1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org> 13 * Copyright (c) 2013, 2014 The FreeBSD Foundation 14 * 15 * Portions of this software were developed by Konstantin Belousov 16 * under sponsorship from the FreeBSD Foundation. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 1. Redistributions of source code must retain the above copyright 22 * notice, this list of conditions and the following disclaimer. 23 * 2. Redistributions in binary form must reproduce the above copyright 24 * notice, this list of conditions and the following disclaimer in the 25 * documentation and/or other materials provided with the distribution. 26 * 3. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 43 */ 44 45 #include <sys/cdefs.h> 46 __FBSDID("$FreeBSD$"); 47 48 #include "opt_hwpmc_hooks.h" 49 50 #include <sys/param.h> 51 #include <sys/systm.h> 52 #include <sys/disk.h> 53 #include <sys/fail.h> 54 #include <sys/fcntl.h> 55 #include <sys/file.h> 56 #include <sys/kdb.h> 57 #include <sys/ktr.h> 58 #include <sys/stat.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/limits.h> 62 #include <sys/lock.h> 63 #include <sys/mman.h> 64 #include <sys/mount.h> 65 #include <sys/mutex.h> 66 #include <sys/namei.h> 67 #include <sys/vnode.h> 68 #include <sys/bio.h> 69 #include <sys/buf.h> 70 #include <sys/filio.h> 71 #include <sys/resourcevar.h> 72 #include <sys/rwlock.h> 73 #include <sys/prng.h> 74 #include <sys/sx.h> 75 #include <sys/sleepqueue.h> 76 #include <sys/sysctl.h> 77 #include <sys/ttycom.h> 78 #include <sys/conf.h> 79 #include <sys/syslog.h> 80 #include <sys/unistd.h> 81 #include <sys/user.h> 82 83 #include <security/audit/audit.h> 84 #include <security/mac/mac_framework.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_extern.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_page.h> 92 #include <vm/vm_pager.h> 93 94 #ifdef HWPMC_HOOKS 95 #include <sys/pmckern.h> 96 #endif 97 98 static fo_rdwr_t vn_read; 99 static fo_rdwr_t vn_write; 100 static fo_rdwr_t vn_io_fault; 101 static fo_truncate_t vn_truncate; 102 static fo_ioctl_t vn_ioctl; 103 static fo_poll_t vn_poll; 104 static fo_kqfilter_t vn_kqfilter; 105 static fo_close_t vn_closefile; 106 static fo_mmap_t vn_mmap; 107 static fo_fallocate_t vn_fallocate; 108 109 struct fileops vnops = { 110 .fo_read = vn_io_fault, 111 .fo_write = vn_io_fault, 112 .fo_truncate = vn_truncate, 113 .fo_ioctl = vn_ioctl, 114 .fo_poll = vn_poll, 115 .fo_kqfilter = vn_kqfilter, 116 .fo_stat = vn_statfile, 117 .fo_close = vn_closefile, 118 .fo_chmod = vn_chmod, 119 .fo_chown = vn_chown, 120 .fo_sendfile = vn_sendfile, 121 .fo_seek = vn_seek, 122 .fo_fill_kinfo = vn_fill_kinfo, 123 .fo_mmap = vn_mmap, 124 .fo_fallocate = vn_fallocate, 125 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE 126 }; 127 128 const u_int io_hold_cnt = 16; 129 static int vn_io_fault_enable = 1; 130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN, 131 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); 132 static int vn_io_fault_prefault = 0; 133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN, 134 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting"); 135 static int vn_io_pgcache_read_enable = 1; 136 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN, 137 &vn_io_pgcache_read_enable, 0, 138 "Enable copying from page cache for reads, avoiding fs"); 139 static u_long vn_io_faults_cnt; 140 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, 141 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); 142 143 static int vfs_allow_read_dir = 0; 144 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW, 145 &vfs_allow_read_dir, 0, 146 "Enable read(2) of directory by root for filesystems that support it"); 147 148 /* 149 * Returns true if vn_io_fault mode of handling the i/o request should 150 * be used. 151 */ 152 static bool 153 do_vn_io_fault(struct vnode *vp, struct uio *uio) 154 { 155 struct mount *mp; 156 157 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG && 158 (mp = vp->v_mount) != NULL && 159 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable); 160 } 161 162 /* 163 * Structure used to pass arguments to vn_io_fault1(), to do either 164 * file- or vnode-based I/O calls. 165 */ 166 struct vn_io_fault_args { 167 enum { 168 VN_IO_FAULT_FOP, 169 VN_IO_FAULT_VOP 170 } kind; 171 struct ucred *cred; 172 int flags; 173 union { 174 struct fop_args_tag { 175 struct file *fp; 176 fo_rdwr_t *doio; 177 } fop_args; 178 struct vop_args_tag { 179 struct vnode *vp; 180 } vop_args; 181 } args; 182 }; 183 184 static int vn_io_fault1(struct vnode *vp, struct uio *uio, 185 struct vn_io_fault_args *args, struct thread *td); 186 187 int 188 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp) 189 { 190 struct thread *td = ndp->ni_cnd.cn_thread; 191 192 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); 193 } 194 195 static uint64_t 196 open2nameif(int fmode, u_int vn_open_flags) 197 { 198 uint64_t res; 199 200 res = ISOPEN | LOCKLEAF; 201 if ((fmode & O_RESOLVE_BENEATH) != 0) 202 res |= RBENEATH; 203 if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0) 204 res |= AUDITVNODE1; 205 if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0) 206 res |= NOCAPCHECK; 207 return (res); 208 } 209 210 /* 211 * Common code for vnode open operations via a name lookup. 212 * Lookup the vnode and invoke VOP_CREATE if needed. 213 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. 214 * 215 * Note that this does NOT free nameidata for the successful case, 216 * due to the NDINIT being done elsewhere. 217 */ 218 int 219 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, 220 struct ucred *cred, struct file *fp) 221 { 222 struct vnode *vp; 223 struct mount *mp; 224 struct thread *td = ndp->ni_cnd.cn_thread; 225 struct vattr vat; 226 struct vattr *vap = &vat; 227 int fmode, error; 228 bool first_open; 229 230 restart: 231 first_open = false; 232 fmode = *flagp; 233 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT | 234 O_EXCL | O_DIRECTORY)) 235 return (EINVAL); 236 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) { 237 ndp->ni_cnd.cn_nameiop = CREATE; 238 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags); 239 /* 240 * Set NOCACHE to avoid flushing the cache when 241 * rolling in many files at once. 242 * 243 * Set NC_KEEPPOSENTRY to keep positive entries if they already 244 * exist despite NOCACHE. 245 */ 246 ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY; 247 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) 248 ndp->ni_cnd.cn_flags |= FOLLOW; 249 if ((vn_open_flags & VN_OPEN_INVFS) == 0) 250 bwillwrite(); 251 if ((error = namei(ndp)) != 0) 252 return (error); 253 if (ndp->ni_vp == NULL) { 254 VATTR_NULL(vap); 255 vap->va_type = VREG; 256 vap->va_mode = cmode; 257 if (fmode & O_EXCL) 258 vap->va_vaflags |= VA_EXCLUSIVE; 259 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { 260 NDFREE(ndp, NDF_ONLY_PNBUF); 261 vput(ndp->ni_dvp); 262 if ((error = vn_start_write(NULL, &mp, 263 V_XSLEEP | PCATCH)) != 0) 264 return (error); 265 NDREINIT(ndp); 266 goto restart; 267 } 268 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0) 269 ndp->ni_cnd.cn_flags |= MAKEENTRY; 270 #ifdef MAC 271 error = mac_vnode_check_create(cred, ndp->ni_dvp, 272 &ndp->ni_cnd, vap); 273 if (error == 0) 274 #endif 275 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, 276 &ndp->ni_cnd, vap); 277 vp = ndp->ni_vp; 278 if (error == 0 && (fmode & O_EXCL) != 0 && 279 (fmode & (O_EXLOCK | O_SHLOCK)) != 0) { 280 VI_LOCK(vp); 281 vp->v_iflag |= VI_FOPENING; 282 VI_UNLOCK(vp); 283 first_open = true; 284 } 285 VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL, 286 false); 287 vn_finished_write(mp); 288 if (error) { 289 NDFREE(ndp, NDF_ONLY_PNBUF); 290 if (error == ERELOOKUP) { 291 NDREINIT(ndp); 292 goto restart; 293 } 294 return (error); 295 } 296 fmode &= ~O_TRUNC; 297 } else { 298 if (ndp->ni_dvp == ndp->ni_vp) 299 vrele(ndp->ni_dvp); 300 else 301 vput(ndp->ni_dvp); 302 ndp->ni_dvp = NULL; 303 vp = ndp->ni_vp; 304 if (fmode & O_EXCL) { 305 error = EEXIST; 306 goto bad; 307 } 308 if (vp->v_type == VDIR) { 309 error = EISDIR; 310 goto bad; 311 } 312 fmode &= ~O_CREAT; 313 } 314 } else { 315 ndp->ni_cnd.cn_nameiop = LOOKUP; 316 ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags); 317 ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW : 318 FOLLOW; 319 if ((fmode & FWRITE) == 0) 320 ndp->ni_cnd.cn_flags |= LOCKSHARED; 321 if ((error = namei(ndp)) != 0) 322 return (error); 323 vp = ndp->ni_vp; 324 } 325 error = vn_open_vnode(vp, fmode, cred, td, fp); 326 if (first_open) { 327 VI_LOCK(vp); 328 vp->v_iflag &= ~VI_FOPENING; 329 wakeup(vp); 330 VI_UNLOCK(vp); 331 } 332 if (error) 333 goto bad; 334 *flagp = fmode; 335 return (0); 336 bad: 337 NDFREE(ndp, NDF_ONLY_PNBUF); 338 vput(vp); 339 *flagp = fmode; 340 ndp->ni_vp = NULL; 341 return (error); 342 } 343 344 static int 345 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp) 346 { 347 struct flock lf; 348 int error, lock_flags, type; 349 350 ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock"); 351 if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0) 352 return (0); 353 KASSERT(fp != NULL, ("open with flock requires fp")); 354 if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) 355 return (EOPNOTSUPP); 356 357 lock_flags = VOP_ISLOCKED(vp); 358 VOP_UNLOCK(vp); 359 360 lf.l_whence = SEEK_SET; 361 lf.l_start = 0; 362 lf.l_len = 0; 363 lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK; 364 type = F_FLOCK; 365 if ((fmode & FNONBLOCK) == 0) 366 type |= F_WAIT; 367 if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 368 type |= F_FIRSTOPEN; 369 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); 370 if (error == 0) 371 fp->f_flag |= FHASLOCK; 372 373 vn_lock(vp, lock_flags | LK_RETRY); 374 return (error); 375 } 376 377 /* 378 * Common code for vnode open operations once a vnode is located. 379 * Check permissions, and call the VOP_OPEN routine. 380 */ 381 int 382 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, 383 struct thread *td, struct file *fp) 384 { 385 accmode_t accmode; 386 int error; 387 388 if (vp->v_type == VLNK) { 389 if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0) 390 return (EMLINK); 391 } 392 if (vp->v_type == VSOCK) 393 return (EOPNOTSUPP); 394 if (vp->v_type != VDIR && fmode & O_DIRECTORY) 395 return (ENOTDIR); 396 397 accmode = 0; 398 if ((fmode & O_PATH) == 0) { 399 if ((fmode & (FWRITE | O_TRUNC)) != 0) { 400 if (vp->v_type == VDIR) 401 return (EISDIR); 402 accmode |= VWRITE; 403 } 404 if ((fmode & FREAD) != 0) 405 accmode |= VREAD; 406 if ((fmode & O_APPEND) && (fmode & FWRITE)) 407 accmode |= VAPPEND; 408 #ifdef MAC 409 if ((fmode & O_CREAT) != 0) 410 accmode |= VCREAT; 411 #endif 412 } 413 if ((fmode & FEXEC) != 0) 414 accmode |= VEXEC; 415 #ifdef MAC 416 if ((fmode & O_VERIFY) != 0) 417 accmode |= VVERIFY; 418 error = mac_vnode_check_open(cred, vp, accmode); 419 if (error != 0) 420 return (error); 421 422 accmode &= ~(VCREAT | VVERIFY); 423 #endif 424 if ((fmode & O_CREAT) == 0 && accmode != 0) { 425 error = VOP_ACCESS(vp, accmode, cred, td); 426 if (error != 0) 427 return (error); 428 } 429 if ((fmode & O_PATH) != 0) { 430 error = VOP_ACCESS(vp, VREAD, cred, td); 431 if (error == 0) 432 fp->f_flag |= FKQALLOWED; 433 return (0); 434 } 435 436 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 437 vn_lock(vp, LK_UPGRADE | LK_RETRY); 438 error = VOP_OPEN(vp, fmode, cred, td, fp); 439 if (error != 0) 440 return (error); 441 442 error = vn_open_vnode_advlock(vp, fmode, fp); 443 if (error == 0 && (fmode & FWRITE) != 0) { 444 error = VOP_ADD_WRITECOUNT(vp, 1); 445 if (error == 0) { 446 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 447 __func__, vp, vp->v_writecount); 448 } 449 } 450 451 /* 452 * Error from advlock or VOP_ADD_WRITECOUNT() still requires 453 * calling VOP_CLOSE() to pair with earlier VOP_OPEN(). 454 */ 455 if (error != 0) { 456 if (fp != NULL) { 457 /* 458 * Arrange the call by having fdrop() to use 459 * vn_closefile(). This is to satisfy 460 * filesystems like devfs or tmpfs, which 461 * override fo_close(). 