1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org> 11 * Copyright (c) 2013, 2014 The FreeBSD Foundation 12 * 13 * Portions of this software were developed by Konstantin Belousov 14 * under sponsorship from the FreeBSD Foundation. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/disk.h> 49 #include <sys/fail.h> 50 #include <sys/fcntl.h> 51 #include <sys/file.h> 52 #include <sys/kdb.h> 53 #include <sys/stat.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/limits.h> 57 #include <sys/lock.h> 58 #include <sys/mman.h> 59 #include <sys/mount.h> 60 #include <sys/mutex.h> 61 #include <sys/namei.h> 62 #include <sys/vnode.h> 63 #include <sys/bio.h> 64 #include <sys/buf.h> 65 #include <sys/filio.h> 66 #include <sys/resourcevar.h> 67 #include <sys/rwlock.h> 68 #include <sys/sx.h> 69 #include <sys/sysctl.h> 70 #include <sys/ttycom.h> 71 #include <sys/conf.h> 72 #include <sys/syslog.h> 73 #include <sys/unistd.h> 74 #include <sys/user.h> 75 76 #include <security/audit/audit.h> 77 #include <security/mac/mac_framework.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_extern.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vnode_pager.h> 86 87 static fo_rdwr_t vn_read; 88 static fo_rdwr_t vn_write; 89 static fo_rdwr_t vn_io_fault; 90 static fo_truncate_t vn_truncate; 91 static fo_ioctl_t vn_ioctl; 92 static fo_poll_t vn_poll; 93 static fo_kqfilter_t vn_kqfilter; 94 static fo_stat_t vn_statfile; 95 static fo_close_t vn_closefile; 96 static fo_mmap_t vn_mmap; 97 98 struct fileops vnops = { 99 .fo_read = vn_io_fault, 100 .fo_write = vn_io_fault, 101 .fo_truncate = vn_truncate, 102 .fo_ioctl = vn_ioctl, 103 .fo_poll = vn_poll, 104 .fo_kqfilter = vn_kqfilter, 105 .fo_stat = vn_statfile, 106 .fo_close = vn_closefile, 107 .fo_chmod = vn_chmod, 108 .fo_chown = vn_chown, 109 .fo_sendfile = vn_sendfile, 110 .fo_seek = vn_seek, 111 .fo_fill_kinfo = vn_fill_kinfo, 112 .fo_mmap = vn_mmap, 113 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE 114 }; 115 116 static const int io_hold_cnt = 16; 117 static int vn_io_fault_enable = 1; 118 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW, 119 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); 120 static int vn_io_fault_prefault = 0; 121 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW, 122 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting"); 123 static u_long vn_io_faults_cnt; 124 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, 125 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); 126 127 /* 128 * Returns true if vn_io_fault mode of handling the i/o request should 129 * be used. 130 */ 131 static bool 132 do_vn_io_fault(struct vnode *vp, struct uio *uio) 133 { 134 struct mount *mp; 135 136 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG && 137 (mp = vp->v_mount) != NULL && 138 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable); 139 } 140 141 /* 142 * Structure used to pass arguments to vn_io_fault1(), to do either 143 * file- or vnode-based I/O calls. 144 */ 145 struct vn_io_fault_args { 146 enum { 147 VN_IO_FAULT_FOP, 148 VN_IO_FAULT_VOP 149 } kind; 150 struct ucred *cred; 151 int flags; 152 union { 153 struct fop_args_tag { 154 struct file *fp; 155 fo_rdwr_t *doio; 156 } fop_args; 157 struct vop_args_tag { 158 struct vnode *vp; 159 } vop_args; 160 } args; 161 }; 162 163 static int vn_io_fault1(struct vnode *vp, struct uio *uio, 164 struct vn_io_fault_args *args, struct thread *td); 165 166 int 167 vn_open(ndp, flagp, cmode, fp) 168 struct nameidata *ndp; 169 int *flagp, cmode; 170 struct file *fp; 171 { 172 struct thread *td = ndp->ni_cnd.cn_thread; 173 174 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); 175 } 176 177 /* 178 * Common code for vnode open operations via a name lookup. 179 * Lookup the vnode and invoke VOP_CREATE if needed. 180 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. 181 * 182 * Note that this does NOT free nameidata for the successful case, 183 * due to the NDINIT being done elsewhere. 184 */ 185 int 186 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, 187 struct ucred *cred, struct file *fp) 188 { 189 struct vnode *vp; 190 struct mount *mp; 191 struct thread *td = ndp->ni_cnd.cn_thread; 192 struct vattr vat; 193 struct vattr *vap = &vat; 194 int fmode, error; 195 196 restart: 197 fmode = *flagp; 198 if (fmode & O_CREAT) { 199 ndp->ni_cnd.cn_nameiop = CREATE; 200 /* 201 * Set NOCACHE to avoid flushing the cache when 202 * rolling in many files at once. 203 */ 204 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE; 205 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) 206 ndp->ni_cnd.cn_flags |= FOLLOW; 207 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 208 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 209 if (vn_open_flags & VN_OPEN_NOCAPCHECK) 210 ndp->ni_cnd.cn_flags |= NOCAPCHECK; 211 bwillwrite(); 212 if ((error = namei(ndp)) != 0) 213 return (error); 214 if (ndp->ni_vp == NULL) { 215 VATTR_NULL(vap); 216 vap->va_type = VREG; 217 vap->va_mode = cmode; 218 if (fmode & O_EXCL) 219 vap->va_vaflags |= VA_EXCLUSIVE; 220 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { 221 NDFREE(ndp, NDF_ONLY_PNBUF); 222 vput(ndp->ni_dvp); 223 if ((error = vn_start_write(NULL, &mp, 224 V_XSLEEP | PCATCH)) != 0) 225 return (error); 226 goto restart; 227 } 228 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0) 229 ndp->ni_cnd.cn_flags |= MAKEENTRY; 230 #ifdef MAC 231 error = mac_vnode_check_create(cred, ndp->ni_dvp, 232 &ndp->ni_cnd, vap); 233 if (error == 0) 234 #endif 235 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, 236 &ndp->ni_cnd, vap); 237 vput(ndp->ni_dvp); 238 vn_finished_write(mp); 239 if (error) { 240 NDFREE(ndp, NDF_ONLY_PNBUF); 241 return (error); 242 } 243 fmode &= ~O_TRUNC; 244 vp = ndp->ni_vp; 245 } else { 246 if (ndp->ni_dvp == ndp->ni_vp) 247 vrele(ndp->ni_dvp); 248 else 249 vput(ndp->ni_dvp); 250 ndp->ni_dvp = NULL; 251 vp = ndp->ni_vp; 252 if (fmode & O_EXCL) { 253 error = EEXIST; 254 goto bad; 255 } 256 fmode &= ~O_CREAT; 257 } 258 } else { 259 ndp->ni_cnd.cn_nameiop = LOOKUP; 260 ndp->ni_cnd.cn_flags = ISOPEN | 261 ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF; 262 if (!(fmode & FWRITE)) 263 ndp->ni_cnd.cn_flags |= LOCKSHARED; 264 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 265 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 266 if (vn_open_flags & VN_OPEN_NOCAPCHECK) 267 ndp->ni_cnd.cn_flags |= NOCAPCHECK; 268 if ((error = namei(ndp)) != 0) 269 return (error); 270 vp = ndp->ni_vp; 271 } 272 error = vn_open_vnode(vp, fmode, cred, td, fp); 273 if (error) 274 goto bad; 275 *flagp = fmode; 276 return (0); 277 bad: 278 NDFREE(ndp, NDF_ONLY_PNBUF); 279 vput(vp); 280 *flagp = fmode; 281 ndp->ni_vp = NULL; 282 return (error); 283 } 284 285 /* 286 * Common code for vnode open operations once a vnode is located. 287 * Check permissions, and call the VOP_OPEN routine. 288 */ 289 int 290 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, 291 struct thread *td, struct file *fp) 292 { 293 struct mount *mp; 294 accmode_t accmode; 295 struct flock lf; 296 int error, have_flock, lock_flags, type; 297 298 if (vp->v_type == VLNK) 299 return (EMLINK); 300 if (vp->v_type == VSOCK) 301 return (EOPNOTSUPP); 302 if (vp->v_type != VDIR && fmode & O_DIRECTORY) 303 return (ENOTDIR); 304 accmode = 0; 305 if (fmode & (FWRITE | O_TRUNC)) { 306 if (vp->v_type == VDIR) 307 return (EISDIR); 308 accmode |= VWRITE; 309 } 310 if (fmode & FREAD) 311 accmode |= VREAD; 312 if (fmode & FEXEC) 313 accmode |= VEXEC; 314 if ((fmode & O_APPEND) && (fmode & FWRITE)) 315 accmode |= VAPPEND; 316 #ifdef MAC 317 if (fmode & O_CREAT) 318 accmode |= VCREAT; 319 if (fmode & O_VERIFY) 320 accmode |= VVERIFY; 321 error = mac_vnode_check_open(cred, vp, accmode); 322 if (error) 323 return (error); 324 325 accmode &= ~(VCREAT | VVERIFY); 326 #endif 327 if ((fmode & O_CREAT) == 0) { 328 if (accmode & VWRITE) { 329 error = vn_writechk(vp); 330 if (error) 331 return (error); 332 } 333 if (accmode) { 334 error = VOP_ACCESS(vp, accmode, cred, td); 335 if (error) 336 return (error); 337 } 338 } 339 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 340 vn_lock(vp, LK_UPGRADE | LK_RETRY); 341 if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0) 342 return (error); 343 344 if (fmode & (O_EXLOCK | O_SHLOCK)) { 345 KASSERT(fp != NULL, ("open with flock requires fp")); 346 lock_flags = VOP_ISLOCKED(vp); 347 VOP_UNLOCK(vp, 0); 348 lf.l_whence = SEEK_SET; 349 lf.l_start = 0; 350 lf.l_len = 0; 351 if (fmode & O_EXLOCK) 352 lf.l_type = F_WRLCK; 353 else 354 lf.l_type = F_RDLCK; 355 type = F_FLOCK; 356 if ((fmode & FNONBLOCK) == 0) 357 type |= F_WAIT; 358 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); 359 have_flock = (error == 0); 360 vn_lock(vp, lock_flags | LK_RETRY); 361 if (error == 0 && vp->v_iflag & VI_DOOMED) 362 error = ENOENT; 363 /* 364 * Another thread might have used this vnode as an 365 * executable while the vnode lock was dropped. 