1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/fcntl.h> 43 #include <sys/file.h> 44 #include <sys/kdb.h> 45 #include <sys/stat.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/mount.h> 51 #include <sys/mutex.h> 52 #include <sys/namei.h> 53 #include <sys/vnode.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/filio.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sx.h> 59 #include <sys/sysctl.h> 60 #include <sys/ttycom.h> 61 #include <sys/conf.h> 62 #include <sys/syslog.h> 63 #include <sys/unistd.h> 64 65 #include <security/audit/audit.h> 66 #include <security/mac/mac_framework.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_extern.h> 70 #include <vm/pmap.h> 71 #include <vm/vm_map.h> 72 #include <vm/vm_object.h> 73 #include <vm/vm_page.h> 74 75 static fo_rdwr_t vn_read; 76 static fo_rdwr_t vn_write; 77 static fo_rdwr_t vn_io_fault; 78 static fo_truncate_t vn_truncate; 79 static fo_ioctl_t vn_ioctl; 80 static fo_poll_t vn_poll; 81 static fo_kqfilter_t vn_kqfilter; 82 static fo_stat_t vn_statfile; 83 static fo_close_t vn_closefile; 84 85 struct fileops vnops = { 86 .fo_read = vn_io_fault, 87 .fo_write = vn_io_fault, 88 .fo_truncate = vn_truncate, 89 .fo_ioctl = vn_ioctl, 90 .fo_poll = vn_poll, 91 .fo_kqfilter = vn_kqfilter, 92 .fo_stat = vn_statfile, 93 .fo_close = vn_closefile, 94 .fo_chmod = vn_chmod, 95 .fo_chown = vn_chown, 96 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE 97 }; 98 99 int 100 vn_open(ndp, flagp, cmode, fp) 101 struct nameidata *ndp; 102 int *flagp, cmode; 103 struct file *fp; 104 { 105 struct thread *td = ndp->ni_cnd.cn_thread; 106 107 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); 108 } 109 110 /* 111 * Common code for vnode open operations via a name lookup. 112 * Lookup the vnode and invoke VOP_CREATE if needed. 113 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. 114 * 115 * Note that this does NOT free nameidata for the successful case, 116 * due to the NDINIT being done elsewhere. 117 */ 118 int 119 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, 120 struct ucred *cred, struct file *fp) 121 { 122 struct vnode *vp; 123 struct mount *mp; 124 struct thread *td = ndp->ni_cnd.cn_thread; 125 struct vattr vat; 126 struct vattr *vap = &vat; 127 int fmode, error; 128 129 restart: 130 fmode = *flagp; 131 if (fmode & O_CREAT) { 132 ndp->ni_cnd.cn_nameiop = CREATE; 133 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF; 134 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) 135 ndp->ni_cnd.cn_flags |= FOLLOW; 136 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 137 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 138 bwillwrite(); 139 if ((error = namei(ndp)) != 0) 140 return (error); 141 if (ndp->ni_vp == NULL) { 142 VATTR_NULL(vap); 143 vap->va_type = VREG; 144 vap->va_mode = cmode; 145 if (fmode & O_EXCL) 146 vap->va_vaflags |= VA_EXCLUSIVE; 147 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { 148 NDFREE(ndp, NDF_ONLY_PNBUF); 149 vput(ndp->ni_dvp); 150 if ((error = vn_start_write(NULL, &mp, 151 V_XSLEEP | PCATCH)) != 0) 152 return (error); 153 goto restart; 154 } 155 #ifdef MAC 156 error = mac_vnode_check_create(cred, ndp->ni_dvp, 157 &ndp->ni_cnd, vap); 158 if (error == 0) 159 #endif 160 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, 161 &ndp->ni_cnd, vap); 162 vput(ndp->ni_dvp); 163 vn_finished_write(mp); 164 if (error) { 165 NDFREE(ndp, NDF_ONLY_PNBUF); 166 return (error); 167 } 168 fmode &= ~O_TRUNC; 169 vp = ndp->ni_vp; 170 } else { 171 if (ndp->ni_dvp == ndp->ni_vp) 172 vrele(ndp->ni_dvp); 173 else 174 vput(ndp->ni_dvp); 175 ndp->ni_dvp = NULL; 176 vp = ndp->ni_vp; 177 if (fmode & O_EXCL) { 178 error = EEXIST; 179 goto bad; 180 } 181 fmode &= ~O_CREAT; 182 } 183 } else { 184 ndp->ni_cnd.cn_nameiop = LOOKUP; 185 ndp->ni_cnd.cn_flags = ISOPEN | 186 ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF; 187 if (!(fmode & FWRITE)) 188 ndp->ni_cnd.cn_flags |= LOCKSHARED; 189 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 190 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 191 if ((error = namei(ndp)) != 0) 192 return (error); 193 vp = ndp->ni_vp; 194 } 195 error = vn_open_vnode(vp, fmode, cred, td, fp); 196 if (error) 197 goto bad; 198 *flagp = fmode; 199 return (0); 200 bad: 201 NDFREE(ndp, NDF_ONLY_PNBUF); 202 vput(vp); 203 *flagp = fmode; 204 ndp->ni_vp = NULL; 205 return (error); 206 } 207 208 /* 209 * Common code for vnode open operations once a vnode is located. 210 * Check permissions, and call the VOP_OPEN routine. 211 */ 212 int 213 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, 214 struct thread *td, struct file *fp) 215 { 216 struct mount *mp; 217 accmode_t accmode; 218 struct flock lf; 219 int error, have_flock, lock_flags, type; 220 221 if (vp->v_type == VLNK) 222 return (EMLINK); 223 if (vp->v_type == VSOCK) 224 return (EOPNOTSUPP); 225 if (vp->v_type != VDIR && fmode & O_DIRECTORY) 226 return (ENOTDIR); 227 accmode = 0; 228 if (fmode & (FWRITE | O_TRUNC)) { 229 if (vp->v_type == VDIR) 230 return (EISDIR); 231 accmode |= VWRITE; 232 } 233 if (fmode & FREAD) 234 accmode |= VREAD; 235 if (fmode & FEXEC) 236 accmode |= VEXEC; 237 if ((fmode & O_APPEND) && (fmode & FWRITE)) 238 accmode |= VAPPEND; 239 #ifdef MAC 240 error = mac_vnode_check_open(cred, vp, accmode); 241 if (error) 242 return (error); 243 #endif 244 if ((fmode & O_CREAT) == 0) { 245 if (accmode & VWRITE) { 246 error = vn_writechk(vp); 247 if (error) 248 return (error); 249 } 250 if (accmode) { 251 error = VOP_ACCESS(vp, accmode, cred, td); 252 if (error) 253 return (error); 254 } 255 } 256 if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0) 257 return (error); 258 259 if (fmode & (O_EXLOCK | O_SHLOCK)) { 260 KASSERT(fp != NULL, ("open with flock requires fp")); 261 lock_flags = VOP_ISLOCKED(vp); 262 VOP_UNLOCK(vp, 0); 263 lf.l_whence = SEEK_SET; 264 lf.l_start = 0; 265 lf.l_len = 0; 266 if (fmode & O_EXLOCK) 267 lf.l_type = F_WRLCK; 268 else 269 lf.l_type = F_RDLCK; 270 type = F_FLOCK; 271 if ((fmode & FNONBLOCK) == 0) 272 type |= F_WAIT; 273 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); 274 have_flock = (error == 0); 275 vn_lock(vp, lock_flags | LK_RETRY); 276 if (error == 0 && vp->v_iflag & VI_DOOMED) 277 error = ENOENT; 278 /* 279 * Another thread might have used this vnode as an 280 * executable while the vnode lock was dropped. 281 * Ensure the vnode is still able to be opened for 282 * writing after the lock has been obtained. 