xref: /freebsd/sys/kern/vfs_vnops.c (revision 6ef6ba9950260f42b47499d17874d00ca9290955)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/disk.h>
49 #include <sys/fcntl.h>
50 #include <sys/file.h>
51 #include <sys/kdb.h>
52 #include <sys/stat.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/limits.h>
56 #include <sys/lock.h>
57 #include <sys/mount.h>
58 #include <sys/mutex.h>
59 #include <sys/namei.h>
60 #include <sys/vnode.h>
61 #include <sys/bio.h>
62 #include <sys/buf.h>
63 #include <sys/filio.h>
64 #include <sys/resourcevar.h>
65 #include <sys/rwlock.h>
66 #include <sys/sx.h>
67 #include <sys/sysctl.h>
68 #include <sys/ttycom.h>
69 #include <sys/conf.h>
70 #include <sys/syslog.h>
71 #include <sys/unistd.h>
72 
73 #include <security/audit/audit.h>
74 #include <security/mac/mac_framework.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_extern.h>
78 #include <vm/pmap.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 
83 static fo_rdwr_t	vn_read;
84 static fo_rdwr_t	vn_write;
85 static fo_rdwr_t	vn_io_fault;
86 static fo_truncate_t	vn_truncate;
87 static fo_ioctl_t	vn_ioctl;
88 static fo_poll_t	vn_poll;
89 static fo_kqfilter_t	vn_kqfilter;
90 static fo_stat_t	vn_statfile;
91 static fo_close_t	vn_closefile;
92 
93 struct 	fileops vnops = {
94 	.fo_read = vn_io_fault,
95 	.fo_write = vn_io_fault,
96 	.fo_truncate = vn_truncate,
97 	.fo_ioctl = vn_ioctl,
98 	.fo_poll = vn_poll,
99 	.fo_kqfilter = vn_kqfilter,
100 	.fo_stat = vn_statfile,
101 	.fo_close = vn_closefile,
102 	.fo_chmod = vn_chmod,
103 	.fo_chown = vn_chown,
104 	.fo_sendfile = vn_sendfile,
105 	.fo_seek = vn_seek,
106 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
107 };
108 
109 int
110 vn_open(ndp, flagp, cmode, fp)
111 	struct nameidata *ndp;
112 	int *flagp, cmode;
113 	struct file *fp;
114 {
115 	struct thread *td = ndp->ni_cnd.cn_thread;
116 
117 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
118 }
119 
120 /*
121  * Common code for vnode open operations via a name lookup.
122  * Lookup the vnode and invoke VOP_CREATE if needed.
123  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
124  *
125  * Note that this does NOT free nameidata for the successful case,
126  * due to the NDINIT being done elsewhere.
127  */
128 int
129 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
130     struct ucred *cred, struct file *fp)
131 {
132 	struct vnode *vp;
133 	struct mount *mp;
134 	struct thread *td = ndp->ni_cnd.cn_thread;
135 	struct vattr vat;
136 	struct vattr *vap = &vat;
137 	int fmode, error;
138 
139 restart:
140 	fmode = *flagp;
141 	if (fmode & O_CREAT) {
142 		ndp->ni_cnd.cn_nameiop = CREATE;
143 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF;
144 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
145 			ndp->ni_cnd.cn_flags |= FOLLOW;
146 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
147 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
148 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
149 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
150 		bwillwrite();
151 		if ((error = namei(ndp)) != 0)
152 			return (error);
153 		if (ndp->ni_vp == NULL) {
154 			VATTR_NULL(vap);
155 			vap->va_type = VREG;
156 			vap->va_mode = cmode;
157 			if (fmode & O_EXCL)
158 				vap->va_vaflags |= VA_EXCLUSIVE;
159 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
160 				NDFREE(ndp, NDF_ONLY_PNBUF);
161 				vput(ndp->ni_dvp);
162 				if ((error = vn_start_write(NULL, &mp,
163 				    V_XSLEEP | PCATCH)) != 0)
164 					return (error);
165 				goto restart;
166 			}
167 #ifdef MAC
168 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
169 			    &ndp->ni_cnd, vap);
170 			if (error == 0)
171 #endif
172 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
173 						   &ndp->ni_cnd, vap);
174 			vput(ndp->ni_dvp);
175 			vn_finished_write(mp);
176 			if (error) {
177 				NDFREE(ndp, NDF_ONLY_PNBUF);
178 				return (error);
179 			}
180 			fmode &= ~O_TRUNC;
181 			vp = ndp->ni_vp;
182 		} else {
183 			if (ndp->ni_dvp == ndp->ni_vp)
184 				vrele(ndp->ni_dvp);
185 			else
186 				vput(ndp->ni_dvp);
187 			ndp->ni_dvp = NULL;
188 			vp = ndp->ni_vp;
189 			if (fmode & O_EXCL) {
190 				error = EEXIST;
191 				goto bad;
192 			}
193 			fmode &= ~O_CREAT;
194 		}
195 	} else {
196 		ndp->ni_cnd.cn_nameiop = LOOKUP;
197 		ndp->ni_cnd.cn_flags = ISOPEN |
198 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
199 		if (!(fmode & FWRITE))
200 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
201 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
202 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
203 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
204 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
205 		if ((error = namei(ndp)) != 0)
206 			return (error);
207 		vp = ndp->ni_vp;
208 	}
209 	error = vn_open_vnode(vp, fmode, cred, td, fp);
210 	if (error)
211 		goto bad;
212 	*flagp = fmode;
213 	return (0);
214 bad:
215 	NDFREE(ndp, NDF_ONLY_PNBUF);
216 	vput(vp);
217 	*flagp = fmode;
218 	ndp->ni_vp = NULL;
219 	return (error);
220 }
221 
222 /*
223  * Common code for vnode open operations once a vnode is located.
224  * Check permissions, and call the VOP_OPEN routine.
225  */
226 int
227 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
228     struct thread *td, struct file *fp)
229 {
230 	struct mount *mp;
231 	accmode_t accmode;
232 	struct flock lf;
233 	int error, have_flock, lock_flags, type;
234 
235 	if (vp->v_type == VLNK)
236 		return (EMLINK);
237 	if (vp->v_type == VSOCK)
238 		return (EOPNOTSUPP);
239 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
240 		return (ENOTDIR);
241 	accmode = 0;
242 	if (fmode & (FWRITE | O_TRUNC)) {
243 		if (vp->v_type == VDIR)
244 			return (EISDIR);
245 		accmode |= VWRITE;
246 	}
247 	if (fmode & FREAD)
248 		accmode |= VREAD;
249 	if (fmode & FEXEC)
250 		accmode |= VEXEC;
251 	if ((fmode & O_APPEND) && (fmode & FWRITE))
252 		accmode |= VAPPEND;
253 #ifdef MAC
254 	error = mac_vnode_check_open(cred, vp, accmode);
255 	if (error)
256 		return (error);
257 #endif
258 	if ((fmode & O_CREAT) == 0) {
259 		if (accmode & VWRITE) {
260 			error = vn_writechk(vp);
261 			if (error)
262 				return (error);
263 		}
264 		if (accmode) {
265 		        error = VOP_ACCESS(vp, accmode, cred, td);
266 			if (error)
267 				return (error);
268 		}
269 	}
270 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
271 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
272 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
273 		return (error);
274 
275 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
276 		KASSERT(fp != NULL, ("open with flock requires fp"));
277 		lock_flags = VOP_ISLOCKED(vp);
278 		VOP_UNLOCK(vp, 0);
279 		lf.l_whence = SEEK_SET;
280 		lf.l_start = 0;
281 		lf.l_len = 0;
282 		if (fmode & O_EXLOCK)
283 			lf.l_type = F_WRLCK;
284 		else
285 			lf.l_type = F_RDLCK;
286 		type = F_FLOCK;
287 		if ((fmode & FNONBLOCK) == 0)
288 			type |= F_WAIT;
289 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
290 		have_flock = (error == 0);
291 		vn_lock(vp, lock_flags | LK_RETRY);
292 		if (error == 0 && vp->v_iflag & VI_DOOMED)
293 			error = ENOENT;
294 		/*
295 		 * Another thread might have used this vnode as an
296 		 * executable while the vnode lock was dropped.
