xref: /freebsd/sys/kern/vfs_vnops.c (revision ac099daf6742ead81ea7ea86351a8ef4e783041b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/prng.h>
74 #include <sys/sx.h>
75 #include <sys/sleepqueue.h>
76 #include <sys/sysctl.h>
77 #include <sys/ttycom.h>
78 #include <sys/conf.h>
79 #include <sys/syslog.h>
80 #include <sys/unistd.h>
81 #include <sys/user.h>
82 
83 #include <security/audit/audit.h>
84 #include <security/mac/mac_framework.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_pager.h>
93 
94 #ifdef HWPMC_HOOKS
95 #include <sys/pmckern.h>
96 #endif
97 
98 static fo_rdwr_t	vn_read;
99 static fo_rdwr_t	vn_write;
100 static fo_rdwr_t	vn_io_fault;
101 static fo_truncate_t	vn_truncate;
102 static fo_ioctl_t	vn_ioctl;
103 static fo_poll_t	vn_poll;
104 static fo_kqfilter_t	vn_kqfilter;
105 static fo_close_t	vn_closefile;
106 static fo_mmap_t	vn_mmap;
107 static fo_fallocate_t	vn_fallocate;
108 
109 struct 	fileops vnops = {
110 	.fo_read = vn_io_fault,
111 	.fo_write = vn_io_fault,
112 	.fo_truncate = vn_truncate,
113 	.fo_ioctl = vn_ioctl,
114 	.fo_poll = vn_poll,
115 	.fo_kqfilter = vn_kqfilter,
116 	.fo_stat = vn_statfile,
117 	.fo_close = vn_closefile,
118 	.fo_chmod = vn_chmod,
119 	.fo_chown = vn_chown,
120 	.fo_sendfile = vn_sendfile,
121 	.fo_seek = vn_seek,
122 	.fo_fill_kinfo = vn_fill_kinfo,
123 	.fo_mmap = vn_mmap,
124 	.fo_fallocate = vn_fallocate,
125 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
126 };
127 
128 const u_int io_hold_cnt = 16;
129 static int vn_io_fault_enable = 1;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
131     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
132 static int vn_io_fault_prefault = 0;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
134     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
135 static int vn_io_pgcache_read_enable = 1;
136 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
137     &vn_io_pgcache_read_enable, 0,
138     "Enable copying from page cache for reads, avoiding fs");
139 static u_long vn_io_faults_cnt;
140 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
141     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
142 
143 static int vfs_allow_read_dir = 0;
144 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
145     &vfs_allow_read_dir, 0,
146     "Enable read(2) of directory by root for filesystems that support it");
147 
148 /*
149  * Returns true if vn_io_fault mode of handling the i/o request should
150  * be used.
151  */
152 static bool
153 do_vn_io_fault(struct vnode *vp, struct uio *uio)
154 {
155 	struct mount *mp;
156 
157 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
158 	    (mp = vp->v_mount) != NULL &&
159 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
160 }
161 
162 /*
163  * Structure used to pass arguments to vn_io_fault1(), to do either
164  * file- or vnode-based I/O calls.
165  */
166 struct vn_io_fault_args {
167 	enum {
168 		VN_IO_FAULT_FOP,
169 		VN_IO_FAULT_VOP
170 	} kind;
171 	struct ucred *cred;
172 	int flags;
173 	union {
174 		struct fop_args_tag {
175 			struct file *fp;
176 			fo_rdwr_t *doio;
177 		} fop_args;
178 		struct vop_args_tag {
179 			struct vnode *vp;
180 		} vop_args;
181 	} args;
182 };
183 
184 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
185     struct vn_io_fault_args *args, struct thread *td);
186 
187 int
188 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
189 {
190 	struct thread *td = ndp->ni_cnd.cn_thread;
191 
192 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
193 }
194 
195 static uint64_t
196 open2nameif(int fmode, u_int vn_open_flags)
197 {
198 	uint64_t res;
199 
200 	res = ISOPEN | LOCKLEAF;
201 	if ((fmode & O_RESOLVE_BENEATH) != 0)
202 		res |= RBENEATH;
203 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
204 		res |= AUDITVNODE1;
205 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
206 		res |= NOCAPCHECK;
207 	return (res);
208 }
209 
210 /*
211  * Common code for vnode open operations via a name lookup.
212  * Lookup the vnode and invoke VOP_CREATE if needed.
213  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
214  *
215  * Note that this does NOT free nameidata for the successful case,
216  * due to the NDINIT being done elsewhere.
217  */
218 int
219 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
220     struct ucred *cred, struct file *fp)
221 {
222 	struct vnode *vp;
223 	struct mount *mp;
224 	struct thread *td = ndp->ni_cnd.cn_thread;
225 	struct vattr vat;
226 	struct vattr *vap = &vat;
227 	int fmode, error;
228 	bool first_open;
229 
230 restart:
231 	first_open = false;
232 	fmode = *flagp;
233 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
234 	    O_EXCL | O_DIRECTORY))
235 		return (EINVAL);
236 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
237 		ndp->ni_cnd.cn_nameiop = CREATE;
238 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
239 		/*
240 		 * Set NOCACHE to avoid flushing the cache when
241 		 * rolling in many files at once.
242 		 *
243 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
244 		 * exist despite NOCACHE.
245 		 */
246 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
247 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
248 			ndp->ni_cnd.cn_flags |= FOLLOW;
249 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
250 			bwillwrite();
251 		if ((error = namei(ndp)) != 0)
252 			return (error);
253 		if (ndp->ni_vp == NULL) {
254 			VATTR_NULL(vap);
255 			vap->va_type = VREG;
256 			vap->va_mode = cmode;
257 			if (fmode & O_EXCL)
258 				vap->va_vaflags |= VA_EXCLUSIVE;
259 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
260 				NDFREE(ndp, NDF_ONLY_PNBUF);
261 				vput(ndp->ni_dvp);
262 				if ((error = vn_start_write(NULL, &mp,
263 				    V_XSLEEP | PCATCH)) != 0)
264 					return (error);
265 				NDREINIT(ndp);
266 				goto restart;
267 			}
268 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
269 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
270 #ifdef MAC
271 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
272 			    &ndp->ni_cnd, vap);
273 			if (error == 0)
274 #endif
275 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
276 				    &ndp->ni_cnd, vap);
277 			vp = ndp->ni_vp;
278 			if (error == 0 && (fmode & O_EXCL) != 0 &&
279 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
280 				VI_LOCK(vp);
281 				vp->v_iflag |= VI_FOPENING;
282 				VI_UNLOCK(vp);
283 				first_open = true;
284 			}
285 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
286 			    false);
287 			vn_finished_write(mp);
288 			if (error) {
289 				NDFREE(ndp, NDF_ONLY_PNBUF);
290 				if (error == ERELOOKUP) {
291 					NDREINIT(ndp);
292 					goto restart;
293 				}
294 				return (error);
295 			}
296 			fmode &= ~O_TRUNC;
297 		} else {
298 			if (ndp->ni_dvp == ndp->ni_vp)
299 				vrele(ndp->ni_dvp);
300 			else
301 				vput(ndp->ni_dvp);
302 			ndp->ni_dvp = NULL;
303 			vp = ndp->ni_vp;
304 			if (fmode & O_EXCL) {
305 				error = EEXIST;
306 				goto bad;
307 			}
308 			if (vp->v_type == VDIR) {
309 				error = EISDIR;
310 				goto bad;
311 			}
312 			fmode &= ~O_CREAT;
313 		}
314 	} else {
315 		ndp->ni_cnd.cn_nameiop = LOOKUP;
316 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
317 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
318 		    FOLLOW;
319 		if ((fmode & FWRITE) == 0)
320 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
321 		if ((error = namei(ndp)) != 0)
322 			return (error);
323 		vp = ndp->ni_vp;
324 	}
325 	error = vn_open_vnode(vp, fmode, cred, td, fp);
326 	if (first_open) {
327 		VI_LOCK(vp);
328 		vp->v_iflag &= ~VI_FOPENING;
329 		wakeup(vp);
330 		VI_UNLOCK(vp);
331 	}
332 	if (error)
333 		goto bad;
334 	*flagp = fmode;
335 	return (0);
336 bad:
337 	NDFREE(ndp, NDF_ONLY_PNBUF);
338 	vput(vp);
339 	*flagp = fmode;
340 	ndp->ni_vp = NULL;
341 	return (error);
342 }
343 
344 static int
345 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
346 {
347 	struct flock lf;
348 	int error, lock_flags, type;
349 
350 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
351 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
352 		return (0);
353 	KASSERT(fp != NULL, ("open with flock requires fp"));
354 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
355 		return (EOPNOTSUPP);
356 
357 	lock_flags = VOP_ISLOCKED(vp);
358 	VOP_UNLOCK(vp);
359 
360 	lf.l_whence = SEEK_SET;
361 	lf.l_start = 0;
362 	lf.l_len = 0;
363 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
364 	type = F_FLOCK;
365 	if ((fmode & FNONBLOCK) == 0)
366 		type |= F_WAIT;
367 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
368 		type |= F_FIRSTOPEN;
369 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
370 	if (error == 0)
371 		fp->f_flag |= FHASLOCK;
372 
373 	vn_lock(vp, lock_flags | LK_RETRY);
374 	return (error);
375 }
376 
377 /*
378  * Common code for vnode open operations once a vnode is located.
379  * Check permissions, and call the VOP_OPEN routine.
380  */
381 int
382 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
383     struct thread *td, struct file *fp)
384 {
385 	accmode_t accmode;
386 	int error;
387 
388 	if (vp->v_type == VLNK) {
389 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
390 			return (EMLINK);
391 	}
392 	if (vp->v_type == VSOCK)
393 		return (EOPNOTSUPP);
394 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
395 		return (ENOTDIR);
396 
397 	accmode = 0;
398 	if ((fmode & O_PATH) == 0) {
399 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
400 			if (vp->v_type == VDIR)
401 				return (EISDIR);
402 			accmode |= VWRITE;
403 		}
404 		if ((fmode & FREAD) != 0)
405 			accmode |= VREAD;
406 		if ((fmode & O_APPEND) && (fmode & FWRITE))
407 			accmode |= VAPPEND;
408 #ifdef MAC
409 		if ((fmode & O_CREAT) != 0)
410 			accmode |= VCREAT;
411 #endif
412 	}
413 	if ((fmode & FEXEC) != 0)
414 		accmode |= VEXEC;
415 #ifdef MAC
416 	if ((fmode & O_VERIFY) != 0)
417 		accmode |= VVERIFY;
418 	error = mac_vnode_check_open(cred, vp, accmode);
419 	if (error != 0)
420 		return (error);
421 
422 	accmode &= ~(VCREAT | VVERIFY);
423 #endif
424 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
425 		error = VOP_ACCESS(vp, accmode, cred, td);
426 		if (error != 0)
427 			return (error);
428 	}
429 	if ((fmode & O_PATH) != 0) {
430 		error = VOP_ACCESS(vp, VREAD, cred, td);
431 		if (error == 0)
432 			fp->f_flag |= FKQALLOWED;
433 		return (0);
434 	}
435 
436 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
437 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
438 	error = VOP_OPEN(vp, fmode, cred, td, fp);
439 	if (error != 0)
440 		return (error);
441 
442 	error = vn_open_vnode_advlock(vp, fmode, fp);
443 	if (error == 0 && (fmode & FWRITE) != 0) {
444 		error = VOP_ADD_WRITECOUNT(vp, 1);
445 		if (error == 0) {
446 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
447 			     __func__, vp, vp->v_writecount);
448 		}
449 	}
450 
451 	/*
452 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
453 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
454 	 */
455 	if (error != 0) {
456 		if (fp != NULL) {
457 			/*
458 			 * Arrange the call by having fdrop() to use
459 			 * vn_closefile().  This is to satisfy
460 			 * filesystems like devfs or tmpfs, which
461 			 * override fo_close().
462 			 */
463 			fp->f_flag |= FOPENFAILED;
464 			fp->f_vnode = vp;
465 			if (fp->f_ops == &badfileops) {
466 				fp->f_type = DTYPE_VNODE;
467 				fp->f_ops = &vnops;
468 			}
469 			vref(vp);
470 		} else {
471 			/*
472 			 * If there is no fp, due to kernel-mode open,
473 			 * we can call VOP_CLOSE() now.
474 			 */
475 			if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 &&
476 			    !MNT_EXTENDED_SHARED(vp->v_mount) &&
477 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
478 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
479 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
480 			    cred, td);
481 		}
482 	}
483 
484 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
485 	return (error);
486 
487 }
488 
489 /*
490  * Check for write permissions on the specified vnode.
491  * Prototype text segments cannot be written.
492  * It is racy.
493  */
494 int
495 vn_writechk(struct vnode *vp)
496 {
497 
498 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
499 	/*
500 	 * If there's shared text associated with
501 	 * the vnode, try to free it up once.  If
502 	 * we fail, we can't allow writing.
