xref: /freebsd/sys/kern/vfs_vnops.c (revision a3d9bf49b57923118c339642594246ef73872ee8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/sx.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/sysctl.h>
76 #include <sys/ttycom.h>
77 #include <sys/conf.h>
78 #include <sys/syslog.h>
79 #include <sys/unistd.h>
80 #include <sys/user.h>
81 
82 #include <security/audit/audit.h>
83 #include <security/mac/mac_framework.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pager.h>
92 
93 #ifdef HWPMC_HOOKS
94 #include <sys/pmckern.h>
95 #endif
96 
97 static fo_rdwr_t	vn_read;
98 static fo_rdwr_t	vn_write;
99 static fo_rdwr_t	vn_io_fault;
100 static fo_truncate_t	vn_truncate;
101 static fo_ioctl_t	vn_ioctl;
102 static fo_poll_t	vn_poll;
103 static fo_kqfilter_t	vn_kqfilter;
104 static fo_stat_t	vn_statfile;
105 static fo_close_t	vn_closefile;
106 static fo_mmap_t	vn_mmap;
107 static fo_fallocate_t	vn_fallocate;
108 
109 struct 	fileops vnops = {
110 	.fo_read = vn_io_fault,
111 	.fo_write = vn_io_fault,
112 	.fo_truncate = vn_truncate,
113 	.fo_ioctl = vn_ioctl,
114 	.fo_poll = vn_poll,
115 	.fo_kqfilter = vn_kqfilter,
116 	.fo_stat = vn_statfile,
117 	.fo_close = vn_closefile,
118 	.fo_chmod = vn_chmod,
119 	.fo_chown = vn_chown,
120 	.fo_sendfile = vn_sendfile,
121 	.fo_seek = vn_seek,
122 	.fo_fill_kinfo = vn_fill_kinfo,
123 	.fo_mmap = vn_mmap,
124 	.fo_fallocate = vn_fallocate,
125 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
126 };
127 
128 const u_int io_hold_cnt = 16;
129 static int vn_io_fault_enable = 1;
130 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
131     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
132 static int vn_io_fault_prefault = 0;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
134     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
135 static int vn_io_pgcache_read_enable = 1;
136 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
137     &vn_io_pgcache_read_enable, 0,
138     "Enable copying from page cache for reads, avoiding fs");
139 static u_long vn_io_faults_cnt;
140 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
141     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
142 
143 static int vfs_allow_read_dir = 0;
144 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
145     &vfs_allow_read_dir, 0,
146     "Enable read(2) of directory by root for filesystems that support it");
147 
148 /*
149  * Returns true if vn_io_fault mode of handling the i/o request should
150  * be used.
151  */
152 static bool
153 do_vn_io_fault(struct vnode *vp, struct uio *uio)
154 {
155 	struct mount *mp;
156 
157 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
158 	    (mp = vp->v_mount) != NULL &&
159 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
160 }
161 
162 /*
163  * Structure used to pass arguments to vn_io_fault1(), to do either
164  * file- or vnode-based I/O calls.
165  */
166 struct vn_io_fault_args {
167 	enum {
168 		VN_IO_FAULT_FOP,
169 		VN_IO_FAULT_VOP
170 	} kind;
171 	struct ucred *cred;
172 	int flags;
173 	union {
174 		struct fop_args_tag {
175 			struct file *fp;
176 			fo_rdwr_t *doio;
177 		} fop_args;
178 		struct vop_args_tag {
179 			struct vnode *vp;
180 		} vop_args;
181 	} args;
182 };
183 
184 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
185     struct vn_io_fault_args *args, struct thread *td);
186 
187 int
188 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
189 {
190 	struct thread *td = ndp->ni_cnd.cn_thread;
191 
192 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
193 }
194 
195 static uint64_t
196 open2nameif(int fmode, u_int vn_open_flags)
197 {
198 	uint64_t res;
199 
200 	res = ISOPEN | LOCKLEAF;
201 	if ((fmode & O_BENEATH) != 0)
202 		res |= BENEATH;
203 	if ((fmode & O_RESOLVE_BENEATH) != 0)
204 		res |= RBENEATH;
205 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
206 		res |= AUDITVNODE1;
207 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
208 		res |= NOCAPCHECK;
209 	return (res);
210 }
211 
212 /*
213  * Common code for vnode open operations via a name lookup.
214  * Lookup the vnode and invoke VOP_CREATE if needed.
215  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
216  *
217  * Note that this does NOT free nameidata for the successful case,
218  * due to the NDINIT being done elsewhere.
219  */
220 int
221 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
222     struct ucred *cred, struct file *fp)
223 {
224 	struct vnode *vp;
225 	struct mount *mp;
226 	struct thread *td = ndp->ni_cnd.cn_thread;
227 	struct vattr vat;
228 	struct vattr *vap = &vat;
229 	int fmode, error;
230 
231 restart:
232 	fmode = *flagp;
233 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
234 	    O_EXCL | O_DIRECTORY))
235 		return (EINVAL);
236 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
237 		ndp->ni_cnd.cn_nameiop = CREATE;
238 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
239 		/*
240 		 * Set NOCACHE to avoid flushing the cache when
241 		 * rolling in many files at once.
242 		*/
243 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE;
244 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
245 			ndp->ni_cnd.cn_flags |= FOLLOW;
246 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
247 			bwillwrite();
248 		if ((error = namei(ndp)) != 0)
249 			return (error);
250 		if (ndp->ni_vp == NULL) {
251 			VATTR_NULL(vap);
252 			vap->va_type = VREG;
253 			vap->va_mode = cmode;
254 			if (fmode & O_EXCL)
255 				vap->va_vaflags |= VA_EXCLUSIVE;
256 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
257 				NDFREE(ndp, NDF_ONLY_PNBUF);
258 				vput(ndp->ni_dvp);
259 				if ((error = vn_start_write(NULL, &mp,
260 				    V_XSLEEP | PCATCH)) != 0)
261 					return (error);
262 				goto restart;
263 			}
264 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
265 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
266 #ifdef MAC
267 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
268 			    &ndp->ni_cnd, vap);
269 			if (error == 0)
270 #endif
271 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
272 						   &ndp->ni_cnd, vap);
273 			vput(ndp->ni_dvp);
274 			vn_finished_write(mp);
275 			if (error) {
276 				NDFREE(ndp, NDF_ONLY_PNBUF);
277 				return (error);
278 			}
279 			fmode &= ~O_TRUNC;
280 			vp = ndp->ni_vp;
281 		} else {
282 			if (ndp->ni_dvp == ndp->ni_vp)
283 				vrele(ndp->ni_dvp);
284 			else
285 				vput(ndp->ni_dvp);
286 			ndp->ni_dvp = NULL;
287 			vp = ndp->ni_vp;
288 			if (fmode & O_EXCL) {
289 				error = EEXIST;
290 				goto bad;
291 			}
292 			if (vp->v_type == VDIR) {
293 				error = EISDIR;
294 				goto bad;
295 			}
296 			fmode &= ~O_CREAT;
297 		}
298 	} else {
299 		ndp->ni_cnd.cn_nameiop = LOOKUP;
300 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
301 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
302 		    FOLLOW;
303 		if ((fmode & FWRITE) == 0)
304 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
305 		if ((error = namei(ndp)) != 0)
306 			return (error);
307 		vp = ndp->ni_vp;
308 	}
309 	error = vn_open_vnode(vp, fmode, cred, td, fp);
310 	if (error)
311 		goto bad;
312 	*flagp = fmode;
313 	return (0);
314 bad:
315 	NDFREE(ndp, NDF_ONLY_PNBUF);
316 	vput(vp);
317 	*flagp = fmode;
318 	ndp->ni_vp = NULL;
319 	return (error);
320 }
321 
322 static int
323 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
324 {
325 	struct flock lf;
326 	int error, lock_flags, type;
327 
328 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
329 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
330 		return (0);
331 	KASSERT(fp != NULL, ("open with flock requires fp"));
332 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
333 		return (EOPNOTSUPP);
334 
335 	lock_flags = VOP_ISLOCKED(vp);
336 	VOP_UNLOCK(vp);
337 
338 	lf.l_whence = SEEK_SET;
339 	lf.l_start = 0;
340 	lf.l_len = 0;
341 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
342 	type = F_FLOCK;
343 	if ((fmode & FNONBLOCK) == 0)
344 		type |= F_WAIT;
345 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
346 	if (error == 0)
347 		fp->f_flag |= FHASLOCK;
348 
349 	vn_lock(vp, lock_flags | LK_RETRY);
350 	if (error == 0 && VN_IS_DOOMED(vp))
351 		error = ENOENT;
352 	return (error);
353 }
354 
355 /*
356  * Common code for vnode open operations once a vnode is located.
357  * Check permissions, and call the VOP_OPEN routine.
358  */
359 int
360 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
361     struct thread *td, struct file *fp)
362 {
363 	accmode_t accmode;
364 	int error;
365 
366 	if (vp->v_type == VLNK)
367 		return (EMLINK);
368 	if (vp->v_type == VSOCK)
369 		return (EOPNOTSUPP);
370 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
371 		return (ENOTDIR);
372 	accmode = 0;
373 	if (fmode & (FWRITE | O_TRUNC)) {
374 		if (vp->v_type == VDIR)
375 			return (EISDIR);
376 		accmode |= VWRITE;
377 	}
378 	if (fmode & FREAD)
379 		accmode |= VREAD;
380 	if (fmode & FEXEC)
381 		accmode |= VEXEC;
382 	if ((fmode & O_APPEND) && (fmode & FWRITE))
383 		accmode |= VAPPEND;
384 #ifdef MAC
385 	if (fmode & O_CREAT)
386 		accmode |= VCREAT;
387 	if (fmode & O_VERIFY)
388 		accmode |= VVERIFY;
389 	error = mac_vnode_check_open(cred, vp, accmode);
390 	if (error)
391 		return (error);
392 
393 	accmode &= ~(VCREAT | VVERIFY);
394 #endif
395 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
396 		error = VOP_ACCESS(vp, accmode, cred, td);
397 		if (error != 0)
398 			return (error);
399 	}
400 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
401 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
402 	error = VOP_OPEN(vp, fmode, cred, td, fp);
403 	if (error != 0)
404 		return (error);
405 
406 	error = vn_open_vnode_advlock(vp, fmode, fp);
407 	if (error == 0 && (fmode & FWRITE) != 0) {
408 		error = VOP_ADD_WRITECOUNT(vp, 1);
409 		if (error == 0) {
410 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
411 			     __func__, vp, vp->v_writecount);
412 		}
413 	}
414 
415 	/*
416 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
417 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
418 	 * Arrange for that by having fdrop() to use vn_closefile().
419 	 */
420 	if (error != 0) {
421 		fp->f_flag |= FOPENFAILED;
422 		fp->f_vnode = vp;
423 		if (fp->f_ops == &badfileops) {
424 			fp->f_type = DTYPE_VNODE;
425 			fp->f_ops = &vnops;
426 		}
427 		vref(vp);
428 	}
429 
430 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
431 	return (error);
432 
433 }
434 
435 /*
436  * Check for write permissions on the specified vnode.
437  * Prototype text segments cannot be written.
438  * It is racy.
439  */
440 int
441 vn_writechk(struct vnode *vp)
442 {
443 
444 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
445 	/*
446 	 * If there's shared text associated with
447 	 * the vnode, try to free it up once.  If
448 	 * we fail, we can't allow writing.
449 	 */
450 	if (VOP_IS_TEXT(vp))
451 		return (ETXTBSY);
452 
453 	return (0);
454 }
455 
456 /*
457  * Vnode close call
458  */
459 static int
460 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
461     struct thread *td, bool keep_ref)
462 {
463 	struct mount *mp;
464 	int error, lock_flags;
465 
466 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
467 	    MNT_EXTENDED_SHARED(vp->v_mount))
468 		lock_flags = LK_SHARED;
469 	else
470 		lock_flags = LK_EXCLUSIVE;
471 
472 	vn_start_write(vp, &mp, V_WAIT);
473 	vn_lock(vp, lock_flags | LK_RETRY);
474 	AUDIT_ARG_VNODE1(vp);
475 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
476 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
477 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
478 		    __func__, vp, vp->v_writecount);
479 	}
480 	error = VOP_CLOSE(vp, flags, file_cred, td);
481 	if (keep_ref)
482 		VOP_UNLOCK(vp);
483 	else
484 		vput(vp);
485 	vn_finished_write(mp);
486 	return (error);
487 }
488 
489 int
490 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
491     struct thread *td)
492 {
493 
494 	return (vn_close1(vp, flags, file_cred, td, false));
495 }
496 
497 /*
498  * Heuristic to detect sequential operation.