297 		 * Ensure the vnode is still able to be opened for
298 		 * writing after the lock has been obtained.
299 		 */
300 		if (error == 0 && accmode & VWRITE)
301 			error = vn_writechk(vp);
302 		if (error) {
303 			VOP_UNLOCK(vp, 0);
304 			if (have_flock) {
305 				lf.l_whence = SEEK_SET;
306 				lf.l_start = 0;
307 				lf.l_len = 0;
308 				lf.l_type = F_UNLCK;
309 				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
310 				    F_FLOCK);
311 			}
312 			vn_start_write(vp, &mp, V_WAIT);
313 			vn_lock(vp, lock_flags | LK_RETRY);
314 			(void)VOP_CLOSE(vp, fmode, cred, td);
315 			vn_finished_write(mp);
316 			return (error);
317 		}
318 		fp->f_flag |= FHASLOCK;
319 	}
320 	if (fmode & FWRITE) {
321 		VOP_ADD_WRITECOUNT(vp, 1);
322 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
323 		    __func__, vp, vp->v_writecount);
324 	}
325 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
326 	return (0);
327 }
328 
329 /*
330  * Check for write permissions on the specified vnode.
331  * Prototype text segments cannot be written.
332  */
333 int
334 vn_writechk(vp)
335 	register struct vnode *vp;
336 {
337 
338 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
339 	/*
340 	 * If there's shared text associated with
341 	 * the vnode, try to free it up once.  If
342 	 * we fail, we can't allow writing.
343 	 */
344 	if (VOP_IS_TEXT(vp))
345 		return (ETXTBSY);
346 
347 	return (0);
348 }
349 
350 /*
351  * Vnode close call
352  */
353 int
354 vn_close(vp, flags, file_cred, td)
355 	register struct vnode *vp;
356 	int flags;
357 	struct ucred *file_cred;
358 	struct thread *td;
359 {
360 	struct mount *mp;
361 	int error, lock_flags;
362 
363 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
364 	    MNT_EXTENDED_SHARED(vp->v_mount))
365 		lock_flags = LK_SHARED;
366 	else
367 		lock_flags = LK_EXCLUSIVE;
368 
369 	vn_start_write(vp, &mp, V_WAIT);
370 	vn_lock(vp, lock_flags | LK_RETRY);
371 	if (flags & FWRITE) {
372 		VNASSERT(vp->v_writecount > 0, vp,
373 		    ("vn_close: negative writecount"));
374 		VOP_ADD_WRITECOUNT(vp, -1);
375 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
376 		    __func__, vp, vp->v_writecount);
377 	}
378 	error = VOP_CLOSE(vp, flags, file_cred, td);
379 	vput(vp);
380 	vn_finished_write(mp);
381 	return (error);
382 }
383 
384 /*
385  * Heuristic to detect sequential operation.
386  */
387 static int
388 sequential_heuristic(struct uio *uio, struct file *fp)
389 {
390 
391 	if (atomic_load_acq_int(&(fp->f_flag)) & FRDAHEAD)
392 		return (fp->f_seqcount << IO_SEQSHIFT);
393 
394 	/*
395 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
396 	 * that the first I/O is normally considered to be slightly
397 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
398 	 * unless previous seeks have reduced f_seqcount to 0, in which
399 	 * case offset 0 is not special.
400 	 */
401 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
402 	    uio->uio_offset == fp->f_nextoff) {
403 		/*
404 		 * f_seqcount is in units of fixed-size blocks so that it
405 		 * depends mainly on the amount of sequential I/O and not
406 		 * much on the number of sequential I/O's.  The fixed size
407 		 * of 16384 is hard-coded here since it is (not quite) just
408 		 * a magic size that works well here.  This size is more
409 		 * closely related to the best I/O size for real disks than
410 		 * to any block size used by software.
411 		 */
412 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
413 		if (fp->f_seqcount > IO_SEQMAX)
414 			fp->f_seqcount = IO_SEQMAX;
415 		return (fp->f_seqcount << IO_SEQSHIFT);
416 	}
417 
418 	/* Not sequential.  Quickly draw-down sequentiality. */
419 	if (fp->f_seqcount > 1)
420 		fp->f_seqcount = 1;
421 	else
422 		fp->f_seqcount = 0;
423 	return (0);
424 }
425 
426 /*
427  * Package up an I/O request on a vnode into a uio and do it.
428  */
429 int
430 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
431     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
432     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
433 {
434 	struct uio auio;
435 	struct iovec aiov;
436 	struct mount *mp;
437 	struct ucred *cred;
438 	void *rl_cookie;
439 	int error, lock_flags;
440 
441 	auio.uio_iov = &aiov;
442 	auio.uio_iovcnt = 1;
443 	aiov.iov_base = base;
444 	aiov.iov_len = len;
445 	auio.uio_resid = len;
446 	auio.uio_offset = offset;
447 	auio.uio_segflg = segflg;
448 	auio.uio_rw = rw;
449 	auio.uio_td = td;
450 	error = 0;
451 
452 	if ((ioflg & IO_NODELOCKED) == 0) {
453 		if (rw == UIO_READ) {
454 			rl_cookie = vn_rangelock_rlock(vp, offset,
455 			    offset + len);
456 		} else {
457 			rl_cookie = vn_rangelock_wlock(vp, offset,
458 			    offset + len);
459 		}
460 		mp = NULL;
461 		if (rw == UIO_WRITE) {
462 			if (vp->v_type != VCHR &&
463 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
464 			    != 0)
465 				goto out;
466 			if (MNT_SHARED_WRITES(mp) ||
467 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
468 				lock_flags = LK_SHARED;
469 			else
470 				lock_flags = LK_EXCLUSIVE;
471 		} else
472 			lock_flags = LK_SHARED;
473 		vn_lock(vp, lock_flags | LK_RETRY);
474 	} else
475 		rl_cookie = NULL;
476 
477 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
478 #ifdef MAC
479 	if ((ioflg & IO_NOMACCHECK) == 0) {
480 		if (rw == UIO_READ)
481 			error = mac_vnode_check_read(active_cred, file_cred,
482 			    vp);
483 		else
484 			error = mac_vnode_check_write(active_cred, file_cred,
485 			    vp);
486 	}
487 #endif
488 	if (error == 0) {
489 		if (file_cred != NULL)
490 			cred = file_cred;
491 		else
492 			cred = active_cred;
493 		if (rw == UIO_READ)
494 			error = VOP_READ(vp, &auio, ioflg, cred);
495 		else
496 			error = VOP_WRITE(vp, &auio, ioflg, cred);
497 	}
498 	if (aresid)
499 		*aresid = auio.uio_resid;
500 	else
501 		if (auio.uio_resid && error == 0)
502 			error = EIO;
503 	if ((ioflg & IO_NODELOCKED) == 0) {
504 		VOP_UNLOCK(vp, 0);
505 		if (mp != NULL)
506 			vn_finished_write(mp);
507 	}
508  out:
509 	if (rl_cookie != NULL)
510 		vn_rangelock_unlock(vp, rl_cookie);
511 	return (error);
512 }
513 
514 /*
515  * Package up an I/O request on a vnode into a uio and do it.  The I/O
516  * request is split up into smaller chunks and we try to avoid saturating
517  * the buffer cache while potentially holding a vnode locked, so we
518  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
519  * to give other processes a chance to lock the vnode (either other processes
520  * core'ing the same binary, or unrelated processes scanning the directory).
521  */
522 int
523 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
524     file_cred, aresid, td)
525 	enum uio_rw rw;
526 	struct vnode *vp;
527 	void *base;
528 	size_t len;
529 	off_t offset;
530 	enum uio_seg segflg;
531 	int ioflg;
532 	struct ucred *active_cred;
533 	struct ucred *file_cred;
534 	size_t *aresid;
535 	struct thread *td;
536 {
537 	int error = 0;
538 	ssize_t iaresid;
539 
540 	do {
541 		int chunk;
542 
543 		/*
544 		 * Force `offset' to a multiple of MAXBSIZE except possibly
545 		 * for the first chunk, so that filesystems only need to
546 		 * write full blocks except possibly for the first and last
547 		 * chunks.