503 	 */
504 	if (VOP_IS_TEXT(vp))
505 		return (ETXTBSY);
506 
507 	return (0);
508 }
509 
510 /*
511  * Vnode close call
512  */
513 static int
514 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
515     struct thread *td, bool keep_ref)
516 {
517 	struct mount *mp;
518 	int error, lock_flags;
519 
520 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
521 	    MNT_EXTENDED_SHARED(vp->v_mount))
522 		lock_flags = LK_SHARED;
523 	else
524 		lock_flags = LK_EXCLUSIVE;
525 
526 	vn_start_write(vp, &mp, V_WAIT);
527 	vn_lock(vp, lock_flags | LK_RETRY);
528 	AUDIT_ARG_VNODE1(vp);
529 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
530 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
531 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
532 		    __func__, vp, vp->v_writecount);
533 	}
534 	error = VOP_CLOSE(vp, flags, file_cred, td);
535 	if (keep_ref)
536 		VOP_UNLOCK(vp);
537 	else
538 		vput(vp);
539 	vn_finished_write(mp);
540 	return (error);
541 }
542 
543 int
544 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
545     struct thread *td)
546 {
547 
548 	return (vn_close1(vp, flags, file_cred, td, false));
549 }
550 
551 /*
552  * Heuristic to detect sequential operation.
553  */
554 static int
555 sequential_heuristic(struct uio *uio, struct file *fp)
556 {
557 	enum uio_rw rw;
558 
559 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
560 
561 	rw = uio->uio_rw;
562 	if (fp->f_flag & FRDAHEAD)
563 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
564 
565 	/*
566 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
567 	 * that the first I/O is normally considered to be slightly
568 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
569 	 * unless previous seeks have reduced f_seqcount to 0, in which
570 	 * case offset 0 is not special.
571 	 */
572 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
573 	    uio->uio_offset == fp->f_nextoff[rw]) {
574 		/*
575 		 * f_seqcount is in units of fixed-size blocks so that it
576 		 * depends mainly on the amount of sequential I/O and not
577 		 * much on the number of sequential I/O's.  The fixed size
578 		 * of 16384 is hard-coded here since it is (not quite) just
579 		 * a magic size that works well here.  This size is more
580 		 * closely related to the best I/O size for real disks than
581 		 * to any block size used by software.
582 		 */
583 		if (uio->uio_resid >= IO_SEQMAX * 16384)
584 			fp->f_seqcount[rw] = IO_SEQMAX;
585 		else {
586 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
587 			if (fp->f_seqcount[rw] > IO_SEQMAX)
588 				fp->f_seqcount[rw] = IO_SEQMAX;
589 		}
590 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
591 	}
592 
593 	/* Not sequential.  Quickly draw-down sequentiality. */
594 	if (fp->f_seqcount[rw] > 1)
595 		fp->f_seqcount[rw] = 1;
596 	else
597 		fp->f_seqcount[rw] = 0;
598 	return (0);
599 }
600 
601 /*
602  * Package up an I/O request on a vnode into a uio and do it.
603  */
604 int
605 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
606     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
607     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
608 {
609 	struct uio auio;
610 	struct iovec aiov;
611 	struct mount *mp;
612 	struct ucred *cred;
613 	void *rl_cookie;
614 	struct vn_io_fault_args args;
615 	int error, lock_flags;
616 
617 	if (offset < 0 && vp->v_type != VCHR)
618 		return (EINVAL);
619 	auio.uio_iov = &aiov;
620 	auio.uio_iovcnt = 1;
621 	aiov.iov_base = base;
622 	aiov.iov_len = len;
623 	auio.uio_resid = len;
624 	auio.uio_offset = offset;
625 	auio.uio_segflg = segflg;
626 	auio.uio_rw = rw;
627 	auio.uio_td = td;
628 	error = 0;
629 
630 	if ((ioflg & IO_NODELOCKED) == 0) {
631 		if ((ioflg & IO_RANGELOCKED) == 0) {
632 			if (rw == UIO_READ) {
633 				rl_cookie = vn_rangelock_rlock(vp, offset,
634 				    offset + len);
635 			} else if ((ioflg & IO_APPEND) != 0) {
636 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
637 			} else {
638 				rl_cookie = vn_rangelock_wlock(vp, offset,
639 				    offset + len);
640 			}
641 		} else
642 			rl_cookie = NULL;
643 		mp = NULL;
644 		if (rw == UIO_WRITE) {
645 			if (vp->v_type != VCHR &&
646 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
647 			    != 0)
648 				goto out;
649 			if (MNT_SHARED_WRITES(mp) ||
650 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
651 				lock_flags = LK_SHARED;
652 			else
653 				lock_flags = LK_EXCLUSIVE;
654 		} else
655 			lock_flags = LK_SHARED;
656 		vn_lock(vp, lock_flags | LK_RETRY);
657 	} else
658 		rl_cookie = NULL;
659 
660 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
661 #ifdef MAC
662 	if ((ioflg & IO_NOMACCHECK) == 0) {
663 		if (rw == UIO_READ)
664 			error = mac_vnode_check_read(active_cred, file_cred,
665 			    vp);
666 		else
667 			error = mac_vnode_check_write(active_cred, file_cred,
668 			    vp);
669 	}
670 #endif
671 	if (error == 0) {
672 		if (file_cred != NULL)
673 			cred = file_cred;
674 		else
675 			cred = active_cred;
676 		if (do_vn_io_fault(vp, &auio)) {
677 			args.kind = VN_IO_FAULT_VOP;
678 			args.cred = cred;
679 			args.flags = ioflg;
680 			args.args.vop_args.vp = vp;
681 			error = vn_io_fault1(vp, &auio, &args, td);
682 		} else if (rw == UIO_READ) {
683 			error = VOP_READ(vp, &auio, ioflg, cred);
684 		} else /* if (rw == UIO_WRITE) */ {
685 			error = VOP_WRITE(vp, &auio, ioflg, cred);
686 		}
687 	}
688 	if (aresid)
689 		*aresid = auio.uio_resid;
690 	else
691 		if (auio.uio_resid && error == 0)
692 			error = EIO;
693 	if ((ioflg & IO_NODELOCKED) == 0) {
694 		VOP_UNLOCK(vp);
695 		if (mp != NULL)
696 			vn_finished_write(mp);
697 	}
698  out:
699 	if (rl_cookie != NULL)
700 		vn_rangelock_unlock(vp, rl_cookie);
701 	return (error);
702 }
703 
704 /*
705  * Package up an I/O request on a vnode into a uio and do it.  The I/O
706  * request is split up into smaller chunks and we try to avoid saturating
707  * the buffer cache while potentially holding a vnode locked, so we
708  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
709  * to give other processes a chance to lock the vnode (either other processes
710  * core'ing the same binary, or unrelated processes scanning the directory).
711  */
712 int
713 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
714     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
715     struct ucred *file_cred, size_t *aresid, struct thread *td)
716 {
717 	int error = 0;
718 	ssize_t iaresid;
719 
720 	do {
721 		int chunk;
722 
723 		/*
724 		 * Force `offset' to a multiple of MAXBSIZE except possibly
725 		 * for the first chunk, so that filesystems only need to
726 		 * write full blocks except possibly for the first and last
727 		 * chunks.
728 		 */
729 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
730 
731 		if (chunk > len)
732 			chunk = len;
733 		if (rw != UIO_READ && vp->v_type == VREG)
734 			bwillwrite();
735 		iaresid = 0;
736 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
737 		    ioflg, active_cred, file_cred, &iaresid, td);
738 		len -= chunk;	/* aresid calc already includes length */
739 		if (error)
740 			break;
741 		offset += chunk;
742 		base = (char *)base + chunk;
743 		kern_yield(PRI_USER);
744 	} while (len);
745 	if (aresid)
746 		*aresid = len + iaresid;
747 	return (error);
748 }
749 
750 #if OFF_MAX <= LONG_MAX
751 off_t
752 foffset_lock(struct file *fp, int flags)
753 {
754 	volatile short *flagsp;
755 	off_t res;
756 	short state;
757 
758 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
759 
760 	if ((flags & FOF_NOLOCK) != 0)
761 		return (atomic_load_long(&fp->f_offset));
762 
763 	/*
764 	 * According to McKusick the vn lock was protecting f_offset here.
765 	 * It is now protected by the FOFFSET_LOCKED flag.
766 	 */
767 	flagsp = &fp->f_vnread_flags;
768 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
769 		return (atomic_load_long(&fp->f_offset));
770 
771 	sleepq_lock(&fp->f_vnread_flags);
772 	state = atomic_load_16(flagsp);
773 	for (;;) {
774 		if ((state & FOFFSET_LOCKED) == 0) {
775 			if (!atomic_fcmpset_acq_16(flagsp, &state,
776 			    FOFFSET_LOCKED))
777 				continue;
778 			break;
779 		}
780 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
781 			if (!atomic_fcmpset_acq_16(flagsp, &state,
782 			    state | FOFFSET_LOCK_WAITING))
783 				continue;
784 		}
785 		DROP_GIANT();
786 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
787 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
788 		PICKUP_GIANT();
789 		sleepq_lock(&fp->f_vnread_flags);
790 		state = atomic_load_16(flagsp);
791 	}
792 	res = atomic_load_long(&fp->f_offset);
793 	sleepq_release(&fp->f_vnread_flags);
794 	return (res);
795 }
796 
797 void
798 foffset_unlock(struct file *fp, off_t val, int flags)
799 {
800 	volatile short *flagsp;
801 	short state;
802 
803 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
804 
805 	if ((flags & FOF_NOUPDATE) == 0)
806 		atomic_store_long(&fp->f_offset, val);
807 	if ((flags & FOF_NEXTOFF_R) != 0)
808 		fp->f_nextoff[UIO_READ] = val;
809 	if ((flags & FOF_NEXTOFF_W) != 0)
810 		fp->f_nextoff[UIO_WRITE] = val;
811 
812 	if ((flags & FOF_NOLOCK) != 0)
813 		return;
814 
815 	flagsp = &fp->f_vnread_flags;
816 	state = atomic_load_16(flagsp);
817 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
818 	    atomic_cmpset_rel_16(flagsp, state, 0))
819 		return;
820 
821 	sleepq_lock(&fp->f_vnread_flags);
822 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
823 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
824 	fp->f_vnread_flags = 0;
825 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
826 	sleepq_release(&fp->f_vnread_flags);
827 }
828 #else
829 off_t
830 foffset_lock(struct file *fp, int flags)
831 {
832 	struct mtx *mtxp;
833 	off_t res;
834 
835 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
836 
837 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
838 	mtx_lock(mtxp);
839 	if ((flags & FOF_NOLOCK) == 0) {
840 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
841 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
842 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
843 			    "vofflock", 0);
844 		}
845 		fp->f_vnread_flags |= FOFFSET_LOCKED;
846 	}
847 	res = fp->f_offset;
848 	mtx_unlock(mtxp);
849 	return (res);
850 }
851 
852 void
853 foffset_unlock(struct file *fp, off_t val, int flags)
854 {
855 	struct mtx *mtxp;
856 
857 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
858 
859 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
860 	mtx_lock(mtxp);
861 	if ((flags & FOF_NOUPDATE) == 0)
862 		fp->f_offset = val;
863 	if ((flags & FOF_NEXTOFF_R) != 0)
864 		fp->f_nextoff[UIO_READ] = val;
865 	if ((flags & FOF_NEXTOFF_W) != 0)
866 		fp->f_nextoff[UIO_WRITE] = val;
867 	if ((flags & FOF_NOLOCK) == 0) {
868 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
869 		    ("Lost FOFFSET_LOCKED"));
870 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
871 			wakeup(&fp->f_vnread_flags);
872 		fp->f_vnread_flags = 0;
873 	}
874 	mtx_unlock(mtxp);
875 }
876 #endif
877 
878 void
879 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
880 {
881 
882 	if ((flags & FOF_OFFSET) == 0)
883 		uio->uio_offset = foffset_lock(fp, flags);
884 }
885 
886 void
887 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
888 {
889 
890 	if ((flags & FOF_OFFSET) == 0)
891 		foffset_unlock(fp, uio->uio_offset, flags);
892 }
893 
894 static int
895 get_advice(struct file *fp, struct uio *uio)
896 {
897 	struct mtx *mtxp;
898 	int ret;
899 
900 	ret = POSIX_FADV_NORMAL;
901 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
902 		return (ret);
903 
904 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
905 	mtx_lock(mtxp);
906 	if (fp->f_advice != NULL &&
907 	    uio->uio_offset >= fp->f_advice->fa_start &&
908 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
909 		ret = fp->f_advice->fa_advice;
910 	mtx_unlock(mtxp);
911 	return (ret);
912 }
913 
914 int
915 vn_read_from_obj(struct vnode *vp, struct uio *uio)
916 {
917 	vm_object_t obj;
918 	vm_page_t ma[io_hold_cnt + 2];
919 	off_t off, vsz;
920 	ssize_t resid;
921 	int error, i, j;
922 
923 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
924 	obj = atomic_load_ptr(&vp->v_object);
925 	if (obj == NULL)
926 		return (EJUSTRETURN);
927 
928 	/*
929 	 * Depends on type stability of vm_objects.
930 	 */
931 	vm_object_pip_add(obj, 1);
932 	if ((obj->flags & OBJ_DEAD) != 0) {
933 		/*
934 		 * Note that object might be already reused from the
935 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
936 		 * we recheck for DOOMED vnode state after all pages
937 		 * are busied, and retract then.