366 * Ensure the vnode is still able to be opened for 367 * writing after the lock has been obtained. 368 */ 369 if (error == 0 && accmode & VWRITE) 370 error = vn_writechk(vp); 371 if (error) { 372 VOP_UNLOCK(vp, 0); 373 if (have_flock) { 374 lf.l_whence = SEEK_SET; 375 lf.l_start = 0; 376 lf.l_len = 0; 377 lf.l_type = F_UNLCK; 378 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, 379 F_FLOCK); 380 } 381 vn_start_write(vp, &mp, V_WAIT); 382 vn_lock(vp, lock_flags | LK_RETRY); 383 (void)VOP_CLOSE(vp, fmode, cred, td); 384 vn_finished_write(mp); 385 /* Prevent second close from fdrop()->vn_close(). */ 386 if (fp != NULL) 387 fp->f_ops= &badfileops; 388 return (error); 389 } 390 fp->f_flag |= FHASLOCK; 391 } 392 if (fmode & FWRITE) { 393 VOP_ADD_WRITECOUNT(vp, 1); 394 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 395 __func__, vp, vp->v_writecount); 396 } 397 ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); 398 return (0); 399 } 400 401 /* 402 * Check for write permissions on the specified vnode. 403 * Prototype text segments cannot be written. 404 */ 405 int 406 vn_writechk(vp) 407 register struct vnode *vp; 408 { 409 410 ASSERT_VOP_LOCKED(vp, "vn_writechk"); 411 /* 412 * If there's shared text associated with 413 * the vnode, try to free it up once. If 414 * we fail, we can't allow writing. 415 */ 416 if (VOP_IS_TEXT(vp)) 417 return (ETXTBSY); 418 419 return (0); 420 } 421 422 /* 423 * Vnode close call 424 */ 425 int 426 vn_close(vp, flags, file_cred, td) 427 register struct vnode *vp; 428 int flags; 429 struct ucred *file_cred; 430 struct thread *td; 431 { 432 struct mount *mp; 433 int error, lock_flags; 434 435 if (vp->v_type != VFIFO && (flags & FWRITE) == 0 && 436 MNT_EXTENDED_SHARED(vp->v_mount)) 437 lock_flags = LK_SHARED; 438 else 439 lock_flags = LK_EXCLUSIVE; 440 441 vn_start_write(vp, &mp, V_WAIT); 442 vn_lock(vp, lock_flags | LK_RETRY); 443 if (flags & FWRITE) { 444 VNASSERT(vp->v_writecount > 0, vp, 445 ("vn_close: negative writecount")); 446 VOP_ADD_WRITECOUNT(vp, -1); 447 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 448 __func__, vp, vp->v_writecount); 449 } 450 error = VOP_CLOSE(vp, flags, file_cred, td); 451 vput(vp); 452 vn_finished_write(mp); 453 return (error); 454 } 455 456 /* 457 * Heuristic to detect sequential operation. 458 */ 459 static int 460 sequential_heuristic(struct uio *uio, struct file *fp) 461 { 462 463 ASSERT_VOP_LOCKED(fp->f_vnode, __func__); 464 if (fp->f_flag & FRDAHEAD) 465 return (fp->f_seqcount << IO_SEQSHIFT); 466 467 /* 468 * Offset 0 is handled specially. open() sets f_seqcount to 1 so 469 * that the first I/O is normally considered to be slightly 470 * sequential. Seeking to offset 0 doesn't change sequentiality 471 * unless previous seeks have reduced f_seqcount to 0, in which 472 * case offset 0 is not special. 473 */ 474 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || 475 uio->uio_offset == fp->f_nextoff) { 476 /* 477 * f_seqcount is in units of fixed-size blocks so that it 478 * depends mainly on the amount of sequential I/O and not 479 * much on the number of sequential I/O's. The fixed size 480 * of 16384 is hard-coded here since it is (not quite) just 481 * a magic size that works well here. This size is more 482 * closely related to the best I/O size for real disks than 483 * to any block size used by software. 484 */ 485 fp->f_seqcount += howmany(uio->uio_resid, 16384); 486 if (fp->f_seqcount > IO_SEQMAX) 487 fp->f_seqcount = IO_SEQMAX; 488 return (fp->f_seqcount << IO_SEQSHIFT); 489 } 490 491 /* Not sequential. Quickly draw-down sequentiality. */ 492 if (fp->f_seqcount > 1) 493 fp->f_seqcount = 1; 494 else 495 fp->f_seqcount = 0; 496 return (0); 497 } 498 499 /* 500 * Package up an I/O request on a vnode into a uio and do it. 501 */ 502 int 503 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, 504 enum uio_seg segflg, int ioflg, struct ucred *active_cred, 505 struct ucred *file_cred, ssize_t *aresid, struct thread *td) 506 { 507 struct uio auio; 508 struct iovec aiov; 509 struct mount *mp; 510 struct ucred *cred; 511 void *rl_cookie; 512 struct vn_io_fault_args args; 513 int error, lock_flags; 514 515 auio.uio_iov = &aiov; 516 auio.uio_iovcnt = 1; 517 aiov.iov_base = base; 518 aiov.iov_len = len; 519 auio.uio_resid = len; 520 auio.uio_offset = offset; 521 auio.uio_segflg = segflg; 522 auio.uio_rw = rw; 523 auio.uio_td = td; 524 error = 0; 525 526 if ((ioflg & IO_NODELOCKED) == 0) { 527 if ((ioflg & IO_RANGELOCKED) == 0) { 528 if (rw == UIO_READ) { 529 rl_cookie = vn_rangelock_rlock(vp, offset, 530 offset + len); 531 } else { 532 rl_cookie = vn_rangelock_wlock(vp, offset, 533 offset + len); 534 } 535 } else 536 rl_cookie = NULL; 537 mp = NULL; 538 if (rw == UIO_WRITE) { 539 if (vp->v_type != VCHR && 540 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) 541 != 0) 542 goto out; 543 if (MNT_SHARED_WRITES(mp) || 544 ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) 545 lock_flags = LK_SHARED; 546 else 547 lock_flags = LK_EXCLUSIVE; 548 } else 549 lock_flags = LK_SHARED; 550 vn_lock(vp, lock_flags | LK_RETRY); 551 } else 552 rl_cookie = NULL; 553 554 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 555 #ifdef MAC 556 if ((ioflg & IO_NOMACCHECK) == 0) { 557 if (rw == UIO_READ) 558 error = mac_vnode_check_read(active_cred, file_cred, 559 vp); 560 else 561 error = mac_vnode_check_write(active_cred, file_cred, 562 vp); 563 } 564 #endif 565 if (error == 0) { 566 if (file_cred != NULL) 567 cred = file_cred; 568 else 569 cred = active_cred; 570 if (do_vn_io_fault(vp, &auio)) { 571 args.kind = VN_IO_FAULT_VOP; 572 args.cred = cred; 573 args.flags = ioflg; 574 args.args.vop_args.vp = vp; 575 error = vn_io_fault1(vp, &auio, &args, td); 576 } else if (rw == UIO_READ) { 577 error = VOP_READ(vp, &auio, ioflg, cred); 578 } else /* if (rw == UIO_WRITE) */ { 579 error = VOP_WRITE(vp, &auio, ioflg, cred); 580 } 581 } 582 if (aresid) 583 *aresid = auio.uio_resid; 584 else 585 if (auio.uio_resid && error == 0) 586 error = EIO; 587 if ((ioflg & IO_NODELOCKED) == 0) { 588 VOP_UNLOCK(vp, 0); 589 if (mp != NULL) 590 vn_finished_write(mp); 591 } 592 out: 593 if (rl_cookie != NULL) 594 vn_rangelock_unlock(vp, rl_cookie); 595 return (error); 596 } 597 598 /* 599 * Package up an I/O request on a vnode into a uio and do it. The I/O 600 * request is split up into smaller chunks and we try to avoid saturating 601 * the buffer cache while potentially holding a vnode locked, so we 602 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() 603 * to give other processes a chance to lock the vnode (either other processes 604 * core'ing the same binary, or unrelated processes scanning the directory). 605 */ 606 int 607 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred, 608 file_cred, aresid, td) 609 enum uio_rw rw; 610 struct vnode *vp; 611 void *base; 612 size_t len; 613 off_t offset; 614 enum uio_seg segflg; 615 int ioflg; 616 struct ucred *active_cred; 617 struct ucred *file_cred; 618 size_t *aresid; 619 struct thread *td; 620 { 621 int error = 0; 622 ssize_t iaresid; 623 624 do { 625 int chunk; 626 627 /* 628 * Force `offset' to a multiple of MAXBSIZE except possibly 629 * for the first chunk, so that filesystems only need to 630 * write full blocks except possibly for the first and last 631 * chunks. 632 */ 633 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; 634 635 if (chunk > len) 636 chunk = len; 637 if (rw != UIO_READ && vp->v_type == VREG) 638 bwillwrite(); 639 iaresid = 0; 640 error = vn_rdwr(rw, vp, base, chunk, offset, segflg, 641 ioflg, active_cred, file_cred, &iaresid, td); 642 len -= chunk; /* aresid calc already includes length */ 643 if (error) 644 break; 645 offset += chunk; 646 base = (char *)base + chunk; 647 kern_yield(PRI_USER); 648 } while (len); 649 if (aresid) 650 *aresid = len + iaresid; 651 return (error); 652 } 653 654 off_t 655 foffset_lock(struct file *fp, int flags) 656 { 657 struct mtx *mtxp; 658 off_t res; 659 660 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 661 662 #if OFF_MAX <= LONG_MAX 663 /* 664 * Caller only wants the current f_offset value. Assume that 665 * the long and shorter integer types reads are atomic. 