1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/fcntl.h> 43 #include <sys/file.h> 44 #include <sys/kdb.h> 45 #include <sys/stat.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/mount.h> 51 #include <sys/mutex.h> 52 #include <sys/namei.h> 53 #include <sys/vnode.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/filio.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sx.h> 59 #include <sys/sysctl.h> 60 #include <sys/ttycom.h> 61 #include <sys/conf.h> 62 #include <sys/syslog.h> 63 #include <sys/unistd.h> 64 65 #include <security/audit/audit.h> 66 #include <security/mac/mac_framework.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_extern.h> 70 #include <vm/pmap.h> 71 #include <vm/vm_map.h> 72 #include <vm/vm_object.h> 73 #include <vm/vm_page.h> 74 75 static fo_rdwr_t vn_read; 76 static fo_rdwr_t vn_write; 77 static fo_rdwr_t vn_io_fault; 78 static fo_truncate_t vn_truncate; 79 static fo_ioctl_t vn_ioctl; 80 static fo_poll_t vn_poll; 81 static fo_kqfilter_t vn_kqfilter; 82 static fo_stat_t vn_statfile; 83 static fo_close_t vn_closefile; 84 85 struct fileops vnops = { 86 .fo_read = vn_io_fault, 87 .fo_write = vn_io_fault, 88 .fo_truncate = vn_truncate, 89 .fo_ioctl = vn_ioctl, 90 .fo_poll = vn_poll, 91 .fo_kqfilter = vn_kqfilter, 92 .fo_stat = vn_statfile, 93 .fo_close = vn_closefile, 94 .fo_chmod = vn_chmod, 95 .fo_chown = vn_chown, 96 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE 97 }; 98 99 int 100 vn_open(ndp, flagp, cmode, fp) 101 struct nameidata *ndp; 102 int *flagp, cmode; 103 struct file *fp; 104 { 105 struct thread *td = ndp->ni_cnd.cn_thread; 106 107 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); 108 } 109 110 /* 111 * Common code for vnode open operations via a name lookup. 112 * Lookup the vnode and invoke VOP_CREATE if needed. 113 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. 114 * 115 * Note that this does NOT free nameidata for the successful case, 116 * due to the NDINIT being done elsewhere. 117 */ 118 int 119 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, 120 struct ucred *cred, struct file *fp) 121 { 122 struct vnode *vp; 123 struct mount *mp; 124 struct thread *td = ndp->ni_cnd.cn_thread; 125 struct vattr vat; 126 struct vattr *vap = &vat; 127 int fmode, error; 128 int vfslocked, mpsafe; 129 130 mpsafe = ndp->ni_cnd.cn_flags & MPSAFE; 131 restart: 132 vfslocked = 0; 133 fmode = *flagp; 134 if (fmode & O_CREAT) { 135 ndp->ni_cnd.cn_nameiop = CREATE; 136 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | 137 MPSAFE; 138 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) 139 ndp->ni_cnd.cn_flags |= FOLLOW; 140 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 141 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 142 bwillwrite(); 143 if ((error = namei(ndp)) != 0) 144 return (error); 145 vfslocked = NDHASGIANT(ndp); 146 if (!mpsafe) 147 ndp->ni_cnd.cn_flags &= ~MPSAFE; 148 if (ndp->ni_vp == NULL) { 149 VATTR_NULL(vap); 150 vap->va_type = VREG; 151 vap->va_mode = cmode; 152 if (fmode & O_EXCL) 153 vap->va_vaflags |= VA_EXCLUSIVE; 154 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { 155 NDFREE(ndp, NDF_ONLY_PNBUF); 156 vput(ndp->ni_dvp); 157 VFS_UNLOCK_GIANT(vfslocked); 158 if ((error = vn_start_write(NULL, &mp, 159 V_XSLEEP | PCATCH)) != 0) 160 return (error); 161 goto restart; 162 } 163 #ifdef MAC 164 error = mac_vnode_check_create(cred, ndp->ni_dvp, 165 &ndp->ni_cnd, vap); 166 if (error == 0) 167 #endif 168 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, 169 &ndp->ni_cnd, vap); 170 vput(ndp->ni_dvp); 171 vn_finished_write(mp); 172 if (error) { 173 VFS_UNLOCK_GIANT(vfslocked); 174 NDFREE(ndp, NDF_ONLY_PNBUF); 175 return (error); 176 } 177 fmode &= ~O_TRUNC; 178 vp = ndp->ni_vp; 179 } else { 180 if (ndp->ni_dvp == ndp->ni_vp) 181 vrele(ndp->ni_dvp); 182 else 183 vput(ndp->ni_dvp); 184 ndp->ni_dvp = NULL; 185 vp = ndp->ni_vp; 186 if (fmode & O_EXCL) { 187 error = EEXIST; 188 goto bad; 189 } 190 fmode &= ~O_CREAT; 191 } 192 } else { 193 ndp->ni_cnd.cn_nameiop = LOOKUP; 194 ndp->ni_cnd.cn_flags = ISOPEN | 195 ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | 196 LOCKLEAF | MPSAFE; 197 if (!(fmode & FWRITE)) 198 ndp->ni_cnd.cn_flags |= LOCKSHARED; 199 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 200 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 201 if ((error = namei(ndp)) != 0) 202 return (error); 203 if (!mpsafe) 204 ndp->ni_cnd.cn_flags &= ~MPSAFE; 205 vfslocked = NDHASGIANT(ndp); 206 vp = ndp->ni_vp; 207 } 208 error = vn_open_vnode(vp, fmode, cred, td, fp); 209 if (error) 210 goto bad; 211 *flagp = fmode; 212 if (!mpsafe) 213 VFS_UNLOCK_GIANT(vfslocked); 214 return (0); 215 bad: 216 NDFREE(ndp, NDF_ONLY_PNBUF); 217 vput(vp); 218 VFS_UNLOCK_GIANT(vfslocked); 219 *flagp = fmode; 220 ndp->ni_vp = NULL; 221 return (error); 222 } 223 224 /* 225 * Common code for vnode open operations once a vnode is located. 226 * Check permissions, and call the VOP_OPEN routine. 227 */ 228 int 229 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, 230 struct thread *td, struct file *fp) 231 { 232 struct mount *mp; 233 accmode_t accmode; 234 struct flock lf; 235 int error, have_flock, lock_flags, type; 236 237 VFS_ASSERT_GIANT(vp->v_mount); 238 if (vp->v_type == VLNK) 239 return (EMLINK); 240 if (vp->v_type == VSOCK) 241 return (EOPNOTSUPP); 242 if (vp->v_type != VDIR && fmode & O_DIRECTORY) 243 return (ENOTDIR); 244 accmode = 0; 245 if (fmode & (FWRITE | O_TRUNC)) { 246 if (vp->v_type == VDIR) 247 return (EISDIR); 248 accmode |= VWRITE; 249 } 250 if (fmode & FREAD) 251 accmode |= VREAD; 252 if (fmode & FEXEC) 253 accmode |= VEXEC; 254 if ((fmode & O_APPEND) && (fmode & FWRITE)) 255 accmode |= VAPPEND; 256 #ifdef MAC 257 error = mac_vnode_check_open(cred, vp, accmode); 258 if (error) 259 return (error); 260 #endif 261 if ((fmode & O_CREAT) == 0) { 262 if (accmode & VWRITE) { 263 error = vn_writechk(vp); 264 if (error) 265 return (error); 266 } 267 if (accmode) { 268 error = VOP_ACCESS(vp, accmode, cred, td); 269 if (error) 270 return (error); 271 } 272 } 273 if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0) 274 return (error); 275 276 if (fmode & (O_EXLOCK | O_SHLOCK)) { 277 KASSERT(fp != NULL, ("open with flock requires fp")); 278 lock_flags = VOP_ISLOCKED(vp); 279 VOP_UNLOCK(vp, 0); 280 lf.l_whence = SEEK_SET; 281 lf.l_start = 0; 282 lf.l_len = 0; 283 if (fmode & O_EXLOCK) 284 lf.l_type = F_WRLCK; 285 else 286 lf.l_type = F_RDLCK; 287 type = F_FLOCK; 288 if ((fmode & FNONBLOCK) == 0) 289 type |= F_WAIT; 290 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); 291 have_flock = (error == 0); 292 vn_lock(vp, lock_flags | LK_RETRY); 293 if (error == 0 && vp->v_iflag & VI_DOOMED) 294 error = ENOENT; 295 /* 296 * Another thread might have used this vnode as an 297 * executable while the vnode lock was dropped. 