938 		 *
939 		 * But we check for OBJ_DEAD to ensure that we do not
940 		 * busy pages while vm_object_terminate_pages()
941 		 * processes the queue.
942 		 */
943 		error = EJUSTRETURN;
944 		goto out_pip;
945 	}
946 
947 	resid = uio->uio_resid;
948 	off = uio->uio_offset;
949 	for (i = 0; resid > 0; i++) {
950 		MPASS(i < io_hold_cnt + 2);
951 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
952 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
953 		    VM_ALLOC_NOWAIT);
954 		if (ma[i] == NULL)
955 			break;
956 
957 		/*
958 		 * Skip invalid pages.  Valid mask can be partial only
959 		 * at EOF, and we clip later.
960 		 */
961 		if (vm_page_none_valid(ma[i])) {
962 			vm_page_sunbusy(ma[i]);
963 			break;
964 		}
965 
966 		resid -= PAGE_SIZE;
967 		off += PAGE_SIZE;
968 	}
969 	if (i == 0) {
970 		error = EJUSTRETURN;
971 		goto out_pip;
972 	}
973 
974 	/*
975 	 * Check VIRF_DOOMED after we busied our pages.  Since
976 	 * vgonel() terminates the vnode' vm_object, it cannot
977 	 * process past pages busied by us.
978 	 */
979 	if (VN_IS_DOOMED(vp)) {
980 		error = EJUSTRETURN;
981 		goto out;
982 	}
983 
984 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
985 	if (resid > uio->uio_resid)
986 		resid = uio->uio_resid;
987 
988 	/*
989 	 * Unlocked read of vnp_size is safe because truncation cannot
990 	 * pass busied page.  But we load vnp_size into a local
991 	 * variable so that possible concurrent extension does not
992 	 * break calculation.
993 	 */
994 #if defined(__powerpc__) && !defined(__powerpc64__)
995 	vsz = obj->un_pager.vnp.vnp_size;
996 #else
997 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
998 #endif
999 	if (uio->uio_offset >= vsz) {
1000 		error = EJUSTRETURN;
1001 		goto out;
1002 	}
1003 	if (uio->uio_offset + resid > vsz)
1004 		resid = vsz - uio->uio_offset;
1005 
1006 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1007 
1008 out:
1009 	for (j = 0; j < i; j++) {
1010 		if (error == 0)
1011 			vm_page_reference(ma[j]);
1012 		vm_page_sunbusy(ma[j]);
1013 	}
1014 out_pip:
1015 	vm_object_pip_wakeup(obj);
1016 	if (error != 0)
1017 		return (error);
1018 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1019 }
1020 
1021 /*
1022  * File table vnode read routine.
1023  */
1024 static int
1025 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1026     struct thread *td)
1027 {
1028 	struct vnode *vp;
1029 	off_t orig_offset;
1030 	int error, ioflag;
1031 	int advice;
1032 
1033 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1034 	    uio->uio_td, td));
1035 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1036 	vp = fp->f_vnode;
1037 	ioflag = 0;
1038 	if (fp->f_flag & FNONBLOCK)
1039 		ioflag |= IO_NDELAY;
1040 	if (fp->f_flag & O_DIRECT)
1041 		ioflag |= IO_DIRECT;
1042 
1043 	/*
1044 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
1045 	 * allows us to avoid unneeded work outright.
1046 	 */
1047 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1048 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1049 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1050 		if (error == 0) {
1051 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1052 			return (0);
1053 		}
1054 		if (error != EJUSTRETURN)
1055 			return (error);
1056 	}
1057 
1058 	advice = get_advice(fp, uio);
1059 	vn_lock(vp, LK_SHARED | LK_RETRY);
1060 
1061 	switch (advice) {
1062 	case POSIX_FADV_NORMAL:
1063 	case POSIX_FADV_SEQUENTIAL:
1064 	case POSIX_FADV_NOREUSE:
1065 		ioflag |= sequential_heuristic(uio, fp);
1066 		break;
1067 	case POSIX_FADV_RANDOM:
1068 		/* Disable read-ahead for random I/O. */
1069 		break;
1070 	}
1071 	orig_offset = uio->uio_offset;
1072 
1073 #ifdef MAC
1074 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1075 	if (error == 0)
1076 #endif
1077 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1078 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1079 	VOP_UNLOCK(vp);
1080 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1081 	    orig_offset != uio->uio_offset)
1082 		/*
1083 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1084 		 * for the backing file after a POSIX_FADV_NOREUSE
1085 		 * read(2).
1086 		 */
1087 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1088 		    POSIX_FADV_DONTNEED);
1089 	return (error);
1090 }
1091 
1092 /*
1093  * File table vnode write routine.
1094  */
1095 static int
1096 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1097     struct thread *td)
1098 {
1099 	struct vnode *vp;
1100 	struct mount *mp;
1101 	off_t orig_offset;
1102 	int error, ioflag, lock_flags;
1103 	int advice;
1104 
1105 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1106 	    uio->uio_td, td));
1107 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1108 	vp = fp->f_vnode;
1109 	if (vp->v_type == VREG)
1110 		bwillwrite();
1111 	ioflag = IO_UNIT;
1112 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
1113 		ioflag |= IO_APPEND;
1114 	if (fp->f_flag & FNONBLOCK)
1115 		ioflag |= IO_NDELAY;
1116 	if (fp->f_flag & O_DIRECT)
1117 		ioflag |= IO_DIRECT;
1118 	if ((fp->f_flag & O_FSYNC) ||
1119 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
1120 		ioflag |= IO_SYNC;
1121 	/*
1122 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
1123 	 * implementations that don't understand IO_DATASYNC fall back to full
1124 	 * O_SYNC behavior.
1125 	 */
1126 	if (fp->f_flag & O_DSYNC)
1127 		ioflag |= IO_SYNC | IO_DATASYNC;
1128 	mp = NULL;
1129 	if (vp->v_type != VCHR &&
1130 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
1131 		goto unlock;
1132 
1133 	advice = get_advice(fp, uio);
1134 
1135 	if (MNT_SHARED_WRITES(mp) ||
1136 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
1137 		lock_flags = LK_SHARED;
1138 	} else {
1139 		lock_flags = LK_EXCLUSIVE;
1140 	}
1141 
1142 	vn_lock(vp, lock_flags | LK_RETRY);
1143 	switch (advice) {
1144 	case POSIX_FADV_NORMAL:
1145 	case POSIX_FADV_SEQUENTIAL:
1146 	case POSIX_FADV_NOREUSE:
1147 		ioflag |= sequential_heuristic(uio, fp);
1148 		break;
1149 	case POSIX_FADV_RANDOM:
1150 		/* XXX: Is this correct? */
1151 		break;
1152 	}
1153 	orig_offset = uio->uio_offset;
1154 
1155 #ifdef MAC
1156 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1157 	if (error == 0)
1158 #endif
1159 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1160 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1161 	VOP_UNLOCK(vp);
1162 	if (vp->v_type != VCHR)
1163 		vn_finished_write(mp);
1164 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1165 	    orig_offset != uio->uio_offset)
1166 		/*
1167 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1168 		 * for the backing file after a POSIX_FADV_NOREUSE
1169 		 * write(2).
1170 		 */
1171 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1172 		    POSIX_FADV_DONTNEED);
1173 unlock:
1174 	return (error);
1175 }
1176 
1177 /*
1178  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1179  * prevent the following deadlock:
1180  *
1181  * Assume that the thread A reads from the vnode vp1 into userspace
1182  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1183  * currently not resident, then system ends up with the call chain
1184  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1185  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1186  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1187  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1188  * backed by the pages of vnode vp1, and some page in buf2 is not
1189  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1190  *
1191  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1192  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1193  * Instead, it first tries to do the whole range i/o with pagefaults
1194  * disabled. If all pages in the i/o buffer are resident and mapped,
1195  * VOP will succeed (ignoring the genuine filesystem errors).
1196  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1197  * i/o in chunks, with all pages in the chunk prefaulted and held
1198  * using vm_fault_quick_hold_pages().
1199  *
1200  * Filesystems using this deadlock avoidance scheme should use the
1201  * array of the held pages from uio, saved in the curthread->td_ma,
1202  * instead of doing uiomove().  A helper function
1203  * vn_io_fault_uiomove() converts uiomove request into
1204  * uiomove_fromphys() over td_ma array.
1205  *
1206  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1207  * make the current i/o request atomic with respect to other i/os and
1208  * truncations.
1209  */
1210 
1211 /*
1212  * Decode vn_io_fault_args and perform the corresponding i/o.
1213  */
1214 static int
1215 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1216     struct thread *td)
1217 {
1218 	int error, save;
1219 
1220 	error = 0;
1221 	save = vm_fault_disable_pagefaults();
1222 	switch (args->kind) {
1223 	case VN_IO_FAULT_FOP:
1224 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1225 		    uio, args->cred, args->flags, td);
1226 		break;
1227 	case VN_IO_FAULT_VOP:
1228 		if (uio->uio_rw == UIO_READ) {
1229 			error = VOP_READ(args->args.vop_args.vp, uio,
1230 			    args->flags, args->cred);
1231 		} else if (uio->uio_rw == UIO_WRITE) {
1232 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1233 			    args->flags, args->cred);
1234 		}
1235 		break;
1236 	default:
1237 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1238 		    args->kind, uio->uio_rw);
1239 	}
1240 	vm_fault_enable_pagefaults(save);
1241 	return (error);
1242 }
1243 
1244 static int
1245 vn_io_fault_touch(char *base, const struct uio *uio)
1246 {
1247 	int r;
1248 
1249 	r = fubyte(base);
1250 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1251 		return (EFAULT);
1252 	return (0);
1253 }
1254 
1255 static int
1256 vn_io_fault_prefault_user(const struct uio *uio)
1257 {
1258 	char *base;
1259 	const struct iovec *iov;
1260 	size_t len;
1261 	ssize_t resid;
1262 	int error, i;
1263 
1264 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1265 	    ("vn_io_fault_prefault userspace"));
1266 
1267 	error = i = 0;
1268 	iov = uio->uio_iov;
1269 	resid = uio->uio_resid;
1270 	base = iov->iov_base;
1271 	len = iov->iov_len;
1272 	while (resid > 0) {
1273 		error = vn_io_fault_touch(base, uio);
1274 		if (error != 0)
1275 			break;
1276 		if (len < PAGE_SIZE) {
1277 			if (len != 0) {
1278 				error = vn_io_fault_touch(base + len - 1, uio);
1279 				if (error != 0)
1280 					break;
1281 				resid -= len;
1282 			}
1283 			if (++i >= uio->uio_iovcnt)
1284 				break;
1285 			iov = uio->uio_iov + i;
1286 			base = iov->iov_base;
1287 			len = iov->iov_len;
1288 		} else {
1289 			len -= PAGE_SIZE;
1290 			base += PAGE_SIZE;
1291 			resid -= PAGE_SIZE;
1292 		}
1293 	}
1294 	return (error);
1295 }
1296 
1297 /*
1298  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1299  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1300  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1301  * into args and call vn_io_fault1() to handle faults during the user
1302  * mode buffer accesses.
1303  */
1304 static int
1305 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1306     struct thread *td)
1307 {
1308 	vm_page_t ma[io_hold_cnt + 2];
1309 	struct uio *uio_clone, short_uio;
1310 	struct iovec short_iovec[1];
1311 	vm_page_t *prev_td_ma;
1312 	vm_prot_t prot;
1313 	vm_offset_t addr, end;
1314 	size_t len, resid;
1315 	ssize_t adv;
1316 	int error, cnt, saveheld, prev_td_ma_cnt;
1317 
1318 	if (vn_io_fault_prefault) {
1319 		error = vn_io_fault_prefault_user(uio);
1320 		if (error != 0)
1321 			return (error); /* Or ignore ? */
1322 	}
1323 
1324 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1325 
1326 	/*
1327 	 * The UFS follows IO_UNIT directive and replays back both
1328 	 * uio_offset and uio_resid if an error is encountered during the
1329 	 * operation.  But, since the iovec may be already advanced,
1330 	 * uio is still in an inconsistent state.
1331 	 *
1332 	 * Cache a copy of the original uio, which is advanced to the redo
1333 	 * point using UIO_NOCOPY below.
1334 	 */
1335 	uio_clone = cloneuio(uio);
1336 	resid = uio->uio_resid;
1337 
1338 	short_uio.uio_segflg = UIO_USERSPACE;
1339 	short_uio.uio_rw = uio->uio_rw;
1340 	short_uio.uio_td = uio->uio_td;
1341 
1342 	error = vn_io_fault_doio(args, uio, td);
1343 	if (error != EFAULT)
1344 		goto out;
1345 
1346 	atomic_add_long(&vn_io_faults_cnt, 1);
1347 	uio_clone->uio_segflg = UIO_NOCOPY;
1348 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1349 	uio_clone->uio_segflg = uio->uio_segflg;
1350 
1351 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1352 	prev_td_ma = td->td_ma;
1353 	prev_td_ma_cnt = td->td_ma_cnt;
1354 
1355 	while (uio_clone->uio_resid != 0) {
1356 		len = uio_clone->uio_iov->iov_len;
1357 		if (len == 0) {
1358 			KASSERT(uio_clone->uio_iovcnt >= 1,
1359 			    ("iovcnt underflow"));
1360 			uio_clone->uio_iov++;
1361 			uio_clone->uio_iovcnt--;
1362 			continue;
1363 		}
1364 		if (len > ptoa(io_hold_cnt))
1365 			len = ptoa(io_hold_cnt);
1366 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1367 		end = round_page(addr + len);
1368 		if (end < addr) {
1369 			error = EFAULT;
1370 			break;
1371 		}
1372 		cnt = atop(end - trunc_page(addr));
1373 		/*
1374 		 * A perfectly misaligned address and length could cause
1375 		 * both the start and the end of the chunk to use partial
1376 		 * page.  +2 accounts for such a situation.
