xref: /freebsd/sys/kern/vfs_vnops.c (revision 68ba7e87e74b00b0511b346607b464f318c91083)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_hwpmc_hooks.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/disk.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kdb.h>
55 #include <sys/stat.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/limits.h>
59 #include <sys/lock.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/vnode.h>
65 #include <sys/bio.h>
66 #include <sys/buf.h>
67 #include <sys/filio.h>
68 #include <sys/resourcevar.h>
69 #include <sys/rwlock.h>
70 #include <sys/sx.h>
71 #include <sys/sysctl.h>
72 #include <sys/ttycom.h>
73 #include <sys/conf.h>
74 #include <sys/syslog.h>
75 #include <sys/unistd.h>
76 #include <sys/user.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vnode_pager.h>
88 
89 #ifdef HWPMC_HOOKS
90 #include <sys/pmckern.h>
91 #endif
92 
93 static fo_rdwr_t	vn_read;
94 static fo_rdwr_t	vn_write;
95 static fo_rdwr_t	vn_io_fault;
96 static fo_truncate_t	vn_truncate;
97 static fo_ioctl_t	vn_ioctl;
98 static fo_poll_t	vn_poll;
99 static fo_kqfilter_t	vn_kqfilter;
100 static fo_stat_t	vn_statfile;
101 static fo_close_t	vn_closefile;
102 static fo_mmap_t	vn_mmap;
103 
104 struct 	fileops vnops = {
105 	.fo_read = vn_io_fault,
106 	.fo_write = vn_io_fault,
107 	.fo_truncate = vn_truncate,
108 	.fo_ioctl = vn_ioctl,
109 	.fo_poll = vn_poll,
110 	.fo_kqfilter = vn_kqfilter,
111 	.fo_stat = vn_statfile,
112 	.fo_close = vn_closefile,
113 	.fo_chmod = vn_chmod,
114 	.fo_chown = vn_chown,
115 	.fo_sendfile = vn_sendfile,
116 	.fo_seek = vn_seek,
117 	.fo_fill_kinfo = vn_fill_kinfo,
118 	.fo_mmap = vn_mmap,
119 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
120 };
121 
122 static const int io_hold_cnt = 16;
123 static int vn_io_fault_enable = 1;
124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
125     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
126 static int vn_io_fault_prefault = 0;
127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
128     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
129 static u_long vn_io_faults_cnt;
130 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
131     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
132 
133 /*
134  * Returns true if vn_io_fault mode of handling the i/o request should
135  * be used.
136  */
137 static bool
138 do_vn_io_fault(struct vnode *vp, struct uio *uio)
139 {
140 	struct mount *mp;
141 
142 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
143 	    (mp = vp->v_mount) != NULL &&
144 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
145 }
146 
147 /*
148  * Structure used to pass arguments to vn_io_fault1(), to do either
149  * file- or vnode-based I/O calls.
150  */
151 struct vn_io_fault_args {
152 	enum {
153 		VN_IO_FAULT_FOP,
154 		VN_IO_FAULT_VOP
155 	} kind;
156 	struct ucred *cred;
157 	int flags;
158 	union {
159 		struct fop_args_tag {
160 			struct file *fp;
161 			fo_rdwr_t *doio;
162 		} fop_args;
163 		struct vop_args_tag {
164 			struct vnode *vp;
165 		} vop_args;
166 	} args;
167 };
168 
169 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
170     struct vn_io_fault_args *args, struct thread *td);
171 
172 int
173 vn_open(ndp, flagp, cmode, fp)
174 	struct nameidata *ndp;
175 	int *flagp, cmode;
176 	struct file *fp;
177 {
178 	struct thread *td = ndp->ni_cnd.cn_thread;
179 
180 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
181 }
182 
183 /*
184  * Common code for vnode open operations via a name lookup.
185  * Lookup the vnode and invoke VOP_CREATE if needed.
186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
187  *
188  * Note that this does NOT free nameidata for the successful case,
189  * due to the NDINIT being done elsewhere.
190  */
191 int
192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
193     struct ucred *cred, struct file *fp)
194 {
195 	struct vnode *vp;
196 	struct mount *mp;
197 	struct thread *td = ndp->ni_cnd.cn_thread;
198 	struct vattr vat;
199 	struct vattr *vap = &vat;
200 	int fmode, error;
201 
202 restart:
203 	fmode = *flagp;
204 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
205 	    O_EXCL | O_DIRECTORY))
206 		return (EINVAL);
207 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
208 		ndp->ni_cnd.cn_nameiop = CREATE;
209 		/*
210 		 * Set NOCACHE to avoid flushing the cache when
211 		 * rolling in many files at once.
212 		*/
213 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
214 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
215 			ndp->ni_cnd.cn_flags |= FOLLOW;
216 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
217 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
218 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
219 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
220 		bwillwrite();
221 		if ((error = namei(ndp)) != 0)
222 			return (error);
223 		if (ndp->ni_vp == NULL) {
224 			VATTR_NULL(vap);
225 			vap->va_type = VREG;
226 			vap->va_mode = cmode;
227 			if (fmode & O_EXCL)
228 				vap->va_vaflags |= VA_EXCLUSIVE;
229 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
230 				NDFREE(ndp, NDF_ONLY_PNBUF);
231 				vput(ndp->ni_dvp);
232 				if ((error = vn_start_write(NULL, &mp,
233 				    V_XSLEEP | PCATCH)) != 0)
234 					return (error);
235 				goto restart;
236 			}
237 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
238 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
239 #ifdef MAC
240 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
241 			    &ndp->ni_cnd, vap);
242 			if (error == 0)
243 #endif
244 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
245 						   &ndp->ni_cnd, vap);
246 			vput(ndp->ni_dvp);
247 			vn_finished_write(mp);
248 			if (error) {
249 				NDFREE(ndp, NDF_ONLY_PNBUF);
250 				return (error);
251 			}
252 			fmode &= ~O_TRUNC;
253 			vp = ndp->ni_vp;
254 		} else {
255 			if (ndp->ni_dvp == ndp->ni_vp)
256 				vrele(ndp->ni_dvp);
257 			else
258 				vput(ndp->ni_dvp);
259 			ndp->ni_dvp = NULL;
260 			vp = ndp->ni_vp;
261 			if (fmode & O_EXCL) {
262 				error = EEXIST;
263 				goto bad;
264 			}
265 			fmode &= ~O_CREAT;
266 		}
267 	} else {
268 		ndp->ni_cnd.cn_nameiop = LOOKUP;
269 		ndp->ni_cnd.cn_flags = ISOPEN |
270 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
271 		if (!(fmode & FWRITE))
272 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
273 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
274 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
275 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
276 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
277 		if ((error = namei(ndp)) != 0)
278 			return (error);
279 		vp = ndp->ni_vp;
280 	}
281 	error = vn_open_vnode(vp, fmode, cred, td, fp);
282 	if (error)
283 		goto bad;
284 	*flagp = fmode;
285 	return (0);
286 bad:
287 	NDFREE(ndp, NDF_ONLY_PNBUF);
288 	vput(vp);
289 	*flagp = fmode;
290 	ndp->ni_vp = NULL;
291 	return (error);
292 }
293 
294 /*
295  * Common code for vnode open operations once a vnode is located.
296  * Check permissions, and call the VOP_OPEN routine.
297  */
298 int
299 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
300     struct thread *td, struct file *fp)
301 {
302 	accmode_t accmode;
303 	struct flock lf;
304 	int error, lock_flags, type;
305 
306 	if (vp->v_type == VLNK)
307 		return (EMLINK);
308 	if (vp->v_type == VSOCK)
309 		return (EOPNOTSUPP);
310 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
311 		return (ENOTDIR);
312 	accmode = 0;
313 	if (fmode & (FWRITE | O_TRUNC)) {
314 		if (vp->v_type == VDIR)
315 			return (EISDIR);
316 		accmode |= VWRITE;
317 	}
318 	if (fmode & FREAD)
319 		accmode |= VREAD;
320 	if (fmode & FEXEC)
321 		accmode |= VEXEC;
322 	if ((fmode & O_APPEND) && (fmode & FWRITE))
323 		accmode |= VAPPEND;
324 #ifdef MAC
325 	if (fmode & O_CREAT)
326 		accmode |= VCREAT;
327 	if (fmode & O_VERIFY)
328 		accmode |= VVERIFY;
329 	error = mac_vnode_check_open(cred, vp, accmode);
330 	if (error)
331 		return (error);
332 
333 	accmode &= ~(VCREAT | VVERIFY);
334 #endif
335 	if ((fmode & O_CREAT) == 0) {
336 		if (accmode & VWRITE) {
337 			error = vn_writechk(vp);
338 			if (error)
339 				return (error);
340 		}
341 		if (accmode) {
342 		        error = VOP_ACCESS(vp, accmode, cred, td);
343 			if (error)
344 				return (error);
345 		}
346 	}
347 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
348 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
349 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
350 		return (error);
351 
352 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
353 		KASSERT(fp != NULL, ("open with flock requires fp"));
354 		lock_flags = VOP_ISLOCKED(vp);
355 		VOP_UNLOCK(vp, 0);
356 		lf.l_whence = SEEK_SET;
357 		lf.l_start = 0;
358 		lf.l_len = 0;
359 		if (fmode & O_EXLOCK)
360 			lf.l_type = F_WRLCK;
361 		else
362 			lf.l_type = F_RDLCK;
363 		type = F_FLOCK;
364 		if ((fmode & FNONBLOCK) == 0)
365 			type |= F_WAIT;
366 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
367 		if (error == 0)
368 			fp->f_flag |= FHASLOCK;
369 		vn_lock(vp, lock_flags | LK_RETRY);
370 		if (error == 0 && vp->v_iflag & VI_DOOMED)
371 			error = ENOENT;
372 
373 		/*
374 		 * Another thread might have used this vnode as an
375 		 * executable while the vnode lock was dropped.