298 * Ensure the vnode is still able to be opened for 299 * writing after the lock has been obtained. 300 */ 301 if (error == 0 && accmode & VWRITE) 302 error = vn_writechk(vp); 303 if (error) { 304 VOP_UNLOCK(vp, 0); 305 if (have_flock) { 306 lf.l_whence = SEEK_SET; 307 lf.l_start = 0; 308 lf.l_len = 0; 309 lf.l_type = F_UNLCK; 310 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, 311 F_FLOCK); 312 } 313 vn_start_write(vp, &mp, V_WAIT); 314 vn_lock(vp, lock_flags | LK_RETRY); 315 (void)VOP_CLOSE(vp, fmode, cred, td); 316 vn_finished_write(mp); 317 return (error); 318 } 319 fp->f_flag |= FHASLOCK; 320 } 321 if (fmode & FWRITE) { 322 vp->v_writecount++; 323 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 324 __func__, vp, vp->v_writecount); 325 } 326 ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); 327 return (0); 328 } 329 330 /* 331 * Check for write permissions on the specified vnode. 332 * Prototype text segments cannot be written. 333 */ 334 int 335 vn_writechk(vp) 336 register struct vnode *vp; 337 { 338 339 ASSERT_VOP_LOCKED(vp, "vn_writechk"); 340 /* 341 * If there's shared text associated with 342 * the vnode, try to free it up once. If 343 * we fail, we can't allow writing. 344 */ 345 if (VOP_IS_TEXT(vp)) 346 return (ETXTBSY); 347 348 return (0); 349 } 350 351 /* 352 * Vnode close call 353 */ 354 int 355 vn_close(vp, flags, file_cred, td) 356 register struct vnode *vp; 357 int flags; 358 struct ucred *file_cred; 359 struct thread *td; 360 { 361 struct mount *mp; 362 int error, lock_flags; 363 364 if (!(flags & FWRITE) && vp->v_mount != NULL && 365 vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED) 366 lock_flags = LK_SHARED; 367 else 368 lock_flags = LK_EXCLUSIVE; 369 370 VFS_ASSERT_GIANT(vp->v_mount); 371 372 vn_start_write(vp, &mp, V_WAIT); 373 vn_lock(vp, lock_flags | LK_RETRY); 374 if (flags & FWRITE) { 375 VNASSERT(vp->v_writecount > 0, vp, 376 ("vn_close: negative writecount")); 377 vp->v_writecount--; 378 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 379 __func__, vp, vp->v_writecount); 380 } 381 error = VOP_CLOSE(vp, flags, file_cred, td); 382 vput(vp); 383 vn_finished_write(mp); 384 return (error); 385 } 386 387 /* 388 * Heuristic to detect sequential operation. 389 */ 390 static int 391 sequential_heuristic(struct uio *uio, struct file *fp) 392 { 393 394 if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD) 395 return (fp->f_seqcount << IO_SEQSHIFT); 396 397 /* 398 * Offset 0 is handled specially. open() sets f_seqcount to 1 so 399 * that the first I/O is normally considered to be slightly 400 * sequential. Seeking to offset 0 doesn't change sequentiality 401 * unless previous seeks have reduced f_seqcount to 0, in which 402 * case offset 0 is not special. 403 */ 404 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || 405 uio->uio_offset == fp->f_nextoff) { 406 /* 407 * f_seqcount is in units of fixed-size blocks so that it 408 * depends mainly on the amount of sequential I/O and not 409 * much on the number of sequential I/O's. The fixed size 410 * of 16384 is hard-coded here since it is (not quite) just 411 * a magic size that works well here. This size is more 412 * closely related to the best I/O size for real disks than 413 * to any block size used by software. 414 */ 415 fp->f_seqcount += howmany(uio->uio_resid, 16384); 416 if (fp->f_seqcount > IO_SEQMAX) 417 fp->f_seqcount = IO_SEQMAX; 418 return (fp->f_seqcount << IO_SEQSHIFT); 419 } 420 421 /* Not sequential. Quickly draw-down sequentiality. */ 422 if (fp->f_seqcount > 1) 423 fp->f_seqcount = 1; 424 else 425 fp->f_seqcount = 0; 426 return (0); 427 } 428 429 /* 430 * Package up an I/O request on a vnode into a uio and do it. 431 */ 432 int 433 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, 434 enum uio_seg segflg, int ioflg, struct ucred *active_cred, 435 struct ucred *file_cred, ssize_t *aresid, struct thread *td) 436 { 437 struct uio auio; 438 struct iovec aiov; 439 struct mount *mp; 440 struct ucred *cred; 441 void *rl_cookie; 442 int error, lock_flags; 443 444 VFS_ASSERT_GIANT(vp->v_mount); 445 446 auio.uio_iov = &aiov; 447 auio.uio_iovcnt = 1; 448 aiov.iov_base = base; 449 aiov.iov_len = len; 450 auio.uio_resid = len; 451 auio.uio_offset = offset; 452 auio.uio_segflg = segflg; 453 auio.uio_rw = rw; 454 auio.uio_td = td; 455 error = 0; 456 457 if ((ioflg & IO_NODELOCKED) == 0) { 458 if (rw == UIO_READ) { 459 rl_cookie = vn_rangelock_rlock(vp, offset, 460 offset + len); 461 } else { 462 rl_cookie = vn_rangelock_wlock(vp, offset, 463 offset + len); 464 } 465 mp = NULL; 466 if (rw == UIO_WRITE) { 467 if (vp->v_type != VCHR && 468 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) 469 != 0) 470 goto out; 471 if (MNT_SHARED_WRITES(mp) || 472 ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) 473 lock_flags = LK_SHARED; 474 else 475 lock_flags = LK_EXCLUSIVE; 476 } else 477 lock_flags = LK_SHARED; 478 vn_lock(vp, lock_flags | LK_RETRY); 479 } else 480 rl_cookie = NULL; 481 482 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 483 #ifdef MAC 484 if ((ioflg & IO_NOMACCHECK) == 0) { 485 if (rw == UIO_READ) 486 error = mac_vnode_check_read(active_cred, file_cred, 487 vp); 488 else 489 error = mac_vnode_check_write(active_cred, file_cred, 490 vp); 491 } 492 #endif 493 if (error == 0) { 494 if (file_cred != NULL) 495 cred = file_cred; 496 else 497 cred = active_cred; 498 if (rw == UIO_READ) 499 error = VOP_READ(vp, &auio, ioflg, cred); 500 else 501 error = VOP_WRITE(vp, &auio, ioflg, cred); 502 } 503 if (aresid) 504 *aresid = auio.uio_resid; 505 else 506 if (auio.uio_resid && error == 0) 507 error = EIO; 508 if ((ioflg & IO_NODELOCKED) == 0) { 509 VOP_UNLOCK(vp, 0); 510 if (mp != NULL) 511 vn_finished_write(mp); 512 } 513 out: 514 if (rl_cookie != NULL) 515 vn_rangelock_unlock(vp, rl_cookie); 516 return (error); 517 } 518 519 /* 520 * Package up an I/O request on a vnode into a uio and do it. The I/O 521 * request is split up into smaller chunks and we try to avoid saturating 522 * the buffer cache while potentially holding a vnode locked, so we 523 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() 524 * to give other processes a chance to lock the vnode (either other processes 525 * core'ing the same binary, or unrelated processes scanning the directory). 526 */ 527 int 528 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred, 529 file_cred, aresid, td) 530 enum uio_rw rw; 531 struct vnode *vp; 532 void *base; 533 size_t len; 534 off_t offset; 535 enum uio_seg segflg; 536 int ioflg; 537 struct ucred *active_cred; 538 struct ucred *file_cred; 539 size_t *aresid; 540 struct thread *td; 541 { 542 int error = 0; 543 ssize_t iaresid; 544 545 VFS_ASSERT_GIANT(vp->v_mount); 546 547 do { 548 int chunk; 549 550 /* 551 * Force `offset' to a multiple of MAXBSIZE except possibly 552 * for the first chunk, so that filesystems only need to 553 * write full blocks except possibly for the first and last 554 * chunks. 