283 */ 284 if (error == 0 && accmode & VWRITE) 285 error = vn_writechk(vp); 286 if (error) { 287 VOP_UNLOCK(vp, 0); 288 if (have_flock) { 289 lf.l_whence = SEEK_SET; 290 lf.l_start = 0; 291 lf.l_len = 0; 292 lf.l_type = F_UNLCK; 293 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, 294 F_FLOCK); 295 } 296 vn_start_write(vp, &mp, V_WAIT); 297 vn_lock(vp, lock_flags | LK_RETRY); 298 (void)VOP_CLOSE(vp, fmode, cred, td); 299 vn_finished_write(mp); 300 return (error); 301 } 302 fp->f_flag |= FHASLOCK; 303 } 304 if (fmode & FWRITE) { 305 VOP_ADD_WRITECOUNT(vp, 1); 306 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 307 __func__, vp, vp->v_writecount); 308 } 309 ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); 310 return (0); 311 } 312 313 /* 314 * Check for write permissions on the specified vnode. 315 * Prototype text segments cannot be written. 316 */ 317 int 318 vn_writechk(vp) 319 register struct vnode *vp; 320 { 321 322 ASSERT_VOP_LOCKED(vp, "vn_writechk"); 323 /* 324 * If there's shared text associated with 325 * the vnode, try to free it up once. If 326 * we fail, we can't allow writing. 327 */ 328 if (VOP_IS_TEXT(vp)) 329 return (ETXTBSY); 330 331 return (0); 332 } 333 334 /* 335 * Vnode close call 336 */ 337 int 338 vn_close(vp, flags, file_cred, td) 339 register struct vnode *vp; 340 int flags; 341 struct ucred *file_cred; 342 struct thread *td; 343 { 344 struct mount *mp; 345 int error, lock_flags; 346 347 if (!(flags & FWRITE) && vp->v_mount != NULL && 348 vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED) 349 lock_flags = LK_SHARED; 350 else 351 lock_flags = LK_EXCLUSIVE; 352 353 vn_start_write(vp, &mp, V_WAIT); 354 vn_lock(vp, lock_flags | LK_RETRY); 355 if (flags & FWRITE) { 356 VNASSERT(vp->v_writecount > 0, vp, 357 ("vn_close: negative writecount")); 358 VOP_ADD_WRITECOUNT(vp, -1); 359 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 360 __func__, vp, vp->v_writecount); 361 } 362 error = VOP_CLOSE(vp, flags, file_cred, td); 363 vput(vp); 364 vn_finished_write(mp); 365 return (error); 366 } 367 368 /* 369 * Heuristic to detect sequential operation. 370 */ 371 static int 372 sequential_heuristic(struct uio *uio, struct file *fp) 373 { 374 375 if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD) 376 return (fp->f_seqcount << IO_SEQSHIFT); 377 378 /* 379 * Offset 0 is handled specially. open() sets f_seqcount to 1 so 380 * that the first I/O is normally considered to be slightly 381 * sequential. Seeking to offset 0 doesn't change sequentiality 382 * unless previous seeks have reduced f_seqcount to 0, in which 383 * case offset 0 is not special. 384 */ 385 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || 386 uio->uio_offset == fp->f_nextoff) { 387 /* 388 * f_seqcount is in units of fixed-size blocks so that it 389 * depends mainly on the amount of sequential I/O and not 390 * much on the number of sequential I/O's. The fixed size 391 * of 16384 is hard-coded here since it is (not quite) just 392 * a magic size that works well here. This size is more 393 * closely related to the best I/O size for real disks than 394 * to any block size used by software. 395 */ 396 fp->f_seqcount += howmany(uio->uio_resid, 16384); 397 if (fp->f_seqcount > IO_SEQMAX) 398 fp->f_seqcount = IO_SEQMAX; 399 return (fp->f_seqcount << IO_SEQSHIFT); 400 } 401 402 /* Not sequential. Quickly draw-down sequentiality. */ 403 if (fp->f_seqcount > 1) 404 fp->f_seqcount = 1; 405 else 406 fp->f_seqcount = 0; 407 return (0); 408 } 409 410 /* 411 * Package up an I/O request on a vnode into a uio and do it. 412 */ 413 int 414 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, 415 enum uio_seg segflg, int ioflg, struct ucred *active_cred, 416 struct ucred *file_cred, ssize_t *aresid, struct thread *td) 417 { 418 struct uio auio; 419 struct iovec aiov; 420 struct mount *mp; 421 struct ucred *cred; 422 void *rl_cookie; 423 int error, lock_flags; 424 425 auio.uio_iov = &aiov; 426 auio.uio_iovcnt = 1; 427 aiov.iov_base = base; 428 aiov.iov_len = len; 429 auio.uio_resid = len; 430 auio.uio_offset = offset; 431 auio.uio_segflg = segflg; 432 auio.uio_rw = rw; 433 auio.uio_td = td; 434 error = 0; 435 436 if ((ioflg & IO_NODELOCKED) == 0) { 437 if (rw == UIO_READ) { 438 rl_cookie = vn_rangelock_rlock(vp, offset, 439 offset + len); 440 } else { 441 rl_cookie = vn_rangelock_wlock(vp, offset, 442 offset + len); 443 } 444 mp = NULL; 445 if (rw == UIO_WRITE) { 446 if (vp->v_type != VCHR && 447 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) 448 != 0) 449 goto out; 450 if (MNT_SHARED_WRITES(mp) || 451 ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) 452 lock_flags = LK_SHARED; 453 else 454 lock_flags = LK_EXCLUSIVE; 455 } else 456 lock_flags = LK_SHARED; 457 vn_lock(vp, lock_flags | LK_RETRY); 458 } else 459 rl_cookie = NULL; 460 461 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 462 #ifdef MAC 463 if ((ioflg & IO_NOMACCHECK) == 0) { 464 if (rw == UIO_READ) 465 error = mac_vnode_check_read(active_cred, file_cred, 466 vp); 467 else 468 error = mac_vnode_check_write(active_cred, file_cred, 469 vp); 470 } 471 #endif 472 if (error == 0) { 473 if (file_cred != NULL) 474 cred = file_cred; 475 else 476 cred = active_cred; 477 if (rw == UIO_READ) 478 error = VOP_READ(vp, &auio, ioflg, cred); 479 else 480 error = VOP_WRITE(vp, &auio, ioflg, cred); 481 } 482 if (aresid) 483 *aresid = auio.uio_resid; 484 else 485 if (auio.uio_resid && error == 0) 486 error = EIO; 487 if ((ioflg & IO_NODELOCKED) == 0) { 488 VOP_UNLOCK(vp, 0); 489 if (mp != NULL) 490 vn_finished_write(mp); 491 } 492 out: 493 if (rl_cookie != NULL) 494 vn_rangelock_unlock(vp, rl_cookie); 495 return (error); 496 } 497 498 /* 499 * Package up an I/O request on a vnode into a uio and do it. The I/O 500 * request is split up into smaller chunks and we try to avoid saturating 501 * the buffer cache while potentially holding a vnode locked, so we 502 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() 503 * to give other processes a chance to lock the vnode (either other processes 504 * core'ing the same binary, or unrelated processes scanning the directory). 505 */ 506 int 507 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred, 508 file_cred, aresid, td) 509 enum uio_rw rw; 510 struct vnode *vp; 511 void *base; 512 size_t len; 513 off_t offset; 514 enum uio_seg segflg; 515 int ioflg; 516 struct ucred *active_cred; 517 struct ucred *file_cred; 518 size_t *aresid; 519 struct thread *td; 520 { 521 int error = 0; 522 ssize_t iaresid; 523 524 do { 525 int chunk; 526 527 /* 528 * Force `offset' to a multiple of MAXBSIZE except possibly 529 * for the first chunk, so that filesystems only need to 530 * write full blocks except possibly for the first and last 531 * chunks. 