xref: /freebsd/sys/kern/vfs_vnops.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/fcntl.h>
43 #include <sys/file.h>
44 #include <sys/kdb.h>
45 #include <sys/stat.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/mount.h>
51 #include <sys/mutex.h>
52 #include <sys/namei.h>
53 #include <sys/vnode.h>
54 #include <sys/bio.h>
55 #include <sys/buf.h>
56 #include <sys/filio.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sx.h>
59 #include <sys/sysctl.h>
60 #include <sys/ttycom.h>
61 #include <sys/conf.h>
62 #include <sys/syslog.h>
63 #include <sys/unistd.h>
64 
65 #include <security/audit/audit.h>
66 #include <security/mac/mac_framework.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/pmap.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 
75 static fo_rdwr_t	vn_read;
76 static fo_rdwr_t	vn_write;
77 static fo_rdwr_t	vn_io_fault;
78 static fo_truncate_t	vn_truncate;
79 static fo_ioctl_t	vn_ioctl;
80 static fo_poll_t	vn_poll;
81 static fo_kqfilter_t	vn_kqfilter;
82 static fo_stat_t	vn_statfile;
83 static fo_close_t	vn_closefile;
84 
85 struct 	fileops vnops = {
86 	.fo_read = vn_io_fault,
87 	.fo_write = vn_io_fault,
88 	.fo_truncate = vn_truncate,
89 	.fo_ioctl = vn_ioctl,
90 	.fo_poll = vn_poll,
91 	.fo_kqfilter = vn_kqfilter,
92 	.fo_stat = vn_statfile,
93 	.fo_close = vn_closefile,
94 	.fo_chmod = vn_chmod,
95 	.fo_chown = vn_chown,
96 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
97 };
98 
99 int
100 vn_open(ndp, flagp, cmode, fp)
101 	struct nameidata *ndp;
102 	int *flagp, cmode;
103 	struct file *fp;
104 {
105 	struct thread *td = ndp->ni_cnd.cn_thread;
106 
107 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
108 }
109 
110 /*
111  * Common code for vnode open operations via a name lookup.
112  * Lookup the vnode and invoke VOP_CREATE if needed.
113  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
114  *
115  * Note that this does NOT free nameidata for the successful case,
116  * due to the NDINIT being done elsewhere.
117  */
118 int
119 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
120     struct ucred *cred, struct file *fp)
121 {
122 	struct vnode *vp;
123 	struct mount *mp;
124 	struct thread *td = ndp->ni_cnd.cn_thread;
125 	struct vattr vat;
126 	struct vattr *vap = &vat;
127 	int fmode, error;
128 
129 restart:
130 	fmode = *flagp;
131 	if (fmode & O_CREAT) {
132 		ndp->ni_cnd.cn_nameiop = CREATE;
133 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
134 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
135 			ndp->ni_cnd.cn_flags |= FOLLOW;
136 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
137 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
138 		bwillwrite();
139 		if ((error = namei(ndp)) != 0)
140 			return (error);
141 		if (ndp->ni_vp == NULL) {
142 			VATTR_NULL(vap);
143 			vap->va_type = VREG;
144 			vap->va_mode = cmode;
145 			if (fmode & O_EXCL)
146 				vap->va_vaflags |= VA_EXCLUSIVE;
147 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
148 				NDFREE(ndp, NDF_ONLY_PNBUF);
149 				vput(ndp->ni_dvp);
150 				if ((error = vn_start_write(NULL, &mp,
151 				    V_XSLEEP | PCATCH)) != 0)
152 					return (error);
153 				goto restart;
154 			}
155 #ifdef MAC
156 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
157 			    &ndp->ni_cnd, vap);
158 			if (error == 0)
159 #endif
160 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
161 						   &ndp->ni_cnd, vap);
162 			vput(ndp->ni_dvp);
163 			vn_finished_write(mp);
164 			if (error) {
165 				NDFREE(ndp, NDF_ONLY_PNBUF);
166 				return (error);
167 			}
168 			fmode &= ~O_TRUNC;
169 			vp = ndp->ni_vp;
170 		} else {
171 			if (ndp->ni_dvp == ndp->ni_vp)
172 				vrele(ndp->ni_dvp);
173 			else
174 				vput(ndp->ni_dvp);
175 			ndp->ni_dvp = NULL;
176 			vp = ndp->ni_vp;
177 			if (fmode & O_EXCL) {
178 				error = EEXIST;
179 				goto bad;
180 			}
181 			fmode &= ~O_CREAT;
182 		}
183 	} else {
184 		ndp->ni_cnd.cn_nameiop = LOOKUP;
185 		ndp->ni_cnd.cn_flags = ISOPEN |
186 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
187 		if (!(fmode & FWRITE))
188 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
189 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
190 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
191 		if ((error = namei(ndp)) != 0)
192 			return (error);
193 		vp = ndp->ni_vp;
194 	}
195 	error = vn_open_vnode(vp, fmode, cred, td, fp);
196 	if (error)
197 		goto bad;
198 	*flagp = fmode;
199 	return (0);
200 bad:
201 	NDFREE(ndp, NDF_ONLY_PNBUF);
202 	vput(vp);
203 	*flagp = fmode;
204 	ndp->ni_vp = NULL;
205 	return (error);
206 }
207 
208 /*
209  * Common code for vnode open operations once a vnode is located.
210  * Check permissions, and call the VOP_OPEN routine.
211  */
212 int
213 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
214     struct thread *td, struct file *fp)
215 {
216 	struct mount *mp;
217 	accmode_t accmode;
218 	struct flock lf;
219 	int error, have_flock, lock_flags, type;
220 
221 	if (vp->v_type == VLNK)
222 		return (EMLINK);
223 	if (vp->v_type == VSOCK)
224 		return (EOPNOTSUPP);
225 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
226 		return (ENOTDIR);
227 	accmode = 0;
228 	if (fmode & (FWRITE | O_TRUNC)) {
229 		if (vp->v_type == VDIR)
230 			return (EISDIR);
231 		accmode |= VWRITE;
232 	}
233 	if (fmode & FREAD)
234 		accmode |= VREAD;
235 	if (fmode & FEXEC)
236 		accmode |= VEXEC;
237 	if ((fmode & O_APPEND) && (fmode & FWRITE))
238 		accmode |= VAPPEND;
239 #ifdef MAC
240 	error = mac_vnode_check_open(cred, vp, accmode);
241 	if (error)
242 		return (error);
243 #endif
244 	if ((fmode & O_CREAT) == 0) {
245 		if (accmode & VWRITE) {
246 			error = vn_writechk(vp);
247 			if (error)
248 				return (error);
249 		}
250 		if (accmode) {
251 		        error = VOP_ACCESS(vp, accmode, cred, td);
252 			if (error)
253 				return (error);
254 		}
255 	}
256 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
257 		return (error);
258 
259 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
260 		KASSERT(fp != NULL, ("open with flock requires fp"));
261 		lock_flags = VOP_ISLOCKED(vp);
262 		VOP_UNLOCK(vp, 0);
263 		lf.l_whence = SEEK_SET;
264 		lf.l_start = 0;
265 		lf.l_len = 0;
266 		if (fmode & O_EXLOCK)
267 			lf.l_type = F_WRLCK;
268 		else
269 			lf.l_type = F_RDLCK;
270 		type = F_FLOCK;
271 		if ((fmode & FNONBLOCK) == 0)
272 			type |= F_WAIT;
273 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
274 		have_flock = (error == 0);
275 		vn_lock(vp, lock_flags | LK_RETRY);
276 		if (error == 0 && vp->v_iflag & VI_DOOMED)
277 			error = ENOENT;
278 		/*
279 		 * Another thread might have used this vnode as an
280 		 * executable while the vnode lock was dropped.