499  */
500 static int
501 sequential_heuristic(struct uio *uio, struct file *fp)
502 {
503 	enum uio_rw rw;
504 
505 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
506 
507 	rw = uio->uio_rw;
508 	if (fp->f_flag & FRDAHEAD)
509 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
510 
511 	/*
512 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
513 	 * that the first I/O is normally considered to be slightly
514 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
515 	 * unless previous seeks have reduced f_seqcount to 0, in which
516 	 * case offset 0 is not special.
517 	 */
518 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
519 	    uio->uio_offset == fp->f_nextoff[rw]) {
520 		/*
521 		 * f_seqcount is in units of fixed-size blocks so that it
522 		 * depends mainly on the amount of sequential I/O and not
523 		 * much on the number of sequential I/O's.  The fixed size
524 		 * of 16384 is hard-coded here since it is (not quite) just
525 		 * a magic size that works well here.  This size is more
526 		 * closely related to the best I/O size for real disks than
527 		 * to any block size used by software.
528 		 */
529 		if (uio->uio_resid >= IO_SEQMAX * 16384)
530 			fp->f_seqcount[rw] = IO_SEQMAX;
531 		else {
532 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
533 			if (fp->f_seqcount[rw] > IO_SEQMAX)
534 				fp->f_seqcount[rw] = IO_SEQMAX;
535 		}
536 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
537 	}
538 
539 	/* Not sequential.  Quickly draw-down sequentiality. */
540 	if (fp->f_seqcount[rw] > 1)
541 		fp->f_seqcount[rw] = 1;
542 	else
543 		fp->f_seqcount[rw] = 0;
544 	return (0);
545 }
546 
547 /*
548  * Package up an I/O request on a vnode into a uio and do it.
549  */
550 int
551 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
552     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
553     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
554 {
555 	struct uio auio;
556 	struct iovec aiov;
557 	struct mount *mp;
558 	struct ucred *cred;
559 	void *rl_cookie;
560 	struct vn_io_fault_args args;
561 	int error, lock_flags;
562 
563 	if (offset < 0 && vp->v_type != VCHR)
564 		return (EINVAL);
565 	auio.uio_iov = &aiov;
566 	auio.uio_iovcnt = 1;
567 	aiov.iov_base = base;
568 	aiov.iov_len = len;
569 	auio.uio_resid = len;
570 	auio.uio_offset = offset;
571 	auio.uio_segflg = segflg;
572 	auio.uio_rw = rw;
573 	auio.uio_td = td;
574 	error = 0;
575 
576 	if ((ioflg & IO_NODELOCKED) == 0) {
577 		if ((ioflg & IO_RANGELOCKED) == 0) {
578 			if (rw == UIO_READ) {
579 				rl_cookie = vn_rangelock_rlock(vp, offset,
580 				    offset + len);
581 			} else {
582 				rl_cookie = vn_rangelock_wlock(vp, offset,
583 				    offset + len);
584 			}
585 		} else
586 			rl_cookie = NULL;
587 		mp = NULL;
588 		if (rw == UIO_WRITE) {
589 			if (vp->v_type != VCHR &&
590 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
591 			    != 0)
592 				goto out;
593 			if (MNT_SHARED_WRITES(mp) ||
594 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
595 				lock_flags = LK_SHARED;
596 			else
597 				lock_flags = LK_EXCLUSIVE;
598 		} else
599 			lock_flags = LK_SHARED;
600 		vn_lock(vp, lock_flags | LK_RETRY);
601 	} else
602 		rl_cookie = NULL;
603 
604 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
605 #ifdef MAC
606 	if ((ioflg & IO_NOMACCHECK) == 0) {
607 		if (rw == UIO_READ)
608 			error = mac_vnode_check_read(active_cred, file_cred,
609 			    vp);
610 		else
611 			error = mac_vnode_check_write(active_cred, file_cred,
612 			    vp);
613 	}
614 #endif
615 	if (error == 0) {
616 		if (file_cred != NULL)
617 			cred = file_cred;
618 		else
619 			cred = active_cred;
620 		if (do_vn_io_fault(vp, &auio)) {
621 			args.kind = VN_IO_FAULT_VOP;
622 			args.cred = cred;
623 			args.flags = ioflg;
624 			args.args.vop_args.vp = vp;
625 			error = vn_io_fault1(vp, &auio, &args, td);
626 		} else if (rw == UIO_READ) {
627 			error = VOP_READ(vp, &auio, ioflg, cred);
628 		} else /* if (rw == UIO_WRITE) */ {
629 			error = VOP_WRITE(vp, &auio, ioflg, cred);
630 		}
631 	}
632 	if (aresid)
633 		*aresid = auio.uio_resid;
634 	else
635 		if (auio.uio_resid && error == 0)
636 			error = EIO;
637 	if ((ioflg & IO_NODELOCKED) == 0) {
638 		VOP_UNLOCK(vp);
639 		if (mp != NULL)
640 			vn_finished_write(mp);
641 	}
642  out:
643 	if (rl_cookie != NULL)
644 		vn_rangelock_unlock(vp, rl_cookie);
645 	return (error);
646 }
647 
648 /*
649  * Package up an I/O request on a vnode into a uio and do it.  The I/O
650  * request is split up into smaller chunks and we try to avoid saturating
651  * the buffer cache while potentially holding a vnode locked, so we
652  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
653  * to give other processes a chance to lock the vnode (either other processes
654  * core'ing the same binary, or unrelated processes scanning the directory).
655  */
656 int
657 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
658     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
659     struct ucred *file_cred, size_t *aresid, struct thread *td)
660 {
661 	int error = 0;
662 	ssize_t iaresid;
663 
664 	do {
665 		int chunk;
666 
667 		/*
668 		 * Force `offset' to a multiple of MAXBSIZE except possibly
669 		 * for the first chunk, so that filesystems only need to
670 		 * write full blocks except possibly for the first and last
671 		 * chunks.
672 		 */
673 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
674 
675 		if (chunk > len)
676 			chunk = len;
677 		if (rw != UIO_READ && vp->v_type == VREG)
678 			bwillwrite();
679 		iaresid = 0;
680 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
681 		    ioflg, active_cred, file_cred, &iaresid, td);
682 		len -= chunk;	/* aresid calc already includes length */
683 		if (error)
684 			break;
685 		offset += chunk;
686 		base = (char *)base + chunk;
687 		kern_yield(PRI_USER);
688 	} while (len);
689 	if (aresid)
690 		*aresid = len + iaresid;
691 	return (error);
692 }
693 
694 #if OFF_MAX <= LONG_MAX
695 off_t
696 foffset_lock(struct file *fp, int flags)
697 {
698 	volatile short *flagsp;
699 	off_t res;
700 	short state;
701 
702 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
703 
704 	if ((flags & FOF_NOLOCK) != 0)
705 		return (atomic_load_long(&fp->f_offset));
706 
707 	/*
708 	 * According to McKusick the vn lock was protecting f_offset here.
709 	 * It is now protected by the FOFFSET_LOCKED flag.
710 	 */
711 	flagsp = &fp->f_vnread_flags;
712 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
713 		return (atomic_load_long(&fp->f_offset));
714 
715 	sleepq_lock(&fp->f_vnread_flags);
716 	state = atomic_load_16(flagsp);
717 	for (;;) {
718 		if ((state & FOFFSET_LOCKED) == 0) {
719 			if (!atomic_fcmpset_acq_16(flagsp, &state,
720 			    FOFFSET_LOCKED))
721 				continue;
722 			break;
723 		}
724 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
725 			if (!atomic_fcmpset_acq_16(flagsp, &state,
726 			    state | FOFFSET_LOCK_WAITING))
727 				continue;
728 		}
729 		DROP_GIANT();
730 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
731 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
732 		PICKUP_GIANT();
733 		sleepq_lock(&fp->f_vnread_flags);
734 		state = atomic_load_16(flagsp);
735 	}
736 	res = atomic_load_long(&fp->f_offset);
737 	sleepq_release(&fp->f_vnread_flags);
738 	return (res);
739 }
740 
741 void
742 foffset_unlock(struct file *fp, off_t val, int flags)
743 {
744 	volatile short *flagsp;
745 	short state;
746 
747 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
748 
749 	if ((flags & FOF_NOUPDATE) == 0)
750 		atomic_store_long(&fp->f_offset, val);
751 	if ((flags & FOF_NEXTOFF_R) != 0)
752 		fp->f_nextoff[UIO_READ] = val;
753 	if ((flags & FOF_NEXTOFF_W) != 0)
754 		fp->f_nextoff[UIO_WRITE] = val;
755 
756 	if ((flags & FOF_NOLOCK) != 0)
757 		return;
758 
759 	flagsp = &fp->f_vnread_flags;
760 	state = atomic_load_16(flagsp);
761 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
762 	    atomic_cmpset_rel_16(flagsp, state, 0))
763 		return;
764 
765 	sleepq_lock(&fp->f_vnread_flags);
766 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
767 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
768 	fp->f_vnread_flags = 0;
769 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
770 	sleepq_release(&fp->f_vnread_flags);
771 }
772 #else
773 off_t
774 foffset_lock(struct file *fp, int flags)
775 {
776 	struct mtx *mtxp;
777 	off_t res;
778 
779 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
780 
781 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
782 	mtx_lock(mtxp);
783 	if ((flags & FOF_NOLOCK) == 0) {
784 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
785 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
786 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
787 			    "vofflock", 0);
788 		}
789 		fp->f_vnread_flags |= FOFFSET_LOCKED;
790 	}
791 	res = fp->f_offset;
792 	mtx_unlock(mtxp);
793 	return (res);
794 }
795 
796 void
797 foffset_unlock(struct file *fp, off_t val, int flags)
798 {
799 	struct mtx *mtxp;
800 
801 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
802 
803 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
804 	mtx_lock(mtxp);
805 	if ((flags & FOF_NOUPDATE) == 0)
806 		fp->f_offset = val;
807 	if ((flags & FOF_NEXTOFF_R) != 0)
808 		fp->f_nextoff[UIO_READ] = val;
809 	if ((flags & FOF_NEXTOFF_W) != 0)
810 		fp->f_nextoff[UIO_WRITE] = val;
811 	if ((flags & FOF_NOLOCK) == 0) {
812 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
813 		    ("Lost FOFFSET_LOCKED"));
814 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
815 			wakeup(&fp->f_vnread_flags);
816 		fp->f_vnread_flags = 0;
817 	}
818 	mtx_unlock(mtxp);
819 }
820 #endif
821 
822 void
823 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
824 {
825 
826 	if ((flags & FOF_OFFSET) == 0)
827 		uio->uio_offset = foffset_lock(fp, flags);
828 }
829 
830 void
831 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
832 {
833 
834 	if ((flags & FOF_OFFSET) == 0)
835 		foffset_unlock(fp, uio->uio_offset, flags);
836 }
837 
838 static int
839 get_advice(struct file *fp, struct uio *uio)
840 {
841 	struct mtx *mtxp;
842 	int ret;
843 
844 	ret = POSIX_FADV_NORMAL;
845 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
846 		return (ret);
847 
848 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
849 	mtx_lock(mtxp);
850 	if (fp->f_advice != NULL &&
851 	    uio->uio_offset >= fp->f_advice->fa_start &&
852 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
853 		ret = fp->f_advice->fa_advice;
854 	mtx_unlock(mtxp);
855 	return (ret);
856 }
857 
858 int
859 vn_read_from_obj(struct vnode *vp, struct uio *uio)
860 {
861 	vm_object_t obj;
862 	vm_page_t ma[io_hold_cnt + 2];
863 	off_t off, vsz;
864 	ssize_t resid;
865 	int error, i, j;
866 
867 	obj = vp->v_object;
868 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
869 	MPASS(obj != NULL);
870 	MPASS(obj->type == OBJT_VNODE);
871 
872 	/*
873 	 * Depends on type stability of vm_objects.
874 	 */
875 	vm_object_pip_add(obj, 1);
876 	if ((obj->flags & OBJ_DEAD) != 0) {
877 		/*
878 		 * Note that object might be already reused from the
879 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
880 		 * we recheck for DOOMED vnode state after all pages
881 		 * are busied, and retract then.
882 		 *
883 		 * But we check for OBJ_DEAD to ensure that we do not
884 		 * busy pages while vm_object_terminate_pages()
885 		 * processes the queue.
