ioflag |= IO_DIRECT;
868 	advice = get_advice(fp, uio);
869 	vn_lock(vp, LK_SHARED | LK_RETRY);
870 
871 	switch (advice) {
872 	case POSIX_FADV_NORMAL:
873 	case POSIX_FADV_SEQUENTIAL:
874 	case POSIX_FADV_NOREUSE:
875 		ioflag |= sequential_heuristic(uio, fp);
876 		break;
877 	case POSIX_FADV_RANDOM:
878 		/* Disable read-ahead for random I/O. */
879 		break;
880 	}
881 	orig_offset = uio->uio_offset;
882 
883 #ifdef MAC
884 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
885 	if (error == 0)
886 #endif
887 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
888 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
889 	VOP_UNLOCK(vp);
890 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
891 	    orig_offset != uio->uio_offset)
892 		/*
893 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
894 		 * for the backing file after a POSIX_FADV_NOREUSE
895 		 * read(2).
896 		 */
897 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
898 		    POSIX_FADV_DONTNEED);
899 	return (error);
900 }
901 
902 /*
903  * File table vnode write routine.
904  */
905 static int
906 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
907     struct thread *td)
908 {
909 	struct vnode *vp;
910 	struct mount *mp;
911 	off_t orig_offset;
912 	int error, ioflag, lock_flags;
913 	int advice;
914 
915 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
916 	    uio->uio_td, td));
917 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
918 	vp = fp->f_vnode;
919 	if (vp->v_type == VREG)
920 		bwillwrite();
921 	ioflag = IO_UNIT;
922 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
923 		ioflag |= IO_APPEND;
924 	if (fp->f_flag & FNONBLOCK)
925 		ioflag |= IO_NDELAY;
926 	if (fp->f_flag & O_DIRECT)
927 		ioflag |= IO_DIRECT;
928 	if ((fp->f_flag & O_FSYNC) ||
929 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
930 		ioflag |= IO_SYNC;
931 	mp = NULL;
932 	if (vp->v_type != VCHR &&
933 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
934 		goto unlock;
935 
936 	advice = get_advice(fp, uio);
937 
938 	if (MNT_SHARED_WRITES(mp) ||
939 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
940 		lock_flags = LK_SHARED;
941 	} else {
942 		lock_flags = LK_EXCLUSIVE;
943 	}
944 
945 	vn_lock(vp, lock_flags | LK_RETRY);
946 	switch (advice) {
947 	case POSIX_FADV_NORMAL:
948 	case POSIX_FADV_SEQUENTIAL:
949 	case POSIX_FADV_NOREUSE:
950 		ioflag |= sequential_heuristic(uio, fp);
951 		break;
952 	case POSIX_FADV_RANDOM:
953 		/* XXX: Is this correct? */
954 		break;
955 	}
956 	orig_offset = uio->uio_offset;
957 
958 #ifdef MAC
959 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
960 	if (error == 0)
961 #endif
962 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
963 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
964 	VOP_UNLOCK(vp);
965 	if (vp->v_type != VCHR)
966 		vn_finished_write(mp);
967 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
968 	    orig_offset != uio->uio_offset)
969 		/*
970 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
971 		 * for the backing file after a POSIX_FADV_NOREUSE
972 		 * write(2).
973 		 */
974 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
975 		    POSIX_FADV_DONTNEED);
976 unlock:
977 	return (error);
978 }
979 
980 /*
981  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
982  * prevent the following deadlock:
983  *
984  * Assume that the thread A reads from the vnode vp1 into userspace
985  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
986  * currently not resident, then system ends up with the call chain
987  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
988  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
989  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
990  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
991  * backed by the pages of vnode vp1, and some page in buf2 is not
992  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
993  *
994  * To prevent the lock order reversal and deadlock, vn_io_fault() does
995  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
996  * Instead, it first tries to do the whole range i/o with pagefaults
997  * disabled. If all pages in the i/o buffer are resident and mapped,
998  * VOP will succeed (ignoring the genuine filesystem errors).
999  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1000  * i/o in chunks, with all pages in the chunk prefaulted and held
1001  * using vm_fault_quick_hold_pages().
1002  *
1003  * Filesystems using this deadlock avoidance scheme should use the
1004  * array of the held pages from uio, saved in the curthread->td_ma,
1005  * instead of doing uiomove().  A helper function
1006  * vn_io_fault_uiomove() converts uiomove request into
1007  * uiomove_fromphys() over td_ma array.
1008  *
1009  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1010  * make the current i/o request atomic with respect to other i/os and
1011  * truncations.
1012  */
1013 
1014 /*
1015  * Decode vn_io_fault_args and perform the corresponding i/o.
1016  */
1017 static int
1018 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1019     struct thread *td)
1020 {
1021 	int error, save;
1022 
1023 	error = 0;
1024 	save = vm_fault_disable_pagefaults();
1025 	switch (args->kind) {
1026 	case VN_IO_FAULT_FOP:
1027 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1028 		    uio, args->cred, args->flags, td);
1029 		break;
1030 	case VN_IO_FAULT_VOP:
1031 		if (uio->uio_rw == UIO_READ) {
1032 			error = VOP_READ(args->args.vop_args.vp, uio,
1033 			    args->flags, args->cred);
1034 		} else if (uio->uio_rw == UIO_WRITE) {
1035 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1036 			    args->flags, args->cred);
1037 		}
1038 		break;
1039 	default:
1040 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1041 		    args->kind, uio->uio_rw);
1042 	}
1043 	vm_fault_enable_pagefaults(save);
1044 	return (error);
1045 }
1046 
1047 static int
1048 vn_io_fault_touch(char *base, const struct uio *uio)
1049 {
1050 	int r;
1051 
1052 	r = fubyte(base);
1053 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1054 		return (EFAULT);
1055 	return (0);
1056 }
1057 
1058 static int
1059 vn_io_fault_prefault_user(const struct uio *uio)
1060 {
1061 	char *base;
1062 	const struct iovec *iov;
1063 	size_t len;
1064 	ssize_t resid;
1065 	int error, i;
1066 
1067 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1068 	    ("vn_io_fault_prefault userspace"));
1069 
1070 	error = i = 0;
1071 	iov = uio->uio_iov;
1072 	resid = uio->uio_resid;
1073 	base = iov->iov_base;
1074 	len = iov->iov_len;
1075 	while (resid > 0) {
1076 		error = vn_io_fault_touch(base, uio);
1077 		if (error != 0)
1078 			break;
1079 		if (len < PAGE_SIZE) {
1080 			if (len != 0) {
1081 				error = vn_io_fault_touch(base + len - 1, uio);
1082 				if (error != 0)
1083 					break;
1084 				resid -= len;
1085 			}
1086 			if (++i >= uio->uio_iovcnt)
1087 				break;
1088 			iov = uio->uio_iov + i;
1089 			base = iov->iov_base;
1090 			len = iov->iov_len;
1091 		} else {
1092 			len -= PAGE_SIZE;
1093 			base += PAGE_SIZE;
1094 			resid -= PAGE_SIZE;
1095 		}
1096 	}
1097 	return (error);
1098 }
1099 
1100 /*
1101  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1102  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1103  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1104  * into args and call vn_io_fault1() to handle faults during the user
1105  * mode buffer accesses.
1106  */
1107 static int
1108 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1109     struct thread *td)
1110 {
1111 	vm_page_t ma[io_hold_cnt + 2];
1112 	struct uio *uio_clone, short_uio;
1113 	struct iovec short_iovec[1];
1114 	vm_page_t *prev_td_ma;
1115 	vm_prot_t prot;
1116 	vm_offset_t addr, end;
1117 	size_t len, resid;
1118 	ssize_t adv;
1119 	int error, cnt, saveheld, prev_td_ma_cnt;
1120 
1121 	if (vn_io_fault_prefault) {
1122 		error = vn_io_fault_prefault_user(uio);
1123 		if (error != 0)
1124 			return (error); /* Or ignore ? */
1125 	}
1126 
1127 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1128 
1129 	/*
1130 	 * The UFS follows IO_UNIT directive and replays back both
1131 	 * uio_offset and uio_resid if an error is encountered during the
1132 	 * operation.  But, since the iovec may be already advanced,
1133 	 * uio is still in an inconsistent state.
1134 	 *
1135 	 * Cache a copy of the original uio, which is advanced to the redo
1136 	 * point using UIO_NOCOPY below.