1377 		 */
1378 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1379 		    addr, len, prot, ma, io_hold_cnt + 2);
1380 		if (cnt == -1) {
1381 			error = EFAULT;
1382 			break;
1383 		}
1384 		short_uio.uio_iov = &short_iovec[0];
1385 		short_iovec[0].iov_base = (void *)addr;
1386 		short_uio.uio_iovcnt = 1;
1387 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1388 		short_uio.uio_offset = uio_clone->uio_offset;
1389 		td->td_ma = ma;
1390 		td->td_ma_cnt = cnt;
1391 
1392 		error = vn_io_fault_doio(args, &short_uio, td);
1393 		vm_page_unhold_pages(ma, cnt);
1394 		adv = len - short_uio.uio_resid;
1395 
1396 		uio_clone->uio_iov->iov_base =
1397 		    (char *)uio_clone->uio_iov->iov_base + adv;
1398 		uio_clone->uio_iov->iov_len -= adv;
1399 		uio_clone->uio_resid -= adv;
1400 		uio_clone->uio_offset += adv;
1401 
1402 		uio->uio_resid -= adv;
1403 		uio->uio_offset += adv;
1404 
1405 		if (error != 0 || adv == 0)
1406 			break;
1407 	}
1408 	td->td_ma = prev_td_ma;
1409 	td->td_ma_cnt = prev_td_ma_cnt;
1410 	curthread_pflags_restore(saveheld);
1411 out:
1412 	free(uio_clone, M_IOV);
1413 	return (error);
1414 }
1415 
1416 static int
1417 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1418     int flags, struct thread *td)
1419 {
1420 	fo_rdwr_t *doio;
1421 	struct vnode *vp;
1422 	void *rl_cookie;
1423 	struct vn_io_fault_args args;
1424 	int error;
1425 
1426 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1427 	vp = fp->f_vnode;
1428 
1429 	/*
1430 	 * The ability to read(2) on a directory has historically been
1431 	 * allowed for all users, but this can and has been the source of
1432 	 * at least one security issue in the past.  As such, it is now hidden
1433 	 * away behind a sysctl for those that actually need it to use it, and
1434 	 * restricted to root when it's turned on to make it relatively safe to
1435 	 * leave on for longer sessions of need.
1436 	 */
1437 	if (vp->v_type == VDIR) {
1438 		KASSERT(uio->uio_rw == UIO_READ,
1439 		    ("illegal write attempted on a directory"));
1440 		if (!vfs_allow_read_dir)
1441 			return (EISDIR);
1442 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1443 			return (EISDIR);
1444 	}
1445 
1446 	foffset_lock_uio(fp, uio, flags);
1447 	if (do_vn_io_fault(vp, uio)) {
1448 		args.kind = VN_IO_FAULT_FOP;
1449 		args.args.fop_args.fp = fp;
1450 		args.args.fop_args.doio = doio;
1451 		args.cred = active_cred;
1452 		args.flags = flags | FOF_OFFSET;
1453 		if (uio->uio_rw == UIO_READ) {
1454 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1455 			    uio->uio_offset + uio->uio_resid);
1456 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1457 		    (flags & FOF_OFFSET) == 0) {
1458 			/* For appenders, punt and lock the whole range. */
1459 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1460 		} else {
1461 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1462 			    uio->uio_offset + uio->uio_resid);
1463 		}
1464 		error = vn_io_fault1(vp, uio, &args, td);
1465 		vn_rangelock_unlock(vp, rl_cookie);
1466 	} else {
1467 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1468 	}
1469 	foffset_unlock_uio(fp, uio, flags);
1470 	return (error);
1471 }
1472 
1473 /*
1474  * Helper function to perform the requested uiomove operation using
1475  * the held pages for io->uio_iov[0].iov_base buffer instead of
1476  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1477  * instead of iov_base prevents page faults that could occur due to
1478  * pmap_collect() invalidating the mapping created by
1479  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1480  * object cleanup revoking the write access from page mappings.
1481  *
1482  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1483  * instead of plain uiomove().
1484  */
1485 int
1486 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1487 {
1488 	struct uio transp_uio;
1489 	struct iovec transp_iov[1];
1490 	struct thread *td;
1491 	size_t adv;
1492 	int error, pgadv;
1493 
1494 	td = curthread;
1495 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1496 	    uio->uio_segflg != UIO_USERSPACE)
1497 		return (uiomove(data, xfersize, uio));
1498 
1499 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1500 	transp_iov[0].iov_base = data;
1501 	transp_uio.uio_iov = &transp_iov[0];
1502 	transp_uio.uio_iovcnt = 1;
1503 	if (xfersize > uio->uio_resid)
1504 		xfersize = uio->uio_resid;
1505 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1506 	transp_uio.uio_offset = 0;
1507 	transp_uio.uio_segflg = UIO_SYSSPACE;
1508 	/*
1509 	 * Since transp_iov points to data, and td_ma page array
1510 	 * corresponds to original uio->uio_iov, we need to invert the
1511 	 * direction of the i/o operation as passed to
1512 	 * uiomove_fromphys().
1513 	 */
1514 	switch (uio->uio_rw) {
1515 	case UIO_WRITE:
1516 		transp_uio.uio_rw = UIO_READ;
1517 		break;
1518 	case UIO_READ:
1519 		transp_uio.uio_rw = UIO_WRITE;
1520 		break;
1521 	}
1522 	transp_uio.uio_td = uio->uio_td;
1523 	error = uiomove_fromphys(td->td_ma,
1524 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1525 	    xfersize, &transp_uio);
1526 	adv = xfersize - transp_uio.uio_resid;
1527 	pgadv =
1528 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1529 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1530 	td->td_ma += pgadv;
1531 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1532 	    pgadv));
1533 	td->td_ma_cnt -= pgadv;
1534 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1535 	uio->uio_iov->iov_len -= adv;
1536 	uio->uio_resid -= adv;
1537 	uio->uio_offset += adv;
1538 	return (error);
1539 }
1540 
1541 int
1542 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1543     struct uio *uio)
1544 {
1545 	struct thread *td;
1546 	vm_offset_t iov_base;
1547 	int cnt, pgadv;
1548 
1549 	td = curthread;
1550 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1551 	    uio->uio_segflg != UIO_USERSPACE)
1552 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1553 
1554 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1555 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1556 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1557 	switch (uio->uio_rw) {
1558 	case UIO_WRITE:
1559 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1560 		    offset, cnt);
1561 		break;
1562 	case UIO_READ:
1563 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1564 		    cnt);
1565 		break;
1566 	}
1567 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1568 	td->td_ma += pgadv;
1569 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1570 	    pgadv));
1571 	td->td_ma_cnt -= pgadv;
1572 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1573 	uio->uio_iov->iov_len -= cnt;
1574 	uio->uio_resid -= cnt;
1575 	uio->uio_offset += cnt;
1576 	return (0);
1577 }
1578 
1579 /*
1580  * File table truncate routine.
1581  */
1582 static int
1583 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1584     struct thread *td)
1585 {
1586 	struct mount *mp;
1587 	struct vnode *vp;
1588 	void *rl_cookie;
1589 	int error;
1590 
1591 	vp = fp->f_vnode;
1592 
1593 retry:
1594 	/*
1595 	 * Lock the whole range for truncation.  Otherwise split i/o
1596 	 * might happen partly before and partly after the truncation.
1597 	 */
1598 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1599 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1600 	if (error)
1601 		goto out1;
1602 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1603 	AUDIT_ARG_VNODE1(vp);
1604 	if (vp->v_type == VDIR) {
1605 		error = EISDIR;
1606 		goto out;
1607 	}
1608 #ifdef MAC
1609 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1610 	if (error)
1611 		goto out;
1612 #endif
1613 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1614 	    fp->f_cred);
1615 out:
1616 	VOP_UNLOCK(vp);
1617 	vn_finished_write(mp);
1618 out1:
1619 	vn_rangelock_unlock(vp, rl_cookie);
1620 	if (error == ERELOOKUP)
1621 		goto retry;
1622 	return (error);
1623 }
1624 
1625 /*
1626  * Truncate a file that is already locked.
1627  */
1628 int
1629 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1630     struct ucred *cred)
1631 {
1632 	struct vattr vattr;
1633 	int error;
1634 
1635 	error = VOP_ADD_WRITECOUNT(vp, 1);
1636 	if (error == 0) {
1637 		VATTR_NULL(&vattr);
1638 		vattr.va_size = length;
1639 		if (sync)
1640 			vattr.va_vaflags |= VA_SYNC;
1641 		error = VOP_SETATTR(vp, &vattr, cred);
1642 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1643 	}
1644 	return (error);
1645 }
1646 
1647 /*
1648  * File table vnode stat routine.
1649  */
1650 int
1651 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1652     struct thread *td)
1653 {
1654 	struct vnode *vp = fp->f_vnode;
1655 	int error;
1656 
1657 	vn_lock(vp, LK_SHARED | LK_RETRY);
1658 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td);
1659 	VOP_UNLOCK(vp);
1660 
1661 	return (error);
1662 }
1663 
1664 /*
1665  * File table vnode ioctl routine.
1666  */
1667 static int
1668 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1669     struct thread *td)
1670 {
1671 	struct vattr vattr;
1672 	struct vnode *vp;
1673 	struct fiobmap2_arg *bmarg;
1674 	int error;
1675 
1676 	vp = fp->f_vnode;
1677 	switch (vp->v_type) {
1678 	case VDIR:
1679 	case VREG:
1680 		switch (com) {
1681 		case FIONREAD:
1682 			vn_lock(vp, LK_SHARED | LK_RETRY);
1683 			error = VOP_GETATTR(vp, &vattr, active_cred);
1684 			VOP_UNLOCK(vp);
1685 			if (error == 0)
1686 				*(int *)data = vattr.va_size - fp->f_offset;
1687 			return (error);
1688 		case FIOBMAP2:
1689 			bmarg = (struct fiobmap2_arg *)data;
1690 			vn_lock(vp, LK_SHARED | LK_RETRY);
1691 #ifdef MAC
1692 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1693 			    vp);
1694 			if (error == 0)
1695 #endif
1696 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1697 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1698 			VOP_UNLOCK(vp);
1699 			return (error);
1700 		case FIONBIO:
1701 		case FIOASYNC:
1702 			return (0);
1703 		default:
1704 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1705 			    active_cred, td));
1706 		}
1707 		break;
1708 	case VCHR:
1709 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1710 		    active_cred, td));
1711 	default:
1712 		return (ENOTTY);
1713 	}
1714 }
1715 
1716 /*
1717  * File table vnode poll routine.
1718  */
1719 static int
1720 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1721     struct thread *td)
1722 {
1723 	struct vnode *vp;
1724 	int error;
1725 
1726 	vp = fp->f_vnode;
1727 #if defined(MAC) || defined(AUDIT)
1728 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1729 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1730 		AUDIT_ARG_VNODE1(vp);
1731 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1732 		VOP_UNLOCK(vp);
1733 		if (error != 0)
1734 			return (error);
1735 	}
1736 #endif
1737 	error = VOP_POLL(vp, events, fp->f_cred, td);
1738 	return (error);
1739 }
1740 
1741 /*
1742  * Acquire the requested lock and then check for validity.  LK_RETRY
1743  * permits vn_lock to return doomed vnodes.
1744  */
1745 static int __noinline
1746 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1747     int error)
1748 {
1749 
1750 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1751 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1752 
1753 	if (error == 0)
1754 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1755 
1756 	if ((flags & LK_RETRY) == 0) {
1757 		if (error == 0) {
1758 			VOP_UNLOCK(vp);
1759 			error = ENOENT;
1760 		}
1761 		return (error);
1762 	}
1763 
1764 	/*
1765 	 * LK_RETRY case.
1766 	 *
1767 	 * Nothing to do if we got the lock.
1768 	 */
1769 	if (error == 0)
1770 		return (0);
1771 
1772 	/*
1773 	 * Interlock was dropped by the call in _vn_lock.
1774 	 */
1775 	flags &= ~LK_INTERLOCK;
1776 	do {
1777 		error = VOP_LOCK1(vp, flags, file, line);
1778 	} while (error != 0);
1779 	return (0);
1780 }
1781 
1782 int
1783 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1784 {
1785 	int error;
1786 
1787 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1788 	    ("vn_lock: no locktype (%d passed)", flags));
1789 	VNPASS(vp->v_holdcnt > 0, vp);
1790 	error = VOP_LOCK1(vp, flags, file, line);
1791 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1792 		return (_vn_lock_fallback(vp, flags, file, line, error));
1793 	return (0);
1794 }
1795 
1796 /*
1797  * File table vnode close routine.