462 */ 463 fp->f_flag |= FOPENFAILED; 464 fp->f_vnode = vp; 465 if (fp->f_ops == &badfileops) { 466 fp->f_type = DTYPE_VNODE; 467 fp->f_ops = &vnops; 468 } 469 vref(vp); 470 } else { 471 /* 472 * If there is no fp, due to kernel-mode open, 473 * we can call VOP_CLOSE() now. 474 */ 475 if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 && 476 !MNT_EXTENDED_SHARED(vp->v_mount) && 477 VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 478 vn_lock(vp, LK_UPGRADE | LK_RETRY); 479 (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC), 480 cred, td); 481 } 482 } 483 484 ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); 485 return (error); 486 487 } 488 489 /* 490 * Check for write permissions on the specified vnode. 491 * Prototype text segments cannot be written. 492 * It is racy. 493 */ 494 int 495 vn_writechk(struct vnode *vp) 496 { 497 498 ASSERT_VOP_LOCKED(vp, "vn_writechk"); 499 /* 500 * If there's shared text associated with 501 * the vnode, try to free it up once. If 502 * we fail, we can't allow writing. 503 */ 504 if (VOP_IS_TEXT(vp)) 505 return (ETXTBSY); 506 507 return (0); 508 } 509 510 /* 511 * Vnode close call 512 */ 513 static int 514 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred, 515 struct thread *td, bool keep_ref) 516 { 517 struct mount *mp; 518 int error, lock_flags; 519 520 if (vp->v_type != VFIFO && (flags & FWRITE) == 0 && 521 MNT_EXTENDED_SHARED(vp->v_mount)) 522 lock_flags = LK_SHARED; 523 else 524 lock_flags = LK_EXCLUSIVE; 525 526 vn_start_write(vp, &mp, V_WAIT); 527 vn_lock(vp, lock_flags | LK_RETRY); 528 AUDIT_ARG_VNODE1(vp); 529 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) { 530 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 531 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 532 __func__, vp, vp->v_writecount); 533 } 534 error = VOP_CLOSE(vp, flags, file_cred, td); 535 if (keep_ref) 536 VOP_UNLOCK(vp); 537 else 538 vput(vp); 539 vn_finished_write(mp); 540 return (error); 541 } 542 543 int 544 vn_close(struct vnode *vp, int flags, struct ucred *file_cred, 545 struct thread *td) 546 { 547 548 return (vn_close1(vp, flags, file_cred, td, false)); 549 } 550 551 /* 552 * Heuristic to detect sequential operation. 553 */ 554 static int 555 sequential_heuristic(struct uio *uio, struct file *fp) 556 { 557 enum uio_rw rw; 558 559 ASSERT_VOP_LOCKED(fp->f_vnode, __func__); 560 561 rw = uio->uio_rw; 562 if (fp->f_flag & FRDAHEAD) 563 return (fp->f_seqcount[rw] << IO_SEQSHIFT); 564 565 /* 566 * Offset 0 is handled specially. open() sets f_seqcount to 1 so 567 * that the first I/O is normally considered to be slightly 568 * sequential. Seeking to offset 0 doesn't change sequentiality 569 * unless previous seeks have reduced f_seqcount to 0, in which 570 * case offset 0 is not special. 571 */ 572 if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) || 573 uio->uio_offset == fp->f_nextoff[rw]) { 574 /* 575 * f_seqcount is in units of fixed-size blocks so that it 576 * depends mainly on the amount of sequential I/O and not 577 * much on the number of sequential I/O's. The fixed size 578 * of 16384 is hard-coded here since it is (not quite) just 579 * a magic size that works well here. This size is more 580 * closely related to the best I/O size for real disks than 581 * to any block size used by software. 582 */ 583 if (uio->uio_resid >= IO_SEQMAX * 16384) 584 fp->f_seqcount[rw] = IO_SEQMAX; 585 else { 586 fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384); 587 if (fp->f_seqcount[rw] > IO_SEQMAX) 588 fp->f_seqcount[rw] = IO_SEQMAX; 589 } 590 return (fp->f_seqcount[rw] << IO_SEQSHIFT); 591 } 592 593 /* Not sequential. Quickly draw-down sequentiality. */ 594 if (fp->f_seqcount[rw] > 1) 595 fp->f_seqcount[rw] = 1; 596 else 597 fp->f_seqcount[rw] = 0; 598 return (0); 599 } 600 601 /* 602 * Package up an I/O request on a vnode into a uio and do it. 603 */ 604 int 605 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, 606 enum uio_seg segflg, int ioflg, struct ucred *active_cred, 607 struct ucred *file_cred, ssize_t *aresid, struct thread *td) 608 { 609 struct uio auio; 610 struct iovec aiov; 611 struct mount *mp; 612 struct ucred *cred; 613 void *rl_cookie; 614 struct vn_io_fault_args args; 615 int error, lock_flags; 616 617 if (offset < 0 && vp->v_type != VCHR) 618 return (EINVAL); 619 auio.uio_iov = &aiov; 620 auio.uio_iovcnt = 1; 621 aiov.iov_base = base; 622 aiov.iov_len = len; 623 auio.uio_resid = len; 624 auio.uio_offset = offset; 625 auio.uio_segflg = segflg; 626 auio.uio_rw = rw; 627 auio.uio_td = td; 628 error = 0; 629 630 if ((ioflg & IO_NODELOCKED) == 0) { 631 if ((ioflg & IO_RANGELOCKED) == 0) { 632 if (rw == UIO_READ) { 633 rl_cookie = vn_rangelock_rlock(vp, offset, 634 offset + len); 635 } else if ((ioflg & IO_APPEND) != 0) { 636 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 637 } else { 638 rl_cookie = vn_rangelock_wlock(vp, offset, 639 offset + len); 640 } 641 } else 642 rl_cookie = NULL; 643 mp = NULL; 644 if (rw == UIO_WRITE) { 645 if (vp->v_type != VCHR && 646 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) 647 != 0) 648 goto out; 649 if (MNT_SHARED_WRITES(mp) || 650 ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) 651 lock_flags = LK_SHARED; 652 else 653 lock_flags = LK_EXCLUSIVE; 654 } else 655 lock_flags = LK_SHARED; 656 vn_lock(vp, lock_flags | LK_RETRY); 657 } else 658 rl_cookie = NULL; 659 660 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 661 #ifdef MAC 662 if ((ioflg & IO_NOMACCHECK) == 0) { 663 if (rw == UIO_READ) 664 error = mac_vnode_check_read(active_cred, file_cred, 665 vp); 666 else 667 error = mac_vnode_check_write(active_cred, file_cred, 668 vp); 669 } 670 #endif 671 if (error == 0) { 672 if (file_cred != NULL) 673 cred = file_cred; 674 else 675 cred = active_cred; 676 if (do_vn_io_fault(vp, &auio)) { 677 args.kind = VN_IO_FAULT_VOP; 678 args.cred = cred; 679 args.flags = ioflg; 680 args.args.vop_args.vp = vp; 681 error = vn_io_fault1(vp, &auio, &args, td); 682 } else if (rw == UIO_READ) { 683 error = VOP_READ(vp, &auio, ioflg, cred); 684 } else /* if (rw == UIO_WRITE) */ { 685 error = VOP_WRITE(vp, &auio, ioflg, cred); 686 } 687 } 688 if (aresid) 689 *aresid = auio.uio_resid; 690 else 691 if (auio.uio_resid && error == 0) 692 error = EIO; 693 if ((ioflg & IO_NODELOCKED) == 0) { 694 VOP_UNLOCK(vp); 695 if (mp != NULL) 696 vn_finished_write(mp); 697 } 698 out: 699 if (rl_cookie != NULL) 700 vn_rangelock_unlock(vp, rl_cookie); 701 return (error); 702 } 703 704 /* 705 * Package up an I/O request on a vnode into a uio and do it. The I/O 706 * request is split up into smaller chunks and we try to avoid saturating 707 * the buffer cache while potentially holding a vnode locked, so we 708 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() 709 * to give other processes a chance to lock the vnode (either other processes 710 * core'ing the same binary, or unrelated processes scanning the directory). 711 */ 712 int 713 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len, 714 off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, 715 struct ucred *file_cred, size_t *aresid, struct thread *td) 716 { 717 int error = 0; 718 ssize_t iaresid; 719 720 do { 721 int chunk; 722 723 /* 724 * Force `offset' to a multiple of MAXBSIZE except possibly 725 * for the first chunk, so that filesystems only need to 726 * write full blocks except possibly for the first and last 727 * chunks. 728 */ 729 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; 730 731 if (chunk > len) 732 chunk = len; 733 if (rw != UIO_READ && vp->v_type == VREG) 734 bwillwrite(); 735 iaresid = 0; 736 error = vn_rdwr(rw, vp, base, chunk, offset, segflg, 737 ioflg, active_cred, file_cred, &iaresid, td); 738 len -= chunk; /* aresid calc already includes length */ 739 if (error) 740 break; 741 offset += chunk; 742 base = (char *)base + chunk; 743 kern_yield(PRI_USER); 744 } while (len); 745 if (aresid) 746 *aresid = len + iaresid; 747 return (error); 748 } 749 750 #if OFF_MAX <= LONG_MAX 751 off_t 752 foffset_lock(struct file *fp, int flags) 753 { 754 volatile short *flagsp; 755 off_t res; 756 short state; 757 758 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 759 760 if ((flags & FOF_NOLOCK) != 0) 761 return (atomic_load_long(&fp->f_offset)); 762 763 /* 764 * According to McKusick the vn lock was protecting f_offset here. 765 * It is now protected by the FOFFSET_LOCKED flag. 766 */ 767 flagsp = &fp->f_vnread_flags; 768 if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED)) 769 return (atomic_load_long(&fp->f_offset)); 770 771 sleepq_lock(&fp->f_vnread_flags); 772 state = atomic_load_16(flagsp); 773 for (;;) { 774 if ((state & FOFFSET_LOCKED) == 0) { 775 if (!atomic_fcmpset_acq_16(flagsp, &state, 776 FOFFSET_LOCKED)) 777 continue; 778 break; 779 } 780 if ((state & FOFFSET_LOCK_WAITING) == 0) { 781 if (!atomic_fcmpset_acq_16(flagsp, &state, 782 state | FOFFSET_LOCK_WAITING)) 783 continue; 784 } 785 DROP_GIANT(); 786 sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0); 787 sleepq_wait(&fp->f_vnread_flags, PUSER -1); 788 PICKUP_GIANT(); 789 sleepq_lock(&fp->f_vnread_flags); 790 state = atomic_load_16(flagsp); 791 } 792 res = atomic_load_long(&fp->f_offset); 793 sleepq_release(&fp->f_vnread_flags); 794 return (res); 795 } 796 797 void 798 foffset_unlock(struct file *fp, off_t val, int flags) 799 { 800 volatile short *flagsp; 801 short state; 802 803 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 804 805 if ((flags & FOF_NOUPDATE) == 0) 806 atomic_store_long(&fp->f_offset, val); 807 if ((flags & FOF_NEXTOFF_R) != 0) 808 fp->f_nextoff[UIO_READ] = val; 809 if ((flags & FOF_NEXTOFF_W) != 0) 810 fp->f_nextoff[UIO_WRITE] = val; 811 812 if ((flags & FOF_NOLOCK) != 0) 813 return; 814 815 flagsp = &fp->f_vnread_flags; 816 state = atomic_load_16(flagsp); 817 if ((state & FOFFSET_LOCK_WAITING) == 0 && 818 atomic_cmpset_rel_16(flagsp, state, 0)) 819 return; 820 821 sleepq_lock(&fp->f_vnread_flags); 822 MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0); 823 MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0); 824 fp->f_vnread_flags = 0; 825 sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0); 826 sleepq_release(&fp->f_vnread_flags); 827 } 828 #else 829 off_t 830 foffset_lock(struct file *fp, int flags) 831 { 832 struct mtx *mtxp; 833 off_t res; 834 835 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 836 837 mtxp = mtx_pool_find(mtxpool_sleep, fp); 838 mtx_lock(mtxp); 839 if ((flags & FOF_NOLOCK) == 0) { 840 while (fp->f_vnread_flags & FOFFSET_LOCKED) { 841 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; 842 msleep(&fp->f_vnread_flags, mtxp, PUSER -1, 843 "vofflock", 0); 844 } 845 fp->f_vnread_flags |= FOFFSET_LOCKED; 846 } 847 res = fp->f_offset; 848 mtx_unlock(mtxp); 849 return (res); 850 } 851 852 void 853 foffset_unlock(struct file *fp, off_t val, int flags) 854 { 855 struct mtx *mtxp; 856 857 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 858 859 mtxp = mtx_pool_find(mtxpool_sleep, fp); 860 mtx_lock(mtxp); 861 if ((flags & FOF_NOUPDATE) == 0) 862 fp->f_offset = val; 863 if ((flags & FOF_NEXTOFF_R) != 0) 864 fp->f_nextoff[UIO_READ] = val; 865 if ((flags & FOF_NEXTOFF_W) != 0) 866 fp->f_nextoff[UIO_WRITE] = val; 867 if ((flags & FOF_NOLOCK) == 0) { 868 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, 869 ("Lost FOFFSET_LOCKED")); 870 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) 871 wakeup(&fp->f_vnread_flags); 872 fp->f_vnread_flags = 0; 873 } 874 mtx_unlock(mtxp); 875 } 876 #endif 877 878 void 879 foffset_lock_uio(struct file *fp, struct uio *uio, int flags) 880 { 881 882 if ((flags & FOF_OFFSET) == 0) 883 uio->uio_offset = foffset_lock(fp, flags); 884 } 885 886 void 887 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) 888 { 889 890 if ((flags & FOF_OFFSET) == 0) 891 foffset_unlock(fp, uio->uio_offset, flags); 892 } 893 894 static int 895 get_advice(struct file *fp, struct uio *uio) 896 { 897 struct mtx *mtxp; 898 int ret; 899 900 ret = POSIX_FADV_NORMAL; 901 if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG) 902 return (ret); 903 904 mtxp = mtx_pool_find(mtxpool_sleep, fp); 905 mtx_lock(mtxp); 906 if (fp->f_advice != NULL && 907 uio->uio_offset >= fp->f_advice->fa_start && 908 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) 909 ret = fp->f_advice->fa_advice; 910 mtx_unlock(mtxp); 911 return (ret); 912 } 913 914 int 915 vn_read_from_obj(struct vnode *vp, struct uio *uio) 916 { 917 vm_object_t obj; 918 vm_page_t ma[io_hold_cnt + 2]; 919 off_t off, vsz; 920 ssize_t resid; 921 int error, i, j; 922 923 MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2)); 924 obj = atomic_load_ptr(&vp->v_object); 925 if (obj == NULL) 926 return (EJUSTRETURN); 927 928 /* 929 * Depends on type stability of vm_objects. 