1137 	 */
1138 	uio_clone = cloneuio(uio);
1139 	resid = uio->uio_resid;
1140 
1141 	short_uio.uio_segflg = UIO_USERSPACE;
1142 	short_uio.uio_rw = uio->uio_rw;
1143 	short_uio.uio_td = uio->uio_td;
1144 
1145 	error = vn_io_fault_doio(args, uio, td);
1146 	if (error != EFAULT)
1147 		goto out;
1148 
1149 	atomic_add_long(&vn_io_faults_cnt, 1);
1150 	uio_clone->uio_segflg = UIO_NOCOPY;
1151 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1152 	uio_clone->uio_segflg = uio->uio_segflg;
1153 
1154 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1155 	prev_td_ma = td->td_ma;
1156 	prev_td_ma_cnt = td->td_ma_cnt;
1157 
1158 	while (uio_clone->uio_resid != 0) {
1159 		len = uio_clone->uio_iov->iov_len;
1160 		if (len == 0) {
1161 			KASSERT(uio_clone->uio_iovcnt >= 1,
1162 			    ("iovcnt underflow"));
1163 			uio_clone->uio_iov++;
1164 			uio_clone->uio_iovcnt--;
1165 			continue;
1166 		}
1167 		if (len > io_hold_cnt * PAGE_SIZE)
1168 			len = io_hold_cnt * PAGE_SIZE;
1169 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1170 		end = round_page(addr + len);
1171 		if (end < addr) {
1172 			error = EFAULT;
1173 			break;
1174 		}
1175 		cnt = atop(end - trunc_page(addr));
1176 		/*
1177 		 * A perfectly misaligned address and length could cause
1178 		 * both the start and the end of the chunk to use partial
1179 		 * page.  +2 accounts for such a situation.
1180 		 */
1181 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1182 		    addr, len, prot, ma, io_hold_cnt + 2);
1183 		if (cnt == -1) {
1184 			error = EFAULT;
1185 			break;
1186 		}
1187 		short_uio.uio_iov = &short_iovec[0];
1188 		short_iovec[0].iov_base = (void *)addr;
1189 		short_uio.uio_iovcnt = 1;
1190 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1191 		short_uio.uio_offset = uio_clone->uio_offset;
1192 		td->td_ma = ma;
1193 		td->td_ma_cnt = cnt;
1194 
1195 		error = vn_io_fault_doio(args, &short_uio, td);
1196 		vm_page_unhold_pages(ma, cnt);
1197 		adv = len - short_uio.uio_resid;
1198 
1199 		uio_clone->uio_iov->iov_base =
1200 		    (char *)uio_clone->uio_iov->iov_base + adv;
1201 		uio_clone->uio_iov->iov_len -= adv;
1202 		uio_clone->uio_resid -= adv;
1203 		uio_clone->uio_offset += adv;
1204 
1205 		uio->uio_resid -= adv;
1206 		uio->uio_offset += adv;
1207 
1208 		if (error != 0 || adv == 0)
1209 			break;
1210 	}
1211 	td->td_ma = prev_td_ma;
1212 	td->td_ma_cnt = prev_td_ma_cnt;
1213 	curthread_pflags_restore(saveheld);
1214 out:
1215 	free(uio_clone, M_IOV);
1216 	return (error);
1217 }
1218 
1219 static int
1220 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1221     int flags, struct thread *td)
1222 {
1223 	fo_rdwr_t *doio;
1224 	struct vnode *vp;
1225 	void *rl_cookie;
1226 	struct vn_io_fault_args args;
1227 	int error;
1228 
1229 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1230 	vp = fp->f_vnode;
1231 
1232 	/*
1233 	 * The ability to read(2) on a directory has historically been
1234 	 * allowed for all users, but this can and has been the source of
1235 	 * at least one security issue in the past.  As such, it is now hidden
1236 	 * away behind a sysctl for those that actually need it to use it, and
1237 	 * restricted to root when it's turned on to make it relatively safe to
1238 	 * leave on for longer sessions of need.
1239 	 */
1240 	if (vp->v_type == VDIR) {
1241 		KASSERT(uio->uio_rw == UIO_READ,
1242 		    ("illegal write attempted on a directory"));
1243 		if (!vfs_allow_read_dir)
1244 			return (EISDIR);
1245 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1246 			return (EISDIR);
1247 	}
1248 
1249 	foffset_lock_uio(fp, uio, flags);
1250 	if (do_vn_io_fault(vp, uio)) {
1251 		args.kind = VN_IO_FAULT_FOP;
1252 		args.args.fop_args.fp = fp;
1253 		args.args.fop_args.doio = doio;
1254 		args.cred = active_cred;
1255 		args.flags = flags | FOF_OFFSET;
1256 		if (uio->uio_rw == UIO_READ) {
1257 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1258 			    uio->uio_offset + uio->uio_resid);
1259 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1260 		    (flags & FOF_OFFSET) == 0) {
1261 			/* For appenders, punt and lock the whole range. */
1262 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1263 		} else {
1264 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1265 			    uio->uio_offset + uio->uio_resid);
1266 		}
1267 		error = vn_io_fault1(vp, uio, &args, td);
1268 		vn_rangelock_unlock(vp, rl_cookie);
1269 	} else {
1270 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1271 	}
1272 	foffset_unlock_uio(fp, uio, flags);
1273 	return (error);
1274 }
1275 
1276 /*
1277  * Helper function to perform the requested uiomove operation using
1278  * the held pages for io->uio_iov[0].iov_base buffer instead of
1279  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1280  * instead of iov_base prevents page faults that could occur due to
1281  * pmap_collect() invalidating the mapping created by
1282  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1283  * object cleanup revoking the write access from page mappings.
1284  *
1285  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1286  * instead of plain uiomove().
1287  */
1288 int
1289 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1290 {
1291 	struct uio transp_uio;
1292 	struct iovec transp_iov[1];
1293 	struct thread *td;
1294 	size_t adv;
1295 	int error, pgadv;
1296 
1297 	td = curthread;
1298 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1299 	    uio->uio_segflg != UIO_USERSPACE)
1300 		return (uiomove(data, xfersize, uio));
1301 
1302 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1303 	transp_iov[0].iov_base = data;
1304 	transp_uio.uio_iov = &transp_iov[0];
1305 	transp_uio.uio_iovcnt = 1;
1306 	if (xfersize > uio->uio_resid)
1307 		xfersize = uio->uio_resid;
1308 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1309 	transp_uio.uio_offset = 0;
1310 	transp_uio.uio_segflg = UIO_SYSSPACE;
1311 	/*
1312 	 * Since transp_iov points to data, and td_ma page array
1313 	 * corresponds to original uio->uio_iov, we need to invert the
1314 	 * direction of the i/o operation as passed to
1315 	 * uiomove_fromphys().
1316 	 */
1317 	switch (uio->uio_rw) {
1318 	case UIO_WRITE:
1319 		transp_uio.uio_rw = UIO_READ;
1320 		break;
1321 	case UIO_READ:
1322 		transp_uio.uio_rw = UIO_WRITE;
1323 		break;
1324 	}
1325 	transp_uio.uio_td = uio->uio_td;
1326 	error = uiomove_fromphys(td->td_ma,
1327 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1328 	    xfersize, &transp_uio);
1329 	adv = xfersize - transp_uio.uio_resid;
1330 	pgadv =
1331 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1332 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1333 	td->td_ma += pgadv;
1334 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1335 	    pgadv));
1336 	td->td_ma_cnt -= pgadv;
1337 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1338 	uio->uio_iov->iov_len -= adv;
1339 	uio->uio_resid -= adv;
1340 	uio->uio_offset += adv;
1341 	return (error);
1342 }
1343 
1344 int
1345 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1346     struct uio *uio)
1347 {
1348 	struct thread *td;
1349 	vm_offset_t iov_base;
1350 	int cnt, pgadv;
1351 
1352 	td = curthread;
1353 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1354 	    uio->uio_segflg != UIO_USERSPACE)
1355 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1356 
1357 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1358 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1359 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1360 	switch (uio->uio_rw) {
1361 	case UIO_WRITE:
1362 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1363 		    offset, cnt);
1364 		break;
1365 	case UIO_READ:
1366 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1367 		    cnt);
1368 		break;
1369 	}
1370 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1371 	td->td_ma += pgadv;
1372 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1373 	    pgadv));
1374 	td->td_ma_cnt -= pgadv;
1375 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1376 	uio->uio_iov->iov_len -= cnt;
1377 	uio->uio_resid -= cnt;
1378 	uio->uio_offset += cnt;
1379 	return (0);
1380 }
1381 
1382 /*
1383  * File table truncate routine.
1384  */
1385 static int
1386 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1387     struct thread *td)
1388 {
1389 	struct mount *mp;
1390 	struct vnode *vp;
1391 	void *rl_cookie;
1392 	int error;
1393 
1394 	vp = fp->f_vnode;
1395 
1396 	/*
1397 	 * Lock the whole range for truncation.  Otherwise split i/o
1398 	 * might happen partly before and partly after the truncation.
1399 	 */
1400 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1401 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1402 	if (error)
1403 		goto out1;
1404 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1405 	AUDIT_ARG_VNODE1(vp);
1406 	if (vp->v_type == VDIR) {
1407 		error = EISDIR;
1408 		goto out;
1409 	}
1410 #ifdef MAC
1411 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1412 	if (error)
1413 		goto out;
1414 #endif
1415 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1416 	    fp->f_cred);
1417 out:
1418 	VOP_UNLOCK(vp);
1419 	vn_finished_write(mp);
1420 out1:
1421 	vn_rangelock_unlock(vp, rl_cookie);
1422 	return (error);
1423 }
1424 
1425 /*
1426  * Truncate a file that is already locked.