886 		 */
887 		error = EJUSTRETURN;
888 		goto out_pip;
889 	}
890 
891 	resid = uio->uio_resid;
892 	off = uio->uio_offset;
893 	for (i = 0; resid > 0; i++) {
894 		MPASS(i < io_hold_cnt + 2);
895 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
896 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
897 		    VM_ALLOC_NOWAIT);
898 		if (ma[i] == NULL)
899 			break;
900 
901 		/*
902 		 * Skip invalid pages.  Valid mask can be partial only
903 		 * at EOF, and we clip later.
904 		 */
905 		if (vm_page_none_valid(ma[i])) {
906 			vm_page_sunbusy(ma[i]);
907 			break;
908 		}
909 
910 		resid -= PAGE_SIZE;
911 		off += PAGE_SIZE;
912 	}
913 	if (i == 0) {
914 		error = EJUSTRETURN;
915 		goto out_pip;
916 	}
917 
918 	/*
919 	 * Check VIRF_DOOMED after we busied our pages.  Since
920 	 * vgonel() terminates the vnode' vm_object, it cannot
921 	 * process past pages busied by us.
922 	 */
923 	if (VN_IS_DOOMED(vp)) {
924 		error = EJUSTRETURN;
925 		goto out;
926 	}
927 
928 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
929 	if (resid > uio->uio_resid)
930 		resid = uio->uio_resid;
931 
932 	/*
933 	 * Unlocked read of vnp_size is safe because truncation cannot
934 	 * pass busied page.  But we load vnp_size into a local
935 	 * variable so that possible concurrent extension does not
936 	 * break calculation.
937 	 */
938 #if defined(__powerpc__) && !defined(__powerpc64__)
939 	vsz = obj->un_pager.vnp.vnp_size;
940 #else
941 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
942 #endif
943 	if (uio->uio_offset + resid > vsz)
944 		resid = vsz - uio->uio_offset;
945 
946 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
947 
948 out:
949 	for (j = 0; j < i; j++) {
950 		if (error == 0)
951 			vm_page_reference(ma[j]);
952 		vm_page_sunbusy(ma[j]);
953 	}
954 out_pip:
955 	vm_object_pip_wakeup(obj);
956 	if (error != 0)
957 		return (error);
958 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
959 }
960 
961 /*
962  * File table vnode read routine.
963  */
964 static int
965 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
966     struct thread *td)
967 {
968 	struct vnode *vp;
969 	off_t orig_offset;
970 	int error, ioflag;
971 	int advice;
972 
973 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
974 	    uio->uio_td, td));
975 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
976 	vp = fp->f_vnode;
977 	ioflag = 0;
978 	if (fp->f_flag & FNONBLOCK)
979 		ioflag |= IO_NDELAY;
980 	if (fp->f_flag & O_DIRECT)
981 		ioflag |= IO_DIRECT;
982 
983 	/*
984 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
985 	 * allows us to avoid unneeded work outright.
986 	 */
987 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
988 	    (vp->v_irflag & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
989 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
990 		if (error == 0) {
991 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
992 			return (0);
993 		}
994 		if (error != EJUSTRETURN)
995 			return (error);
996 	}
997 
998 	advice = get_advice(fp, uio);
999 	vn_lock(vp, LK_SHARED | LK_RETRY);
1000 
1001 	switch (advice) {
1002 	case POSIX_FADV_NORMAL:
1003 	case POSIX_FADV_SEQUENTIAL:
1004 	case POSIX_FADV_NOREUSE:
1005 		ioflag |= sequential_heuristic(uio, fp);
1006 		break;
1007 	case POSIX_FADV_RANDOM:
1008 		/* Disable read-ahead for random I/O. */
1009 		break;
1010 	}
1011 	orig_offset = uio->uio_offset;
1012 
1013 #ifdef MAC
1014 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1015 	if (error == 0)
1016 #endif
1017 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1018 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1019 	VOP_UNLOCK(vp);
1020 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1021 	    orig_offset != uio->uio_offset)
1022 		/*
1023 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1024 		 * for the backing file after a POSIX_FADV_NOREUSE
1025 		 * read(2).
1026 		 */
1027 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1028 		    POSIX_FADV_DONTNEED);
1029 	return (error);
1030 }
1031 
1032 /*
1033  * File table vnode write routine.
1034  */
1035 static int
1036 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1037     struct thread *td)
1038 {
1039 	struct vnode *vp;
1040 	struct mount *mp;
1041 	off_t orig_offset;
1042 	int error, ioflag, lock_flags;
1043 	int advice;
1044 
1045 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1046 	    uio->uio_td, td));
1047 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1048 	vp = fp->f_vnode;
1049 	if (vp->v_type == VREG)
1050 		bwillwrite();
1051 	ioflag = IO_UNIT;
1052 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
1053 		ioflag |= IO_APPEND;
1054 	if (fp->f_flag & FNONBLOCK)
1055 		ioflag |= IO_NDELAY;
1056 	if (fp->f_flag & O_DIRECT)
1057 		ioflag |= IO_DIRECT;
1058 	if ((fp->f_flag & O_FSYNC) ||
1059 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
1060 		ioflag |= IO_SYNC;
1061 	mp = NULL;
1062 	if (vp->v_type != VCHR &&
1063 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
1064 		goto unlock;
1065 
1066 	advice = get_advice(fp, uio);
1067 
1068 	if (MNT_SHARED_WRITES(mp) ||
1069 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
1070 		lock_flags = LK_SHARED;
1071 	} else {
1072 		lock_flags = LK_EXCLUSIVE;
1073 	}
1074 
1075 	vn_lock(vp, lock_flags | LK_RETRY);
1076 	switch (advice) {
1077 	case POSIX_FADV_NORMAL:
1078 	case POSIX_FADV_SEQUENTIAL:
1079 	case POSIX_FADV_NOREUSE:
1080 		ioflag |= sequential_heuristic(uio, fp);
1081 		break;
1082 	case POSIX_FADV_RANDOM:
1083 		/* XXX: Is this correct? */
1084 		break;
1085 	}
1086 	orig_offset = uio->uio_offset;
1087 
1088 #ifdef MAC
1089 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1090 	if (error == 0)
1091 #endif
1092 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1093 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1094 	VOP_UNLOCK(vp);
1095 	if (vp->v_type != VCHR)
1096 		vn_finished_write(mp);
1097 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1098 	    orig_offset != uio->uio_offset)
1099 		/*
1100 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1101 		 * for the backing file after a POSIX_FADV_NOREUSE
1102 		 * write(2).
1103 		 */
1104 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1105 		    POSIX_FADV_DONTNEED);
1106 unlock:
1107 	return (error);
1108 }
1109 
1110 /*
1111  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1112  * prevent the following deadlock:
1113  *
1114  * Assume that the thread A reads from the vnode vp1 into userspace
1115  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1116  * currently not resident, then system ends up with the call chain
1117  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1118  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1119  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1120  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1121  * backed by the pages of vnode vp1, and some page in buf2 is not
1122  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1123  *
1124  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1125  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1126  * Instead, it first tries to do the whole range i/o with pagefaults
1127  * disabled. If all pages in the i/o buffer are resident and mapped,
1128  * VOP will succeed (ignoring the genuine filesystem errors).
1129  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1130  * i/o in chunks, with all pages in the chunk prefaulted and held
1131  * using vm_fault_quick_hold_pages().
1132  *
1133  * Filesystems using this deadlock avoidance scheme should use the
1134  * array of the held pages from uio, saved in the curthread->td_ma,
1135  * instead of doing uiomove().  A helper function
1136  * vn_io_fault_uiomove() converts uiomove request into
1137  * uiomove_fromphys() over td_ma array.
1138  *
1139  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1140  * make the current i/o request atomic with respect to other i/os and
1141  * truncations.
1142  */
1143 
1144 /*
1145  * Decode vn_io_fault_args and perform the corresponding i/o.
1146  */
1147 static int
1148 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1149     struct thread *td)
1150 {
1151 	int error, save;
1152 
1153 	error = 0;
1154 	save = vm_fault_disable_pagefaults();
1155 	switch (args->kind) {
1156 	case VN_IO_FAULT_FOP:
1157 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1158 		    uio, args->cred, args->flags, td);
1159 		break;
1160 	case VN_IO_FAULT_VOP:
1161 		if (uio->uio_rw == UIO_READ) {
1162 			error = VOP_READ(args->args.vop_args.vp, uio,
1163 			    args->flags, args->cred);
1164 		} else if (uio->uio_rw == UIO_WRITE) {
1165 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1166 			    args->flags, args->cred);
1167 		}
1168 		break;
1169 	default:
1170 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1171 		    args->kind, uio->uio_rw);
1172 	}
1173 	vm_fault_enable_pagefaults(save);
1174 	return (error);
1175 }
1176 
1177 static int
1178 vn_io_fault_touch(char *base, const struct uio *uio)
1179 {
1180 	int r;
1181 
1182 	r = fubyte(base);
1183 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1184 		return (EFAULT);
1185 	return (0);
1186 }
1187 
1188 static int
1189 vn_io_fault_prefault_user(const struct uio *uio)
1190 {
1191 	char *base;
1192 	const struct iovec *iov;
1193 	size_t len;
1194 	ssize_t resid;
1195 	int error, i;
1196 
1197 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1198 	    ("vn_io_fault_prefault userspace"));
1199 
1200 	error = i = 0;
1201 	iov = uio->uio_iov;
1202 	resid = uio->uio_resid;
1203 	base = iov->iov_base;
1204 	len = iov->iov_len;
1205 	while (resid > 0) {
1206 		error = vn_io_fault_touch(base, uio);
1207 		if (error != 0)
1208 			break;
1209 		if (len < PAGE_SIZE) {
1210 			if (len != 0) {
1211 				error = vn_io_fault_touch(base + len - 1, uio);
1212 				if (error != 0)
1213 					break;
1214 				resid -= len;
1215 			}
1216 			if (++i >= uio->uio_iovcnt)
1217 				break;
1218 			iov = uio->uio_iov + i;
1219 			base = iov->iov_base;
1220 			len = iov->iov_len;
1221 		} else {
1222 			len -= PAGE_SIZE;
1223 			base += PAGE_SIZE;
1224 			resid -= PAGE_SIZE;
1225 		}
1226 	}
1227 	return (error);
1228 }
1229 
1230 /*
1231  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1232  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1233  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1234  * into args and call vn_io_fault1() to handle faults during the user
1235  * mode buffer accesses.
1236  */
1237 static int
1238 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1239     struct thread *td)
1240 {
1241 	vm_page_t ma[io_hold_cnt + 2];
1242 	struct uio *uio_clone, short_uio;
1243 	struct iovec short_iovec[1];
1244 	vm_page_t *prev_td_ma;
1245 	vm_prot_t prot;
1246 	vm_offset_t addr, end;
1247 	size_t len, resid;
1248 	ssize_t adv;
1249 	int error, cnt, saveheld, prev_td_ma_cnt;
1250 
1251 	if (vn_io_fault_prefault) {
1252 		error = vn_io_fault_prefault_user(uio);
1253 		if (error != 0)
1254 			return (error); /* Or ignore ? */
1255 	}
1256 
1257 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1258 
1259 	/*
1260 	 * The UFS follows IO_UNIT directive and replays back both
1261 	 * uio_offset and uio_resid if an error is encountered during the
1262 	 * operation.  But, since the iovec may be already advanced,
1263 	 * uio is still in an inconsistent state.
1264 	 *
1265 	 * Cache a copy of the original uio, which is advanced to the redo
1266 	 * point using UIO_NOCOPY below.
1267 	 */
1268 	uio_clone = cloneuio(uio);
1269 	resid = uio->uio_resid;
1270 
1271 	short_uio.uio_segflg = UIO_USERSPACE;
1272 	short_uio.uio_rw = uio->uio_rw;
1273 	short_uio.uio_td = uio->uio_td;
1274 
1275 	error = vn_io_fault_doio(args, uio, td);
1276 	if (error != EFAULT)
1277 		goto out;
1278 
1279 	atomic_add_long(&vn_io_faults_cnt, 1);
1280 	uio_clone->uio_segflg = UIO_NOCOPY;
1281 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1282 	uio_clone->uio_segflg = uio->uio_segflg;
1283 
1284 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1285 	prev_td_ma = td->td_ma;
1286 	prev_td_ma_cnt = td->td_ma_cnt;
1287 
1288 	while (uio_clone->uio_resid != 0) {
1289 		len = uio_clone->uio_iov->iov_len;
1290 		if (len == 0) {
1291 			KASSERT(uio_clone->uio_iovcnt >= 1,
1292 			    ("iovcnt underflow"));
1293 			uio_clone->uio_iov++;
1294 			uio_clone->uio_iovcnt--;
1295 			continue;
1296 		}
1297 		if (len > ptoa(io_hold_cnt))
1298 			len = ptoa(io_hold_cnt);
1299 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1300 		end = round_page(addr + len);
1301 		if (end < addr) {
1302 			error = EFAULT;
1303 			break;
1304 		}
1305 		cnt = atop(end - trunc_page(addr));
1306 		/*
1307 		 * A perfectly misaligned address and length could cause
1308 		 * both the start and the end of the chunk to use partial
1309 		 * page.  +2 accounts for such a situation.