930 */ 931 vm_object_pip_add(obj, 1); 932 if ((obj->flags & OBJ_DEAD) != 0) { 933 /* 934 * Note that object might be already reused from the 935 * vnode, and the OBJ_DEAD flag cleared. This is fine, 936 * we recheck for DOOMED vnode state after all pages 937 * are busied, and retract then. 938 * 939 * But we check for OBJ_DEAD to ensure that we do not 940 * busy pages while vm_object_terminate_pages() 941 * processes the queue. 942 */ 943 error = EJUSTRETURN; 944 goto out_pip; 945 } 946 947 resid = uio->uio_resid; 948 off = uio->uio_offset; 949 for (i = 0; resid > 0; i++) { 950 MPASS(i < io_hold_cnt + 2); 951 ma[i] = vm_page_grab_unlocked(obj, atop(off), 952 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY | 953 VM_ALLOC_NOWAIT); 954 if (ma[i] == NULL) 955 break; 956 957 /* 958 * Skip invalid pages. Valid mask can be partial only 959 * at EOF, and we clip later. 960 */ 961 if (vm_page_none_valid(ma[i])) { 962 vm_page_sunbusy(ma[i]); 963 break; 964 } 965 966 resid -= PAGE_SIZE; 967 off += PAGE_SIZE; 968 } 969 if (i == 0) { 970 error = EJUSTRETURN; 971 goto out_pip; 972 } 973 974 /* 975 * Check VIRF_DOOMED after we busied our pages. Since 976 * vgonel() terminates the vnode' vm_object, it cannot 977 * process past pages busied by us. 978 */ 979 if (VN_IS_DOOMED(vp)) { 980 error = EJUSTRETURN; 981 goto out; 982 } 983 984 resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1); 985 if (resid > uio->uio_resid) 986 resid = uio->uio_resid; 987 988 /* 989 * Unlocked read of vnp_size is safe because truncation cannot 990 * pass busied page. But we load vnp_size into a local 991 * variable so that possible concurrent extension does not 992 * break calculation. 993 */ 994 #if defined(__powerpc__) && !defined(__powerpc64__) 995 vsz = obj->un_pager.vnp.vnp_size; 996 #else 997 vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size); 998 #endif 999 if (uio->uio_offset >= vsz) { 1000 error = EJUSTRETURN; 1001 goto out; 1002 } 1003 if (uio->uio_offset + resid > vsz) 1004 resid = vsz - uio->uio_offset; 1005 1006 error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio); 1007 1008 out: 1009 for (j = 0; j < i; j++) { 1010 if (error == 0) 1011 vm_page_reference(ma[j]); 1012 vm_page_sunbusy(ma[j]); 1013 } 1014 out_pip: 1015 vm_object_pip_wakeup(obj); 1016 if (error != 0) 1017 return (error); 1018 return (uio->uio_resid == 0 ? 0 : EJUSTRETURN); 1019 } 1020 1021 /* 1022 * File table vnode read routine. 1023 */ 1024 static int 1025 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, 1026 struct thread *td) 1027 { 1028 struct vnode *vp; 1029 off_t orig_offset; 1030 int error, ioflag; 1031 int advice; 1032 1033 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 1034 uio->uio_td, td)); 1035 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 1036 vp = fp->f_vnode; 1037 ioflag = 0; 1038 if (fp->f_flag & FNONBLOCK) 1039 ioflag |= IO_NDELAY; 1040 if (fp->f_flag & O_DIRECT) 1041 ioflag |= IO_DIRECT; 1042 1043 /* 1044 * Try to read from page cache. VIRF_DOOMED check is racy but 1045 * allows us to avoid unneeded work outright. 1046 */ 1047 if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() && 1048 (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) { 1049 error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred); 1050 if (error == 0) { 1051 fp->f_nextoff[UIO_READ] = uio->uio_offset; 1052 return (0); 1053 } 1054 if (error != EJUSTRETURN) 1055 return (error); 1056 } 1057 1058 advice = get_advice(fp, uio); 1059 vn_lock(vp, LK_SHARED | LK_RETRY); 1060 1061 switch (advice) { 1062 case POSIX_FADV_NORMAL: 1063 case POSIX_FADV_SEQUENTIAL: 1064 case POSIX_FADV_NOREUSE: 1065 ioflag |= sequential_heuristic(uio, fp); 1066 break; 1067 case POSIX_FADV_RANDOM: 1068 /* Disable read-ahead for random I/O. */ 1069 break; 1070 } 1071 orig_offset = uio->uio_offset; 1072 1073 #ifdef MAC 1074 error = mac_vnode_check_read(active_cred, fp->f_cred, vp); 1075 if (error == 0) 1076 #endif 1077 error = VOP_READ(vp, uio, ioflag, fp->f_cred); 1078 fp->f_nextoff[UIO_READ] = uio->uio_offset; 1079 VOP_UNLOCK(vp); 1080 if (error == 0 && advice == POSIX_FADV_NOREUSE && 1081 orig_offset != uio->uio_offset) 1082 /* 1083 * Use POSIX_FADV_DONTNEED to flush pages and buffers 1084 * for the backing file after a POSIX_FADV_NOREUSE 1085 * read(2). 1086 */ 1087 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, 1088 POSIX_FADV_DONTNEED); 1089 return (error); 1090 } 1091 1092 /* 1093 * File table vnode write routine. 1094 */ 1095 static int 1096 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, 1097 struct thread *td) 1098 { 1099 struct vnode *vp; 1100 struct mount *mp; 1101 off_t orig_offset; 1102 int error, ioflag, lock_flags; 1103 int advice; 1104 1105 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 1106 uio->uio_td, td)); 1107 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 1108 vp = fp->f_vnode; 1109 if (vp->v_type == VREG) 1110 bwillwrite(); 1111 ioflag = IO_UNIT; 1112 if (vp->v_type == VREG && (fp->f_flag & O_APPEND)) 1113 ioflag |= IO_APPEND; 1114 if (fp->f_flag & FNONBLOCK) 1115 ioflag |= IO_NDELAY; 1116 if (fp->f_flag & O_DIRECT) 1117 ioflag |= IO_DIRECT; 1118 if ((fp->f_flag & O_FSYNC) || 1119 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))) 1120 ioflag |= IO_SYNC; 1121 /* 1122 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE() 1123 * implementations that don't understand IO_DATASYNC fall back to full 1124 * O_SYNC behavior. 1125 */ 1126 if (fp->f_flag & O_DSYNC) 1127 ioflag |= IO_SYNC | IO_DATASYNC; 1128 mp = NULL; 1129 if (vp->v_type != VCHR && 1130 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 1131 goto unlock; 1132 1133 advice = get_advice(fp, uio); 1134 1135 if (MNT_SHARED_WRITES(mp) || 1136 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) { 1137 lock_flags = LK_SHARED; 1138 } else { 1139 lock_flags = LK_EXCLUSIVE; 1140 } 1141 1142 vn_lock(vp, lock_flags | LK_RETRY); 1143 switch (advice) { 1144 case POSIX_FADV_NORMAL: 1145 case POSIX_FADV_SEQUENTIAL: 1146 case POSIX_FADV_NOREUSE: 1147 ioflag |= sequential_heuristic(uio, fp); 1148 break; 1149 case POSIX_FADV_RANDOM: 1150 /* XXX: Is this correct? */ 1151 break; 1152 } 1153 orig_offset = uio->uio_offset; 1154 1155 #ifdef MAC 1156 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1157 if (error == 0) 1158 #endif 1159 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); 1160 fp->f_nextoff[UIO_WRITE] = uio->uio_offset; 1161 VOP_UNLOCK(vp); 1162 if (vp->v_type != VCHR) 1163 vn_finished_write(mp); 1164 if (error == 0 && advice == POSIX_FADV_NOREUSE && 1165 orig_offset != uio->uio_offset) 1166 /* 1167 * Use POSIX_FADV_DONTNEED to flush pages and buffers 1168 * for the backing file after a POSIX_FADV_NOREUSE 1169 * write(2). 1170 */ 1171 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, 1172 POSIX_FADV_DONTNEED); 1173 unlock: 1174 return (error); 1175 } 1176 1177 /* 1178 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to 1179 * prevent the following deadlock: 1180 * 1181 * Assume that the thread A reads from the vnode vp1 into userspace 1182 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is 1183 * currently not resident, then system ends up with the call chain 1184 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> 1185 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) 1186 * which establishes lock order vp1->vn_lock, then vp2->vn_lock. 1187 * If, at the same time, thread B reads from vnode vp2 into buffer buf2 1188 * backed by the pages of vnode vp1, and some page in buf2 is not 1189 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. 1190 * 1191 * To prevent the lock order reversal and deadlock, vn_io_fault() does 1192 * not allow page faults to happen during VOP_READ() or VOP_WRITE(). 1193 * Instead, it first tries to do the whole range i/o with pagefaults 1194 * disabled. If all pages in the i/o buffer are resident and mapped, 1195 * VOP will succeed (ignoring the genuine filesystem errors). 1196 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do 1197 * i/o in chunks, with all pages in the chunk prefaulted and held 1198 * using vm_fault_quick_hold_pages(). 1199 * 1200 * Filesystems using this deadlock avoidance scheme should use the 1201 * array of the held pages from uio, saved in the curthread->td_ma, 1202 * instead of doing uiomove(). A helper function 1203 * vn_io_fault_uiomove() converts uiomove request into 1204 * uiomove_fromphys() over td_ma array. 1205 * 1206 * Since vnode locks do not cover the whole i/o anymore, rangelocks 1207 * make the current i/o request atomic with respect to other i/os and 1208 * truncations. 1209 */ 1210 1211 /* 1212 * Decode vn_io_fault_args and perform the corresponding i/o. 1213 */ 1214 static int 1215 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio, 1216 struct thread *td) 1217 { 1218 int error, save; 1219 1220 error = 0; 1221 save = vm_fault_disable_pagefaults(); 1222 switch (args->kind) { 1223 case VN_IO_FAULT_FOP: 1224 error = (args->args.fop_args.doio)(args->args.fop_args.fp, 1225 uio, args->cred, args->flags, td); 1226 break; 1227 case VN_IO_FAULT_VOP: 1228 if (uio->uio_rw == UIO_READ) { 1229 error = VOP_READ(args->args.vop_args.vp, uio, 1230 args->flags, args->cred); 1231 } else if (uio->uio_rw == UIO_WRITE) { 1232 error = VOP_WRITE(args->args.vop_args.vp, uio, 1233 args->flags, args->cred); 1234 } 1235 break; 1236 default: 1237 panic("vn_io_fault_doio: unknown kind of io %d %d", 1238 args->kind, uio->uio_rw); 1239 } 1240 vm_fault_enable_pagefaults(save); 1241 return (error); 1242 } 1243 1244 static int 1245 vn_io_fault_touch(char *base, const struct uio *uio) 1246 { 1247 int r; 1248 1249 r = fubyte(base); 1250 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1)) 1251 return (EFAULT); 1252 return (0); 1253 } 1254 1255 static int 1256 vn_io_fault_prefault_user(const struct uio *uio) 1257 { 1258 char *base; 1259 const struct iovec *iov; 1260 size_t len; 1261 ssize_t resid; 1262 int error, i; 1263 1264 KASSERT(uio->uio_segflg == UIO_USERSPACE, 1265 ("vn_io_fault_prefault userspace")); 1266 1267 error = i = 0; 1268 iov = uio->uio_iov; 1269 resid = uio->uio_resid; 1270 base = iov->iov_base; 1271 len = iov->iov_len; 1272 while (resid > 0) { 1273 error = vn_io_fault_touch(base, uio); 1274 if (error != 0) 1275 break; 1276 if (len < PAGE_SIZE) { 1277 if (len != 0) { 1278 error = vn_io_fault_touch(base + len - 1, uio); 1279 if (error != 0) 1280 break; 1281 resid -= len; 1282 } 1283 if (++i >= uio->uio_iovcnt) 1284 break; 1285 iov = uio->uio_iov + i; 1286 base = iov->iov_base; 1287 len = iov->iov_len; 1288 } else { 1289 len -= PAGE_SIZE; 1290 base += PAGE_SIZE; 1291 resid -= PAGE_SIZE; 1292 } 1293 } 1294 return (error); 1295 } 1296 1297 /* 1298 * Common code for vn_io_fault(), agnostic to the kind of i/o request. 1299 * Uses vn_io_fault_doio() to make the call to an actual i/o function. 1300 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request 1301 * into args and call vn_io_fault1() to handle faults during the user 1302 * mode buffer accesses. 1303 */ 1304 static int 1305 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, 1306 struct thread *td) 1307 { 1308 vm_page_t ma[io_hold_cnt + 2]; 1309 struct uio *uio_clone, short_uio; 1310 struct iovec short_iovec[1]; 1311 vm_page_t *prev_td_ma; 1312 vm_prot_t prot; 1313 vm_offset_t addr, end; 1314 size_t len, resid; 1315 ssize_t adv; 1316 int error, cnt, saveheld, prev_td_ma_cnt; 1317 1318 if (vn_io_fault_prefault) { 1319 error = vn_io_fault_prefault_user(uio); 1320 if (error != 0) 1321 return (error); /* Or ignore ? */ 1322 } 1323 1324 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ; 1325 1326 /* 1327 * The UFS follows IO_UNIT directive and replays back both 1328 * uio_offset and uio_resid if an error is encountered during the 1329 * operation. But, since the iovec may be already advanced, 1330 * uio is still in an inconsistent state. 