281 		 * Ensure the vnode is still able to be opened for
282 		 * writing after the lock has been obtained.
283 		 */
284 		if (error == 0 && accmode & VWRITE)
285 			error = vn_writechk(vp);
286 		if (error) {
287 			VOP_UNLOCK(vp, 0);
288 			if (have_flock) {
289 				lf.l_whence = SEEK_SET;
290 				lf.l_start = 0;
291 				lf.l_len = 0;
292 				lf.l_type = F_UNLCK;
293 				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
294 				    F_FLOCK);
295 			}
296 			vn_start_write(vp, &mp, V_WAIT);
297 			vn_lock(vp, lock_flags | LK_RETRY);
298 			(void)VOP_CLOSE(vp, fmode, cred, td);
299 			vn_finished_write(mp);
300 			return (error);
301 		}
302 		fp->f_flag |= FHASLOCK;
303 	}
304 	if (fmode & FWRITE) {
305 		VOP_ADD_WRITECOUNT(vp, 1);
306 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
307 		    __func__, vp, vp->v_writecount);
308 	}
309 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
310 	return (0);
311 }
312 
313 /*
314  * Check for write permissions on the specified vnode.
315  * Prototype text segments cannot be written.
316  */
317 int
318 vn_writechk(vp)
319 	register struct vnode *vp;
320 {
321 
322 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
323 	/*
324 	 * If there's shared text associated with
325 	 * the vnode, try to free it up once.  If
326 	 * we fail, we can't allow writing.
327 	 */
328 	if (VOP_IS_TEXT(vp))
329 		return (ETXTBSY);
330 
331 	return (0);
332 }
333 
334 /*
335  * Vnode close call
336  */
337 int
338 vn_close(vp, flags, file_cred, td)
339 	register struct vnode *vp;
340 	int flags;
341 	struct ucred *file_cred;
342 	struct thread *td;
343 {
344 	struct mount *mp;
345 	int error, lock_flags;
346 
347 	if (!(flags & FWRITE) && vp->v_mount != NULL &&
348 	    vp->v_mount->mnt_kern_flag & MNTK_EXTENDED_SHARED)
349 		lock_flags = LK_SHARED;
350 	else
351 		lock_flags = LK_EXCLUSIVE;
352 
353 	vn_start_write(vp, &mp, V_WAIT);
354 	vn_lock(vp, lock_flags | LK_RETRY);
355 	if (flags & FWRITE) {
356 		VNASSERT(vp->v_writecount > 0, vp,
357 		    ("vn_close: negative writecount"));
358 		VOP_ADD_WRITECOUNT(vp, -1);
359 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
360 		    __func__, vp, vp->v_writecount);
361 	}
362 	error = VOP_CLOSE(vp, flags, file_cred, td);
363 	vput(vp);
364 	vn_finished_write(mp);
365 	return (error);
366 }
367 
368 /*
369  * Heuristic to detect sequential operation.
370  */
371 static int
372 sequential_heuristic(struct uio *uio, struct file *fp)
373 {
374 
375 	if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
376 		return (fp->f_seqcount << IO_SEQSHIFT);
377 
378 	/*
379 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
380 	 * that the first I/O is normally considered to be slightly
381 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
382 	 * unless previous seeks have reduced f_seqcount to 0, in which
383 	 * case offset 0 is not special.
384 	 */
385 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
386 	    uio->uio_offset == fp->f_nextoff) {
387 		/*
388 		 * f_seqcount is in units of fixed-size blocks so that it
389 		 * depends mainly on the amount of sequential I/O and not
390 		 * much on the number of sequential I/O's.  The fixed size
391 		 * of 16384 is hard-coded here since it is (not quite) just
392 		 * a magic size that works well here.  This size is more
393 		 * closely related to the best I/O size for real disks than
394 		 * to any block size used by software.
395 		 */
396 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
397 		if (fp->f_seqcount > IO_SEQMAX)
398 			fp->f_seqcount = IO_SEQMAX;
399 		return (fp->f_seqcount << IO_SEQSHIFT);
400 	}
401 
402 	/* Not sequential.  Quickly draw-down sequentiality. */
403 	if (fp->f_seqcount > 1)
404 		fp->f_seqcount = 1;
405 	else
406 		fp->f_seqcount = 0;
407 	return (0);
408 }
409 
410 /*
411  * Package up an I/O request on a vnode into a uio and do it.
412  */
413 int
414 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
415     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
416     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
417 {
418 	struct uio auio;
419 	struct iovec aiov;
420 	struct mount *mp;
421 	struct ucred *cred;
422 	void *rl_cookie;
423 	int error, lock_flags;
424 
425 	auio.uio_iov = &aiov;
426 	auio.uio_iovcnt = 1;
427 	aiov.iov_base = base;
428 	aiov.iov_len = len;
429 	auio.uio_resid = len;
430 	auio.uio_offset = offset;
431 	auio.uio_segflg = segflg;
432 	auio.uio_rw = rw;
433 	auio.uio_td = td;
434 	error = 0;
435 
436 	if ((ioflg & IO_NODELOCKED) == 0) {
437 		if (rw == UIO_READ) {
438 			rl_cookie = vn_rangelock_rlock(vp, offset,
439 			    offset + len);
440 		} else {
441 			rl_cookie = vn_rangelock_wlock(vp, offset,
442 			    offset + len);
443 		}
444 		mp = NULL;
445 		if (rw == UIO_WRITE) {
446 			if (vp->v_type != VCHR &&
447 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
448 			    != 0)
449 				goto out;
450 			if (MNT_SHARED_WRITES(mp) ||
451 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
452 				lock_flags = LK_SHARED;
453 			else
454 				lock_flags = LK_EXCLUSIVE;
455 		} else
456 			lock_flags = LK_SHARED;
457 		vn_lock(vp, lock_flags | LK_RETRY);
458 	} else
459 		rl_cookie = NULL;
460 
461 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
462 #ifdef MAC
463 	if ((ioflg & IO_NOMACCHECK) == 0) {
464 		if (rw == UIO_READ)
465 			error = mac_vnode_check_read(active_cred, file_cred,
466 			    vp);
467 		else
468 			error = mac_vnode_check_write(active_cred, file_cred,
469 			    vp);
470 	}
471 #endif
472 	if (error == 0) {
473 		if (file_cred != NULL)
474 			cred = file_cred;
475 		else
476 			cred = active_cred;
477 		if (rw == UIO_READ)
478 			error = VOP_READ(vp, &auio, ioflg, cred);
479 		else
480 			error = VOP_WRITE(vp, &auio, ioflg, cred);
481 	}
482 	if (aresid)
483 		*aresid = auio.uio_resid;
484 	else
485 		if (auio.uio_resid && error == 0)
486 			error = EIO;
487 	if ((ioflg & IO_NODELOCKED) == 0) {
488 		VOP_UNLOCK(vp, 0);
489 		if (mp != NULL)
490 			vn_finished_write(mp);
491 	}
492  out:
493 	if (rl_cookie != NULL)
494 		vn_rangelock_unlock(vp, rl_cookie);
495 	return (error);
496 }
497 
498 /*
499  * Package up an I/O request on a vnode into a uio and do it.  The I/O
500  * request is split up into smaller chunks and we try to avoid saturating
501  * the buffer cache while potentially holding a vnode locked, so we
502  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
503  * to give other processes a chance to lock the vnode (either other processes
504  * core'ing the same binary, or unrelated processes scanning the directory).