376 		 * Ensure the vnode is still able to be opened for
377 		 * writing after the lock has been obtained.
378 		 */
379 		if (error == 0 && accmode & VWRITE)
380 			error = vn_writechk(vp);
381 
382 		if (error != 0) {
383 			fp->f_flag |= FOPENFAILED;
384 			fp->f_vnode = vp;
385 			if (fp->f_ops == &badfileops) {
386 				fp->f_type = DTYPE_VNODE;
387 				fp->f_ops = &vnops;
388 			}
389 			vref(vp);
390 		}
391 	}
392 	if (error == 0 && fmode & FWRITE) {
393 		VOP_ADD_WRITECOUNT(vp, 1);
394 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
395 		    __func__, vp, vp->v_writecount);
396 	}
397 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
398 	return (error);
399 }
400 
401 /*
402  * Check for write permissions on the specified vnode.
403  * Prototype text segments cannot be written.
404  */
405 int
406 vn_writechk(vp)
407 	register struct vnode *vp;
408 {
409 
410 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
411 	/*
412 	 * If there's shared text associated with
413 	 * the vnode, try to free it up once.  If
414 	 * we fail, we can't allow writing.
415 	 */
416 	if (VOP_IS_TEXT(vp))
417 		return (ETXTBSY);
418 
419 	return (0);
420 }
421 
422 /*
423  * Vnode close call
424  */
425 int
426 vn_close(vp, flags, file_cred, td)
427 	register struct vnode *vp;
428 	int flags;
429 	struct ucred *file_cred;
430 	struct thread *td;
431 {
432 	struct mount *mp;
433 	int error, lock_flags;
434 
435 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
436 	    MNT_EXTENDED_SHARED(vp->v_mount))
437 		lock_flags = LK_SHARED;
438 	else
439 		lock_flags = LK_EXCLUSIVE;
440 
441 	vn_start_write(vp, &mp, V_WAIT);
442 	vn_lock(vp, lock_flags | LK_RETRY);
443 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
444 		VNASSERT(vp->v_writecount > 0, vp,
445 		    ("vn_close: negative writecount"));
446 		VOP_ADD_WRITECOUNT(vp, -1);
447 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
448 		    __func__, vp, vp->v_writecount);
449 	}
450 	error = VOP_CLOSE(vp, flags, file_cred, td);
451 	vput(vp);
452 	vn_finished_write(mp);
453 	return (error);
454 }
455 
456 /*
457  * Heuristic to detect sequential operation.
458  */
459 static int
460 sequential_heuristic(struct uio *uio, struct file *fp)
461 {
462 
463 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
464 	if (fp->f_flag & FRDAHEAD)
465 		return (fp->f_seqcount << IO_SEQSHIFT);
466 
467 	/*
468 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
469 	 * that the first I/O is normally considered to be slightly
470 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
471 	 * unless previous seeks have reduced f_seqcount to 0, in which
472 	 * case offset 0 is not special.
473 	 */
474 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
475 	    uio->uio_offset == fp->f_nextoff) {
476 		/*
477 		 * f_seqcount is in units of fixed-size blocks so that it
478 		 * depends mainly on the amount of sequential I/O and not
479 		 * much on the number of sequential I/O's.  The fixed size
480 		 * of 16384 is hard-coded here since it is (not quite) just
481 		 * a magic size that works well here.  This size is more
482 		 * closely related to the best I/O size for real disks than
483 		 * to any block size used by software.
484 		 */
485 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
486 		if (fp->f_seqcount > IO_SEQMAX)
487 			fp->f_seqcount = IO_SEQMAX;
488 		return (fp->f_seqcount << IO_SEQSHIFT);
489 	}
490 
491 	/* Not sequential.  Quickly draw-down sequentiality. */
492 	if (fp->f_seqcount > 1)
493 		fp->f_seqcount = 1;
494 	else
495 		fp->f_seqcount = 0;
496 	return (0);
497 }
498 
499 /*
500  * Package up an I/O request on a vnode into a uio and do it.
501  */
502 int
503 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
504     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
505     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
506 {
507 	struct uio auio;
508 	struct iovec aiov;
509 	struct mount *mp;
510 	struct ucred *cred;
511 	void *rl_cookie;
512 	struct vn_io_fault_args args;
513 	int error, lock_flags;
514 
515 	auio.uio_iov = &aiov;
516 	auio.uio_iovcnt = 1;
517 	aiov.iov_base = base;
518 	aiov.iov_len = len;
519 	auio.uio_resid = len;
520 	auio.uio_offset = offset;
521 	auio.uio_segflg = segflg;
522 	auio.uio_rw = rw;
523 	auio.uio_td = td;
524 	error = 0;
525 
526 	if ((ioflg & IO_NODELOCKED) == 0) {
527 		if ((ioflg & IO_RANGELOCKED) == 0) {
528 			if (rw == UIO_READ) {
529 				rl_cookie = vn_rangelock_rlock(vp, offset,
530 				    offset + len);
531 			} else {
532 				rl_cookie = vn_rangelock_wlock(vp, offset,
533 				    offset + len);
534 			}
535 		} else
536 			rl_cookie = NULL;
537 		mp = NULL;
538 		if (rw == UIO_WRITE) {
539 			if (vp->v_type != VCHR &&
540 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
541 			    != 0)
542 				goto out;
543 			if (MNT_SHARED_WRITES(mp) ||
544 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
545 				lock_flags = LK_SHARED;
546 			else
547 				lock_flags = LK_EXCLUSIVE;
548 		} else
549 			lock_flags = LK_SHARED;
550 		vn_lock(vp, lock_flags | LK_RETRY);
551 	} else
552 		rl_cookie = NULL;
553 
554 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
555 #ifdef MAC
556 	if ((ioflg & IO_NOMACCHECK) == 0) {
557 		if (rw == UIO_READ)
558 			error = mac_vnode_check_read(active_cred, file_cred,
559 			    vp);
560 		else
561 			error = mac_vnode_check_write(active_cred, file_cred,
562 			    vp);
563 	}
564 #endif
565 	if (error == 0) {
566 		if (file_cred != NULL)
567 			cred = file_cred;
568 		else
569 			cred = active_cred;
570 		if (do_vn_io_fault(vp, &auio)) {
571 			args.kind = VN_IO_FAULT_VOP;
572 			args.cred = cred;
573 			args.flags = ioflg;
574 			args.args.vop_args.vp = vp;
575 			error = vn_io_fault1(vp, &auio, &args, td);
576 		} else if (rw == UIO_READ) {
577 			error = VOP_READ(vp, &auio, ioflg, cred);
578 		} else /* if (rw == UIO_WRITE) */ {
579 			error = VOP_WRITE(vp, &auio, ioflg, cred);
580 		}
581 	}
582 	if (aresid)
583 		*aresid = auio.uio_resid;
584 	else
585 		if (auio.uio_resid && error == 0)
586 			error = EIO;
587 	if ((ioflg & IO_NODELOCKED) == 0) {
588 		VOP_UNLOCK(vp, 0);
589 		if (mp != NULL)
590 			vn_finished_write(mp);
591 	}
592  out:
593 	if (rl_cookie != NULL)
594 		vn_rangelock_unlock(vp, rl_cookie);
595 	return (error);
596 }
597 
598 /*
599  * Package up an I/O request on a vnode into a uio and do it.  The I/O
600  * request is split up into smaller chunks and we try to avoid saturating
601  * the buffer cache while potentially holding a vnode locked, so we
602  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
603  * to give other processes a chance to lock the vnode (either other processes
604  * core'ing the same binary, or unrelated processes scanning the directory).
605  */
606 int
607 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
608     file_cred, aresid, td)
609 	enum uio_rw rw;
610 	struct vnode *vp;
611 	void *base;
612 	size_t len;
613 	off_t offset;
614 	enum uio_seg segflg;
615 	int ioflg;
616 	struct ucred *active_cred;
617 	struct ucred *file_cred;
618 	size_t *aresid;
619 	struct thread *td;
620 {
621 	int error = 0;
622 	ssize_t iaresid;
623 
624 	do {
625 		int chunk;
626 
627 		/*
628 		 * Force `offset' to a multiple of MAXBSIZE except possibly
629 		 * for the first chunk, so that filesystems only need to
630 		 * write full blocks except possibly for the first and last
631 		 * chunks.