555 */ 556 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; 557 558 if (chunk > len) 559 chunk = len; 560 if (rw != UIO_READ && vp->v_type == VREG) 561 bwillwrite(); 562 iaresid = 0; 563 error = vn_rdwr(rw, vp, base, chunk, offset, segflg, 564 ioflg, active_cred, file_cred, &iaresid, td); 565 len -= chunk; /* aresid calc already includes length */ 566 if (error) 567 break; 568 offset += chunk; 569 base = (char *)base + chunk; 570 kern_yield(PRI_USER); 571 } while (len); 572 if (aresid) 573 *aresid = len + iaresid; 574 return (error); 575 } 576 577 off_t 578 foffset_lock(struct file *fp, int flags) 579 { 580 struct mtx *mtxp; 581 off_t res; 582 583 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 584 585 #if OFF_MAX <= LONG_MAX 586 /* 587 * Caller only wants the current f_offset value. Assume that 588 * the long and shorter integer types reads are atomic. 589 */ 590 if ((flags & FOF_NOLOCK) != 0) 591 return (fp->f_offset); 592 #endif 593 594 /* 595 * According to McKusick the vn lock was protecting f_offset here. 596 * It is now protected by the FOFFSET_LOCKED flag. 597 */ 598 mtxp = mtx_pool_find(mtxpool_sleep, fp); 599 mtx_lock(mtxp); 600 if ((flags & FOF_NOLOCK) == 0) { 601 while (fp->f_vnread_flags & FOFFSET_LOCKED) { 602 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; 603 msleep(&fp->f_vnread_flags, mtxp, PUSER -1, 604 "vofflock", 0); 605 } 606 fp->f_vnread_flags |= FOFFSET_LOCKED; 607 } 608 res = fp->f_offset; 609 mtx_unlock(mtxp); 610 return (res); 611 } 612 613 void 614 foffset_unlock(struct file *fp, off_t val, int flags) 615 { 616 struct mtx *mtxp; 617 618 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 619 620 #if OFF_MAX <= LONG_MAX 621 if ((flags & FOF_NOLOCK) != 0) { 622 if ((flags & FOF_NOUPDATE) == 0) 623 fp->f_offset = val; 624 if ((flags & FOF_NEXTOFF) != 0) 625 fp->f_nextoff = val; 626 return; 627 } 628 #endif 629 630 mtxp = mtx_pool_find(mtxpool_sleep, fp); 631 mtx_lock(mtxp); 632 if ((flags & FOF_NOUPDATE) == 0) 633 fp->f_offset = val; 634 if ((flags & FOF_NEXTOFF) != 0) 635 fp->f_nextoff = val; 636 if ((flags & FOF_NOLOCK) == 0) { 637 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, 638 ("Lost FOFFSET_LOCKED")); 639 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) 640 wakeup(&fp->f_vnread_flags); 641 fp->f_vnread_flags = 0; 642 } 643 mtx_unlock(mtxp); 644 } 645 646 void 647 foffset_lock_uio(struct file *fp, struct uio *uio, int flags) 648 { 649 650 if ((flags & FOF_OFFSET) == 0) 651 uio->uio_offset = foffset_lock(fp, flags); 652 } 653 654 void 655 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) 656 { 657 658 if ((flags & FOF_OFFSET) == 0) 659 foffset_unlock(fp, uio->uio_offset, flags); 660 } 661 662 static int 663 get_advice(struct file *fp, struct uio *uio) 664 { 665 struct mtx *mtxp; 666 int ret; 667 668 ret = POSIX_FADV_NORMAL; 669 if (fp->f_advice == NULL) 670 return (ret); 671 672 mtxp = mtx_pool_find(mtxpool_sleep, fp); 673 mtx_lock(mtxp); 674 if (uio->uio_offset >= fp->f_advice->fa_start && 675 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) 676 ret = fp->f_advice->fa_advice; 677 mtx_unlock(mtxp); 678 return (ret); 679 } 680 681 /* 682 * File table vnode read routine. 683 */ 684 static int 685 vn_read(fp, uio, active_cred, flags, td) 686 struct file *fp; 687 struct uio *uio; 688 struct ucred *active_cred; 689 int flags; 690 struct thread *td; 691 { 692 struct vnode *vp; 693 struct mtx *mtxp; 694 int error, ioflag; 695 int advice, vfslocked; 696 off_t offset, start, end; 697 698 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 699 uio->uio_td, td)); 700 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 701 vp = fp->f_vnode; 702 ioflag = 0; 703 if (fp->f_flag & FNONBLOCK) 704 ioflag |= IO_NDELAY; 705 if (fp->f_flag & O_DIRECT) 706 ioflag |= IO_DIRECT; 707 advice = get_advice(fp, uio); 708 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 709 vn_lock(vp, LK_SHARED | LK_RETRY); 710 711 switch (advice) { 712 case POSIX_FADV_NORMAL: 713 case POSIX_FADV_SEQUENTIAL: 714 case POSIX_FADV_NOREUSE: 715 ioflag |= sequential_heuristic(uio, fp); 716 break; 717 case POSIX_FADV_RANDOM: 718 /* Disable read-ahead for random I/O. */ 719 break; 720 } 721 offset = uio->uio_offset; 722 723 #ifdef MAC 724 error = mac_vnode_check_read(active_cred, fp->f_cred, vp); 725 if (error == 0) 726 #endif 727 error = VOP_READ(vp, uio, ioflag, fp->f_cred); 728 fp->f_nextoff = uio->uio_offset; 729 VOP_UNLOCK(vp, 0); 730 if (error == 0 && advice == POSIX_FADV_NOREUSE && 731 offset != uio->uio_offset) { 732 /* 733 * Use POSIX_FADV_DONTNEED to flush clean pages and 734 * buffers for the backing file after a 735 * POSIX_FADV_NOREUSE read(2). To optimize the common 736 * case of using POSIX_FADV_NOREUSE with sequential 737 * access, track the previous implicit DONTNEED 738 * request and grow this request to include the 739 * current read(2) in addition to the previous 740 * DONTNEED. With purely sequential access this will 741 * cause the DONTNEED requests to continously grow to 742 * cover all of the previously read regions of the 743 * file. This allows filesystem blocks that are 744 * accessed by multiple calls to read(2) to be flushed 745 * once the last read(2) finishes. 746 */ 747 start = offset; 748 end = uio->uio_offset - 1; 749 mtxp = mtx_pool_find(mtxpool_sleep, fp); 750 mtx_lock(mtxp); 751 if (fp->f_advice != NULL && 752 fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { 753 if (start != 0 && fp->f_advice->fa_prevend + 1 == start) 754 start = fp->f_advice->fa_prevstart; 755 else if (fp->f_advice->fa_prevstart != 0 && 756 fp->f_advice->fa_prevstart == end + 1) 757 end = fp->f_advice->fa_prevend; 758 fp->f_advice->fa_prevstart = start; 759 fp->f_advice->fa_prevend = end; 760 } 761 mtx_unlock(mtxp); 762 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); 763 } 764 VFS_UNLOCK_GIANT(vfslocked); 765 return (error); 766 } 767 768 /* 769 * File table vnode write routine. 