532 */ 533 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; 534 535 if (chunk > len) 536 chunk = len; 537 if (rw != UIO_READ && vp->v_type == VREG) 538 bwillwrite(); 539 iaresid = 0; 540 error = vn_rdwr(rw, vp, base, chunk, offset, segflg, 541 ioflg, active_cred, file_cred, &iaresid, td); 542 len -= chunk; /* aresid calc already includes length */ 543 if (error) 544 break; 545 offset += chunk; 546 base = (char *)base + chunk; 547 kern_yield(PRI_USER); 548 } while (len); 549 if (aresid) 550 *aresid = len + iaresid; 551 return (error); 552 } 553 554 off_t 555 foffset_lock(struct file *fp, int flags) 556 { 557 struct mtx *mtxp; 558 off_t res; 559 560 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 561 562 #if OFF_MAX <= LONG_MAX 563 /* 564 * Caller only wants the current f_offset value. Assume that 565 * the long and shorter integer types reads are atomic. 566 */ 567 if ((flags & FOF_NOLOCK) != 0) 568 return (fp->f_offset); 569 #endif 570 571 /* 572 * According to McKusick the vn lock was protecting f_offset here. 573 * It is now protected by the FOFFSET_LOCKED flag. 574 */ 575 mtxp = mtx_pool_find(mtxpool_sleep, fp); 576 mtx_lock(mtxp); 577 if ((flags & FOF_NOLOCK) == 0) { 578 while (fp->f_vnread_flags & FOFFSET_LOCKED) { 579 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; 580 msleep(&fp->f_vnread_flags, mtxp, PUSER -1, 581 "vofflock", 0); 582 } 583 fp->f_vnread_flags |= FOFFSET_LOCKED; 584 } 585 res = fp->f_offset; 586 mtx_unlock(mtxp); 587 return (res); 588 } 589 590 void 591 foffset_unlock(struct file *fp, off_t val, int flags) 592 { 593 struct mtx *mtxp; 594 595 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 596 597 #if OFF_MAX <= LONG_MAX 598 if ((flags & FOF_NOLOCK) != 0) { 599 if ((flags & FOF_NOUPDATE) == 0) 600 fp->f_offset = val; 601 if ((flags & FOF_NEXTOFF) != 0) 602 fp->f_nextoff = val; 603 return; 604 } 605 #endif 606 607 mtxp = mtx_pool_find(mtxpool_sleep, fp); 608 mtx_lock(mtxp); 609 if ((flags & FOF_NOUPDATE) == 0) 610 fp->f_offset = val; 611 if ((flags & FOF_NEXTOFF) != 0) 612 fp->f_nextoff = val; 613 if ((flags & FOF_NOLOCK) == 0) { 614 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, 615 ("Lost FOFFSET_LOCKED")); 616 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) 617 wakeup(&fp->f_vnread_flags); 618 fp->f_vnread_flags = 0; 619 } 620 mtx_unlock(mtxp); 621 } 622 623 void 624 foffset_lock_uio(struct file *fp, struct uio *uio, int flags) 625 { 626 627 if ((flags & FOF_OFFSET) == 0) 628 uio->uio_offset = foffset_lock(fp, flags); 629 } 630 631 void 632 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) 633 { 634 635 if ((flags & FOF_OFFSET) == 0) 636 foffset_unlock(fp, uio->uio_offset, flags); 637 } 638 639 static int 640 get_advice(struct file *fp, struct uio *uio) 641 { 642 struct mtx *mtxp; 643 int ret; 644 645 ret = POSIX_FADV_NORMAL; 646 if (fp->f_advice == NULL) 647 return (ret); 648 649 mtxp = mtx_pool_find(mtxpool_sleep, fp); 650 mtx_lock(mtxp); 651 if (uio->uio_offset >= fp->f_advice->fa_start && 652 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) 653 ret = fp->f_advice->fa_advice; 654 mtx_unlock(mtxp); 655 return (ret); 656 } 657 658 /* 659 * File table vnode read routine. 660 */ 661 static int 662 vn_read(fp, uio, active_cred, flags, td) 663 struct file *fp; 664 struct uio *uio; 665 struct ucred *active_cred; 666 int flags; 667 struct thread *td; 668 { 669 struct vnode *vp; 670 struct mtx *mtxp; 671 int error, ioflag; 672 int advice; 673 off_t offset, start, end; 674 675 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 676 uio->uio_td, td)); 677 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 678 vp = fp->f_vnode; 679 ioflag = 0; 680 if (fp->f_flag & FNONBLOCK) 681 ioflag |= IO_NDELAY; 682 if (fp->f_flag & O_DIRECT) 683 ioflag |= IO_DIRECT; 684 advice = get_advice(fp, uio); 685 vn_lock(vp, LK_SHARED | LK_RETRY); 686 687 switch (advice) { 688 case POSIX_FADV_NORMAL: 689 case POSIX_FADV_SEQUENTIAL: 690 case POSIX_FADV_NOREUSE: 691 ioflag |= sequential_heuristic(uio, fp); 692 break; 693 case POSIX_FADV_RANDOM: 694 /* Disable read-ahead for random I/O. */ 695 break; 696 } 697 offset = uio->uio_offset; 698 699 #ifdef MAC 700 error = mac_vnode_check_read(active_cred, fp->f_cred, vp); 701 if (error == 0) 702 #endif 703 error = VOP_READ(vp, uio, ioflag, fp->f_cred); 704 fp->f_nextoff = uio->uio_offset; 705 VOP_UNLOCK(vp, 0); 706 if (error == 0 && advice == POSIX_FADV_NOREUSE && 707 offset != uio->uio_offset) { 708 /* 709 * Use POSIX_FADV_DONTNEED to flush clean pages and 710 * buffers for the backing file after a 711 * POSIX_FADV_NOREUSE read(2). To optimize the common 712 * case of using POSIX_FADV_NOREUSE with sequential 713 * access, track the previous implicit DONTNEED 714 * request and grow this request to include the 715 * current read(2) in addition to the previous 716 * DONTNEED. With purely sequential access this will 717 * cause the DONTNEED requests to continously grow to 718 * cover all of the previously read regions of the 719 * file. This allows filesystem blocks that are 720 * accessed by multiple calls to read(2) to be flushed 721 * once the last read(2) finishes. 722 */ 723 start = offset; 724 end = uio->uio_offset - 1; 725 mtxp = mtx_pool_find(mtxpool_sleep, fp); 726 mtx_lock(mtxp); 727 if (fp->f_advice != NULL && 728 fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { 729 if (start != 0 && fp->f_advice->fa_prevend + 1 == start) 730 start = fp->f_advice->fa_prevstart; 731 else if (fp->f_advice->fa_prevstart != 0 && 732 fp->f_advice->fa_prevstart == end + 1) 733 end = fp->f_advice->fa_prevend; 734 fp->f_advice->fa_prevstart = start; 735 fp->f_advice->fa_prevend = end; 736 } 737 mtx_unlock(mtxp); 738 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); 739 } 740 return (error); 741 } 742 743 /* 744 * File table vnode write routine. 