1331 * 1332 * Cache a copy of the original uio, which is advanced to the redo 1333 * point using UIO_NOCOPY below. 1334 */ 1335 uio_clone = cloneuio(uio); 1336 resid = uio->uio_resid; 1337 1338 short_uio.uio_segflg = UIO_USERSPACE; 1339 short_uio.uio_rw = uio->uio_rw; 1340 short_uio.uio_td = uio->uio_td; 1341 1342 error = vn_io_fault_doio(args, uio, td); 1343 if (error != EFAULT) 1344 goto out; 1345 1346 atomic_add_long(&vn_io_faults_cnt, 1); 1347 uio_clone->uio_segflg = UIO_NOCOPY; 1348 uiomove(NULL, resid - uio->uio_resid, uio_clone); 1349 uio_clone->uio_segflg = uio->uio_segflg; 1350 1351 saveheld = curthread_pflags_set(TDP_UIOHELD); 1352 prev_td_ma = td->td_ma; 1353 prev_td_ma_cnt = td->td_ma_cnt; 1354 1355 while (uio_clone->uio_resid != 0) { 1356 len = uio_clone->uio_iov->iov_len; 1357 if (len == 0) { 1358 KASSERT(uio_clone->uio_iovcnt >= 1, 1359 ("iovcnt underflow")); 1360 uio_clone->uio_iov++; 1361 uio_clone->uio_iovcnt--; 1362 continue; 1363 } 1364 if (len > ptoa(io_hold_cnt)) 1365 len = ptoa(io_hold_cnt); 1366 addr = (uintptr_t)uio_clone->uio_iov->iov_base; 1367 end = round_page(addr + len); 1368 if (end < addr) { 1369 error = EFAULT; 1370 break; 1371 } 1372 cnt = atop(end - trunc_page(addr)); 1373 /* 1374 * A perfectly misaligned address and length could cause 1375 * both the start and the end of the chunk to use partial 1376 * page. +2 accounts for such a situation. 1377 */ 1378 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, 1379 addr, len, prot, ma, io_hold_cnt + 2); 1380 if (cnt == -1) { 1381 error = EFAULT; 1382 break; 1383 } 1384 short_uio.uio_iov = &short_iovec[0]; 1385 short_iovec[0].iov_base = (void *)addr; 1386 short_uio.uio_iovcnt = 1; 1387 short_uio.uio_resid = short_iovec[0].iov_len = len; 1388 short_uio.uio_offset = uio_clone->uio_offset; 1389 td->td_ma = ma; 1390 td->td_ma_cnt = cnt; 1391 1392 error = vn_io_fault_doio(args, &short_uio, td); 1393 vm_page_unhold_pages(ma, cnt); 1394 adv = len - short_uio.uio_resid; 1395 1396 uio_clone->uio_iov->iov_base = 1397 (char *)uio_clone->uio_iov->iov_base + adv; 1398 uio_clone->uio_iov->iov_len -= adv; 1399 uio_clone->uio_resid -= adv; 1400 uio_clone->uio_offset += adv; 1401 1402 uio->uio_resid -= adv; 1403 uio->uio_offset += adv; 1404 1405 if (error != 0 || adv == 0) 1406 break; 1407 } 1408 td->td_ma = prev_td_ma; 1409 td->td_ma_cnt = prev_td_ma_cnt; 1410 curthread_pflags_restore(saveheld); 1411 out: 1412 free(uio_clone, M_IOV); 1413 return (error); 1414 } 1415 1416 static int 1417 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, 1418 int flags, struct thread *td) 1419 { 1420 fo_rdwr_t *doio; 1421 struct vnode *vp; 1422 void *rl_cookie; 1423 struct vn_io_fault_args args; 1424 int error; 1425 1426 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write; 1427 vp = fp->f_vnode; 1428 1429 /* 1430 * The ability to read(2) on a directory has historically been 1431 * allowed for all users, but this can and has been the source of 1432 * at least one security issue in the past. As such, it is now hidden 1433 * away behind a sysctl for those that actually need it to use it, and 1434 * restricted to root when it's turned on to make it relatively safe to 1435 * leave on for longer sessions of need. 1436 */ 1437 if (vp->v_type == VDIR) { 1438 KASSERT(uio->uio_rw == UIO_READ, 1439 ("illegal write attempted on a directory")); 1440 if (!vfs_allow_read_dir) 1441 return (EISDIR); 1442 if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0) 1443 return (EISDIR); 1444 } 1445 1446 foffset_lock_uio(fp, uio, flags); 1447 if (do_vn_io_fault(vp, uio)) { 1448 args.kind = VN_IO_FAULT_FOP; 1449 args.args.fop_args.fp = fp; 1450 args.args.fop_args.doio = doio; 1451 args.cred = active_cred; 1452 args.flags = flags | FOF_OFFSET; 1453 if (uio->uio_rw == UIO_READ) { 1454 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, 1455 uio->uio_offset + uio->uio_resid); 1456 } else if ((fp->f_flag & O_APPEND) != 0 || 1457 (flags & FOF_OFFSET) == 0) { 1458 /* For appenders, punt and lock the whole range. */ 1459 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1460 } else { 1461 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, 1462 uio->uio_offset + uio->uio_resid); 1463 } 1464 error = vn_io_fault1(vp, uio, &args, td); 1465 vn_rangelock_unlock(vp, rl_cookie); 1466 } else { 1467 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 1468 } 1469 foffset_unlock_uio(fp, uio, flags); 1470 return (error); 1471 } 1472 1473 /* 1474 * Helper function to perform the requested uiomove operation using 1475 * the held pages for io->uio_iov[0].iov_base buffer instead of 1476 * copyin/copyout. Access to the pages with uiomove_fromphys() 1477 * instead of iov_base prevents page faults that could occur due to 1478 * pmap_collect() invalidating the mapping created by 1479 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or 1480 * object cleanup revoking the write access from page mappings. 1481 * 1482 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() 1483 * instead of plain uiomove(). 1484 */ 1485 int 1486 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) 1487 { 1488 struct uio transp_uio; 1489 struct iovec transp_iov[1]; 1490 struct thread *td; 1491 size_t adv; 1492 int error, pgadv; 1493 1494 td = curthread; 1495 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1496 uio->uio_segflg != UIO_USERSPACE) 1497 return (uiomove(data, xfersize, uio)); 1498 1499 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1500 transp_iov[0].iov_base = data; 1501 transp_uio.uio_iov = &transp_iov[0]; 1502 transp_uio.uio_iovcnt = 1; 1503 if (xfersize > uio->uio_resid) 1504 xfersize = uio->uio_resid; 1505 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; 1506 transp_uio.uio_offset = 0; 1507 transp_uio.uio_segflg = UIO_SYSSPACE; 1508 /* 1509 * Since transp_iov points to data, and td_ma page array 1510 * corresponds to original uio->uio_iov, we need to invert the 1511 * direction of the i/o operation as passed to 1512 * uiomove_fromphys(). 1513 */ 1514 switch (uio->uio_rw) { 1515 case UIO_WRITE: 1516 transp_uio.uio_rw = UIO_READ; 1517 break; 1518 case UIO_READ: 1519 transp_uio.uio_rw = UIO_WRITE; 1520 break; 1521 } 1522 transp_uio.uio_td = uio->uio_td; 1523 error = uiomove_fromphys(td->td_ma, 1524 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, 1525 xfersize, &transp_uio); 1526 adv = xfersize - transp_uio.uio_resid; 1527 pgadv = 1528 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - 1529 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); 1530 td->td_ma += pgadv; 1531 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1532 pgadv)); 1533 td->td_ma_cnt -= pgadv; 1534 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; 1535 uio->uio_iov->iov_len -= adv; 1536 uio->uio_resid -= adv; 1537 uio->uio_offset += adv; 1538 return (error); 1539 } 1540 1541 int 1542 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, 1543 struct uio *uio) 1544 { 1545 struct thread *td; 1546 vm_offset_t iov_base; 1547 int cnt, pgadv; 1548 1549 td = curthread; 1550 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1551 uio->uio_segflg != UIO_USERSPACE) 1552 return (uiomove_fromphys(ma, offset, xfersize, uio)); 1553 1554 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1555 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize; 1556 iov_base = (vm_offset_t)uio->uio_iov->iov_base; 1557 switch (uio->uio_rw) { 1558 case UIO_WRITE: 1559 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma, 1560 offset, cnt); 1561 break; 1562 case UIO_READ: 1563 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK, 1564 cnt); 1565 break; 1566 } 1567 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT); 1568 td->td_ma += pgadv; 1569 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1570 pgadv)); 1571 td->td_ma_cnt -= pgadv; 1572 uio->uio_iov->iov_base = (char *)(iov_base + cnt); 1573 uio->uio_iov->iov_len -= cnt; 1574 uio->uio_resid -= cnt; 1575 uio->uio_offset += cnt; 1576 return (0); 1577 } 1578 1579 /* 1580 * File table truncate routine. 1581 */ 1582 static int 1583 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1584 struct thread *td) 1585 { 1586 struct mount *mp; 1587 struct vnode *vp; 1588 void *rl_cookie; 1589 int error; 1590 1591 vp = fp->f_vnode; 1592 1593 retry: 1594 /* 1595 * Lock the whole range for truncation. Otherwise split i/o 1596 * might happen partly before and partly after the truncation. 1597 */ 1598 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1599 error = vn_start_write(vp, &mp, V_WAIT | PCATCH); 1600 if (error) 1601 goto out1; 1602 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1603 AUDIT_ARG_VNODE1(vp); 1604 if (vp->v_type == VDIR) { 1605 error = EISDIR; 1606 goto out; 1607 } 1608 #ifdef MAC 1609 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1610 if (error) 1611 goto out; 1612 #endif 1613 error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0, 1614 fp->f_cred); 1615 out: 1616 VOP_UNLOCK(vp); 1617 vn_finished_write(mp); 1618 out1: 1619 vn_rangelock_unlock(vp, rl_cookie); 1620 if (error == ERELOOKUP) 1621 goto retry; 1622 return (error); 1623 } 1624 1625 /* 1626 * Truncate a file that is already locked. 1627 */ 1628 int 1629 vn_truncate_locked(struct vnode *vp, off_t length, bool sync, 1630 struct ucred *cred) 1631 { 1632 struct vattr vattr; 1633 int error; 1634 1635 error = VOP_ADD_WRITECOUNT(vp, 1); 1636 if (error == 0) { 1637 VATTR_NULL(&vattr); 1638 vattr.va_size = length; 1639 if (sync) 1640 vattr.va_vaflags |= VA_SYNC; 1641 error = VOP_SETATTR(vp, &vattr, cred); 1642 VOP_ADD_WRITECOUNT_CHECKED(vp, -1); 1643 } 1644 return (error); 1645 } 1646 1647 /* 1648 * File table vnode stat routine. 1649 */ 1650 int 1651 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred, 1652 struct thread *td) 1653 { 1654 struct vnode *vp = fp->f_vnode; 1655 int error; 1656 1657 vn_lock(vp, LK_SHARED | LK_RETRY); 1658 error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td); 1659 VOP_UNLOCK(vp); 1660 1661 return (error); 1662 } 1663 1664 /* 1665 * File table vnode ioctl routine. 1666 */ 1667 static int 1668 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred, 1669 struct thread *td) 1670 { 1671 struct vattr vattr; 1672 struct vnode *vp; 1673 struct fiobmap2_arg *bmarg; 1674 int error; 1675 1676 vp = fp->f_vnode; 1677 switch (vp->v_type) { 1678 case VDIR: 1679 case VREG: 1680 switch (com) { 1681 case FIONREAD: 1682 vn_lock(vp, LK_SHARED | LK_RETRY); 1683 error = VOP_GETATTR(vp, &vattr, active_cred); 1684 VOP_UNLOCK(vp); 1685 if (error == 0) 1686 *(int *)data = vattr.va_size - fp->f_offset; 1687 return (error); 1688 case FIOBMAP2: 1689 bmarg = (struct fiobmap2_arg *)data; 1690 vn_lock(vp, LK_SHARED | LK_RETRY); 1691 #ifdef MAC 1692 error = mac_vnode_check_read(active_cred, fp->f_cred, 1693 vp); 1694 if (error == 0) 1695 #endif 1696 error = VOP_BMAP(vp, bmarg->bn, NULL, 1697 &bmarg->bn, &bmarg->runp, &bmarg->runb); 1698 VOP_UNLOCK(vp); 1699 return (error); 1700 case FIONBIO: 1701 case FIOASYNC: 1702 return (0); 1703 default: 1704 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1705 active_cred, td)); 1706 } 1707 break; 1708 case VCHR: 1709 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1710 active_cred, td)); 1711 default: 1712 return (ENOTTY); 1713 } 1714 } 1715 1716 /* 1717 * File table vnode poll routine. 1718 */ 1719 static int 1720 vn_poll(struct file *fp, int events, struct ucred *active_cred, 1721 struct thread *td) 1722 { 1723 struct vnode *vp; 1724 int error; 1725 1726 vp = fp->f_vnode; 1727 #if defined(MAC) || defined(AUDIT) 1728 if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) { 1729 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1730 AUDIT_ARG_VNODE1(vp); 1731 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); 1732 VOP_UNLOCK(vp); 1733 if (error != 0) 1734 return (error); 1735 } 1736 #endif 1737 error = VOP_POLL(vp, events, fp->f_cred, td); 1738 return (error); 1739 } 1740 1741 /* 1742 * Acquire the requested lock and then check for validity. LK_RETRY 1743 * permits vn_lock to return doomed vnodes. 