1427  */
1428 int
1429 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1430     struct ucred *cred)
1431 {
1432 	struct vattr vattr;
1433 	int error;
1434 
1435 	error = VOP_ADD_WRITECOUNT(vp, 1);
1436 	if (error == 0) {
1437 		VATTR_NULL(&vattr);
1438 		vattr.va_size = length;
1439 		if (sync)
1440 			vattr.va_vaflags |= VA_SYNC;
1441 		error = VOP_SETATTR(vp, &vattr, cred);
1442 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1443 	}
1444 	return (error);
1445 }
1446 
1447 /*
1448  * File table vnode stat routine.
1449  */
1450 static int
1451 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1452     struct thread *td)
1453 {
1454 	struct vnode *vp = fp->f_vnode;
1455 	int error;
1456 
1457 	vn_lock(vp, LK_SHARED | LK_RETRY);
1458 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td);
1459 	VOP_UNLOCK(vp);
1460 
1461 	return (error);
1462 }
1463 
1464 /*
1465  * File table vnode ioctl routine.
1466  */
1467 static int
1468 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1469     struct thread *td)
1470 {
1471 	struct vattr vattr;
1472 	struct vnode *vp;
1473 	struct fiobmap2_arg *bmarg;
1474 	int error;
1475 
1476 	vp = fp->f_vnode;
1477 	switch (vp->v_type) {
1478 	case VDIR:
1479 	case VREG:
1480 		switch (com) {
1481 		case FIONREAD:
1482 			vn_lock(vp, LK_SHARED | LK_RETRY);
1483 			error = VOP_GETATTR(vp, &vattr, active_cred);
1484 			VOP_UNLOCK(vp);
1485 			if (error == 0)
1486 				*(int *)data = vattr.va_size - fp->f_offset;
1487 			return (error);
1488 		case FIOBMAP2:
1489 			bmarg = (struct fiobmap2_arg *)data;
1490 			vn_lock(vp, LK_SHARED | LK_RETRY);
1491 #ifdef MAC
1492 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1493 			    vp);
1494 			if (error == 0)
1495 #endif
1496 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1497 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1498 			VOP_UNLOCK(vp);
1499 			return (error);
1500 		case FIONBIO:
1501 		case FIOASYNC:
1502 			return (0);
1503 		default:
1504 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1505 			    active_cred, td));
1506 		}
1507 		break;
1508 	case VCHR:
1509 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1510 		    active_cred, td));
1511 	default:
1512 		return (ENOTTY);
1513 	}
1514 }
1515 
1516 /*
1517  * File table vnode poll routine.
1518  */
1519 static int
1520 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1521     struct thread *td)
1522 {
1523 	struct vnode *vp;
1524 	int error;
1525 
1526 	vp = fp->f_vnode;
1527 #if defined(MAC) || defined(AUDIT)
1528 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1529 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1530 		AUDIT_ARG_VNODE1(vp);
1531 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1532 		VOP_UNLOCK(vp);
1533 		if (error != 0)
1534 			return (error);
1535 	}
1536 #endif
1537 	error = VOP_POLL(vp, events, fp->f_cred, td);
1538 	return (error);
1539 }
1540 
1541 /*
1542  * Acquire the requested lock and then check for validity.  LK_RETRY
1543  * permits vn_lock to return doomed vnodes.
1544  */
1545 static int __noinline
1546 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1547     int error)
1548 {
1549 
1550 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1551 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1552 
1553 	if (error == 0)
1554 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1555 
1556 	if ((flags & LK_RETRY) == 0) {
1557 		if (error == 0) {
1558 			VOP_UNLOCK(vp);
1559 			error = ENOENT;
1560 		}
1561 		return (error);
1562 	}
1563 
1564 	/*
1565 	 * LK_RETRY case.
1566 	 *
1567 	 * Nothing to do if we got the lock.
1568 	 */
1569 	if (error == 0)
1570 		return (0);
1571 
1572 	/*
1573 	 * Interlock was dropped by the call in _vn_lock.
1574 	 */
1575 	flags &= ~LK_INTERLOCK;
1576 	do {
1577 		error = VOP_LOCK1(vp, flags, file, line);
1578 	} while (error != 0);
1579 	return (0);
1580 }
1581 
1582 int
1583 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1584 {
1585 	int error;
1586 
1587 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1588 	    ("vn_lock: no locktype (%d passed)", flags));
1589 	VNPASS(vp->v_holdcnt > 0, vp);
1590 	error = VOP_LOCK1(vp, flags, file, line);
1591 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1592 		return (_vn_lock_fallback(vp, flags, file, line, error));
1593 	return (0);
1594 }
1595 
1596 /*
1597  * File table vnode close routine.
1598  */
1599 static int
1600 vn_closefile(struct file *fp, struct thread *td)
1601 {
1602 	struct vnode *vp;
1603 	struct flock lf;
1604 	int error;
1605 	bool ref;
1606 
1607 	vp = fp->f_vnode;
1608 	fp->f_ops = &badfileops;
1609 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1610 
1611 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1612 
1613 	if (__predict_false(ref)) {
1614 		lf.l_whence = SEEK_SET;
1615 		lf.l_start = 0;
1616 		lf.l_len = 0;
1617 		lf.l_type = F_UNLCK;
1618 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1619 		vrele(vp);
1620 	}
1621 	return (error);
1622 }
1623 
1624 /*
1625  * Preparing to start a filesystem write operation. If the operation is
1626  * permitted, then we bump the count of operations in progress and
1627  * proceed. If a suspend request is in progress, we wait until the
1628  * suspension is over, and then proceed.
1629  */
1630 static int
1631 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1632 {
1633 	int error, mflags;
1634 
1635 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1636 	    vfs_op_thread_enter(mp)) {
1637 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1638 		vfs_mp_count_add_pcpu(mp, writeopcount, 1);
1639 		vfs_op_thread_exit(mp);
1640 		return (0);
1641 	}
1642 
1643 	if (mplocked)
1644 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1645 	else
1646 		MNT_ILOCK(mp);
1647 
1648 	error = 0;
1649 
1650 	/*
1651 	 * Check on status of suspension.
1652 	 */
1653 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1654 	    mp->mnt_susp_owner != curthread) {
1655 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1656 		    (flags & PCATCH) : 0) | (PUSER - 1);
1657 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1658 			if (flags & V_NOWAIT) {
1659 				error = EWOULDBLOCK;
1660 				goto unlock;
1661 			}
1662 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1663 			    "suspfs", 0);
1664 			if (error)
1665 				goto unlock;
1666 		}
1667 	}
1668 	if (flags & V_XSLEEP)
1669 		goto unlock;
1670 	mp->mnt_writeopcount++;
1671 unlock:
1672 	if (error != 0 || (flags & V_XSLEEP) != 0)
1673 		MNT_REL(mp);
1674 	MNT_IUNLOCK(mp);
1675 	return (error);
1676 }
1677 
1678 int
1679 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1680 {
1681 	struct mount *mp;
1682 	int error;
1683 
1684 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1685 	    ("V_MNTREF requires mp"));
1686 
1687 	error = 0;
1688 	/*
1689 	 * If a vnode is provided, get and return the mount point that
1690 	 * to which it will write.
1691 	 */
1692 	if (vp != NULL) {
1693 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1694 			*mpp = NULL;
1695 			if (error != EOPNOTSUPP)
1696 				return (error);
1697 			return (0);
1698 		}
1699 	}
1700 	if ((mp = *mpp) == NULL)
1701 		return (0);
1702 
1703 	/*
1704 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1705 	 * a vfs_ref().
1706 	 * As long as a vnode is not provided we need to acquire a
1707 	 * refcount for the provided mountpoint too, in order to
1708 	 * emulate a vfs_ref().
1709 	 */
1710 	if (vp == NULL && (flags & V_MNTREF) == 0)
1711 		vfs_ref(mp);
1712 
1713 	return (vn_start_write_refed(mp, flags, false));
1714 }
1715 
1716 /*
1717  * Secondary suspension. Used by operations such as vop_inactive
1718  * routines that are needed by the higher level functions. These
1719  * are allowed to proceed until all the higher level functions have
1720  * completed (indicated by mnt_writeopcount dropping to zero). At that
1721  * time, these operations are halted until the suspension is over.
1722  */
1723 int
1724 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1725 {
1726 	struct mount *mp;
1727 	int error;
1728 
1729 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1730 	    ("V_MNTREF requires mp"));
1731 
1732  retry:
1733 	if (vp != NULL) {
1734 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1735 			*mpp = NULL;
1736 			if (error != EOPNOTSUPP)
1737 				return (error);
1738 			return (0);
1739 		}
1740 	}
1741 	/*
1742 	 * If we are not suspended or have not yet reached suspended
1743 	 * mode, then let the operation proceed.
1744 	 */
1745 	if ((mp = *mpp) == NULL)
1746 		return (0);
1747 
1748 	/*
1749 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1750 	 * a vfs_ref().