745 */ 746 static int 747 vn_write(fp, uio, active_cred, flags, td) 748 struct file *fp; 749 struct uio *uio; 750 struct ucred *active_cred; 751 int flags; 752 struct thread *td; 753 { 754 struct vnode *vp; 755 struct mount *mp; 756 struct mtx *mtxp; 757 int error, ioflag, lock_flags; 758 int advice; 759 off_t offset, start, end; 760 761 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 762 uio->uio_td, td)); 763 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 764 vp = fp->f_vnode; 765 if (vp->v_type == VREG) 766 bwillwrite(); 767 ioflag = IO_UNIT; 768 if (vp->v_type == VREG && (fp->f_flag & O_APPEND)) 769 ioflag |= IO_APPEND; 770 if (fp->f_flag & FNONBLOCK) 771 ioflag |= IO_NDELAY; 772 if (fp->f_flag & O_DIRECT) 773 ioflag |= IO_DIRECT; 774 if ((fp->f_flag & O_FSYNC) || 775 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))) 776 ioflag |= IO_SYNC; 777 mp = NULL; 778 if (vp->v_type != VCHR && 779 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 780 goto unlock; 781 782 advice = get_advice(fp, uio); 783 784 if (MNT_SHARED_WRITES(mp) || 785 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) { 786 lock_flags = LK_SHARED; 787 } else { 788 lock_flags = LK_EXCLUSIVE; 789 } 790 791 vn_lock(vp, lock_flags | LK_RETRY); 792 switch (advice) { 793 case POSIX_FADV_NORMAL: 794 case POSIX_FADV_SEQUENTIAL: 795 case POSIX_FADV_NOREUSE: 796 ioflag |= sequential_heuristic(uio, fp); 797 break; 798 case POSIX_FADV_RANDOM: 799 /* XXX: Is this correct? */ 800 break; 801 } 802 offset = uio->uio_offset; 803 804 #ifdef MAC 805 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 806 if (error == 0) 807 #endif 808 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); 809 fp->f_nextoff = uio->uio_offset; 810 VOP_UNLOCK(vp, 0); 811 if (vp->v_type != VCHR) 812 vn_finished_write(mp); 813 if (error == 0 && advice == POSIX_FADV_NOREUSE && 814 offset != uio->uio_offset) { 815 /* 816 * Use POSIX_FADV_DONTNEED to flush clean pages and 817 * buffers for the backing file after a 818 * POSIX_FADV_NOREUSE write(2). To optimize the 819 * common case of using POSIX_FADV_NOREUSE with 820 * sequential access, track the previous implicit 821 * DONTNEED request and grow this request to include 822 * the current write(2) in addition to the previous 823 * DONTNEED. With purely sequential access this will 824 * cause the DONTNEED requests to continously grow to 825 * cover all of the previously written regions of the 826 * file. 827 * 828 * Note that the blocks just written are almost 829 * certainly still dirty, so this only works when 830 * VOP_ADVISE() calls from subsequent writes push out 831 * the data written by this write(2) once the backing 832 * buffers are clean. However, as compared to forcing 833 * IO_DIRECT, this gives much saner behavior. Write 834 * clustering is still allowed, and clean pages are 835 * merely moved to the cache page queue rather than 836 * outright thrown away. This means a subsequent 837 * read(2) can still avoid hitting the disk if the 838 * pages have not been reclaimed. 839 * 840 * This does make POSIX_FADV_NOREUSE largely useless 841 * with non-sequential access. However, sequential 842 * access is the more common use case and the flag is 843 * merely advisory. 844 */ 845 start = offset; 846 end = uio->uio_offset - 1; 847 mtxp = mtx_pool_find(mtxpool_sleep, fp); 848 mtx_lock(mtxp); 849 if (fp->f_advice != NULL && 850 fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) { 851 if (start != 0 && fp->f_advice->fa_prevend + 1 == start) 852 start = fp->f_advice->fa_prevstart; 853 else if (fp->f_advice->fa_prevstart != 0 && 854 fp->f_advice->fa_prevstart == end + 1) 855 end = fp->f_advice->fa_prevend; 856 fp->f_advice->fa_prevstart = start; 857 fp->f_advice->fa_prevend = end; 858 } 859 mtx_unlock(mtxp); 860 error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED); 861 } 862 863 unlock: 864 return (error); 865 } 866 867 static const int io_hold_cnt = 16; 868 static int vn_io_fault_enable = 1; 869 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW, 870 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); 871 static unsigned long vn_io_faults_cnt; 872 SYSCTL_LONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, 873 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); 874 875 /* 876 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to 877 * prevent the following deadlock: 878 * 879 * Assume that the thread A reads from the vnode vp1 into userspace 880 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is 881 * currently not resident, then system ends up with the call chain 882 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> 883 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) 884 * which establishes lock order vp1->vn_lock, then vp2->vn_lock. 885 * If, at the same time, thread B reads from vnode vp2 into buffer buf2 886 * backed by the pages of vnode vp1, and some page in buf2 is not 887 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. 888 * 889 * To prevent the lock order reversal and deadlock, vn_io_fault() does 890 * not allow page faults to happen during VOP_READ() or VOP_WRITE(). 891 * Instead, it first tries to do the whole range i/o with pagefaults 892 * disabled. If all pages in the i/o buffer are resident and mapped, 893 * VOP will succeed (ignoring the genuine filesystem errors). 894 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do 895 * i/o in chunks, with all pages in the chunk prefaulted and held 896 * using vm_fault_quick_hold_pages(). 897 * 898 * Filesystems using this deadlock avoidance scheme should use the 899 * array of the held pages from uio, saved in the curthread->td_ma, 900 * instead of doing uiomove(). A helper function 901 * vn_io_fault_uiomove() converts uiomove request into 902 * uiomove_fromphys() over td_ma array. 903 * 904 * Since vnode locks do not cover the whole i/o anymore, rangelocks 905 * make the current i/o request atomic with respect to other i/os and 906 * truncations. 907 */ 908 static int 909 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, 910 int flags, struct thread *td) 911 { 912 vm_page_t ma[io_hold_cnt + 2]; 913 struct uio *uio_clone, short_uio; 914 struct iovec short_iovec[1]; 915 fo_rdwr_t *doio; 916 struct vnode *vp; 917 void *rl_cookie; 918 struct mount *mp; 919 vm_page_t *prev_td_ma; 920 int cnt, error, save, saveheld, prev_td_ma_cnt; 921 vm_offset_t addr, end; 922 vm_prot_t prot; 923 size_t len, resid; 924 ssize_t adv; 925 926 if (uio->uio_rw == UIO_READ) 927 doio = vn_read; 928 else 929 doio = vn_write; 930 vp = fp->f_vnode; 931 foffset_lock_uio(fp, uio, flags); 932 933 if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG || 934 ((mp = vp->v_mount) != NULL && 935 (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) || 936 !vn_io_fault_enable) { 937 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 938 goto out_last; 939 } 940 941 /* 942 * The UFS follows IO_UNIT directive and replays back both 943 * uio_offset and uio_resid if an error is encountered during the 944 * operation. But, since the iovec may be already advanced, 945 * uio is still in an inconsistent state. 