1798  */
1799 static int
1800 vn_closefile(struct file *fp, struct thread *td)
1801 {
1802 	struct vnode *vp;
1803 	struct flock lf;
1804 	int error;
1805 	bool ref;
1806 
1807 	vp = fp->f_vnode;
1808 	fp->f_ops = &badfileops;
1809 	ref = (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1810 
1811 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1812 
1813 	if (__predict_false(ref)) {
1814 		lf.l_whence = SEEK_SET;
1815 		lf.l_start = 0;
1816 		lf.l_len = 0;
1817 		lf.l_type = F_UNLCK;
1818 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1819 		vrele(vp);
1820 	}
1821 	return (error);
1822 }
1823 
1824 /*
1825  * Preparing to start a filesystem write operation. If the operation is
1826  * permitted, then we bump the count of operations in progress and
1827  * proceed. If a suspend request is in progress, we wait until the
1828  * suspension is over, and then proceed.
1829  */
1830 static int
1831 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1832 {
1833 	struct mount_pcpu *mpcpu;
1834 	int error, mflags;
1835 
1836 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1837 	    vfs_op_thread_enter(mp, mpcpu)) {
1838 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1839 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1840 		vfs_op_thread_exit(mp, mpcpu);
1841 		return (0);
1842 	}
1843 
1844 	if (mplocked)
1845 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1846 	else
1847 		MNT_ILOCK(mp);
1848 
1849 	error = 0;
1850 
1851 	/*
1852 	 * Check on status of suspension.
1853 	 */
1854 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1855 	    mp->mnt_susp_owner != curthread) {
1856 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1857 		    (flags & PCATCH) : 0) | (PUSER - 1);
1858 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1859 			if (flags & V_NOWAIT) {
1860 				error = EWOULDBLOCK;
1861 				goto unlock;
1862 			}
1863 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1864 			    "suspfs", 0);
1865 			if (error)
1866 				goto unlock;
1867 		}
1868 	}
1869 	if (flags & V_XSLEEP)
1870 		goto unlock;
1871 	mp->mnt_writeopcount++;
1872 unlock:
1873 	if (error != 0 || (flags & V_XSLEEP) != 0)
1874 		MNT_REL(mp);
1875 	MNT_IUNLOCK(mp);
1876 	return (error);
1877 }
1878 
1879 int
1880 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1881 {
1882 	struct mount *mp;
1883 	int error;
1884 
1885 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1886 	    ("V_MNTREF requires mp"));
1887 
1888 	error = 0;
1889 	/*
1890 	 * If a vnode is provided, get and return the mount point that
1891 	 * to which it will write.
1892 	 */
1893 	if (vp != NULL) {
1894 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1895 			*mpp = NULL;
1896 			if (error != EOPNOTSUPP)
1897 				return (error);
1898 			return (0);
1899 		}
1900 	}
1901 	if ((mp = *mpp) == NULL)
1902 		return (0);
1903 
1904 	/*
1905 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1906 	 * a vfs_ref().
1907 	 * As long as a vnode is not provided we need to acquire a
1908 	 * refcount for the provided mountpoint too, in order to
1909 	 * emulate a vfs_ref().
1910 	 */
1911 	if (vp == NULL && (flags & V_MNTREF) == 0)
1912 		vfs_ref(mp);
1913 
1914 	return (vn_start_write_refed(mp, flags, false));
1915 }
1916 
1917 /*
1918  * Secondary suspension. Used by operations such as vop_inactive
1919  * routines that are needed by the higher level functions. These
1920  * are allowed to proceed until all the higher level functions have
1921  * completed (indicated by mnt_writeopcount dropping to zero). At that
1922  * time, these operations are halted until the suspension is over.
1923  */
1924 int
1925 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1926 {
1927 	struct mount *mp;
1928 	int error;
1929 
1930 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1931 	    ("V_MNTREF requires mp"));
1932 
1933  retry:
1934 	if (vp != NULL) {
1935 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1936 			*mpp = NULL;
1937 			if (error != EOPNOTSUPP)
1938 				return (error);
1939 			return (0);
1940 		}
1941 	}
1942 	/*
1943 	 * If we are not suspended or have not yet reached suspended
1944 	 * mode, then let the operation proceed.
1945 	 */
1946 	if ((mp = *mpp) == NULL)
1947 		return (0);
1948 
1949 	/*
1950 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1951 	 * a vfs_ref().
1952 	 * As long as a vnode is not provided we need to acquire a
1953 	 * refcount for the provided mountpoint too, in order to
1954 	 * emulate a vfs_ref().
1955 	 */
1956 	MNT_ILOCK(mp);
1957 	if (vp == NULL && (flags & V_MNTREF) == 0)
1958 		MNT_REF(mp);
1959 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1960 		mp->mnt_secondary_writes++;
1961 		mp->mnt_secondary_accwrites++;
1962 		MNT_IUNLOCK(mp);
1963 		return (0);
1964 	}
1965 	if (flags & V_NOWAIT) {
1966 		MNT_REL(mp);
1967 		MNT_IUNLOCK(mp);
1968 		return (EWOULDBLOCK);
1969 	}
1970 	/*
1971 	 * Wait for the suspension to finish.
1972 	 */
1973 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1974 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1975 	    "suspfs", 0);
1976 	vfs_rel(mp);
1977 	if (error == 0)
1978 		goto retry;
1979 	return (error);
1980 }
1981 
1982 /*
1983  * Filesystem write operation has completed. If we are suspending and this
1984  * operation is the last one, notify the suspender that the suspension is
1985  * now in effect.
1986  */
1987 void
1988 vn_finished_write(struct mount *mp)
1989 {
1990 	struct mount_pcpu *mpcpu;
1991 	int c;
1992 
1993 	if (mp == NULL)
1994 		return;
1995 
1996 	if (vfs_op_thread_enter(mp, mpcpu)) {
1997 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
1998 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
1999 		vfs_op_thread_exit(mp, mpcpu);
2000 		return;
2001 	}
2002 
2003 	MNT_ILOCK(mp);
2004 	vfs_assert_mount_counters(mp);
2005 	MNT_REL(mp);
2006 	c = --mp->mnt_writeopcount;
2007 	if (mp->mnt_vfs_ops == 0) {
2008 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2009 		MNT_IUNLOCK(mp);
2010 		return;
2011 	}
2012 	if (c < 0)
2013 		vfs_dump_mount_counters(mp);
2014 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2015 		wakeup(&mp->mnt_writeopcount);
2016 	MNT_IUNLOCK(mp);
2017 }
2018 
2019 /*
2020  * Filesystem secondary write operation has completed. If we are
2021  * suspending and this operation is the last one, notify the suspender
2022  * that the suspension is now in effect.
2023  */
2024 void
2025 vn_finished_secondary_write(struct mount *mp)
2026 {
2027 	if (mp == NULL)
2028 		return;
2029 	MNT_ILOCK(mp);
2030 	MNT_REL(mp);
2031 	mp->mnt_secondary_writes--;
2032 	if (mp->mnt_secondary_writes < 0)
2033 		panic("vn_finished_secondary_write: neg cnt");
2034 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2035 	    mp->mnt_secondary_writes <= 0)
2036 		wakeup(&mp->mnt_secondary_writes);
2037 	MNT_IUNLOCK(mp);
2038 }
2039 
2040 /*
2041  * Request a filesystem to suspend write operations.
2042  */
2043 int
2044 vfs_write_suspend(struct mount *mp, int flags)
2045 {
2046 	int error;
2047 
2048 	vfs_op_enter(mp);
2049 
2050 	MNT_ILOCK(mp);
2051 	vfs_assert_mount_counters(mp);
2052 	if (mp->mnt_susp_owner == curthread) {
2053 		vfs_op_exit_locked(mp);
2054 		MNT_IUNLOCK(mp);
2055 		return (EALREADY);
2056 	}
2057 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2058 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2059 
2060 	/*
2061 	 * Unmount holds a write reference on the mount point.  If we
2062 	 * own busy reference and drain for writers, we deadlock with
2063 	 * the reference draining in the unmount path.  Callers of
2064 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2065 	 * vfs_busy() reference is owned and caller is not in the
2066 	 * unmount context.
2067 	 */
2068 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2069 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2070 		vfs_op_exit_locked(mp);
2071 		MNT_IUNLOCK(mp);
2072 		return (EBUSY);
2073 	}
2074 
2075 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2076 	mp->mnt_susp_owner = curthread;
2077 	if (mp->mnt_writeopcount > 0)
2078 		(void) msleep(&mp->mnt_writeopcount,
2079 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2080 	else
2081 		MNT_IUNLOCK(mp);
2082 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2083 		vfs_write_resume(mp, 0);
2084 		/* vfs_write_resume does vfs_op_exit() for us */
2085 	}
2086 	return (error);
2087 }
2088 
2089 /*
2090  * Request a filesystem to resume write operations.
2091  */
2092 void
2093 vfs_write_resume(struct mount *mp, int flags)
2094 {
2095 
2096 	MNT_ILOCK(mp);
2097 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2098 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2099 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2100 				       MNTK_SUSPENDED);
2101 		mp->mnt_susp_owner = NULL;
2102 		wakeup(&mp->mnt_writeopcount);
2103 		wakeup(&mp->mnt_flag);
2104 		curthread->td_pflags &= ~TDP_IGNSUSP;
2105 		if ((flags & VR_START_WRITE) != 0) {
2106 			MNT_REF(mp);
2107 			mp->mnt_writeopcount++;
2108 		}
2109 		MNT_IUNLOCK(mp);
2110 		if ((flags & VR_NO_SUSPCLR) == 0)
2111 			VFS_SUSP_CLEAN(mp);
2112 		vfs_op_exit(mp);
2113 	} else if ((flags & VR_START_WRITE) != 0) {
2114 		MNT_REF(mp);
2115 		vn_start_write_refed(mp, 0, true);
2116 	} else {
2117 		MNT_IUNLOCK(mp);
2118 	}
2119 }
2120 
2121 /*
2122  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2123  * methods.
2124  */
2125 int
2126 vfs_write_suspend_umnt(struct mount *mp)
2127 {
2128 	int error;
2129 
2130 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2131 	    ("vfs_write_suspend_umnt: recursed"));
2132 
2133 	/* dounmount() already called vn_start_write(). */
2134 	for (;;) {
2135 		vn_finished_write(mp);
2136 		error = vfs_write_suspend(mp, 0);
2137 		if (error != 0) {
2138 			vn_start_write(NULL, &mp, V_WAIT);
2139 			return (error);
2140 		}
2141 		MNT_ILOCK(mp);
2142 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2143 			break;
2144 		MNT_IUNLOCK(mp);
2145 		vn_start_write(NULL, &mp, V_WAIT);
2146 	}
2147 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2148 	wakeup(&mp->mnt_flag);
2149 	MNT_IUNLOCK(mp);
2150 	curthread->td_pflags |= TDP_IGNSUSP;
2151 	return (0);
2152 }
2153 
2154 /*
2155  * Implement kqueues for files by translating it to vnode operation.
2156  */
2157 static int
2158 vn_kqfilter(struct file *fp, struct knote *kn)
2159 {
2160 
2161 	return (VOP_KQFILTER(fp->f_vnode, kn));
2162 }
2163 
2164 int
2165 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2166 {
2167 	if ((fp->f_flag & FKQALLOWED) == 0)
2168 		return (EBADF);
2169 	return (vn_kqfilter(fp, kn));
2170 }
2171 
2172 /*
2173  * Simplified in-kernel wrapper calls for extended attribute access.
2174  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2175  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2176  */
2177 int
2178 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2179     const char *attrname, int *buflen, char *buf, struct thread *td)
2180 {
2181 	struct uio	auio;
2182 	struct iovec	iov;
2183 	int	error;
2184 
2185 	iov.iov_len = *buflen;
2186 	iov.iov_base = buf;
2187 
2188 	auio.uio_iov = &iov;
2189 	auio.uio_iovcnt = 1;
2190 	auio.uio_rw = UIO_READ;
2191 	auio.uio_segflg = UIO_SYSSPACE;
2192 	auio.uio_td = td;
2193 	auio.uio_offset = 0;
2194 	auio.uio_resid = *buflen;
2195 
2196 	if ((ioflg & IO_NODELOCKED) == 0)
2197 		vn_lock(vp, LK_SHARED | LK_RETRY);
2198 
2199 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2200 
2201 	/* authorize attribute retrieval as kernel */
2202 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2203 	    td);
2204 
2205 	if ((ioflg & IO_NODELOCKED) == 0)
2206 		VOP_UNLOCK(vp);
2207 
2208 	if (error == 0) {
2209 		*buflen = *buflen - auio.uio_resid;
2210 	}
2211 
2212 	return (error);
2213 }
2214 
2215 /*
2216  * XXX failure mode if partially written?