1751 	 * As long as a vnode is not provided we need to acquire a
1752 	 * refcount for the provided mountpoint too, in order to
1753 	 * emulate a vfs_ref().
1754 	 */
1755 	MNT_ILOCK(mp);
1756 	if (vp == NULL && (flags & V_MNTREF) == 0)
1757 		MNT_REF(mp);
1758 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1759 		mp->mnt_secondary_writes++;
1760 		mp->mnt_secondary_accwrites++;
1761 		MNT_IUNLOCK(mp);
1762 		return (0);
1763 	}
1764 	if (flags & V_NOWAIT) {
1765 		MNT_REL(mp);
1766 		MNT_IUNLOCK(mp);
1767 		return (EWOULDBLOCK);
1768 	}
1769 	/*
1770 	 * Wait for the suspension to finish.
1771 	 */
1772 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1773 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1774 	    "suspfs", 0);
1775 	vfs_rel(mp);
1776 	if (error == 0)
1777 		goto retry;
1778 	return (error);
1779 }
1780 
1781 /*
1782  * Filesystem write operation has completed. If we are suspending and this
1783  * operation is the last one, notify the suspender that the suspension is
1784  * now in effect.
1785  */
1786 void
1787 vn_finished_write(struct mount *mp)
1788 {
1789 	int c;
1790 
1791 	if (mp == NULL)
1792 		return;
1793 
1794 	if (vfs_op_thread_enter(mp)) {
1795 		vfs_mp_count_sub_pcpu(mp, writeopcount, 1);
1796 		vfs_mp_count_sub_pcpu(mp, ref, 1);
1797 		vfs_op_thread_exit(mp);
1798 		return;
1799 	}
1800 
1801 	MNT_ILOCK(mp);
1802 	vfs_assert_mount_counters(mp);
1803 	MNT_REL(mp);
1804 	c = --mp->mnt_writeopcount;
1805 	if (mp->mnt_vfs_ops == 0) {
1806 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1807 		MNT_IUNLOCK(mp);
1808 		return;
1809 	}
1810 	if (c < 0)
1811 		vfs_dump_mount_counters(mp);
1812 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
1813 		wakeup(&mp->mnt_writeopcount);
1814 	MNT_IUNLOCK(mp);
1815 }
1816 
1817 /*
1818  * Filesystem secondary write operation has completed. If we are
1819  * suspending and this operation is the last one, notify the suspender
1820  * that the suspension is now in effect.
1821  */
1822 void
1823 vn_finished_secondary_write(struct mount *mp)
1824 {
1825 	if (mp == NULL)
1826 		return;
1827 	MNT_ILOCK(mp);
1828 	MNT_REL(mp);
1829 	mp->mnt_secondary_writes--;
1830 	if (mp->mnt_secondary_writes < 0)
1831 		panic("vn_finished_secondary_write: neg cnt");
1832 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1833 	    mp->mnt_secondary_writes <= 0)
1834 		wakeup(&mp->mnt_secondary_writes);
1835 	MNT_IUNLOCK(mp);
1836 }
1837 
1838 /*
1839  * Request a filesystem to suspend write operations.
1840  */
1841 int
1842 vfs_write_suspend(struct mount *mp, int flags)
1843 {
1844 	int error;
1845 
1846 	vfs_op_enter(mp);
1847 
1848 	MNT_ILOCK(mp);
1849 	vfs_assert_mount_counters(mp);
1850 	if (mp->mnt_susp_owner == curthread) {
1851 		vfs_op_exit_locked(mp);
1852 		MNT_IUNLOCK(mp);
1853 		return (EALREADY);
1854 	}
1855 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1856 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1857 
1858 	/*
1859 	 * Unmount holds a write reference on the mount point.  If we
1860 	 * own busy reference and drain for writers, we deadlock with
1861 	 * the reference draining in the unmount path.  Callers of
1862 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1863 	 * vfs_busy() reference is owned and caller is not in the
1864 	 * unmount context.
1865 	 */
1866 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1867 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1868 		vfs_op_exit_locked(mp);
1869 		MNT_IUNLOCK(mp);
1870 		return (EBUSY);
1871 	}
1872 
1873 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1874 	mp->mnt_susp_owner = curthread;
1875 	if (mp->mnt_writeopcount > 0)
1876 		(void) msleep(&mp->mnt_writeopcount,
1877 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1878 	else
1879 		MNT_IUNLOCK(mp);
1880 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
1881 		vfs_write_resume(mp, 0);
1882 		/* vfs_write_resume does vfs_op_exit() for us */
1883 	}
1884 	return (error);
1885 }
1886 
1887 /*
1888  * Request a filesystem to resume write operations.
1889  */
1890 void
1891 vfs_write_resume(struct mount *mp, int flags)
1892 {
1893 
1894 	MNT_ILOCK(mp);
1895 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1896 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1897 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1898 				       MNTK_SUSPENDED);
1899 		mp->mnt_susp_owner = NULL;
1900 		wakeup(&mp->mnt_writeopcount);
1901 		wakeup(&mp->mnt_flag);
1902 		curthread->td_pflags &= ~TDP_IGNSUSP;
1903 		if ((flags & VR_START_WRITE) != 0) {
1904 			MNT_REF(mp);
1905 			mp->mnt_writeopcount++;
1906 		}
1907 		MNT_IUNLOCK(mp);
1908 		if ((flags & VR_NO_SUSPCLR) == 0)
1909 			VFS_SUSP_CLEAN(mp);
1910 		vfs_op_exit(mp);
1911 	} else if ((flags & VR_START_WRITE) != 0) {
1912 		MNT_REF(mp);
1913 		vn_start_write_refed(mp, 0, true);
1914 	} else {
1915 		MNT_IUNLOCK(mp);
1916 	}
1917 }
1918 
1919 /*
1920  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1921  * methods.
1922  */
1923 int
1924 vfs_write_suspend_umnt(struct mount *mp)
1925 {
1926 	int error;
1927 
1928 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1929 	    ("vfs_write_suspend_umnt: recursed"));
1930 
1931 	/* dounmount() already called vn_start_write(). */
1932 	for (;;) {
1933 		vn_finished_write(mp);
1934 		error = vfs_write_suspend(mp, 0);
1935 		if (error != 0) {
1936 			vn_start_write(NULL, &mp, V_WAIT);
1937 			return (error);
1938 		}
1939 		MNT_ILOCK(mp);
1940 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1941 			break;
1942 		MNT_IUNLOCK(mp);
1943 		vn_start_write(NULL, &mp, V_WAIT);
1944 	}
1945 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1946 	wakeup(&mp->mnt_flag);
1947 	MNT_IUNLOCK(mp);
1948 	curthread->td_pflags |= TDP_IGNSUSP;
1949 	return (0);
1950 }
1951 
1952 /*
1953  * Implement kqueues for files by translating it to vnode operation.
1954  */
1955 static int
1956 vn_kqfilter(struct file *fp, struct knote *kn)
1957 {
1958 
1959 	return (VOP_KQFILTER(fp->f_vnode, kn));
1960 }
1961 
1962 /*
1963  * Simplified in-kernel wrapper calls for extended attribute access.
1964  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1965  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1966  */
1967 int
1968 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1969     const char *attrname, int *buflen, char *buf, struct thread *td)
1970 {
1971 	struct uio	auio;
1972 	struct iovec	iov;
1973 	int	error;
1974 
1975 	iov.iov_len = *buflen;
1976 	iov.iov_base = buf;
1977 
1978 	auio.uio_iov = &iov;
1979 	auio.uio_iovcnt = 1;
1980 	auio.uio_rw = UIO_READ;
1981 	auio.uio_segflg = UIO_SYSSPACE;
1982 	auio.uio_td = td;
1983 	auio.uio_offset = 0;
1984 	auio.uio_resid = *buflen;
1985 
1986 	if ((ioflg & IO_NODELOCKED) == 0)
1987 		vn_lock(vp, LK_SHARED | LK_RETRY);
1988 
1989 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1990 
1991 	/* authorize attribute retrieval as kernel */
1992 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1993 	    td);
1994 
1995 	if ((ioflg & IO_NODELOCKED) == 0)
1996 		VOP_UNLOCK(vp);
1997 
1998 	if (error == 0) {
1999 		*buflen = *buflen - auio.uio_resid;
2000 	}
2001 
2002 	return (error);
2003 }
2004 
2005 /*
2006  * XXX failure mode if partially written?