632 		 */
633 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
634 
635 		if (chunk > len)
636 			chunk = len;
637 		if (rw != UIO_READ && vp->v_type == VREG)
638 			bwillwrite();
639 		iaresid = 0;
640 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
641 		    ioflg, active_cred, file_cred, &iaresid, td);
642 		len -= chunk;	/* aresid calc already includes length */
643 		if (error)
644 			break;
645 		offset += chunk;
646 		base = (char *)base + chunk;
647 		kern_yield(PRI_USER);
648 	} while (len);
649 	if (aresid)
650 		*aresid = len + iaresid;
651 	return (error);
652 }
653 
654 off_t
655 foffset_lock(struct file *fp, int flags)
656 {
657 	struct mtx *mtxp;
658 	off_t res;
659 
660 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
661 
662 #if OFF_MAX <= LONG_MAX
663 	/*
664 	 * Caller only wants the current f_offset value.  Assume that
665 	 * the long and shorter integer types reads are atomic.
666 	 */
667 	if ((flags & FOF_NOLOCK) != 0)
668 		return (fp->f_offset);
669 #endif
670 
671 	/*
672 	 * According to McKusick the vn lock was protecting f_offset here.
673 	 * It is now protected by the FOFFSET_LOCKED flag.
674 	 */
675 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
676 	mtx_lock(mtxp);
677 	if ((flags & FOF_NOLOCK) == 0) {
678 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
679 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
680 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
681 			    "vofflock", 0);
682 		}
683 		fp->f_vnread_flags |= FOFFSET_LOCKED;
684 	}
685 	res = fp->f_offset;
686 	mtx_unlock(mtxp);
687 	return (res);
688 }
689 
690 void
691 foffset_unlock(struct file *fp, off_t val, int flags)
692 {
693 	struct mtx *mtxp;
694 
695 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
696 
697 #if OFF_MAX <= LONG_MAX
698 	if ((flags & FOF_NOLOCK) != 0) {
699 		if ((flags & FOF_NOUPDATE) == 0)
700 			fp->f_offset = val;
701 		if ((flags & FOF_NEXTOFF) != 0)
702 			fp->f_nextoff = val;
703 		return;
704 	}
705 #endif
706 
707 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
708 	mtx_lock(mtxp);
709 	if ((flags & FOF_NOUPDATE) == 0)
710 		fp->f_offset = val;
711 	if ((flags & FOF_NEXTOFF) != 0)
712 		fp->f_nextoff = val;
713 	if ((flags & FOF_NOLOCK) == 0) {
714 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
715 		    ("Lost FOFFSET_LOCKED"));
716 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
717 			wakeup(&fp->f_vnread_flags);
718 		fp->f_vnread_flags = 0;
719 	}
720 	mtx_unlock(mtxp);
721 }
722 
723 void
724 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
725 {
726 
727 	if ((flags & FOF_OFFSET) == 0)
728 		uio->uio_offset = foffset_lock(fp, flags);
729 }
730 
731 void
732 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
733 {
734 
735 	if ((flags & FOF_OFFSET) == 0)
736 		foffset_unlock(fp, uio->uio_offset, flags);
737 }
738 
739 static int
740 get_advice(struct file *fp, struct uio *uio)
741 {
742 	struct mtx *mtxp;
743 	int ret;
744 
745 	ret = POSIX_FADV_NORMAL;
746 	if (fp->f_advice == NULL)
747 		return (ret);
748 
749 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
750 	mtx_lock(mtxp);
751 	if (uio->uio_offset >= fp->f_advice->fa_start &&
752 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
753 		ret = fp->f_advice->fa_advice;
754 	mtx_unlock(mtxp);
755 	return (ret);
756 }
757 
758 /*
759  * File table vnode read routine.
760  */
761 static int
762 vn_read(fp, uio, active_cred, flags, td)
763 	struct file *fp;
764 	struct uio *uio;
765 	struct ucred *active_cred;
766 	int flags;
767 	struct thread *td;
768 {
769 	struct vnode *vp;
770 	off_t orig_offset;
771 	int error, ioflag;
772 	int advice;
773 
774 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
775 	    uio->uio_td, td));
776 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
777 	vp = fp->f_vnode;
778 	ioflag = 0;
779 	if (fp->f_flag & FNONBLOCK)
780 		ioflag |= IO_NDELAY;
781 	if (fp->f_flag & O_DIRECT)
782 		ioflag |= IO_DIRECT;
783 	advice = get_advice(fp, uio);
784 	vn_lock(vp, LK_SHARED | LK_RETRY);
785 
786 	switch (advice) {
787 	case POSIX_FADV_NORMAL:
788 	case POSIX_FADV_SEQUENTIAL:
789 	case POSIX_FADV_NOREUSE:
790 		ioflag |= sequential_heuristic(uio, fp);
791 		break;
792 	case POSIX_FADV_RANDOM:
793 		/* Disable read-ahead for random I/O. */
794 		break;
795 	}
796 	orig_offset = uio->uio_offset;
797 
798 #ifdef MAC
799 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
800 	if (error == 0)
801 #endif
802 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
803 	fp->f_nextoff = uio->uio_offset;
804 	VOP_UNLOCK(vp, 0);
805 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
806 	    orig_offset != uio->uio_offset)
807 		/*
808 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
809 		 * for the backing file after a POSIX_FADV_NOREUSE
810 		 * read(2).
811 		 */
812 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
813 		    POSIX_FADV_DONTNEED);
814 	return (error);
815 }
816 
817 /*
818  * File table vnode write routine.
819  */
820 static int
821 vn_write(fp, uio, active_cred, flags, td)
822 	struct file *fp;
823 	struct uio *uio;
824 	struct ucred *active_cred;
825 	int flags;
826 	struct thread *td;
827 {
828 	struct vnode *vp;
829 	struct mount *mp;
830 	off_t orig_offset;
831 	int error, ioflag, lock_flags;
832 	int advice;
833 
834 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
835 	    uio->uio_td, td));
836 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
837 	vp = fp->f_vnode;
838 	if (vp->v_type == VREG)
839 		bwillwrite();
840 	ioflag = IO_UNIT;
841 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
842 		ioflag |= IO_APPEND;
843 	if (fp->f_flag & FNONBLOCK)
844 		ioflag |= IO_NDELAY;
845 	if (fp->f_flag & O_DIRECT)
846 		ioflag |= IO_DIRECT;
847 	if ((fp->f_flag & O_FSYNC) ||
848 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
849 		ioflag |= IO_SYNC;
850 	mp = NULL;
851 	if (vp->v_type != VCHR &&
852 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
853 		goto unlock;
854 
855 	advice = get_advice(fp, uio);
856 
857 	if (MNT_SHARED_WRITES(mp) ||
858 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
859 		lock_flags = LK_SHARED;
860 	} else {
861 		lock_flags = LK_EXCLUSIVE;
862 	}
863 
864 	vn_lock(vp, lock_flags | LK_RETRY);
865 	switch (advice) {
866 	case POSIX_FADV_NORMAL:
867 	case POSIX_FADV_SEQUENTIAL:
868 	case POSIX_FADV_NOREUSE:
869 		ioflag |= sequential_heuristic(uio, fp);
870 		break;
871 	case POSIX_FADV_RANDOM:
872 		/* XXX: Is this correct? */
873 		break;
874 	}
875 	orig_offset = uio->uio_offset;
876 
877 #ifdef MAC
878 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
879 	if (error == 0)
880 #endif
881 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
882 	fp->f_nextoff = uio->uio_offset;
883 	VOP_UNLOCK(vp, 0);
884 	if (vp->v_type != VCHR)
885 		vn_finished_write(mp);
886 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
887 	    orig_offset != uio->uio_offset)
888 		/*
889 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
890 		 * for the backing file after a POSIX_FADV_NOREUSE
891 		 * write(2).
892 		 */
893 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
894 		    POSIX_FADV_DONTNEED);
895 unlock:
896 	return (error);
897 }
898 
899 /*
900  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
901  * prevent the following deadlock:
902  *
903  * Assume that the thread A reads from the vnode vp1 into userspace
904  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
905  * currently not resident, then system ends up with the call chain
906  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
907  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
908  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
909  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
910  * backed by the pages of vnode vp1, and some page in buf2 is not
911  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
912  *
913  * To prevent the lock order reversal and deadlock, vn_io_fault() does
914  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
915  * Instead, it first tries to do the whole range i/o with pagefaults
916  * disabled. If all pages in the i/o buffer are resident and mapped,
917  * VOP will succeed (ignoring the genuine filesystem errors).
918  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
919  * i/o in chunks, with all pages in the chunk prefaulted and held
920  * using vm_fault_quick_hold_pages().