666 */ 667 if ((flags & FOF_NOLOCK) != 0) 668 return (fp->f_offset); 669 #endif 670 671 /* 672 * According to McKusick the vn lock was protecting f_offset here. 673 * It is now protected by the FOFFSET_LOCKED flag. 674 */ 675 mtxp = mtx_pool_find(mtxpool_sleep, fp); 676 mtx_lock(mtxp); 677 if ((flags & FOF_NOLOCK) == 0) { 678 while (fp->f_vnread_flags & FOFFSET_LOCKED) { 679 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; 680 msleep(&fp->f_vnread_flags, mtxp, PUSER -1, 681 "vofflock", 0); 682 } 683 fp->f_vnread_flags |= FOFFSET_LOCKED; 684 } 685 res = fp->f_offset; 686 mtx_unlock(mtxp); 687 return (res); 688 } 689 690 void 691 foffset_unlock(struct file *fp, off_t val, int flags) 692 { 693 struct mtx *mtxp; 694 695 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 696 697 #if OFF_MAX <= LONG_MAX 698 if ((flags & FOF_NOLOCK) != 0) { 699 if ((flags & FOF_NOUPDATE) == 0) 700 fp->f_offset = val; 701 if ((flags & FOF_NEXTOFF) != 0) 702 fp->f_nextoff = val; 703 return; 704 } 705 #endif 706 707 mtxp = mtx_pool_find(mtxpool_sleep, fp); 708 mtx_lock(mtxp); 709 if ((flags & FOF_NOUPDATE) == 0) 710 fp->f_offset = val; 711 if ((flags & FOF_NEXTOFF) != 0) 712 fp->f_nextoff = val; 713 if ((flags & FOF_NOLOCK) == 0) { 714 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, 715 ("Lost FOFFSET_LOCKED")); 716 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) 717 wakeup(&fp->f_vnread_flags); 718 fp->f_vnread_flags = 0; 719 } 720 mtx_unlock(mtxp); 721 } 722 723 void 724 foffset_lock_uio(struct file *fp, struct uio *uio, int flags) 725 { 726 727 if ((flags & FOF_OFFSET) == 0) 728 uio->uio_offset = foffset_lock(fp, flags); 729 } 730 731 void 732 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) 733 { 734 735 if ((flags & FOF_OFFSET) == 0) 736 foffset_unlock(fp, uio->uio_offset, flags); 737 } 738 739 static int 740 get_advice(struct file *fp, struct uio *uio) 741 { 742 struct mtx *mtxp; 743 int ret; 744 745 ret = POSIX_FADV_NORMAL; 746 if (fp->f_advice == NULL) 747 return (ret); 748 749 mtxp = mtx_pool_find(mtxpool_sleep, fp); 750 mtx_lock(mtxp); 751 if (uio->uio_offset >= fp->f_advice->fa_start && 752 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) 753 ret = fp->f_advice->fa_advice; 754 mtx_unlock(mtxp); 755 return (ret); 756 } 757 758 /* 759 * File table vnode read routine. 760 */ 761 static int 762 vn_read(fp, uio, active_cred, flags, td) 763 struct file *fp; 764 struct uio *uio; 765 struct ucred *active_cred; 766 int flags; 767 struct thread *td; 768 { 769 struct vnode *vp; 770 struct mtx *mtxp; 771 int error, ioflag; 772 int advice; 773 off_t offset, start, end; 774 775 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 776 uio->uio_td, td)); 777 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 778 vp = fp->f_vnode; 779 ioflag = 0; 780 if (fp->f_flag & FNONBLOCK) 781 ioflag |= IO_NDELAY; 782 if (fp->f_flag & O_DIRECT) 783 ioflag |= IO_DIRECT; 784 advice = get_advice(fp, uio); 785 vn_lock(vp, LK_SHARED | LK_RETRY); 786 787 switch (advice) { 788 case POSIX_FADV_NORMAL: 789 case POSIX_FADV_SEQUENTIAL: 790 case POSIX_FADV_NOREUSE: 791 ioflag |= sequential_heuristic(uio, fp); 792 break; 793 case POSIX_FADV_RANDOM: 794 /* Disable read-ahead for random I/O. */ 795 break; 796 } 797 offset = uio->uio_offset; 798 799 #ifdef MAC 800 error = mac_vnode_check_read(active_cred, fp->f_cred, vp); 801 if (error == 0) 802 #endif 803 error = VOP_READ(vp, uio, ioflag, fp->f_cred); 804 fp->f_nextoff = uio->uio_offset; 805 VOP_UNLOCK(vp, 0); 806 if (error == 0 && advice == POSIX_FADV_NOREUSE && 807 offset != uio->uio_offset) { 808 /* 809 * Use POSIX_FADV_DONTNEED to flush clean pages and 810 * buffers for the backing file after a 811 * POSIX_FADV_NOREUSE read(2). To optimize the common 812 * case of using POSIX_FADV_NOREUSE with sequential 813 * access, track the previous implicit DONTNEED 814 * request and grow this request to include the 815 * current read(2) in addition to the previous 816 * DONTNEED. With purely sequential access this will 817 * cause the DONTNEED requests to continously grow to 818 * cover all of the previously read regions of the 819 * file. This allows filesystem blocks that are 820 * accessed by multiple calls to read(2) to be flushed 821 * once the last read(2) finishes. 822 */ 823 start = offset; 824 end = uio->uio_offset - 1; 825 mtxp = mtx_pool_find(mtxpool_sleep, fp); 826 mtx_lock(mtxp); 827 if (fp->f_advice != NULL && 828 fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { 829 if (start != 0 && fp->f_advice->fa_prevend + 1 == start) 830 start = fp->f_advice->fa_prevstart; 831 else if (fp->f_advice->fa_prevstart != 0 && 832 fp->f_advice->fa_prevstart == end + 1) 833 end = fp->f_advice->fa_prevend; 834 fp->f_advice->fa_prevstart = start; 835 fp->f_advice->fa_prevend = end; 836 } 837 mtx_unlock(mtxp); 838 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); 839 } 840 return (error); 841 } 842 843 /* 844 * File table vnode write routine. 845 */ 846 static int 847 vn_write(fp, uio, active_cred, flags, td) 848 struct file *fp; 849 struct uio *uio; 850 struct ucred *active_cred; 851 int flags; 852 struct thread *td; 853 { 854 struct vnode *vp; 855 struct mount *mp; 856 struct mtx *mtxp; 857 int error, ioflag, lock_flags; 858 int advice; 859 off_t offset, start, end; 860 861 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 862 uio->uio_td, td)); 863 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 864 vp = fp->f_vnode; 865 if (vp->v_type == VREG) 866 bwillwrite(); 867 ioflag = IO_UNIT; 868 if (vp->v_type == VREG && (fp->f_flag & O_APPEND)) 869 ioflag |= IO_APPEND; 870 if (fp->f_flag & FNONBLOCK) 871 ioflag |= IO_NDELAY; 872 if (fp->f_flag & O_DIRECT) 873 ioflag |= IO_DIRECT; 874 if ((fp->f_flag & O_FSYNC) || 875 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))) 876 ioflag |= IO_SYNC; 877 mp = NULL; 878 if (vp->v_type != VCHR && 879 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 880 goto unlock; 881 882 advice = get_advice(fp, uio); 883 884 if (MNT_SHARED_WRITES(mp) || 885 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) { 886 lock_flags = LK_SHARED; 887 } else { 888 lock_flags = LK_EXCLUSIVE; 889 } 890 891 vn_lock(vp, lock_flags | LK_RETRY); 892 switch (advice) { 893 case POSIX_FADV_NORMAL: 894 case POSIX_FADV_SEQUENTIAL: 895 case POSIX_FADV_NOREUSE: 896 ioflag |= sequential_heuristic(uio, fp); 897 break; 898 case POSIX_FADV_RANDOM: 899 /* XXX: Is this correct? */ 900 break; 901 } 902 offset = uio->uio_offset; 903 904 #ifdef MAC 905 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 906 if (error == 0) 907 #endif 908 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); 909 fp->f_nextoff = uio->uio_offset; 910 VOP_UNLOCK(vp, 0); 911 if (vp->v_type != VCHR) 912 vn_finished_write(mp); 913 if (error == 0 && advice == POSIX_FADV_NOREUSE && 914 offset != uio->uio_offset) { 915 /* 916 * Use POSIX_FADV_DONTNEED to flush clean pages and 917 * buffers for the backing file after a 918 * POSIX_FADV_NOREUSE write(2). To optimize the 919 * common case of using POSIX_FADV_NOREUSE with 920 * sequential access, track the previous implicit 921 * DONTNEED request and grow this request to include 922 * the current write(2) in addition to the previous 923 * DONTNEED. With purely sequential access this will 924 * cause the DONTNEED requests to continously grow to 925 * cover all of the previously written regions of the 926 * file. 927 * 928 * Note that the blocks just written are almost 929 * certainly still dirty, so this only works when 930 * VOP_ADVISE() calls from subsequent writes push out 931 * the data written by this write(2) once the backing 932 * buffers are clean. However, as compared to forcing 933 * IO_DIRECT, this gives much saner behavior. Write 934 * clustering is still allowed, and clean pages are 935 * merely moved to the cache page queue rather than 936 * outright thrown away. This means a subsequent 937 * read(2) can still avoid hitting the disk if the 938 * pages have not been reclaimed. 939 * 940 * This does make POSIX_FADV_NOREUSE largely useless 941 * with non-sequential access. However, sequential 942 * access is the more common use case and the flag is 943 * merely advisory. 