946 * 947 * Cache a copy of the original uio, which is advanced to the redo 948 * point using UIO_NOCOPY below. 949 */ 950 uio_clone = cloneuio(uio); 951 resid = uio->uio_resid; 952 953 short_uio.uio_segflg = UIO_USERSPACE; 954 short_uio.uio_rw = uio->uio_rw; 955 short_uio.uio_td = uio->uio_td; 956 957 if (uio->uio_rw == UIO_READ) { 958 prot = VM_PROT_WRITE; 959 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, 960 uio->uio_offset + uio->uio_resid); 961 } else { 962 prot = VM_PROT_READ; 963 if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0) 964 /* For appenders, punt and lock the whole range. */ 965 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 966 else 967 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, 968 uio->uio_offset + uio->uio_resid); 969 } 970 971 save = vm_fault_disable_pagefaults(); 972 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 973 if (error != EFAULT) 974 goto out; 975 976 atomic_add_long(&vn_io_faults_cnt, 1); 977 uio_clone->uio_segflg = UIO_NOCOPY; 978 uiomove(NULL, resid - uio->uio_resid, uio_clone); 979 uio_clone->uio_segflg = uio->uio_segflg; 980 981 saveheld = curthread_pflags_set(TDP_UIOHELD); 982 prev_td_ma = td->td_ma; 983 prev_td_ma_cnt = td->td_ma_cnt; 984 985 while (uio_clone->uio_resid != 0) { 986 len = uio_clone->uio_iov->iov_len; 987 if (len == 0) { 988 KASSERT(uio_clone->uio_iovcnt >= 1, 989 ("iovcnt underflow")); 990 uio_clone->uio_iov++; 991 uio_clone->uio_iovcnt--; 992 continue; 993 } 994 995 addr = (vm_offset_t)uio_clone->uio_iov->iov_base; 996 end = round_page(addr + len); 997 cnt = howmany(end - trunc_page(addr), PAGE_SIZE); 998 /* 999 * A perfectly misaligned address and length could cause 1000 * both the start and the end of the chunk to use partial 1001 * page. +2 accounts for such a situation. 1002 */ 1003 if (cnt > io_hold_cnt + 2) { 1004 len = io_hold_cnt * PAGE_SIZE; 1005 KASSERT(howmany(round_page(addr + len) - 1006 trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2, 1007 ("cnt overflow")); 1008 } 1009 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, 1010 addr, len, prot, ma, io_hold_cnt + 2); 1011 if (cnt == -1) { 1012 error = EFAULT; 1013 break; 1014 } 1015 short_uio.uio_iov = &short_iovec[0]; 1016 short_iovec[0].iov_base = (void *)addr; 1017 short_uio.uio_iovcnt = 1; 1018 short_uio.uio_resid = short_iovec[0].iov_len = len; 1019 short_uio.uio_offset = uio_clone->uio_offset; 1020 td->td_ma = ma; 1021 td->td_ma_cnt = cnt; 1022 1023 error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET, 1024 td); 1025 vm_page_unhold_pages(ma, cnt); 1026 adv = len - short_uio.uio_resid; 1027 1028 uio_clone->uio_iov->iov_base = 1029 (char *)uio_clone->uio_iov->iov_base + adv; 1030 uio_clone->uio_iov->iov_len -= adv; 1031 uio_clone->uio_resid -= adv; 1032 uio_clone->uio_offset += adv; 1033 1034 uio->uio_resid -= adv; 1035 uio->uio_offset += adv; 1036 1037 if (error != 0 || adv == 0) 1038 break; 1039 } 1040 td->td_ma = prev_td_ma; 1041 td->td_ma_cnt = prev_td_ma_cnt; 1042 curthread_pflags_restore(saveheld); 1043 out: 1044 vm_fault_enable_pagefaults(save); 1045 vn_rangelock_unlock(vp, rl_cookie); 1046 free(uio_clone, M_IOV); 1047 out_last: 1048 foffset_unlock_uio(fp, uio, flags); 1049 return (error); 1050 } 1051 1052 /* 1053 * Helper function to perform the requested uiomove operation using 1054 * the held pages for io->uio_iov[0].iov_base buffer instead of 1055 * copyin/copyout. Access to the pages with uiomove_fromphys() 1056 * instead of iov_base prevents page faults that could occur due to 1057 * pmap_collect() invalidating the mapping created by 1058 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or 1059 * object cleanup revoking the write access from page mappings. 1060 * 1061 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() 1062 * instead of plain uiomove(). 1063 */ 1064 int 1065 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) 1066 { 1067 struct uio transp_uio; 1068 struct iovec transp_iov[1]; 1069 struct thread *td; 1070 size_t adv; 1071 int error, pgadv; 1072 1073 td = curthread; 1074 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1075 uio->uio_segflg != UIO_USERSPACE) 1076 return (uiomove(data, xfersize, uio)); 1077 1078 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1079 transp_iov[0].iov_base = data; 1080 transp_uio.uio_iov = &transp_iov[0]; 1081 transp_uio.uio_iovcnt = 1; 1082 if (xfersize > uio->uio_resid) 1083 xfersize = uio->uio_resid; 1084 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; 1085 transp_uio.uio_offset = 0; 1086 transp_uio.uio_segflg = UIO_SYSSPACE; 1087 /* 1088 * Since transp_iov points to data, and td_ma page array 1089 * corresponds to original uio->uio_iov, we need to invert the 1090 * direction of the i/o operation as passed to 1091 * uiomove_fromphys(). 1092 */ 1093 switch (uio->uio_rw) { 1094 case UIO_WRITE: 1095 transp_uio.uio_rw = UIO_READ; 1096 break; 1097 case UIO_READ: 1098 transp_uio.uio_rw = UIO_WRITE; 1099 break; 1100 } 1101 transp_uio.uio_td = uio->uio_td; 1102 error = uiomove_fromphys(td->td_ma, 1103 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, 1104 xfersize, &transp_uio); 1105 adv = xfersize - transp_uio.uio_resid; 1106 pgadv = 1107 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - 1108 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); 1109 td->td_ma += pgadv; 1110 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1111 pgadv)); 1112 td->td_ma_cnt -= pgadv; 1113 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; 1114 uio->uio_iov->iov_len -= adv; 1115 uio->uio_resid -= adv; 1116 uio->uio_offset += adv; 1117 return (error); 1118 } 1119 1120 /* 1121 * File table truncate routine. 1122 */ 1123 static int 1124 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1125 struct thread *td) 1126 { 1127 struct vattr vattr; 1128 struct mount *mp; 1129 struct vnode *vp; 1130 void *rl_cookie; 1131 int error; 1132 1133 vp = fp->f_vnode; 1134 1135 /* 1136 * Lock the whole range for truncation. Otherwise split i/o 1137 * might happen partly before and partly after the truncation. 1138 */ 1139 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1140 error = vn_start_write(vp, &mp, V_WAIT | PCATCH); 1141 if (error) 1142 goto out1; 1143 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1144 if (vp->v_type == VDIR) { 1145 error = EISDIR; 1146 goto out; 1147 } 1148 #ifdef MAC 1149 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1150 if (error) 1151 goto out; 1152 #endif 1153 error = vn_writechk(vp); 1154 if (error == 0) { 1155 VATTR_NULL(&vattr); 1156 vattr.va_size = length; 1157 error = VOP_SETATTR(vp, &vattr, fp->f_cred); 1158 } 1159 out: 1160 VOP_UNLOCK(vp, 0); 1161 vn_finished_write(mp); 1162 out1: 1163 vn_rangelock_unlock(vp, rl_cookie); 1164 return (error); 1165 } 1166 1167 /* 1168 * File table vnode stat routine. 