1310 		 */
1311 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1312 		    addr, len, prot, ma, io_hold_cnt + 2);
1313 		if (cnt == -1) {
1314 			error = EFAULT;
1315 			break;
1316 		}
1317 		short_uio.uio_iov = &short_iovec[0];
1318 		short_iovec[0].iov_base = (void *)addr;
1319 		short_uio.uio_iovcnt = 1;
1320 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1321 		short_uio.uio_offset = uio_clone->uio_offset;
1322 		td->td_ma = ma;
1323 		td->td_ma_cnt = cnt;
1324 
1325 		error = vn_io_fault_doio(args, &short_uio, td);
1326 		vm_page_unhold_pages(ma, cnt);
1327 		adv = len - short_uio.uio_resid;
1328 
1329 		uio_clone->uio_iov->iov_base =
1330 		    (char *)uio_clone->uio_iov->iov_base + adv;
1331 		uio_clone->uio_iov->iov_len -= adv;
1332 		uio_clone->uio_resid -= adv;
1333 		uio_clone->uio_offset += adv;
1334 
1335 		uio->uio_resid -= adv;
1336 		uio->uio_offset += adv;
1337 
1338 		if (error != 0 || adv == 0)
1339 			break;
1340 	}
1341 	td->td_ma = prev_td_ma;
1342 	td->td_ma_cnt = prev_td_ma_cnt;
1343 	curthread_pflags_restore(saveheld);
1344 out:
1345 	free(uio_clone, M_IOV);
1346 	return (error);
1347 }
1348 
1349 static int
1350 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1351     int flags, struct thread *td)
1352 {
1353 	fo_rdwr_t *doio;
1354 	struct vnode *vp;
1355 	void *rl_cookie;
1356 	struct vn_io_fault_args args;
1357 	int error;
1358 
1359 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1360 	vp = fp->f_vnode;
1361 
1362 	/*
1363 	 * The ability to read(2) on a directory has historically been
1364 	 * allowed for all users, but this can and has been the source of
1365 	 * at least one security issue in the past.  As such, it is now hidden
1366 	 * away behind a sysctl for those that actually need it to use it, and
1367 	 * restricted to root when it's turned on to make it relatively safe to
1368 	 * leave on for longer sessions of need.
1369 	 */
1370 	if (vp->v_type == VDIR) {
1371 		KASSERT(uio->uio_rw == UIO_READ,
1372 		    ("illegal write attempted on a directory"));
1373 		if (!vfs_allow_read_dir)
1374 			return (EISDIR);
1375 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1376 			return (EISDIR);
1377 	}
1378 
1379 	foffset_lock_uio(fp, uio, flags);
1380 	if (do_vn_io_fault(vp, uio)) {
1381 		args.kind = VN_IO_FAULT_FOP;
1382 		args.args.fop_args.fp = fp;
1383 		args.args.fop_args.doio = doio;
1384 		args.cred = active_cred;
1385 		args.flags = flags | FOF_OFFSET;
1386 		if (uio->uio_rw == UIO_READ) {
1387 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1388 			    uio->uio_offset + uio->uio_resid);
1389 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1390 		    (flags & FOF_OFFSET) == 0) {
1391 			/* For appenders, punt and lock the whole range. */
1392 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1393 		} else {
1394 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1395 			    uio->uio_offset + uio->uio_resid);
1396 		}
1397 		error = vn_io_fault1(vp, uio, &args, td);
1398 		vn_rangelock_unlock(vp, rl_cookie);
1399 	} else {
1400 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1401 	}
1402 	foffset_unlock_uio(fp, uio, flags);
1403 	return (error);
1404 }
1405 
1406 /*
1407  * Helper function to perform the requested uiomove operation using
1408  * the held pages for io->uio_iov[0].iov_base buffer instead of
1409  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1410  * instead of iov_base prevents page faults that could occur due to
1411  * pmap_collect() invalidating the mapping created by
1412  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1413  * object cleanup revoking the write access from page mappings.
1414  *
1415  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1416  * instead of plain uiomove().
1417  */
1418 int
1419 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1420 {
1421 	struct uio transp_uio;
1422 	struct iovec transp_iov[1];
1423 	struct thread *td;
1424 	size_t adv;
1425 	int error, pgadv;
1426 
1427 	td = curthread;
1428 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1429 	    uio->uio_segflg != UIO_USERSPACE)
1430 		return (uiomove(data, xfersize, uio));
1431 
1432 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1433 	transp_iov[0].iov_base = data;
1434 	transp_uio.uio_iov = &transp_iov[0];
1435 	transp_uio.uio_iovcnt = 1;
1436 	if (xfersize > uio->uio_resid)
1437 		xfersize = uio->uio_resid;
1438 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1439 	transp_uio.uio_offset = 0;
1440 	transp_uio.uio_segflg = UIO_SYSSPACE;
1441 	/*
1442 	 * Since transp_iov points to data, and td_ma page array
1443 	 * corresponds to original uio->uio_iov, we need to invert the
1444 	 * direction of the i/o operation as passed to
1445 	 * uiomove_fromphys().
1446 	 */
1447 	switch (uio->uio_rw) {
1448 	case UIO_WRITE:
1449 		transp_uio.uio_rw = UIO_READ;
1450 		break;
1451 	case UIO_READ:
1452 		transp_uio.uio_rw = UIO_WRITE;
1453 		break;
1454 	}
1455 	transp_uio.uio_td = uio->uio_td;
1456 	error = uiomove_fromphys(td->td_ma,
1457 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1458 	    xfersize, &transp_uio);
1459 	adv = xfersize - transp_uio.uio_resid;
1460 	pgadv =
1461 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1462 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1463 	td->td_ma += pgadv;
1464 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1465 	    pgadv));
1466 	td->td_ma_cnt -= pgadv;
1467 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1468 	uio->uio_iov->iov_len -= adv;
1469 	uio->uio_resid -= adv;
1470 	uio->uio_offset += adv;
1471 	return (error);
1472 }
1473 
1474 int
1475 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1476     struct uio *uio)
1477 {
1478 	struct thread *td;
1479 	vm_offset_t iov_base;
1480 	int cnt, pgadv;
1481 
1482 	td = curthread;
1483 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1484 	    uio->uio_segflg != UIO_USERSPACE)
1485 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1486 
1487 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1488 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1489 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1490 	switch (uio->uio_rw) {
1491 	case UIO_WRITE:
1492 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1493 		    offset, cnt);
1494 		break;
1495 	case UIO_READ:
1496 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1497 		    cnt);
1498 		break;
1499 	}
1500 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1501 	td->td_ma += pgadv;
1502 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1503 	    pgadv));
1504 	td->td_ma_cnt -= pgadv;
1505 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1506 	uio->uio_iov->iov_len -= cnt;
1507 	uio->uio_resid -= cnt;
1508 	uio->uio_offset += cnt;
1509 	return (0);
1510 }
1511 
1512 /*
1513  * File table truncate routine.
1514  */
1515 static int
1516 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1517     struct thread *td)
1518 {
1519 	struct mount *mp;
1520 	struct vnode *vp;
1521 	void *rl_cookie;
1522 	int error;
1523 
1524 	vp = fp->f_vnode;
1525 
1526 	/*
1527 	 * Lock the whole range for truncation.  Otherwise split i/o
1528 	 * might happen partly before and partly after the truncation.
1529 	 */
1530 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1531 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1532 	if (error)
1533 		goto out1;
1534 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1535 	AUDIT_ARG_VNODE1(vp);
1536 	if (vp->v_type == VDIR) {
1537 		error = EISDIR;
1538 		goto out;
1539 	}
1540 #ifdef MAC
1541 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1542 	if (error)
1543 		goto out;
1544 #endif
1545 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1546 	    fp->f_cred);
1547 out:
1548 	VOP_UNLOCK(vp);
1549 	vn_finished_write(mp);
1550 out1:
1551 	vn_rangelock_unlock(vp, rl_cookie);
1552 	return (error);
1553 }
1554 
1555 /*
1556  * Truncate a file that is already locked.
1557  */
1558 int
1559 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1560     struct ucred *cred)
1561 {
1562 	struct vattr vattr;
1563 	int error;
1564 
1565 	error = VOP_ADD_WRITECOUNT(vp, 1);
1566 	if (error == 0) {
1567 		VATTR_NULL(&vattr);
1568 		vattr.va_size = length;
1569 		if (sync)
1570 			vattr.va_vaflags |= VA_SYNC;
1571 		error = VOP_SETATTR(vp, &vattr, cred);
1572 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1573 	}
1574 	return (error);
1575 }
1576 
1577 /*
1578  * File table vnode stat routine.
1579  */
1580 static int
1581 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1582     struct thread *td)
1583 {
1584 	struct vnode *vp = fp->f_vnode;
1585 	int error;
1586 
1587 	vn_lock(vp, LK_SHARED | LK_RETRY);
1588 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td);
1589 	VOP_UNLOCK(vp);
1590 
1591 	return (error);
1592 }
1593 
1594 /*
1595  * File table vnode ioctl routine.
1596  */
1597 static int
1598 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1599     struct thread *td)
1600 {
1601 	struct vattr vattr;
1602 	struct vnode *vp;
1603 	struct fiobmap2_arg *bmarg;
1604 	int error;
1605 
1606 	vp = fp->f_vnode;
1607 	switch (vp->v_type) {
1608 	case VDIR:
1609 	case VREG:
1610 		switch (com) {
1611 		case FIONREAD:
1612 			vn_lock(vp, LK_SHARED | LK_RETRY);
1613 			error = VOP_GETATTR(vp, &vattr, active_cred);
1614 			VOP_UNLOCK(vp);
1615 			if (error == 0)
1616 				*(int *)data = vattr.va_size - fp->f_offset;
1617 			return (error);
1618 		case FIOBMAP2:
1619 			bmarg = (struct fiobmap2_arg *)data;
1620 			vn_lock(vp, LK_SHARED | LK_RETRY);
1621 #ifdef MAC
1622 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1623 			    vp);
1624 			if (error == 0)
1625 #endif
1626 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1627 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1628 			VOP_UNLOCK(vp);
1629 			return (error);
1630 		case FIONBIO:
1631 		case FIOASYNC:
1632 			return (0);
1633 		default:
1634 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1635 			    active_cred, td));
1636 		}
1637 		break;
1638 	case VCHR:
1639 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1640 		    active_cred, td));
1641 	default:
1642 		return (ENOTTY);
1643 	}
1644 }
1645 
1646 /*
1647  * File table vnode poll routine.
1648  */
1649 static int
1650 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1651     struct thread *td)
1652 {
1653 	struct vnode *vp;
1654 	int error;
1655 
1656 	vp = fp->f_vnode;
1657 #if defined(MAC) || defined(AUDIT)
1658 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1659 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1660 		AUDIT_ARG_VNODE1(vp);
1661 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1662 		VOP_UNLOCK(vp);
1663 		if (error != 0)
1664 			return (error);
1665 	}
1666 #endif
1667 	error = VOP_POLL(vp, events, fp->f_cred, td);
1668 	return (error);
1669 }
1670 
1671 /*
1672  * Acquire the requested lock and then check for validity.  LK_RETRY
1673  * permits vn_lock to return doomed vnodes.
1674  */
1675 static int __noinline
1676 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1677     int error)
1678 {
1679 
1680 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1681 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1682 
1683 	if (error == 0)
1684 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1685 
1686 	if ((flags & LK_RETRY) == 0) {
1687 		if (error == 0) {
1688 			VOP_UNLOCK(vp);
1689 			error = ENOENT;
1690 		}
1691 		return (error);
1692 	}
1693 
1694 	/*
1695 	 * LK_RETRY case.