548 		 */
549 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
550 
551 		if (chunk > len)
552 			chunk = len;
553 		if (rw != UIO_READ && vp->v_type == VREG)
554 			bwillwrite();
555 		iaresid = 0;
556 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
557 		    ioflg, active_cred, file_cred, &iaresid, td);
558 		len -= chunk;	/* aresid calc already includes length */
559 		if (error)
560 			break;
561 		offset += chunk;
562 		base = (char *)base + chunk;
563 		kern_yield(PRI_USER);
564 	} while (len);
565 	if (aresid)
566 		*aresid = len + iaresid;
567 	return (error);
568 }
569 
570 off_t
571 foffset_lock(struct file *fp, int flags)
572 {
573 	struct mtx *mtxp;
574 	off_t res;
575 
576 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
577 
578 #if OFF_MAX <= LONG_MAX
579 	/*
580 	 * Caller only wants the current f_offset value.  Assume that
581 	 * the long and shorter integer types reads are atomic.
582 	 */
583 	if ((flags & FOF_NOLOCK) != 0)
584 		return (fp->f_offset);
585 #endif
586 
587 	/*
588 	 * According to McKusick the vn lock was protecting f_offset here.
589 	 * It is now protected by the FOFFSET_LOCKED flag.
590 	 */
591 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
592 	mtx_lock(mtxp);
593 	if ((flags & FOF_NOLOCK) == 0) {
594 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
595 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
596 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
597 			    "vofflock", 0);
598 		}
599 		fp->f_vnread_flags |= FOFFSET_LOCKED;
600 	}
601 	res = fp->f_offset;
602 	mtx_unlock(mtxp);
603 	return (res);
604 }
605 
606 void
607 foffset_unlock(struct file *fp, off_t val, int flags)
608 {
609 	struct mtx *mtxp;
610 
611 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
612 
613 #if OFF_MAX <= LONG_MAX
614 	if ((flags & FOF_NOLOCK) != 0) {
615 		if ((flags & FOF_NOUPDATE) == 0)
616 			fp->f_offset = val;
617 		if ((flags & FOF_NEXTOFF) != 0)
618 			fp->f_nextoff = val;
619 		return;
620 	}
621 #endif
622 
623 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
624 	mtx_lock(mtxp);
625 	if ((flags & FOF_NOUPDATE) == 0)
626 		fp->f_offset = val;
627 	if ((flags & FOF_NEXTOFF) != 0)
628 		fp->f_nextoff = val;
629 	if ((flags & FOF_NOLOCK) == 0) {
630 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
631 		    ("Lost FOFFSET_LOCKED"));
632 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
633 			wakeup(&fp->f_vnread_flags);
634 		fp->f_vnread_flags = 0;
635 	}
636 	mtx_unlock(mtxp);
637 }
638 
639 void
640 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
641 {
642 
643 	if ((flags & FOF_OFFSET) == 0)
644 		uio->uio_offset = foffset_lock(fp, flags);
645 }
646 
647 void
648 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
649 {
650 
651 	if ((flags & FOF_OFFSET) == 0)
652 		foffset_unlock(fp, uio->uio_offset, flags);
653 }
654 
655 static int
656 get_advice(struct file *fp, struct uio *uio)
657 {
658 	struct mtx *mtxp;
659 	int ret;
660 
661 	ret = POSIX_FADV_NORMAL;
662 	if (fp->f_advice == NULL)
663 		return (ret);
664 
665 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
666 	mtx_lock(mtxp);
667 	if (uio->uio_offset >= fp->f_advice->fa_start &&
668 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
669 		ret = fp->f_advice->fa_advice;
670 	mtx_unlock(mtxp);
671 	return (ret);
672 }
673 
674 /*
675  * File table vnode read routine.
676  */
677 static int
678 vn_read(fp, uio, active_cred, flags, td)
679 	struct file *fp;
680 	struct uio *uio;
681 	struct ucred *active_cred;
682 	int flags;
683 	struct thread *td;
684 {
685 	struct vnode *vp;
686 	struct mtx *mtxp;
687 	int error, ioflag;
688 	int advice;
689 	off_t offset, start, end;
690 
691 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
692 	    uio->uio_td, td));
693 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
694 	vp = fp->f_vnode;
695 	ioflag = 0;
696 	if (fp->f_flag & FNONBLOCK)
697 		ioflag |= IO_NDELAY;
698 	if (fp->f_flag & O_DIRECT)
699 		ioflag |= IO_DIRECT;
700 	advice = get_advice(fp, uio);
701 	vn_lock(vp, LK_SHARED | LK_RETRY);
702 
703 	switch (advice) {
704 	case POSIX_FADV_NORMAL:
705 	case POSIX_FADV_SEQUENTIAL:
706 	case POSIX_FADV_NOREUSE:
707 		ioflag |= sequential_heuristic(uio, fp);
708 		break;
709 	case POSIX_FADV_RANDOM:
710 		/* Disable read-ahead for random I/O. */
711 		break;
712 	}
713 	offset = uio->uio_offset;
714 
715 #ifdef MAC
716 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
717 	if (error == 0)
718 #endif
719 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
720 	fp->f_nextoff = uio->uio_offset;
721 	VOP_UNLOCK(vp, 0);
722 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
723 	    offset != uio->uio_offset) {
724 		/*
725 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
726 		 * buffers for the backing file after a
727 		 * POSIX_FADV_NOREUSE read(2).  To optimize the common
728 		 * case of using POSIX_FADV_NOREUSE with sequential
729 		 * access, track the previous implicit DONTNEED
730 		 * request and grow this request to include the
731 		 * current read(2) in addition to the previous
732 		 * DONTNEED.  With purely sequential access this will
733 		 * cause the DONTNEED requests to continously grow to
734 		 * cover all of the previously read regions of the
735 		 * file.  This allows filesystem blocks that are
736 		 * accessed by multiple calls to read(2) to be flushed
737 		 * once the last read(2) finishes.
738 		 */
739 		start = offset;
740 		end = uio->uio_offset - 1;
741 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
742 		mtx_lock(mtxp);
743 		if (fp->f_advice != NULL &&
744 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
745 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
746 				start = fp->f_advice->fa_prevstart;
747 			else if (fp->f_advice->fa_prevstart != 0 &&
748 			    fp->f_advice->fa_prevstart == end + 1)
749 				end = fp->f_advice->fa_prevend;
750 			fp->f_advice->fa_prevstart = start;
751 			fp->f_advice->fa_prevend = end;
752 		}
753 		mtx_unlock(mtxp);
754 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
755 	}
756 	return (error);
757 }
758 
759 /*
760  * File table vnode write routine.
761  */
762 static int
763 vn_write(fp, uio, active_cred, flags, td)
764 	struct file *fp;
765 	struct uio *uio;
766 	struct ucred *active_cred;
767 	int flags;
768 	struct thread *td;
769 {
770 	struct vnode *vp;
771 	struct mount *mp;
772 	struct mtx *mtxp;
773 	int error, ioflag, lock_flags;
774 	int advice;
775 	off_t offset, start, end;
776 
777 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
778 	    uio->uio_td, td));
779 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
780 	vp = fp->f_vnode;
781 	if (vp->v_type == VREG)
782 		bwillwrite();
783 	ioflag = IO_UNIT;
784 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
785 		ioflag |= IO_APPEND;
786 	if (fp->f_flag & FNONBLOCK)
787 		ioflag |= IO_NDELAY;
788 	if (fp->f_flag & O_DIRECT)
789 		ioflag |= IO_DIRECT;
790 	if ((fp->f_flag & O_FSYNC) ||
791 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
792 		ioflag |= IO_SYNC;
793 	mp = NULL;
794 	if (vp->v_type != VCHR &&
795 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
796 		goto unlock;
797 
798 	advice = get_advice(fp, uio);
799 
800 	if (MNT_SHARED_WRITES(mp) ||
801 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
802 		lock_flags = LK_SHARED;
803 	} else {
804 		lock_flags = LK_EXCLUSIVE;
805 	}
806 
807 	vn_lock(vp, lock_flags | LK_RETRY);
808 	switch (advice) {
809 	case POSIX_FADV_NORMAL:
810 	case POSIX_FADV_SEQUENTIAL:
811 	case POSIX_FADV_NOREUSE:
812 		ioflag |= sequential_heuristic(uio, fp);
813 		break;
814 	case POSIX_FADV_RANDOM:
815 		/* XXX: Is this correct? */
816 		break;
817 	}
818 	offset = uio->uio_offset;
819 
820 #ifdef MAC
821 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
822 	if (error == 0)
823 #endif
824 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
825 	fp->f_nextoff = uio->uio_offset;
826 	VOP_UNLOCK(vp, 0);
827 	if (vp->v_type != VCHR)
828 		vn_finished_write(mp);
829 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
830 	    offset != uio->uio_offset) {
831 		/*
832 		 * Use POSIX_FADV_DONTNEED to flush clean pages and
833 		 * buffers for the backing file after a
834 		 * POSIX_FADV_NOREUSE write(2).  To optimize the
835 		 * common case of using POSIX_FADV_NOREUSE with
836 		 * sequential access, track the previous implicit
837 		 * DONTNEED request and grow this request to include
838 		 * the current write(2) in addition to the previous
839 		 * DONTNEED.  With purely sequential access this will
840 		 * cause the DONTNEED requests to continously grow to
841 		 * cover all of the previously written regions of the
842 		 * file.