1744 */ 1745 static int __noinline 1746 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line, 1747 int error) 1748 { 1749 1750 KASSERT((flags & LK_RETRY) == 0 || error == 0, 1751 ("vn_lock: error %d incompatible with flags %#x", error, flags)); 1752 1753 if (error == 0) 1754 VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed")); 1755 1756 if ((flags & LK_RETRY) == 0) { 1757 if (error == 0) { 1758 VOP_UNLOCK(vp); 1759 error = ENOENT; 1760 } 1761 return (error); 1762 } 1763 1764 /* 1765 * LK_RETRY case. 1766 * 1767 * Nothing to do if we got the lock. 1768 */ 1769 if (error == 0) 1770 return (0); 1771 1772 /* 1773 * Interlock was dropped by the call in _vn_lock. 1774 */ 1775 flags &= ~LK_INTERLOCK; 1776 do { 1777 error = VOP_LOCK1(vp, flags, file, line); 1778 } while (error != 0); 1779 return (0); 1780 } 1781 1782 int 1783 _vn_lock(struct vnode *vp, int flags, const char *file, int line) 1784 { 1785 int error; 1786 1787 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 1788 ("vn_lock: no locktype (%d passed)", flags)); 1789 VNPASS(vp->v_holdcnt > 0, vp); 1790 error = VOP_LOCK1(vp, flags, file, line); 1791 if (__predict_false(error != 0 || VN_IS_DOOMED(vp))) 1792 return (_vn_lock_fallback(vp, flags, file, line, error)); 1793 return (0); 1794 } 1795 1796 /* 1797 * File table vnode close routine. 1798 */ 1799 static int 1800 vn_closefile(struct file *fp, struct thread *td) 1801 { 1802 struct vnode *vp; 1803 struct flock lf; 1804 int error; 1805 bool ref; 1806 1807 vp = fp->f_vnode; 1808 fp->f_ops = &badfileops; 1809 ref = (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE; 1810 1811 error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref); 1812 1813 if (__predict_false(ref)) { 1814 lf.l_whence = SEEK_SET; 1815 lf.l_start = 0; 1816 lf.l_len = 0; 1817 lf.l_type = F_UNLCK; 1818 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); 1819 vrele(vp); 1820 } 1821 return (error); 1822 } 1823 1824 /* 1825 * Preparing to start a filesystem write operation. If the operation is 1826 * permitted, then we bump the count of operations in progress and 1827 * proceed. If a suspend request is in progress, we wait until the 1828 * suspension is over, and then proceed. 1829 */ 1830 static int 1831 vn_start_write_refed(struct mount *mp, int flags, bool mplocked) 1832 { 1833 struct mount_pcpu *mpcpu; 1834 int error, mflags; 1835 1836 if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 && 1837 vfs_op_thread_enter(mp, mpcpu)) { 1838 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0); 1839 vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1); 1840 vfs_op_thread_exit(mp, mpcpu); 1841 return (0); 1842 } 1843 1844 if (mplocked) 1845 mtx_assert(MNT_MTX(mp), MA_OWNED); 1846 else 1847 MNT_ILOCK(mp); 1848 1849 error = 0; 1850 1851 /* 1852 * Check on status of suspension. 1853 */ 1854 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || 1855 mp->mnt_susp_owner != curthread) { 1856 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? 1857 (flags & PCATCH) : 0) | (PUSER - 1); 1858 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1859 if (flags & V_NOWAIT) { 1860 error = EWOULDBLOCK; 1861 goto unlock; 1862 } 1863 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, 1864 "suspfs", 0); 1865 if (error) 1866 goto unlock; 1867 } 1868 } 1869 if (flags & V_XSLEEP) 1870 goto unlock; 1871 mp->mnt_writeopcount++; 1872 unlock: 1873 if (error != 0 || (flags & V_XSLEEP) != 0) 1874 MNT_REL(mp); 1875 MNT_IUNLOCK(mp); 1876 return (error); 1877 } 1878 1879 int 1880 vn_start_write(struct vnode *vp, struct mount **mpp, int flags) 1881 { 1882 struct mount *mp; 1883 int error; 1884 1885 KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL), 1886 ("V_MNTREF requires mp")); 1887 1888 error = 0; 1889 /* 1890 * If a vnode is provided, get and return the mount point that 1891 * to which it will write. 1892 */ 1893 if (vp != NULL) { 1894 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1895 *mpp = NULL; 1896 if (error != EOPNOTSUPP) 1897 return (error); 1898 return (0); 1899 } 1900 } 1901 if ((mp = *mpp) == NULL) 1902 return (0); 1903 1904 /* 1905 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1906 * a vfs_ref(). 1907 * As long as a vnode is not provided we need to acquire a 1908 * refcount for the provided mountpoint too, in order to 1909 * emulate a vfs_ref(). 1910 */ 1911 if (vp == NULL && (flags & V_MNTREF) == 0) 1912 vfs_ref(mp); 1913 1914 return (vn_start_write_refed(mp, flags, false)); 1915 } 1916 1917 /* 1918 * Secondary suspension. Used by operations such as vop_inactive 1919 * routines that are needed by the higher level functions. These 1920 * are allowed to proceed until all the higher level functions have 1921 * completed (indicated by mnt_writeopcount dropping to zero). At that 1922 * time, these operations are halted until the suspension is over. 1923 */ 1924 int 1925 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags) 1926 { 1927 struct mount *mp; 1928 int error; 1929 1930 KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL), 1931 ("V_MNTREF requires mp")); 1932 1933 retry: 1934 if (vp != NULL) { 1935 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1936 *mpp = NULL; 1937 if (error != EOPNOTSUPP) 1938 return (error); 1939 return (0); 1940 } 1941 } 1942 /* 1943 * If we are not suspended or have not yet reached suspended 1944 * mode, then let the operation proceed. 1945 */ 1946 if ((mp = *mpp) == NULL) 1947 return (0); 1948 1949 /* 1950 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1951 * a vfs_ref(). 1952 * As long as a vnode is not provided we need to acquire a 1953 * refcount for the provided mountpoint too, in order to 1954 * emulate a vfs_ref(). 1955 */ 1956 MNT_ILOCK(mp); 1957 if (vp == NULL && (flags & V_MNTREF) == 0) 1958 MNT_REF(mp); 1959 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { 1960 mp->mnt_secondary_writes++; 1961 mp->mnt_secondary_accwrites++; 1962 MNT_IUNLOCK(mp); 1963 return (0); 1964 } 1965 if (flags & V_NOWAIT) { 1966 MNT_REL(mp); 1967 MNT_IUNLOCK(mp); 1968 return (EWOULDBLOCK); 1969 } 1970 /* 1971 * Wait for the suspension to finish. 1972 */ 1973 error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP | 1974 ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0), 1975 "suspfs", 0); 1976 vfs_rel(mp); 1977 if (error == 0) 1978 goto retry; 1979 return (error); 1980 } 1981 1982 /* 1983 * Filesystem write operation has completed. If we are suspending and this 1984 * operation is the last one, notify the suspender that the suspension is 1985 * now in effect. 1986 */ 1987 void 1988 vn_finished_write(struct mount *mp) 1989 { 1990 struct mount_pcpu *mpcpu; 1991 int c; 1992 1993 if (mp == NULL) 1994 return; 1995 1996 if (vfs_op_thread_enter(mp, mpcpu)) { 1997 vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1); 1998 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 1999 vfs_op_thread_exit(mp, mpcpu); 2000 return; 2001 } 2002 2003 MNT_ILOCK(mp); 2004 vfs_assert_mount_counters(mp); 2005 MNT_REL(mp); 2006 c = --mp->mnt_writeopcount; 2007 if (mp->mnt_vfs_ops == 0) { 2008 MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0); 2009 MNT_IUNLOCK(mp); 2010 return; 2011 } 2012 if (c < 0) 2013 vfs_dump_mount_counters(mp); 2014 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0) 2015 wakeup(&mp->mnt_writeopcount); 2016 MNT_IUNLOCK(mp); 2017 } 2018 2019 /* 2020 * Filesystem secondary write operation has completed. If we are 2021 * suspending and this operation is the last one, notify the suspender 2022 * that the suspension is now in effect. 2023 */ 2024 void 2025 vn_finished_secondary_write(struct mount *mp) 2026 { 2027 if (mp == NULL) 2028 return; 2029 MNT_ILOCK(mp); 2030 MNT_REL(mp); 2031 mp->mnt_secondary_writes--; 2032 if (mp->mnt_secondary_writes < 0) 2033 panic("vn_finished_secondary_write: neg cnt"); 2034 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 2035 mp->mnt_secondary_writes <= 0) 2036 wakeup(&mp->mnt_secondary_writes); 2037 MNT_IUNLOCK(mp); 2038 } 2039 2040 /* 2041 * Request a filesystem to suspend write operations. 2042 */ 2043 int 2044 vfs_write_suspend(struct mount *mp, int flags) 2045 { 2046 int error; 2047 2048 vfs_op_enter(mp); 2049 2050 MNT_ILOCK(mp); 2051 vfs_assert_mount_counters(mp); 2052 if (mp->mnt_susp_owner == curthread) { 2053 vfs_op_exit_locked(mp); 2054 MNT_IUNLOCK(mp); 2055 return (EALREADY); 2056 } 2057 while (mp->mnt_kern_flag & MNTK_SUSPEND) 2058 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); 2059 2060 /* 2061 * Unmount holds a write reference on the mount point. If we 2062 * own busy reference and drain for writers, we deadlock with 2063 * the reference draining in the unmount path. Callers of 2064 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if 2065 * vfs_busy() reference is owned and caller is not in the 2066 * unmount context. 2067 */ 2068 if ((flags & VS_SKIP_UNMOUNT) != 0 && 2069 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 2070 vfs_op_exit_locked(mp); 2071 MNT_IUNLOCK(mp); 2072 return (EBUSY); 2073 } 2074 2075 mp->mnt_kern_flag |= MNTK_SUSPEND; 2076 mp->mnt_susp_owner = curthread; 2077 if (mp->mnt_writeopcount > 0) 2078 (void) msleep(&mp->mnt_writeopcount, 2079 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); 2080 else 2081 MNT_IUNLOCK(mp); 2082 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) { 2083 vfs_write_resume(mp, 0); 2084 /* vfs_write_resume does vfs_op_exit() for us */ 2085 } 2086 return (error); 2087 } 2088 2089 /* 2090 * Request a filesystem to resume write operations. 2091 */ 2092 void 2093 vfs_write_resume(struct mount *mp, int flags) 2094 { 2095 2096 MNT_ILOCK(mp); 2097 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 2098 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); 2099 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | 2100 MNTK_SUSPENDED); 2101 mp->mnt_susp_owner = NULL; 2102 wakeup(&mp->mnt_writeopcount); 2103 wakeup(&mp->mnt_flag); 2104 curthread->td_pflags &= ~TDP_IGNSUSP; 2105 if ((flags & VR_START_WRITE) != 0) { 2106 MNT_REF(mp); 2107 mp->mnt_writeopcount++; 2108 } 2109 MNT_IUNLOCK(mp); 2110 if ((flags & VR_NO_SUSPCLR) == 0) 2111 VFS_SUSP_CLEAN(mp); 2112 vfs_op_exit(mp); 2113 } else if ((flags & VR_START_WRITE) != 0) { 2114 MNT_REF(mp); 2115 vn_start_write_refed(mp, 0, true); 2116 } else { 2117 MNT_IUNLOCK(mp); 2118 } 2119 } 2120 2121 /* 2122 * Helper loop around vfs_write_suspend() for filesystem unmount VFS 2123 * methods. 2124 */ 2125 int 2126 vfs_write_suspend_umnt(struct mount *mp) 2127 { 2128 int error; 2129 2130 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0, 2131 ("vfs_write_suspend_umnt: recursed")); 2132 2133 /* dounmount() already called vn_start_write(). */ 2134 for (;;) { 2135 vn_finished_write(mp); 2136 error = vfs_write_suspend(mp, 0); 2137 if (error != 0) { 2138 vn_start_write(NULL, &mp, V_WAIT); 2139 return (error); 2140 } 2141 MNT_ILOCK(mp); 2142 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0) 2143 break; 2144 MNT_IUNLOCK(mp); 2145 vn_start_write(NULL, &mp, V_WAIT); 2146 } 2147 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 2148 wakeup(&mp->mnt_flag); 2149 MNT_IUNLOCK(mp); 2150 curthread->td_pflags |= TDP_IGNSUSP; 2151 return (0); 2152 } 2153 2154 /* 2155 * Implement kqueues for files by translating it to vnode operation. 2156 */ 2157 static int 2158 vn_kqfilter(struct file *fp, struct knote *kn) 2159 { 2160 2161 return (VOP_KQFILTER(fp->f_vnode, kn)); 2162 } 2163 2164 int 2165 vn_kqfilter_opath(struct file *fp, struct knote *kn) 2166 { 2167 if ((fp->f_flag & FKQALLOWED) == 0) 2168 return (EBADF); 2169 return (vn_kqfilter(fp, kn)); 2170 } 2171 2172 /* 2173 * Simplified in-kernel wrapper calls for extended attribute access. 2174 * Both calls pass in a NULL credential, authorizing as "kernel" access. 2175 * Set IO_NODELOCKED in ioflg if the vnode is already locked. 