2007  */
2008 int
2009 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2010     const char *attrname, int buflen, char *buf, struct thread *td)
2011 {
2012 	struct uio	auio;
2013 	struct iovec	iov;
2014 	struct mount	*mp;
2015 	int	error;
2016 
2017 	iov.iov_len = buflen;
2018 	iov.iov_base = buf;
2019 
2020 	auio.uio_iov = &iov;
2021 	auio.uio_iovcnt = 1;
2022 	auio.uio_rw = UIO_WRITE;
2023 	auio.uio_segflg = UIO_SYSSPACE;
2024 	auio.uio_td = td;
2025 	auio.uio_offset = 0;
2026 	auio.uio_resid = buflen;
2027 
2028 	if ((ioflg & IO_NODELOCKED) == 0) {
2029 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2030 			return (error);
2031 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2032 	}
2033 
2034 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2035 
2036 	/* authorize attribute setting as kernel */
2037 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2038 
2039 	if ((ioflg & IO_NODELOCKED) == 0) {
2040 		vn_finished_write(mp);
2041 		VOP_UNLOCK(vp);
2042 	}
2043 
2044 	return (error);
2045 }
2046 
2047 int
2048 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2049     const char *attrname, struct thread *td)
2050 {
2051 	struct mount	*mp;
2052 	int	error;
2053 
2054 	if ((ioflg & IO_NODELOCKED) == 0) {
2055 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2056 			return (error);
2057 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2058 	}
2059 
2060 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2061 
2062 	/* authorize attribute removal as kernel */
2063 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2064 	if (error == EOPNOTSUPP)
2065 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2066 		    NULL, td);
2067 
2068 	if ((ioflg & IO_NODELOCKED) == 0) {
2069 		vn_finished_write(mp);
2070 		VOP_UNLOCK(vp);
2071 	}
2072 
2073 	return (error);
2074 }
2075 
2076 static int
2077 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2078     struct vnode **rvp)
2079 {
2080 
2081 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2082 }
2083 
2084 int
2085 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2086 {
2087 
2088 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2089 	    lkflags, rvp));
2090 }
2091 
2092 int
2093 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2094     int lkflags, struct vnode **rvp)
2095 {
2096 	struct mount *mp;
2097 	int ltype, error;
2098 
2099 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2100 	mp = vp->v_mount;
2101 	ltype = VOP_ISLOCKED(vp);
2102 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2103 	    ("vn_vget_ino: vp not locked"));
2104 	error = vfs_busy(mp, MBF_NOWAIT);
2105 	if (error != 0) {
2106 		vfs_ref(mp);
2107 		VOP_UNLOCK(vp);
2108 		error = vfs_busy(mp, 0);
2109 		vn_lock(vp, ltype | LK_RETRY);
2110 		vfs_rel(mp);
2111 		if (error != 0)
2112 			return (ENOENT);
2113 		if (VN_IS_DOOMED(vp)) {
2114 			vfs_unbusy(mp);
2115 			return (ENOENT);
2116 		}
2117 	}
2118 	VOP_UNLOCK(vp);
2119 	error = alloc(mp, alloc_arg, lkflags, rvp);
2120 	vfs_unbusy(mp);
2121 	if (error != 0 || *rvp != vp)
2122 		vn_lock(vp, ltype | LK_RETRY);
2123 	if (VN_IS_DOOMED(vp)) {
2124 		if (error == 0) {
2125 			if (*rvp == vp)
2126 				vunref(vp);
2127 			else
2128 				vput(*rvp);
2129 		}
2130 		error = ENOENT;
2131 	}
2132 	return (error);
2133 }
2134 
2135 int
2136 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2137     struct thread *td)
2138 {
2139 
2140 	if (vp->v_type != VREG || td == NULL)
2141 		return (0);
2142 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2143 	    lim_cur(td, RLIMIT_FSIZE)) {
2144 		PROC_LOCK(td->td_proc);
2145 		kern_psignal(td->td_proc, SIGXFSZ);
2146 		PROC_UNLOCK(td->td_proc);
2147 		return (EFBIG);
2148 	}
2149 	return (0);
2150 }
2151 
2152 int
2153 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2154     struct thread *td)
2155 {
2156 	struct vnode *vp;
2157 
2158 	vp = fp->f_vnode;
2159 #ifdef AUDIT
2160 	vn_lock(vp, LK_SHARED | LK_RETRY);
2161 	AUDIT_ARG_VNODE1(vp);
2162 	VOP_UNLOCK(vp);
2163 #endif
2164 	return (setfmode(td, active_cred, vp, mode));
2165 }
2166 
2167 int
2168 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2169     struct thread *td)
2170 {
2171 	struct vnode *vp;
2172 
2173 	vp = fp->f_vnode;
2174 #ifdef AUDIT
2175 	vn_lock(vp, LK_SHARED | LK_RETRY);
2176 	AUDIT_ARG_VNODE1(vp);
2177 	VOP_UNLOCK(vp);
2178 #endif
2179 	return (setfown(td, active_cred, vp, uid, gid));
2180 }
2181 
2182 void
2183 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2184 {
2185 	vm_object_t object;
2186 
2187 	if ((object = vp->v_object) == NULL)
2188 		return;
2189 	VM_OBJECT_WLOCK(object);
2190 	vm_object_page_remove(object, start, end, 0);
2191 	VM_OBJECT_WUNLOCK(object);
2192 }
2193 
2194 int
2195 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2196 {
2197 	struct vattr va;
2198 	daddr_t bn, bnp;
2199 	uint64_t bsize;
2200 	off_t noff;
2201 	int error;
2202 
2203 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2204 	    ("Wrong command %lu", cmd));
2205 
2206 	if (vn_lock(vp, LK_SHARED) != 0)
2207 		return (EBADF);
2208 	if (vp->v_type != VREG) {
2209 		error = ENOTTY;
2210 		goto unlock;
2211 	}
2212 	error = VOP_GETATTR(vp, &va, cred);
2213 	if (error != 0)
2214 		goto unlock;
2215 	noff = *off;
2216 	if (noff >= va.va_size) {
2217 		error = ENXIO;
2218 		goto unlock;
2219 	}
2220 	bsize = vp->v_mount->mnt_stat.f_iosize;
2221 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2222 	    noff % bsize) {
2223 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2224 		if (error == EOPNOTSUPP) {
2225 			error = ENOTTY;
2226 			goto unlock;
2227 		}
2228 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2229 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2230 			noff = bn * bsize;
2231 			if (noff < *off)
2232 				noff = *off;
2233 			goto unlock;
2234 		}
2235 	}
2236 	if (noff > va.va_size)
2237 		noff = va.va_size;
2238 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2239 	if (cmd == FIOSEEKDATA)
2240 		error = ENXIO;
2241 unlock:
2242 	VOP_UNLOCK(vp);
2243 	if (error == 0)
2244 		*off = noff;
2245 	return (error);
2246 }
2247 
2248 int
2249 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2250 {
2251 	struct ucred *cred;
2252 	struct vnode *vp;
2253 	struct vattr vattr;
2254 	off_t foffset, size;
2255 	int error, noneg;
2256 
2257 	cred = td->td_ucred;
2258 	vp = fp->f_vnode;
2259 	foffset = foffset_lock(fp, 0);
2260 	noneg = (vp->v_type != VCHR);
2261 	error = 0;
2262 	switch (whence) {
2263 	case L_INCR:
2264 		if (noneg &&
2265 		    (foffset < 0 ||
2266 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2267 			error = EOVERFLOW;
2268 			break;
2269 		}
2270 		offset += foffset;
2271 		break;
2272 	case L_XTND:
2273 		vn_lock(vp, LK_SHARED | LK_RETRY);
2274 		error = VOP_GETATTR(vp, &vattr, cred);
2275 		VOP_UNLOCK(vp);
2276 		if (error)
2277 			break;
2278 
2279 		/*
2280 		 * If the file references a disk device, then fetch
2281 		 * the media size and use that to determine the ending
2282 		 * offset.
2283 		 */
2284 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2285 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2286 			vattr.va_size = size;
2287 		if (noneg &&
2288 		    (vattr.va_size > OFF_MAX ||
2289 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2290 			error = EOVERFLOW;
2291 			break;
2292 		}
2293 		offset += vattr.va_size;
2294 		break;
2295 	case L_SET:
2296 		break;
2297 	case SEEK_DATA:
2298 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2299 		if (error == ENOTTY)
2300 			error = EINVAL;
2301 		break;
2302 	case SEEK_HOLE:
2303 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2304 		if (error == ENOTTY)
2305 			error = EINVAL;
2306 		break;
2307 	default:
2308 		error = EINVAL;
2309 	}
2310 	if (error == 0 && noneg && offset < 0)
2311 		error = EINVAL;
2312 	if (error != 0)
2313 		goto drop;
2314 	VFS_KNOTE_UNLOCKED(vp, 0);
2315 	td->td_uretoff.tdu_off = offset;
2316 drop:
2317 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2318 	return (error);
2319 }
2320 
2321 int
2322 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2323     struct thread *td)
2324 {
2325 	int error;
2326 
2327 	/*
2328 	 * Grant permission if the caller is the owner of the file, or
2329 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2330 	 * on the file.  If the time pointer is null, then write
2331 	 * permission on the file is also sufficient.
2332 	 *
2333 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2334 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2335 	 * will be allowed to set the times [..] to the current
2336 	 * server time.