1696 	 *
1697 	 * Nothing to do if we got the lock.
1698 	 */
1699 	if (error == 0)
1700 		return (0);
1701 
1702 	/*
1703 	 * Interlock was dropped by the call in _vn_lock.
1704 	 */
1705 	flags &= ~LK_INTERLOCK;
1706 	do {
1707 		error = VOP_LOCK1(vp, flags, file, line);
1708 	} while (error != 0);
1709 	return (0);
1710 }
1711 
1712 int
1713 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1714 {
1715 	int error;
1716 
1717 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1718 	    ("vn_lock: no locktype (%d passed)", flags));
1719 	VNPASS(vp->v_holdcnt > 0, vp);
1720 	error = VOP_LOCK1(vp, flags, file, line);
1721 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1722 		return (_vn_lock_fallback(vp, flags, file, line, error));
1723 	return (0);
1724 }
1725 
1726 /*
1727  * File table vnode close routine.
1728  */
1729 static int
1730 vn_closefile(struct file *fp, struct thread *td)
1731 {
1732 	struct vnode *vp;
1733 	struct flock lf;
1734 	int error;
1735 	bool ref;
1736 
1737 	vp = fp->f_vnode;
1738 	fp->f_ops = &badfileops;
1739 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1740 
1741 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1742 
1743 	if (__predict_false(ref)) {
1744 		lf.l_whence = SEEK_SET;
1745 		lf.l_start = 0;
1746 		lf.l_len = 0;
1747 		lf.l_type = F_UNLCK;
1748 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1749 		vrele(vp);
1750 	}
1751 	return (error);
1752 }
1753 
1754 /*
1755  * Preparing to start a filesystem write operation. If the operation is
1756  * permitted, then we bump the count of operations in progress and
1757  * proceed. If a suspend request is in progress, we wait until the
1758  * suspension is over, and then proceed.
1759  */
1760 static int
1761 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1762 {
1763 	int error, mflags;
1764 
1765 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1766 	    vfs_op_thread_enter(mp)) {
1767 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1768 		vfs_mp_count_add_pcpu(mp, writeopcount, 1);
1769 		vfs_op_thread_exit(mp);
1770 		return (0);
1771 	}
1772 
1773 	if (mplocked)
1774 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1775 	else
1776 		MNT_ILOCK(mp);
1777 
1778 	error = 0;
1779 
1780 	/*
1781 	 * Check on status of suspension.
1782 	 */
1783 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1784 	    mp->mnt_susp_owner != curthread) {
1785 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1786 		    (flags & PCATCH) : 0) | (PUSER - 1);
1787 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1788 			if (flags & V_NOWAIT) {
1789 				error = EWOULDBLOCK;
1790 				goto unlock;
1791 			}
1792 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1793 			    "suspfs", 0);
1794 			if (error)
1795 				goto unlock;
1796 		}
1797 	}
1798 	if (flags & V_XSLEEP)
1799 		goto unlock;
1800 	mp->mnt_writeopcount++;
1801 unlock:
1802 	if (error != 0 || (flags & V_XSLEEP) != 0)
1803 		MNT_REL(mp);
1804 	MNT_IUNLOCK(mp);
1805 	return (error);
1806 }
1807 
1808 int
1809 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1810 {
1811 	struct mount *mp;
1812 	int error;
1813 
1814 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1815 	    ("V_MNTREF requires mp"));
1816 
1817 	error = 0;
1818 	/*
1819 	 * If a vnode is provided, get and return the mount point that
1820 	 * to which it will write.
1821 	 */
1822 	if (vp != NULL) {
1823 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1824 			*mpp = NULL;
1825 			if (error != EOPNOTSUPP)
1826 				return (error);
1827 			return (0);
1828 		}
1829 	}
1830 	if ((mp = *mpp) == NULL)
1831 		return (0);
1832 
1833 	/*
1834 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1835 	 * a vfs_ref().
1836 	 * As long as a vnode is not provided we need to acquire a
1837 	 * refcount for the provided mountpoint too, in order to
1838 	 * emulate a vfs_ref().
1839 	 */
1840 	if (vp == NULL && (flags & V_MNTREF) == 0)
1841 		vfs_ref(mp);
1842 
1843 	return (vn_start_write_refed(mp, flags, false));
1844 }
1845 
1846 /*
1847  * Secondary suspension. Used by operations such as vop_inactive
1848  * routines that are needed by the higher level functions. These
1849  * are allowed to proceed until all the higher level functions have
1850  * completed (indicated by mnt_writeopcount dropping to zero). At that
1851  * time, these operations are halted until the suspension is over.
1852  */
1853 int
1854 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1855 {
1856 	struct mount *mp;
1857 	int error;
1858 
1859 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1860 	    ("V_MNTREF requires mp"));
1861 
1862  retry:
1863 	if (vp != NULL) {
1864 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1865 			*mpp = NULL;
1866 			if (error != EOPNOTSUPP)
1867 				return (error);
1868 			return (0);
1869 		}
1870 	}
1871 	/*
1872 	 * If we are not suspended or have not yet reached suspended
1873 	 * mode, then let the operation proceed.
1874 	 */
1875 	if ((mp = *mpp) == NULL)
1876 		return (0);
1877 
1878 	/*
1879 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1880 	 * a vfs_ref().
1881 	 * As long as a vnode is not provided we need to acquire a
1882 	 * refcount for the provided mountpoint too, in order to
1883 	 * emulate a vfs_ref().
1884 	 */
1885 	MNT_ILOCK(mp);
1886 	if (vp == NULL && (flags & V_MNTREF) == 0)
1887 		MNT_REF(mp);
1888 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1889 		mp->mnt_secondary_writes++;
1890 		mp->mnt_secondary_accwrites++;
1891 		MNT_IUNLOCK(mp);
1892 		return (0);
1893 	}
1894 	if (flags & V_NOWAIT) {
1895 		MNT_REL(mp);
1896 		MNT_IUNLOCK(mp);
1897 		return (EWOULDBLOCK);
1898 	}
1899 	/*
1900 	 * Wait for the suspension to finish.
1901 	 */
1902 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1903 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1904 	    "suspfs", 0);
1905 	vfs_rel(mp);
1906 	if (error == 0)
1907 		goto retry;
1908 	return (error);
1909 }
1910 
1911 /*
1912  * Filesystem write operation has completed. If we are suspending and this
1913  * operation is the last one, notify the suspender that the suspension is
1914  * now in effect.
1915  */
1916 void
1917 vn_finished_write(struct mount *mp)
1918 {
1919 	int c;
1920 
1921 	if (mp == NULL)
1922 		return;
1923 
1924 	if (vfs_op_thread_enter(mp)) {
1925 		vfs_mp_count_sub_pcpu(mp, writeopcount, 1);
1926 		vfs_mp_count_sub_pcpu(mp, ref, 1);
1927 		vfs_op_thread_exit(mp);
1928 		return;
1929 	}
1930 
1931 	MNT_ILOCK(mp);
1932 	vfs_assert_mount_counters(mp);
1933 	MNT_REL(mp);
1934 	c = --mp->mnt_writeopcount;
1935 	if (mp->mnt_vfs_ops == 0) {
1936 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1937 		MNT_IUNLOCK(mp);
1938 		return;
1939 	}
1940 	if (c < 0)
1941 		vfs_dump_mount_counters(mp);
1942 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
1943 		wakeup(&mp->mnt_writeopcount);
1944 	MNT_IUNLOCK(mp);
1945 }
1946 
1947 /*
1948  * Filesystem secondary write operation has completed. If we are
1949  * suspending and this operation is the last one, notify the suspender
1950  * that the suspension is now in effect.
1951  */
1952 void
1953 vn_finished_secondary_write(struct mount *mp)
1954 {
1955 	if (mp == NULL)
1956 		return;
1957 	MNT_ILOCK(mp);
1958 	MNT_REL(mp);
1959 	mp->mnt_secondary_writes--;
1960 	if (mp->mnt_secondary_writes < 0)
1961 		panic("vn_finished_secondary_write: neg cnt");
1962 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1963 	    mp->mnt_secondary_writes <= 0)
1964 		wakeup(&mp->mnt_secondary_writes);
1965 	MNT_IUNLOCK(mp);
1966 }
1967 
1968 /*
1969  * Request a filesystem to suspend write operations.
1970  */
1971 int
1972 vfs_write_suspend(struct mount *mp, int flags)
1973 {
1974 	int error;
1975 
1976 	vfs_op_enter(mp);
1977 
1978 	MNT_ILOCK(mp);
1979 	vfs_assert_mount_counters(mp);
1980 	if (mp->mnt_susp_owner == curthread) {
1981 		vfs_op_exit_locked(mp);
1982 		MNT_IUNLOCK(mp);
1983 		return (EALREADY);
1984 	}
1985 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1986 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1987 
1988 	/*
1989 	 * Unmount holds a write reference on the mount point.  If we
1990 	 * own busy reference and drain for writers, we deadlock with
1991 	 * the reference draining in the unmount path.  Callers of
1992 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1993 	 * vfs_busy() reference is owned and caller is not in the
1994 	 * unmount context.
1995 	 */
1996 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1997 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1998 		vfs_op_exit_locked(mp);
1999 		MNT_IUNLOCK(mp);
2000 		return (EBUSY);
2001 	}
2002 
2003 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2004 	mp->mnt_susp_owner = curthread;
2005 	if (mp->mnt_writeopcount > 0)
2006 		(void) msleep(&mp->mnt_writeopcount,
2007 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2008 	else
2009 		MNT_IUNLOCK(mp);
2010 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2011 		vfs_write_resume(mp, 0);
2012 		/* vfs_write_resume does vfs_op_exit() for us */
2013 	}
2014 	return (error);
2015 }
2016 
2017 /*
2018  * Request a filesystem to resume write operations.
2019  */
2020 void
2021 vfs_write_resume(struct mount *mp, int flags)
2022 {
2023 
2024 	MNT_ILOCK(mp);
2025 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2026 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2027 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2028 				       MNTK_SUSPENDED);
2029 		mp->mnt_susp_owner = NULL;
2030 		wakeup(&mp->mnt_writeopcount);
2031 		wakeup(&mp->mnt_flag);
2032 		curthread->td_pflags &= ~TDP_IGNSUSP;
2033 		if ((flags & VR_START_WRITE) != 0) {
2034 			MNT_REF(mp);
2035 			mp->mnt_writeopcount++;
2036 		}
2037 		MNT_IUNLOCK(mp);
2038 		if ((flags & VR_NO_SUSPCLR) == 0)
2039 			VFS_SUSP_CLEAN(mp);
2040 		vfs_op_exit(mp);
2041 	} else if ((flags & VR_START_WRITE) != 0) {
2042 		MNT_REF(mp);
2043 		vn_start_write_refed(mp, 0, true);
2044 	} else {
2045 		MNT_IUNLOCK(mp);
2046 	}
2047 }
2048 
2049 /*
2050  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2051  * methods.
2052  */
2053 int
2054 vfs_write_suspend_umnt(struct mount *mp)
2055 {
2056 	int error;
2057 
2058 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2059 	    ("vfs_write_suspend_umnt: recursed"));
2060 
2061 	/* dounmount() already called vn_start_write(). */
2062 	for (;;) {
2063 		vn_finished_write(mp);
2064 		error = vfs_write_suspend(mp, 0);
2065 		if (error != 0) {
2066 			vn_start_write(NULL, &mp, V_WAIT);
2067 			return (error);
2068 		}
2069 		MNT_ILOCK(mp);
2070 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2071 			break;
2072 		MNT_IUNLOCK(mp);
2073 		vn_start_write(NULL, &mp, V_WAIT);
2074 	}
2075 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2076 	wakeup(&mp->mnt_flag);
2077 	MNT_IUNLOCK(mp);
2078 	curthread->td_pflags |= TDP_IGNSUSP;
2079 	return (0);
2080 }
2081 
2082 /*
2083  * Implement kqueues for files by translating it to vnode operation.
2084  */
2085 static int
2086 vn_kqfilter(struct file *fp, struct knote *kn)
2087 {
2088 
2089 	return (VOP_KQFILTER(fp->f_vnode, kn));
2090 }
2091 
2092 /*
2093  * Simplified in-kernel wrapper calls for extended attribute access.