921  *
922  * Filesystems using this deadlock avoidance scheme should use the
923  * array of the held pages from uio, saved in the curthread->td_ma,
924  * instead of doing uiomove().  A helper function
925  * vn_io_fault_uiomove() converts uiomove request into
926  * uiomove_fromphys() over td_ma array.
927  *
928  * Since vnode locks do not cover the whole i/o anymore, rangelocks
929  * make the current i/o request atomic with respect to other i/os and
930  * truncations.
931  */
932 
933 /*
934  * Decode vn_io_fault_args and perform the corresponding i/o.
935  */
936 static int
937 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
938     struct thread *td)
939 {
940 
941 	switch (args->kind) {
942 	case VN_IO_FAULT_FOP:
943 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
944 		    uio, args->cred, args->flags, td));
945 	case VN_IO_FAULT_VOP:
946 		if (uio->uio_rw == UIO_READ) {
947 			return (VOP_READ(args->args.vop_args.vp, uio,
948 			    args->flags, args->cred));
949 		} else if (uio->uio_rw == UIO_WRITE) {
950 			return (VOP_WRITE(args->args.vop_args.vp, uio,
951 			    args->flags, args->cred));
952 		}
953 		break;
954 	}
955 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
956 	    uio->uio_rw);
957 }
958 
959 static int
960 vn_io_fault_touch(char *base, const struct uio *uio)
961 {
962 	int r;
963 
964 	r = fubyte(base);
965 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
966 		return (EFAULT);
967 	return (0);
968 }
969 
970 static int
971 vn_io_fault_prefault_user(const struct uio *uio)
972 {
973 	char *base;
974 	const struct iovec *iov;
975 	size_t len;
976 	ssize_t resid;
977 	int error, i;
978 
979 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
980 	    ("vn_io_fault_prefault userspace"));
981 
982 	error = i = 0;
983 	iov = uio->uio_iov;
984 	resid = uio->uio_resid;
985 	base = iov->iov_base;
986 	len = iov->iov_len;
987 	while (resid > 0) {
988 		error = vn_io_fault_touch(base, uio);
989 		if (error != 0)
990 			break;
991 		if (len < PAGE_SIZE) {
992 			if (len != 0) {
993 				error = vn_io_fault_touch(base + len - 1, uio);
994 				if (error != 0)
995 					break;
996 				resid -= len;
997 			}
998 			if (++i >= uio->uio_iovcnt)
999 				break;
1000 			iov = uio->uio_iov + i;
1001 			base = iov->iov_base;
1002 			len = iov->iov_len;
1003 		} else {
1004 			len -= PAGE_SIZE;
1005 			base += PAGE_SIZE;
1006 			resid -= PAGE_SIZE;
1007 		}
1008 	}
1009 	return (error);
1010 }
1011 
1012 /*
1013  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1014  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1015  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1016  * into args and call vn_io_fault1() to handle faults during the user
1017  * mode buffer accesses.
1018  */
1019 static int
1020 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1021     struct thread *td)
1022 {
1023 	vm_page_t ma[io_hold_cnt + 2];
1024 	struct uio *uio_clone, short_uio;
1025 	struct iovec short_iovec[1];
1026 	vm_page_t *prev_td_ma;
1027 	vm_prot_t prot;
1028 	vm_offset_t addr, end;
1029 	size_t len, resid;
1030 	ssize_t adv;
1031 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1032 
1033 	if (vn_io_fault_prefault) {
1034 		error = vn_io_fault_prefault_user(uio);
1035 		if (error != 0)
1036 			return (error); /* Or ignore ? */
1037 	}
1038 
1039 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1040 
1041 	/*
1042 	 * The UFS follows IO_UNIT directive and replays back both
1043 	 * uio_offset and uio_resid if an error is encountered during the
1044 	 * operation.  But, since the iovec may be already advanced,
1045 	 * uio is still in an inconsistent state.
1046 	 *
1047 	 * Cache a copy of the original uio, which is advanced to the redo
1048 	 * point using UIO_NOCOPY below.
1049 	 */
1050 	uio_clone = cloneuio(uio);
1051 	resid = uio->uio_resid;
1052 
1053 	short_uio.uio_segflg = UIO_USERSPACE;
1054 	short_uio.uio_rw = uio->uio_rw;
1055 	short_uio.uio_td = uio->uio_td;
1056 
1057 	save = vm_fault_disable_pagefaults();
1058 	error = vn_io_fault_doio(args, uio, td);
1059 	if (error != EFAULT)
1060 		goto out;
1061 
1062 	atomic_add_long(&vn_io_faults_cnt, 1);
1063 	uio_clone->uio_segflg = UIO_NOCOPY;
1064 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1065 	uio_clone->uio_segflg = uio->uio_segflg;
1066 
1067 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1068 	prev_td_ma = td->td_ma;
1069 	prev_td_ma_cnt = td->td_ma_cnt;
1070 
1071 	while (uio_clone->uio_resid != 0) {
1072 		len = uio_clone->uio_iov->iov_len;
1073 		if (len == 0) {
1074 			KASSERT(uio_clone->uio_iovcnt >= 1,
1075 			    ("iovcnt underflow"));
1076 			uio_clone->uio_iov++;
1077 			uio_clone->uio_iovcnt--;
1078 			continue;
1079 		}
1080 		if (len > io_hold_cnt * PAGE_SIZE)
1081 			len = io_hold_cnt * PAGE_SIZE;
1082 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1083 		end = round_page(addr + len);
1084 		if (end < addr) {
1085 			error = EFAULT;
1086 			break;
1087 		}
1088 		cnt = atop(end - trunc_page(addr));
1089 		/*
1090 		 * A perfectly misaligned address and length could cause
1091 		 * both the start and the end of the chunk to use partial
1092 		 * page.  +2 accounts for such a situation.
1093 		 */
1094 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1095 		    addr, len, prot, ma, io_hold_cnt + 2);
1096 		if (cnt == -1) {
1097 			error = EFAULT;
1098 			break;
1099 		}
1100 		short_uio.uio_iov = &short_iovec[0];
1101 		short_iovec[0].iov_base = (void *)addr;
1102 		short_uio.uio_iovcnt = 1;
1103 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1104 		short_uio.uio_offset = uio_clone->uio_offset;
1105 		td->td_ma = ma;
1106 		td->td_ma_cnt = cnt;
1107 
1108 		error = vn_io_fault_doio(args, &short_uio, td);
1109 		vm_page_unhold_pages(ma, cnt);
1110 		adv = len - short_uio.uio_resid;
1111 
1112 		uio_clone->uio_iov->iov_base =
1113 		    (char *)uio_clone->uio_iov->iov_base + adv;
1114 		uio_clone->uio_iov->iov_len -= adv;
1115 		uio_clone->uio_resid -= adv;
1116 		uio_clone->uio_offset += adv;
1117 
1118 		uio->uio_resid -= adv;
1119 		uio->uio_offset += adv;
1120 
1121 		if (error != 0 || adv == 0)
1122 			break;
1123 	}
1124 	td->td_ma = prev_td_ma;
1125 	td->td_ma_cnt = prev_td_ma_cnt;
1126 	curthread_pflags_restore(saveheld);
1127 out:
1128 	vm_fault_enable_pagefaults(save);
1129 	free(uio_clone, M_IOV);
1130 	return (error);
1131 }
1132 
1133 static int
1134 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1135     int flags, struct thread *td)
1136 {
1137 	fo_rdwr_t *doio;
1138 	struct vnode *vp;
1139 	void *rl_cookie;
1140 	struct vn_io_fault_args args;
1141 	int error;
1142 
1143 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1144 	vp = fp->f_vnode;
1145 	foffset_lock_uio(fp, uio, flags);
1146 	if (do_vn_io_fault(vp, uio)) {
1147 		args.kind = VN_IO_FAULT_FOP;
1148 		args.args.fop_args.fp = fp;
1149 		args.args.fop_args.doio = doio;
1150 		args.cred = active_cred;
1151 		args.flags = flags | FOF_OFFSET;
1152 		if (uio->uio_rw == UIO_READ) {
1153 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1154 			    uio->uio_offset + uio->uio_resid);
1155 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1156 		    (flags & FOF_OFFSET) == 0) {
1157 			/* For appenders, punt and lock the whole range. */
1158 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1159 		} else {
1160 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1161 			    uio->uio_offset + uio->uio_resid);
1162 		}
1163 		error = vn_io_fault1(vp, uio, &args, td);
1164 		vn_rangelock_unlock(vp, rl_cookie);
1165 	} else {
1166 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1167 	}
1168 	foffset_unlock_uio(fp, uio, flags);
1169 	return (error);
1170 }
1171 
1172 /*
1173  * Helper function to perform the requested uiomove operation using
1174  * the held pages for io->uio_iov[0].iov_base buffer instead of
1175  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1176  * instead of iov_base prevents page faults that could occur due to
1177  * pmap_collect() invalidating the mapping created by
1178  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1179  * object cleanup revoking the write access from page mappings.