944 */ 945 start = offset; 946 end = uio->uio_offset - 1; 947 mtxp = mtx_pool_find(mtxpool_sleep, fp); 948 mtx_lock(mtxp); 949 if (fp->f_advice != NULL && 950 fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { 951 if (start != 0 && fp->f_advice->fa_prevend + 1 == start) 952 start = fp->f_advice->fa_prevstart; 953 else if (fp->f_advice->fa_prevstart != 0 && 954 fp->f_advice->fa_prevstart == end + 1) 955 end = fp->f_advice->fa_prevend; 956 fp->f_advice->fa_prevstart = start; 957 fp->f_advice->fa_prevend = end; 958 } 959 mtx_unlock(mtxp); 960 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); 961 } 962 963 unlock: 964 return (error); 965 } 966 967 /* 968 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to 969 * prevent the following deadlock: 970 * 971 * Assume that the thread A reads from the vnode vp1 into userspace 972 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is 973 * currently not resident, then system ends up with the call chain 974 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> 975 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) 976 * which establishes lock order vp1->vn_lock, then vp2->vn_lock. 977 * If, at the same time, thread B reads from vnode vp2 into buffer buf2 978 * backed by the pages of vnode vp1, and some page in buf2 is not 979 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. 980 * 981 * To prevent the lock order reversal and deadlock, vn_io_fault() does 982 * not allow page faults to happen during VOP_READ() or VOP_WRITE(). 983 * Instead, it first tries to do the whole range i/o with pagefaults 984 * disabled. If all pages in the i/o buffer are resident and mapped, 985 * VOP will succeed (ignoring the genuine filesystem errors). 986 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do 987 * i/o in chunks, with all pages in the chunk prefaulted and held 988 * using vm_fault_quick_hold_pages(). 989 * 990 * Filesystems using this deadlock avoidance scheme should use the 991 * array of the held pages from uio, saved in the curthread->td_ma, 992 * instead of doing uiomove(). A helper function 993 * vn_io_fault_uiomove() converts uiomove request into 994 * uiomove_fromphys() over td_ma array. 995 * 996 * Since vnode locks do not cover the whole i/o anymore, rangelocks 997 * make the current i/o request atomic with respect to other i/os and 998 * truncations. 999 */ 1000 1001 /* 1002 * Decode vn_io_fault_args and perform the corresponding i/o. 1003 */ 1004 static int 1005 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio, 1006 struct thread *td) 1007 { 1008 1009 switch (args->kind) { 1010 case VN_IO_FAULT_FOP: 1011 return ((args->args.fop_args.doio)(args->args.fop_args.fp, 1012 uio, args->cred, args->flags, td)); 1013 case VN_IO_FAULT_VOP: 1014 if (uio->uio_rw == UIO_READ) { 1015 return (VOP_READ(args->args.vop_args.vp, uio, 1016 args->flags, args->cred)); 1017 } else if (uio->uio_rw == UIO_WRITE) { 1018 return (VOP_WRITE(args->args.vop_args.vp, uio, 1019 args->flags, args->cred)); 1020 } 1021 break; 1022 } 1023 panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind, 1024 uio->uio_rw); 1025 } 1026 1027 static int 1028 vn_io_fault_touch(char *base, const struct uio *uio) 1029 { 1030 int r; 1031 1032 r = fubyte(base); 1033 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1)) 1034 return (EFAULT); 1035 return (0); 1036 } 1037 1038 static int 1039 vn_io_fault_prefault_user(const struct uio *uio) 1040 { 1041 char *base; 1042 const struct iovec *iov; 1043 size_t len; 1044 ssize_t resid; 1045 int error, i; 1046 1047 KASSERT(uio->uio_segflg == UIO_USERSPACE, 1048 ("vn_io_fault_prefault userspace")); 1049 1050 error = i = 0; 1051 iov = uio->uio_iov; 1052 resid = uio->uio_resid; 1053 base = iov->iov_base; 1054 len = iov->iov_len; 1055 while (resid > 0) { 1056 error = vn_io_fault_touch(base, uio); 1057 if (error != 0) 1058 break; 1059 if (len < PAGE_SIZE) { 1060 if (len != 0) { 1061 error = vn_io_fault_touch(base + len - 1, uio); 1062 if (error != 0) 1063 break; 1064 resid -= len; 1065 } 1066 if (++i >= uio->uio_iovcnt) 1067 break; 1068 iov = uio->uio_iov + i; 1069 base = iov->iov_base; 1070 len = iov->iov_len; 1071 } else { 1072 len -= PAGE_SIZE; 1073 base += PAGE_SIZE; 1074 resid -= PAGE_SIZE; 1075 } 1076 } 1077 return (error); 1078 } 1079 1080 /* 1081 * Common code for vn_io_fault(), agnostic to the kind of i/o request. 1082 * Uses vn_io_fault_doio() to make the call to an actual i/o function. 1083 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request 1084 * into args and call vn_io_fault1() to handle faults during the user 1085 * mode buffer accesses. 1086 */ 1087 static int 1088 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, 1089 struct thread *td) 1090 { 1091 vm_page_t ma[io_hold_cnt + 2]; 1092 struct uio *uio_clone, short_uio; 1093 struct iovec short_iovec[1]; 1094 vm_page_t *prev_td_ma; 1095 vm_prot_t prot; 1096 vm_offset_t addr, end; 1097 size_t len, resid; 1098 ssize_t adv; 1099 int error, cnt, save, saveheld, prev_td_ma_cnt; 1100 1101 if (vn_io_fault_prefault) { 1102 error = vn_io_fault_prefault_user(uio); 1103 if (error != 0) 1104 return (error); /* Or ignore ? */ 1105 } 1106 1107 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ; 1108 1109 /* 1110 * The UFS follows IO_UNIT directive and replays back both 1111 * uio_offset and uio_resid if an error is encountered during the 1112 * operation. But, since the iovec may be already advanced, 1113 * uio is still in an inconsistent state. 1114 * 1115 * Cache a copy of the original uio, which is advanced to the redo 1116 * point using UIO_NOCOPY below. 1117 */ 1118 uio_clone = cloneuio(uio); 1119 resid = uio->uio_resid; 1120 1121 short_uio.uio_segflg = UIO_USERSPACE; 1122 short_uio.uio_rw = uio->uio_rw; 1123 short_uio.uio_td = uio->uio_td; 1124 1125 save = vm_fault_disable_pagefaults(); 1126 error = vn_io_fault_doio(args, uio, td); 1127 if (error != EFAULT) 1128 goto out; 1129 1130 atomic_add_long(&vn_io_faults_cnt, 1); 1131 uio_clone->uio_segflg = UIO_NOCOPY; 1132 uiomove(NULL, resid - uio->uio_resid, uio_clone); 1133 uio_clone->uio_segflg = uio->uio_segflg; 1134 1135 saveheld = curthread_pflags_set(TDP_UIOHELD); 1136 prev_td_ma = td->td_ma; 1137 prev_td_ma_cnt = td->td_ma_cnt; 1138 1139 while (uio_clone->uio_resid != 0) { 1140 len = uio_clone->uio_iov->iov_len; 1141 if (len == 0) { 1142 KASSERT(uio_clone->uio_iovcnt >= 1, 1143 ("iovcnt underflow")); 1144 uio_clone->uio_iov++; 1145 uio_clone->uio_iovcnt--; 1146 continue; 1147 } 1148 if (len > io_hold_cnt * PAGE_SIZE) 1149 len = io_hold_cnt * PAGE_SIZE; 1150 addr = (uintptr_t)uio_clone->uio_iov->iov_base; 1151 end = round_page(addr + len); 1152 if (end < addr) { 1153 error = EFAULT; 1154 break; 1155 } 1156 cnt = atop(end - trunc_page(addr)); 1157 /* 1158 * A perfectly misaligned address and length could cause 1159 * both the start and the end of the chunk to use partial 1160 * page. +2 accounts for such a situation. 1161 */ 1162 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, 1163 addr, len, prot, ma, io_hold_cnt + 2); 1164 if (cnt == -1) { 1165 error = EFAULT; 1166 break; 1167 } 1168 short_uio.uio_iov = &short_iovec[0]; 1169 short_iovec[0].iov_base = (void *)addr; 1170 short_uio.uio_iovcnt = 1; 1171 short_uio.uio_resid = short_iovec[0].iov_len = len; 1172 short_uio.uio_offset = uio_clone->uio_offset; 1173 td->td_ma = ma; 1174 td->td_ma_cnt = cnt; 1175 1176 error = vn_io_fault_doio(args, &short_uio, td); 1177 vm_page_unhold_pages(ma, cnt); 1178 adv = len - short_uio.uio_resid; 1179 1180 uio_clone->uio_iov->iov_base = 1181 (char *)uio_clone->uio_iov->iov_base + adv; 1182 uio_clone->uio_iov->iov_len -= adv; 1183 uio_clone->uio_resid -= adv; 1184 uio_clone->uio_offset += adv; 1185 1186 uio->uio_resid -= adv; 1187 uio->uio_offset += adv; 1188 1189 if (error != 0 || adv == 0) 1190 break; 1191 } 1192 td->td_ma = prev_td_ma; 1193 td->td_ma_cnt = prev_td_ma_cnt; 1194 curthread_pflags_restore(saveheld); 1195 out: 1196 vm_fault_enable_pagefaults(save); 1197 free(uio_clone, M_IOV); 1198 return (error); 1199 } 1200 1201 static int 1202 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, 1203 int flags, struct thread *td) 1204 { 1205 fo_rdwr_t *doio; 1206 struct vnode *vp; 1207 void *rl_cookie; 1208 struct vn_io_fault_args args; 1209 int error; 1210 1211 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write; 1212 vp = fp->f_vnode; 1213 foffset_lock_uio(fp, uio, flags); 1214 if (do_vn_io_fault(vp, uio)) { 1215 args.kind = VN_IO_FAULT_FOP; 1216 args.args.fop_args.fp = fp; 1217 args.args.fop_args.doio = doio; 1218 args.cred = active_cred; 1219 args.flags = flags | FOF_OFFSET; 1220 if (uio->uio_rw == UIO_READ) { 1221 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, 1222 uio->uio_offset + uio->uio_resid); 1223 } else if ((fp->f_flag & O_APPEND) != 0 || 1224 (flags & FOF_OFFSET) == 0) { 1225 /* For appenders, punt and lock the whole range. */ 1226 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1227 } else { 1228 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, 1229 uio->uio_offset + uio->uio_resid); 1230 } 1231 error = vn_io_fault1(vp, uio, &args, td); 1232 vn_rangelock_unlock(vp, rl_cookie); 1233 } else { 1234 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 1235 } 1236 foffset_unlock_uio(fp, uio, flags); 1237 return (error); 1238 } 1239 1240 /* 1241 * Helper function to perform the requested uiomove operation using 1242 * the held pages for io->uio_iov[0].iov_base buffer instead of 1243 * copyin/copyout. Access to the pages with uiomove_fromphys() 1244 * instead of iov_base prevents page faults that could occur due to 1245 * pmap_collect() invalidating the mapping created by 1246 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or 1247 * object cleanup revoking the write access from page mappings. 