505  */
506 int
507 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
508     file_cred, aresid, td)
509 	enum uio_rw rw;
510 	struct vnode *vp;
511 	void *base;
512 	size_t len;
513 	off_t offset;
514 	enum uio_seg segflg;
515 	int ioflg;
516 	struct ucred *active_cred;
517 	struct ucred *file_cred;
518 	size_t *aresid;
519 	struct thread *td;
520 {
521 	int error = 0;
522 	ssize_t iaresid;
523 
524 	do {
525 		int chunk;
526 
527 		/*
528 		 * Force `offset' to a multiple of MAXBSIZE except possibly
529 		 * for the first chunk, so that filesystems only need to
530 		 * write full blocks except possibly for the first and last
531 		 * chunks.
532 		 */
533 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
534 
535 		if (chunk > len)
536 			chunk = len;
537 		if (rw != UIO_READ && vp->v_type == VREG)
538 			bwillwrite();
539 		iaresid = 0;
540 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
541 		    ioflg, active_cred, file_cred, &iaresid, td);
542 		len -= chunk;	/* aresid calc already includes length */
543 		if (error)
544 			break;
545 		offset += chunk;
546 		base = (char *)base + chunk;
547 		kern_yield(PRI_USER);
548 	} while (len);
549 	if (aresid)
550 		*aresid = len + iaresid;
551 	return (error);
552 }
553 
554 off_t
555 foffset_lock(struct file *fp, int flags)
556 {
557 	struct mtx *mtxp;
558 	off_t res;
559 
560 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
561 
562 #if OFF_MAX <= LONG_MAX
563 	/*
564 	 * Caller only wants the current f_offset value.  Assume that
565 	 * the long and shorter integer types reads are atomic.
566 	 */
567 	if ((flags & FOF_NOLOCK) != 0)
568 		return (fp->f_offset);
569 #endif
570 
571 	/*
572 	 * According to McKusick the vn lock was protecting f_offset here.
573 	 * It is now protected by the FOFFSET_LOCKED flag.
574 	 */
575 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
576 	mtx_lock(mtxp);
577 	if ((flags & FOF_NOLOCK) == 0) {
578 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
579 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
580 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
581 			    "vofflock", 0);
582 		}
583 		fp->f_vnread_flags |= FOFFSET_LOCKED;
584 	}
585 	res = fp->f_offset;
586 	mtx_unlock(mtxp);
587 	return (res);
588 }
589 
590 void
591 foffset_unlock(struct file *fp, off_t val, int flags)
592 {
593 	struct mtx *mtxp;
594 
595 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
596 
597 #if OFF_MAX <= LONG_MAX
598 	if ((flags & FOF_NOLOCK) != 0) {
599 		if ((flags & FOF_NOUPDATE) == 0)
600 			fp->f_offset = val;
601 		if ((flags & FOF_NEXTOFF) != 0)
602 			fp->f_nextoff = val;
603 		return;
604 	}
605 #endif
606 
607 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
608 	mtx_lock(mtxp);
609 	if ((flags & FOF_NOUPDATE) == 0)
610 		fp->f_offset = val;
611 	if ((flags & FOF_NEXTOFF) != 0)
612 		fp->f_nextoff = val;
613 	if ((flags & FOF_NOLOCK) == 0) {
614 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
615 		    ("Lost FOFFSET_LOCKED"));
616 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
617 			wakeup(&fp->f_vnread_flags);
618 		fp->f_vnread_flags = 0;
619 	}
620 	mtx_unlock(mtxp);
621 }
622 
623 void
624 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
625 {
626 
627 	if ((flags & FOF_OFFSET) == 0)
628 		uio->uio_offset = foffset_lock(fp, flags);
629 }
630 
631 void
632 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
633 {
634 
635 	if ((flags & FOF_OFFSET) == 0)
636 		foffset_unlock(fp, uio->uio_offset, flags);
637 }
638 
639 static int
640 get_advice(struct file *fp, struct uio *uio)
641 {
642 	struct mtx *mtxp;
643 	int ret;
644 
645 	ret = POSIX_FADV_NORMAL;
646 	if (fp->f_advice == NULL)
647 		return (ret);
648 
649 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
650 	mtx_lock(mtxp);
651 	if (uio->uio_offset >= fp->f_advice->fa_start &&
652 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
653 		ret = fp->f_advice->fa_advice;
654 	mtx_unlock(mtxp);
655 	return (ret);
656 }
657 
658 /*
659  * File table vnode read routine.
660  */
661 static int
662 vn_read(fp, uio, active_cred, flags, td)
663 	struct file *fp;
664 	struct uio *uio;
665 	struct ucred *active_cred;
666 	int flags;
667 	struct thread *td;
668 {
669 	struct vnode *vp;
670 	struct mtx *mtxp;
671 	int error, ioflag;
672 	int advice;
673 	off_t offset, start, end;
674 
675 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
676 	    uio->uio_td, td));
677 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
678 	vp = fp->f_vnode;
679 	ioflag = 0;
680 	if (fp->f_flag & FNONBLOCK)
681 		ioflag |= IO_NDELAY;
682 	if (fp->f_flag & O_DIRECT)
683 		ioflag |= IO_DIRECT;
684 	advice = get_advice(fp, uio);
685 	vn_lock(vp, LK_SHARED | LK_RETRY);
686 
687 	switch (advice) {
688 	case POSIX_FADV_NORMAL:
689 	case POSIX_FADV_SEQUENTIAL:
690 	case POSIX_FADV_NOREUSE:
691 		ioflag |= sequential_heuristic(uio, fp);
692 		break;
693 	case POSIX_FADV_RANDOM:
694 		/* Disable read-ahead for random I/O. */
695 		break;
696 	}
697 	offset = uio->uio_offset;
698 
699 #ifdef MAC
700 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
701 	if (error == 0)
702 #endif
703 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
704 	fp->f_nextoff = uio->uio_offset;
705 	VOP_UNLOCK(vp, 0);
706 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
707 	    offset != uio->uio_offset) {
708 		/*
709 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
710 		 * buffers for the backing file after a
711 		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
712 		 * case of using POSIX_FADV_NOREUSE with sequential
713 		 * access, track the previous implicit DONTNEED
714 		 * request and grow this request to include the
715 		 * current read(2) in addition to the previous
716 		 * DONTNEED.  With purely sequential access this will
717 		 * cause the DONTNEED requests to continously grow to
718 		 * cover all of the previously read regions of the
719 		 * file.  This allows filesystem blocks that are
720 		 * accessed by multiple calls to read(2) to be flushed
721 		 * once the last read(2) finishes.
722 		 */
723 		start = offset;
724 		end = uio->uio_offset - 1;
725 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
726 		mtx_lock(mtxp);
727 		if (fp->f_advice != NULL &&
728 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
729 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
730 				start = fp->f_advice->fa_prevstart;
731 			else if (fp->f_advice->fa_prevstart != 0 &&
732 			    fp->f_advice->fa_prevstart == end + 1)
733 				end = fp->f_advice->fa_prevend;
734 			fp->f_advice->fa_prevstart = start;
735 			fp->f_advice->fa_prevend = end;
736 		}
737 		mtx_unlock(mtxp);
738 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
739 	}
740 	return (error);
741 }
742 
743 /*
744  * File table vnode write routine.