770 */ 771 static int 772 vn_write(fp, uio, active_cred, flags, td) 773 struct file *fp; 774 struct uio *uio; 775 struct ucred *active_cred; 776 int flags; 777 struct thread *td; 778 { 779 struct vnode *vp; 780 struct mount *mp; 781 struct mtx *mtxp; 782 int error, ioflag, lock_flags; 783 int advice, vfslocked; 784 off_t offset, start, end; 785 786 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 787 uio->uio_td, td)); 788 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 789 vp = fp->f_vnode; 790 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 791 if (vp->v_type == VREG) 792 bwillwrite(); 793 ioflag = IO_UNIT; 794 if (vp->v_type == VREG && (fp->f_flag & O_APPEND)) 795 ioflag |= IO_APPEND; 796 if (fp->f_flag & FNONBLOCK) 797 ioflag |= IO_NDELAY; 798 if (fp->f_flag & O_DIRECT) 799 ioflag |= IO_DIRECT; 800 if ((fp->f_flag & O_FSYNC) || 801 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))) 802 ioflag |= IO_SYNC; 803 mp = NULL; 804 if (vp->v_type != VCHR && 805 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 806 goto unlock; 807 808 advice = get_advice(fp, uio); 809 810 if (MNT_SHARED_WRITES(mp) || 811 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) { 812 lock_flags = LK_SHARED; 813 } else { 814 lock_flags = LK_EXCLUSIVE; 815 } 816 817 vn_lock(vp, lock_flags | LK_RETRY); 818 switch (advice) { 819 case POSIX_FADV_NORMAL: 820 case POSIX_FADV_SEQUENTIAL: 821 case POSIX_FADV_NOREUSE: 822 ioflag |= sequential_heuristic(uio, fp); 823 break; 824 case POSIX_FADV_RANDOM: 825 /* XXX: Is this correct? */ 826 break; 827 } 828 offset = uio->uio_offset; 829 830 #ifdef MAC 831 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 832 if (error == 0) 833 #endif 834 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); 835 fp->f_nextoff = uio->uio_offset; 836 VOP_UNLOCK(vp, 0); 837 if (vp->v_type != VCHR) 838 vn_finished_write(mp); 839 if (error == 0 && advice == POSIX_FADV_NOREUSE && 840 offset != uio->uio_offset) { 841 /* 842 * Use POSIX_FADV_DONTNEED to flush clean pages and 843 * buffers for the backing file after a 844 * POSIX_FADV_NOREUSE write(2). To optimize the 845 * common case of using POSIX_FADV_NOREUSE with 846 * sequential access, track the previous implicit 847 * DONTNEED request and grow this request to include 848 * the current write(2) in addition to the previous 849 * DONTNEED. With purely sequential access this will 850 * cause the DONTNEED requests to continously grow to 851 * cover all of the previously written regions of the 852 * file. 853 * 854 * Note that the blocks just written are almost 855 * certainly still dirty, so this only works when 856 * VOP_ADVISE() calls from subsequent writes push out 857 * the data written by this write(2) once the backing 858 * buffers are clean. However, as compared to forcing 859 * IO_DIRECT, this gives much saner behavior. Write 860 * clustering is still allowed, and clean pages are 861 * merely moved to the cache page queue rather than 862 * outright thrown away. This means a subsequent 863 * read(2) can still avoid hitting the disk if the 864 * pages have not been reclaimed. 865 * 866 * This does make POSIX_FADV_NOREUSE largely useless 867 * with non-sequential access. However, sequential 868 * access is the more common use case and the flag is 869 * merely advisory. 870 */ 871 start = offset; 872 end = uio->uio_offset - 1; 873 mtxp = mtx_pool_find(mtxpool_sleep, fp); 874 mtx_lock(mtxp); 875 if (fp->f_advice != NULL && 876 fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { 877 if (start != 0 && fp->f_advice->fa_prevend + 1 == start) 878 start = fp->f_advice->fa_prevstart; 879 else if (fp->f_advice->fa_prevstart != 0 && 880 fp->f_advice->fa_prevstart == end + 1) 881 end = fp->f_advice->fa_prevend; 882 fp->f_advice->fa_prevstart = start; 883 fp->f_advice->fa_prevend = end; 884 } 885 mtx_unlock(mtxp); 886 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); 887 } 888 889 unlock: 890 VFS_UNLOCK_GIANT(vfslocked); 891 return (error); 892 } 893 894 static const int io_hold_cnt = 16; 895 static int vn_io_fault_enable = 1; 896 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW, 897 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); 898 static unsigned long vn_io_faults_cnt; 899 SYSCTL_LONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, 900 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); 901 902 /* 903 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to 904 * prevent the following deadlock: 905 * 906 * Assume that the thread A reads from the vnode vp1 into userspace 907 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is 908 * currently not resident, then system ends up with the call chain 909 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> 910 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) 911 * which establishes lock order vp1->vn_lock, then vp2->vn_lock. 912 * If, at the same time, thread B reads from vnode vp2 into buffer buf2 913 * backed by the pages of vnode vp1, and some page in buf2 is not 914 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. 915 * 916 * To prevent the lock order reversal and deadlock, vn_io_fault() does 917 * not allow page faults to happen during VOP_READ() or VOP_WRITE(). 918 * Instead, it first tries to do the whole range i/o with pagefaults 919 * disabled. If all pages in the i/o buffer are resident and mapped, 920 * VOP will succeed (ignoring the genuine filesystem errors). 921 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do 922 * i/o in chunks, with all pages in the chunk prefaulted and held 923 * using vm_fault_quick_hold_pages(). 924 * 925 * Filesystems using this deadlock avoidance scheme should use the 926 * array of the held pages from uio, saved in the curthread->td_ma, 927 * instead of doing uiomove(). A helper function 928 * vn_io_fault_uiomove() converts uiomove request into 929 * uiomove_fromphys() over td_ma array. 930 * 931 * Since vnode locks do not cover the whole i/o anymore, rangelocks 932 * make the current i/o request atomic with respect to other i/os and 933 * truncations. 934 */ 935 static int 936 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, 937 int flags, struct thread *td) 938 { 939 vm_page_t ma[io_hold_cnt + 2]; 940 struct uio *uio_clone, short_uio; 941 struct iovec short_iovec[1]; 942 fo_rdwr_t *doio; 943 struct vnode *vp; 944 void *rl_cookie; 945 struct mount *mp; 946 vm_page_t *prev_td_ma; 947 int cnt, error, save, saveheld, prev_td_ma_cnt; 948 vm_offset_t addr, end; 949 vm_prot_t prot; 950 size_t len, resid; 951 ssize_t adv; 952 953 if (uio->uio_rw == UIO_READ) 954 doio = vn_read; 955 else 956 doio = vn_write; 957 vp = fp->f_vnode; 958 foffset_lock_uio(fp, uio, flags); 959 960 if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG || 961 ((mp = vp->v_mount) != NULL && 962 (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) || 963 !vn_io_fault_enable) { 964 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 965 goto out_last; 966 } 967 968 /* 969 * The UFS follows IO_UNIT directive and replays back both 970 * uio_offset and uio_resid if an error is encountered during the 971 * operation. But, since the iovec may be already advanced, 972 * uio is still in an inconsistent state. 