1248 * 1249 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() 1250 * instead of plain uiomove(). 1251 */ 1252 int 1253 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) 1254 { 1255 struct uio transp_uio; 1256 struct iovec transp_iov[1]; 1257 struct thread *td; 1258 size_t adv; 1259 int error, pgadv; 1260 1261 td = curthread; 1262 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1263 uio->uio_segflg != UIO_USERSPACE) 1264 return (uiomove(data, xfersize, uio)); 1265 1266 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1267 transp_iov[0].iov_base = data; 1268 transp_uio.uio_iov = &transp_iov[0]; 1269 transp_uio.uio_iovcnt = 1; 1270 if (xfersize > uio->uio_resid) 1271 xfersize = uio->uio_resid; 1272 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; 1273 transp_uio.uio_offset = 0; 1274 transp_uio.uio_segflg = UIO_SYSSPACE; 1275 /* 1276 * Since transp_iov points to data, and td_ma page array 1277 * corresponds to original uio->uio_iov, we need to invert the 1278 * direction of the i/o operation as passed to 1279 * uiomove_fromphys(). 1280 */ 1281 switch (uio->uio_rw) { 1282 case UIO_WRITE: 1283 transp_uio.uio_rw = UIO_READ; 1284 break; 1285 case UIO_READ: 1286 transp_uio.uio_rw = UIO_WRITE; 1287 break; 1288 } 1289 transp_uio.uio_td = uio->uio_td; 1290 error = uiomove_fromphys(td->td_ma, 1291 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, 1292 xfersize, &transp_uio); 1293 adv = xfersize - transp_uio.uio_resid; 1294 pgadv = 1295 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - 1296 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); 1297 td->td_ma += pgadv; 1298 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1299 pgadv)); 1300 td->td_ma_cnt -= pgadv; 1301 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; 1302 uio->uio_iov->iov_len -= adv; 1303 uio->uio_resid -= adv; 1304 uio->uio_offset += adv; 1305 return (error); 1306 } 1307 1308 int 1309 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, 1310 struct uio *uio) 1311 { 1312 struct thread *td; 1313 vm_offset_t iov_base; 1314 int cnt, pgadv; 1315 1316 td = curthread; 1317 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1318 uio->uio_segflg != UIO_USERSPACE) 1319 return (uiomove_fromphys(ma, offset, xfersize, uio)); 1320 1321 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1322 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize; 1323 iov_base = (vm_offset_t)uio->uio_iov->iov_base; 1324 switch (uio->uio_rw) { 1325 case UIO_WRITE: 1326 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma, 1327 offset, cnt); 1328 break; 1329 case UIO_READ: 1330 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK, 1331 cnt); 1332 break; 1333 } 1334 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT); 1335 td->td_ma += pgadv; 1336 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1337 pgadv)); 1338 td->td_ma_cnt -= pgadv; 1339 uio->uio_iov->iov_base = (char *)(iov_base + cnt); 1340 uio->uio_iov->iov_len -= cnt; 1341 uio->uio_resid -= cnt; 1342 uio->uio_offset += cnt; 1343 return (0); 1344 } 1345 1346 1347 /* 1348 * File table truncate routine. 1349 */ 1350 static int 1351 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1352 struct thread *td) 1353 { 1354 struct vattr vattr; 1355 struct mount *mp; 1356 struct vnode *vp; 1357 void *rl_cookie; 1358 int error; 1359 1360 vp = fp->f_vnode; 1361 1362 /* 1363 * Lock the whole range for truncation. Otherwise split i/o 1364 * might happen partly before and partly after the truncation. 1365 */ 1366 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1367 error = vn_start_write(vp, &mp, V_WAIT | PCATCH); 1368 if (error) 1369 goto out1; 1370 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1371 if (vp->v_type == VDIR) { 1372 error = EISDIR; 1373 goto out; 1374 } 1375 #ifdef MAC 1376 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1377 if (error) 1378 goto out; 1379 #endif 1380 error = vn_writechk(vp); 1381 if (error == 0) { 1382 VATTR_NULL(&vattr); 1383 vattr.va_size = length; 1384 error = VOP_SETATTR(vp, &vattr, fp->f_cred); 1385 } 1386 out: 1387 VOP_UNLOCK(vp, 0); 1388 vn_finished_write(mp); 1389 out1: 1390 vn_rangelock_unlock(vp, rl_cookie); 1391 return (error); 1392 } 1393 1394 /* 1395 * File table vnode stat routine. 1396 */ 1397 static int 1398 vn_statfile(fp, sb, active_cred, td) 1399 struct file *fp; 1400 struct stat *sb; 1401 struct ucred *active_cred; 1402 struct thread *td; 1403 { 1404 struct vnode *vp = fp->f_vnode; 1405 int error; 1406 1407 vn_lock(vp, LK_SHARED | LK_RETRY); 1408 error = vn_stat(vp, sb, active_cred, fp->f_cred, td); 1409 VOP_UNLOCK(vp, 0); 1410 1411 return (error); 1412 } 1413 1414 /* 1415 * Stat a vnode; implementation for the stat syscall 1416 */ 1417 int 1418 vn_stat(vp, sb, active_cred, file_cred, td) 1419 struct vnode *vp; 1420 register struct stat *sb; 1421 struct ucred *active_cred; 1422 struct ucred *file_cred; 1423 struct thread *td; 1424 { 1425 struct vattr vattr; 1426 register struct vattr *vap; 1427 int error; 1428 u_short mode; 1429 1430 #ifdef MAC 1431 error = mac_vnode_check_stat(active_cred, file_cred, vp); 1432 if (error) 1433 return (error); 1434 #endif 1435 1436 vap = &vattr; 1437 1438 /* 1439 * Initialize defaults for new and unusual fields, so that file 1440 * systems which don't support these fields don't need to know 1441 * about them. 1442 */ 1443 vap->va_birthtime.tv_sec = -1; 1444 vap->va_birthtime.tv_nsec = 0; 1445 vap->va_fsid = VNOVAL; 1446 vap->va_rdev = NODEV; 1447 1448 error = VOP_GETATTR(vp, vap, active_cred); 1449 if (error) 1450 return (error); 1451 1452 /* 1453 * Zero the spare stat fields 1454 */ 1455 bzero(sb, sizeof *sb); 1456 1457 /* 1458 * Copy from vattr table 1459 */ 1460 if (vap->va_fsid != VNOVAL) 1461 sb->st_dev = vap->va_fsid; 1462 else 1463 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; 1464 sb->st_ino = vap->va_fileid; 1465 mode = vap->va_mode; 1466 switch (vap->va_type) { 1467 case VREG: 1468 mode |= S_IFREG; 1469 break; 1470 case VDIR: 1471 mode |= S_IFDIR; 1472 break; 1473 case VBLK: 1474 mode |= S_IFBLK; 1475 break; 1476 case VCHR: 1477 mode |= S_IFCHR; 1478 break; 1479 case VLNK: 1480 mode |= S_IFLNK; 1481 break; 1482 case VSOCK: 1483 mode |= S_IFSOCK; 1484 break; 1485 case VFIFO: 1486 mode |= S_IFIFO; 1487 break; 1488 default: 1489 return (EBADF); 1490 }; 1491 sb->st_mode = mode; 1492 sb->st_nlink = vap->va_nlink; 1493 sb->st_uid = vap->va_uid; 1494 sb->st_gid = vap->va_gid; 1495 sb->st_rdev = vap->va_rdev; 1496 if (vap->va_size > OFF_MAX) 1497 return (EOVERFLOW); 1498 sb->st_size = vap->va_size; 1499 sb->st_atim = vap->va_atime; 1500 sb->st_mtim = vap->va_mtime; 1501 sb->st_ctim = vap->va_ctime; 1502 sb->st_birthtim = vap->va_birthtime; 1503 1504 /* 1505 * According to www.opengroup.org, the meaning of st_blksize is 1506 * "a filesystem-specific preferred I/O block size for this 1507 * object. In some filesystem types, this may vary from file 1508 * to file" 1509 * Use miminum/default of PAGE_SIZE (e.g. for VCHR). 1510 */ 1511 1512 sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize); 1513 1514 sb->st_flags = vap->va_flags; 1515 if (priv_check(td, PRIV_VFS_GENERATION)) 1516 sb->st_gen = 0; 1517 else 1518 sb->st_gen = vap->va_gen; 1519 1520 sb->st_blocks = vap->va_bytes / S_BLKSIZE; 1521 return (0); 1522 } 1523 1524 /* 1525 * File table vnode ioctl routine. 1526 */ 1527 static int 1528 vn_ioctl(fp, com, data, active_cred, td) 1529 struct file *fp; 1530 u_long com; 1531 void *data; 1532 struct ucred *active_cred; 1533 struct thread *td; 1534 { 1535 struct vattr vattr; 1536 struct vnode *vp; 1537 int error; 1538 1539 vp = fp->f_vnode; 1540 switch (vp->v_type) { 1541 case VDIR: 1542 case VREG: 1543 switch (com) { 1544 case FIONREAD: 1545 vn_lock(vp, LK_SHARED | LK_RETRY); 1546 error = VOP_GETATTR(vp, &vattr, active_cred); 1547 VOP_UNLOCK(vp, 0); 1548 if (error == 0) 1549 *(int *)data = vattr.va_size - fp->f_offset; 1550 return (error); 1551 case FIONBIO: 1552 case FIOASYNC: 1553 return (0); 1554 default: 1555 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1556 active_cred, td)); 1557 } 1558 default: 1559 return (ENOTTY); 1560 } 1561 } 1562 1563 /* 1564 * File table vnode poll routine. 