745  */
746 static int
747 vn_write(fp, uio, active_cred, flags, td)
748 	struct file *fp;
749 	struct uio *uio;
750 	struct ucred *active_cred;
751 	int flags;
752 	struct thread *td;
753 {
754 	struct vnode *vp;
755 	struct mount *mp;
756 	struct mtx *mtxp;
757 	int error, ioflag, lock_flags;
758 	int advice;
759 	off_t offset, start, end;
760 
761 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
762 	    uio->uio_td, td));
763 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
764 	vp = fp->f_vnode;
765 	if (vp->v_type == VREG)
766 		bwillwrite();
767 	ioflag = IO_UNIT;
768 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
769 		ioflag |= IO_APPEND;
770 	if (fp->f_flag & FNONBLOCK)
771 		ioflag |= IO_NDELAY;
772 	if (fp->f_flag & O_DIRECT)
773 		ioflag |= IO_DIRECT;
774 	if ((fp->f_flag & O_FSYNC) ||
775 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
776 		ioflag |= IO_SYNC;
777 	mp = NULL;
778 	if (vp->v_type != VCHR &&
779 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
780 		goto unlock;
781 
782 	advice = get_advice(fp, uio);
783 
784 	if (MNT_SHARED_WRITES(mp) ||
785 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
786 		lock_flags = LK_SHARED;
787 	} else {
788 		lock_flags = LK_EXCLUSIVE;
789 	}
790 
791 	vn_lock(vp, lock_flags | LK_RETRY);
792 	switch (advice) {
793 	case POSIX_FADV_NORMAL:
794 	case POSIX_FADV_SEQUENTIAL:
795 	case POSIX_FADV_NOREUSE:
796 		ioflag |= sequential_heuristic(uio, fp);
797 		break;
798 	case POSIX_FADV_RANDOM:
799 		/* XXX: Is this correct? */
800 		break;
801 	}
802 	offset = uio->uio_offset;
803 
804 #ifdef MAC
805 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
806 	if (error == 0)
807 #endif
808 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
809 	fp->f_nextoff = uio->uio_offset;
810 	VOP_UNLOCK(vp, 0);
811 	if (vp->v_type != VCHR)
812 		vn_finished_write(mp);
813 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
814 	    offset != uio->uio_offset) {
815 		/*
816 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
817 		 * buffers for the backing file after a
818 		 * POSIX_FADV_NOREUSE write(2).  To optimize the
819 		 * common case of using POSIX_FADV_NOREUSE with
820 		 * sequential access, track the previous implicit
821 		 * DONTNEED request and grow this request to include
822 		 * the current write(2) in addition to the previous
823 		 * DONTNEED.  With purely sequential access this will
824 		 * cause the DONTNEED requests to continously grow to
825 		 * cover all of the previously written regions of the
826 		 * file.
827 		 *
828 		 * Note that the blocks just written are almost
829 		 * certainly still dirty, so this only works when
830 		 * VOP_ADVISE() calls from subsequent writes push out
831 		 * the data written by this write(2) once the backing
832 		 * buffers are clean.  However, as compared to forcing
833 		 * IO_DIRECT, this gives much saner behavior.  Write
834 		 * clustering is still allowed, and clean pages are
835 		 * merely moved to the cache page queue rather than
836 		 * outright thrown away.  This means a subsequent
837 		 * read(2) can still avoid hitting the disk if the
838 		 * pages have not been reclaimed.
839 		 *
840 		 * This does make POSIX_FADV_NOREUSE largely useless
841 		 * with non-sequential access.  However, sequential
842 		 * access is the more common use case and the flag is
843 		 * merely advisory.
844 		 */
845 		start = offset;
846 		end = uio->uio_offset - 1;
847 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
848 		mtx_lock(mtxp);
849 		if (fp->f_advice != NULL &&
850 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
851 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
852 				start = fp->f_advice->fa_prevstart;
853 			else if (fp->f_advice->fa_prevstart != 0 &&
854 			    fp->f_advice->fa_prevstart == end + 1)
855 				end = fp->f_advice->fa_prevend;
856 			fp->f_advice->fa_prevstart = start;
857 			fp->f_advice->fa_prevend = end;
858 		}
859 		mtx_unlock(mtxp);
860 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
861 	}
862 
863 unlock:
864 	return (error);
865 }
866 
867 static const int io_hold_cnt = 16;
868 static int vn_io_fault_enable = 1;
869 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
870     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
871 static unsigned long vn_io_faults_cnt;
872 SYSCTL_LONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
873     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
874 
875 /*
876  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
877  * prevent the following deadlock:
878  *
879  * Assume that the thread A reads from the vnode vp1 into userspace
880  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
881  * currently not resident, then system ends up with the call chain
882  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
883  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
884  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
885  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
886  * backed by the pages of vnode vp1, and some page in buf2 is not
887  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
888  *
889  * To prevent the lock order reversal and deadlock, vn_io_fault() does
890  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
891  * Instead, it first tries to do the whole range i/o with pagefaults
892  * disabled. If all pages in the i/o buffer are resident and mapped,
893  * VOP will succeed (ignoring the genuine filesystem errors).
894  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
895  * i/o in chunks, with all pages in the chunk prefaulted and held
896  * using vm_fault_quick_hold_pages().
897  *
898  * Filesystems using this deadlock avoidance scheme should use the
899  * array of the held pages from uio, saved in the curthread->td_ma,
900  * instead of doing uiomove().  A helper function
901  * vn_io_fault_uiomove() converts uiomove request into
902  * uiomove_fromphys() over td_ma array.
903  *
904  * Since vnode locks do not cover the whole i/o anymore, rangelocks
905  * make the current i/o request atomic with respect to other i/os and
906  * truncations.
907  */
908 static int
909 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
910     int flags, struct thread *td)
911 {
912 	vm_page_t ma[io_hold_cnt + 2];
913 	struct uio *uio_clone, short_uio;
914 	struct iovec short_iovec[1];
915 	fo_rdwr_t *doio;
916 	struct vnode *vp;
917 	void *rl_cookie;
918 	struct mount *mp;
919 	vm_page_t *prev_td_ma;
920 	int cnt, error, save, saveheld, prev_td_ma_cnt;
921 	vm_offset_t addr, end;
922 	vm_prot_t prot;
923 	size_t len, resid;
924 	ssize_t adv;
925 
926 	if (uio->uio_rw == UIO_READ)
927 		doio = vn_read;
928 	else
929 		doio = vn_write;
930 	vp = fp->f_vnode;
931 	foffset_lock_uio(fp, uio, flags);
932 
933 	if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
934 	    ((mp = vp->v_mount) != NULL &&
935 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
936 	    !vn_io_fault_enable) {
937 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
938 		goto out_last;
939 	}
940 
941 	/*
942 	 * The UFS follows IO_UNIT directive and replays back both
943 	 * uio_offset and uio_resid if an error is encountered during the
944 	 * operation.  But, since the iovec may be already advanced,
945 	 * uio is still in an inconsistent state.
946 	 *
947 	 * Cache a copy of the original uio, which is advanced to the redo
948 	 * point using UIO_NOCOPY below.