2217  */
2218 int
2219 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2220     const char *attrname, int buflen, char *buf, struct thread *td)
2221 {
2222 	struct uio	auio;
2223 	struct iovec	iov;
2224 	struct mount	*mp;
2225 	int	error;
2226 
2227 	iov.iov_len = buflen;
2228 	iov.iov_base = buf;
2229 
2230 	auio.uio_iov = &iov;
2231 	auio.uio_iovcnt = 1;
2232 	auio.uio_rw = UIO_WRITE;
2233 	auio.uio_segflg = UIO_SYSSPACE;
2234 	auio.uio_td = td;
2235 	auio.uio_offset = 0;
2236 	auio.uio_resid = buflen;
2237 
2238 	if ((ioflg & IO_NODELOCKED) == 0) {
2239 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2240 			return (error);
2241 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2242 	}
2243 
2244 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2245 
2246 	/* authorize attribute setting as kernel */
2247 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2248 
2249 	if ((ioflg & IO_NODELOCKED) == 0) {
2250 		vn_finished_write(mp);
2251 		VOP_UNLOCK(vp);
2252 	}
2253 
2254 	return (error);
2255 }
2256 
2257 int
2258 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2259     const char *attrname, struct thread *td)
2260 {
2261 	struct mount	*mp;
2262 	int	error;
2263 
2264 	if ((ioflg & IO_NODELOCKED) == 0) {
2265 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2266 			return (error);
2267 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2268 	}
2269 
2270 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2271 
2272 	/* authorize attribute removal as kernel */
2273 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2274 	if (error == EOPNOTSUPP)
2275 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2276 		    NULL, td);
2277 
2278 	if ((ioflg & IO_NODELOCKED) == 0) {
2279 		vn_finished_write(mp);
2280 		VOP_UNLOCK(vp);
2281 	}
2282 
2283 	return (error);
2284 }
2285 
2286 static int
2287 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2288     struct vnode **rvp)
2289 {
2290 
2291 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2292 }
2293 
2294 int
2295 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2296 {
2297 
2298 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2299 	    lkflags, rvp));
2300 }
2301 
2302 int
2303 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2304     int lkflags, struct vnode **rvp)
2305 {
2306 	struct mount *mp;
2307 	int ltype, error;
2308 
2309 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2310 	mp = vp->v_mount;
2311 	ltype = VOP_ISLOCKED(vp);
2312 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2313 	    ("vn_vget_ino: vp not locked"));
2314 	error = vfs_busy(mp, MBF_NOWAIT);
2315 	if (error != 0) {
2316 		vfs_ref(mp);
2317 		VOP_UNLOCK(vp);
2318 		error = vfs_busy(mp, 0);
2319 		vn_lock(vp, ltype | LK_RETRY);
2320 		vfs_rel(mp);
2321 		if (error != 0)
2322 			return (ENOENT);
2323 		if (VN_IS_DOOMED(vp)) {
2324 			vfs_unbusy(mp);
2325 			return (ENOENT);
2326 		}
2327 	}
2328 	VOP_UNLOCK(vp);
2329 	error = alloc(mp, alloc_arg, lkflags, rvp);
2330 	vfs_unbusy(mp);
2331 	if (error != 0 || *rvp != vp)
2332 		vn_lock(vp, ltype | LK_RETRY);
2333 	if (VN_IS_DOOMED(vp)) {
2334 		if (error == 0) {
2335 			if (*rvp == vp)
2336 				vunref(vp);
2337 			else
2338 				vput(*rvp);
2339 		}
2340 		error = ENOENT;
2341 	}
2342 	return (error);
2343 }
2344 
2345 int
2346 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2347     struct thread *td)
2348 {
2349 
2350 	if (vp->v_type != VREG || td == NULL)
2351 		return (0);
2352 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2353 	    lim_cur(td, RLIMIT_FSIZE)) {
2354 		PROC_LOCK(td->td_proc);
2355 		kern_psignal(td->td_proc, SIGXFSZ);
2356 		PROC_UNLOCK(td->td_proc);
2357 		return (EFBIG);
2358 	}
2359 	return (0);
2360 }
2361 
2362 int
2363 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2364     struct thread *td)
2365 {
2366 	struct vnode *vp;
2367 
2368 	vp = fp->f_vnode;
2369 #ifdef AUDIT
2370 	vn_lock(vp, LK_SHARED | LK_RETRY);
2371 	AUDIT_ARG_VNODE1(vp);
2372 	VOP_UNLOCK(vp);
2373 #endif
2374 	return (setfmode(td, active_cred, vp, mode));
2375 }
2376 
2377 int
2378 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2379     struct thread *td)
2380 {
2381 	struct vnode *vp;
2382 
2383 	vp = fp->f_vnode;
2384 #ifdef AUDIT
2385 	vn_lock(vp, LK_SHARED | LK_RETRY);
2386 	AUDIT_ARG_VNODE1(vp);
2387 	VOP_UNLOCK(vp);
2388 #endif
2389 	return (setfown(td, active_cred, vp, uid, gid));
2390 }
2391 
2392 void
2393 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2394 {
2395 	vm_object_t object;
2396 
2397 	if ((object = vp->v_object) == NULL)
2398 		return;
2399 	VM_OBJECT_WLOCK(object);
2400 	vm_object_page_remove(object, start, end, 0);
2401 	VM_OBJECT_WUNLOCK(object);
2402 }
2403 
2404 int
2405 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2406 {
2407 	struct vattr va;
2408 	daddr_t bn, bnp;
2409 	uint64_t bsize;
2410 	off_t noff;
2411 	int error;
2412 
2413 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2414 	    ("Wrong command %lu", cmd));
2415 
2416 	if (vn_lock(vp, LK_SHARED) != 0)
2417 		return (EBADF);
2418 	if (vp->v_type != VREG) {
2419 		error = ENOTTY;
2420 		goto unlock;
2421 	}
2422 	error = VOP_GETATTR(vp, &va, cred);
2423 	if (error != 0)
2424 		goto unlock;
2425 	noff = *off;
2426 	if (noff >= va.va_size) {
2427 		error = ENXIO;
2428 		goto unlock;
2429 	}
2430 	bsize = vp->v_mount->mnt_stat.f_iosize;
2431 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2432 	    noff % bsize) {
2433 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2434 		if (error == EOPNOTSUPP) {
2435 			error = ENOTTY;
2436 			goto unlock;
2437 		}
2438 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2439 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2440 			noff = bn * bsize;
2441 			if (noff < *off)
2442 				noff = *off;
2443 			goto unlock;
2444 		}
2445 	}
2446 	if (noff > va.va_size)
2447 		noff = va.va_size;
2448 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2449 	if (cmd == FIOSEEKDATA)
2450 		error = ENXIO;
2451 unlock:
2452 	VOP_UNLOCK(vp);
2453 	if (error == 0)
2454 		*off = noff;
2455 	return (error);
2456 }
2457 
2458 int
2459 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2460 {
2461 	struct ucred *cred;
2462 	struct vnode *vp;
2463 	struct vattr vattr;
2464 	off_t foffset, size;
2465 	int error, noneg;
2466 
2467 	cred = td->td_ucred;
2468 	vp = fp->f_vnode;
2469 	foffset = foffset_lock(fp, 0);
2470 	noneg = (vp->v_type != VCHR);
2471 	error = 0;
2472 	switch (whence) {
2473 	case L_INCR:
2474 		if (noneg &&
2475 		    (foffset < 0 ||
2476 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2477 			error = EOVERFLOW;
2478 			break;
2479 		}
2480 		offset += foffset;
2481 		break;
2482 	case L_XTND:
2483 		vn_lock(vp, LK_SHARED | LK_RETRY);
2484 		error = VOP_GETATTR(vp, &vattr, cred);
2485 		VOP_UNLOCK(vp);
2486 		if (error)
2487 			break;
2488 
2489 		/*
2490 		 * If the file references a disk device, then fetch
2491 		 * the media size and use that to determine the ending
2492 		 * offset.
2493 		 */
2494 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2495 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2496 			vattr.va_size = size;
2497 		if (noneg &&
2498 		    (vattr.va_size > OFF_MAX ||
2499 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2500 			error = EOVERFLOW;
2501 			break;
2502 		}
2503 		offset += vattr.va_size;
2504 		break;
2505 	case L_SET:
2506 		break;
2507 	case SEEK_DATA:
2508 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2509 		if (error == ENOTTY)
2510 			error = EINVAL;
2511 		break;
2512 	case SEEK_HOLE:
2513 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2514 		if (error == ENOTTY)
2515 			error = EINVAL;
2516 		break;
2517 	default:
2518 		error = EINVAL;
2519 	}
2520 	if (error == 0 && noneg && offset < 0)
2521 		error = EINVAL;
2522 	if (error != 0)
2523 		goto drop;
2524 	VFS_KNOTE_UNLOCKED(vp, 0);
2525 	td->td_uretoff.tdu_off = offset;
2526 drop:
2527 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2528 	return (error);
2529 }
2530 
2531 int
2532 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2533     struct thread *td)
2534 {
2535 	int error;
2536 
2537 	/*
2538 	 * Grant permission if the caller is the owner of the file, or
2539 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2540 	 * on the file.  If the time pointer is null, then write
2541 	 * permission on the file is also sufficient.
2542 	 *
2543 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2544 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2545 	 * will be allowed to set the times [..] to the current
2546 	 * server time.
2547 	 */
2548 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2549 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2550 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2551 	return (error);
2552 }
2553 
2554 int
2555 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2556 {
2557 	struct vnode *vp;
2558 	int error;
2559 
2560 	if (fp->f_type == DTYPE_FIFO)
2561 		kif->kf_type = KF_TYPE_FIFO;
2562 	else
2563 		kif->kf_type = KF_TYPE_VNODE;
2564 	vp = fp->f_vnode;
2565 	vref(vp);
2566 	FILEDESC_SUNLOCK(fdp);
2567 	error = vn_fill_kinfo_vnode(vp, kif);
2568 	vrele(vp);
2569 	FILEDESC_SLOCK(fdp);
2570 	return (error);
2571 }
2572 
2573 static inline void
2574 vn_fill_junk(struct kinfo_file *kif)
2575 {
2576 	size_t len, olen;
2577 
2578 	/*
2579 	 * Simulate vn_fullpath returning changing values for a given
2580 	 * vp during e.g. coredump.
2581 	 */
2582 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2583 	olen = strlen(kif->kf_path);
2584 	if (len < olen)
2585 		strcpy(&kif->kf_path[len - 1], "$");
2586 	else
2587 		for (; olen < len; olen++)
2588 			strcpy(&kif->kf_path[olen], "A");
2589 }
2590 
2591 int
2592 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2593 {
2594 	struct vattr va;
2595 	char *fullpath, *freepath;
2596 	int error;
2597 
2598 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2599 	freepath = NULL;
2600 	fullpath = "-";
2601 	error = vn_fullpath(vp, &fullpath, &freepath);
2602 	if (error == 0) {
2603 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2604 	}
2605 	if (freepath != NULL)
2606 		free(freepath, M_TEMP);
2607 
2608 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2609 		vn_fill_junk(kif);
2610 	);
2611 
2612 	/*
2613 	 * Retrieve vnode attributes.
2614 	 */
2615 	va.va_fsid = VNOVAL;
2616 	va.va_rdev = NODEV;
2617 	vn_lock(vp, LK_SHARED | LK_RETRY);
2618 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2619 	VOP_UNLOCK(vp);
2620 	if (error != 0)
2621 		return (error);
2622 	if (va.va_fsid != VNOVAL)
2623 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2624 	else
2625 		kif->kf_un.kf_file.kf_file_fsid =
2626 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2627 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2628 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2629 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2630 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2631 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2632 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2633 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2634 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2635 	return (0);
2636 }
2637 
2638 int
2639 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2640     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2641     struct thread *td)
2642 {
2643 #ifdef HWPMC_HOOKS
2644 	struct pmckern_map_in pkm;
2645 #endif
2646 	struct mount *mp;
2647 	struct vnode *vp;
2648 	vm_object_t object;
2649 	vm_prot_t maxprot;
2650 	boolean_t writecounted;
2651 	int error;
2652 
2653 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2654     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2655 	/*
2656 	 * POSIX shared-memory objects are defined to have
2657 	 * kernel persistence, and are not defined to support
2658 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2659 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2660 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2661 	 * flag to request this behavior.
2662 	 */
2663 	if ((fp->f_flag & FPOSIXSHM) != 0)
2664 		flags |= MAP_NOSYNC;
2665 #endif
2666 	vp = fp->f_vnode;
2667 
2668 	/*
2669 	 * Ensure that file and memory protections are
2670 	 * compatible.  Note that we only worry about
2671 	 * writability if mapping is shared; in this case,
2672 	 * current and max prot are dictated by the open file.
2673 	 * XXX use the vnode instead?  Problem is: what
2674 	 * credentials do we use for determination? What if
2675 	 * proc does a setuid?
2676 	 */
2677 	mp = vp->v_mount;
2678 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2679 		maxprot = VM_PROT_NONE;
2680 		if ((prot & VM_PROT_EXECUTE) != 0)
2681 			return (EACCES);
2682 	} else
2683 		maxprot = VM_PROT_EXECUTE;
2684 	if ((fp->f_flag & FREAD) != 0)
2685 		maxprot |= VM_PROT_READ;
2686 	else if ((prot & VM_PROT_READ) != 0)
2687 		return (EACCES);
2688 
2689 	/*
2690 	 * If we are sharing potential changes via MAP_SHARED and we
2691 	 * are trying to get write permission although we opened it
2692 	 * without asking for it, bail out.