1169 */ 1170 static int 1171 vn_statfile(fp, sb, active_cred, td) 1172 struct file *fp; 1173 struct stat *sb; 1174 struct ucred *active_cred; 1175 struct thread *td; 1176 { 1177 struct vnode *vp = fp->f_vnode; 1178 int error; 1179 1180 vn_lock(vp, LK_SHARED | LK_RETRY); 1181 error = vn_stat(vp, sb, active_cred, fp->f_cred, td); 1182 VOP_UNLOCK(vp, 0); 1183 1184 return (error); 1185 } 1186 1187 /* 1188 * Stat a vnode; implementation for the stat syscall 1189 */ 1190 int 1191 vn_stat(vp, sb, active_cred, file_cred, td) 1192 struct vnode *vp; 1193 register struct stat *sb; 1194 struct ucred *active_cred; 1195 struct ucred *file_cred; 1196 struct thread *td; 1197 { 1198 struct vattr vattr; 1199 register struct vattr *vap; 1200 int error; 1201 u_short mode; 1202 1203 #ifdef MAC 1204 error = mac_vnode_check_stat(active_cred, file_cred, vp); 1205 if (error) 1206 return (error); 1207 #endif 1208 1209 vap = &vattr; 1210 1211 /* 1212 * Initialize defaults for new and unusual fields, so that file 1213 * systems which don't support these fields don't need to know 1214 * about them. 1215 */ 1216 vap->va_birthtime.tv_sec = -1; 1217 vap->va_birthtime.tv_nsec = 0; 1218 vap->va_fsid = VNOVAL; 1219 vap->va_rdev = NODEV; 1220 1221 error = VOP_GETATTR(vp, vap, active_cred); 1222 if (error) 1223 return (error); 1224 1225 /* 1226 * Zero the spare stat fields 1227 */ 1228 bzero(sb, sizeof *sb); 1229 1230 /* 1231 * Copy from vattr table 1232 */ 1233 if (vap->va_fsid != VNOVAL) 1234 sb->st_dev = vap->va_fsid; 1235 else 1236 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; 1237 sb->st_ino = vap->va_fileid; 1238 mode = vap->va_mode; 1239 switch (vap->va_type) { 1240 case VREG: 1241 mode |= S_IFREG; 1242 break; 1243 case VDIR: 1244 mode |= S_IFDIR; 1245 break; 1246 case VBLK: 1247 mode |= S_IFBLK; 1248 break; 1249 case VCHR: 1250 mode |= S_IFCHR; 1251 break; 1252 case VLNK: 1253 mode |= S_IFLNK; 1254 break; 1255 case VSOCK: 1256 mode |= S_IFSOCK; 1257 break; 1258 case VFIFO: 1259 mode |= S_IFIFO; 1260 break; 1261 default: 1262 return (EBADF); 1263 }; 1264 sb->st_mode = mode; 1265 sb->st_nlink = vap->va_nlink; 1266 sb->st_uid = vap->va_uid; 1267 sb->st_gid = vap->va_gid; 1268 sb->st_rdev = vap->va_rdev; 1269 if (vap->va_size > OFF_MAX) 1270 return (EOVERFLOW); 1271 sb->st_size = vap->va_size; 1272 sb->st_atim = vap->va_atime; 1273 sb->st_mtim = vap->va_mtime; 1274 sb->st_ctim = vap->va_ctime; 1275 sb->st_birthtim = vap->va_birthtime; 1276 1277 /* 1278 * According to www.opengroup.org, the meaning of st_blksize is 1279 * "a filesystem-specific preferred I/O block size for this 1280 * object. In some filesystem types, this may vary from file 1281 * to file" 1282 * Use miminum/default of PAGE_SIZE (e.g. for VCHR). 1283 */ 1284 1285 sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize); 1286 1287 sb->st_flags = vap->va_flags; 1288 if (priv_check(td, PRIV_VFS_GENERATION)) 1289 sb->st_gen = 0; 1290 else 1291 sb->st_gen = vap->va_gen; 1292 1293 sb->st_blocks = vap->va_bytes / S_BLKSIZE; 1294 return (0); 1295 } 1296 1297 /* 1298 * File table vnode ioctl routine. 1299 */ 1300 static int 1301 vn_ioctl(fp, com, data, active_cred, td) 1302 struct file *fp; 1303 u_long com; 1304 void *data; 1305 struct ucred *active_cred; 1306 struct thread *td; 1307 { 1308 struct vnode *vp = fp->f_vnode; 1309 struct vattr vattr; 1310 int error; 1311 1312 error = ENOTTY; 1313 switch (vp->v_type) { 1314 case VREG: 1315 case VDIR: 1316 if (com == FIONREAD) { 1317 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1318 error = VOP_GETATTR(vp, &vattr, active_cred); 1319 VOP_UNLOCK(vp, 0); 1320 if (!error) 1321 *(int *)data = vattr.va_size - fp->f_offset; 1322 } 1323 if (com == FIONBIO || com == FIOASYNC) /* XXX */ 1324 error = 0; 1325 else 1326 error = VOP_IOCTL(vp, com, data, fp->f_flag, 1327 active_cred, td); 1328 break; 1329 1330 default: 1331 break; 1332 } 1333 return (error); 1334 } 1335 1336 /* 1337 * File table vnode poll routine. 1338 */ 1339 static int 1340 vn_poll(fp, events, active_cred, td) 1341 struct file *fp; 1342 int events; 1343 struct ucred *active_cred; 1344 struct thread *td; 1345 { 1346 struct vnode *vp; 1347 int error; 1348 1349 vp = fp->f_vnode; 1350 #ifdef MAC 1351 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1352 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); 1353 VOP_UNLOCK(vp, 0); 1354 if (!error) 1355 #endif 1356 1357 error = VOP_POLL(vp, events, fp->f_cred, td); 1358 return (error); 1359 } 1360 1361 /* 1362 * Acquire the requested lock and then check for validity. LK_RETRY 1363 * permits vn_lock to return doomed vnodes. 1364 */ 1365 int 1366 _vn_lock(struct vnode *vp, int flags, char *file, int line) 1367 { 1368 int error; 1369 1370 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 1371 ("vn_lock called with no locktype.")); 1372 do { 1373 #ifdef DEBUG_VFS_LOCKS 1374 KASSERT(vp->v_holdcnt != 0, 1375 ("vn_lock %p: zero hold count", vp)); 1376 #endif 1377 error = VOP_LOCK1(vp, flags, file, line); 1378 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */ 1379 KASSERT((flags & LK_RETRY) == 0 || error == 0, 1380 ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)", 1381 flags, error)); 1382 /* 1383 * Callers specify LK_RETRY if they wish to get dead vnodes. 1384 * If RETRY is not set, we return ENOENT instead. 1385 */ 1386 if (error == 0 && vp->v_iflag & VI_DOOMED && 1387 (flags & LK_RETRY) == 0) { 1388 VOP_UNLOCK(vp, 0); 1389 error = ENOENT; 1390 break; 1391 } 1392 } while (flags & LK_RETRY && error != 0); 1393 return (error); 1394 } 1395 1396 /* 1397 * File table vnode close routine. 1398 */ 1399 static int 1400 vn_closefile(fp, td) 1401 struct file *fp; 1402 struct thread *td; 1403 { 1404 struct vnode *vp; 1405 struct flock lf; 1406 int error; 1407 1408 vp = fp->f_vnode; 1409 fp->f_ops = &badfileops; 1410 1411 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) 1412 vref(vp); 1413 1414 error = vn_close(vp, fp->f_flag, fp->f_cred, td); 1415 1416 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) { 1417 lf.l_whence = SEEK_SET; 1418 lf.l_start = 0; 1419 lf.l_len = 0; 1420 lf.l_type = F_UNLCK; 1421 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); 1422 vrele(vp); 1423 } 1424 return (error); 1425 } 1426 1427 /* 1428 * Preparing to start a filesystem write operation. If the operation is 1429 * permitted, then we bump the count of operations in progress and 1430 * proceed. If a suspend request is in progress, we wait until the 1431 * suspension is over, and then proceed. 