843 		 *
844 		 * Note that the blocks just written are almost
845 		 * certainly still dirty, so this only works when
846 		 * VOP_ADVISE() calls from subsequent writes push out
847 		 * the data written by this write(2) once the backing
848 		 * buffers are clean.  However, as compared to forcing
849 		 * IO_DIRECT, this gives much saner behavior.  Write
850 		 * clustering is still allowed, and clean pages are
851 		 * merely moved to the cache page queue rather than
852 		 * outright thrown away.  This means a subsequent
853 		 * read(2) can still avoid hitting the disk if the
854 		 * pages have not been reclaimed.
855 		 *
856 		 * This does make POSIX_FADV_NOREUSE largely useless
857 		 * with non-sequential access.  However, sequential
858 		 * access is the more common use case and the flag is
859 		 * merely advisory.
860 		 */
861 		start = offset;
862 		end = uio->uio_offset - 1;
863 		mtxp = mtx_pool_find(mtxpool_sleep, fp);
864 		mtx_lock(mtxp);
865 		if (fp->f_advice != NULL &&
866 		    fp->f_advice->fa_advice == POSIX_FADV_NOREUSE) {
867 			if (start != 0 && fp->f_advice->fa_prevend + 1 == start)
868 				start = fp->f_advice->fa_prevstart;
869 			else if (fp->f_advice->fa_prevstart != 0 &&
870 			    fp->f_advice->fa_prevstart == end + 1)
871 				end = fp->f_advice->fa_prevend;
872 			fp->f_advice->fa_prevstart = start;
873 			fp->f_advice->fa_prevend = end;
874 		}
875 		mtx_unlock(mtxp);
876 		error = VOP_ADVISE(vp, start, end, POSIX_FADV_DONTNEED);
877 	}
878 
879 unlock:
880 	return (error);
881 }
882 
883 static const int io_hold_cnt = 16;
884 static int vn_io_fault_enable = 1;
885 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
886     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
887 static u_long vn_io_faults_cnt;
888 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
889     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
890 
891 /*
892  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
893  * prevent the following deadlock:
894  *
895  * Assume that the thread A reads from the vnode vp1 into userspace
896  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
897  * currently not resident, then system ends up with the call chain
898  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
899  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
900  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
901  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
902  * backed by the pages of vnode vp1, and some page in buf2 is not
903  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
904  *
905  * To prevent the lock order reversal and deadlock, vn_io_fault() does
906  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
907  * Instead, it first tries to do the whole range i/o with pagefaults
908  * disabled. If all pages in the i/o buffer are resident and mapped,
909  * VOP will succeed (ignoring the genuine filesystem errors).
910  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
911  * i/o in chunks, with all pages in the chunk prefaulted and held
912  * using vm_fault_quick_hold_pages().
913  *
914  * Filesystems using this deadlock avoidance scheme should use the
915  * array of the held pages from uio, saved in the curthread->td_ma,
916  * instead of doing uiomove().  A helper function
917  * vn_io_fault_uiomove() converts uiomove request into
918  * uiomove_fromphys() over td_ma array.
919  *
920  * Since vnode locks do not cover the whole i/o anymore, rangelocks
921  * make the current i/o request atomic with respect to other i/os and
922  * truncations.
923  */
924 static int
925 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
926     int flags, struct thread *td)
927 {
928 	vm_page_t ma[io_hold_cnt + 2];
929 	struct uio *uio_clone, short_uio;
930 	struct iovec short_iovec[1];
931 	fo_rdwr_t *doio;
932 	struct vnode *vp;
933 	void *rl_cookie;
934 	struct mount *mp;
935 	vm_page_t *prev_td_ma;
936 	int error, save, saveheld, prev_td_ma_cnt;
937 	vm_offset_t addr, end;
938 	vm_size_t cnt;
939 	vm_prot_t prot;
940 	size_t len, resid;
941 	ssize_t adv;
942 
943 	if (uio->uio_rw == UIO_READ)
944 		doio = vn_read;
945 	else
946 		doio = vn_write;
947 	vp = fp->f_vnode;
948 	foffset_lock_uio(fp, uio, flags);
949 
950 	if (uio->uio_segflg != UIO_USERSPACE || vp->v_type != VREG ||
951 	    ((mp = vp->v_mount) != NULL &&
952 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) == 0) ||
953 	    !vn_io_fault_enable) {
954 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
955 		goto out_last;
956 	}
957 
958 	/*
959 	 * The UFS follows IO_UNIT directive and replays back both
960 	 * uio_offset and uio_resid if an error is encountered during the
961 	 * operation.  But, since the iovec may be already advanced,
962 	 * uio is still in an inconsistent state.
963 	 *
964 	 * Cache a copy of the original uio, which is advanced to the redo
965 	 * point using UIO_NOCOPY below.
966 	 */
967 	uio_clone = cloneuio(uio);
968 	resid = uio->uio_resid;
969 
970 	short_uio.uio_segflg = UIO_USERSPACE;
971 	short_uio.uio_rw = uio->uio_rw;
972 	short_uio.uio_td = uio->uio_td;
973 
974 	if (uio->uio_rw == UIO_READ) {
975 		prot = VM_PROT_WRITE;
976 		rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
977 		    uio->uio_offset + uio->uio_resid);
978 	} else {
979 		prot = VM_PROT_READ;
980 		if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0)
981 			/* For appenders, punt and lock the whole range. */
982 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
983 		else
984 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
985 			    uio->uio_offset + uio->uio_resid);
986 	}
987 
988 	save = vm_fault_disable_pagefaults();
989 	error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
990 	if (error != EFAULT)
991 		goto out;
992 
993 	atomic_add_long(&vn_io_faults_cnt, 1);
994 	uio_clone->uio_segflg = UIO_NOCOPY;
995 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
996 	uio_clone->uio_segflg = uio->uio_segflg;
997 
998 	saveheld = curthread_pflags_set(TDP_UIOHELD);
999 	prev_td_ma = td->td_ma;
1000 	prev_td_ma_cnt = td->td_ma_cnt;
1001 
1002 	while (uio_clone->uio_resid != 0) {
1003 		len = uio_clone->uio_iov->iov_len;
1004 		if (len == 0) {
1005 			KASSERT(uio_clone->uio_iovcnt >= 1,
1006 			    ("iovcnt underflow"));
1007 			uio_clone->uio_iov++;
1008 			uio_clone->uio_iovcnt--;
1009 			continue;
1010 		}
1011 
1012 		addr = (vm_offset_t)uio_clone->uio_iov->iov_base;
1013 		end = round_page(addr + len);
1014 		cnt = howmany(end - trunc_page(addr), PAGE_SIZE);
1015 		/*
1016 		 * A perfectly misaligned address and length could cause
1017 		 * both the start and the end of the chunk to use partial
1018 		 * page.  +2 accounts for such a situation.