2176 */ 2177 int 2178 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, 2179 const char *attrname, int *buflen, char *buf, struct thread *td) 2180 { 2181 struct uio auio; 2182 struct iovec iov; 2183 int error; 2184 2185 iov.iov_len = *buflen; 2186 iov.iov_base = buf; 2187 2188 auio.uio_iov = &iov; 2189 auio.uio_iovcnt = 1; 2190 auio.uio_rw = UIO_READ; 2191 auio.uio_segflg = UIO_SYSSPACE; 2192 auio.uio_td = td; 2193 auio.uio_offset = 0; 2194 auio.uio_resid = *buflen; 2195 2196 if ((ioflg & IO_NODELOCKED) == 0) 2197 vn_lock(vp, LK_SHARED | LK_RETRY); 2198 2199 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2200 2201 /* authorize attribute retrieval as kernel */ 2202 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, 2203 td); 2204 2205 if ((ioflg & IO_NODELOCKED) == 0) 2206 VOP_UNLOCK(vp); 2207 2208 if (error == 0) { 2209 *buflen = *buflen - auio.uio_resid; 2210 } 2211 2212 return (error); 2213 } 2214 2215 /* 2216 * XXX failure mode if partially written? 2217 */ 2218 int 2219 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, 2220 const char *attrname, int buflen, char *buf, struct thread *td) 2221 { 2222 struct uio auio; 2223 struct iovec iov; 2224 struct mount *mp; 2225 int error; 2226 2227 iov.iov_len = buflen; 2228 iov.iov_base = buf; 2229 2230 auio.uio_iov = &iov; 2231 auio.uio_iovcnt = 1; 2232 auio.uio_rw = UIO_WRITE; 2233 auio.uio_segflg = UIO_SYSSPACE; 2234 auio.uio_td = td; 2235 auio.uio_offset = 0; 2236 auio.uio_resid = buflen; 2237 2238 if ((ioflg & IO_NODELOCKED) == 0) { 2239 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2240 return (error); 2241 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2242 } 2243 2244 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2245 2246 /* authorize attribute setting as kernel */ 2247 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); 2248 2249 if ((ioflg & IO_NODELOCKED) == 0) { 2250 vn_finished_write(mp); 2251 VOP_UNLOCK(vp); 2252 } 2253 2254 return (error); 2255 } 2256 2257 int 2258 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, 2259 const char *attrname, struct thread *td) 2260 { 2261 struct mount *mp; 2262 int error; 2263 2264 if ((ioflg & IO_NODELOCKED) == 0) { 2265 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2266 return (error); 2267 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2268 } 2269 2270 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2271 2272 /* authorize attribute removal as kernel */ 2273 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); 2274 if (error == EOPNOTSUPP) 2275 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, 2276 NULL, td); 2277 2278 if ((ioflg & IO_NODELOCKED) == 0) { 2279 vn_finished_write(mp); 2280 VOP_UNLOCK(vp); 2281 } 2282 2283 return (error); 2284 } 2285 2286 static int 2287 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags, 2288 struct vnode **rvp) 2289 { 2290 2291 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp)); 2292 } 2293 2294 int 2295 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) 2296 { 2297 2298 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino, 2299 lkflags, rvp)); 2300 } 2301 2302 int 2303 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, 2304 int lkflags, struct vnode **rvp) 2305 { 2306 struct mount *mp; 2307 int ltype, error; 2308 2309 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get"); 2310 mp = vp->v_mount; 2311 ltype = VOP_ISLOCKED(vp); 2312 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, 2313 ("vn_vget_ino: vp not locked")); 2314 error = vfs_busy(mp, MBF_NOWAIT); 2315 if (error != 0) { 2316 vfs_ref(mp); 2317 VOP_UNLOCK(vp); 2318 error = vfs_busy(mp, 0); 2319 vn_lock(vp, ltype | LK_RETRY); 2320 vfs_rel(mp); 2321 if (error != 0) 2322 return (ENOENT); 2323 if (VN_IS_DOOMED(vp)) { 2324 vfs_unbusy(mp); 2325 return (ENOENT); 2326 } 2327 } 2328 VOP_UNLOCK(vp); 2329 error = alloc(mp, alloc_arg, lkflags, rvp); 2330 vfs_unbusy(mp); 2331 if (error != 0 || *rvp != vp) 2332 vn_lock(vp, ltype | LK_RETRY); 2333 if (VN_IS_DOOMED(vp)) { 2334 if (error == 0) { 2335 if (*rvp == vp) 2336 vunref(vp); 2337 else 2338 vput(*rvp); 2339 } 2340 error = ENOENT; 2341 } 2342 return (error); 2343 } 2344 2345 int 2346 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, 2347 struct thread *td) 2348 { 2349 2350 if (vp->v_type != VREG || td == NULL) 2351 return (0); 2352 if ((uoff_t)uio->uio_offset + uio->uio_resid > 2353 lim_cur(td, RLIMIT_FSIZE)) { 2354 PROC_LOCK(td->td_proc); 2355 kern_psignal(td->td_proc, SIGXFSZ); 2356 PROC_UNLOCK(td->td_proc); 2357 return (EFBIG); 2358 } 2359 return (0); 2360 } 2361 2362 int 2363 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 2364 struct thread *td) 2365 { 2366 struct vnode *vp; 2367 2368 vp = fp->f_vnode; 2369 #ifdef AUDIT 2370 vn_lock(vp, LK_SHARED | LK_RETRY); 2371 AUDIT_ARG_VNODE1(vp); 2372 VOP_UNLOCK(vp); 2373 #endif 2374 return (setfmode(td, active_cred, vp, mode)); 2375 } 2376 2377 int 2378 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 2379 struct thread *td) 2380 { 2381 struct vnode *vp; 2382 2383 vp = fp->f_vnode; 2384 #ifdef AUDIT 2385 vn_lock(vp, LK_SHARED | LK_RETRY); 2386 AUDIT_ARG_VNODE1(vp); 2387 VOP_UNLOCK(vp); 2388 #endif 2389 return (setfown(td, active_cred, vp, uid, gid)); 2390 } 2391 2392 void 2393 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 2394 { 2395 vm_object_t object; 2396 2397 if ((object = vp->v_object) == NULL) 2398 return; 2399 VM_OBJECT_WLOCK(object); 2400 vm_object_page_remove(object, start, end, 0); 2401 VM_OBJECT_WUNLOCK(object); 2402 } 2403 2404 int 2405 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) 2406 { 2407 struct vattr va; 2408 daddr_t bn, bnp; 2409 uint64_t bsize; 2410 off_t noff; 2411 int error; 2412 2413 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 2414 ("Wrong command %lu", cmd)); 2415 2416 if (vn_lock(vp, LK_SHARED) != 0) 2417 return (EBADF); 2418 if (vp->v_type != VREG) { 2419 error = ENOTTY; 2420 goto unlock; 2421 } 2422 error = VOP_GETATTR(vp, &va, cred); 2423 if (error != 0) 2424 goto unlock; 2425 noff = *off; 2426 if (noff >= va.va_size) { 2427 error = ENXIO; 2428 goto unlock; 2429 } 2430 bsize = vp->v_mount->mnt_stat.f_iosize; 2431 for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize - 2432 noff % bsize) { 2433 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); 2434 if (error == EOPNOTSUPP) { 2435 error = ENOTTY; 2436 goto unlock; 2437 } 2438 if ((bnp == -1 && cmd == FIOSEEKHOLE) || 2439 (bnp != -1 && cmd == FIOSEEKDATA)) { 2440 noff = bn * bsize; 2441 if (noff < *off) 2442 noff = *off; 2443 goto unlock; 2444 } 2445 } 2446 if (noff > va.va_size) 2447 noff = va.va_size; 2448 /* noff == va.va_size. There is an implicit hole at the end of file. */ 2449 if (cmd == FIOSEEKDATA) 2450 error = ENXIO; 2451 unlock: 2452 VOP_UNLOCK(vp); 2453 if (error == 0) 2454 *off = noff; 2455 return (error); 2456 } 2457 2458 int 2459 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td) 2460 { 2461 struct ucred *cred; 2462 struct vnode *vp; 2463 struct vattr vattr; 2464 off_t foffset, size; 2465 int error, noneg; 2466 2467 cred = td->td_ucred; 2468 vp = fp->f_vnode; 2469 foffset = foffset_lock(fp, 0); 2470 noneg = (vp->v_type != VCHR); 2471 error = 0; 2472 switch (whence) { 2473 case L_INCR: 2474 if (noneg && 2475 (foffset < 0 || 2476 (offset > 0 && foffset > OFF_MAX - offset))) { 2477 error = EOVERFLOW; 2478 break; 2479 } 2480 offset += foffset; 2481 break; 2482 case L_XTND: 2483 vn_lock(vp, LK_SHARED | LK_RETRY); 2484 error = VOP_GETATTR(vp, &vattr, cred); 2485 VOP_UNLOCK(vp); 2486 if (error) 2487 break; 2488 2489 /* 2490 * If the file references a disk device, then fetch 2491 * the media size and use that to determine the ending 2492 * offset. 2493 */ 2494 if (vattr.va_size == 0 && vp->v_type == VCHR && 2495 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0) 2496 vattr.va_size = size; 2497 if (noneg && 2498 (vattr.va_size > OFF_MAX || 2499 (offset > 0 && vattr.va_size > OFF_MAX - offset))) { 2500 error = EOVERFLOW; 2501 break; 2502 } 2503 offset += vattr.va_size; 2504 break; 2505 case L_SET: 2506 break; 2507 case SEEK_DATA: 2508 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td); 2509 if (error == ENOTTY) 2510 error = EINVAL; 2511 break; 2512 case SEEK_HOLE: 2513 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td); 2514 if (error == ENOTTY) 2515 error = EINVAL; 2516 break; 2517 default: 2518 error = EINVAL; 2519 } 2520 if (error == 0 && noneg && offset < 0) 2521 error = EINVAL; 2522 if (error != 0) 2523 goto drop; 2524 VFS_KNOTE_UNLOCKED(vp, 0); 2525 td->td_uretoff.tdu_off = offset; 2526 drop: 2527 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0); 2528 return (error); 2529 } 2530 2531 int 2532 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, 2533 struct thread *td) 2534 { 2535 int error; 2536 2537 /* 2538 * Grant permission if the caller is the owner of the file, or 2539 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on 2540 * on the file. If the time pointer is null, then write 2541 * permission on the file is also sufficient. 2542 * 2543 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes: 2544 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES 2545 * will be allowed to set the times [..] to the current 2546 * server time. 2547 */ 2548 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td); 2549 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0) 2550 error = VOP_ACCESS(vp, VWRITE, cred, td); 2551 return (error); 2552 } 2553 2554 int 2555 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 2556 { 2557 struct vnode *vp; 2558 int error; 2559 2560 if (fp->f_type == DTYPE_FIFO) 2561 kif->kf_type = KF_TYPE_FIFO; 2562 else 2563 kif->kf_type = KF_TYPE_VNODE; 2564 vp = fp->f_vnode; 2565 vref(vp); 2566 FILEDESC_SUNLOCK(fdp); 2567 error = vn_fill_kinfo_vnode(vp, kif); 2568 vrele(vp); 2569 FILEDESC_SLOCK(fdp); 2570 return (error); 2571 } 2572 2573 static inline void 2574 vn_fill_junk(struct kinfo_file *kif) 2575 { 2576 size_t len, olen; 2577 2578 /* 2579 * Simulate vn_fullpath returning changing values for a given 2580 * vp during e.g. coredump. 2581 */ 2582 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1; 2583 olen = strlen(kif->kf_path); 2584 if (len < olen) 2585 strcpy(&kif->kf_path[len - 1], "$"); 2586 else 2587 for (; olen < len; olen++) 2588 strcpy(&kif->kf_path[olen], "A"); 2589 } 2590 2591 int 2592 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif) 2593 { 2594 struct vattr va; 2595 char *fullpath, *freepath; 2596 int error; 2597 2598 kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type); 2599 freepath = NULL; 2600 fullpath = "-"; 2601 error = vn_fullpath(vp, &fullpath, &freepath); 2602 if (error == 0) { 2603 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); 2604 } 2605 if (freepath != NULL) 2606 free(freepath, M_TEMP); 2607 2608 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path, 2609 vn_fill_junk(kif); 2610 ); 2611 2612 /* 2613 * Retrieve vnode attributes. 2614 */ 2615 va.va_fsid = VNOVAL; 2616 va.va_rdev = NODEV; 2617 vn_lock(vp, LK_SHARED | LK_RETRY); 2618 error = VOP_GETATTR(vp, &va, curthread->td_ucred); 2619 VOP_UNLOCK(vp); 2620 if (error != 0) 2621 return (error); 2622 if (va.va_fsid != VNOVAL) 2623 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid; 2624 else 2625 kif->kf_un.kf_file.kf_file_fsid = 2626 vp->v_mount->mnt_stat.f_fsid.val[0]; 2627 kif->kf_un.kf_file.kf_file_fsid_freebsd11 = 2628 kif->kf_un.kf_file.kf_file_fsid; /* truncate */ 2629 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid; 2630 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode); 2631 kif->kf_un.kf_file.kf_file_size = va.va_size; 2632 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev; 2633 kif->kf_un.kf_file.kf_file_rdev_freebsd11 = 2634 kif->kf_un.kf_file.kf_file_rdev; /* truncate */ 2635 return (0); 2636 } 2637 2638 int 2639 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 2640 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 2641 struct thread *td) 2642 { 2643 #ifdef HWPMC_HOOKS 2644 struct pmckern_map_in pkm; 2645 #endif 2646 struct mount *mp; 2647 struct vnode *vp; 2648 vm_object_t object; 2649 vm_prot_t maxprot; 2650 boolean_t writecounted; 2651 int error; 2652 2653 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \ 2654 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) 2655 /* 2656 * POSIX shared-memory objects are defined to have 2657 * kernel persistence, and are not defined to support 2658 * read(2)/write(2) -- or even open(2). Thus, we can 2659 * use MAP_ASYNC to trade on-disk coherence for speed. 