1565 */ 1566 static int 1567 vn_poll(fp, events, active_cred, td) 1568 struct file *fp; 1569 int events; 1570 struct ucred *active_cred; 1571 struct thread *td; 1572 { 1573 struct vnode *vp; 1574 int error; 1575 1576 vp = fp->f_vnode; 1577 #ifdef MAC 1578 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1579 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); 1580 VOP_UNLOCK(vp, 0); 1581 if (!error) 1582 #endif 1583 1584 error = VOP_POLL(vp, events, fp->f_cred, td); 1585 return (error); 1586 } 1587 1588 /* 1589 * Acquire the requested lock and then check for validity. LK_RETRY 1590 * permits vn_lock to return doomed vnodes. 1591 */ 1592 int 1593 _vn_lock(struct vnode *vp, int flags, char *file, int line) 1594 { 1595 int error; 1596 1597 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 1598 ("vn_lock called with no locktype.")); 1599 do { 1600 #ifdef DEBUG_VFS_LOCKS 1601 KASSERT(vp->v_holdcnt != 0, 1602 ("vn_lock %p: zero hold count", vp)); 1603 #endif 1604 error = VOP_LOCK1(vp, flags, file, line); 1605 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */ 1606 KASSERT((flags & LK_RETRY) == 0 || error == 0, 1607 ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)", 1608 flags, error)); 1609 /* 1610 * Callers specify LK_RETRY if they wish to get dead vnodes. 1611 * If RETRY is not set, we return ENOENT instead. 1612 */ 1613 if (error == 0 && vp->v_iflag & VI_DOOMED && 1614 (flags & LK_RETRY) == 0) { 1615 VOP_UNLOCK(vp, 0); 1616 error = ENOENT; 1617 break; 1618 } 1619 } while (flags & LK_RETRY && error != 0); 1620 return (error); 1621 } 1622 1623 /* 1624 * File table vnode close routine. 1625 */ 1626 static int 1627 vn_closefile(fp, td) 1628 struct file *fp; 1629 struct thread *td; 1630 { 1631 struct vnode *vp; 1632 struct flock lf; 1633 int error; 1634 1635 vp = fp->f_vnode; 1636 fp->f_ops = &badfileops; 1637 1638 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) 1639 vref(vp); 1640 1641 error = vn_close(vp, fp->f_flag, fp->f_cred, td); 1642 1643 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) { 1644 lf.l_whence = SEEK_SET; 1645 lf.l_start = 0; 1646 lf.l_len = 0; 1647 lf.l_type = F_UNLCK; 1648 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); 1649 vrele(vp); 1650 } 1651 return (error); 1652 } 1653 1654 static bool 1655 vn_suspendable(struct mount *mp) 1656 { 1657 1658 return (mp->mnt_op->vfs_susp_clean != NULL); 1659 } 1660 1661 /* 1662 * Preparing to start a filesystem write operation. If the operation is 1663 * permitted, then we bump the count of operations in progress and 1664 * proceed. If a suspend request is in progress, we wait until the 1665 * suspension is over, and then proceed. 1666 */ 1667 static int 1668 vn_start_write_locked(struct mount *mp, int flags) 1669 { 1670 int error, mflags; 1671 1672 mtx_assert(MNT_MTX(mp), MA_OWNED); 1673 error = 0; 1674 1675 /* 1676 * Check on status of suspension. 1677 */ 1678 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || 1679 mp->mnt_susp_owner != curthread) { 1680 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? 1681 (flags & PCATCH) : 0) | (PUSER - 1); 1682 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1683 if (flags & V_NOWAIT) { 1684 error = EWOULDBLOCK; 1685 goto unlock; 1686 } 1687 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, 1688 "suspfs", 0); 1689 if (error) 1690 goto unlock; 1691 } 1692 } 1693 if (flags & V_XSLEEP) 1694 goto unlock; 1695 mp->mnt_writeopcount++; 1696 unlock: 1697 if (error != 0 || (flags & V_XSLEEP) != 0) 1698 MNT_REL(mp); 1699 MNT_IUNLOCK(mp); 1700 return (error); 1701 } 1702 1703 int 1704 vn_start_write(struct vnode *vp, struct mount **mpp, int flags) 1705 { 1706 struct mount *mp; 1707 int error; 1708 1709 KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL), 1710 ("V_MNTREF requires mp")); 1711 1712 error = 0; 1713 /* 1714 * If a vnode is provided, get and return the mount point that 1715 * to which it will write. 1716 */ 1717 if (vp != NULL) { 1718 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1719 *mpp = NULL; 1720 if (error != EOPNOTSUPP) 1721 return (error); 1722 return (0); 1723 } 1724 } 1725 if ((mp = *mpp) == NULL) 1726 return (0); 1727 1728 if (!vn_suspendable(mp)) { 1729 if (vp != NULL || (flags & V_MNTREF) != 0) 1730 vfs_rel(mp); 1731 return (0); 1732 } 1733 1734 /* 1735 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1736 * a vfs_ref(). 1737 * As long as a vnode is not provided we need to acquire a 1738 * refcount for the provided mountpoint too, in order to 1739 * emulate a vfs_ref(). 1740 */ 1741 MNT_ILOCK(mp); 1742 if (vp == NULL && (flags & V_MNTREF) == 0) 1743 MNT_REF(mp); 1744 1745 return (vn_start_write_locked(mp, flags)); 1746 } 1747 1748 /* 1749 * Secondary suspension. Used by operations such as vop_inactive 1750 * routines that are needed by the higher level functions. These 1751 * are allowed to proceed until all the higher level functions have 1752 * completed (indicated by mnt_writeopcount dropping to zero). At that 1753 * time, these operations are halted until the suspension is over. 1754 */ 1755 int 1756 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags) 1757 { 1758 struct mount *mp; 1759 int error; 1760 1761 KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL), 1762 ("V_MNTREF requires mp")); 1763 1764 retry: 1765 if (vp != NULL) { 1766 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1767 *mpp = NULL; 1768 if (error != EOPNOTSUPP) 1769 return (error); 1770 return (0); 1771 } 1772 } 1773 /* 1774 * If we are not suspended or have not yet reached suspended 1775 * mode, then let the operation proceed. 1776 */ 1777 if ((mp = *mpp) == NULL) 1778 return (0); 1779 1780 if (!vn_suspendable(mp)) { 1781 if (vp != NULL || (flags & V_MNTREF) != 0) 1782 vfs_rel(mp); 1783 return (0); 1784 } 1785 1786 /* 1787 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1788 * a vfs_ref(). 1789 * As long as a vnode is not provided we need to acquire a 1790 * refcount for the provided mountpoint too, in order to 1791 * emulate a vfs_ref(). 1792 */ 1793 MNT_ILOCK(mp); 1794 if (vp == NULL && (flags & V_MNTREF) == 0) 1795 MNT_REF(mp); 1796 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { 1797 mp->mnt_secondary_writes++; 1798 mp->mnt_secondary_accwrites++; 1799 MNT_IUNLOCK(mp); 1800 return (0); 1801 } 1802 if (flags & V_NOWAIT) { 1803 MNT_REL(mp); 1804 MNT_IUNLOCK(mp); 1805 return (EWOULDBLOCK); 1806 } 1807 /* 1808 * Wait for the suspension to finish. 1809 */ 1810 error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP | 1811 ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0), 1812 "suspfs", 0); 1813 vfs_rel(mp); 1814 if (error == 0) 1815 goto retry; 1816 return (error); 1817 } 1818 1819 /* 1820 * Filesystem write operation has completed. If we are suspending and this 1821 * operation is the last one, notify the suspender that the suspension is 1822 * now in effect. 1823 */ 1824 void 1825 vn_finished_write(mp) 1826 struct mount *mp; 1827 { 1828 if (mp == NULL || !vn_suspendable(mp)) 1829 return; 1830 MNT_ILOCK(mp); 1831 MNT_REL(mp); 1832 mp->mnt_writeopcount--; 1833 if (mp->mnt_writeopcount < 0) 1834 panic("vn_finished_write: neg cnt"); 1835 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1836 mp->mnt_writeopcount <= 0) 1837 wakeup(&mp->mnt_writeopcount); 1838 MNT_IUNLOCK(mp); 1839 } 1840 1841 1842 /* 1843 * Filesystem secondary write operation has completed. If we are 1844 * suspending and this operation is the last one, notify the suspender 1845 * that the suspension is now in effect. 1846 */ 1847 void 1848 vn_finished_secondary_write(mp) 1849 struct mount *mp; 1850 { 1851 if (mp == NULL || !vn_suspendable(mp)) 1852 return; 1853 MNT_ILOCK(mp); 1854 MNT_REL(mp); 1855 mp->mnt_secondary_writes--; 1856 if (mp->mnt_secondary_writes < 0) 1857 panic("vn_finished_secondary_write: neg cnt"); 1858 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1859 mp->mnt_secondary_writes <= 0) 1860 wakeup(&mp->mnt_secondary_writes); 1861 MNT_IUNLOCK(mp); 1862 } 1863 1864 1865 1866 /* 1867 * Request a filesystem to suspend write operations. 1868 */ 1869 int 1870 vfs_write_suspend(struct mount *mp, int flags) 1871 { 1872 int error; 1873 1874 MPASS(vn_suspendable(mp)); 1875 1876 MNT_ILOCK(mp); 1877 if (mp->mnt_susp_owner == curthread) { 1878 MNT_IUNLOCK(mp); 1879 return (EALREADY); 1880 } 1881 while (mp->mnt_kern_flag & MNTK_SUSPEND) 1882 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); 1883 1884 /* 1885 * Unmount holds a write reference on the mount point. If we 1886 * own busy reference and drain for writers, we deadlock with 1887 * the reference draining in the unmount path. Callers of 1888 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if 1889 * vfs_busy() reference is owned and caller is not in the 1890 * unmount context. 