2693 	 */
2694 	if ((flags & MAP_SHARED) != 0) {
2695 		if ((fp->f_flag & FWRITE) != 0)
2696 			maxprot |= VM_PROT_WRITE;
2697 		else if ((prot & VM_PROT_WRITE) != 0)
2698 			return (EACCES);
2699 	} else {
2700 		maxprot |= VM_PROT_WRITE;
2701 		cap_maxprot |= VM_PROT_WRITE;
2702 	}
2703 	maxprot &= cap_maxprot;
2704 
2705 	/*
2706 	 * For regular files and shared memory, POSIX requires that
2707 	 * the value of foff be a legitimate offset within the data
2708 	 * object.  In particular, negative offsets are invalid.
2709 	 * Blocking negative offsets and overflows here avoids
2710 	 * possible wraparound or user-level access into reserved
2711 	 * ranges of the data object later.  In contrast, POSIX does
2712 	 * not dictate how offsets are used by device drivers, so in
2713 	 * the case of a device mapping a negative offset is passed
2714 	 * on.
2715 	 */
2716 	if (
2717 #ifdef _LP64
2718 	    size > OFF_MAX ||
2719 #endif
2720 	    foff > OFF_MAX - size)
2721 		return (EINVAL);
2722 
2723 	writecounted = FALSE;
2724 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2725 	    &foff, &object, &writecounted);
2726 	if (error != 0)
2727 		return (error);
2728 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2729 	    foff, writecounted, td);
2730 	if (error != 0) {
2731 		/*
2732 		 * If this mapping was accounted for in the vnode's
2733 		 * writecount, then undo that now.
2734 		 */
2735 		if (writecounted)
2736 			vm_pager_release_writecount(object, 0, size);
2737 		vm_object_deallocate(object);
2738 	}
2739 #ifdef HWPMC_HOOKS
2740 	/* Inform hwpmc(4) if an executable is being mapped. */
2741 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2742 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2743 			pkm.pm_file = vp;
2744 			pkm.pm_address = (uintptr_t) *addr;
2745 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2746 		}
2747 	}
2748 #endif
2749 	return (error);
2750 }
2751 
2752 void
2753 vn_fsid(struct vnode *vp, struct vattr *va)
2754 {
2755 	fsid_t *f;
2756 
2757 	f = &vp->v_mount->mnt_stat.f_fsid;
2758 	va->va_fsid = (uint32_t)f->val[1];
2759 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2760 	va->va_fsid += (uint32_t)f->val[0];
2761 }
2762 
2763 int
2764 vn_fsync_buf(struct vnode *vp, int waitfor)
2765 {
2766 	struct buf *bp, *nbp;
2767 	struct bufobj *bo;
2768 	struct mount *mp;
2769 	int error, maxretry;
2770 
2771 	error = 0;
2772 	maxretry = 10000;     /* large, arbitrarily chosen */
2773 	mp = NULL;
2774 	if (vp->v_type == VCHR) {
2775 		VI_LOCK(vp);
2776 		mp = vp->v_rdev->si_mountpt;
2777 		VI_UNLOCK(vp);
2778 	}
2779 	bo = &vp->v_bufobj;
2780 	BO_LOCK(bo);
2781 loop1:
2782 	/*
2783 	 * MARK/SCAN initialization to avoid infinite loops.
2784 	 */
2785         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2786 		bp->b_vflags &= ~BV_SCANNED;
2787 		bp->b_error = 0;
2788 	}
2789 
2790 	/*
2791 	 * Flush all dirty buffers associated with a vnode.
2792 	 */
2793 loop2:
2794 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2795 		if ((bp->b_vflags & BV_SCANNED) != 0)
2796 			continue;
2797 		bp->b_vflags |= BV_SCANNED;
2798 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2799 			if (waitfor != MNT_WAIT)
2800 				continue;
2801 			if (BUF_LOCK(bp,
2802 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2803 			    BO_LOCKPTR(bo)) != 0) {
2804 				BO_LOCK(bo);
2805 				goto loop1;
2806 			}
2807 			BO_LOCK(bo);
2808 		}
2809 		BO_UNLOCK(bo);
2810 		KASSERT(bp->b_bufobj == bo,
2811 		    ("bp %p wrong b_bufobj %p should be %p",
2812 		    bp, bp->b_bufobj, bo));
2813 		if ((bp->b_flags & B_DELWRI) == 0)
2814 			panic("fsync: not dirty");
2815 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2816 			vfs_bio_awrite(bp);
2817 		} else {
2818 			bremfree(bp);
2819 			bawrite(bp);
2820 		}
2821 		if (maxretry < 1000)
2822 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2823 		BO_LOCK(bo);
2824 		goto loop2;
2825 	}
2826 
2827 	/*
2828 	 * If synchronous the caller expects us to completely resolve all
2829 	 * dirty buffers in the system.  Wait for in-progress I/O to
2830 	 * complete (which could include background bitmap writes), then
2831 	 * retry if dirty blocks still exist.
2832 	 */
2833 	if (waitfor == MNT_WAIT) {
2834 		bufobj_wwait(bo, 0, 0);
2835 		if (bo->bo_dirty.bv_cnt > 0) {
2836 			/*
2837 			 * If we are unable to write any of these buffers
2838 			 * then we fail now rather than trying endlessly
2839 			 * to write them out.
2840 			 */
2841 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2842 				if ((error = bp->b_error) != 0)
2843 					break;
2844 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2845 			    (error == 0 && --maxretry >= 0))
2846 				goto loop1;
2847 			if (error == 0)
2848 				error = EAGAIN;
2849 		}
2850 	}
2851 	BO_UNLOCK(bo);
2852 	if (error != 0)
2853 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2854 
2855 	return (error);
2856 }
2857 
2858 /*
2859  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
2860  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
2861  * to do the actual copy.
2862  * vn_generic_copy_file_range() is factored out, so it can be called
2863  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
2864  * different file systems.
2865  */
2866 int
2867 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
2868     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
2869     struct ucred *outcred, struct thread *fsize_td)
2870 {
2871 	int error;
2872 	size_t len;
2873 	uint64_t uval;
2874 
2875 	len = *lenp;
2876 	*lenp = 0;		/* For error returns. */
2877 	error = 0;
2878 
2879 	/* Do some sanity checks on the arguments. */
2880 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
2881 		error = EISDIR;
2882 	else if (*inoffp < 0 || *outoffp < 0 ||
2883 	    invp->v_type != VREG || outvp->v_type != VREG)
2884 		error = EINVAL;
2885 	if (error != 0)
2886 		goto out;
2887 
2888 	/* Ensure offset + len does not wrap around. */
2889 	uval = *inoffp;
2890 	uval += len;
2891 	if (uval > INT64_MAX)
2892 		len = INT64_MAX - *inoffp;
2893 	uval = *outoffp;
2894 	uval += len;
2895 	if (uval > INT64_MAX)
2896 		len = INT64_MAX - *outoffp;
2897 	if (len == 0)
2898 		goto out;
2899 
2900 	/*
2901 	 * If the two vnode are for the same file system, call
2902 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
2903 	 * which can handle copies across multiple file systems.
2904 	 */
2905 	*lenp = len;
2906 	if (invp->v_mount == outvp->v_mount)
2907 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
2908 		    lenp, flags, incred, outcred, fsize_td);
2909 	else
2910 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
2911 		    outoffp, lenp, flags, incred, outcred, fsize_td);
2912 out:
2913 	return (error);
2914 }
2915 
2916 /*
2917  * Test len bytes of data starting at dat for all bytes == 0.
2918  * Return true if all bytes are zero, false otherwise.
2919  * Expects dat to be well aligned.
2920  */
2921 static bool
2922 mem_iszero(void *dat, int len)
2923 {
2924 	int i;
2925 	const u_int *p;
2926 	const char *cp;
2927 
2928 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
2929 		if (len >= sizeof(*p)) {
2930 			if (*p != 0)
2931 				return (false);
2932 		} else {
2933 			cp = (const char *)p;
2934 			for (i = 0; i < len; i++, cp++)
2935 				if (*cp != '\0')
2936 					return (false);
2937 		}
2938 	}
2939 	return (true);
2940 }
2941 
2942 /*
2943  * Look for a hole in the output file and, if found, adjust *outoffp
2944  * and *xferp to skip past the hole.
2945  * *xferp is the entire hole length to be written and xfer2 is how many bytes
2946  * to be written as 0's upon return.
2947  */
2948 static off_t
2949 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
2950     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
2951 {
2952 	int error;
2953 	off_t delta;
2954 
2955 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
2956 		*dataoffp = *outoffp;
2957 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
2958 		    curthread);
2959 		if (error == 0) {
2960 			*holeoffp = *dataoffp;
2961 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
2962 			    curthread);
2963 		}
2964 		if (error != 0 || *holeoffp == *dataoffp) {
2965 			/*
2966 			 * Since outvp is unlocked, it may be possible for
2967 			 * another thread to do a truncate(), lseek(), write()
2968 			 * creating a hole at startoff between the above
2969 			 * VOP_IOCTL() calls, if the other thread does not do
2970 			 * rangelocking.
2971 			 * If that happens, *holeoffp == *dataoffp and finding
2972 			 * the hole has failed, so disable vn_skip_hole().
2973 			 */
2974 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
2975 			return (xfer2);
2976 		}
2977 		KASSERT(*dataoffp >= *outoffp,
2978 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
2979 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
2980 		KASSERT(*holeoffp > *dataoffp,
2981 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
2982 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
2983 	}
2984 
2985 	/*
2986 	 * If there is a hole before the data starts, advance *outoffp and
2987 	 * *xferp past the hole.
2988 	 */
2989 	if (*dataoffp > *outoffp) {
2990 		delta = *dataoffp - *outoffp;
2991 		if (delta >= *xferp) {
2992 			/* Entire *xferp is a hole. */
2993 			*outoffp += *xferp;
2994 			*xferp = 0;
2995 			return (0);
2996 		}
2997 		*xferp -= delta;
2998 		*outoffp += delta;
2999 		xfer2 = MIN(xfer2, *xferp);
3000 	}
3001 
3002 	/*
3003 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3004 	 * that the write ends at the start of the hole.
3005 	 * *holeoffp should always be greater than *outoffp, but for the
3006 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3007 	 * value.
3008 	 */
3009 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3010 		xfer2 = *holeoffp - *outoffp;
3011 	return (xfer2);
3012 }
3013 
3014 /*
3015  * Write an xfer sized chunk to outvp in blksize blocks from dat.
3016  * dat is a maximum of blksize in length and can be written repeatedly in
3017  * the chunk.
3018  * If growfile == true, just grow the file via vn_truncate_locked() instead
3019  * of doing actual writes.
3020  * If checkhole == true, a hole is being punched, so skip over any hole
3021  * already in the output file.
3022  */
3023 static int
3024 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3025     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3026 {
3027 	struct mount *mp;
3028 	off_t dataoff, holeoff, xfer2;
3029 	int error, lckf;
3030 
3031 	/*
3032 	 * Loop around doing writes of blksize until write has been completed.
3033 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3034 	 * done for each iteration, since the xfer argument can be very
3035 	 * large if there is a large hole to punch in the output file.
3036 	 */
3037 	error = 0;
3038 	holeoff = 0;
3039 	do {
3040 		xfer2 = MIN(xfer, blksize);
3041 		if (checkhole) {
3042 			/*
3043 			 * Punching a hole.  Skip writing if there is
3044 			 * already a hole in the output file.
3045 			 */
3046 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3047 			    &dataoff, &holeoff, cred);
3048 			if (xfer == 0)
3049 				break;
3050 			if (holeoff < 0)
3051 				checkhole = false;
3052 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3053 			    (intmax_t)xfer2));
3054 		}
3055 		bwillwrite();
3056 		mp = NULL;
3057 		error = vn_start_write(outvp, &mp, V_WAIT);
3058 		if (error != 0)
3059 			break;
3060 		if (growfile) {
3061 			error = vn_lock(outvp, LK_EXCLUSIVE);
3062 			if (error == 0) {
3063 				error = vn_truncate_locked(outvp, outoff + xfer,
3064 				    false, cred);
3065 				VOP_UNLOCK(outvp);
3066 			}
3067 		} else {
3068 			if (MNT_SHARED_WRITES(mp))
3069 				lckf = LK_SHARED;
3070 			else
3071 				lckf = LK_EXCLUSIVE;
3072 			error = vn_lock(outvp, lckf);
3073 			if (error == 0) {
3074 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3075 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3076 				    curthread->td_ucred, cred, NULL, curthread);
3077 				outoff += xfer2;
3078 				xfer -= xfer2;
3079 				VOP_UNLOCK(outvp);
3080 			}
3081 		}
3082 		if (mp != NULL)
3083 			vn_finished_write(mp);
3084 	} while (!growfile && xfer > 0 && error == 0);
3085 	return (error);
3086 }
3087 
3088 /*
3089  * Copy a byte range of one file to another.  This function can handle the
3090  * case where invp and outvp are on different file systems.
3091  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3092  * is no better file system specific way to do it.