1432 */ 1433 int 1434 vn_start_write(vp, mpp, flags) 1435 struct vnode *vp; 1436 struct mount **mpp; 1437 int flags; 1438 { 1439 struct mount *mp; 1440 int error; 1441 1442 error = 0; 1443 /* 1444 * If a vnode is provided, get and return the mount point that 1445 * to which it will write. 1446 */ 1447 if (vp != NULL) { 1448 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1449 *mpp = NULL; 1450 if (error != EOPNOTSUPP) 1451 return (error); 1452 return (0); 1453 } 1454 } 1455 if ((mp = *mpp) == NULL) 1456 return (0); 1457 1458 /* 1459 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1460 * a vfs_ref(). 1461 * As long as a vnode is not provided we need to acquire a 1462 * refcount for the provided mountpoint too, in order to 1463 * emulate a vfs_ref(). 1464 */ 1465 MNT_ILOCK(mp); 1466 if (vp == NULL) 1467 MNT_REF(mp); 1468 1469 /* 1470 * Check on status of suspension. 1471 */ 1472 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || 1473 mp->mnt_susp_owner != curthread) { 1474 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1475 if (flags & V_NOWAIT) { 1476 error = EWOULDBLOCK; 1477 goto unlock; 1478 } 1479 error = msleep(&mp->mnt_flag, MNT_MTX(mp), 1480 (PUSER - 1) | (flags & PCATCH), "suspfs", 0); 1481 if (error) 1482 goto unlock; 1483 } 1484 } 1485 if (flags & V_XSLEEP) 1486 goto unlock; 1487 mp->mnt_writeopcount++; 1488 unlock: 1489 if (error != 0 || (flags & V_XSLEEP) != 0) 1490 MNT_REL(mp); 1491 MNT_IUNLOCK(mp); 1492 return (error); 1493 } 1494 1495 /* 1496 * Secondary suspension. Used by operations such as vop_inactive 1497 * routines that are needed by the higher level functions. These 1498 * are allowed to proceed until all the higher level functions have 1499 * completed (indicated by mnt_writeopcount dropping to zero). At that 1500 * time, these operations are halted until the suspension is over. 1501 */ 1502 int 1503 vn_start_secondary_write(vp, mpp, flags) 1504 struct vnode *vp; 1505 struct mount **mpp; 1506 int flags; 1507 { 1508 struct mount *mp; 1509 int error; 1510 1511 retry: 1512 if (vp != NULL) { 1513 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1514 *mpp = NULL; 1515 if (error != EOPNOTSUPP) 1516 return (error); 1517 return (0); 1518 } 1519 } 1520 /* 1521 * If we are not suspended or have not yet reached suspended 1522 * mode, then let the operation proceed. 1523 */ 1524 if ((mp = *mpp) == NULL) 1525 return (0); 1526 1527 /* 1528 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1529 * a vfs_ref(). 1530 * As long as a vnode is not provided we need to acquire a 1531 * refcount for the provided mountpoint too, in order to 1532 * emulate a vfs_ref(). 1533 */ 1534 MNT_ILOCK(mp); 1535 if (vp == NULL) 1536 MNT_REF(mp); 1537 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { 1538 mp->mnt_secondary_writes++; 1539 mp->mnt_secondary_accwrites++; 1540 MNT_IUNLOCK(mp); 1541 return (0); 1542 } 1543 if (flags & V_NOWAIT) { 1544 MNT_REL(mp); 1545 MNT_IUNLOCK(mp); 1546 return (EWOULDBLOCK); 1547 } 1548 /* 1549 * Wait for the suspension to finish. 1550 */ 1551 error = msleep(&mp->mnt_flag, MNT_MTX(mp), 1552 (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0); 1553 vfs_rel(mp); 1554 if (error == 0) 1555 goto retry; 1556 return (error); 1557 } 1558 1559 /* 1560 * Filesystem write operation has completed. If we are suspending and this 1561 * operation is the last one, notify the suspender that the suspension is 1562 * now in effect. 1563 */ 1564 void 1565 vn_finished_write(mp) 1566 struct mount *mp; 1567 { 1568 if (mp == NULL) 1569 return; 1570 MNT_ILOCK(mp); 1571 MNT_REL(mp); 1572 mp->mnt_writeopcount--; 1573 if (mp->mnt_writeopcount < 0) 1574 panic("vn_finished_write: neg cnt"); 1575 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1576 mp->mnt_writeopcount <= 0) 1577 wakeup(&mp->mnt_writeopcount); 1578 MNT_IUNLOCK(mp); 1579 } 1580 1581 1582 /* 1583 * Filesystem secondary write operation has completed. If we are 1584 * suspending and this operation is the last one, notify the suspender 1585 * that the suspension is now in effect. 1586 */ 1587 void 1588 vn_finished_secondary_write(mp) 1589 struct mount *mp; 1590 { 1591 if (mp == NULL) 1592 return; 1593 MNT_ILOCK(mp); 1594 MNT_REL(mp); 1595 mp->mnt_secondary_writes--; 1596 if (mp->mnt_secondary_writes < 0) 1597 panic("vn_finished_secondary_write: neg cnt"); 1598 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1599 mp->mnt_secondary_writes <= 0) 1600 wakeup(&mp->mnt_secondary_writes); 1601 MNT_IUNLOCK(mp); 1602 } 1603 1604 1605 1606 /* 1607 * Request a filesystem to suspend write operations. 1608 */ 1609 int 1610 vfs_write_suspend(mp) 1611 struct mount *mp; 1612 { 1613 int error; 1614 1615 MNT_ILOCK(mp); 1616 if (mp->mnt_susp_owner == curthread) { 1617 MNT_IUNLOCK(mp); 1618 return (EALREADY); 1619 } 1620 while (mp->mnt_kern_flag & MNTK_SUSPEND) 1621 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); 1622 mp->mnt_kern_flag |= MNTK_SUSPEND; 1623 mp->mnt_susp_owner = curthread; 1624 if (mp->mnt_writeopcount > 0) 1625 (void) msleep(&mp->mnt_writeopcount, 1626 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); 1627 else 1628 MNT_IUNLOCK(mp); 1629 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) 1630 vfs_write_resume(mp); 1631 return (error); 1632 } 1633 1634 /* 1635 * Request a filesystem to resume write operations. 1636 */ 1637 void 1638 vfs_write_resume(mp) 1639 struct mount *mp; 1640 { 1641 1642 MNT_ILOCK(mp); 1643 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1644 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); 1645 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | 1646 MNTK_SUSPENDED); 1647 mp->mnt_susp_owner = NULL; 1648 wakeup(&mp->mnt_writeopcount); 1649 wakeup(&mp->mnt_flag); 1650 curthread->td_pflags &= ~TDP_IGNSUSP; 1651 MNT_IUNLOCK(mp); 1652 VFS_SUSP_CLEAN(mp); 1653 } else 1654 MNT_IUNLOCK(mp); 1655 } 1656 1657 /* 1658 * Implement kqueues for files by translating it to vnode operation. 1659 */ 1660 static int 1661 vn_kqfilter(struct file *fp, struct knote *kn) 1662 { 1663 int error; 1664 1665 error = VOP_KQFILTER(fp->f_vnode, kn); 1666 return (error); 1667 } 1668 1669 /* 1670 * Simplified in-kernel wrapper calls for extended attribute access. 1671 * Both calls pass in a NULL credential, authorizing as "kernel" access. 