973 * 974 * Cache a copy of the original uio, which is advanced to the redo 975 * point using UIO_NOCOPY below. 976 */ 977 uio_clone = cloneuio(uio); 978 resid = uio->uio_resid; 979 980 short_uio.uio_segflg = UIO_USERSPACE; 981 short_uio.uio_rw = uio->uio_rw; 982 short_uio.uio_td = uio->uio_td; 983 984 if (uio->uio_rw == UIO_READ) { 985 prot = VM_PROT_WRITE; 986 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, 987 uio->uio_offset + uio->uio_resid); 988 } else { 989 prot = VM_PROT_READ; 990 if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0) 991 /* For appenders, punt and lock the whole range. */ 992 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 993 else 994 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, 995 uio->uio_offset + uio->uio_resid); 996 } 997 998 save = vm_fault_disable_pagefaults(); 999 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 1000 if (error != EFAULT) 1001 goto out; 1002 1003 atomic_add_long(&vn_io_faults_cnt, 1); 1004 uio_clone->uio_segflg = UIO_NOCOPY; 1005 uiomove(NULL, resid - uio->uio_resid, uio_clone); 1006 uio_clone->uio_segflg = uio->uio_segflg; 1007 1008 saveheld = curthread_pflags_set(TDP_UIOHELD); 1009 prev_td_ma = td->td_ma; 1010 prev_td_ma_cnt = td->td_ma_cnt; 1011 1012 while (uio_clone->uio_resid != 0) { 1013 len = uio_clone->uio_iov->iov_len; 1014 if (len == 0) { 1015 KASSERT(uio_clone->uio_iovcnt >= 1, 1016 ("iovcnt underflow")); 1017 uio_clone->uio_iov++; 1018 uio_clone->uio_iovcnt--; 1019 continue; 1020 } 1021 1022 addr = (vm_offset_t)uio_clone->uio_iov->iov_base; 1023 end = round_page(addr + len); 1024 cnt = howmany(end - trunc_page(addr), PAGE_SIZE); 1025 /* 1026 * A perfectly misaligned address and length could cause 1027 * both the start and the end of the chunk to use partial 1028 * page. +2 accounts for such a situation. 1029 */ 1030 if (cnt > io_hold_cnt + 2) { 1031 len = io_hold_cnt * PAGE_SIZE; 1032 KASSERT(howmany(round_page(addr + len) - 1033 trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2, 1034 ("cnt overflow")); 1035 } 1036 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, 1037 addr, len, prot, ma, io_hold_cnt + 2); 1038 if (cnt == -1) { 1039 error = EFAULT; 1040 break; 1041 } 1042 short_uio.uio_iov = &short_iovec[0]; 1043 short_iovec[0].iov_base = (void *)addr; 1044 short_uio.uio_iovcnt = 1; 1045 short_uio.uio_resid = short_iovec[0].iov_len = len; 1046 short_uio.uio_offset = uio_clone->uio_offset; 1047 td->td_ma = ma; 1048 td->td_ma_cnt = cnt; 1049 1050 error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET, 1051 td); 1052 vm_page_unhold_pages(ma, cnt); 1053 adv = len - short_uio.uio_resid; 1054 1055 uio_clone->uio_iov->iov_base = 1056 (char *)uio_clone->uio_iov->iov_base + adv; 1057 uio_clone->uio_iov->iov_len -= adv; 1058 uio_clone->uio_resid -= adv; 1059 uio_clone->uio_offset += adv; 1060 1061 uio->uio_resid -= adv; 1062 uio->uio_offset += adv; 1063 1064 if (error != 0 || adv == 0) 1065 break; 1066 } 1067 td->td_ma = prev_td_ma; 1068 td->td_ma_cnt = prev_td_ma_cnt; 1069 curthread_pflags_restore(saveheld); 1070 out: 1071 vm_fault_enable_pagefaults(save); 1072 vn_rangelock_unlock(vp, rl_cookie); 1073 free(uio_clone, M_IOV); 1074 out_last: 1075 foffset_unlock_uio(fp, uio, flags); 1076 return (error); 1077 } 1078 1079 /* 1080 * Helper function to perform the requested uiomove operation using 1081 * the held pages for io->uio_iov[0].iov_base buffer instead of 1082 * copyin/copyout. Access to the pages with uiomove_fromphys() 1083 * instead of iov_base prevents page faults that could occur due to 1084 * pmap_collect() invalidating the mapping created by 1085 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or 1086 * object cleanup revoking the write access from page mappings. 1087 * 1088 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() 1089 * instead of plain uiomove(). 1090 */ 1091 int 1092 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) 1093 { 1094 struct uio transp_uio; 1095 struct iovec transp_iov[1]; 1096 struct thread *td; 1097 size_t adv; 1098 int error, pgadv; 1099 1100 td = curthread; 1101 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1102 uio->uio_segflg != UIO_USERSPACE) 1103 return (uiomove(data, xfersize, uio)); 1104 1105 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1106 transp_iov[0].iov_base = data; 1107 transp_uio.uio_iov = &transp_iov[0]; 1108 transp_uio.uio_iovcnt = 1; 1109 if (xfersize > uio->uio_resid) 1110 xfersize = uio->uio_resid; 1111 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; 1112 transp_uio.uio_offset = 0; 1113 transp_uio.uio_segflg = UIO_SYSSPACE; 1114 /* 1115 * Since transp_iov points to data, and td_ma page array 1116 * corresponds to original uio->uio_iov, we need to invert the 1117 * direction of the i/o operation as passed to 1118 * uiomove_fromphys(). 1119 */ 1120 switch (uio->uio_rw) { 1121 case UIO_WRITE: 1122 transp_uio.uio_rw = UIO_READ; 1123 break; 1124 case UIO_READ: 1125 transp_uio.uio_rw = UIO_WRITE; 1126 break; 1127 } 1128 transp_uio.uio_td = uio->uio_td; 1129 error = uiomove_fromphys(td->td_ma, 1130 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, 1131 xfersize, &transp_uio); 1132 adv = xfersize - transp_uio.uio_resid; 1133 pgadv = 1134 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - 1135 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); 1136 td->td_ma += pgadv; 1137 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1138 pgadv)); 1139 td->td_ma_cnt -= pgadv; 1140 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; 1141 uio->uio_iov->iov_len -= adv; 1142 uio->uio_resid -= adv; 1143 uio->uio_offset += adv; 1144 return (error); 1145 } 1146 1147 /* 1148 * File table truncate routine. 1149 */ 1150 static int 1151 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1152 struct thread *td) 1153 { 1154 struct vattr vattr; 1155 struct mount *mp; 1156 struct vnode *vp; 1157 void *rl_cookie; 1158 int vfslocked; 1159 int error; 1160 1161 vp = fp->f_vnode; 1162 1163 /* 1164 * Lock the whole range for truncation. Otherwise split i/o 1165 * might happen partly before and partly after the truncation. 1166 */ 1167 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1168 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1169 error = vn_start_write(vp, &mp, V_WAIT | PCATCH); 1170 if (error) 1171 goto out1; 1172 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1173 if (vp->v_type == VDIR) { 1174 error = EISDIR; 1175 goto out; 1176 } 1177 #ifdef MAC 1178 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1179 if (error) 1180 goto out; 1181 #endif 1182 error = vn_writechk(vp); 1183 if (error == 0) { 1184 VATTR_NULL(&vattr); 1185 vattr.va_size = length; 1186 error = VOP_SETATTR(vp, &vattr, fp->f_cred); 1187 } 1188 out: 1189 VOP_UNLOCK(vp, 0); 1190 vn_finished_write(mp); 1191 out1: 1192 VFS_UNLOCK_GIANT(vfslocked); 1193 vn_rangelock_unlock(vp, rl_cookie); 1194 return (error); 1195 } 1196 1197 /* 1198 * File table vnode stat routine. 