949 	 */
950 	uio_clone = cloneuio(uio);
951 	resid = uio->uio_resid;
952 
953 	short_uio.uio_segflg = UIO_USERSPACE;
954 	short_uio.uio_rw = uio->uio_rw;
955 	short_uio.uio_td = uio->uio_td;
956 
957 	if (uio->uio_rw == UIO_READ) {
958 		prot = VM_PROT_WRITE;
959 		rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
960 		    uio->uio_offset + uio->uio_resid);
961 	} else {
962 		prot = VM_PROT_READ;
963 		if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
964 			/* For appenders, punt and lock the whole range. */
965 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
966 		else
967 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
968 			    uio->uio_offset + uio->uio_resid);
969 	}
970 
971 	save = vm_fault_disable_pagefaults();
972 	error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
973 	if (error != EFAULT)
974 		goto out;
975 
976 	atomic_add_long(&vn_io_faults_cnt, 1);
977 	uio_clone->uio_segflg = UIO_NOCOPY;
978 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
979 	uio_clone->uio_segflg = uio->uio_segflg;
980 
981 	saveheld = curthread_pflags_set(TDP_UIOHELD);
982 	prev_td_ma = td->td_ma;
983 	prev_td_ma_cnt = td->td_ma_cnt;
984 
985 	while (uio_clone->uio_resid != 0) {
986 		len = uio_clone->uio_iov->iov_len;
987 		if (len == 0) {
988 			KASSERT(uio_clone->uio_iovcnt >= 1,
989 			    ("iovcnt underflow"));
990 			uio_clone->uio_iov++;
991 			uio_clone->uio_iovcnt--;
992 			continue;
993 		}
994 
995 		addr = (vm_offset_t)uio_clone->uio_iov->iov_base;
996 		end = round_page(addr + len);
997 		cnt = howmany(end - trunc_page(addr), PAGE_SIZE);
998 		/*
999 		 * A perfectly misaligned address and length could cause
1000 		 * both the start and the end of the chunk to use partial
1001 		 * page.  +2 accounts for such a situation.
1002 		 */
1003 		if (cnt > io_hold_cnt + 2) {
1004 			len = io_hold_cnt * PAGE_SIZE;
1005 			KASSERT(howmany(round_page(addr + len) -
1006 			    trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2,
1007 			    ("cnt overflow"));
1008 		}
1009 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1010 		    addr, len, prot, ma, io_hold_cnt + 2);
1011 		if (cnt == -1) {
1012 			error = EFAULT;
1013 			break;
1014 		}
1015 		short_uio.uio_iov = &short_iovec[0];
1016 		short_iovec[0].iov_base = (void *)addr;
1017 		short_uio.uio_iovcnt = 1;
1018 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1019 		short_uio.uio_offset = uio_clone->uio_offset;
1020 		td->td_ma = ma;
1021 		td->td_ma_cnt = cnt;
1022 
1023 		error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
1024 		    td);
1025 		vm_page_unhold_pages(ma, cnt);
1026 		adv = len - short_uio.uio_resid;
1027 
1028 		uio_clone->uio_iov->iov_base =
1029 		    (char *)uio_clone->uio_iov->iov_base + adv;
1030 		uio_clone->uio_iov->iov_len -= adv;
1031 		uio_clone->uio_resid -= adv;
1032 		uio_clone->uio_offset += adv;
1033 
1034 		uio->uio_resid -= adv;
1035 		uio->uio_offset += adv;
1036 
1037 		if (error != 0 || adv == 0)
1038 			break;
1039 	}
1040 	td->td_ma = prev_td_ma;
1041 	td->td_ma_cnt = prev_td_ma_cnt;
1042 	curthread_pflags_restore(saveheld);
1043 out:
1044 	vm_fault_enable_pagefaults(save);
1045 	vn_rangelock_unlock(vp, rl_cookie);
1046 	free(uio_clone, M_IOV);
1047 out_last:
1048 	foffset_unlock_uio(fp, uio, flags);
1049 	return (error);
1050 }
1051 
1052 /*
1053  * Helper function to perform the requested uiomove operation using
1054  * the held pages for io->uio_iov[0].iov_base buffer instead of
1055  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1056  * instead of iov_base prevents page faults that could occur due to
1057  * pmap_collect() invalidating the mapping created by
1058  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1059  * object cleanup revoking the write access from page mappings.
1060  *
1061  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1062  * instead of plain uiomove().
1063  */
1064 int
1065 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1066 {
1067 	struct uio transp_uio;
1068 	struct iovec transp_iov[1];
1069 	struct thread *td;
1070 	size_t adv;
1071 	int error, pgadv;
1072 
1073 	td = curthread;
1074 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1075 	    uio->uio_segflg != UIO_USERSPACE)
1076 		return (uiomove(data, xfersize, uio));
1077 
1078 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1079 	transp_iov[0].iov_base = data;
1080 	transp_uio.uio_iov = &transp_iov[0];
1081 	transp_uio.uio_iovcnt = 1;
1082 	if (xfersize > uio->uio_resid)
1083 		xfersize = uio->uio_resid;
1084 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1085 	transp_uio.uio_offset = 0;
1086 	transp_uio.uio_segflg = UIO_SYSSPACE;
1087 	/*
1088 	 * Since transp_iov points to data, and td_ma page array
1089 	 * corresponds to original uio->uio_iov, we need to invert the
1090 	 * direction of the i/o operation as passed to
1091 	 * uiomove_fromphys().
1092 	 */
1093 	switch (uio->uio_rw) {
1094 	case UIO_WRITE:
1095 		transp_uio.uio_rw = UIO_READ;
1096 		break;
1097 	case UIO_READ:
1098 		transp_uio.uio_rw = UIO_WRITE;
1099 		break;
1100 	}
1101 	transp_uio.uio_td = uio->uio_td;
1102 	error = uiomove_fromphys(td->td_ma,
1103 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1104 	    xfersize, &transp_uio);
1105 	adv = xfersize - transp_uio.uio_resid;
1106 	pgadv =
1107 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1108 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1109 	td->td_ma += pgadv;
1110 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1111 	    pgadv));
1112 	td->td_ma_cnt -= pgadv;
1113 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1114 	uio->uio_iov->iov_len -= adv;
1115 	uio->uio_resid -= adv;
1116 	uio->uio_offset += adv;
1117 	return (error);
1118 }
1119 
1120 /*
1121  * File table truncate routine.
1122  */
1123 static int
1124 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1125     struct thread *td)
1126 {
1127 	struct vattr vattr;
1128 	struct mount *mp;
1129 	struct vnode *vp;
1130 	void *rl_cookie;
1131 	int error;
1132 
1133 	vp = fp->f_vnode;
1134 
1135 	/*
1136 	 * Lock the whole range for truncation.  Otherwise split i/o
1137 	 * might happen partly before and partly after the truncation.
1138 	 */
1139 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1140 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1141 	if (error)
1142 		goto out1;
1143 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1144 	if (vp->v_type == VDIR) {
1145 		error = EISDIR;
1146 		goto out;
1147 	}
1148 #ifdef MAC
1149 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1150 	if (error)
1151 		goto out;
1152 #endif
1153 	error = vn_writechk(vp);
1154 	if (error == 0) {
1155 		VATTR_NULL(&vattr);
1156 		vattr.va_size = length;
1157 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1158 	}
1159 out:
1160 	VOP_UNLOCK(vp, 0);
1161 	vn_finished_write(mp);
1162 out1:
1163 	vn_rangelock_unlock(vp, rl_cookie);
1164 	return (error);
1165 }
1166 
1167 /*
1168  * File table vnode stat routine.