1180  *
1181  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1182  * instead of plain uiomove().
1183  */
1184 int
1185 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1186 {
1187 	struct uio transp_uio;
1188 	struct iovec transp_iov[1];
1189 	struct thread *td;
1190 	size_t adv;
1191 	int error, pgadv;
1192 
1193 	td = curthread;
1194 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1195 	    uio->uio_segflg != UIO_USERSPACE)
1196 		return (uiomove(data, xfersize, uio));
1197 
1198 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1199 	transp_iov[0].iov_base = data;
1200 	transp_uio.uio_iov = &transp_iov[0];
1201 	transp_uio.uio_iovcnt = 1;
1202 	if (xfersize > uio->uio_resid)
1203 		xfersize = uio->uio_resid;
1204 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1205 	transp_uio.uio_offset = 0;
1206 	transp_uio.uio_segflg = UIO_SYSSPACE;
1207 	/*
1208 	 * Since transp_iov points to data, and td_ma page array
1209 	 * corresponds to original uio->uio_iov, we need to invert the
1210 	 * direction of the i/o operation as passed to
1211 	 * uiomove_fromphys().
1212 	 */
1213 	switch (uio->uio_rw) {
1214 	case UIO_WRITE:
1215 		transp_uio.uio_rw = UIO_READ;
1216 		break;
1217 	case UIO_READ:
1218 		transp_uio.uio_rw = UIO_WRITE;
1219 		break;
1220 	}
1221 	transp_uio.uio_td = uio->uio_td;
1222 	error = uiomove_fromphys(td->td_ma,
1223 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1224 	    xfersize, &transp_uio);
1225 	adv = xfersize - transp_uio.uio_resid;
1226 	pgadv =
1227 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1228 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1229 	td->td_ma += pgadv;
1230 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1231 	    pgadv));
1232 	td->td_ma_cnt -= pgadv;
1233 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1234 	uio->uio_iov->iov_len -= adv;
1235 	uio->uio_resid -= adv;
1236 	uio->uio_offset += adv;
1237 	return (error);
1238 }
1239 
1240 int
1241 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1242     struct uio *uio)
1243 {
1244 	struct thread *td;
1245 	vm_offset_t iov_base;
1246 	int cnt, pgadv;
1247 
1248 	td = curthread;
1249 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1250 	    uio->uio_segflg != UIO_USERSPACE)
1251 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1252 
1253 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1254 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1255 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1256 	switch (uio->uio_rw) {
1257 	case UIO_WRITE:
1258 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1259 		    offset, cnt);
1260 		break;
1261 	case UIO_READ:
1262 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1263 		    cnt);
1264 		break;
1265 	}
1266 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1267 	td->td_ma += pgadv;
1268 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1269 	    pgadv));
1270 	td->td_ma_cnt -= pgadv;
1271 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1272 	uio->uio_iov->iov_len -= cnt;
1273 	uio->uio_resid -= cnt;
1274 	uio->uio_offset += cnt;
1275 	return (0);
1276 }
1277 
1278 
1279 /*
1280  * File table truncate routine.
1281  */
1282 static int
1283 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1284     struct thread *td)
1285 {
1286 	struct vattr vattr;
1287 	struct mount *mp;
1288 	struct vnode *vp;
1289 	void *rl_cookie;
1290 	int error;
1291 
1292 	vp = fp->f_vnode;
1293 
1294 	/*
1295 	 * Lock the whole range for truncation.  Otherwise split i/o
1296 	 * might happen partly before and partly after the truncation.
1297 	 */
1298 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1299 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1300 	if (error)
1301 		goto out1;
1302 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1303 	if (vp->v_type == VDIR) {
1304 		error = EISDIR;
1305 		goto out;
1306 	}
1307 #ifdef MAC
1308 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1309 	if (error)
1310 		goto out;
1311 #endif
1312 	error = vn_writechk(vp);
1313 	if (error == 0) {
1314 		VATTR_NULL(&vattr);
1315 		vattr.va_size = length;
1316 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1317 	}
1318 out:
1319 	VOP_UNLOCK(vp, 0);
1320 	vn_finished_write(mp);
1321 out1:
1322 	vn_rangelock_unlock(vp, rl_cookie);
1323 	return (error);
1324 }
1325 
1326 /*
1327  * File table vnode stat routine.
1328  */
1329 static int
1330 vn_statfile(fp, sb, active_cred, td)
1331 	struct file *fp;
1332 	struct stat *sb;
1333 	struct ucred *active_cred;
1334 	struct thread *td;
1335 {
1336 	struct vnode *vp = fp->f_vnode;
1337 	int error;
1338 
1339 	vn_lock(vp, LK_SHARED | LK_RETRY);
1340 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1341 	VOP_UNLOCK(vp, 0);
1342 
1343 	return (error);
1344 }
1345 
1346 /*
1347  * Stat a vnode; implementation for the stat syscall
1348  */
1349 int
1350 vn_stat(vp, sb, active_cred, file_cred, td)
1351 	struct vnode *vp;
1352 	register struct stat *sb;
1353 	struct ucred *active_cred;
1354 	struct ucred *file_cred;
1355 	struct thread *td;
1356 {
1357 	struct vattr vattr;
1358 	register struct vattr *vap;
1359 	int error;
1360 	u_short mode;
1361 
1362 #ifdef MAC
1363 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1364 	if (error)
1365 		return (error);
1366 #endif
1367 
1368 	vap = &vattr;
1369 
1370 	/*
1371 	 * Initialize defaults for new and unusual fields, so that file
1372 	 * systems which don't support these fields don't need to know
1373 	 * about them.
1374 	 */
1375 	vap->va_birthtime.tv_sec = -1;
1376 	vap->va_birthtime.tv_nsec = 0;
1377 	vap->va_fsid = VNOVAL;
1378 	vap->va_rdev = NODEV;
1379 
1380 	error = VOP_GETATTR(vp, vap, active_cred);
1381 	if (error)
1382 		return (error);
1383 
1384 	/*
1385 	 * Zero the spare stat fields
1386 	 */
1387 	bzero(sb, sizeof *sb);
1388 
1389 	/*
1390 	 * Copy from vattr table
1391 	 */
1392 	if (vap->va_fsid != VNOVAL)
1393 		sb->st_dev = vap->va_fsid;
1394 	else
1395 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1396 	sb->st_ino = vap->va_fileid;
1397 	mode = vap->va_mode;
1398 	switch (vap->va_type) {
1399 	case VREG:
1400 		mode |= S_IFREG;
1401 		break;
1402 	case VDIR:
1403 		mode |= S_IFDIR;
1404 		break;
1405 	case VBLK:
1406 		mode |= S_IFBLK;
1407 		break;
1408 	case VCHR:
1409 		mode |= S_IFCHR;
1410 		break;
1411 	case VLNK:
1412 		mode |= S_IFLNK;
1413 		break;
1414 	case VSOCK:
1415 		mode |= S_IFSOCK;
1416 		break;
1417 	case VFIFO:
1418 		mode |= S_IFIFO;
1419 		break;
1420 	default:
1421 		return (EBADF);
1422 	};
1423 	sb->st_mode = mode;
1424 	sb->st_nlink = vap->va_nlink;
1425 	sb->st_uid = vap->va_uid;
1426 	sb->st_gid = vap->va_gid;
1427 	sb->st_rdev = vap->va_rdev;
1428 	if (vap->va_size > OFF_MAX)
1429 		return (EOVERFLOW);
1430 	sb->st_size = vap->va_size;
1431 	sb->st_atim = vap->va_atime;
1432 	sb->st_mtim = vap->va_mtime;
1433 	sb->st_ctim = vap->va_ctime;
1434 	sb->st_birthtim = vap->va_birthtime;
1435 
1436         /*
1437 	 * According to www.opengroup.org, the meaning of st_blksize is
1438 	 *   "a filesystem-specific preferred I/O block size for this
1439 	 *    object.  In some filesystem types, this may vary from file
1440 	 *    to file"
1441 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1442 	 */
1443 
1444 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1445 
1446 	sb->st_flags = vap->va_flags;
1447 	if (priv_check(td, PRIV_VFS_GENERATION))
1448 		sb->st_gen = 0;
1449 	else
1450 		sb->st_gen = vap->va_gen;
1451 
1452 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1453 	return (0);
1454 }
1455 
1456 /*
1457  * File table vnode ioctl routine.