1891 */ 1892 if ((flags & VS_SKIP_UNMOUNT) != 0 && 1893 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 1894 MNT_IUNLOCK(mp); 1895 return (EBUSY); 1896 } 1897 1898 mp->mnt_kern_flag |= MNTK_SUSPEND; 1899 mp->mnt_susp_owner = curthread; 1900 if (mp->mnt_writeopcount > 0) 1901 (void) msleep(&mp->mnt_writeopcount, 1902 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); 1903 else 1904 MNT_IUNLOCK(mp); 1905 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) 1906 vfs_write_resume(mp, 0); 1907 return (error); 1908 } 1909 1910 /* 1911 * Request a filesystem to resume write operations. 1912 */ 1913 void 1914 vfs_write_resume(struct mount *mp, int flags) 1915 { 1916 1917 MPASS(vn_suspendable(mp)); 1918 1919 MNT_ILOCK(mp); 1920 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1921 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); 1922 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | 1923 MNTK_SUSPENDED); 1924 mp->mnt_susp_owner = NULL; 1925 wakeup(&mp->mnt_writeopcount); 1926 wakeup(&mp->mnt_flag); 1927 curthread->td_pflags &= ~TDP_IGNSUSP; 1928 if ((flags & VR_START_WRITE) != 0) { 1929 MNT_REF(mp); 1930 mp->mnt_writeopcount++; 1931 } 1932 MNT_IUNLOCK(mp); 1933 if ((flags & VR_NO_SUSPCLR) == 0) 1934 VFS_SUSP_CLEAN(mp); 1935 } else if ((flags & VR_START_WRITE) != 0) { 1936 MNT_REF(mp); 1937 vn_start_write_locked(mp, 0); 1938 } else { 1939 MNT_IUNLOCK(mp); 1940 } 1941 } 1942 1943 /* 1944 * Helper loop around vfs_write_suspend() for filesystem unmount VFS 1945 * methods. 1946 */ 1947 int 1948 vfs_write_suspend_umnt(struct mount *mp) 1949 { 1950 int error; 1951 1952 MPASS(vn_suspendable(mp)); 1953 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0, 1954 ("vfs_write_suspend_umnt: recursed")); 1955 1956 /* dounmount() already called vn_start_write(). */ 1957 for (;;) { 1958 vn_finished_write(mp); 1959 error = vfs_write_suspend(mp, 0); 1960 if (error != 0) { 1961 vn_start_write(NULL, &mp, V_WAIT); 1962 return (error); 1963 } 1964 MNT_ILOCK(mp); 1965 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0) 1966 break; 1967 MNT_IUNLOCK(mp); 1968 vn_start_write(NULL, &mp, V_WAIT); 1969 } 1970 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 1971 wakeup(&mp->mnt_flag); 1972 MNT_IUNLOCK(mp); 1973 curthread->td_pflags |= TDP_IGNSUSP; 1974 return (0); 1975 } 1976 1977 /* 1978 * Implement kqueues for files by translating it to vnode operation. 1979 */ 1980 static int 1981 vn_kqfilter(struct file *fp, struct knote *kn) 1982 { 1983 1984 return (VOP_KQFILTER(fp->f_vnode, kn)); 1985 } 1986 1987 /* 1988 * Simplified in-kernel wrapper calls for extended attribute access. 1989 * Both calls pass in a NULL credential, authorizing as "kernel" access. 1990 * Set IO_NODELOCKED in ioflg if the vnode is already locked. 1991 */ 1992 int 1993 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, 1994 const char *attrname, int *buflen, char *buf, struct thread *td) 1995 { 1996 struct uio auio; 1997 struct iovec iov; 1998 int error; 1999 2000 iov.iov_len = *buflen; 2001 iov.iov_base = buf; 2002 2003 auio.uio_iov = &iov; 2004 auio.uio_iovcnt = 1; 2005 auio.uio_rw = UIO_READ; 2006 auio.uio_segflg = UIO_SYSSPACE; 2007 auio.uio_td = td; 2008 auio.uio_offset = 0; 2009 auio.uio_resid = *buflen; 2010 2011 if ((ioflg & IO_NODELOCKED) == 0) 2012 vn_lock(vp, LK_SHARED | LK_RETRY); 2013 2014 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2015 2016 /* authorize attribute retrieval as kernel */ 2017 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, 2018 td); 2019 2020 if ((ioflg & IO_NODELOCKED) == 0) 2021 VOP_UNLOCK(vp, 0); 2022 2023 if (error == 0) { 2024 *buflen = *buflen - auio.uio_resid; 2025 } 2026 2027 return (error); 2028 } 2029 2030 /* 2031 * XXX failure mode if partially written? 2032 */ 2033 int 2034 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, 2035 const char *attrname, int buflen, char *buf, struct thread *td) 2036 { 2037 struct uio auio; 2038 struct iovec iov; 2039 struct mount *mp; 2040 int error; 2041 2042 iov.iov_len = buflen; 2043 iov.iov_base = buf; 2044 2045 auio.uio_iov = &iov; 2046 auio.uio_iovcnt = 1; 2047 auio.uio_rw = UIO_WRITE; 2048 auio.uio_segflg = UIO_SYSSPACE; 2049 auio.uio_td = td; 2050 auio.uio_offset = 0; 2051 auio.uio_resid = buflen; 2052 2053 if ((ioflg & IO_NODELOCKED) == 0) { 2054 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2055 return (error); 2056 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2057 } 2058 2059 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2060 2061 /* authorize attribute setting as kernel */ 2062 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); 2063 2064 if ((ioflg & IO_NODELOCKED) == 0) { 2065 vn_finished_write(mp); 2066 VOP_UNLOCK(vp, 0); 2067 } 2068 2069 return (error); 2070 } 2071 2072 int 2073 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, 2074 const char *attrname, struct thread *td) 2075 { 2076 struct mount *mp; 2077 int error; 2078 2079 if ((ioflg & IO_NODELOCKED) == 0) { 2080 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2081 return (error); 2082 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2083 } 2084 2085 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2086 2087 /* authorize attribute removal as kernel */ 2088 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); 2089 if (error == EOPNOTSUPP) 2090 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, 2091 NULL, td); 2092 2093 if ((ioflg & IO_NODELOCKED) == 0) { 2094 vn_finished_write(mp); 2095 VOP_UNLOCK(vp, 0); 2096 } 2097 2098 return (error); 2099 } 2100 2101 static int 2102 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags, 2103 struct vnode **rvp) 2104 { 2105 2106 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp)); 2107 } 2108 2109 int 2110 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) 2111 { 2112 2113 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino, 2114 lkflags, rvp)); 2115 } 2116 2117 int 2118 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, 2119 int lkflags, struct vnode **rvp) 2120 { 2121 struct mount *mp; 2122 int ltype, error; 2123 2124 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get"); 2125 mp = vp->v_mount; 2126 ltype = VOP_ISLOCKED(vp); 2127 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, 2128 ("vn_vget_ino: vp not locked")); 2129 error = vfs_busy(mp, MBF_NOWAIT); 2130 if (error != 0) { 2131 vfs_ref(mp); 2132 VOP_UNLOCK(vp, 0); 2133 error = vfs_busy(mp, 0); 2134 vn_lock(vp, ltype | LK_RETRY); 2135 vfs_rel(mp); 2136 if (error != 0) 2137 return (ENOENT); 2138 if (vp->v_iflag & VI_DOOMED) { 2139 vfs_unbusy(mp); 2140 return (ENOENT); 2141 } 2142 } 2143 VOP_UNLOCK(vp, 0); 2144 error = alloc(mp, alloc_arg, lkflags, rvp); 2145 vfs_unbusy(mp); 2146 if (*rvp != vp) 2147 vn_lock(vp, ltype | LK_RETRY); 2148 if (vp->v_iflag & VI_DOOMED) { 2149 if (error == 0) { 2150 if (*rvp == vp) 2151 vunref(vp); 2152 else 2153 vput(*rvp); 2154 } 2155 error = ENOENT; 2156 } 2157 return (error); 2158 } 2159 2160 int 2161 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, 2162 struct thread *td) 2163 { 2164 2165 if (vp->v_type != VREG || td == NULL) 2166 return (0); 2167 if ((uoff_t)uio->uio_offset + uio->uio_resid > 2168 lim_cur(td, RLIMIT_FSIZE)) { 2169 PROC_LOCK(td->td_proc); 2170 kern_psignal(td->td_proc, SIGXFSZ); 2171 PROC_UNLOCK(td->td_proc); 2172 return (EFBIG); 2173 } 2174 return (0); 2175 } 2176 2177 int 2178 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 2179 struct thread *td) 2180 { 2181 struct vnode *vp; 2182 2183 vp = fp->f_vnode; 2184 #ifdef AUDIT 2185 vn_lock(vp, LK_SHARED | LK_RETRY); 2186 AUDIT_ARG_VNODE1(vp); 2187 VOP_UNLOCK(vp, 0); 2188 #endif 2189 return (setfmode(td, active_cred, vp, mode)); 2190 } 2191 2192 int 2193 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 2194 struct thread *td) 2195 { 2196 struct vnode *vp; 2197 2198 vp = fp->f_vnode; 2199 #ifdef AUDIT 2200 vn_lock(vp, LK_SHARED | LK_RETRY); 2201 AUDIT_ARG_VNODE1(vp); 2202 VOP_UNLOCK(vp, 0); 2203 #endif 2204 return (setfown(td, active_cred, vp, uid, gid)); 2205 } 2206 2207 void 2208 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 2209 { 2210 vm_object_t object; 2211 2212 if ((object = vp->v_object) == NULL) 2213 return; 2214 VM_OBJECT_WLOCK(object); 2215 vm_object_page_remove(object, start, end, 0); 2216 VM_OBJECT_WUNLOCK(object); 2217 } 2218 2219 int 2220 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) 2221 { 2222 struct vattr va; 2223 daddr_t bn, bnp; 2224 uint64_t bsize; 2225 off_t noff; 2226 int error; 2227 2228 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 