1169  */
1170 static int
1171 vn_statfile(fp, sb, active_cred, td)
1172 	struct file *fp;
1173 	struct stat *sb;
1174 	struct ucred *active_cred;
1175 	struct thread *td;
1176 {
1177 	struct vnode *vp = fp->f_vnode;
1178 	int error;
1179 
1180 	vn_lock(vp, LK_SHARED | LK_RETRY);
1181 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1182 	VOP_UNLOCK(vp, 0);
1183 
1184 	return (error);
1185 }
1186 
1187 /*
1188  * Stat a vnode; implementation for the stat syscall
1189  */
1190 int
1191 vn_stat(vp, sb, active_cred, file_cred, td)
1192 	struct vnode *vp;
1193 	register struct stat *sb;
1194 	struct ucred *active_cred;
1195 	struct ucred *file_cred;
1196 	struct thread *td;
1197 {
1198 	struct vattr vattr;
1199 	register struct vattr *vap;
1200 	int error;
1201 	u_short mode;
1202 
1203 #ifdef MAC
1204 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1205 	if (error)
1206 		return (error);
1207 #endif
1208 
1209 	vap = &vattr;
1210 
1211 	/*
1212 	 * Initialize defaults for new and unusual fields, so that file
1213 	 * systems which don't support these fields don't need to know
1214 	 * about them.
1215 	 */
1216 	vap->va_birthtime.tv_sec = -1;
1217 	vap->va_birthtime.tv_nsec = 0;
1218 	vap->va_fsid = VNOVAL;
1219 	vap->va_rdev = NODEV;
1220 
1221 	error = VOP_GETATTR(vp, vap, active_cred);
1222 	if (error)
1223 		return (error);
1224 
1225 	/*
1226 	 * Zero the spare stat fields
1227 	 */
1228 	bzero(sb, sizeof *sb);
1229 
1230 	/*
1231 	 * Copy from vattr table
1232 	 */
1233 	if (vap->va_fsid != VNOVAL)
1234 		sb->st_dev = vap->va_fsid;
1235 	else
1236 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1237 	sb->st_ino = vap->va_fileid;
1238 	mode = vap->va_mode;
1239 	switch (vap->va_type) {
1240 	case VREG:
1241 		mode |= S_IFREG;
1242 		break;
1243 	case VDIR:
1244 		mode |= S_IFDIR;
1245 		break;
1246 	case VBLK:
1247 		mode |= S_IFBLK;
1248 		break;
1249 	case VCHR:
1250 		mode |= S_IFCHR;
1251 		break;
1252 	case VLNK:
1253 		mode |= S_IFLNK;
1254 		break;
1255 	case VSOCK:
1256 		mode |= S_IFSOCK;
1257 		break;
1258 	case VFIFO:
1259 		mode |= S_IFIFO;
1260 		break;
1261 	default:
1262 		return (EBADF);
1263 	};
1264 	sb->st_mode = mode;
1265 	sb->st_nlink = vap->va_nlink;
1266 	sb->st_uid = vap->va_uid;
1267 	sb->st_gid = vap->va_gid;
1268 	sb->st_rdev = vap->va_rdev;
1269 	if (vap->va_size > OFF_MAX)
1270 		return (EOVERFLOW);
1271 	sb->st_size = vap->va_size;
1272 	sb->st_atim = vap->va_atime;
1273 	sb->st_mtim = vap->va_mtime;
1274 	sb->st_ctim = vap->va_ctime;
1275 	sb->st_birthtim = vap->va_birthtime;
1276 
1277         /*
1278 	 * According to www.opengroup.org, the meaning of st_blksize is
1279 	 *   "a filesystem-specific preferred I/O block size for this
1280 	 *    object.  In some filesystem types, this may vary from file
1281 	 *    to file"
1282 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1283 	 */
1284 
1285 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1286 
1287 	sb->st_flags = vap->va_flags;
1288 	if (priv_check(td, PRIV_VFS_GENERATION))
1289 		sb->st_gen = 0;
1290 	else
1291 		sb->st_gen = vap->va_gen;
1292 
1293 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1294 	return (0);
1295 }
1296 
1297 /*
1298  * File table vnode ioctl routine.
1299  */
1300 static int
1301 vn_ioctl(fp, com, data, active_cred, td)
1302 	struct file *fp;
1303 	u_long com;
1304 	void *data;
1305 	struct ucred *active_cred;
1306 	struct thread *td;
1307 {
1308 	struct vnode *vp = fp->f_vnode;
1309 	struct vattr vattr;
1310 	int error;
1311 
1312 	error = ENOTTY;
1313 	switch (vp->v_type) {
1314 	case VREG:
1315 	case VDIR:
1316 		if (com == FIONREAD) {
1317 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1318 			error = VOP_GETATTR(vp, &vattr, active_cred);
1319 			VOP_UNLOCK(vp, 0);
1320 			if (!error)
1321 				*(int *)data = vattr.va_size - fp->f_offset;
1322 		}
1323 		if (com == FIONBIO || com == FIOASYNC)	/* XXX */
1324 			error = 0;
1325 		else
1326 			error = VOP_IOCTL(vp, com, data, fp->f_flag,
1327 			    active_cred, td);
1328 		break;
1329 
1330 	default:
1331 		break;
1332 	}
1333 	return (error);
1334 }
1335 
1336 /*
1337  * File table vnode poll routine.
1338  */
1339 static int
1340 vn_poll(fp, events, active_cred, td)
1341 	struct file *fp;
1342 	int events;
1343 	struct ucred *active_cred;
1344 	struct thread *td;
1345 {
1346 	struct vnode *vp;
1347 	int error;
1348 
1349 	vp = fp->f_vnode;
1350 #ifdef MAC
1351 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1352 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1353 	VOP_UNLOCK(vp, 0);
1354 	if (!error)
1355 #endif
1356 
1357 	error = VOP_POLL(vp, events, fp->f_cred, td);
1358 	return (error);
1359 }
1360 
1361 /*
1362  * Acquire the requested lock and then check for validity.  LK_RETRY
1363  * permits vn_lock to return doomed vnodes.
1364  */
1365 int
1366 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1367 {
1368 	int error;
1369 
1370 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1371 	    ("vn_lock called with no locktype."));
1372 	do {
1373 #ifdef DEBUG_VFS_LOCKS
1374 		KASSERT(vp->v_holdcnt != 0,
1375 		    ("vn_lock %p: zero hold count", vp));
1376 #endif
1377 		error = VOP_LOCK1(vp, flags, file, line);
1378 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1379 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1380 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1381 		    flags, error));
1382 		/*
1383 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1384 		 * If RETRY is not set, we return ENOENT instead.
1385 		 */
1386 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1387 		    (flags & LK_RETRY) == 0) {
1388 			VOP_UNLOCK(vp, 0);
1389 			error = ENOENT;
1390 			break;
1391 		}
1392 	} while (flags & LK_RETRY && error != 0);
1393 	return (error);
1394 }
1395 
1396 /*
1397  * File table vnode close routine.
1398  */
1399 static int
1400 vn_closefile(fp, td)
1401 	struct file *fp;
1402 	struct thread *td;
1403 {
1404 	struct vnode *vp;
1405 	struct flock lf;
1406 	int error;
1407 
1408 	vp = fp->f_vnode;
1409 	fp->f_ops = &badfileops;
1410 
1411 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1412 		vref(vp);
1413 
1414 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1415 
1416 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1417 		lf.l_whence = SEEK_SET;
1418 		lf.l_start = 0;
1419 		lf.l_len = 0;
1420 		lf.l_type = F_UNLCK;
1421 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1422 		vrele(vp);
1423 	}
1424 	return (error);
1425 }
1426 
1427 /*
1428  * Preparing to start a filesystem write operation. If the operation is
1429  * permitted, then we bump the count of operations in progress and
1430  * proceed. If a suspend request is in progress, we wait until the
1431  * suspension is over, and then proceed.