1458  */
1459 static int
1460 vn_ioctl(fp, com, data, active_cred, td)
1461 	struct file *fp;
1462 	u_long com;
1463 	void *data;
1464 	struct ucred *active_cred;
1465 	struct thread *td;
1466 {
1467 	struct vattr vattr;
1468 	struct vnode *vp;
1469 	int error;
1470 
1471 	vp = fp->f_vnode;
1472 	switch (vp->v_type) {
1473 	case VDIR:
1474 	case VREG:
1475 		switch (com) {
1476 		case FIONREAD:
1477 			vn_lock(vp, LK_SHARED | LK_RETRY);
1478 			error = VOP_GETATTR(vp, &vattr, active_cred);
1479 			VOP_UNLOCK(vp, 0);
1480 			if (error == 0)
1481 				*(int *)data = vattr.va_size - fp->f_offset;
1482 			return (error);
1483 		case FIONBIO:
1484 		case FIOASYNC:
1485 			return (0);
1486 		default:
1487 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1488 			    active_cred, td));
1489 		}
1490 	default:
1491 		return (ENOTTY);
1492 	}
1493 }
1494 
1495 /*
1496  * File table vnode poll routine.
1497  */
1498 static int
1499 vn_poll(fp, events, active_cred, td)
1500 	struct file *fp;
1501 	int events;
1502 	struct ucred *active_cred;
1503 	struct thread *td;
1504 {
1505 	struct vnode *vp;
1506 	int error;
1507 
1508 	vp = fp->f_vnode;
1509 #ifdef MAC
1510 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1511 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1512 	VOP_UNLOCK(vp, 0);
1513 	if (!error)
1514 #endif
1515 
1516 	error = VOP_POLL(vp, events, fp->f_cred, td);
1517 	return (error);
1518 }
1519 
1520 /*
1521  * Acquire the requested lock and then check for validity.  LK_RETRY
1522  * permits vn_lock to return doomed vnodes.
1523  */
1524 int
1525 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1526 {
1527 	int error;
1528 
1529 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1530 	    ("vn_lock called with no locktype."));
1531 	do {
1532 #ifdef DEBUG_VFS_LOCKS
1533 		KASSERT(vp->v_holdcnt != 0,
1534 		    ("vn_lock %p: zero hold count", vp));
1535 #endif
1536 		error = VOP_LOCK1(vp, flags, file, line);
1537 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1538 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1539 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1540 		    flags, error));
1541 		/*
1542 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1543 		 * If RETRY is not set, we return ENOENT instead.
1544 		 */
1545 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1546 		    (flags & LK_RETRY) == 0) {
1547 			VOP_UNLOCK(vp, 0);
1548 			error = ENOENT;
1549 			break;
1550 		}
1551 	} while (flags & LK_RETRY && error != 0);
1552 	return (error);
1553 }
1554 
1555 /*
1556  * File table vnode close routine.
1557  */
1558 static int
1559 vn_closefile(fp, td)
1560 	struct file *fp;
1561 	struct thread *td;
1562 {
1563 	struct vnode *vp;
1564 	struct flock lf;
1565 	int error;
1566 
1567 	vp = fp->f_vnode;
1568 	fp->f_ops = &badfileops;
1569 
1570 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1571 		vref(vp);
1572 
1573 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1574 
1575 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1576 		lf.l_whence = SEEK_SET;
1577 		lf.l_start = 0;
1578 		lf.l_len = 0;
1579 		lf.l_type = F_UNLCK;
1580 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1581 		vrele(vp);
1582 	}
1583 	return (error);
1584 }
1585 
1586 static bool
1587 vn_suspendable(struct mount *mp)
1588 {
1589 
1590 	return (mp->mnt_op->vfs_susp_clean != NULL);
1591 }
1592 
1593 /*
1594  * Preparing to start a filesystem write operation. If the operation is
1595  * permitted, then we bump the count of operations in progress and
1596  * proceed. If a suspend request is in progress, we wait until the
1597  * suspension is over, and then proceed.
1598  */
1599 static int
1600 vn_start_write_locked(struct mount *mp, int flags)
1601 {
1602 	int error, mflags;
1603 
1604 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1605 	error = 0;
1606 
1607 	/*
1608 	 * Check on status of suspension.
1609 	 */
1610 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1611 	    mp->mnt_susp_owner != curthread) {
1612 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1613 		    (flags & PCATCH) : 0) | (PUSER - 1);
1614 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1615 			if (flags & V_NOWAIT) {
1616 				error = EWOULDBLOCK;
1617 				goto unlock;
1618 			}
1619 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1620 			    "suspfs", 0);
1621 			if (error)
1622 				goto unlock;
1623 		}
1624 	}
1625 	if (flags & V_XSLEEP)
1626 		goto unlock;
1627 	mp->mnt_writeopcount++;
1628 unlock:
1629 	if (error != 0 || (flags & V_XSLEEP) != 0)
1630 		MNT_REL(mp);
1631 	MNT_IUNLOCK(mp);
1632 	return (error);
1633 }
1634 
1635 int
1636 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1637 {
1638 	struct mount *mp;
1639 	int error;
1640 
1641 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1642 	    ("V_MNTREF requires mp"));
1643 
1644 	error = 0;
1645 	/*
1646 	 * If a vnode is provided, get and return the mount point that
1647 	 * to which it will write.
1648 	 */
1649 	if (vp != NULL) {
1650 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1651 			*mpp = NULL;
1652 			if (error != EOPNOTSUPP)
1653 				return (error);
1654 			return (0);
1655 		}
1656 	}
1657 	if ((mp = *mpp) == NULL)
1658 		return (0);
1659 
1660 	if (!vn_suspendable(mp)) {
1661 		if (vp != NULL || (flags & V_MNTREF) != 0)
1662 			vfs_rel(mp);
1663 		return (0);
1664 	}
1665 
1666 	/*
1667 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1668 	 * a vfs_ref().
1669 	 * As long as a vnode is not provided we need to acquire a
1670 	 * refcount for the provided mountpoint too, in order to
1671 	 * emulate a vfs_ref().
1672 	 */
1673 	MNT_ILOCK(mp);
1674 	if (vp == NULL && (flags & V_MNTREF) == 0)
1675 		MNT_REF(mp);
1676 
1677 	return (vn_start_write_locked(mp, flags));
1678 }
1679 
1680 /*
1681  * Secondary suspension. Used by operations such as vop_inactive
1682  * routines that are needed by the higher level functions. These
1683  * are allowed to proceed until all the higher level functions have
1684  * completed (indicated by mnt_writeopcount dropping to zero). At that
1685  * time, these operations are halted until the suspension is over.
1686  */
1687 int
1688 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1689 {
1690 	struct mount *mp;
1691 	int error;
1692 
1693 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1694 	    ("V_MNTREF requires mp"));
1695 
1696  retry:
1697 	if (vp != NULL) {
1698 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1699 			*mpp = NULL;
1700 			if (error != EOPNOTSUPP)
1701 				return (error);
1702 			return (0);
1703 		}
1704 	}
1705 	/*
1706 	 * If we are not suspended or have not yet reached suspended
1707 	 * mode, then let the operation proceed.
1708 	 */
1709 	if ((mp = *mpp) == NULL)
1710 		return (0);
1711 
1712 	if (!vn_suspendable(mp)) {
1713 		if (vp != NULL || (flags & V_MNTREF) != 0)
1714 			vfs_rel(mp);
1715 		return (0);
1716 	}
1717 
1718 	/*
1719 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1720 	 * a vfs_ref().
1721 	 * As long as a vnode is not provided we need to acquire a
1722 	 * refcount for the provided mountpoint too, in order to
1723 	 * emulate a vfs_ref().
1724 	 */
1725 	MNT_ILOCK(mp);
1726 	if (vp == NULL && (flags & V_MNTREF) == 0)
1727 		MNT_REF(mp);
1728 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1729 		mp->mnt_secondary_writes++;
1730 		mp->mnt_secondary_accwrites++;
1731 		MNT_IUNLOCK(mp);
1732 		return (0);
1733 	}
1734 	if (flags & V_NOWAIT) {
1735 		MNT_REL(mp);
1736 		MNT_IUNLOCK(mp);
1737 		return (EWOULDBLOCK);
1738 	}
1739 	/*
1740 	 * Wait for the suspension to finish.
1741 	 */
1742 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1743 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1744 	    "suspfs", 0);
1745 	vfs_rel(mp);
1746 	if (error == 0)
1747 		goto retry;
1748 	return (error);
1749 }
1750 
1751 /*
1752  * Filesystem write operation has completed. If we are suspending and this
1753  * operation is the last one, notify the suspender that the suspension is
1754  * now in effect.
1755  */
1756 void
1757 vn_finished_write(mp)
1758 	struct mount *mp;
1759 {
1760 	if (mp == NULL || !vn_suspendable(mp))
1761 		return;
1762 	MNT_ILOCK(mp);
1763 	MNT_REL(mp);
1764 	mp->mnt_writeopcount--;
1765 	if (mp->mnt_writeopcount < 0)
1766 		panic("vn_finished_write: neg cnt");
1767 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1768 	    mp->mnt_writeopcount <= 0)
1769 		wakeup(&mp->mnt_writeopcount);
1770 	MNT_IUNLOCK(mp);
1771 }
1772 
1773 
1774 /*
1775  * Filesystem secondary write operation has completed. If we are
1776  * suspending and this operation is the last one, notify the suspender
1777  * that the suspension is now in effect.