2660 * The shm_open(3) library routine turns on the FPOSIXSHM 2661 * flag to request this behavior. 2662 */ 2663 if ((fp->f_flag & FPOSIXSHM) != 0) 2664 flags |= MAP_NOSYNC; 2665 #endif 2666 vp = fp->f_vnode; 2667 2668 /* 2669 * Ensure that file and memory protections are 2670 * compatible. Note that we only worry about 2671 * writability if mapping is shared; in this case, 2672 * current and max prot are dictated by the open file. 2673 * XXX use the vnode instead? Problem is: what 2674 * credentials do we use for determination? What if 2675 * proc does a setuid? 2676 */ 2677 mp = vp->v_mount; 2678 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { 2679 maxprot = VM_PROT_NONE; 2680 if ((prot & VM_PROT_EXECUTE) != 0) 2681 return (EACCES); 2682 } else 2683 maxprot = VM_PROT_EXECUTE; 2684 if ((fp->f_flag & FREAD) != 0) 2685 maxprot |= VM_PROT_READ; 2686 else if ((prot & VM_PROT_READ) != 0) 2687 return (EACCES); 2688 2689 /* 2690 * If we are sharing potential changes via MAP_SHARED and we 2691 * are trying to get write permission although we opened it 2692 * without asking for it, bail out. 2693 */ 2694 if ((flags & MAP_SHARED) != 0) { 2695 if ((fp->f_flag & FWRITE) != 0) 2696 maxprot |= VM_PROT_WRITE; 2697 else if ((prot & VM_PROT_WRITE) != 0) 2698 return (EACCES); 2699 } else { 2700 maxprot |= VM_PROT_WRITE; 2701 cap_maxprot |= VM_PROT_WRITE; 2702 } 2703 maxprot &= cap_maxprot; 2704 2705 /* 2706 * For regular files and shared memory, POSIX requires that 2707 * the value of foff be a legitimate offset within the data 2708 * object. In particular, negative offsets are invalid. 2709 * Blocking negative offsets and overflows here avoids 2710 * possible wraparound or user-level access into reserved 2711 * ranges of the data object later. In contrast, POSIX does 2712 * not dictate how offsets are used by device drivers, so in 2713 * the case of a device mapping a negative offset is passed 2714 * on. 2715 */ 2716 if ( 2717 #ifdef _LP64 2718 size > OFF_MAX || 2719 #endif 2720 foff > OFF_MAX - size) 2721 return (EINVAL); 2722 2723 writecounted = FALSE; 2724 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp, 2725 &foff, &object, &writecounted); 2726 if (error != 0) 2727 return (error); 2728 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 2729 foff, writecounted, td); 2730 if (error != 0) { 2731 /* 2732 * If this mapping was accounted for in the vnode's 2733 * writecount, then undo that now. 2734 */ 2735 if (writecounted) 2736 vm_pager_release_writecount(object, 0, size); 2737 vm_object_deallocate(object); 2738 } 2739 #ifdef HWPMC_HOOKS 2740 /* Inform hwpmc(4) if an executable is being mapped. */ 2741 if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) { 2742 if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) { 2743 pkm.pm_file = vp; 2744 pkm.pm_address = (uintptr_t) *addr; 2745 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm); 2746 } 2747 } 2748 #endif 2749 return (error); 2750 } 2751 2752 void 2753 vn_fsid(struct vnode *vp, struct vattr *va) 2754 { 2755 fsid_t *f; 2756 2757 f = &vp->v_mount->mnt_stat.f_fsid; 2758 va->va_fsid = (uint32_t)f->val[1]; 2759 va->va_fsid <<= sizeof(f->val[1]) * NBBY; 2760 va->va_fsid += (uint32_t)f->val[0]; 2761 } 2762 2763 int 2764 vn_fsync_buf(struct vnode *vp, int waitfor) 2765 { 2766 struct buf *bp, *nbp; 2767 struct bufobj *bo; 2768 struct mount *mp; 2769 int error, maxretry; 2770 2771 error = 0; 2772 maxretry = 10000; /* large, arbitrarily chosen */ 2773 mp = NULL; 2774 if (vp->v_type == VCHR) { 2775 VI_LOCK(vp); 2776 mp = vp->v_rdev->si_mountpt; 2777 VI_UNLOCK(vp); 2778 } 2779 bo = &vp->v_bufobj; 2780 BO_LOCK(bo); 2781 loop1: 2782 /* 2783 * MARK/SCAN initialization to avoid infinite loops. 2784 */ 2785 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 2786 bp->b_vflags &= ~BV_SCANNED; 2787 bp->b_error = 0; 2788 } 2789 2790 /* 2791 * Flush all dirty buffers associated with a vnode. 2792 */ 2793 loop2: 2794 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2795 if ((bp->b_vflags & BV_SCANNED) != 0) 2796 continue; 2797 bp->b_vflags |= BV_SCANNED; 2798 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { 2799 if (waitfor != MNT_WAIT) 2800 continue; 2801 if (BUF_LOCK(bp, 2802 LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL, 2803 BO_LOCKPTR(bo)) != 0) { 2804 BO_LOCK(bo); 2805 goto loop1; 2806 } 2807 BO_LOCK(bo); 2808 } 2809 BO_UNLOCK(bo); 2810 KASSERT(bp->b_bufobj == bo, 2811 ("bp %p wrong b_bufobj %p should be %p", 2812 bp, bp->b_bufobj, bo)); 2813 if ((bp->b_flags & B_DELWRI) == 0) 2814 panic("fsync: not dirty"); 2815 if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) { 2816 vfs_bio_awrite(bp); 2817 } else { 2818 bremfree(bp); 2819 bawrite(bp); 2820 } 2821 if (maxretry < 1000) 2822 pause("dirty", hz < 1000 ? 1 : hz / 1000); 2823 BO_LOCK(bo); 2824 goto loop2; 2825 } 2826 2827 /* 2828 * If synchronous the caller expects us to completely resolve all 2829 * dirty buffers in the system. Wait for in-progress I/O to 2830 * complete (which could include background bitmap writes), then 2831 * retry if dirty blocks still exist. 2832 */ 2833 if (waitfor == MNT_WAIT) { 2834 bufobj_wwait(bo, 0, 0); 2835 if (bo->bo_dirty.bv_cnt > 0) { 2836 /* 2837 * If we are unable to write any of these buffers 2838 * then we fail now rather than trying endlessly 2839 * to write them out. 2840 */ 2841 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 2842 if ((error = bp->b_error) != 0) 2843 break; 2844 if ((mp != NULL && mp->mnt_secondary_writes > 0) || 2845 (error == 0 && --maxretry >= 0)) 2846 goto loop1; 2847 if (error == 0) 2848 error = EAGAIN; 2849 } 2850 } 2851 BO_UNLOCK(bo); 2852 if (error != 0) 2853 vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error); 2854 2855 return (error); 2856 } 2857 2858 /* 2859 * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE() 2860 * or vn_generic_copy_file_range() after rangelocking the byte ranges, 2861 * to do the actual copy. 2862 * vn_generic_copy_file_range() is factored out, so it can be called 2863 * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from 2864 * different file systems. 2865 */ 2866 int 2867 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp, 2868 off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred, 2869 struct ucred *outcred, struct thread *fsize_td) 2870 { 2871 int error; 2872 size_t len; 2873 uint64_t uval; 2874 2875 len = *lenp; 2876 *lenp = 0; /* For error returns. */ 2877 error = 0; 2878 2879 /* Do some sanity checks on the arguments. */ 2880 if (invp->v_type == VDIR || outvp->v_type == VDIR) 2881 error = EISDIR; 2882 else if (*inoffp < 0 || *outoffp < 0 || 2883 invp->v_type != VREG || outvp->v_type != VREG) 2884 error = EINVAL; 2885 if (error != 0) 2886 goto out; 2887 2888 /* Ensure offset + len does not wrap around. */ 2889 uval = *inoffp; 2890 uval += len; 2891 if (uval > INT64_MAX) 2892 len = INT64_MAX - *inoffp; 2893 uval = *outoffp; 2894 uval += len; 2895 if (uval > INT64_MAX) 2896 len = INT64_MAX - *outoffp; 2897 if (len == 0) 2898 goto out; 2899 2900 /* 2901 * If the two vnode are for the same file system, call 2902 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range() 2903 * which can handle copies across multiple file systems. 2904 */ 2905 *lenp = len; 2906 if (invp->v_mount == outvp->v_mount) 2907 error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp, 2908 lenp, flags, incred, outcred, fsize_td); 2909 else 2910 error = vn_generic_copy_file_range(invp, inoffp, outvp, 2911 outoffp, lenp, flags, incred, outcred, fsize_td); 2912 out: 2913 return (error); 2914 } 2915 2916 /* 2917 * Test len bytes of data starting at dat for all bytes == 0. 2918 * Return true if all bytes are zero, false otherwise. 2919 * Expects dat to be well aligned. 2920 */ 2921 static bool 2922 mem_iszero(void *dat, int len) 2923 { 2924 int i; 2925 const u_int *p; 2926 const char *cp; 2927 2928 for (p = dat; len > 0; len -= sizeof(*p), p++) { 2929 if (len >= sizeof(*p)) { 2930 if (*p != 0) 2931 return (false); 2932 } else { 2933 cp = (const char *)p; 2934 for (i = 0; i < len; i++, cp++) 2935 if (*cp != '\0') 2936 return (false); 2937 } 2938 } 2939 return (true); 2940 } 2941 2942 /* 2943 * Look for a hole in the output file and, if found, adjust *outoffp 2944 * and *xferp to skip past the hole. 2945 * *xferp is the entire hole length to be written and xfer2 is how many bytes 2946 * to be written as 0's upon return. 2947 */ 2948 static off_t 2949 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp, 2950 off_t *dataoffp, off_t *holeoffp, struct ucred *cred) 2951 { 2952 int error; 2953 off_t delta; 2954 2955 if (*holeoffp == 0 || *holeoffp <= *outoffp) { 2956 *dataoffp = *outoffp; 2957 error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred, 2958 curthread); 2959 if (error == 0) { 2960 *holeoffp = *dataoffp; 2961 error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred, 2962 curthread); 2963 } 2964 if (error != 0 || *holeoffp == *dataoffp) { 2965 /* 2966 * Since outvp is unlocked, it may be possible for 2967 * another thread to do a truncate(), lseek(), write() 2968 * creating a hole at startoff between the above 2969 * VOP_IOCTL() calls, if the other thread does not do 2970 * rangelocking. 2971 * If that happens, *holeoffp == *dataoffp and finding 2972 * the hole has failed, so disable vn_skip_hole(). 2973 */ 2974 *holeoffp = -1; /* Disable use of vn_skip_hole(). */ 2975 return (xfer2); 2976 } 2977 KASSERT(*dataoffp >= *outoffp, 2978 ("vn_skip_hole: dataoff=%jd < outoff=%jd", 2979 (intmax_t)*dataoffp, (intmax_t)*outoffp)); 2980 KASSERT(*holeoffp > *dataoffp, 2981 ("vn_skip_hole: holeoff=%jd <= dataoff=%jd", 2982 (intmax_t)*holeoffp, (intmax_t)*dataoffp)); 2983 } 2984 2985 /* 2986 * If there is a hole before the data starts, advance *outoffp and 2987 * *xferp past the hole. 2988 */ 2989 if (*dataoffp > *outoffp) { 2990 delta = *dataoffp - *outoffp; 2991 if (delta >= *xferp) { 2992 /* Entire *xferp is a hole. */ 2993 *outoffp += *xferp; 2994 *xferp = 0; 2995 return (0); 2996 } 2997 *xferp -= delta; 2998 *outoffp += delta; 2999 xfer2 = MIN(xfer2, *xferp); 3000 } 3001 3002 /* 3003 * If a hole starts before the end of this xfer2, reduce this xfer2 so 3004 * that the write ends at the start of the hole. 3005 * *holeoffp should always be greater than *outoffp, but for the 3006 * non-INVARIANTS case, check this to make sure xfer2 remains a sane 3007 * value. 3008 */ 3009 if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2) 3010 xfer2 = *holeoffp - *outoffp; 3011 return (xfer2); 3012 } 3013 3014 /* 3015 * Write an xfer sized chunk to outvp in blksize blocks from dat. 3016 * dat is a maximum of blksize in length and can be written repeatedly in 3017 * the chunk. 3018 * If growfile == true, just grow the file via vn_truncate_locked() instead 3019 * of doing actual writes. 3020 * If checkhole == true, a hole is being punched, so skip over any hole 3021 * already in the output file. 3022 */ 3023 static int 3024 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer, 3025 u_long blksize, bool growfile, bool checkhole, struct ucred *cred) 3026 { 3027 struct mount *mp; 3028 off_t dataoff, holeoff, xfer2; 3029 int error, lckf; 3030 3031 /* 3032 * Loop around doing writes of blksize until write has been completed. 3033 * Lock/unlock on each loop iteration so that a bwillwrite() can be 3034 * done for each iteration, since the xfer argument can be very 3035 * large if there is a large hole to punch in the output file. 3036 */ 3037 error = 0; 3038 holeoff = 0; 3039 do { 3040 xfer2 = MIN(xfer, blksize); 3041 if (checkhole) { 3042 /* 3043 * Punching a hole. Skip writing if there is 3044 * already a hole in the output file. 3045 */ 3046 xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer, 3047 &dataoff, &holeoff, cred); 3048 if (xfer == 0) 3049 break; 3050 if (holeoff < 0) 3051 checkhole = false; 3052 KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd", 3053 (intmax_t)xfer2)); 3054 } 3055 bwillwrite(); 3056 mp = NULL; 3057 error = vn_start_write(outvp, &mp, V_WAIT); 3058 if (error != 0) 3059 break; 3060 if (growfile) { 3061 error = vn_lock(outvp, LK_EXCLUSIVE); 3062 if (error == 0) { 3063 error = vn_truncate_locked(outvp, outoff + xfer, 3064 false, cred); 3065 VOP_UNLOCK(outvp); 3066 } 3067 } else { 3068 if (MNT_SHARED_WRITES(mp)) 3069 lckf = LK_SHARED; 3070 else 3071 lckf = LK_EXCLUSIVE; 3072 error = vn_lock(outvp, lckf); 3073 if (error == 0) { 3074 error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2, 3075 outoff, UIO_SYSSPACE, IO_NODELOCKED, 3076 curthread->td_ucred, cred, NULL, curthread); 3077 outoff += xfer2; 3078 xfer -= xfer2; 3079 VOP_UNLOCK(outvp); 3080 } 3081 } 3082 if (mp != NULL) 3083 vn_finished_write(mp); 3084 } while (!growfile && xfer > 0 && error == 0); 3085 return (error); 3086 } 3087 3088 /* 3089 * Copy a byte range of one file to another. This function can handle the 3090 * case where invp and outvp are on different file systems. 