1432  */
1433 int
1434 vn_start_write(vp, mpp, flags)
1435 	struct vnode *vp;
1436 	struct mount **mpp;
1437 	int flags;
1438 {
1439 	struct mount *mp;
1440 	int error;
1441 
1442 	error = 0;
1443 	/*
1444 	 * If a vnode is provided, get and return the mount point that
1445 	 * to which it will write.
1446 	 */
1447 	if (vp != NULL) {
1448 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1449 			*mpp = NULL;
1450 			if (error != EOPNOTSUPP)
1451 				return (error);
1452 			return (0);
1453 		}
1454 	}
1455 	if ((mp = *mpp) == NULL)
1456 		return (0);
1457 
1458 	/*
1459 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1460 	 * a vfs_ref().
1461 	 * As long as a vnode is not provided we need to acquire a
1462 	 * refcount for the provided mountpoint too, in order to
1463 	 * emulate a vfs_ref().
1464 	 */
1465 	MNT_ILOCK(mp);
1466 	if (vp == NULL)
1467 		MNT_REF(mp);
1468 
1469 	/*
1470 	 * Check on status of suspension.
1471 	 */
1472 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1473 	    mp->mnt_susp_owner != curthread) {
1474 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1475 			if (flags & V_NOWAIT) {
1476 				error = EWOULDBLOCK;
1477 				goto unlock;
1478 			}
1479 			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1480 			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1481 			if (error)
1482 				goto unlock;
1483 		}
1484 	}
1485 	if (flags & V_XSLEEP)
1486 		goto unlock;
1487 	mp->mnt_writeopcount++;
1488 unlock:
1489 	if (error != 0 || (flags & V_XSLEEP) != 0)
1490 		MNT_REL(mp);
1491 	MNT_IUNLOCK(mp);
1492 	return (error);
1493 }
1494 
1495 /*
1496  * Secondary suspension. Used by operations such as vop_inactive
1497  * routines that are needed by the higher level functions. These
1498  * are allowed to proceed until all the higher level functions have
1499  * completed (indicated by mnt_writeopcount dropping to zero). At that
1500  * time, these operations are halted until the suspension is over.
1501  */
1502 int
1503 vn_start_secondary_write(vp, mpp, flags)
1504 	struct vnode *vp;
1505 	struct mount **mpp;
1506 	int flags;
1507 {
1508 	struct mount *mp;
1509 	int error;
1510 
1511  retry:
1512 	if (vp != NULL) {
1513 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1514 			*mpp = NULL;
1515 			if (error != EOPNOTSUPP)
1516 				return (error);
1517 			return (0);
1518 		}
1519 	}
1520 	/*
1521 	 * If we are not suspended or have not yet reached suspended
1522 	 * mode, then let the operation proceed.
1523 	 */
1524 	if ((mp = *mpp) == NULL)
1525 		return (0);
1526 
1527 	/*
1528 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1529 	 * a vfs_ref().
1530 	 * As long as a vnode is not provided we need to acquire a
1531 	 * refcount for the provided mountpoint too, in order to
1532 	 * emulate a vfs_ref().
1533 	 */
1534 	MNT_ILOCK(mp);
1535 	if (vp == NULL)
1536 		MNT_REF(mp);
1537 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1538 		mp->mnt_secondary_writes++;
1539 		mp->mnt_secondary_accwrites++;
1540 		MNT_IUNLOCK(mp);
1541 		return (0);
1542 	}
1543 	if (flags & V_NOWAIT) {
1544 		MNT_REL(mp);
1545 		MNT_IUNLOCK(mp);
1546 		return (EWOULDBLOCK);
1547 	}
1548 	/*
1549 	 * Wait for the suspension to finish.
1550 	 */
1551 	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1552 		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1553 	vfs_rel(mp);
1554 	if (error == 0)
1555 		goto retry;
1556 	return (error);
1557 }
1558 
1559 /*
1560  * Filesystem write operation has completed. If we are suspending and this
1561  * operation is the last one, notify the suspender that the suspension is
1562  * now in effect.
1563  */
1564 void
1565 vn_finished_write(mp)
1566 	struct mount *mp;
1567 {
1568 	if (mp == NULL)
1569 		return;
1570 	MNT_ILOCK(mp);
1571 	MNT_REL(mp);
1572 	mp->mnt_writeopcount--;
1573 	if (mp->mnt_writeopcount < 0)
1574 		panic("vn_finished_write: neg cnt");
1575 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1576 	    mp->mnt_writeopcount <= 0)
1577 		wakeup(&mp->mnt_writeopcount);
1578 	MNT_IUNLOCK(mp);
1579 }
1580 
1581 
1582 /*
1583  * Filesystem secondary write operation has completed. If we are
1584  * suspending and this operation is the last one, notify the suspender
1585  * that the suspension is now in effect.
1586  */
1587 void
1588 vn_finished_secondary_write(mp)
1589 	struct mount *mp;
1590 {
1591 	if (mp == NULL)
1592 		return;
1593 	MNT_ILOCK(mp);
1594 	MNT_REL(mp);
1595 	mp->mnt_secondary_writes--;
1596 	if (mp->mnt_secondary_writes < 0)
1597 		panic("vn_finished_secondary_write: neg cnt");
1598 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1599 	    mp->mnt_secondary_writes <= 0)
1600 		wakeup(&mp->mnt_secondary_writes);
1601 	MNT_IUNLOCK(mp);
1602 }
1603 
1604 
1605 
1606 /*
1607  * Request a filesystem to suspend write operations.
1608  */
1609 int
1610 vfs_write_suspend(mp)
1611 	struct mount *mp;
1612 {
1613 	int error;
1614 
1615 	MNT_ILOCK(mp);
1616 	if (mp->mnt_susp_owner == curthread) {
1617 		MNT_IUNLOCK(mp);
1618 		return (EALREADY);
1619 	}
1620 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1621 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1622 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1623 	mp->mnt_susp_owner = curthread;
1624 	if (mp->mnt_writeopcount > 0)
1625 		(void) msleep(&mp->mnt_writeopcount,
1626 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1627 	else
1628 		MNT_IUNLOCK(mp);
1629 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1630 		vfs_write_resume(mp);
1631 	return (error);
1632 }
1633 
1634 /*
1635  * Request a filesystem to resume write operations.
1636  */
1637 void
1638 vfs_write_resume(mp)
1639 	struct mount *mp;
1640 {
1641 
1642 	MNT_ILOCK(mp);
1643 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1644 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1645 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1646 				       MNTK_SUSPENDED);
1647 		mp->mnt_susp_owner = NULL;
1648 		wakeup(&mp->mnt_writeopcount);
1649 		wakeup(&mp->mnt_flag);
1650 		curthread->td_pflags &= ~TDP_IGNSUSP;
1651 		MNT_IUNLOCK(mp);
1652 		VFS_SUSP_CLEAN(mp);
1653 	} else
1654 		MNT_IUNLOCK(mp);
1655 }
1656 
1657 /*
1658  * Implement kqueues for files by translating it to vnode operation.
1659  */
1660 static int
1661 vn_kqfilter(struct file *fp, struct knote *kn)
1662 {
1663 	int error;
1664 
1665 	error = VOP_KQFILTER(fp->f_vnode, kn);
1666 	return (error);
1667 }
1668 
1669 /*
1670  * Simplified in-kernel wrapper calls for extended attribute access.