3093  */
3094 int
3095 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3096     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3097     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3098 {
3099 	struct vattr va;
3100 	struct mount *mp;
3101 	struct uio io;
3102 	off_t startoff, endoff, xfer, xfer2;
3103 	u_long blksize;
3104 	int error, interrupted;
3105 	bool cantseek, readzeros, eof, lastblock;
3106 	ssize_t aresid;
3107 	size_t copylen, len, rem, savlen;
3108 	char *dat;
3109 	long holein, holeout;
3110 
3111 	holein = holeout = 0;
3112 	savlen = len = *lenp;
3113 	error = 0;
3114 	interrupted = 0;
3115 	dat = NULL;
3116 
3117 	error = vn_lock(invp, LK_SHARED);
3118 	if (error != 0)
3119 		goto out;
3120 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3121 		holein = 0;
3122 	VOP_UNLOCK(invp);
3123 
3124 	mp = NULL;
3125 	error = vn_start_write(outvp, &mp, V_WAIT);
3126 	if (error == 0)
3127 		error = vn_lock(outvp, LK_EXCLUSIVE);
3128 	if (error == 0) {
3129 		/*
3130 		 * If fsize_td != NULL, do a vn_rlimit_fsize() call,
3131 		 * now that outvp is locked.
3132 		 */
3133 		if (fsize_td != NULL) {
3134 			io.uio_offset = *outoffp;
3135 			io.uio_resid = len;
3136 			error = vn_rlimit_fsize(outvp, &io, fsize_td);
3137 			if (error != 0)
3138 				error = EFBIG;
3139 		}
3140 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3141 			holeout = 0;
3142 		/*
3143 		 * Holes that are past EOF do not need to be written as a block
3144 		 * of zero bytes.  So, truncate the output file as far as
3145 		 * possible and then use va.va_size to decide if writing 0
3146 		 * bytes is necessary in the loop below.
3147 		 */
3148 		if (error == 0)
3149 			error = VOP_GETATTR(outvp, &va, outcred);
3150 		if (error == 0 && va.va_size > *outoffp && va.va_size <=
3151 		    *outoffp + len) {
3152 #ifdef MAC
3153 			error = mac_vnode_check_write(curthread->td_ucred,
3154 			    outcred, outvp);
3155 			if (error == 0)
3156 #endif
3157 				error = vn_truncate_locked(outvp, *outoffp,
3158 				    false, outcred);
3159 			if (error == 0)
3160 				va.va_size = *outoffp;
3161 		}
3162 		VOP_UNLOCK(outvp);
3163 	}
3164 	if (mp != NULL)
3165 		vn_finished_write(mp);
3166 	if (error != 0)
3167 		goto out;
3168 
3169 	/*
3170 	 * Set the blksize to the larger of the hole sizes for invp and outvp.
3171 	 * If hole sizes aren't available, set the blksize to the larger
3172 	 * f_iosize of invp and outvp.
3173 	 * This code expects the hole sizes and f_iosizes to be powers of 2.
3174 	 * This value is clipped at 4Kbytes and 1Mbyte.
3175 	 */
3176 	blksize = MAX(holein, holeout);
3177 
3178 	/* Clip len to end at an exact multiple of hole size. */
3179 	if (blksize > 1) {
3180 		rem = *inoffp % blksize;
3181 		if (rem > 0)
3182 			rem = blksize - rem;
3183 		if (len > rem && len - rem > blksize)
3184 			len = savlen = rounddown(len - rem, blksize) + rem;
3185 	}
3186 
3187 	if (blksize <= 1)
3188 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3189 		    outvp->v_mount->mnt_stat.f_iosize);
3190 	if (blksize < 4096)
3191 		blksize = 4096;
3192 	else if (blksize > 1024 * 1024)
3193 		blksize = 1024 * 1024;
3194 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3195 
3196 	/*
3197 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3198 	 * to find holes.  Otherwise, just scan the read block for all 0s
3199 	 * in the inner loop where the data copying is done.
3200 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3201 	 * support holes on the server, but do not support FIOSEEKHOLE.
3202 	 */
3203 	eof = false;
3204 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3205 		endoff = 0;			/* To shut up compilers. */
3206 		cantseek = true;
3207 		startoff = *inoffp;
3208 		copylen = len;
3209 
3210 		/*
3211 		 * Find the next data area.  If there is just a hole to EOF,
3212 		 * FIOSEEKDATA should fail and then we drop down into the
3213 		 * inner loop and create the hole on the outvp file.
3214 		 * (I do not know if any file system will report a hole to
3215 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3216 		 *  will fail for those file systems.)
3217 		 *
3218 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3219 		 * the code just falls through to the inner copy loop.
3220 		 */
3221 		error = EINVAL;
3222 		if (holein > 0)
3223 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3224 			    incred, curthread);
3225 		if (error == 0) {
3226 			endoff = startoff;
3227 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3228 			    incred, curthread);
3229 			/*
3230 			 * Since invp is unlocked, it may be possible for
3231 			 * another thread to do a truncate(), lseek(), write()
3232 			 * creating a hole at startoff between the above
3233 			 * VOP_IOCTL() calls, if the other thread does not do
3234 			 * rangelocking.
3235 			 * If that happens, startoff == endoff and finding
3236 			 * the hole has failed, so set an error.
3237 			 */
3238 			if (error == 0 && startoff == endoff)
3239 				error = EINVAL; /* Any error. Reset to 0. */
3240 		}
3241 		if (error == 0) {
3242 			if (startoff > *inoffp) {
3243 				/* Found hole before data block. */
3244 				xfer = MIN(startoff - *inoffp, len);
3245 				if (*outoffp < va.va_size) {
3246 					/* Must write 0s to punch hole. */
3247 					xfer2 = MIN(va.va_size - *outoffp,
3248 					    xfer);
3249 					memset(dat, 0, MIN(xfer2, blksize));
3250 					error = vn_write_outvp(outvp, dat,
3251 					    *outoffp, xfer2, blksize, false,
3252 					    holeout > 0, outcred);
3253 				}
3254 
3255 				if (error == 0 && *outoffp + xfer >
3256 				    va.va_size && xfer == len)
3257 					/* Grow last block. */
3258 					error = vn_write_outvp(outvp, dat,
3259 					    *outoffp, xfer, blksize, true,
3260 					    false, outcred);
3261 				if (error == 0) {
3262 					*inoffp += xfer;
3263 					*outoffp += xfer;
3264 					len -= xfer;
3265 					if (len < savlen)
3266 						interrupted = sig_intr();
3267 				}
3268 			}
3269 			copylen = MIN(len, endoff - startoff);
3270 			cantseek = false;
3271 		} else {
3272 			cantseek = true;
3273 			startoff = *inoffp;
3274 			copylen = len;
3275 			error = 0;
3276 		}
3277 
3278 		xfer = blksize;
3279 		if (cantseek) {
3280 			/*
3281 			 * Set first xfer to end at a block boundary, so that
3282 			 * holes are more likely detected in the loop below via
3283 			 * the for all bytes 0 method.
3284 			 */
3285 			xfer -= (*inoffp % blksize);
3286 		}
3287 		/* Loop copying the data block. */
3288 		while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
3289 			if (copylen < xfer)
3290 				xfer = copylen;
3291 			error = vn_lock(invp, LK_SHARED);
3292 			if (error != 0)
3293 				goto out;
3294 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3295 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3296 			    curthread->td_ucred, incred, &aresid,
3297 			    curthread);
3298 			VOP_UNLOCK(invp);
3299 			lastblock = false;
3300 			if (error == 0 && aresid > 0) {
3301 				/* Stop the copy at EOF on the input file. */
3302 				xfer -= aresid;
3303 				eof = true;
3304 				lastblock = true;
3305 			}
3306 			if (error == 0) {
3307 				/*
3308 				 * Skip the write for holes past the initial EOF
3309 				 * of the output file, unless this is the last
3310 				 * write of the output file at EOF.
3311 				 */
3312 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3313 				    false;
3314 				if (xfer == len)
3315 					lastblock = true;
3316 				if (!cantseek || *outoffp < va.va_size ||
3317 				    lastblock || !readzeros)
3318 					error = vn_write_outvp(outvp, dat,
3319 					    *outoffp, xfer, blksize,
3320 					    readzeros && lastblock &&
3321 					    *outoffp >= va.va_size, false,
3322 					    outcred);
3323 				if (error == 0) {
3324 					*inoffp += xfer;
3325 					startoff += xfer;
3326 					*outoffp += xfer;
3327 					copylen -= xfer;
3328 					len -= xfer;
3329 					if (len < savlen)
3330 						interrupted = sig_intr();
3331 				}
3332 			}
3333 			xfer = blksize;
3334 		}
3335 	}
3336 out:
3337 	*lenp = savlen - len;
3338 	free(dat, M_TEMP);
3339 	return (error);
3340 }
3341 
3342 static int
3343 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3344 {
3345 	struct mount *mp;
3346 	struct vnode *vp;
3347 	off_t olen, ooffset;
3348 	int error;
3349 #ifdef AUDIT
3350 	int audited_vnode1 = 0;
3351 #endif
3352 
3353 	vp = fp->f_vnode;
3354 	if (vp->v_type != VREG)
3355 		return (ENODEV);
3356 
3357 	/* Allocating blocks may take a long time, so iterate. */
3358 	for (;;) {
3359 		olen = len;
3360 		ooffset = offset;
3361 
3362 		bwillwrite();
3363 		mp = NULL;
3364 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
3365 		if (error != 0)
3366 			break;
3367 		error = vn_lock(vp, LK_EXCLUSIVE);
3368 		if (error != 0) {
3369 			vn_finished_write(mp);
3370 			break;
3371 		}
3372 #ifdef AUDIT
3373 		if (!audited_vnode1) {
3374 			AUDIT_ARG_VNODE1(vp);
3375 			audited_vnode1 = 1;
3376 		}
3377 #endif
3378 #ifdef MAC
3379 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3380 		if (error == 0)
3381 #endif
3382 			error = VOP_ALLOCATE(vp, &offset, &len);
3383 		VOP_UNLOCK(vp);
3384 		vn_finished_write(mp);
3385 
3386 		if (olen + ooffset != offset + len) {
3387 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3388 			    ooffset, olen, offset, len);
3389 		}
3390 		if (error != 0 || len == 0)
3391 			break;
3392 		KASSERT(olen > len, ("Iteration did not make progress?"));
3393 		maybe_yield();
3394 	}
3395 
3396 	return (error);
3397 }
3398 
3399 static u_long vn_lock_pair_pause_cnt;
3400 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
3401     &vn_lock_pair_pause_cnt, 0,
3402     "Count of vn_lock_pair deadlocks");
3403 
3404 u_int vn_lock_pair_pause_max;
3405 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
3406     &vn_lock_pair_pause_max, 0,
3407     "Max ticks for vn_lock_pair deadlock avoidance sleep");
3408 
3409 static void
3410 vn_lock_pair_pause(const char *wmesg)
3411 {
3412 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
3413 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
3414 }
3415 
3416 /*
3417  * Lock pair of vnodes vp1, vp2, avoiding lock order reversal.
3418  * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1
3419  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
3420  * can be NULL.
3421  *
3422  * The function returns with both vnodes exclusively locked, and
3423  * guarantees that it does not create lock order reversal with other
3424  * threads during its execution.  Both vnodes could be unlocked
3425  * temporary (and reclaimed).
3426  */
3427 void
3428 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2,
3429     bool vp2_locked)
3430 {
3431 	int error;
3432 
3433 	if (vp1 == NULL && vp2 == NULL)
3434 		return;
3435 	if (vp1 != NULL) {
3436 		if (vp1_locked)
3437 			ASSERT_VOP_ELOCKED(vp1, "vp1");
3438 		else
3439 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
3440 	} else {
3441 		vp1_locked = true;
3442 	}
3443 	if (vp2 != NULL) {
3444 		if (vp2_locked)
3445 			ASSERT_VOP_ELOCKED(vp2, "vp2");
3446 		else
3447 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
3448 	} else {
3449 		vp2_locked = true;
3450 	}
3451 	if (!vp1_locked && !vp2_locked) {
3452 		vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3453 		vp1_locked = true;
3454 	}
3455 
3456 	for (;;) {
3457 		if (vp1_locked && vp2_locked)
3458 			break;
3459 		if (vp1_locked && vp2 != NULL) {
3460 			if (vp1 != NULL) {
3461 				error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT,
3462 				    __FILE__, __LINE__);
3463 				if (error == 0)
3464 					break;
3465 				VOP_UNLOCK(vp1);
3466 				vp1_locked = false;
3467 				vn_lock_pair_pause("vlp1");
3468 			}
3469 			vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3470 			vp2_locked = true;
3471 		}
3472 		if (vp2_locked && vp1 != NULL) {
3473 			if (vp2 != NULL) {
3474 				error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT,
3475 				    __FILE__, __LINE__);
3476 				if (error == 0)
3477 					break;
3478 				VOP_UNLOCK(vp2);
3479 				vp2_locked = false;
3480 				vn_lock_pair_pause("vlp2");
3481 			}
3482 			vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3483 			vp1_locked = true;
3484 		}
3485 	}
3486 	if (vp1 != NULL)
3487 		ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
3488 	if (vp2 != NULL)
3489 		ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
3490 }
3491