1778  */
1779 void
1780 vn_finished_secondary_write(mp)
1781 	struct mount *mp;
1782 {
1783 	if (mp == NULL || !vn_suspendable(mp))
1784 		return;
1785 	MNT_ILOCK(mp);
1786 	MNT_REL(mp);
1787 	mp->mnt_secondary_writes--;
1788 	if (mp->mnt_secondary_writes < 0)
1789 		panic("vn_finished_secondary_write: neg cnt");
1790 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1791 	    mp->mnt_secondary_writes <= 0)
1792 		wakeup(&mp->mnt_secondary_writes);
1793 	MNT_IUNLOCK(mp);
1794 }
1795 
1796 
1797 
1798 /*
1799  * Request a filesystem to suspend write operations.
1800  */
1801 int
1802 vfs_write_suspend(struct mount *mp, int flags)
1803 {
1804 	int error;
1805 
1806 	MPASS(vn_suspendable(mp));
1807 
1808 	MNT_ILOCK(mp);
1809 	if (mp->mnt_susp_owner == curthread) {
1810 		MNT_IUNLOCK(mp);
1811 		return (EALREADY);
1812 	}
1813 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1814 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1815 
1816 	/*
1817 	 * Unmount holds a write reference on the mount point.  If we
1818 	 * own busy reference and drain for writers, we deadlock with
1819 	 * the reference draining in the unmount path.  Callers of
1820 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1821 	 * vfs_busy() reference is owned and caller is not in the
1822 	 * unmount context.
1823 	 */
1824 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1825 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1826 		MNT_IUNLOCK(mp);
1827 		return (EBUSY);
1828 	}
1829 
1830 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1831 	mp->mnt_susp_owner = curthread;
1832 	if (mp->mnt_writeopcount > 0)
1833 		(void) msleep(&mp->mnt_writeopcount,
1834 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1835 	else
1836 		MNT_IUNLOCK(mp);
1837 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1838 		vfs_write_resume(mp, 0);
1839 	return (error);
1840 }
1841 
1842 /*
1843  * Request a filesystem to resume write operations.
1844  */
1845 void
1846 vfs_write_resume(struct mount *mp, int flags)
1847 {
1848 
1849 	MPASS(vn_suspendable(mp));
1850 
1851 	MNT_ILOCK(mp);
1852 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1853 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1854 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1855 				       MNTK_SUSPENDED);
1856 		mp->mnt_susp_owner = NULL;
1857 		wakeup(&mp->mnt_writeopcount);
1858 		wakeup(&mp->mnt_flag);
1859 		curthread->td_pflags &= ~TDP_IGNSUSP;
1860 		if ((flags & VR_START_WRITE) != 0) {
1861 			MNT_REF(mp);
1862 			mp->mnt_writeopcount++;
1863 		}
1864 		MNT_IUNLOCK(mp);
1865 		if ((flags & VR_NO_SUSPCLR) == 0)
1866 			VFS_SUSP_CLEAN(mp);
1867 	} else if ((flags & VR_START_WRITE) != 0) {
1868 		MNT_REF(mp);
1869 		vn_start_write_locked(mp, 0);
1870 	} else {
1871 		MNT_IUNLOCK(mp);
1872 	}
1873 }
1874 
1875 /*
1876  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1877  * methods.
1878  */
1879 int
1880 vfs_write_suspend_umnt(struct mount *mp)
1881 {
1882 	int error;
1883 
1884 	MPASS(vn_suspendable(mp));
1885 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1886 	    ("vfs_write_suspend_umnt: recursed"));
1887 
1888 	/* dounmount() already called vn_start_write(). */
1889 	for (;;) {
1890 		vn_finished_write(mp);
1891 		error = vfs_write_suspend(mp, 0);
1892 		if (error != 0) {
1893 			vn_start_write(NULL, &mp, V_WAIT);
1894 			return (error);
1895 		}
1896 		MNT_ILOCK(mp);
1897 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1898 			break;
1899 		MNT_IUNLOCK(mp);
1900 		vn_start_write(NULL, &mp, V_WAIT);
1901 	}
1902 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1903 	wakeup(&mp->mnt_flag);
1904 	MNT_IUNLOCK(mp);
1905 	curthread->td_pflags |= TDP_IGNSUSP;
1906 	return (0);
1907 }
1908 
1909 /*
1910  * Implement kqueues for files by translating it to vnode operation.
1911  */
1912 static int
1913 vn_kqfilter(struct file *fp, struct knote *kn)
1914 {
1915 
1916 	return (VOP_KQFILTER(fp->f_vnode, kn));
1917 }
1918 
1919 /*
1920  * Simplified in-kernel wrapper calls for extended attribute access.
1921  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1922  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1923  */
1924 int
1925 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1926     const char *attrname, int *buflen, char *buf, struct thread *td)
1927 {
1928 	struct uio	auio;
1929 	struct iovec	iov;
1930 	int	error;
1931 
1932 	iov.iov_len = *buflen;
1933 	iov.iov_base = buf;
1934 
1935 	auio.uio_iov = &iov;
1936 	auio.uio_iovcnt = 1;
1937 	auio.uio_rw = UIO_READ;
1938 	auio.uio_segflg = UIO_SYSSPACE;
1939 	auio.uio_td = td;
1940 	auio.uio_offset = 0;
1941 	auio.uio_resid = *buflen;
1942 
1943 	if ((ioflg & IO_NODELOCKED) == 0)
1944 		vn_lock(vp, LK_SHARED | LK_RETRY);
1945 
1946 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1947 
1948 	/* authorize attribute retrieval as kernel */
1949 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1950 	    td);
1951 
1952 	if ((ioflg & IO_NODELOCKED) == 0)
1953 		VOP_UNLOCK(vp, 0);
1954 
1955 	if (error == 0) {
1956 		*buflen = *buflen - auio.uio_resid;
1957 	}
1958 
1959 	return (error);
1960 }
1961 
1962 /*
1963  * XXX failure mode if partially written?
1964  */
1965 int
1966 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1967     const char *attrname, int buflen, char *buf, struct thread *td)
1968 {
1969 	struct uio	auio;
1970 	struct iovec	iov;
1971 	struct mount	*mp;
1972 	int	error;
1973 
1974 	iov.iov_len = buflen;
1975 	iov.iov_base = buf;
1976 
1977 	auio.uio_iov = &iov;
1978 	auio.uio_iovcnt = 1;
1979 	auio.uio_rw = UIO_WRITE;
1980 	auio.uio_segflg = UIO_SYSSPACE;
1981 	auio.uio_td = td;
1982 	auio.uio_offset = 0;
1983 	auio.uio_resid = buflen;
1984 
1985 	if ((ioflg & IO_NODELOCKED) == 0) {
1986 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1987 			return (error);
1988 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1989 	}
1990 
1991 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1992 
1993 	/* authorize attribute setting as kernel */
1994 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1995 
1996 	if ((ioflg & IO_NODELOCKED) == 0) {
1997 		vn_finished_write(mp);
1998 		VOP_UNLOCK(vp, 0);
1999 	}
2000 
2001 	return (error);
2002 }
2003 
2004 int
2005 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2006     const char *attrname, struct thread *td)
2007 {
2008 	struct mount	*mp;
2009 	int	error;
2010 
2011 	if ((ioflg & IO_NODELOCKED) == 0) {
2012 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2013 			return (error);
2014 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2015 	}
2016 
2017 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2018 
2019 	/* authorize attribute removal as kernel */
2020 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2021 	if (error == EOPNOTSUPP)
2022 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2023 		    NULL, td);
2024 
2025 	if ((ioflg & IO_NODELOCKED) == 0) {
2026 		vn_finished_write(mp);
2027 		VOP_UNLOCK(vp, 0);
2028 	}
2029 
2030 	return (error);
2031 }
2032 
2033 static int
2034 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2035     struct vnode **rvp)
2036 {
2037 
2038 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2039 }
2040 
2041 int
2042 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2043 {
2044 
2045 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2046 	    lkflags, rvp));
2047 }
2048 
2049 int
2050 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2051     int lkflags, struct vnode **rvp)
2052 {
2053 	struct mount *mp;
2054 	int ltype, error;
2055 
2056 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2057 	mp = vp->v_mount;
2058 	ltype = VOP_ISLOCKED(vp);
2059 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2060 	    ("vn_vget_ino: vp not locked"));
2061 	error = vfs_busy(mp, MBF_NOWAIT);
2062 	if (error != 0) {
2063 		vfs_ref(mp);
2064 		VOP_UNLOCK(vp, 0);
2065 		error = vfs_busy(mp, 0);
2066 		vn_lock(vp, ltype | LK_RETRY);
2067 		vfs_rel(mp);
2068 		if (error != 0)
2069 			return (ENOENT);
2070 		if (vp->v_iflag & VI_DOOMED) {
2071 			vfs_unbusy(mp);
2072 			return (ENOENT);
2073 		}
2074 	}
2075 	VOP_UNLOCK(vp, 0);
2076 	error = alloc(mp, alloc_arg, lkflags, rvp);
2077 	vfs_unbusy(mp);
2078 	if (*rvp != vp)