3091 * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there 3092 * is no better file system specific way to do it. 3093 */ 3094 int 3095 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp, 3096 struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags, 3097 struct ucred *incred, struct ucred *outcred, struct thread *fsize_td) 3098 { 3099 struct vattr va; 3100 struct mount *mp; 3101 struct uio io; 3102 off_t startoff, endoff, xfer, xfer2; 3103 u_long blksize; 3104 int error, interrupted; 3105 bool cantseek, readzeros, eof, lastblock; 3106 ssize_t aresid; 3107 size_t copylen, len, rem, savlen; 3108 char *dat; 3109 long holein, holeout; 3110 3111 holein = holeout = 0; 3112 savlen = len = *lenp; 3113 error = 0; 3114 interrupted = 0; 3115 dat = NULL; 3116 3117 error = vn_lock(invp, LK_SHARED); 3118 if (error != 0) 3119 goto out; 3120 if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0) 3121 holein = 0; 3122 VOP_UNLOCK(invp); 3123 3124 mp = NULL; 3125 error = vn_start_write(outvp, &mp, V_WAIT); 3126 if (error == 0) 3127 error = vn_lock(outvp, LK_EXCLUSIVE); 3128 if (error == 0) { 3129 /* 3130 * If fsize_td != NULL, do a vn_rlimit_fsize() call, 3131 * now that outvp is locked. 3132 */ 3133 if (fsize_td != NULL) { 3134 io.uio_offset = *outoffp; 3135 io.uio_resid = len; 3136 error = vn_rlimit_fsize(outvp, &io, fsize_td); 3137 if (error != 0) 3138 error = EFBIG; 3139 } 3140 if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0) 3141 holeout = 0; 3142 /* 3143 * Holes that are past EOF do not need to be written as a block 3144 * of zero bytes. So, truncate the output file as far as 3145 * possible and then use va.va_size to decide if writing 0 3146 * bytes is necessary in the loop below. 3147 */ 3148 if (error == 0) 3149 error = VOP_GETATTR(outvp, &va, outcred); 3150 if (error == 0 && va.va_size > *outoffp && va.va_size <= 3151 *outoffp + len) { 3152 #ifdef MAC 3153 error = mac_vnode_check_write(curthread->td_ucred, 3154 outcred, outvp); 3155 if (error == 0) 3156 #endif 3157 error = vn_truncate_locked(outvp, *outoffp, 3158 false, outcred); 3159 if (error == 0) 3160 va.va_size = *outoffp; 3161 } 3162 VOP_UNLOCK(outvp); 3163 } 3164 if (mp != NULL) 3165 vn_finished_write(mp); 3166 if (error != 0) 3167 goto out; 3168 3169 /* 3170 * Set the blksize to the larger of the hole sizes for invp and outvp. 3171 * If hole sizes aren't available, set the blksize to the larger 3172 * f_iosize of invp and outvp. 3173 * This code expects the hole sizes and f_iosizes to be powers of 2. 3174 * This value is clipped at 4Kbytes and 1Mbyte. 3175 */ 3176 blksize = MAX(holein, holeout); 3177 3178 /* Clip len to end at an exact multiple of hole size. */ 3179 if (blksize > 1) { 3180 rem = *inoffp % blksize; 3181 if (rem > 0) 3182 rem = blksize - rem; 3183 if (len > rem && len - rem > blksize) 3184 len = savlen = rounddown(len - rem, blksize) + rem; 3185 } 3186 3187 if (blksize <= 1) 3188 blksize = MAX(invp->v_mount->mnt_stat.f_iosize, 3189 outvp->v_mount->mnt_stat.f_iosize); 3190 if (blksize < 4096) 3191 blksize = 4096; 3192 else if (blksize > 1024 * 1024) 3193 blksize = 1024 * 1024; 3194 dat = malloc(blksize, M_TEMP, M_WAITOK); 3195 3196 /* 3197 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA 3198 * to find holes. Otherwise, just scan the read block for all 0s 3199 * in the inner loop where the data copying is done. 3200 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may 3201 * support holes on the server, but do not support FIOSEEKHOLE. 3202 */ 3203 eof = false; 3204 while (len > 0 && error == 0 && !eof && interrupted == 0) { 3205 endoff = 0; /* To shut up compilers. */ 3206 cantseek = true; 3207 startoff = *inoffp; 3208 copylen = len; 3209 3210 /* 3211 * Find the next data area. If there is just a hole to EOF, 3212 * FIOSEEKDATA should fail and then we drop down into the 3213 * inner loop and create the hole on the outvp file. 3214 * (I do not know if any file system will report a hole to 3215 * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA 3216 * will fail for those file systems.) 3217 * 3218 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE, 3219 * the code just falls through to the inner copy loop. 3220 */ 3221 error = EINVAL; 3222 if (holein > 0) 3223 error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0, 3224 incred, curthread); 3225 if (error == 0) { 3226 endoff = startoff; 3227 error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0, 3228 incred, curthread); 3229 /* 3230 * Since invp is unlocked, it may be possible for 3231 * another thread to do a truncate(), lseek(), write() 3232 * creating a hole at startoff between the above 3233 * VOP_IOCTL() calls, if the other thread does not do 3234 * rangelocking. 3235 * If that happens, startoff == endoff and finding 3236 * the hole has failed, so set an error. 3237 */ 3238 if (error == 0 && startoff == endoff) 3239 error = EINVAL; /* Any error. Reset to 0. */ 3240 } 3241 if (error == 0) { 3242 if (startoff > *inoffp) { 3243 /* Found hole before data block. */ 3244 xfer = MIN(startoff - *inoffp, len); 3245 if (*outoffp < va.va_size) { 3246 /* Must write 0s to punch hole. */ 3247 xfer2 = MIN(va.va_size - *outoffp, 3248 xfer); 3249 memset(dat, 0, MIN(xfer2, blksize)); 3250 error = vn_write_outvp(outvp, dat, 3251 *outoffp, xfer2, blksize, false, 3252 holeout > 0, outcred); 3253 } 3254 3255 if (error == 0 && *outoffp + xfer > 3256 va.va_size && xfer == len) 3257 /* Grow last block. */ 3258 error = vn_write_outvp(outvp, dat, 3259 *outoffp, xfer, blksize, true, 3260 false, outcred); 3261 if (error == 0) { 3262 *inoffp += xfer; 3263 *outoffp += xfer; 3264 len -= xfer; 3265 if (len < savlen) 3266 interrupted = sig_intr(); 3267 } 3268 } 3269 copylen = MIN(len, endoff - startoff); 3270 cantseek = false; 3271 } else { 3272 cantseek = true; 3273 startoff = *inoffp; 3274 copylen = len; 3275 error = 0; 3276 } 3277 3278 xfer = blksize; 3279 if (cantseek) { 3280 /* 3281 * Set first xfer to end at a block boundary, so that 3282 * holes are more likely detected in the loop below via 3283 * the for all bytes 0 method. 3284 */ 3285 xfer -= (*inoffp % blksize); 3286 } 3287 /* Loop copying the data block. */ 3288 while (copylen > 0 && error == 0 && !eof && interrupted == 0) { 3289 if (copylen < xfer) 3290 xfer = copylen; 3291 error = vn_lock(invp, LK_SHARED); 3292 if (error != 0) 3293 goto out; 3294 error = vn_rdwr(UIO_READ, invp, dat, xfer, 3295 startoff, UIO_SYSSPACE, IO_NODELOCKED, 3296 curthread->td_ucred, incred, &aresid, 3297 curthread); 3298 VOP_UNLOCK(invp); 3299 lastblock = false; 3300 if (error == 0 && aresid > 0) { 3301 /* Stop the copy at EOF on the input file. */ 3302 xfer -= aresid; 3303 eof = true; 3304 lastblock = true; 3305 } 3306 if (error == 0) { 3307 /* 3308 * Skip the write for holes past the initial EOF 3309 * of the output file, unless this is the last 3310 * write of the output file at EOF. 3311 */ 3312 readzeros = cantseek ? mem_iszero(dat, xfer) : 3313 false; 3314 if (xfer == len) 3315 lastblock = true; 3316 if (!cantseek || *outoffp < va.va_size || 3317 lastblock || !readzeros) 3318 error = vn_write_outvp(outvp, dat, 3319 *outoffp, xfer, blksize, 3320 readzeros && lastblock && 3321 *outoffp >= va.va_size, false, 3322 outcred); 3323 if (error == 0) { 3324 *inoffp += xfer; 3325 startoff += xfer; 3326 *outoffp += xfer; 3327 copylen -= xfer; 3328 len -= xfer; 3329 if (len < savlen) 3330 interrupted = sig_intr(); 3331 } 3332 } 3333 xfer = blksize; 3334 } 3335 } 3336 out: 3337 *lenp = savlen - len; 3338 free(dat, M_TEMP); 3339 return (error); 3340 } 3341 3342 static int 3343 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td) 3344 { 3345 struct mount *mp; 3346 struct vnode *vp; 3347 off_t olen, ooffset; 3348 int error; 3349 #ifdef AUDIT 3350 int audited_vnode1 = 0; 3351 #endif 3352 3353 vp = fp->f_vnode; 3354 if (vp->v_type != VREG) 3355 return (ENODEV); 3356 3357 /* Allocating blocks may take a long time, so iterate. */ 3358 for (;;) { 3359 olen = len; 3360 ooffset = offset; 3361 3362 bwillwrite(); 3363 mp = NULL; 3364 error = vn_start_write(vp, &mp, V_WAIT | PCATCH); 3365 if (error != 0) 3366 break; 3367 error = vn_lock(vp, LK_EXCLUSIVE); 3368 if (error != 0) { 3369 vn_finished_write(mp); 3370 break; 3371 } 3372 #ifdef AUDIT 3373 if (!audited_vnode1) { 3374 AUDIT_ARG_VNODE1(vp); 3375 audited_vnode1 = 1; 3376 } 3377 #endif 3378 #ifdef MAC 3379 error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp); 3380 if (error == 0) 3381 #endif 3382 error = VOP_ALLOCATE(vp, &offset, &len); 3383 VOP_UNLOCK(vp); 3384 vn_finished_write(mp); 3385 3386 if (olen + ooffset != offset + len) { 3387 panic("offset + len changed from %jx/%jx to %jx/%jx", 3388 ooffset, olen, offset, len); 3389 } 3390 if (error != 0 || len == 0) 3391 break; 3392 KASSERT(olen > len, ("Iteration did not make progress?")); 3393 maybe_yield(); 3394 } 3395 3396 return (error); 3397 } 3398 3399 static u_long vn_lock_pair_pause_cnt; 3400 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD, 3401 &vn_lock_pair_pause_cnt, 0, 3402 "Count of vn_lock_pair deadlocks"); 3403 3404 u_int vn_lock_pair_pause_max; 3405 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW, 3406 &vn_lock_pair_pause_max, 0, 3407 "Max ticks for vn_lock_pair deadlock avoidance sleep"); 3408 3409 static void 3410 vn_lock_pair_pause(const char *wmesg) 3411 { 3412 atomic_add_long(&vn_lock_pair_pause_cnt, 1); 3413 pause(wmesg, prng32_bounded(vn_lock_pair_pause_max)); 3414 } 3415 3416 /* 3417 * Lock pair of vnodes vp1, vp2, avoiding lock order reversal. 3418 * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1 3419 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes 3420 * can be NULL. 3421 * 3422 * The function returns with both vnodes exclusively locked, and 3423 * guarantees that it does not create lock order reversal with other 3424 * threads during its execution. Both vnodes could be unlocked 3425 * temporary (and reclaimed). 3426 */ 3427 void 3428 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2, 3429 bool vp2_locked) 3430 { 3431 int error; 3432 3433 if (vp1 == NULL && vp2 == NULL) 3434 return; 3435 if (vp1 != NULL) { 3436 if (vp1_locked) 3437 ASSERT_VOP_ELOCKED(vp1, "vp1"); 3438 else 3439 ASSERT_VOP_UNLOCKED(vp1, "vp1"); 3440 } else { 3441 vp1_locked = true; 3442 } 3443 if (vp2 != NULL) { 3444 if (vp2_locked) 3445 ASSERT_VOP_ELOCKED(vp2, "vp2"); 3446 else 3447 ASSERT_VOP_UNLOCKED(vp2, "vp2"); 3448 } else { 3449 vp2_locked = true; 3450 } 3451 if (!vp1_locked && !vp2_locked) { 3452 vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY); 3453 vp1_locked = true; 3454 } 3455 3456 for (;;) { 3457 if (vp1_locked && vp2_locked) 3458 break; 3459 if (vp1_locked && vp2 != NULL) { 3460 if (vp1 != NULL) { 3461 error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT, 3462 __FILE__, __LINE__); 3463 if (error == 0) 3464 break; 3465 VOP_UNLOCK(vp1); 3466 vp1_locked = false; 3467 vn_lock_pair_pause("vlp1"); 3468 } 3469 vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY); 3470 vp2_locked = true; 3471 } 3472 if (vp2_locked && vp1 != NULL) { 3473 if (vp2 != NULL) { 3474 error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT, 3475 __FILE__, __LINE__); 3476 if (error == 0) 3477 break; 3478 VOP_UNLOCK(vp2); 3479 vp2_locked = false; 3480 vn_lock_pair_pause("vlp2"); 3481 } 3482 vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY); 3483 vp1_locked = true; 3484 } 3485 } 3486 if (vp1 != NULL) 3487 ASSERT_VOP_ELOCKED(vp1, "vp1 ret"); 3488 if (vp2 != NULL) 3489 ASSERT_VOP_ELOCKED(vp2, "vp2 ret"); 3490 } 3491