1019 		 */
1020 		if (cnt > io_hold_cnt + 2) {
1021 			len = io_hold_cnt * PAGE_SIZE;
1022 			KASSERT(howmany(round_page(addr + len) -
1023 			    trunc_page(addr), PAGE_SIZE) <= io_hold_cnt + 2,
1024 			    ("cnt overflow"));
1025 		}
1026 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1027 		    addr, len, prot, ma, io_hold_cnt + 2);
1028 		if (cnt == -1) {
1029 			error = EFAULT;
1030 			break;
1031 		}
1032 		short_uio.uio_iov = &short_iovec[0];
1033 		short_iovec[0].iov_base = (void *)addr;
1034 		short_uio.uio_iovcnt = 1;
1035 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1036 		short_uio.uio_offset = uio_clone->uio_offset;
1037 		td->td_ma = ma;
1038 		td->td_ma_cnt = cnt;
1039 
1040 		error = doio(fp, &short_uio, active_cred, flags | FOF_OFFSET,
1041 		    td);
1042 		vm_page_unhold_pages(ma, cnt);
1043 		adv = len - short_uio.uio_resid;
1044 
1045 		uio_clone->uio_iov->iov_base =
1046 		    (char *)uio_clone->uio_iov->iov_base + adv;
1047 		uio_clone->uio_iov->iov_len -= adv;
1048 		uio_clone->uio_resid -= adv;
1049 		uio_clone->uio_offset += adv;
1050 
1051 		uio->uio_resid -= adv;
1052 		uio->uio_offset += adv;
1053 
1054 		if (error != 0 || adv == 0)
1055 			break;
1056 	}
1057 	td->td_ma = prev_td_ma;
1058 	td->td_ma_cnt = prev_td_ma_cnt;
1059 	curthread_pflags_restore(saveheld);
1060 out:
1061 	vm_fault_enable_pagefaults(save);
1062 	vn_rangelock_unlock(vp, rl_cookie);
1063 	free(uio_clone, M_IOV);
1064 out_last:
1065 	foffset_unlock_uio(fp, uio, flags);
1066 	return (error);
1067 }
1068 
1069 /*
1070  * Helper function to perform the requested uiomove operation using
1071  * the held pages for io->uio_iov[0].iov_base buffer instead of
1072  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1073  * instead of iov_base prevents page faults that could occur due to
1074  * pmap_collect() invalidating the mapping created by
1075  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1076  * object cleanup revoking the write access from page mappings.
1077  *
1078  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1079  * instead of plain uiomove().
1080  */
1081 int
1082 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1083 {
1084 	struct uio transp_uio;
1085 	struct iovec transp_iov[1];
1086 	struct thread *td;
1087 	size_t adv;
1088 	int error, pgadv;
1089 
1090 	td = curthread;
1091 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1092 	    uio->uio_segflg != UIO_USERSPACE)
1093 		return (uiomove(data, xfersize, uio));
1094 
1095 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1096 	transp_iov[0].iov_base = data;
1097 	transp_uio.uio_iov = &transp_iov[0];
1098 	transp_uio.uio_iovcnt = 1;
1099 	if (xfersize > uio->uio_resid)
1100 		xfersize = uio->uio_resid;
1101 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1102 	transp_uio.uio_offset = 0;
1103 	transp_uio.uio_segflg = UIO_SYSSPACE;
1104 	/*
1105 	 * Since transp_iov points to data, and td_ma page array
1106 	 * corresponds to original uio->uio_iov, we need to invert the
1107 	 * direction of the i/o operation as passed to
1108 	 * uiomove_fromphys().
1109 	 */
1110 	switch (uio->uio_rw) {
1111 	case UIO_WRITE:
1112 		transp_uio.uio_rw = UIO_READ;
1113 		break;
1114 	case UIO_READ:
1115 		transp_uio.uio_rw = UIO_WRITE;
1116 		break;
1117 	}
1118 	transp_uio.uio_td = uio->uio_td;
1119 	error = uiomove_fromphys(td->td_ma,
1120 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1121 	    xfersize, &transp_uio);
1122 	adv = xfersize - transp_uio.uio_resid;
1123 	pgadv =
1124 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1125 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1126 	td->td_ma += pgadv;
1127 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1128 	    pgadv));
1129 	td->td_ma_cnt -= pgadv;
1130 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1131 	uio->uio_iov->iov_len -= adv;
1132 	uio->uio_resid -= adv;
1133 	uio->uio_offset += adv;
1134 	return (error);
1135 }
1136 
1137 int
1138 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1139     struct uio *uio)
1140 {
1141 	struct thread *td;
1142 	vm_offset_t iov_base;
1143 	int cnt, pgadv;
1144 
1145 	td = curthread;
1146 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1147 	    uio->uio_segflg != UIO_USERSPACE)
1148 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1149 
1150 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1151 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1152 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1153 	switch (uio->uio_rw) {
1154 	case UIO_WRITE:
1155 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1156 		    offset, cnt);
1157 		break;
1158 	case UIO_READ:
1159 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1160 		    cnt);
1161 		break;
1162 	}
1163 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1164 	td->td_ma += pgadv;
1165 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1166 	    pgadv));
1167 	td->td_ma_cnt -= pgadv;
1168 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1169 	uio->uio_iov->iov_len -= cnt;
1170 	uio->uio_resid -= cnt;
1171 	uio->uio_offset += cnt;
1172 	return (0);
1173 }
1174 
1175 
1176 /*
1177  * File table truncate routine.
1178  */
1179 static int
1180 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1181     struct thread *td)
1182 {
1183 	struct vattr vattr;
1184 	struct mount *mp;
1185 	struct vnode *vp;
1186 	void *rl_cookie;
1187 	int error;
1188 
1189 	vp = fp->f_vnode;
1190 
1191 	/*
1192 	 * Lock the whole range for truncation.  Otherwise split i/o
1193 	 * might happen partly before and partly after the truncation.
1194 	 */
1195 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1196 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1197 	if (error)
1198 		goto out1;
1199 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1200 	if (vp->v_type == VDIR) {
1201 		error = EISDIR;
1202 		goto out;
1203 	}
1204 #ifdef MAC
1205 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1206 	if (error)
1207 		goto out;
1208 #endif
1209 	error = vn_writechk(vp);
1210 	if (error == 0) {
1211 		VATTR_NULL(&vattr);
1212 		vattr.va_size = length;
1213 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1214 	}
1215 out:
1216 	VOP_UNLOCK(vp, 0);
1217 	vn_finished_write(mp);
1218 out1:
1219 	vn_rangelock_unlock(vp, rl_cookie);
1220 	return (error);
1221 }
1222 
1223 /*
1224  * File table vnode stat routine.
1225  */
1226 static int
1227 vn_statfile(fp, sb, active_cred, td)
1228 	struct file *fp;
1229 	struct stat *sb;
1230 	struct ucred *active_cred;
1231 	struct thread *td;
1232 {
1233 	struct vnode *vp = fp->f_vnode;
1234 	int error;
1235 
1236 	vn_lock(vp, LK_SHARED | LK_RETRY);
1237 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1238 	VOP_UNLOCK(vp, 0);
1239 
1240 	return (error);
1241 }
1242 
1243 /*
1244  * Stat a vnode; implementation for the stat syscall
1245  */
1246 int
1247 vn_stat(vp, sb, active_cred, file_cred, td)
1248 	struct vnode *vp;
1249 	register struct stat *sb;
1250 	struct ucred *active_cred;
1251 	struct ucred *file_cred;
1252 	struct thread *td;
1253 {
1254 	struct vattr vattr;
1255 	register struct vattr *vap;
1256 	int error;
1257 	u_short mode;
1258 
1259 #ifdef MAC
1260 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1261 	if (error)
1262 		return (error);
1263 #endif
1264 
1265 	vap = &vattr;
1266 
1267 	/*
1268 	 * Initialize defaults for new and unusual fields, so that file
1269 	 * systems which don't support these fields don't need to know
1270 	 * about them.