2337 	 */
2338 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2339 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2340 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2341 	return (error);
2342 }
2343 
2344 int
2345 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2346 {
2347 	struct vnode *vp;
2348 	int error;
2349 
2350 	if (fp->f_type == DTYPE_FIFO)
2351 		kif->kf_type = KF_TYPE_FIFO;
2352 	else
2353 		kif->kf_type = KF_TYPE_VNODE;
2354 	vp = fp->f_vnode;
2355 	vref(vp);
2356 	FILEDESC_SUNLOCK(fdp);
2357 	error = vn_fill_kinfo_vnode(vp, kif);
2358 	vrele(vp);
2359 	FILEDESC_SLOCK(fdp);
2360 	return (error);
2361 }
2362 
2363 static inline void
2364 vn_fill_junk(struct kinfo_file *kif)
2365 {
2366 	size_t len, olen;
2367 
2368 	/*
2369 	 * Simulate vn_fullpath returning changing values for a given
2370 	 * vp during e.g. coredump.
2371 	 */
2372 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2373 	olen = strlen(kif->kf_path);
2374 	if (len < olen)
2375 		strcpy(&kif->kf_path[len - 1], "$");
2376 	else
2377 		for (; olen < len; olen++)
2378 			strcpy(&kif->kf_path[olen], "A");
2379 }
2380 
2381 int
2382 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2383 {
2384 	struct vattr va;
2385 	char *fullpath, *freepath;
2386 	int error;
2387 
2388 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2389 	freepath = NULL;
2390 	fullpath = "-";
2391 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2392 	if (error == 0) {
2393 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2394 	}
2395 	if (freepath != NULL)
2396 		free(freepath, M_TEMP);
2397 
2398 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2399 		vn_fill_junk(kif);
2400 	);
2401 
2402 	/*
2403 	 * Retrieve vnode attributes.
2404 	 */
2405 	va.va_fsid = VNOVAL;
2406 	va.va_rdev = NODEV;
2407 	vn_lock(vp, LK_SHARED | LK_RETRY);
2408 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2409 	VOP_UNLOCK(vp);
2410 	if (error != 0)
2411 		return (error);
2412 	if (va.va_fsid != VNOVAL)
2413 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2414 	else
2415 		kif->kf_un.kf_file.kf_file_fsid =
2416 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2417 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2418 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2419 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2420 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2421 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2422 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2423 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2424 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2425 	return (0);
2426 }
2427 
2428 int
2429 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2430     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2431     struct thread *td)
2432 {
2433 #ifdef HWPMC_HOOKS
2434 	struct pmckern_map_in pkm;
2435 #endif
2436 	struct mount *mp;
2437 	struct vnode *vp;
2438 	vm_object_t object;
2439 	vm_prot_t maxprot;
2440 	boolean_t writecounted;
2441 	int error;
2442 
2443 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2444     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2445 	/*
2446 	 * POSIX shared-memory objects are defined to have
2447 	 * kernel persistence, and are not defined to support
2448 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2449 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2450 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2451 	 * flag to request this behavior.
2452 	 */
2453 	if ((fp->f_flag & FPOSIXSHM) != 0)
2454 		flags |= MAP_NOSYNC;
2455 #endif
2456 	vp = fp->f_vnode;
2457 
2458 	/*
2459 	 * Ensure that file and memory protections are
2460 	 * compatible.  Note that we only worry about
2461 	 * writability if mapping is shared; in this case,
2462 	 * current and max prot are dictated by the open file.
2463 	 * XXX use the vnode instead?  Problem is: what
2464 	 * credentials do we use for determination? What if
2465 	 * proc does a setuid?
2466 	 */
2467 	mp = vp->v_mount;
2468 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2469 		maxprot = VM_PROT_NONE;
2470 		if ((prot & VM_PROT_EXECUTE) != 0)
2471 			return (EACCES);
2472 	} else
2473 		maxprot = VM_PROT_EXECUTE;
2474 	if ((fp->f_flag & FREAD) != 0)
2475 		maxprot |= VM_PROT_READ;
2476 	else if ((prot & VM_PROT_READ) != 0)
2477 		return (EACCES);
2478 
2479 	/*
2480 	 * If we are sharing potential changes via MAP_SHARED and we
2481 	 * are trying to get write permission although we opened it
2482 	 * without asking for it, bail out.
2483 	 */
2484 	if ((flags & MAP_SHARED) != 0) {
2485 		if ((fp->f_flag & FWRITE) != 0)
2486 			maxprot |= VM_PROT_WRITE;
2487 		else if ((prot & VM_PROT_WRITE) != 0)
2488 			return (EACCES);
2489 	} else {
2490 		maxprot |= VM_PROT_WRITE;
2491 		cap_maxprot |= VM_PROT_WRITE;
2492 	}
2493 	maxprot &= cap_maxprot;
2494 
2495 	/*
2496 	 * For regular files and shared memory, POSIX requires that
2497 	 * the value of foff be a legitimate offset within the data
2498 	 * object.  In particular, negative offsets are invalid.
2499 	 * Blocking negative offsets and overflows here avoids
2500 	 * possible wraparound or user-level access into reserved
2501 	 * ranges of the data object later.  In contrast, POSIX does
2502 	 * not dictate how offsets are used by device drivers, so in
2503 	 * the case of a device mapping a negative offset is passed
2504 	 * on.
2505 	 */
2506 	if (
2507 #ifdef _LP64
2508 	    size > OFF_MAX ||
2509 #endif
2510 	    foff < 0 || foff > OFF_MAX - size)
2511 		return (EINVAL);
2512 
2513 	writecounted = FALSE;
2514 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2515 	    &foff, &object, &writecounted);
2516 	if (error != 0)
2517 		return (error);
2518 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2519 	    foff, writecounted, td);
2520 	if (error != 0) {
2521 		/*
2522 		 * If this mapping was accounted for in the vnode's
2523 		 * writecount, then undo that now.
2524 		 */
2525 		if (writecounted)
2526 			vm_pager_release_writecount(object, 0, size);
2527 		vm_object_deallocate(object);
2528 	}
2529 #ifdef HWPMC_HOOKS
2530 	/* Inform hwpmc(4) if an executable is being mapped. */
2531 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2532 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2533 			pkm.pm_file = vp;
2534 			pkm.pm_address = (uintptr_t) *addr;
2535 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2536 		}
2537 	}
2538 #endif
2539 	return (error);
2540 }
2541 
2542 void
2543 vn_fsid(struct vnode *vp, struct vattr *va)
2544 {
2545 	fsid_t *f;
2546 
2547 	f = &vp->v_mount->mnt_stat.f_fsid;
2548 	va->va_fsid = (uint32_t)f->val[1];
2549 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2550 	va->va_fsid += (uint32_t)f->val[0];
2551 }
2552 
2553 int
2554 vn_fsync_buf(struct vnode *vp, int waitfor)
2555 {
2556 	struct buf *bp, *nbp;
2557 	struct bufobj *bo;
2558 	struct mount *mp;
2559 	int error, maxretry;
2560 
2561 	error = 0;
2562 	maxretry = 10000;     /* large, arbitrarily chosen */
2563 	mp = NULL;
2564 	if (vp->v_type == VCHR) {
2565 		VI_LOCK(vp);
2566 		mp = vp->v_rdev->si_mountpt;
2567 		VI_UNLOCK(vp);
2568 	}
2569 	bo = &vp->v_bufobj;
2570 	BO_LOCK(bo);
2571 loop1:
2572 	/*
2573 	 * MARK/SCAN initialization to avoid infinite loops.
2574 	 */
2575         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2576 		bp->b_vflags &= ~BV_SCANNED;
2577 		bp->b_error = 0;
2578 	}
2579 
2580 	/*
2581 	 * Flush all dirty buffers associated with a vnode.
2582 	 */
2583 loop2:
2584 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2585 		if ((bp->b_vflags & BV_SCANNED) != 0)
2586 			continue;
2587 		bp->b_vflags |= BV_SCANNED;
2588 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2589 			if (waitfor != MNT_WAIT)
2590 				continue;
2591 			if (BUF_LOCK(bp,
2592 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2593 			    BO_LOCKPTR(bo)) != 0) {
2594 				BO_LOCK(bo);
2595 				goto loop1;
2596 			}
2597 			BO_LOCK(bo);
2598 		}
2599 		BO_UNLOCK(bo);
2600 		KASSERT(bp->b_bufobj == bo,
2601 		    ("bp %p wrong b_bufobj %p should be %p",
2602 		    bp, bp->b_bufobj, bo));
2603 		if ((bp->b_flags & B_DELWRI) == 0)
2604 			panic("fsync: not dirty");
2605 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2606 			vfs_bio_awrite(bp);
2607 		} else {
2608 			bremfree(bp);
2609 			bawrite(bp);
2610 		}
2611 		if (maxretry < 1000)
2612 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2613 		BO_LOCK(bo);
2614 		goto loop2;
2615 	}
2616 
2617 	/*
2618 	 * If synchronous the caller expects us to completely resolve all
2619 	 * dirty buffers in the system.  Wait for in-progress I/O to
2620 	 * complete (which could include background bitmap writes), then
2621 	 * retry if dirty blocks still exist.