1672 * Set IO_NODELOCKED in ioflg if the vnode is already locked. 1673 */ 1674 int 1675 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, 1676 const char *attrname, int *buflen, char *buf, struct thread *td) 1677 { 1678 struct uio auio; 1679 struct iovec iov; 1680 int error; 1681 1682 iov.iov_len = *buflen; 1683 iov.iov_base = buf; 1684 1685 auio.uio_iov = &iov; 1686 auio.uio_iovcnt = 1; 1687 auio.uio_rw = UIO_READ; 1688 auio.uio_segflg = UIO_SYSSPACE; 1689 auio.uio_td = td; 1690 auio.uio_offset = 0; 1691 auio.uio_resid = *buflen; 1692 1693 if ((ioflg & IO_NODELOCKED) == 0) 1694 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1695 1696 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1697 1698 /* authorize attribute retrieval as kernel */ 1699 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, 1700 td); 1701 1702 if ((ioflg & IO_NODELOCKED) == 0) 1703 VOP_UNLOCK(vp, 0); 1704 1705 if (error == 0) { 1706 *buflen = *buflen - auio.uio_resid; 1707 } 1708 1709 return (error); 1710 } 1711 1712 /* 1713 * XXX failure mode if partially written? 1714 */ 1715 int 1716 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, 1717 const char *attrname, int buflen, char *buf, struct thread *td) 1718 { 1719 struct uio auio; 1720 struct iovec iov; 1721 struct mount *mp; 1722 int error; 1723 1724 iov.iov_len = buflen; 1725 iov.iov_base = buf; 1726 1727 auio.uio_iov = &iov; 1728 auio.uio_iovcnt = 1; 1729 auio.uio_rw = UIO_WRITE; 1730 auio.uio_segflg = UIO_SYSSPACE; 1731 auio.uio_td = td; 1732 auio.uio_offset = 0; 1733 auio.uio_resid = buflen; 1734 1735 if ((ioflg & IO_NODELOCKED) == 0) { 1736 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 1737 return (error); 1738 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1739 } 1740 1741 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1742 1743 /* authorize attribute setting as kernel */ 1744 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); 1745 1746 if ((ioflg & IO_NODELOCKED) == 0) { 1747 vn_finished_write(mp); 1748 VOP_UNLOCK(vp, 0); 1749 } 1750 1751 return (error); 1752 } 1753 1754 int 1755 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, 1756 const char *attrname, struct thread *td) 1757 { 1758 struct mount *mp; 1759 int error; 1760 1761 if ((ioflg & IO_NODELOCKED) == 0) { 1762 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 1763 return (error); 1764 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1765 } 1766 1767 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1768 1769 /* authorize attribute removal as kernel */ 1770 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); 1771 if (error == EOPNOTSUPP) 1772 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, 1773 NULL, td); 1774 1775 if ((ioflg & IO_NODELOCKED) == 0) { 1776 vn_finished_write(mp); 1777 VOP_UNLOCK(vp, 0); 1778 } 1779 1780 return (error); 1781 } 1782 1783 int 1784 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) 1785 { 1786 struct mount *mp; 1787 int ltype, error; 1788 1789 mp = vp->v_mount; 1790 ltype = VOP_ISLOCKED(vp); 1791 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, 1792 ("vn_vget_ino: vp not locked")); 1793 error = vfs_busy(mp, MBF_NOWAIT); 1794 if (error != 0) { 1795 vfs_ref(mp); 1796 VOP_UNLOCK(vp, 0); 1797 error = vfs_busy(mp, 0); 1798 vn_lock(vp, ltype | LK_RETRY); 1799 vfs_rel(mp); 1800 if (error != 0) 1801 return (ENOENT); 1802 if (vp->v_iflag & VI_DOOMED) { 1803 vfs_unbusy(mp); 1804 return (ENOENT); 1805 } 1806 } 1807 VOP_UNLOCK(vp, 0); 1808 error = VFS_VGET(mp, ino, lkflags, rvp); 1809 vfs_unbusy(mp); 1810 vn_lock(vp, ltype | LK_RETRY); 1811 if (vp->v_iflag & VI_DOOMED) { 1812 if (error == 0) 1813 vput(*rvp); 1814 error = ENOENT; 1815 } 1816 return (error); 1817 } 1818 1819 int 1820 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, 1821 const struct thread *td) 1822 { 1823 1824 if (vp->v_type != VREG || td == NULL) 1825 return (0); 1826 PROC_LOCK(td->td_proc); 1827 if ((uoff_t)uio->uio_offset + uio->uio_resid > 1828 lim_cur(td->td_proc, RLIMIT_FSIZE)) { 1829 kern_psignal(td->td_proc, SIGXFSZ); 1830 PROC_UNLOCK(td->td_proc); 1831 return (EFBIG); 1832 } 1833 PROC_UNLOCK(td->td_proc); 1834 return (0); 1835 } 1836 1837 int 1838 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 1839 struct thread *td) 1840 { 1841 struct vnode *vp; 1842 int error; 1843 1844 vp = fp->f_vnode; 1845 #ifdef AUDIT 1846 vn_lock(vp, LK_SHARED | LK_RETRY); 1847 AUDIT_ARG_VNODE1(vp); 1848 VOP_UNLOCK(vp, 0); 1849 #endif 1850 error = setfmode(td, active_cred, vp, mode); 1851 return (error); 1852 } 1853 1854 int 1855 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 1856 struct thread *td) 1857 { 1858 struct vnode *vp; 1859 int error; 1860 1861 vp = fp->f_vnode; 1862 #ifdef AUDIT 1863 vn_lock(vp, LK_SHARED | LK_RETRY); 1864 AUDIT_ARG_VNODE1(vp); 1865 VOP_UNLOCK(vp, 0); 1866 #endif 1867 error = setfown(td, active_cred, vp, uid, gid); 1868 return (error); 1869 } 1870 1871 void 1872 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 1873 { 1874 vm_object_t object; 1875 1876 if ((object = vp->v_object) == NULL) 1877 return; 1878 VM_OBJECT_LOCK(object); 1879 vm_object_page_remove(object, start, end, 0); 1880 VM_OBJECT_UNLOCK(object); 1881 } 1882 1883 int 1884 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) 1885 { 1886 struct vattr va; 1887 daddr_t bn, bnp; 1888 uint64_t bsize; 1889 off_t noff; 1890 int error; 1891 1892 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 1893 ("Wrong command %lu", cmd)); 1894 1895 if (vn_lock(vp, LK_SHARED) != 0) 1896 return (EBADF); 1897 if (vp->v_type != VREG) { 1898 error = ENOTTY; 1899 goto unlock; 1900 } 1901 error = VOP_GETATTR(vp, &va, cred); 1902 if (error != 0) 1903 goto unlock; 1904 noff = *off; 1905 if (noff >= va.va_size) { 1906 error = ENXIO; 1907 goto unlock; 1908 } 1909 bsize = vp->v_mount->mnt_stat.f_iosize; 1910 for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) { 1911 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); 1912 if (error == EOPNOTSUPP) { 1913 error = ENOTTY; 1914 goto unlock; 1915 } 1916 if ((bnp == -1 && cmd == FIOSEEKHOLE) || 1917 (bnp != -1 && cmd == FIOSEEKDATA)) { 1918 noff = bn * bsize; 1919 if (noff < *off) 1920 noff = *off; 1921 goto unlock; 1922 } 1923 } 1924 if (noff > va.va_size) 1925 noff = va.va_size; 1926 /* noff == va.va_size. There is an implicit hole at the end of file. */ 1927 if (cmd == FIOSEEKDATA) 1928 error = ENXIO; 1929 unlock: 1930 VOP_UNLOCK(vp, 0); 1931 if (error == 0) 1932 *off = noff; 1933 return (error); 1934 } 1935