2229 ("Wrong command %lu", cmd)); 2230 2231 if (vn_lock(vp, LK_SHARED) != 0) 2232 return (EBADF); 2233 if (vp->v_type != VREG) { 2234 error = ENOTTY; 2235 goto unlock; 2236 } 2237 error = VOP_GETATTR(vp, &va, cred); 2238 if (error != 0) 2239 goto unlock; 2240 noff = *off; 2241 if (noff >= va.va_size) { 2242 error = ENXIO; 2243 goto unlock; 2244 } 2245 bsize = vp->v_mount->mnt_stat.f_iosize; 2246 for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) { 2247 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); 2248 if (error == EOPNOTSUPP) { 2249 error = ENOTTY; 2250 goto unlock; 2251 } 2252 if ((bnp == -1 && cmd == FIOSEEKHOLE) || 2253 (bnp != -1 && cmd == FIOSEEKDATA)) { 2254 noff = bn * bsize; 2255 if (noff < *off) 2256 noff = *off; 2257 goto unlock; 2258 } 2259 } 2260 if (noff > va.va_size) 2261 noff = va.va_size; 2262 /* noff == va.va_size. There is an implicit hole at the end of file. */ 2263 if (cmd == FIOSEEKDATA) 2264 error = ENXIO; 2265 unlock: 2266 VOP_UNLOCK(vp, 0); 2267 if (error == 0) 2268 *off = noff; 2269 return (error); 2270 } 2271 2272 int 2273 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td) 2274 { 2275 struct ucred *cred; 2276 struct vnode *vp; 2277 struct vattr vattr; 2278 off_t foffset, size; 2279 int error, noneg; 2280 2281 cred = td->td_ucred; 2282 vp = fp->f_vnode; 2283 foffset = foffset_lock(fp, 0); 2284 noneg = (vp->v_type != VCHR); 2285 error = 0; 2286 switch (whence) { 2287 case L_INCR: 2288 if (noneg && 2289 (foffset < 0 || 2290 (offset > 0 && foffset > OFF_MAX - offset))) { 2291 error = EOVERFLOW; 2292 break; 2293 } 2294 offset += foffset; 2295 break; 2296 case L_XTND: 2297 vn_lock(vp, LK_SHARED | LK_RETRY); 2298 error = VOP_GETATTR(vp, &vattr, cred); 2299 VOP_UNLOCK(vp, 0); 2300 if (error) 2301 break; 2302 2303 /* 2304 * If the file references a disk device, then fetch 2305 * the media size and use that to determine the ending 2306 * offset. 2307 */ 2308 if (vattr.va_size == 0 && vp->v_type == VCHR && 2309 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0) 2310 vattr.va_size = size; 2311 if (noneg && 2312 (vattr.va_size > OFF_MAX || 2313 (offset > 0 && vattr.va_size > OFF_MAX - offset))) { 2314 error = EOVERFLOW; 2315 break; 2316 } 2317 offset += vattr.va_size; 2318 break; 2319 case L_SET: 2320 break; 2321 case SEEK_DATA: 2322 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td); 2323 break; 2324 case SEEK_HOLE: 2325 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td); 2326 break; 2327 default: 2328 error = EINVAL; 2329 } 2330 if (error == 0 && noneg && offset < 0) 2331 error = EINVAL; 2332 if (error != 0) 2333 goto drop; 2334 VFS_KNOTE_UNLOCKED(vp, 0); 2335 td->td_uretoff.tdu_off = offset; 2336 drop: 2337 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0); 2338 return (error); 2339 } 2340 2341 int 2342 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, 2343 struct thread *td) 2344 { 2345 int error; 2346 2347 /* 2348 * Grant permission if the caller is the owner of the file, or 2349 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on 2350 * on the file. If the time pointer is null, then write 2351 * permission on the file is also sufficient. 2352 * 2353 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes: 2354 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES 2355 * will be allowed to set the times [..] to the current 2356 * server time. 2357 */ 2358 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td); 2359 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0) 2360 error = VOP_ACCESS(vp, VWRITE, cred, td); 2361 return (error); 2362 } 2363 2364 int 2365 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 2366 { 2367 struct vnode *vp; 2368 int error; 2369 2370 if (fp->f_type == DTYPE_FIFO) 2371 kif->kf_type = KF_TYPE_FIFO; 2372 else 2373 kif->kf_type = KF_TYPE_VNODE; 2374 vp = fp->f_vnode; 2375 vref(vp); 2376 FILEDESC_SUNLOCK(fdp); 2377 error = vn_fill_kinfo_vnode(vp, kif); 2378 vrele(vp); 2379 FILEDESC_SLOCK(fdp); 2380 return (error); 2381 } 2382 2383 static inline void 2384 vn_fill_junk(struct kinfo_file *kif) 2385 { 2386 size_t len, olen; 2387 2388 /* 2389 * Simulate vn_fullpath returning changing values for a given 2390 * vp during e.g. coredump. 2391 */ 2392 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1; 2393 olen = strlen(kif->kf_path); 2394 if (len < olen) 2395 strcpy(&kif->kf_path[len - 1], "$"); 2396 else 2397 for (; olen < len; olen++) 2398 strcpy(&kif->kf_path[olen], "A"); 2399 } 2400 2401 int 2402 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif) 2403 { 2404 struct vattr va; 2405 char *fullpath, *freepath; 2406 int error; 2407 2408 kif->kf_vnode_type = vntype_to_kinfo(vp->v_type); 2409 freepath = NULL; 2410 fullpath = "-"; 2411 error = vn_fullpath(curthread, vp, &fullpath, &freepath); 2412 if (error == 0) { 2413 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); 2414 } 2415 if (freepath != NULL) 2416 free(freepath, M_TEMP); 2417 2418 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path, 2419 vn_fill_junk(kif); 2420 ); 2421 2422 /* 2423 * Retrieve vnode attributes. 2424 */ 2425 va.va_fsid = VNOVAL; 2426 va.va_rdev = NODEV; 2427 vn_lock(vp, LK_SHARED | LK_RETRY); 2428 error = VOP_GETATTR(vp, &va, curthread->td_ucred); 2429 VOP_UNLOCK(vp, 0); 2430 if (error != 0) 2431 return (error); 2432 if (va.va_fsid != VNOVAL) 2433 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid; 2434 else 2435 kif->kf_un.kf_file.kf_file_fsid = 2436 vp->v_mount->mnt_stat.f_fsid.val[0]; 2437 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid; 2438 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode); 2439 kif->kf_un.kf_file.kf_file_size = va.va_size; 2440 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev; 2441 return (0); 2442 } 2443 2444 int 2445 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 2446 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 2447 struct thread *td) 2448 { 2449 #ifdef HWPMC_HOOKS 2450 struct pmckern_map_in pkm; 2451 #endif 2452 struct mount *mp; 2453 struct vnode *vp; 2454 vm_object_t object; 2455 vm_prot_t maxprot; 2456 boolean_t writecounted; 2457 int error; 2458 2459 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \ 2460 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) 2461 /* 2462 * POSIX shared-memory objects are defined to have 2463 * kernel persistence, and are not defined to support 2464 * read(2)/write(2) -- or even open(2). Thus, we can 2465 * use MAP_ASYNC to trade on-disk coherence for speed. 2466 * The shm_open(3) library routine turns on the FPOSIXSHM 2467 * flag to request this behavior. 2468 */ 2469 if ((fp->f_flag & FPOSIXSHM) != 0) 2470 flags |= MAP_NOSYNC; 2471 #endif 2472 vp = fp->f_vnode; 2473 2474 /* 2475 * Ensure that file and memory protections are 2476 * compatible. Note that we only worry about 2477 * writability if mapping is shared; in this case, 2478 * current and max prot are dictated by the open file. 2479 * XXX use the vnode instead? Problem is: what 2480 * credentials do we use for determination? What if 2481 * proc does a setuid? 2482 */ 2483 mp = vp->v_mount; 2484 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) 2485 maxprot = VM_PROT_NONE; 2486 else 2487 maxprot = VM_PROT_EXECUTE; 2488 if ((fp->f_flag & FREAD) != 0) 2489 maxprot |= VM_PROT_READ; 2490 else if ((prot & VM_PROT_READ) != 0) 2491 return (EACCES); 2492 2493 /* 2494 * If we are sharing potential changes via MAP_SHARED and we 2495 * are trying to get write permission although we opened it 2496 * without asking for it, bail out. 2497 */ 2498 if ((flags & MAP_SHARED) != 0) { 2499 if ((fp->f_flag & FWRITE) != 0) 2500 maxprot |= VM_PROT_WRITE; 2501 else if ((prot & VM_PROT_WRITE) != 0) 2502 return (EACCES); 2503 } else { 2504 maxprot |= VM_PROT_WRITE; 2505 cap_maxprot |= VM_PROT_WRITE; 2506 } 2507 maxprot &= cap_maxprot; 2508 2509 writecounted = FALSE; 2510 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp, 2511 &foff, &object, &writecounted); 2512 if (error != 0) 2513 return (error); 2514 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 2515 foff, writecounted, td); 2516 if (error != 0) { 2517 /* 2518 * If this mapping was accounted for in the vnode's 2519 * writecount, then undo that now. 2520 */ 2521 if (writecounted) 2522 vnode_pager_release_writecount(object, 0, size); 2523 vm_object_deallocate(object); 2524 } 2525 #ifdef HWPMC_HOOKS 2526 /* Inform hwpmc(4) if an executable is being mapped. */ 2527 if (error == 0 && (prot & VM_PROT_EXECUTE) != 0) { 2528 pkm.pm_file = vp; 2529 pkm.pm_address = (uintptr_t) addr; 2530 PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm); 2531 } 2532 #endif 2533 return (error); 2534 } 2535