2622 	 */
2623 	if (waitfor == MNT_WAIT) {
2624 		bufobj_wwait(bo, 0, 0);
2625 		if (bo->bo_dirty.bv_cnt > 0) {
2626 			/*
2627 			 * If we are unable to write any of these buffers
2628 			 * then we fail now rather than trying endlessly
2629 			 * to write them out.
2630 			 */
2631 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2632 				if ((error = bp->b_error) != 0)
2633 					break;
2634 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2635 			    (error == 0 && --maxretry >= 0))
2636 				goto loop1;
2637 			if (error == 0)
2638 				error = EAGAIN;
2639 		}
2640 	}
2641 	BO_UNLOCK(bo);
2642 	if (error != 0)
2643 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2644 
2645 	return (error);
2646 }
2647 
2648 /*
2649  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
2650  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
2651  * to do the actual copy.
2652  * vn_generic_copy_file_range() is factored out, so it can be called
2653  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
2654  * different file systems.
2655  */
2656 int
2657 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
2658     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
2659     struct ucred *outcred, struct thread *fsize_td)
2660 {
2661 	int error;
2662 	size_t len;
2663 	uint64_t uvalin, uvalout;
2664 
2665 	len = *lenp;
2666 	*lenp = 0;		/* For error returns. */
2667 	error = 0;
2668 
2669 	/* Do some sanity checks on the arguments. */
2670 	uvalin = *inoffp;
2671 	uvalin += len;
2672 	uvalout = *outoffp;
2673 	uvalout += len;
2674 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
2675 		error = EISDIR;
2676 	else if (*inoffp < 0 || uvalin > INT64_MAX || uvalin <
2677 	    (uint64_t)*inoffp || *outoffp < 0 || uvalout > INT64_MAX ||
2678 	    uvalout < (uint64_t)*outoffp || invp->v_type != VREG ||
2679 	    outvp->v_type != VREG)
2680 		error = EINVAL;
2681 	if (error != 0)
2682 		goto out;
2683 
2684 	/*
2685 	 * If the two vnode are for the same file system, call
2686 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
2687 	 * which can handle copies across multiple file systems.
2688 	 */
2689 	*lenp = len;
2690 	if (invp->v_mount == outvp->v_mount)
2691 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
2692 		    lenp, flags, incred, outcred, fsize_td);
2693 	else
2694 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
2695 		    outoffp, lenp, flags, incred, outcred, fsize_td);
2696 out:
2697 	return (error);
2698 }
2699 
2700 /*
2701  * Test len bytes of data starting at dat for all bytes == 0.
2702  * Return true if all bytes are zero, false otherwise.
2703  * Expects dat to be well aligned.
2704  */
2705 static bool
2706 mem_iszero(void *dat, int len)
2707 {
2708 	int i;
2709 	const u_int *p;
2710 	const char *cp;
2711 
2712 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
2713 		if (len >= sizeof(*p)) {
2714 			if (*p != 0)
2715 				return (false);
2716 		} else {
2717 			cp = (const char *)p;
2718 			for (i = 0; i < len; i++, cp++)
2719 				if (*cp != '\0')
2720 					return (false);
2721 		}
2722 	}
2723 	return (true);
2724 }
2725 
2726 /*
2727  * Look for a hole in the output file and, if found, adjust *outoffp
2728  * and *xferp to skip past the hole.
2729  * *xferp is the entire hole length to be written and xfer2 is how many bytes
2730  * to be written as 0's upon return.
2731  */
2732 static off_t
2733 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
2734     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
2735 {
2736 	int error;
2737 	off_t delta;
2738 
2739 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
2740 		*dataoffp = *outoffp;
2741 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
2742 		    curthread);
2743 		if (error == 0) {
2744 			*holeoffp = *dataoffp;
2745 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
2746 			    curthread);
2747 		}
2748 		if (error != 0 || *holeoffp == *dataoffp) {
2749 			/*
2750 			 * Since outvp is unlocked, it may be possible for
2751 			 * another thread to do a truncate(), lseek(), write()
2752 			 * creating a hole at startoff between the above
2753 			 * VOP_IOCTL() calls, if the other thread does not do
2754 			 * rangelocking.
2755 			 * If that happens, *holeoffp == *dataoffp and finding
2756 			 * the hole has failed, so disable vn_skip_hole().
2757 			 */
2758 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
2759 			return (xfer2);
2760 		}
2761 		KASSERT(*dataoffp >= *outoffp,
2762 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
2763 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
2764 		KASSERT(*holeoffp > *dataoffp,
2765 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
2766 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
2767 	}
2768 
2769 	/*
2770 	 * If there is a hole before the data starts, advance *outoffp and
2771 	 * *xferp past the hole.
2772 	 */
2773 	if (*dataoffp > *outoffp) {
2774 		delta = *dataoffp - *outoffp;
2775 		if (delta >= *xferp) {
2776 			/* Entire *xferp is a hole. */
2777 			*outoffp += *xferp;
2778 			*xferp = 0;
2779 			return (0);
2780 		}
2781 		*xferp -= delta;
2782 		*outoffp += delta;
2783 		xfer2 = MIN(xfer2, *xferp);
2784 	}
2785 
2786 	/*
2787 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
2788 	 * that the write ends at the start of the hole.
2789 	 * *holeoffp should always be greater than *outoffp, but for the
2790 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
2791 	 * value.
2792 	 */
2793 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
2794 		xfer2 = *holeoffp - *outoffp;
2795 	return (xfer2);
2796 }
2797 
2798 /*
2799  * Write an xfer sized chunk to outvp in blksize blocks from dat.
2800  * dat is a maximum of blksize in length and can be written repeatedly in
2801  * the chunk.
2802  * If growfile == true, just grow the file via vn_truncate_locked() instead
2803  * of doing actual writes.
2804  * If checkhole == true, a hole is being punched, so skip over any hole
2805  * already in the output file.
2806  */
2807 static int
2808 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
2809     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
2810 {
2811 	struct mount *mp;
2812 	off_t dataoff, holeoff, xfer2;
2813 	int error, lckf;
2814 
2815 	/*
2816 	 * Loop around doing writes of blksize until write has been completed.
2817 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
2818 	 * done for each iteration, since the xfer argument can be very
2819 	 * large if there is a large hole to punch in the output file.
2820 	 */
2821 	error = 0;
2822 	holeoff = 0;
2823 	do {
2824 		xfer2 = MIN(xfer, blksize);
2825 		if (checkhole) {
2826 			/*
2827 			 * Punching a hole.  Skip writing if there is
2828 			 * already a hole in the output file.
2829 			 */
2830 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
2831 			    &dataoff, &holeoff, cred);
2832 			if (xfer == 0)
2833 				break;
2834 			if (holeoff < 0)
2835 				checkhole = false;
2836 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
2837 			    (intmax_t)xfer2));
2838 		}
2839 		bwillwrite();
2840 		mp = NULL;
2841 		error = vn_start_write(outvp, &mp, V_WAIT);
2842 		if (error == 0) {
2843 			if (MNT_SHARED_WRITES(mp))
2844 				lckf = LK_SHARED;
2845 			else
2846 				lckf = LK_EXCLUSIVE;
2847 			error = vn_lock(outvp, lckf);
2848 		}
2849 		if (error == 0) {
2850 			if (growfile)
2851 				error = vn_truncate_locked(outvp, outoff + xfer,
2852 				    false, cred);
2853 			else {
2854 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
2855 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
2856 				    curthread->td_ucred, cred, NULL, curthread);
2857 				outoff += xfer2;
2858 				xfer -= xfer2;
2859 			}
2860 			VOP_UNLOCK(outvp);
2861 		}
2862 		if (mp != NULL)
2863 			vn_finished_write(mp);
2864 	} while (!growfile && xfer > 0 && error == 0);
2865 	return (error);
2866 }
2867 
2868 /*
2869  * Copy a byte range of one file to another.  This function can handle the
2870  * case where invp and outvp are on different file systems.
2871  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
2872  * is no better file system specific way to do it.
2873  */
2874 int
2875 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
2876     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
2877     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
2878 {
2879 	struct vattr va;
2880 	struct mount *mp;
2881 	struct uio io;
2882 	off_t startoff, endoff, xfer, xfer2;
2883 	u_long blksize;
2884 	int error;
2885 	bool cantseek, readzeros, eof, lastblock;
2886 	ssize_t aresid;
2887 	size_t copylen, len, savlen;
2888 	char *dat;
2889 	long holein, holeout;
2890 
2891 	holein = holeout = 0;
2892 	savlen = len = *lenp;
2893 	error = 0;
2894 	dat = NULL;
2895 
2896 	error = vn_lock(invp, LK_SHARED);
2897 	if (error != 0)
2898 		goto out;
2899 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
2900 		holein = 0;
2901 	VOP_UNLOCK(invp);
2902 
2903 	mp = NULL;
2904 	error = vn_start_write(outvp, &mp, V_WAIT);
2905 	if (error == 0)
2906 		error = vn_lock(outvp, LK_EXCLUSIVE);
2907 	if (error == 0) {
2908 		/*
2909 		 * If fsize_td != NULL, do a vn_rlimit_fsize() call,
2910 		 * now that outvp is locked.