1671  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1672  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1673  */
1674 int
1675 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1676     const char *attrname, int *buflen, char *buf, struct thread *td)
1677 {
1678 	struct uio	auio;
1679 	struct iovec	iov;
1680 	int	error;
1681 
1682 	iov.iov_len = *buflen;
1683 	iov.iov_base = buf;
1684 
1685 	auio.uio_iov = &iov;
1686 	auio.uio_iovcnt = 1;
1687 	auio.uio_rw = UIO_READ;
1688 	auio.uio_segflg = UIO_SYSSPACE;
1689 	auio.uio_td = td;
1690 	auio.uio_offset = 0;
1691 	auio.uio_resid = *buflen;
1692 
1693 	if ((ioflg & IO_NODELOCKED) == 0)
1694 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1695 
1696 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1697 
1698 	/* authorize attribute retrieval as kernel */
1699 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1700 	    td);
1701 
1702 	if ((ioflg & IO_NODELOCKED) == 0)
1703 		VOP_UNLOCK(vp, 0);
1704 
1705 	if (error == 0) {
1706 		*buflen = *buflen - auio.uio_resid;
1707 	}
1708 
1709 	return (error);
1710 }
1711 
1712 /*
1713  * XXX failure mode if partially written?
1714  */
1715 int
1716 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1717     const char *attrname, int buflen, char *buf, struct thread *td)
1718 {
1719 	struct uio	auio;
1720 	struct iovec	iov;
1721 	struct mount	*mp;
1722 	int	error;
1723 
1724 	iov.iov_len = buflen;
1725 	iov.iov_base = buf;
1726 
1727 	auio.uio_iov = &iov;
1728 	auio.uio_iovcnt = 1;
1729 	auio.uio_rw = UIO_WRITE;
1730 	auio.uio_segflg = UIO_SYSSPACE;
1731 	auio.uio_td = td;
1732 	auio.uio_offset = 0;
1733 	auio.uio_resid = buflen;
1734 
1735 	if ((ioflg & IO_NODELOCKED) == 0) {
1736 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1737 			return (error);
1738 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1739 	}
1740 
1741 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1742 
1743 	/* authorize attribute setting as kernel */
1744 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1745 
1746 	if ((ioflg & IO_NODELOCKED) == 0) {
1747 		vn_finished_write(mp);
1748 		VOP_UNLOCK(vp, 0);
1749 	}
1750 
1751 	return (error);
1752 }
1753 
1754 int
1755 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1756     const char *attrname, struct thread *td)
1757 {
1758 	struct mount	*mp;
1759 	int	error;
1760 
1761 	if ((ioflg & IO_NODELOCKED) == 0) {
1762 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1763 			return (error);
1764 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1765 	}
1766 
1767 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1768 
1769 	/* authorize attribute removal as kernel */
1770 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1771 	if (error == EOPNOTSUPP)
1772 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1773 		    NULL, td);
1774 
1775 	if ((ioflg & IO_NODELOCKED) == 0) {
1776 		vn_finished_write(mp);
1777 		VOP_UNLOCK(vp, 0);
1778 	}
1779 
1780 	return (error);
1781 }
1782 
1783 int
1784 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1785 {
1786 	struct mount *mp;
1787 	int ltype, error;
1788 
1789 	mp = vp->v_mount;
1790 	ltype = VOP_ISLOCKED(vp);
1791 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
1792 	    ("vn_vget_ino: vp not locked"));
1793 	error = vfs_busy(mp, MBF_NOWAIT);
1794 	if (error != 0) {
1795 		vfs_ref(mp);
1796 		VOP_UNLOCK(vp, 0);
1797 		error = vfs_busy(mp, 0);
1798 		vn_lock(vp, ltype | LK_RETRY);
1799 		vfs_rel(mp);
1800 		if (error != 0)
1801 			return (ENOENT);
1802 		if (vp->v_iflag & VI_DOOMED) {
1803 			vfs_unbusy(mp);
1804 			return (ENOENT);
1805 		}
1806 	}
1807 	VOP_UNLOCK(vp, 0);
1808 	error = VFS_VGET(mp, ino, lkflags, rvp);
1809 	vfs_unbusy(mp);
1810 	vn_lock(vp, ltype | LK_RETRY);
1811 	if (vp->v_iflag & VI_DOOMED) {
1812 		if (error == 0)
1813 			vput(*rvp);
1814 		error = ENOENT;
1815 	}
1816 	return (error);
1817 }
1818 
1819 int
1820 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
1821     const struct thread *td)
1822 {
1823 
1824 	if (vp->v_type != VREG || td == NULL)
1825 		return (0);
1826 	PROC_LOCK(td->td_proc);
1827 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1828 	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
1829 		kern_psignal(td->td_proc, SIGXFSZ);
1830 		PROC_UNLOCK(td->td_proc);
1831 		return (EFBIG);
1832 	}
1833 	PROC_UNLOCK(td->td_proc);
1834 	return (0);
1835 }
1836 
1837 int
1838 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1839     struct thread *td)
1840 {
1841 	struct vnode *vp;
1842 	int error;
1843 
1844 	vp = fp->f_vnode;
1845 #ifdef AUDIT
1846 	vn_lock(vp, LK_SHARED | LK_RETRY);
1847 	AUDIT_ARG_VNODE1(vp);
1848 	VOP_UNLOCK(vp, 0);
1849 #endif
1850 	error = setfmode(td, active_cred, vp, mode);
1851 	return (error);
1852 }
1853 
1854 int
1855 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1856     struct thread *td)
1857 {
1858 	struct vnode *vp;
1859 	int error;
1860 
1861 	vp = fp->f_vnode;
1862 #ifdef AUDIT
1863 	vn_lock(vp, LK_SHARED | LK_RETRY);
1864 	AUDIT_ARG_VNODE1(vp);
1865 	VOP_UNLOCK(vp, 0);
1866 #endif
1867 	error = setfown(td, active_cred, vp, uid, gid);
1868 	return (error);
1869 }
1870 
1871 void
1872 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
1873 {
1874 	vm_object_t object;
1875 
1876 	if ((object = vp->v_object) == NULL)
1877 		return;
1878 	VM_OBJECT_LOCK(object);
1879 	vm_object_page_remove(object, start, end, 0);
1880 	VM_OBJECT_UNLOCK(object);
1881 }
1882 
1883 int
1884 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
1885 {
1886 	struct vattr va;
1887 	daddr_t bn, bnp;
1888 	uint64_t bsize;
1889 	off_t noff;
1890 	int error;
1891 
1892 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
1893 	    ("Wrong command %lu", cmd));
1894 
1895 	if (vn_lock(vp, LK_SHARED) != 0)
1896 		return (EBADF);
1897 	if (vp->v_type != VREG) {
1898 		error = ENOTTY;
1899 		goto unlock;
1900 	}
1901 	error = VOP_GETATTR(vp, &va, cred);
1902 	if (error != 0)
1903 		goto unlock;
1904 	noff = *off;
1905 	if (noff >= va.va_size) {
1906 		error = ENXIO;
1907 		goto unlock;
1908 	}
1909 	bsize = vp->v_mount->mnt_stat.f_iosize;
1910 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
1911 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
1912 		if (error == EOPNOTSUPP) {
1913 			error = ENOTTY;
1914 			goto unlock;
1915 		}
1916 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
1917 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
1918 			noff = bn * bsize;
1919 			if (noff < *off)
1920 				noff = *off;
1921 			goto unlock;
1922 		}
1923 	}
1924 	if (noff > va.va_size)
1925 		noff = va.va_size;
1926 	/* noff == va.va_size. There is an implicit hole at the end of file. */
1927 	if (cmd == FIOSEEKDATA)
1928 		error = ENXIO;
1929 unlock:
1930 	VOP_UNLOCK(vp, 0);
1931 	if (error == 0)
1932 		*off = noff;
1933 	return (error);
1934 }
1935