2094  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2095  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2096  */
2097 int
2098 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2099     const char *attrname, int *buflen, char *buf, struct thread *td)
2100 {
2101 	struct uio	auio;
2102 	struct iovec	iov;
2103 	int	error;
2104 
2105 	iov.iov_len = *buflen;
2106 	iov.iov_base = buf;
2107 
2108 	auio.uio_iov = &iov;
2109 	auio.uio_iovcnt = 1;
2110 	auio.uio_rw = UIO_READ;
2111 	auio.uio_segflg = UIO_SYSSPACE;
2112 	auio.uio_td = td;
2113 	auio.uio_offset = 0;
2114 	auio.uio_resid = *buflen;
2115 
2116 	if ((ioflg & IO_NODELOCKED) == 0)
2117 		vn_lock(vp, LK_SHARED | LK_RETRY);
2118 
2119 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2120 
2121 	/* authorize attribute retrieval as kernel */
2122 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2123 	    td);
2124 
2125 	if ((ioflg & IO_NODELOCKED) == 0)
2126 		VOP_UNLOCK(vp);
2127 
2128 	if (error == 0) {
2129 		*buflen = *buflen - auio.uio_resid;
2130 	}
2131 
2132 	return (error);
2133 }
2134 
2135 /*
2136  * XXX failure mode if partially written?
2137  */
2138 int
2139 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2140     const char *attrname, int buflen, char *buf, struct thread *td)
2141 {
2142 	struct uio	auio;
2143 	struct iovec	iov;
2144 	struct mount	*mp;
2145 	int	error;
2146 
2147 	iov.iov_len = buflen;
2148 	iov.iov_base = buf;
2149 
2150 	auio.uio_iov = &iov;
2151 	auio.uio_iovcnt = 1;
2152 	auio.uio_rw = UIO_WRITE;
2153 	auio.uio_segflg = UIO_SYSSPACE;
2154 	auio.uio_td = td;
2155 	auio.uio_offset = 0;
2156 	auio.uio_resid = buflen;
2157 
2158 	if ((ioflg & IO_NODELOCKED) == 0) {
2159 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2160 			return (error);
2161 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2162 	}
2163 
2164 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2165 
2166 	/* authorize attribute setting as kernel */
2167 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2168 
2169 	if ((ioflg & IO_NODELOCKED) == 0) {
2170 		vn_finished_write(mp);
2171 		VOP_UNLOCK(vp);
2172 	}
2173 
2174 	return (error);
2175 }
2176 
2177 int
2178 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2179     const char *attrname, struct thread *td)
2180 {
2181 	struct mount	*mp;
2182 	int	error;
2183 
2184 	if ((ioflg & IO_NODELOCKED) == 0) {
2185 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2186 			return (error);
2187 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2188 	}
2189 
2190 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2191 
2192 	/* authorize attribute removal as kernel */
2193 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2194 	if (error == EOPNOTSUPP)
2195 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2196 		    NULL, td);
2197 
2198 	if ((ioflg & IO_NODELOCKED) == 0) {
2199 		vn_finished_write(mp);
2200 		VOP_UNLOCK(vp);
2201 	}
2202 
2203 	return (error);
2204 }
2205 
2206 static int
2207 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2208     struct vnode **rvp)
2209 {
2210 
2211 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2212 }
2213 
2214 int
2215 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2216 {
2217 
2218 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2219 	    lkflags, rvp));
2220 }
2221 
2222 int
2223 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2224     int lkflags, struct vnode **rvp)
2225 {
2226 	struct mount *mp;
2227 	int ltype, error;
2228 
2229 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2230 	mp = vp->v_mount;
2231 	ltype = VOP_ISLOCKED(vp);
2232 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2233 	    ("vn_vget_ino: vp not locked"));
2234 	error = vfs_busy(mp, MBF_NOWAIT);
2235 	if (error != 0) {
2236 		vfs_ref(mp);
2237 		VOP_UNLOCK(vp);
2238 		error = vfs_busy(mp, 0);
2239 		vn_lock(vp, ltype | LK_RETRY);
2240 		vfs_rel(mp);
2241 		if (error != 0)
2242 			return (ENOENT);
2243 		if (VN_IS_DOOMED(vp)) {
2244 			vfs_unbusy(mp);
2245 			return (ENOENT);
2246 		}
2247 	}
2248 	VOP_UNLOCK(vp);
2249 	error = alloc(mp, alloc_arg, lkflags, rvp);
2250 	vfs_unbusy(mp);
2251 	if (error != 0 || *rvp != vp)
2252 		vn_lock(vp, ltype | LK_RETRY);
2253 	if (VN_IS_DOOMED(vp)) {
2254 		if (error == 0) {
2255 			if (*rvp == vp)
2256 				vunref(vp);
2257 			else
2258 				vput(*rvp);
2259 		}
2260 		error = ENOENT;
2261 	}
2262 	return (error);
2263 }
2264 
2265 int
2266 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2267     struct thread *td)
2268 {
2269 
2270 	if (vp->v_type != VREG || td == NULL)
2271 		return (0);
2272 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2273 	    lim_cur(td, RLIMIT_FSIZE)) {
2274 		PROC_LOCK(td->td_proc);
2275 		kern_psignal(td->td_proc, SIGXFSZ);
2276 		PROC_UNLOCK(td->td_proc);
2277 		return (EFBIG);
2278 	}
2279 	return (0);
2280 }
2281 
2282 int
2283 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2284     struct thread *td)
2285 {
2286 	struct vnode *vp;
2287 
2288 	vp = fp->f_vnode;
2289 #ifdef AUDIT
2290 	vn_lock(vp, LK_SHARED | LK_RETRY);
2291 	AUDIT_ARG_VNODE1(vp);
2292 	VOP_UNLOCK(vp);
2293 #endif
2294 	return (setfmode(td, active_cred, vp, mode));
2295 }
2296 
2297 int
2298 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2299     struct thread *td)
2300 {
2301 	struct vnode *vp;
2302 
2303 	vp = fp->f_vnode;
2304 #ifdef AUDIT
2305 	vn_lock(vp, LK_SHARED | LK_RETRY);
2306 	AUDIT_ARG_VNODE1(vp);
2307 	VOP_UNLOCK(vp);
2308 #endif
2309 	return (setfown(td, active_cred, vp, uid, gid));
2310 }
2311 
2312 void
2313 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2314 {
2315 	vm_object_t object;
2316 
2317 	if ((object = vp->v_object) == NULL)
2318 		return;
2319 	VM_OBJECT_WLOCK(object);
2320 	vm_object_page_remove(object, start, end, 0);
2321 	VM_OBJECT_WUNLOCK(object);
2322 }
2323 
2324 int
2325 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2326 {
2327 	struct vattr va;
2328 	daddr_t bn, bnp;
2329 	uint64_t bsize;
2330 	off_t noff;
2331 	int error;
2332 
2333 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2334 	    ("Wrong command %lu", cmd));
2335 
2336 	if (vn_lock(vp, LK_SHARED) != 0)
2337 		return (EBADF);
2338 	if (vp->v_type != VREG) {
2339 		error = ENOTTY;
2340 		goto unlock;
2341 	}
2342 	error = VOP_GETATTR(vp, &va, cred);
2343 	if (error != 0)
2344 		goto unlock;
2345 	noff = *off;
2346 	if (noff >= va.va_size) {
2347 		error = ENXIO;
2348 		goto unlock;
2349 	}
2350 	bsize = vp->v_mount->mnt_stat.f_iosize;
2351 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2352 	    noff % bsize) {
2353 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2354 		if (error == EOPNOTSUPP) {
2355 			error = ENOTTY;
2356 			goto unlock;
2357 		}
2358 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2359 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2360 			noff = bn * bsize;
2361 			if (noff < *off)
2362 				noff = *off;
2363 			goto unlock;
2364 		}
2365 	}
2366 	if (noff > va.va_size)
2367 		noff = va.va_size;
2368 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2369 	if (cmd == FIOSEEKDATA)
2370 		error = ENXIO;
2371 unlock:
2372 	VOP_UNLOCK(vp);
2373 	if (error == 0)
2374 		*off = noff;
2375 	return (error);
2376 }
2377 
2378 int
2379 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2380 {
2381 	struct ucred *cred;
2382 	struct vnode *vp;
2383 	struct vattr vattr;
2384 	off_t foffset, size;
2385 	int error, noneg;
2386 
2387 	cred = td->td_ucred;
2388 	vp = fp->f_vnode;
2389 	foffset = foffset_lock(fp, 0);
2390 	noneg = (vp->v_type != VCHR);
2391 	error = 0;
2392 	switch (whence) {
2393 	case L_INCR:
2394 		if (noneg &&
2395 		    (foffset < 0 ||
2396 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2397 			error = EOVERFLOW;
2398 			break;
2399 		}
2400 		offset += foffset;
2401 		break;
2402 	case L_XTND:
2403 		vn_lock(vp, LK_SHARED | LK_RETRY);
2404 		error = VOP_GETATTR(vp, &vattr, cred);
2405 		VOP_UNLOCK(vp);
2406 		if (error)
2407 			break;
2408 
2409 		/*
2410 		 * If the file references a disk device, then fetch
2411 		 * the media size and use that to determine the ending
2412 		 * offset.
2413 		 */
2414 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2415 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2416 			vattr.va_size = size;
2417 		if (noneg &&
2418 		    (vattr.va_size > OFF_MAX ||
2419 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2420 			error = EOVERFLOW;
2421 			break;
2422 		}
2423 		offset += vattr.va_size;
2424 		break;
2425 	case L_SET:
2426 		break;
2427 	case SEEK_DATA:
2428 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2429 		if (error == ENOTTY)
2430 			error = EINVAL;
2431 		break;
2432 	case SEEK_HOLE:
2433 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2434 		if (error == ENOTTY)
2435 			error = EINVAL;
2436 		break;
2437 	default:
2438 		error = EINVAL;
2439 	}
2440 	if (error == 0 && noneg && offset < 0)
2441 		error = EINVAL;
2442 	if (error != 0)
2443 		goto drop;
2444 	VFS_KNOTE_UNLOCKED(vp, 0);
2445 	td->td_uretoff.tdu_off = offset;
2446 drop:
2447 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2448 	return (error);
2449 }
2450 
2451 int
2452 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2453     struct thread *td)
2454 {
2455 	int error;
2456 
2457 	/*
2458 	 * Grant permission if the caller is the owner of the file, or
2459 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2460 	 * on the file.  If the time pointer is null, then write
2461 	 * permission on the file is also sufficient.
2462 	 *
2463 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2464 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2465 	 * will be allowed to set the times [..] to the current
2466 	 * server time.
2467 	 */
2468 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2469 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2470 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2471 	return (error);
2472 }
2473 
2474 int
2475 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2476 {
2477 	struct vnode *vp;
2478 	int error;
2479 
2480 	if (fp->f_type == DTYPE_FIFO)
2481 		kif->kf_type = KF_TYPE_FIFO;
2482 	else
2483 		kif->kf_type = KF_TYPE_VNODE;
2484 	vp = fp->f_vnode;
2485 	vref(vp);
2486 	FILEDESC_SUNLOCK(fdp);
2487 	error = vn_fill_kinfo_vnode(vp, kif);
2488 	vrele(vp);
2489 	FILEDESC_SLOCK(fdp);
2490 	return (error);
2491 }
2492 
2493 static inline void
2494 vn_fill_junk(struct kinfo_file *kif)
2495 {
2496 	size_t len, olen;
2497 
2498 	/*
2499 	 * Simulate vn_fullpath returning changing values for a given
2500 	 * vp during e.g. coredump.
2501 	 */
2502 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2503 	olen = strlen(kif->kf_path);
2504 	if (len < olen)
2505 		strcpy(&kif->kf_path[len - 1], "$");
2506 	else
2507 		for (; olen < len; olen++)
2508 			strcpy(&kif->kf_path[olen], "A");
2509 }
2510 
2511 int
2512 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2513 {
2514 	struct vattr va;
2515 	char *fullpath, *freepath;
2516 	int error;
2517 
2518 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2519 	freepath = NULL;
2520 	fullpath = "-";
2521 	error = vn_fullpath(vp, &fullpath, &freepath);
2522 	if (error == 0) {
2523 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2524 	}
2525 	if (freepath != NULL)
2526 		free(freepath, M_TEMP);
2527 
2528 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2529 		vn_fill_junk(kif);
2530 	);
2531 
2532 	/*
2533 	 * Retrieve vnode attributes.