2911 		 */
2912 		if (fsize_td != NULL) {
2913 			io.uio_offset = *outoffp;
2914 			io.uio_resid = len;
2915 			error = vn_rlimit_fsize(outvp, &io, fsize_td);
2916 			if (error != 0)
2917 				error = EFBIG;
2918 		}
2919 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
2920 			holeout = 0;
2921 		/*
2922 		 * Holes that are past EOF do not need to be written as a block
2923 		 * of zero bytes.  So, truncate the output file as far as
2924 		 * possible and then use va.va_size to decide if writing 0
2925 		 * bytes is necessary in the loop below.
2926 		 */
2927 		if (error == 0)
2928 			error = VOP_GETATTR(outvp, &va, outcred);
2929 		if (error == 0 && va.va_size > *outoffp && va.va_size <=
2930 		    *outoffp + len) {
2931 #ifdef MAC
2932 			error = mac_vnode_check_write(curthread->td_ucred,
2933 			    outcred, outvp);
2934 			if (error == 0)
2935 #endif
2936 				error = vn_truncate_locked(outvp, *outoffp,
2937 				    false, outcred);
2938 			if (error == 0)
2939 				va.va_size = *outoffp;
2940 		}
2941 		VOP_UNLOCK(outvp);
2942 	}
2943 	if (mp != NULL)
2944 		vn_finished_write(mp);
2945 	if (error != 0)
2946 		goto out;
2947 
2948 	/*
2949 	 * Set the blksize to the larger of the hole sizes for invp and outvp.
2950 	 * If hole sizes aren't available, set the blksize to the larger
2951 	 * f_iosize of invp and outvp.
2952 	 * This code expects the hole sizes and f_iosizes to be powers of 2.
2953 	 * This value is clipped at 4Kbytes and 1Mbyte.
2954 	 */
2955 	blksize = MAX(holein, holeout);
2956 	if (blksize == 0)
2957 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
2958 		    outvp->v_mount->mnt_stat.f_iosize);
2959 	if (blksize < 4096)
2960 		blksize = 4096;
2961 	else if (blksize > 1024 * 1024)
2962 		blksize = 1024 * 1024;
2963 	dat = malloc(blksize, M_TEMP, M_WAITOK);
2964 
2965 	/*
2966 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
2967 	 * to find holes.  Otherwise, just scan the read block for all 0s
2968 	 * in the inner loop where the data copying is done.
2969 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
2970 	 * support holes on the server, but do not support FIOSEEKHOLE.
2971 	 */
2972 	eof = false;
2973 	while (len > 0 && error == 0 && !eof) {
2974 		endoff = 0;			/* To shut up compilers. */
2975 		cantseek = true;
2976 		startoff = *inoffp;
2977 		copylen = len;
2978 
2979 		/*
2980 		 * Find the next data area.  If there is just a hole to EOF,
2981 		 * FIOSEEKDATA should fail and then we drop down into the
2982 		 * inner loop and create the hole on the outvp file.
2983 		 * (I do not know if any file system will report a hole to
2984 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
2985 		 *  will fail for those file systems.)
2986 		 *
2987 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
2988 		 * the code just falls through to the inner copy loop.
2989 		 */
2990 		error = EINVAL;
2991 		if (holein > 0)
2992 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
2993 			    incred, curthread);
2994 		if (error == 0) {
2995 			endoff = startoff;
2996 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
2997 			    incred, curthread);
2998 			/*
2999 			 * Since invp is unlocked, it may be possible for
3000 			 * another thread to do a truncate(), lseek(), write()
3001 			 * creating a hole at startoff between the above
3002 			 * VOP_IOCTL() calls, if the other thread does not do
3003 			 * rangelocking.
3004 			 * If that happens, startoff == endoff and finding
3005 			 * the hole has failed, so set an error.
3006 			 */
3007 			if (error == 0 && startoff == endoff)
3008 				error = EINVAL; /* Any error. Reset to 0. */
3009 		}
3010 		if (error == 0) {
3011 			if (startoff > *inoffp) {
3012 				/* Found hole before data block. */
3013 				xfer = MIN(startoff - *inoffp, len);
3014 				if (*outoffp < va.va_size) {
3015 					/* Must write 0s to punch hole. */
3016 					xfer2 = MIN(va.va_size - *outoffp,
3017 					    xfer);
3018 					memset(dat, 0, MIN(xfer2, blksize));
3019 					error = vn_write_outvp(outvp, dat,
3020 					    *outoffp, xfer2, blksize, false,
3021 					    holeout > 0, outcred);
3022 				}
3023 
3024 				if (error == 0 && *outoffp + xfer >
3025 				    va.va_size && xfer == len)
3026 					/* Grow last block. */
3027 					error = vn_write_outvp(outvp, dat,
3028 					    *outoffp, xfer, blksize, true,
3029 					    false, outcred);
3030 				if (error == 0) {
3031 					*inoffp += xfer;
3032 					*outoffp += xfer;
3033 					len -= xfer;
3034 				}
3035 			}
3036 			copylen = MIN(len, endoff - startoff);
3037 			cantseek = false;
3038 		} else {
3039 			cantseek = true;
3040 			startoff = *inoffp;
3041 			copylen = len;
3042 			error = 0;
3043 		}
3044 
3045 		xfer = blksize;
3046 		if (cantseek) {
3047 			/*
3048 			 * Set first xfer to end at a block boundary, so that
3049 			 * holes are more likely detected in the loop below via
3050 			 * the for all bytes 0 method.
3051 			 */
3052 			xfer -= (*inoffp % blksize);
3053 		}
3054 		/* Loop copying the data block. */
3055 		while (copylen > 0 && error == 0 && !eof) {
3056 			if (copylen < xfer)
3057 				xfer = copylen;
3058 			error = vn_lock(invp, LK_SHARED);
3059 			if (error != 0)
3060 				goto out;
3061 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3062 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3063 			    curthread->td_ucred, incred, &aresid,
3064 			    curthread);
3065 			VOP_UNLOCK(invp);
3066 			lastblock = false;
3067 			if (error == 0 && aresid > 0) {
3068 				/* Stop the copy at EOF on the input file. */
3069 				xfer -= aresid;
3070 				eof = true;
3071 				lastblock = true;
3072 			}
3073 			if (error == 0) {
3074 				/*
3075 				 * Skip the write for holes past the initial EOF
3076 				 * of the output file, unless this is the last
3077 				 * write of the output file at EOF.
3078 				 */
3079 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3080 				    false;
3081 				if (xfer == len)
3082 					lastblock = true;
3083 				if (!cantseek || *outoffp < va.va_size ||
3084 				    lastblock || !readzeros)
3085 					error = vn_write_outvp(outvp, dat,
3086 					    *outoffp, xfer, blksize,
3087 					    readzeros && lastblock &&
3088 					    *outoffp >= va.va_size, false,
3089 					    outcred);
3090 				if (error == 0) {
3091 					*inoffp += xfer;
3092 					startoff += xfer;
3093 					*outoffp += xfer;
3094 					copylen -= xfer;
3095 					len -= xfer;
3096 				}
3097 			}
3098 			xfer = blksize;
3099 		}
3100 	}
3101 out:
3102 	*lenp = savlen - len;
3103 	free(dat, M_TEMP);
3104 	return (error);
3105 }
3106 
3107 static int
3108 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3109 {
3110 	struct mount *mp;
3111 	struct vnode *vp;
3112 	off_t olen, ooffset;
3113 	int error;
3114 #ifdef AUDIT
3115 	int audited_vnode1 = 0;
3116 #endif
3117 
3118 	vp = fp->f_vnode;
3119 	if (vp->v_type != VREG)
3120 		return (ENODEV);
3121 
3122 	/* Allocating blocks may take a long time, so iterate. */
3123 	for (;;) {
3124 		olen = len;
3125 		ooffset = offset;
3126 
3127 		bwillwrite();
3128 		mp = NULL;
3129 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
3130 		if (error != 0)
3131 			break;
3132 		error = vn_lock(vp, LK_EXCLUSIVE);
3133 		if (error != 0) {
3134 			vn_finished_write(mp);
3135 			break;
3136 		}
3137 #ifdef AUDIT
3138 		if (!audited_vnode1) {
3139 			AUDIT_ARG_VNODE1(vp);
3140 			audited_vnode1 = 1;
3141 		}
3142 #endif
3143 #ifdef MAC
3144 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3145 		if (error == 0)
3146 #endif
3147 			error = VOP_ALLOCATE(vp, &offset, &len);
3148 		VOP_UNLOCK(vp);
3149 		vn_finished_write(mp);
3150 
3151 		if (olen + ooffset != offset + len) {
3152 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3153 			    ooffset, olen, offset, len);
3154 		}
3155 		if (error != 0 || len == 0)
3156 			break;
3157 		KASSERT(olen > len, ("Iteration did not make progress?"));
3158 		maybe_yield();
3159 	}
3160 
3161 	return (error);
3162 }
3163