1271 	 */
1272 	vap->va_birthtime.tv_sec = -1;
1273 	vap->va_birthtime.tv_nsec = 0;
1274 	vap->va_fsid = VNOVAL;
1275 	vap->va_rdev = NODEV;
1276 
1277 	error = VOP_GETATTR(vp, vap, active_cred);
1278 	if (error)
1279 		return (error);
1280 
1281 	/*
1282 	 * Zero the spare stat fields
1283 	 */
1284 	bzero(sb, sizeof *sb);
1285 
1286 	/*
1287 	 * Copy from vattr table
1288 	 */
1289 	if (vap->va_fsid != VNOVAL)
1290 		sb->st_dev = vap->va_fsid;
1291 	else
1292 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1293 	sb->st_ino = vap->va_fileid;
1294 	mode = vap->va_mode;
1295 	switch (vap->va_type) {
1296 	case VREG:
1297 		mode |= S_IFREG;
1298 		break;
1299 	case VDIR:
1300 		mode |= S_IFDIR;
1301 		break;
1302 	case VBLK:
1303 		mode |= S_IFBLK;
1304 		break;
1305 	case VCHR:
1306 		mode |= S_IFCHR;
1307 		break;
1308 	case VLNK:
1309 		mode |= S_IFLNK;
1310 		break;
1311 	case VSOCK:
1312 		mode |= S_IFSOCK;
1313 		break;
1314 	case VFIFO:
1315 		mode |= S_IFIFO;
1316 		break;
1317 	default:
1318 		return (EBADF);
1319 	};
1320 	sb->st_mode = mode;
1321 	sb->st_nlink = vap->va_nlink;
1322 	sb->st_uid = vap->va_uid;
1323 	sb->st_gid = vap->va_gid;
1324 	sb->st_rdev = vap->va_rdev;
1325 	if (vap->va_size > OFF_MAX)
1326 		return (EOVERFLOW);
1327 	sb->st_size = vap->va_size;
1328 	sb->st_atim = vap->va_atime;
1329 	sb->st_mtim = vap->va_mtime;
1330 	sb->st_ctim = vap->va_ctime;
1331 	sb->st_birthtim = vap->va_birthtime;
1332 
1333         /*
1334 	 * According to www.opengroup.org, the meaning of st_blksize is
1335 	 *   "a filesystem-specific preferred I/O block size for this
1336 	 *    object.  In some filesystem types, this may vary from file
1337 	 *    to file"
1338 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1339 	 */
1340 
1341 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1342 
1343 	sb->st_flags = vap->va_flags;
1344 	if (priv_check(td, PRIV_VFS_GENERATION))
1345 		sb->st_gen = 0;
1346 	else
1347 		sb->st_gen = vap->va_gen;
1348 
1349 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1350 	return (0);
1351 }
1352 
1353 /*
1354  * File table vnode ioctl routine.
1355  */
1356 static int
1357 vn_ioctl(fp, com, data, active_cred, td)
1358 	struct file *fp;
1359 	u_long com;
1360 	void *data;
1361 	struct ucred *active_cred;
1362 	struct thread *td;
1363 {
1364 	struct vattr vattr;
1365 	struct vnode *vp;
1366 	int error;
1367 
1368 	vp = fp->f_vnode;
1369 	switch (vp->v_type) {
1370 	case VDIR:
1371 	case VREG:
1372 		switch (com) {
1373 		case FIONREAD:
1374 			vn_lock(vp, LK_SHARED | LK_RETRY);
1375 			error = VOP_GETATTR(vp, &vattr, active_cred);
1376 			VOP_UNLOCK(vp, 0);
1377 			if (error == 0)
1378 				*(int *)data = vattr.va_size - fp->f_offset;
1379 			return (error);
1380 		case FIONBIO:
1381 		case FIOASYNC:
1382 			return (0);
1383 		default:
1384 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1385 			    active_cred, td));
1386 		}
1387 	default:
1388 		return (ENOTTY);
1389 	}
1390 }
1391 
1392 /*
1393  * File table vnode poll routine.
1394  */
1395 static int
1396 vn_poll(fp, events, active_cred, td)
1397 	struct file *fp;
1398 	int events;
1399 	struct ucred *active_cred;
1400 	struct thread *td;
1401 {
1402 	struct vnode *vp;
1403 	int error;
1404 
1405 	vp = fp->f_vnode;
1406 #ifdef MAC
1407 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1408 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1409 	VOP_UNLOCK(vp, 0);
1410 	if (!error)
1411 #endif
1412 
1413 	error = VOP_POLL(vp, events, fp->f_cred, td);
1414 	return (error);
1415 }
1416 
1417 /*
1418  * Acquire the requested lock and then check for validity.  LK_RETRY
1419  * permits vn_lock to return doomed vnodes.
1420  */
1421 int
1422 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1423 {
1424 	int error;
1425 
1426 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1427 	    ("vn_lock called with no locktype."));
1428 	do {
1429 #ifdef DEBUG_VFS_LOCKS
1430 		KASSERT(vp->v_holdcnt != 0,
1431 		    ("vn_lock %p: zero hold count", vp));
1432 #endif
1433 		error = VOP_LOCK1(vp, flags, file, line);
1434 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1435 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1436 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1437 		    flags, error));
1438 		/*
1439 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1440 		 * If RETRY is not set, we return ENOENT instead.
1441 		 */
1442 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1443 		    (flags & LK_RETRY) == 0) {
1444 			VOP_UNLOCK(vp, 0);
1445 			error = ENOENT;
1446 			break;
1447 		}
1448 	} while (flags & LK_RETRY && error != 0);
1449 	return (error);
1450 }
1451 
1452 /*
1453  * File table vnode close routine.
1454  */
1455 static int
1456 vn_closefile(fp, td)
1457 	struct file *fp;
1458 	struct thread *td;
1459 {
1460 	struct vnode *vp;
1461 	struct flock lf;
1462 	int error;
1463 
1464 	vp = fp->f_vnode;
1465 	fp->f_ops = &badfileops;
1466 
1467 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1468 		vref(vp);
1469 
1470 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1471 
1472 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1473 		lf.l_whence = SEEK_SET;
1474 		lf.l_start = 0;
1475 		lf.l_len = 0;
1476 		lf.l_type = F_UNLCK;
1477 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1478 		vrele(vp);
1479 	}
1480 	return (error);
1481 }
1482 
1483 /*
1484  * Preparing to start a filesystem write operation. If the operation is
1485  * permitted, then we bump the count of operations in progress and
1486  * proceed. If a suspend request is in progress, we wait until the
1487  * suspension is over, and then proceed.
1488  */
1489 static int
1490 vn_start_write_locked(struct mount *mp, int flags)
1491 {
1492 	int error;
1493 
1494 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1495 	error = 0;
1496 
1497 	/*
1498 	 * Check on status of suspension.
1499 	 */
1500 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1501 	    mp->mnt_susp_owner != curthread) {
1502 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1503 			if (flags & V_NOWAIT) {
1504 				error = EWOULDBLOCK;
1505 				goto unlock;
1506 			}
1507 			error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1508 			    (PUSER - 1) | (flags & PCATCH), "suspfs", 0);
1509 			if (error)
1510 				goto unlock;
1511 		}
1512 	}
1513 	if (flags & V_XSLEEP)
1514 		goto unlock;
1515 	mp->mnt_writeopcount++;
1516 unlock:
1517 	if (error != 0 || (flags & V_XSLEEP) != 0)
1518 		MNT_REL(mp);
1519 	MNT_IUNLOCK(mp);
1520 	return (error);
1521 }
1522 
1523 int
1524 vn_start_write(vp, mpp, flags)
1525 	struct vnode *vp;
1526 	struct mount **mpp;
1527 	int flags;
1528 {
1529 	struct mount *mp;
1530 	int error;
1531 
1532 	error = 0;
1533 	/*
1534 	 * If a vnode is provided, get and return the mount point that
1535 	 * to which it will write.
1536 	 */
1537 	if (vp != NULL) {
1538 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1539 			*mpp = NULL;
1540 			if (error != EOPNOTSUPP)
1541 				return (error);
1542 			return (0);
1543 		}
1544 	}
1545 	if ((mp = *mpp) == NULL)
1546 		return (0);
1547 
1548 	/*
1549 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1550 	 * a vfs_ref().
1551 	 * As long as a vnode is not provided we need to acquire a
1552 	 * refcount for the provided mountpoint too, in order to
1553 	 * emulate a vfs_ref().