1199 */ 1200 static int 1201 vn_statfile(fp, sb, active_cred, td) 1202 struct file *fp; 1203 struct stat *sb; 1204 struct ucred *active_cred; 1205 struct thread *td; 1206 { 1207 struct vnode *vp = fp->f_vnode; 1208 int vfslocked; 1209 int error; 1210 1211 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1212 vn_lock(vp, LK_SHARED | LK_RETRY); 1213 error = vn_stat(vp, sb, active_cred, fp->f_cred, td); 1214 VOP_UNLOCK(vp, 0); 1215 VFS_UNLOCK_GIANT(vfslocked); 1216 1217 return (error); 1218 } 1219 1220 /* 1221 * Stat a vnode; implementation for the stat syscall 1222 */ 1223 int 1224 vn_stat(vp, sb, active_cred, file_cred, td) 1225 struct vnode *vp; 1226 register struct stat *sb; 1227 struct ucred *active_cred; 1228 struct ucred *file_cred; 1229 struct thread *td; 1230 { 1231 struct vattr vattr; 1232 register struct vattr *vap; 1233 int error; 1234 u_short mode; 1235 1236 #ifdef MAC 1237 error = mac_vnode_check_stat(active_cred, file_cred, vp); 1238 if (error) 1239 return (error); 1240 #endif 1241 1242 vap = &vattr; 1243 1244 /* 1245 * Initialize defaults for new and unusual fields, so that file 1246 * systems which don't support these fields don't need to know 1247 * about them. 1248 */ 1249 vap->va_birthtime.tv_sec = -1; 1250 vap->va_birthtime.tv_nsec = 0; 1251 vap->va_fsid = VNOVAL; 1252 vap->va_rdev = NODEV; 1253 1254 error = VOP_GETATTR(vp, vap, active_cred); 1255 if (error) 1256 return (error); 1257 1258 /* 1259 * Zero the spare stat fields 1260 */ 1261 bzero(sb, sizeof *sb); 1262 1263 /* 1264 * Copy from vattr table 1265 */ 1266 if (vap->va_fsid != VNOVAL) 1267 sb->st_dev = vap->va_fsid; 1268 else 1269 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; 1270 sb->st_ino = vap->va_fileid; 1271 mode = vap->va_mode; 1272 switch (vap->va_type) { 1273 case VREG: 1274 mode |= S_IFREG; 1275 break; 1276 case VDIR: 1277 mode |= S_IFDIR; 1278 break; 1279 case VBLK: 1280 mode |= S_IFBLK; 1281 break; 1282 case VCHR: 1283 mode |= S_IFCHR; 1284 break; 1285 case VLNK: 1286 mode |= S_IFLNK; 1287 break; 1288 case VSOCK: 1289 mode |= S_IFSOCK; 1290 break; 1291 case VFIFO: 1292 mode |= S_IFIFO; 1293 break; 1294 default: 1295 return (EBADF); 1296 }; 1297 sb->st_mode = mode; 1298 sb->st_nlink = vap->va_nlink; 1299 sb->st_uid = vap->va_uid; 1300 sb->st_gid = vap->va_gid; 1301 sb->st_rdev = vap->va_rdev; 1302 if (vap->va_size > OFF_MAX) 1303 return (EOVERFLOW); 1304 sb->st_size = vap->va_size; 1305 sb->st_atim = vap->va_atime; 1306 sb->st_mtim = vap->va_mtime; 1307 sb->st_ctim = vap->va_ctime; 1308 sb->st_birthtim = vap->va_birthtime; 1309 1310 /* 1311 * According to www.opengroup.org, the meaning of st_blksize is 1312 * "a filesystem-specific preferred I/O block size for this 1313 * object. In some filesystem types, this may vary from file 1314 * to file" 1315 * Use miminum/default of PAGE_SIZE (e.g. for VCHR). 1316 */ 1317 1318 sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize); 1319 1320 sb->st_flags = vap->va_flags; 1321 if (priv_check(td, PRIV_VFS_GENERATION)) 1322 sb->st_gen = 0; 1323 else 1324 sb->st_gen = vap->va_gen; 1325 1326 sb->st_blocks = vap->va_bytes / S_BLKSIZE; 1327 return (0); 1328 } 1329 1330 /* 1331 * File table vnode ioctl routine. 1332 */ 1333 static int 1334 vn_ioctl(fp, com, data, active_cred, td) 1335 struct file *fp; 1336 u_long com; 1337 void *data; 1338 struct ucred *active_cred; 1339 struct thread *td; 1340 { 1341 struct vnode *vp = fp->f_vnode; 1342 struct vattr vattr; 1343 int vfslocked; 1344 int error; 1345 1346 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1347 error = ENOTTY; 1348 switch (vp->v_type) { 1349 case VREG: 1350 case VDIR: 1351 if (com == FIONREAD) { 1352 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1353 error = VOP_GETATTR(vp, &vattr, active_cred); 1354 VOP_UNLOCK(vp, 0); 1355 if (!error) 1356 *(int *)data = vattr.va_size - fp->f_offset; 1357 } 1358 if (com == FIONBIO || com == FIOASYNC) /* XXX */ 1359 error = 0; 1360 else 1361 error = VOP_IOCTL(vp, com, data, fp->f_flag, 1362 active_cred, td); 1363 break; 1364 1365 default: 1366 break; 1367 } 1368 VFS_UNLOCK_GIANT(vfslocked); 1369 return (error); 1370 } 1371 1372 /* 1373 * File table vnode poll routine. 1374 */ 1375 static int 1376 vn_poll(fp, events, active_cred, td) 1377 struct file *fp; 1378 int events; 1379 struct ucred *active_cred; 1380 struct thread *td; 1381 { 1382 struct vnode *vp; 1383 int vfslocked; 1384 int error; 1385 1386 vp = fp->f_vnode; 1387 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1388 #ifdef MAC 1389 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1390 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); 1391 VOP_UNLOCK(vp, 0); 1392 if (!error) 1393 #endif 1394 1395 error = VOP_POLL(vp, events, fp->f_cred, td); 1396 VFS_UNLOCK_GIANT(vfslocked); 1397 return (error); 1398 } 1399 1400 /* 1401 * Acquire the requested lock and then check for validity. LK_RETRY 1402 * permits vn_lock to return doomed vnodes. 1403 */ 1404 int 1405 _vn_lock(struct vnode *vp, int flags, char *file, int line) 1406 { 1407 int error; 1408 1409 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 1410 ("vn_lock called with no locktype.")); 1411 do { 1412 #ifdef DEBUG_VFS_LOCKS 1413 KASSERT(vp->v_holdcnt != 0, 1414 ("vn_lock %p: zero hold count", vp)); 1415 #endif 1416 error = VOP_LOCK1(vp, flags, file, line); 1417 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */ 1418 KASSERT((flags & LK_RETRY) == 0 || error == 0, 1419 ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)", 1420 flags, error)); 1421 /* 1422 * Callers specify LK_RETRY if they wish to get dead vnodes. 1423 * If RETRY is not set, we return ENOENT instead. 1424 */ 1425 if (error == 0 && vp->v_iflag & VI_DOOMED && 1426 (flags & LK_RETRY) == 0) { 1427 VOP_UNLOCK(vp, 0); 1428 error = ENOENT; 1429 break; 1430 } 1431 } while (flags & LK_RETRY && error != 0); 1432 return (error); 1433 } 1434 1435 /* 1436 * File table vnode close routine. 1437 */ 1438 static int 1439 vn_closefile(fp, td) 1440 struct file *fp; 1441 struct thread *td; 1442 { 1443 struct vnode *vp; 1444 struct flock lf; 1445 int vfslocked; 1446 int error; 1447 1448 vp = fp->f_vnode; 1449 fp->f_ops = &badfileops; 1450 1451 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1452 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) 1453 vref(vp); 1454 1455 error = vn_close(vp, fp->f_flag, fp->f_cred, td); 1456 1457 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) { 1458 lf.l_whence = SEEK_SET; 1459 lf.l_start = 0; 1460 lf.l_len = 0; 1461 lf.l_type = F_UNLCK; 1462 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); 1463 vrele(vp); 1464 } 1465 VFS_UNLOCK_GIANT(vfslocked); 1466 return (error); 1467 } 1468 1469 /* 1470 * Preparing to start a filesystem write operation. If the operation is 1471 * permitted, then we bump the count of operations in progress and 1472 * proceed. If a suspend request is in progress, we wait until the 1473 * suspension is over, and then proceed. 