2534 	 */
2535 	va.va_fsid = VNOVAL;
2536 	va.va_rdev = NODEV;
2537 	vn_lock(vp, LK_SHARED | LK_RETRY);
2538 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2539 	VOP_UNLOCK(vp);
2540 	if (error != 0)
2541 		return (error);
2542 	if (va.va_fsid != VNOVAL)
2543 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2544 	else
2545 		kif->kf_un.kf_file.kf_file_fsid =
2546 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2547 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2548 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2549 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2550 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2551 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2552 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2553 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2554 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2555 	return (0);
2556 }
2557 
2558 int
2559 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2560     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2561     struct thread *td)
2562 {
2563 #ifdef HWPMC_HOOKS
2564 	struct pmckern_map_in pkm;
2565 #endif
2566 	struct mount *mp;
2567 	struct vnode *vp;
2568 	vm_object_t object;
2569 	vm_prot_t maxprot;
2570 	boolean_t writecounted;
2571 	int error;
2572 
2573 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2574     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2575 	/*
2576 	 * POSIX shared-memory objects are defined to have
2577 	 * kernel persistence, and are not defined to support
2578 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2579 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2580 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2581 	 * flag to request this behavior.
2582 	 */
2583 	if ((fp->f_flag & FPOSIXSHM) != 0)
2584 		flags |= MAP_NOSYNC;
2585 #endif
2586 	vp = fp->f_vnode;
2587 
2588 	/*
2589 	 * Ensure that file and memory protections are
2590 	 * compatible.  Note that we only worry about
2591 	 * writability if mapping is shared; in this case,
2592 	 * current and max prot are dictated by the open file.
2593 	 * XXX use the vnode instead?  Problem is: what
2594 	 * credentials do we use for determination? What if
2595 	 * proc does a setuid?
2596 	 */
2597 	mp = vp->v_mount;
2598 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2599 		maxprot = VM_PROT_NONE;
2600 		if ((prot & VM_PROT_EXECUTE) != 0)
2601 			return (EACCES);
2602 	} else
2603 		maxprot = VM_PROT_EXECUTE;
2604 	if ((fp->f_flag & FREAD) != 0)
2605 		maxprot |= VM_PROT_READ;
2606 	else if ((prot & VM_PROT_READ) != 0)
2607 		return (EACCES);
2608 
2609 	/*
2610 	 * If we are sharing potential changes via MAP_SHARED and we
2611 	 * are trying to get write permission although we opened it
2612 	 * without asking for it, bail out.
2613 	 */
2614 	if ((flags & MAP_SHARED) != 0) {
2615 		if ((fp->f_flag & FWRITE) != 0)
2616 			maxprot |= VM_PROT_WRITE;
2617 		else if ((prot & VM_PROT_WRITE) != 0)
2618 			return (EACCES);
2619 	} else {
2620 		maxprot |= VM_PROT_WRITE;
2621 		cap_maxprot |= VM_PROT_WRITE;
2622 	}
2623 	maxprot &= cap_maxprot;
2624 
2625 	/*
2626 	 * For regular files and shared memory, POSIX requires that
2627 	 * the value of foff be a legitimate offset within the data
2628 	 * object.  In particular, negative offsets are invalid.
2629 	 * Blocking negative offsets and overflows here avoids
2630 	 * possible wraparound or user-level access into reserved
2631 	 * ranges of the data object later.  In contrast, POSIX does
2632 	 * not dictate how offsets are used by device drivers, so in
2633 	 * the case of a device mapping a negative offset is passed
2634 	 * on.
2635 	 */
2636 	if (
2637 #ifdef _LP64
2638 	    size > OFF_MAX ||
2639 #endif
2640 	    foff > OFF_MAX - size)
2641 		return (EINVAL);
2642 
2643 	writecounted = FALSE;
2644 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2645 	    &foff, &object, &writecounted);
2646 	if (error != 0)
2647 		return (error);
2648 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2649 	    foff, writecounted, td);
2650 	if (error != 0) {
2651 		/*
2652 		 * If this mapping was accounted for in the vnode's
2653 		 * writecount, then undo that now.
2654 		 */
2655 		if (writecounted)
2656 			vm_pager_release_writecount(object, 0, size);
2657 		vm_object_deallocate(object);
2658 	}
2659 #ifdef HWPMC_HOOKS
2660 	/* Inform hwpmc(4) if an executable is being mapped. */
2661 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2662 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2663 			pkm.pm_file = vp;
2664 			pkm.pm_address = (uintptr_t) *addr;
2665 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2666 		}
2667 	}
2668 #endif
2669 	return (error);
2670 }
2671 
2672 void
2673 vn_fsid(struct vnode *vp, struct vattr *va)
2674 {
2675 	fsid_t *f;
2676 
2677 	f = &vp->v_mount->mnt_stat.f_fsid;
2678 	va->va_fsid = (uint32_t)f->val[1];
2679 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2680 	va->va_fsid += (uint32_t)f->val[0];
2681 }
2682 
2683 int
2684 vn_fsync_buf(struct vnode *vp, int waitfor)
2685 {
2686 	struct buf *bp, *nbp;
2687 	struct bufobj *bo;
2688 	struct mount *mp;
2689 	int error, maxretry;
2690 
2691 	error = 0;
2692 	maxretry = 10000;     /* large, arbitrarily chosen */
2693 	mp = NULL;
2694 	if (vp->v_type == VCHR) {
2695 		VI_LOCK(vp);
2696 		mp = vp->v_rdev->si_mountpt;
2697 		VI_UNLOCK(vp);
2698 	}
2699 	bo = &vp->v_bufobj;
2700 	BO_LOCK(bo);
2701 loop1:
2702 	/*
2703 	 * MARK/SCAN initialization to avoid infinite loops.
2704 	 */
2705         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2706 		bp->b_vflags &= ~BV_SCANNED;
2707 		bp->b_error = 0;
2708 	}
2709 
2710 	/*
2711 	 * Flush all dirty buffers associated with a vnode.
2712 	 */
2713 loop2:
2714 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2715 		if ((bp->b_vflags & BV_SCANNED) != 0)
2716 			continue;
2717 		bp->b_vflags |= BV_SCANNED;
2718 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2719 			if (waitfor != MNT_WAIT)
2720 				continue;
2721 			if (BUF_LOCK(bp,
2722 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2723 			    BO_LOCKPTR(bo)) != 0) {
2724 				BO_LOCK(bo);
2725 				goto loop1;
2726 			}
2727 			BO_LOCK(bo);
2728 		}
2729 		BO_UNLOCK(bo);
2730 		KASSERT(bp->b_bufobj == bo,
2731 		    ("bp %p wrong b_bufobj %p should be %p",
2732 		    bp, bp->b_bufobj, bo));
2733 		if ((bp->b_flags & B_DELWRI) == 0)
2734 			panic("fsync: not dirty");
2735 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2736 			vfs_bio_awrite(bp);
2737 		} else {
2738 			bremfree(bp);
2739 			bawrite(bp);
2740 		}
2741 		if (maxretry < 1000)
2742 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2743 		BO_LOCK(bo);
2744 		goto loop2;
2745 	}
2746 
2747 	/*
2748 	 * If synchronous the caller expects us to completely resolve all
2749 	 * dirty buffers in the system.  Wait for in-progress I/O to
2750 	 * complete (which could include background bitmap writes), then
2751 	 * retry if dirty blocks still exist.
2752 	 */
2753 	if (waitfor == MNT_WAIT) {
2754 		bufobj_wwait(bo, 0, 0);
2755 		if (bo->bo_dirty.bv_cnt > 0) {
2756 			/*
2757 			 * If we are unable to write any of these buffers
2758 			 * then we fail now rather than trying endlessly
2759 			 * to write them out.
2760 			 */
2761 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2762 				if ((error = bp->b_error) != 0)
2763 					break;
2764 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2765 			    (error == 0 && --maxretry >= 0))
2766 				goto loop1;
2767 			if (error == 0)
2768 				error = EAGAIN;
2769 		}
2770 	}
2771 	BO_UNLOCK(bo);
2772 	if (error != 0)
2773 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2774 
2775 	return (error);
2776 }
2777 
2778 /*
2779  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
2780  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
2781  * to do the actual copy.
2782  * vn_generic_copy_file_range() is factored out, so it can be called
2783  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
2784  * different file systems.
2785  */
2786 int
2787 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
2788     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
2789     struct ucred *outcred, struct thread *fsize_td)
2790 {
2791 	int error;
2792 	size_t len;
2793 	uint64_t uvalin, uvalout;
2794 
2795 	len = *lenp;
2796 	*lenp = 0;		/* For error returns. */
2797 	error = 0;
2798 
2799 	/* Do some sanity checks on the arguments. */
2800 	uvalin = *inoffp;
2801 	uvalin += len;
2802 	uvalout = *outoffp;
2803 	uvalout += len;
2804 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
2805 		error = EISDIR;
2806 	else if (*inoffp < 0 || uvalin > INT64_MAX || uvalin <
2807 	    (uint64_t)*inoffp || *outoffp < 0 || uvalout > INT64_MAX ||
2808 	    uvalout < (uint64_t)*outoffp || invp->v_type != VREG ||
2809 	    outvp->v_type != VREG)
2810 		error = EINVAL;
2811 	if (error != 0)
2812 		goto out;
2813 
2814 	/*
2815 	 * If the two vnode are for the same file system, call
2816 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
2817 	 * which can handle copies across multiple file systems.
2818 	 */
2819 	*lenp = len;
2820 	if (invp->v_mount == outvp->v_mount)
2821 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
2822 		    lenp, flags, incred, outcred, fsize_td);
2823 	else
2824 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
2825 		    outoffp, lenp, flags, incred, outcred, fsize_td);
2826 out:
2827 	return (error);
2828 }
2829 
2830 /*
2831  * Test len bytes of data starting at dat for all bytes == 0.
2832  * Return true if all bytes are zero, false otherwise.
2833  * Expects dat to be well aligned.
2834  */
2835 static bool
2836 mem_iszero(void *dat, int len)
2837 {
2838 	int i;
2839 	const u_int *p;
2840 	const char *cp;
2841 
2842 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
2843 		if (len >= sizeof(*p)) {
2844 			if (*p != 0)
2845 				return (false);
2846 		} else {
2847 			cp = (const char *)p;
2848 			for (i = 0; i < len; i++, cp++)
2849 				if (*cp != '\0')
2850 					return (false);
2851 		}
2852 	}
2853 	return (true);
2854 }
2855 
2856 /*
2857  * Look for a hole in the output file and, if found, adjust *outoffp
2858  * and *xferp to skip past the hole.
2859  * *xferp is the entire hole length to be written and xfer2 is how many bytes
2860  * to be written as 0's upon return.
2861  */
2862 static off_t
2863 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
2864     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
2865 {
2866 	int error;
2867 	off_t delta;
2868 
2869 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
2870 		*dataoffp = *outoffp;
2871 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
2872 		    curthread);
2873 		if (error == 0) {
2874 			*holeoffp = *dataoffp;
2875 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
2876 			    curthread);
2877 		}
2878 		if (error != 0 || *holeoffp == *dataoffp) {
2879 			/*
2880 			 * Since outvp is unlocked, it may be possible for
2881 			 * another thread to do a truncate(), lseek(), write()
2882 			 * creating a hole at startoff between the above
2883 			 * VOP_IOCTL() calls, if the other thread does not do
2884 			 * rangelocking.
2885 			 * If that happens, *holeoffp == *dataoffp and finding
2886 			 * the hole has failed, so disable vn_skip_hole().
2887 			 */
2888 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
2889 			return (xfer2);
2890 		}
2891 		KASSERT(*dataoffp >= *outoffp,
2892 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
2893 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
2894 		KASSERT(*holeoffp > *dataoffp,
2895 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
2896 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
2897 	}
2898 
2899 	/*
2900 	 * If there is a hole before the data starts, advance *outoffp and
2901 	 * *xferp past the hole.
2902 	 */
2903 	if (*dataoffp > *outoffp) {
2904 		delta = *dataoffp - *outoffp;
2905 		if (delta >= *xferp) {
2906 			/* Entire *xferp is a hole. */
2907 			*outoffp += *xferp;
2908 			*xferp = 0;
2909 			return (0);
2910 		}
2911 		*xferp -= delta;
2912 		*outoffp += delta;
2913 		xfer2 = MIN(xfer2, *xferp);
2914 	}
2915 
2916 	/*
2917 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
2918 	 * that the write ends at the start of the hole.
2919 	 * *holeoffp should always be greater than *outoffp, but for the
2920 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
2921 	 * value.
2922 	 */
2923 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
2924 		xfer2 = *holeoffp - *outoffp;
2925 	return (xfer2);
2926 }
2927 
2928 /*
2929  * Write an xfer sized chunk to outvp in blksize blocks from dat.