1554 	 */
1555 	MNT_ILOCK(mp);
1556 	if (vp == NULL)
1557 		MNT_REF(mp);
1558 
1559 	return (vn_start_write_locked(mp, flags));
1560 }
1561 
1562 /*
1563  * Secondary suspension. Used by operations such as vop_inactive
1564  * routines that are needed by the higher level functions. These
1565  * are allowed to proceed until all the higher level functions have
1566  * completed (indicated by mnt_writeopcount dropping to zero). At that
1567  * time, these operations are halted until the suspension is over.
1568  */
1569 int
1570 vn_start_secondary_write(vp, mpp, flags)
1571 	struct vnode *vp;
1572 	struct mount **mpp;
1573 	int flags;
1574 {
1575 	struct mount *mp;
1576 	int error;
1577 
1578  retry:
1579 	if (vp != NULL) {
1580 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1581 			*mpp = NULL;
1582 			if (error != EOPNOTSUPP)
1583 				return (error);
1584 			return (0);
1585 		}
1586 	}
1587 	/*
1588 	 * If we are not suspended or have not yet reached suspended
1589 	 * mode, then let the operation proceed.
1590 	 */
1591 	if ((mp = *mpp) == NULL)
1592 		return (0);
1593 
1594 	/*
1595 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1596 	 * a vfs_ref().
1597 	 * As long as a vnode is not provided we need to acquire a
1598 	 * refcount for the provided mountpoint too, in order to
1599 	 * emulate a vfs_ref().
1600 	 */
1601 	MNT_ILOCK(mp);
1602 	if (vp == NULL)
1603 		MNT_REF(mp);
1604 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1605 		mp->mnt_secondary_writes++;
1606 		mp->mnt_secondary_accwrites++;
1607 		MNT_IUNLOCK(mp);
1608 		return (0);
1609 	}
1610 	if (flags & V_NOWAIT) {
1611 		MNT_REL(mp);
1612 		MNT_IUNLOCK(mp);
1613 		return (EWOULDBLOCK);
1614 	}
1615 	/*
1616 	 * Wait for the suspension to finish.
1617 	 */
1618 	error = msleep(&mp->mnt_flag, MNT_MTX(mp),
1619 		       (PUSER - 1) | (flags & PCATCH) | PDROP, "suspfs", 0);
1620 	vfs_rel(mp);
1621 	if (error == 0)
1622 		goto retry;
1623 	return (error);
1624 }
1625 
1626 /*
1627  * Filesystem write operation has completed. If we are suspending and this
1628  * operation is the last one, notify the suspender that the suspension is
1629  * now in effect.
1630  */
1631 void
1632 vn_finished_write(mp)
1633 	struct mount *mp;
1634 {
1635 	if (mp == NULL)
1636 		return;
1637 	MNT_ILOCK(mp);
1638 	MNT_REL(mp);
1639 	mp->mnt_writeopcount--;
1640 	if (mp->mnt_writeopcount < 0)
1641 		panic("vn_finished_write: neg cnt");
1642 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1643 	    mp->mnt_writeopcount <= 0)
1644 		wakeup(&mp->mnt_writeopcount);
1645 	MNT_IUNLOCK(mp);
1646 }
1647 
1648 
1649 /*
1650  * Filesystem secondary write operation has completed. If we are
1651  * suspending and this operation is the last one, notify the suspender
1652  * that the suspension is now in effect.
1653  */
1654 void
1655 vn_finished_secondary_write(mp)
1656 	struct mount *mp;
1657 {
1658 	if (mp == NULL)
1659 		return;
1660 	MNT_ILOCK(mp);
1661 	MNT_REL(mp);
1662 	mp->mnt_secondary_writes--;
1663 	if (mp->mnt_secondary_writes < 0)
1664 		panic("vn_finished_secondary_write: neg cnt");
1665 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1666 	    mp->mnt_secondary_writes <= 0)
1667 		wakeup(&mp->mnt_secondary_writes);
1668 	MNT_IUNLOCK(mp);
1669 }
1670 
1671 
1672 
1673 /*
1674  * Request a filesystem to suspend write operations.
1675  */
1676 int
1677 vfs_write_suspend(struct mount *mp, int flags)
1678 {
1679 	int error;
1680 
1681 	MNT_ILOCK(mp);
1682 	if (mp->mnt_susp_owner == curthread) {
1683 		MNT_IUNLOCK(mp);
1684 		return (EALREADY);
1685 	}
1686 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1687 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1688 
1689 	/*
1690 	 * Unmount holds a write reference on the mount point.  If we
1691 	 * own busy reference and drain for writers, we deadlock with
1692 	 * the reference draining in the unmount path.  Callers of
1693 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1694 	 * vfs_busy() reference is owned and caller is not in the
1695 	 * unmount context.
1696 	 */
1697 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1698 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1699 		MNT_IUNLOCK(mp);
1700 		return (EBUSY);
1701 	}
1702 
1703 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1704 	mp->mnt_susp_owner = curthread;
1705 	if (mp->mnt_writeopcount > 0)
1706 		(void) msleep(&mp->mnt_writeopcount,
1707 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1708 	else
1709 		MNT_IUNLOCK(mp);
1710 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1711 		vfs_write_resume(mp, 0);
1712 	return (error);
1713 }
1714 
1715 /*
1716  * Request a filesystem to resume write operations.
1717  */
1718 void
1719 vfs_write_resume(struct mount *mp, int flags)
1720 {
1721 
1722 	MNT_ILOCK(mp);
1723 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1724 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1725 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1726 				       MNTK_SUSPENDED);
1727 		mp->mnt_susp_owner = NULL;
1728 		wakeup(&mp->mnt_writeopcount);
1729 		wakeup(&mp->mnt_flag);
1730 		curthread->td_pflags &= ~TDP_IGNSUSP;
1731 		if ((flags & VR_START_WRITE) != 0) {
1732 			MNT_REF(mp);
1733 			mp->mnt_writeopcount++;
1734 		}
1735 		MNT_IUNLOCK(mp);
1736 		if ((flags & VR_NO_SUSPCLR) == 0)
1737 			VFS_SUSP_CLEAN(mp);
1738 	} else if ((flags & VR_START_WRITE) != 0) {
1739 		MNT_REF(mp);
1740 		vn_start_write_locked(mp, 0);
1741 	} else {
1742 		MNT_IUNLOCK(mp);
1743 	}
1744 }
1745 
1746 /*
1747  * Implement kqueues for files by translating it to vnode operation.
1748  */
1749 static int
1750 vn_kqfilter(struct file *fp, struct knote *kn)
1751 {
1752 
1753 	return (VOP_KQFILTER(fp->f_vnode, kn));
1754 }
1755 
1756 /*
1757  * Simplified in-kernel wrapper calls for extended attribute access.
1758  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1759  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1760  */
1761 int
1762 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1763     const char *attrname, int *buflen, char *buf, struct thread *td)
1764 {
1765 	struct uio	auio;
1766 	struct iovec	iov;
1767 	int	error;
1768 
1769 	iov.iov_len = *buflen;
1770 	iov.iov_base = buf;
1771 
1772 	auio.uio_iov = &iov;
1773 	auio.uio_iovcnt = 1;
1774 	auio.uio_rw = UIO_READ;
1775 	auio.uio_segflg = UIO_SYSSPACE;
1776 	auio.uio_td = td;
1777 	auio.uio_offset = 0;
1778 	auio.uio_resid = *buflen;
1779 
1780 	if ((ioflg & IO_NODELOCKED) == 0)
1781 		vn_lock(vp, LK_SHARED | LK_RETRY);
1782 
1783 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1784 
1785 	/* authorize attribute retrieval as kernel */
1786 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1787 	    td);
1788 
1789 	if ((ioflg & IO_NODELOCKED) == 0)
1790 		VOP_UNLOCK(vp, 0);
1791 
1792 	if (error == 0) {
1793 		*buflen = *buflen - auio.uio_resid;
1794 	}
1795 
1796 	return (error);
1797 }
1798 
1799 /*
1800  * XXX failure mode if partially written?