1474 */ 1475 int 1476 vn_start_write(vp, mpp, flags) 1477 struct vnode *vp; 1478 struct mount **mpp; 1479 int flags; 1480 { 1481 struct mount *mp; 1482 int error; 1483 1484 error = 0; 1485 /* 1486 * If a vnode is provided, get and return the mount point that 1487 * to which it will write. 1488 */ 1489 if (vp != NULL) { 1490 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1491 *mpp = NULL; 1492 if (error != EOPNOTSUPP) 1493 return (error); 1494 return (0); 1495 } 1496 } 1497 if ((mp = *mpp) == NULL) 1498 return (0); 1499 1500 /* 1501 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1502 * a vfs_ref(). 1503 * As long as a vnode is not provided we need to acquire a 1504 * refcount for the provided mountpoint too, in order to 1505 * emulate a vfs_ref(). 1506 */ 1507 MNT_ILOCK(mp); 1508 if (vp == NULL) 1509 MNT_REF(mp); 1510 1511 /* 1512 * Check on status of suspension. 1513 */ 1514 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || 1515 mp->mnt_susp_owner != curthread) { 1516 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1517 if (flags & V_NOWAIT) { 1518 error = EWOULDBLOCK; 1519 goto unlock; 1520 } 1521 error = msleep(&mp->mnt_flag, MNT_MTX(mp), 1522 (PUSER - 1) | (flags & PCATCH), "suspfs", 0); 1523 if (error) 1524 goto unlock; 1525 } 1526 } 1527 if (flags & V_XSLEEP) 1528 goto unlock; 1529 mp->mnt_writeopcount++; 1530 unlock: 1531 if (error != 0 || (flags & V_XSLEEP) != 0) 1532 MNT_REL(mp); 1533 MNT_IUNLOCK(mp); 1534 return (error); 1535 } 1536 1537 /* 1538 * Secondary suspension. Used by operations such as vop_inactive 1539 * routines that are needed by the higher level functions. These 1540 * are allowed to proceed until all the higher level functions have 1541 * completed (indicated by mnt_writeopcount dropping to zero). At that 1542 * time, these operations are halted until the suspension is over. 1543 */ 1544 int 1545 vn_start_secondary_write(vp, mpp, flags) 1546 struct vnode *vp; 1547 struct mount **mpp; 1548 int flags; 1549 { 1550 struct mount *mp; 1551 int error; 1552 1553 retry: 1554 if (vp != NULL) { 1555 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1556 *mpp = NULL; 1557 if (error != EOPNOTSUPP) 1558 return (error); 1559 return (0); 1560 } 1561 } 1562 /* 1563 * If we are not suspended or have not yet reached suspended 1564 * mode, then let the operation proceed. 1565 */ 1566 if ((mp = *mpp) == NULL) 1567 return (0); 1568 1569 /* 1570 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1571 * a vfs_ref(). 1572 * As long as a vnode is not provided we need to acquire a 1573 * refcount for the provided mountpoint too, in order to 1574 * emulate a vfs_ref(). 1575 */ 1576 MNT_ILOCK(mp); 1577 if (vp == NULL) 1578 MNT_REF(mp); 1579 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { 1580 mp->mnt_secondary_writes++; 1581 mp->mnt_secondary_accwrites++; 1582 MNT_IUNLOCK(mp); 1583 return (0); 1584 } 1585 if (flags & V_NOWAIT) { 1586 MNT_REL(mp); 1587 MNT_IUNLOCK(mp); 1588 return (EWOULDBLOCK); 1589 } 1590 /* 1591 * Wait for the suspension to finish. 1592 */ 1593 error = msleep(&mp->mnt_flag, MNT_MTX(mp), 1594 (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0); 1595 vfs_rel(mp); 1596 if (error == 0) 1597 goto retry; 1598 return (error); 1599 } 1600 1601 /* 1602 * Filesystem write operation has completed. If we are suspending and this 1603 * operation is the last one, notify the suspender that the suspension is 1604 * now in effect. 1605 */ 1606 void 1607 vn_finished_write(mp) 1608 struct mount *mp; 1609 { 1610 if (mp == NULL) 1611 return; 1612 MNT_ILOCK(mp); 1613 MNT_REL(mp); 1614 mp->mnt_writeopcount--; 1615 if (mp->mnt_writeopcount < 0) 1616 panic("vn_finished_write: neg cnt"); 1617 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1618 mp->mnt_writeopcount <= 0) 1619 wakeup(&mp->mnt_writeopcount); 1620 MNT_IUNLOCK(mp); 1621 } 1622 1623 1624 /* 1625 * Filesystem secondary write operation has completed. If we are 1626 * suspending and this operation is the last one, notify the suspender 1627 * that the suspension is now in effect. 1628 */ 1629 void 1630 vn_finished_secondary_write(mp) 1631 struct mount *mp; 1632 { 1633 if (mp == NULL) 1634 return; 1635 MNT_ILOCK(mp); 1636 MNT_REL(mp); 1637 mp->mnt_secondary_writes--; 1638 if (mp->mnt_secondary_writes < 0) 1639 panic("vn_finished_secondary_write: neg cnt"); 1640 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1641 mp->mnt_secondary_writes <= 0) 1642 wakeup(&mp->mnt_secondary_writes); 1643 MNT_IUNLOCK(mp); 1644 } 1645 1646 1647 1648 /* 1649 * Request a filesystem to suspend write operations. 1650 */ 1651 int 1652 vfs_write_suspend(mp) 1653 struct mount *mp; 1654 { 1655 int error; 1656 1657 MNT_ILOCK(mp); 1658 if (mp->mnt_susp_owner == curthread) { 1659 MNT_IUNLOCK(mp); 1660 return (EALREADY); 1661 } 1662 while (mp->mnt_kern_flag & MNTK_SUSPEND) 1663 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); 1664 mp->mnt_kern_flag |= MNTK_SUSPEND; 1665 mp->mnt_susp_owner = curthread; 1666 if (mp->mnt_writeopcount > 0) 1667 (void) msleep(&mp->mnt_writeopcount, 1668 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); 1669 else 1670 MNT_IUNLOCK(mp); 1671 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) 1672 vfs_write_resume(mp); 1673 return (error); 1674 } 1675 1676 /* 1677 * Request a filesystem to resume write operations. 1678 */ 1679 void 1680 vfs_write_resume(mp) 1681 struct mount *mp; 1682 { 1683 1684 MNT_ILOCK(mp); 1685 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1686 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); 1687 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | 1688 MNTK_SUSPENDED); 1689 mp->mnt_susp_owner = NULL; 1690 wakeup(&mp->mnt_writeopcount); 1691 wakeup(&mp->mnt_flag); 1692 curthread->td_pflags &= ~TDP_IGNSUSP; 1693 MNT_IUNLOCK(mp); 1694 VFS_SUSP_CLEAN(mp); 1695 } else 1696 MNT_IUNLOCK(mp); 1697 } 1698 1699 /* 1700 * Implement kqueues for files by translating it to vnode operation. 1701 */ 1702 static int 1703 vn_kqfilter(struct file *fp, struct knote *kn) 1704 { 1705 int vfslocked; 1706 int error; 1707 1708 vfslocked = VFS_LOCK_GIANT(fp->f_vnode->v_mount); 1709 error = VOP_KQFILTER(fp->f_vnode, kn); 1710 VFS_UNLOCK_GIANT(vfslocked); 1711 1712 return error; 1713 } 1714 1715 /* 1716 * Simplified in-kernel wrapper calls for extended attribute access. 1717 * Both calls pass in a NULL credential, authorizing as "kernel" access. 