2930  * dat is a maximum of blksize in length and can be written repeatedly in
2931  * the chunk.
2932  * If growfile == true, just grow the file via vn_truncate_locked() instead
2933  * of doing actual writes.
2934  * If checkhole == true, a hole is being punched, so skip over any hole
2935  * already in the output file.
2936  */
2937 static int
2938 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
2939     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
2940 {
2941 	struct mount *mp;
2942 	off_t dataoff, holeoff, xfer2;
2943 	int error, lckf;
2944 
2945 	/*
2946 	 * Loop around doing writes of blksize until write has been completed.
2947 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
2948 	 * done for each iteration, since the xfer argument can be very
2949 	 * large if there is a large hole to punch in the output file.
2950 	 */
2951 	error = 0;
2952 	holeoff = 0;
2953 	do {
2954 		xfer2 = MIN(xfer, blksize);
2955 		if (checkhole) {
2956 			/*
2957 			 * Punching a hole.  Skip writing if there is
2958 			 * already a hole in the output file.
2959 			 */
2960 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
2961 			    &dataoff, &holeoff, cred);
2962 			if (xfer == 0)
2963 				break;
2964 			if (holeoff < 0)
2965 				checkhole = false;
2966 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
2967 			    (intmax_t)xfer2));
2968 		}
2969 		bwillwrite();
2970 		mp = NULL;
2971 		error = vn_start_write(outvp, &mp, V_WAIT);
2972 		if (error == 0) {
2973 			if (MNT_SHARED_WRITES(mp))
2974 				lckf = LK_SHARED;
2975 			else
2976 				lckf = LK_EXCLUSIVE;
2977 			error = vn_lock(outvp, lckf);
2978 		}
2979 		if (error == 0) {
2980 			if (growfile)
2981 				error = vn_truncate_locked(outvp, outoff + xfer,
2982 				    false, cred);
2983 			else {
2984 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
2985 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
2986 				    curthread->td_ucred, cred, NULL, curthread);
2987 				outoff += xfer2;
2988 				xfer -= xfer2;
2989 			}
2990 			VOP_UNLOCK(outvp);
2991 		}
2992 		if (mp != NULL)
2993 			vn_finished_write(mp);
2994 	} while (!growfile && xfer > 0 && error == 0);
2995 	return (error);
2996 }
2997 
2998 /*
2999  * Copy a byte range of one file to another.  This function can handle the
3000  * case where invp and outvp are on different file systems.
3001  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3002  * is no better file system specific way to do it.
3003  */
3004 int
3005 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3006     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3007     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3008 {
3009 	struct vattr va;
3010 	struct mount *mp;
3011 	struct uio io;
3012 	off_t startoff, endoff, xfer, xfer2;
3013 	u_long blksize;
3014 	int error;
3015 	bool cantseek, readzeros, eof, lastblock;
3016 	ssize_t aresid;
3017 	size_t copylen, len, savlen;
3018 	char *dat;
3019 	long holein, holeout;
3020 
3021 	holein = holeout = 0;
3022 	savlen = len = *lenp;
3023 	error = 0;
3024 	dat = NULL;
3025 
3026 	error = vn_lock(invp, LK_SHARED);
3027 	if (error != 0)
3028 		goto out;
3029 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3030 		holein = 0;
3031 	VOP_UNLOCK(invp);
3032 
3033 	mp = NULL;
3034 	error = vn_start_write(outvp, &mp, V_WAIT);
3035 	if (error == 0)
3036 		error = vn_lock(outvp, LK_EXCLUSIVE);
3037 	if (error == 0) {
3038 		/*
3039 		 * If fsize_td != NULL, do a vn_rlimit_fsize() call,
3040 		 * now that outvp is locked.
3041 		 */
3042 		if (fsize_td != NULL) {
3043 			io.uio_offset = *outoffp;
3044 			io.uio_resid = len;
3045 			error = vn_rlimit_fsize(outvp, &io, fsize_td);
3046 			if (error != 0)
3047 				error = EFBIG;
3048 		}
3049 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3050 			holeout = 0;
3051 		/*
3052 		 * Holes that are past EOF do not need to be written as a block
3053 		 * of zero bytes.  So, truncate the output file as far as
3054 		 * possible and then use va.va_size to decide if writing 0
3055 		 * bytes is necessary in the loop below.
3056 		 */
3057 		if (error == 0)
3058 			error = VOP_GETATTR(outvp, &va, outcred);
3059 		if (error == 0 && va.va_size > *outoffp && va.va_size <=
3060 		    *outoffp + len) {
3061 #ifdef MAC
3062 			error = mac_vnode_check_write(curthread->td_ucred,
3063 			    outcred, outvp);
3064 			if (error == 0)
3065 #endif
3066 				error = vn_truncate_locked(outvp, *outoffp,
3067 				    false, outcred);
3068 			if (error == 0)
3069 				va.va_size = *outoffp;
3070 		}
3071 		VOP_UNLOCK(outvp);
3072 	}
3073 	if (mp != NULL)
3074 		vn_finished_write(mp);
3075 	if (error != 0)
3076 		goto out;
3077 
3078 	/*
3079 	 * Set the blksize to the larger of the hole sizes for invp and outvp.
3080 	 * If hole sizes aren't available, set the blksize to the larger
3081 	 * f_iosize of invp and outvp.
3082 	 * This code expects the hole sizes and f_iosizes to be powers of 2.
3083 	 * This value is clipped at 4Kbytes and 1Mbyte.
3084 	 */
3085 	blksize = MAX(holein, holeout);
3086 	if (blksize == 0)
3087 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3088 		    outvp->v_mount->mnt_stat.f_iosize);
3089 	if (blksize < 4096)
3090 		blksize = 4096;
3091 	else if (blksize > 1024 * 1024)
3092 		blksize = 1024 * 1024;
3093 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3094 
3095 	/*
3096 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3097 	 * to find holes.  Otherwise, just scan the read block for all 0s
3098 	 * in the inner loop where the data copying is done.
3099 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3100 	 * support holes on the server, but do not support FIOSEEKHOLE.
3101 	 */
3102 	eof = false;
3103 	while (len > 0 && error == 0 && !eof) {
3104 		endoff = 0;			/* To shut up compilers. */
3105 		cantseek = true;
3106 		startoff = *inoffp;
3107 		copylen = len;
3108 
3109 		/*
3110 		 * Find the next data area.  If there is just a hole to EOF,
3111 		 * FIOSEEKDATA should fail and then we drop down into the
3112 		 * inner loop and create the hole on the outvp file.
3113 		 * (I do not know if any file system will report a hole to
3114 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3115 		 *  will fail for those file systems.)
3116 		 *
3117 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3118 		 * the code just falls through to the inner copy loop.
3119 		 */
3120 		error = EINVAL;
3121 		if (holein > 0)
3122 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3123 			    incred, curthread);
3124 		if (error == 0) {
3125 			endoff = startoff;
3126 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3127 			    incred, curthread);
3128 			/*
3129 			 * Since invp is unlocked, it may be possible for
3130 			 * another thread to do a truncate(), lseek(), write()
3131 			 * creating a hole at startoff between the above
3132 			 * VOP_IOCTL() calls, if the other thread does not do
3133 			 * rangelocking.
3134 			 * If that happens, startoff == endoff and finding
3135 			 * the hole has failed, so set an error.
3136 			 */
3137 			if (error == 0 && startoff == endoff)
3138 				error = EINVAL; /* Any error. Reset to 0. */
3139 		}
3140 		if (error == 0) {
3141 			if (startoff > *inoffp) {
3142 				/* Found hole before data block. */
3143 				xfer = MIN(startoff - *inoffp, len);
3144 				if (*outoffp < va.va_size) {
3145 					/* Must write 0s to punch hole. */
3146 					xfer2 = MIN(va.va_size - *outoffp,
3147 					    xfer);
3148 					memset(dat, 0, MIN(xfer2, blksize));
3149 					error = vn_write_outvp(outvp, dat,
3150 					    *outoffp, xfer2, blksize, false,
3151 					    holeout > 0, outcred);
3152 				}
3153 
3154 				if (error == 0 && *outoffp + xfer >
3155 				    va.va_size && xfer == len)
3156 					/* Grow last block. */
3157 					error = vn_write_outvp(outvp, dat,
3158 					    *outoffp, xfer, blksize, true,
3159 					    false, outcred);
3160 				if (error == 0) {
3161 					*inoffp += xfer;
3162 					*outoffp += xfer;
3163 					len -= xfer;
3164 				}
3165 			}
3166 			copylen = MIN(len, endoff - startoff);
3167 			cantseek = false;
3168 		} else {
3169 			cantseek = true;
3170 			startoff = *inoffp;
3171 			copylen = len;
3172 			error = 0;
3173 		}
3174 
3175 		xfer = blksize;
3176 		if (cantseek) {
3177 			/*
3178 			 * Set first xfer to end at a block boundary, so that
3179 			 * holes are more likely detected in the loop below via
3180 			 * the for all bytes 0 method.
3181 			 */
3182 			xfer -= (*inoffp % blksize);
3183 		}
3184 		/* Loop copying the data block. */
3185 		while (copylen > 0 && error == 0 && !eof) {
3186 			if (copylen < xfer)
3187 				xfer = copylen;
3188 			error = vn_lock(invp, LK_SHARED);
3189 			if (error != 0)
3190 				goto out;
3191 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3192 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3193 			    curthread->td_ucred, incred, &aresid,
3194 			    curthread);
3195 			VOP_UNLOCK(invp);
3196 			lastblock = false;
3197 			if (error == 0 && aresid > 0) {
3198 				/* Stop the copy at EOF on the input file. */
3199 				xfer -= aresid;
3200 				eof = true;
3201 				lastblock = true;
3202 			}
3203 			if (error == 0) {
3204 				/*
3205 				 * Skip the write for holes past the initial EOF
3206 				 * of the output file, unless this is the last
3207 				 * write of the output file at EOF.
3208 				 */
3209 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3210 				    false;
3211 				if (xfer == len)
3212 					lastblock = true;
3213 				if (!cantseek || *outoffp < va.va_size ||
3214 				    lastblock || !readzeros)
3215 					error = vn_write_outvp(outvp, dat,
3216 					    *outoffp, xfer, blksize,
3217 					    readzeros && lastblock &&
3218 					    *outoffp >= va.va_size, false,
3219 					    outcred);
3220 				if (error == 0) {
3221 					*inoffp += xfer;
3222 					startoff += xfer;
3223 					*outoffp += xfer;
3224 					copylen -= xfer;
3225 					len -= xfer;
3226 				}
3227 			}
3228 			xfer = blksize;
3229 		}
3230 	}
3231 out:
3232 	*lenp = savlen - len;
3233 	free(dat, M_TEMP);
3234 	return (error);
3235 }
3236 
3237 static int
3238 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3239 {
3240 	struct mount *mp;
3241 	struct vnode *vp;
3242 	off_t olen, ooffset;
3243 	int error;
3244 #ifdef AUDIT
3245 	int audited_vnode1 = 0;
3246 #endif
3247 
3248 	vp = fp->f_vnode;
3249 	if (vp->v_type != VREG)
3250 		return (ENODEV);
3251 
3252 	/* Allocating blocks may take a long time, so iterate. */
3253 	for (;;) {
3254 		olen = len;
3255 		ooffset = offset;
3256 
3257 		bwillwrite();
3258 		mp = NULL;
3259 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
3260 		if (error != 0)
3261 			break;
3262 		error = vn_lock(vp, LK_EXCLUSIVE);
3263 		if (error != 0) {
3264 			vn_finished_write(mp);
3265 			break;
3266 		}
3267 #ifdef AUDIT
3268 		if (!audited_vnode1) {
3269 			AUDIT_ARG_VNODE1(vp);
3270 			audited_vnode1 = 1;
3271 		}
3272 #endif
3273 #ifdef MAC
3274 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3275 		if (error == 0)
3276 #endif
3277 			error = VOP_ALLOCATE(vp, &offset, &len);
3278 		VOP_UNLOCK(vp);
3279 		vn_finished_write(mp);
3280 
3281 		if (olen + ooffset != offset + len) {
3282 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3283 			    ooffset, olen, offset, len);
3284 		}
3285 		if (error != 0 || len == 0)
3286 			break;
3287 		KASSERT(olen > len, ("Iteration did not make progress?"));
3288 		maybe_yield();
3289 	}
3290 
3291 	return (error);
3292 }
3293