1801  */
1802 int
1803 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1804     const char *attrname, int buflen, char *buf, struct thread *td)
1805 {
1806 	struct uio	auio;
1807 	struct iovec	iov;
1808 	struct mount	*mp;
1809 	int	error;
1810 
1811 	iov.iov_len = buflen;
1812 	iov.iov_base = buf;
1813 
1814 	auio.uio_iov = &iov;
1815 	auio.uio_iovcnt = 1;
1816 	auio.uio_rw = UIO_WRITE;
1817 	auio.uio_segflg = UIO_SYSSPACE;
1818 	auio.uio_td = td;
1819 	auio.uio_offset = 0;
1820 	auio.uio_resid = buflen;
1821 
1822 	if ((ioflg & IO_NODELOCKED) == 0) {
1823 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1824 			return (error);
1825 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1826 	}
1827 
1828 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1829 
1830 	/* authorize attribute setting as kernel */
1831 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1832 
1833 	if ((ioflg & IO_NODELOCKED) == 0) {
1834 		vn_finished_write(mp);
1835 		VOP_UNLOCK(vp, 0);
1836 	}
1837 
1838 	return (error);
1839 }
1840 
1841 int
1842 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1843     const char *attrname, struct thread *td)
1844 {
1845 	struct mount	*mp;
1846 	int	error;
1847 
1848 	if ((ioflg & IO_NODELOCKED) == 0) {
1849 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1850 			return (error);
1851 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1852 	}
1853 
1854 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1855 
1856 	/* authorize attribute removal as kernel */
1857 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
1858 	if (error == EOPNOTSUPP)
1859 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
1860 		    NULL, td);
1861 
1862 	if ((ioflg & IO_NODELOCKED) == 0) {
1863 		vn_finished_write(mp);
1864 		VOP_UNLOCK(vp, 0);
1865 	}
1866 
1867 	return (error);
1868 }
1869 
1870 int
1871 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
1872 {
1873 	struct mount *mp;
1874 	int ltype, error;
1875 
1876 	mp = vp->v_mount;
1877 	ltype = VOP_ISLOCKED(vp);
1878 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
1879 	    ("vn_vget_ino: vp not locked"));
1880 	error = vfs_busy(mp, MBF_NOWAIT);
1881 	if (error != 0) {
1882 		vfs_ref(mp);
1883 		VOP_UNLOCK(vp, 0);
1884 		error = vfs_busy(mp, 0);
1885 		vn_lock(vp, ltype | LK_RETRY);
1886 		vfs_rel(mp);
1887 		if (error != 0)
1888 			return (ENOENT);
1889 		if (vp->v_iflag & VI_DOOMED) {
1890 			vfs_unbusy(mp);
1891 			return (ENOENT);
1892 		}
1893 	}
1894 	VOP_UNLOCK(vp, 0);
1895 	error = VFS_VGET(mp, ino, lkflags, rvp);
1896 	vfs_unbusy(mp);
1897 	vn_lock(vp, ltype | LK_RETRY);
1898 	if (vp->v_iflag & VI_DOOMED) {
1899 		if (error == 0)
1900 			vput(*rvp);
1901 		error = ENOENT;
1902 	}
1903 	return (error);
1904 }
1905 
1906 int
1907 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
1908     const struct thread *td)
1909 {
1910 
1911 	if (vp->v_type != VREG || td == NULL)
1912 		return (0);
1913 	PROC_LOCK(td->td_proc);
1914 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
1915 	    lim_cur(td->td_proc, RLIMIT_FSIZE)) {
1916 		kern_psignal(td->td_proc, SIGXFSZ);
1917 		PROC_UNLOCK(td->td_proc);
1918 		return (EFBIG);
1919 	}
1920 	PROC_UNLOCK(td->td_proc);
1921 	return (0);
1922 }
1923 
1924 int
1925 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
1926     struct thread *td)
1927 {
1928 	struct vnode *vp;
1929 
1930 	vp = fp->f_vnode;
1931 #ifdef AUDIT
1932 	vn_lock(vp, LK_SHARED | LK_RETRY);
1933 	AUDIT_ARG_VNODE1(vp);
1934 	VOP_UNLOCK(vp, 0);
1935 #endif
1936 	return (setfmode(td, active_cred, vp, mode));
1937 }
1938 
1939 int
1940 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
1941     struct thread *td)
1942 {
1943 	struct vnode *vp;
1944 
1945 	vp = fp->f_vnode;
1946 #ifdef AUDIT
1947 	vn_lock(vp, LK_SHARED | LK_RETRY);
1948 	AUDIT_ARG_VNODE1(vp);
1949 	VOP_UNLOCK(vp, 0);
1950 #endif
1951 	return (setfown(td, active_cred, vp, uid, gid));
1952 }
1953 
1954 void
1955 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
1956 {
1957 	vm_object_t object;
1958 
1959 	if ((object = vp->v_object) == NULL)
1960 		return;
1961 	VM_OBJECT_WLOCK(object);
1962 	vm_object_page_remove(object, start, end, 0);
1963 	VM_OBJECT_WUNLOCK(object);
1964 }
1965 
1966 int
1967 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
1968 {
1969 	struct vattr va;
1970 	daddr_t bn, bnp;
1971 	uint64_t bsize;
1972 	off_t noff;
1973 	int error;
1974 
1975 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
1976 	    ("Wrong command %lu", cmd));
1977 
1978 	if (vn_lock(vp, LK_SHARED) != 0)
1979 		return (EBADF);
1980 	if (vp->v_type != VREG) {
1981 		error = ENOTTY;
1982 		goto unlock;
1983 	}
1984 	error = VOP_GETATTR(vp, &va, cred);
1985 	if (error != 0)
1986 		goto unlock;
1987 	noff = *off;
1988 	if (noff >= va.va_size) {
1989 		error = ENXIO;
1990 		goto unlock;
1991 	}
1992 	bsize = vp->v_mount->mnt_stat.f_iosize;
1993 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
1994 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
1995 		if (error == EOPNOTSUPP) {
1996 			error = ENOTTY;
1997 			goto unlock;
1998 		}
1999 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2000 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2001 			noff = bn * bsize;
2002 			if (noff < *off)
2003 				noff = *off;
2004 			goto unlock;
2005 		}
2006 	}
2007 	if (noff > va.va_size)
2008 		noff = va.va_size;
2009 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2010 	if (cmd == FIOSEEKDATA)
2011 		error = ENXIO;
2012 unlock:
2013 	VOP_UNLOCK(vp, 0);
2014 	if (error == 0)
2015 		*off = noff;
2016 	return (error);
2017 }
2018 
2019 int
2020 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2021 {
2022 	struct ucred *cred;
2023 	struct vnode *vp;
2024 	struct vattr vattr;
2025 	off_t foffset, size;
2026 	int error, noneg;
2027 
2028 	cred = td->td_ucred;
2029 	vp = fp->f_vnode;
2030 	foffset = foffset_lock(fp, 0);
2031 	noneg = (vp->v_type != VCHR);
2032 	error = 0;
2033 	switch (whence) {
2034 	case L_INCR:
2035 		if (noneg &&
2036 		    (foffset < 0 ||
2037 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2038 			error = EOVERFLOW;
2039 			break;
2040 		}
2041 		offset += foffset;
2042 		break;
2043 	case L_XTND:
2044 		vn_lock(vp, LK_SHARED | LK_RETRY);
2045 		error = VOP_GETATTR(vp, &vattr, cred);
2046 		VOP_UNLOCK(vp, 0);
2047 		if (error)
2048 			break;
2049 
2050 		/*
2051 		 * If the file references a disk device, then fetch
2052 		 * the media size and use that to determine the ending
2053 		 * offset.
2054 		 */
2055 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2056 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2057 			vattr.va_size = size;
2058 		if (noneg &&
2059 		    (vattr.va_size > OFF_MAX ||
2060 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2061 			error = EOVERFLOW;
2062 			break;
2063 		}
2064 		offset += vattr.va_size;
2065 		break;
2066 	case L_SET:
2067 		break;
2068 	case SEEK_DATA:
2069 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2070 		break;
2071 	case SEEK_HOLE:
2072 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2073 		break;
2074 	default:
2075 		error = EINVAL;
2076 	}
2077 	if (error == 0 && noneg && offset < 0)
2078 		error = EINVAL;
2079 	if (error != 0)
2080 		goto drop;
2081 	VFS_KNOTE_UNLOCKED(vp, 0);
2082 	*(off_t *)(td->td_retval) = offset;
2083 drop:
2084 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2085 	return (error);
2086 }
2087