1718 * Set IO_NODELOCKED in ioflg if the vnode is already locked. 1719 */ 1720 int 1721 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, 1722 const char *attrname, int *buflen, char *buf, struct thread *td) 1723 { 1724 struct uio auio; 1725 struct iovec iov; 1726 int error; 1727 1728 iov.iov_len = *buflen; 1729 iov.iov_base = buf; 1730 1731 auio.uio_iov = &iov; 1732 auio.uio_iovcnt = 1; 1733 auio.uio_rw = UIO_READ; 1734 auio.uio_segflg = UIO_SYSSPACE; 1735 auio.uio_td = td; 1736 auio.uio_offset = 0; 1737 auio.uio_resid = *buflen; 1738 1739 if ((ioflg & IO_NODELOCKED) == 0) 1740 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1741 1742 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1743 1744 /* authorize attribute retrieval as kernel */ 1745 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, 1746 td); 1747 1748 if ((ioflg & IO_NODELOCKED) == 0) 1749 VOP_UNLOCK(vp, 0); 1750 1751 if (error == 0) { 1752 *buflen = *buflen - auio.uio_resid; 1753 } 1754 1755 return (error); 1756 } 1757 1758 /* 1759 * XXX failure mode if partially written? 1760 */ 1761 int 1762 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, 1763 const char *attrname, int buflen, char *buf, struct thread *td) 1764 { 1765 struct uio auio; 1766 struct iovec iov; 1767 struct mount *mp; 1768 int error; 1769 1770 iov.iov_len = buflen; 1771 iov.iov_base = buf; 1772 1773 auio.uio_iov = &iov; 1774 auio.uio_iovcnt = 1; 1775 auio.uio_rw = UIO_WRITE; 1776 auio.uio_segflg = UIO_SYSSPACE; 1777 auio.uio_td = td; 1778 auio.uio_offset = 0; 1779 auio.uio_resid = buflen; 1780 1781 if ((ioflg & IO_NODELOCKED) == 0) { 1782 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 1783 return (error); 1784 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1785 } 1786 1787 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1788 1789 /* authorize attribute setting as kernel */ 1790 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); 1791 1792 if ((ioflg & IO_NODELOCKED) == 0) { 1793 vn_finished_write(mp); 1794 VOP_UNLOCK(vp, 0); 1795 } 1796 1797 return (error); 1798 } 1799 1800 int 1801 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, 1802 const char *attrname, struct thread *td) 1803 { 1804 struct mount *mp; 1805 int error; 1806 1807 if ((ioflg & IO_NODELOCKED) == 0) { 1808 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 1809 return (error); 1810 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1811 } 1812 1813 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1814 1815 /* authorize attribute removal as kernel */ 1816 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); 1817 if (error == EOPNOTSUPP) 1818 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, 1819 NULL, td); 1820 1821 if ((ioflg & IO_NODELOCKED) == 0) { 1822 vn_finished_write(mp); 1823 VOP_UNLOCK(vp, 0); 1824 } 1825 1826 return (error); 1827 } 1828 1829 int 1830 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) 1831 { 1832 struct mount *mp; 1833 int ltype, error; 1834 1835 mp = vp->v_mount; 1836 ltype = VOP_ISLOCKED(vp); 1837 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, 1838 ("vn_vget_ino: vp not locked")); 1839 error = vfs_busy(mp, MBF_NOWAIT); 1840 if (error != 0) { 1841 vfs_ref(mp); 1842 VOP_UNLOCK(vp, 0); 1843 error = vfs_busy(mp, 0); 1844 vn_lock(vp, ltype | LK_RETRY); 1845 vfs_rel(mp); 1846 if (error != 0) 1847 return (ENOENT); 1848 if (vp->v_iflag & VI_DOOMED) { 1849 vfs_unbusy(mp); 1850 return (ENOENT); 1851 } 1852 } 1853 VOP_UNLOCK(vp, 0); 1854 error = VFS_VGET(mp, ino, lkflags, rvp); 1855 vfs_unbusy(mp); 1856 vn_lock(vp, ltype | LK_RETRY); 1857 if (vp->v_iflag & VI_DOOMED) { 1858 if (error == 0) 1859 vput(*rvp); 1860 error = ENOENT; 1861 } 1862 return (error); 1863 } 1864 1865 int 1866 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, 1867 const struct thread *td) 1868 { 1869 1870 if (vp->v_type != VREG || td == NULL) 1871 return (0); 1872 PROC_LOCK(td->td_proc); 1873 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1874 lim_cur(td->td_proc, RLIMIT_FSIZE)) { 1875 kern_psignal(td->td_proc, SIGXFSZ); 1876 PROC_UNLOCK(td->td_proc); 1877 return (EFBIG); 1878 } 1879 PROC_UNLOCK(td->td_proc); 1880 return (0); 1881 } 1882 1883 int 1884 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 1885 struct thread *td) 1886 { 1887 struct vnode *vp; 1888 int error, vfslocked; 1889 1890 vp = fp->f_vnode; 1891 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1892 #ifdef AUDIT 1893 vn_lock(vp, LK_SHARED | LK_RETRY); 1894 AUDIT_ARG_VNODE1(vp); 1895 VOP_UNLOCK(vp, 0); 1896 #endif 1897 error = setfmode(td, active_cred, vp, mode); 1898 VFS_UNLOCK_GIANT(vfslocked); 1899 return (error); 1900 } 1901 1902 int 1903 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 1904 struct thread *td) 1905 { 1906 struct vnode *vp; 1907 int error, vfslocked; 1908 1909 vp = fp->f_vnode; 1910 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1911 #ifdef AUDIT 1912 vn_lock(vp, LK_SHARED | LK_RETRY); 1913 AUDIT_ARG_VNODE1(vp); 1914 VOP_UNLOCK(vp, 0); 1915 #endif 1916 error = setfown(td, active_cred, vp, uid, gid); 1917 VFS_UNLOCK_GIANT(vfslocked); 1918 return (error); 1919 } 1920 1921 void 1922 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 1923 { 1924 vm_object_t object; 1925 1926 if ((object = vp->v_object) == NULL) 1927 return; 1928 VM_OBJECT_LOCK(object); 1929 vm_object_page_remove(object, start, end, 0); 1930 VM_OBJECT_UNLOCK(object); 1931 } 1932 1933 int 1934 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) 1935 { 1936 struct vattr va; 1937 daddr_t bn, bnp; 1938 uint64_t bsize; 1939 off_t noff; 1940 int error; 1941 1942 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 1943 ("Wrong command %lu", cmd)); 1944 1945 if (vn_lock(vp, LK_SHARED) != 0) 1946 return (EBADF); 1947 if (vp->v_type != VREG) { 1948 error = ENOTTY; 1949 goto unlock; 1950 } 1951 error = VOP_GETATTR(vp, &va, cred); 1952 if (error != 0) 1953 goto unlock; 1954 noff = *off; 1955 if (noff >= va.va_size) { 1956 error = ENXIO; 1957 goto unlock; 1958 } 1959 bsize = vp->v_mount->mnt_stat.f_iosize; 1960 for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) { 1961 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); 1962 if (error == EOPNOTSUPP) { 1963 error = ENOTTY; 1964 goto unlock; 1965 } 1966 if ((bnp == -1 && cmd == FIOSEEKHOLE) || 1967 (bnp != -1 && cmd == FIOSEEKDATA)) { 1968 noff = bn * bsize; 1969 if (noff < *off) 1970 noff = *off; 1971 goto unlock; 1972 } 1973 } 1974 if (noff > va.va_size) 1975 noff = va.va_size; 1976 /* noff == va.va_size. There is an implicit hole at the end of file. */ 1977 if (cmd == FIOSEEKDATA) 1978 error = ENXIO; 1979 unlock: 1980 VOP_UNLOCK(vp, 0); 1981 if (error == 0) 1982 *off = noff; 1983 return (error); 1984 } 1985