2079 		vn_lock(vp, ltype | LK_RETRY);
2080 	if (vp->v_iflag & VI_DOOMED) {
2081 		if (error == 0) {
2082 			if (*rvp == vp)
2083 				vunref(vp);
2084 			else
2085 				vput(*rvp);
2086 		}
2087 		error = ENOENT;
2088 	}
2089 	return (error);
2090 }
2091 
2092 int
2093 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2094     struct thread *td)
2095 {
2096 
2097 	if (vp->v_type != VREG || td == NULL)
2098 		return (0);
2099 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2100 	    lim_cur(td, RLIMIT_FSIZE)) {
2101 		PROC_LOCK(td->td_proc);
2102 		kern_psignal(td->td_proc, SIGXFSZ);
2103 		PROC_UNLOCK(td->td_proc);
2104 		return (EFBIG);
2105 	}
2106 	return (0);
2107 }
2108 
2109 int
2110 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2111     struct thread *td)
2112 {
2113 	struct vnode *vp;
2114 
2115 	vp = fp->f_vnode;
2116 #ifdef AUDIT
2117 	vn_lock(vp, LK_SHARED | LK_RETRY);
2118 	AUDIT_ARG_VNODE1(vp);
2119 	VOP_UNLOCK(vp, 0);
2120 #endif
2121 	return (setfmode(td, active_cred, vp, mode));
2122 }
2123 
2124 int
2125 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2126     struct thread *td)
2127 {
2128 	struct vnode *vp;
2129 
2130 	vp = fp->f_vnode;
2131 #ifdef AUDIT
2132 	vn_lock(vp, LK_SHARED | LK_RETRY);
2133 	AUDIT_ARG_VNODE1(vp);
2134 	VOP_UNLOCK(vp, 0);
2135 #endif
2136 	return (setfown(td, active_cred, vp, uid, gid));
2137 }
2138 
2139 void
2140 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2141 {
2142 	vm_object_t object;
2143 
2144 	if ((object = vp->v_object) == NULL)
2145 		return;
2146 	VM_OBJECT_WLOCK(object);
2147 	vm_object_page_remove(object, start, end, 0);
2148 	VM_OBJECT_WUNLOCK(object);
2149 }
2150 
2151 int
2152 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2153 {
2154 	struct vattr va;
2155 	daddr_t bn, bnp;
2156 	uint64_t bsize;
2157 	off_t noff;
2158 	int error;
2159 
2160 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2161 	    ("Wrong command %lu", cmd));
2162 
2163 	if (vn_lock(vp, LK_SHARED) != 0)
2164 		return (EBADF);
2165 	if (vp->v_type != VREG) {
2166 		error = ENOTTY;
2167 		goto unlock;
2168 	}
2169 	error = VOP_GETATTR(vp, &va, cred);
2170 	if (error != 0)
2171 		goto unlock;
2172 	noff = *off;
2173 	if (noff >= va.va_size) {
2174 		error = ENXIO;
2175 		goto unlock;
2176 	}
2177 	bsize = vp->v_mount->mnt_stat.f_iosize;
2178 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2179 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2180 		if (error == EOPNOTSUPP) {
2181 			error = ENOTTY;
2182 			goto unlock;
2183 		}
2184 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2185 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2186 			noff = bn * bsize;
2187 			if (noff < *off)
2188 				noff = *off;
2189 			goto unlock;
2190 		}
2191 	}
2192 	if (noff > va.va_size)
2193 		noff = va.va_size;
2194 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2195 	if (cmd == FIOSEEKDATA)
2196 		error = ENXIO;
2197 unlock:
2198 	VOP_UNLOCK(vp, 0);
2199 	if (error == 0)
2200 		*off = noff;
2201 	return (error);
2202 }
2203 
2204 int
2205 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2206 {
2207 	struct ucred *cred;
2208 	struct vnode *vp;
2209 	struct vattr vattr;
2210 	off_t foffset, size;
2211 	int error, noneg;
2212 
2213 	cred = td->td_ucred;
2214 	vp = fp->f_vnode;
2215 	foffset = foffset_lock(fp, 0);
2216 	noneg = (vp->v_type != VCHR);
2217 	error = 0;
2218 	switch (whence) {
2219 	case L_INCR:
2220 		if (noneg &&
2221 		    (foffset < 0 ||
2222 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2223 			error = EOVERFLOW;
2224 			break;
2225 		}
2226 		offset += foffset;
2227 		break;
2228 	case L_XTND:
2229 		vn_lock(vp, LK_SHARED | LK_RETRY);
2230 		error = VOP_GETATTR(vp, &vattr, cred);
2231 		VOP_UNLOCK(vp, 0);
2232 		if (error)
2233 			break;
2234 
2235 		/*
2236 		 * If the file references a disk device, then fetch
2237 		 * the media size and use that to determine the ending
2238 		 * offset.
2239 		 */
2240 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2241 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2242 			vattr.va_size = size;
2243 		if (noneg &&
2244 		    (vattr.va_size > OFF_MAX ||
2245 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2246 			error = EOVERFLOW;
2247 			break;
2248 		}
2249 		offset += vattr.va_size;
2250 		break;
2251 	case L_SET:
2252 		break;
2253 	case SEEK_DATA:
2254 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2255 		break;
2256 	case SEEK_HOLE:
2257 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2258 		break;
2259 	default:
2260 		error = EINVAL;
2261 	}
2262 	if (error == 0 && noneg && offset < 0)
2263 		error = EINVAL;
2264 	if (error != 0)
2265 		goto drop;
2266 	VFS_KNOTE_UNLOCKED(vp, 0);
2267 	td->td_uretoff.tdu_off = offset;
2268 drop:
2269 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2270 	return (error);
2271 }
2272 
2273 int
2274 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2275     struct thread *td)
2276 {
2277 	int error;
2278 
2279 	/*
2280 	 * Grant permission if the caller is the owner of the file, or
2281 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2282 	 * on the file.  If the time pointer is null, then write
2283 	 * permission on the file is also sufficient.
2284 	 *
2285 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2286 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2287 	 * will be allowed to set the times [..] to the current
2288 	 * server time.
2289 	 */
2290 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2291 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2292 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2293 	return (error);
2294 }
2295 
2296 int
2297 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2298 {
2299 	struct vnode *vp;
2300 	int error;
2301 
2302 	if (fp->f_type == DTYPE_FIFO)
2303 		kif->kf_type = KF_TYPE_FIFO;
2304 	else
2305 		kif->kf_type = KF_TYPE_VNODE;
2306 	vp = fp->f_vnode;
2307 	vref(vp);
2308 	FILEDESC_SUNLOCK(fdp);
2309 	error = vn_fill_kinfo_vnode(vp, kif);
2310 	vrele(vp);
2311 	FILEDESC_SLOCK(fdp);
2312 	return (error);
2313 }
2314 
2315 static inline void
2316 vn_fill_junk(struct kinfo_file *kif)
2317 {
2318 	size_t len, olen;
2319 
2320 	/*
2321 	 * Simulate vn_fullpath returning changing values for a given
2322 	 * vp during e.g. coredump.
2323 	 */
2324 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2325 	olen = strlen(kif->kf_path);
2326 	if (len < olen)
2327 		strcpy(&kif->kf_path[len - 1], "$");
2328 	else
2329 		for (; olen < len; olen++)
2330 			strcpy(&kif->kf_path[olen], "A");
2331 }
2332 
2333 int
2334 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2335 {
2336 	struct vattr va;
2337 	char *fullpath, *freepath;
2338 	int error;
2339 
2340 	kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
2341 	freepath = NULL;
2342 	fullpath = "-";
2343 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2344 	if (error == 0) {
2345 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2346 	}
2347 	if (freepath != NULL)
2348 		free(freepath, M_TEMP);
2349 
2350 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2351 		vn_fill_junk(kif);
2352 	);
2353 
2354 	/*
2355 	 * Retrieve vnode attributes.
2356 	 */
2357 	va.va_fsid = VNOVAL;
2358 	va.va_rdev = NODEV;
2359 	vn_lock(vp, LK_SHARED | LK_RETRY);
2360 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2361 	VOP_UNLOCK(vp, 0);
2362 	if (error != 0)
2363 		return (error);
2364 	if (va.va_fsid != VNOVAL)
2365 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2366 	else
2367 		kif->kf_un.kf_file.kf_file_fsid =
2368 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2369 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2370 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2371 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2372 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2373 	return (0);
2374 }
2375 
2376 int
2377 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2378     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2379     struct thread *td)
2380 {
2381 #ifdef HWPMC_HOOKS
2382 	struct pmckern_map_in pkm;
2383 #endif
2384 	struct mount *mp;
2385 	struct vnode *vp;
2386 	vm_object_t object;
2387 	vm_prot_t maxprot;
2388 	boolean_t writecounted;
2389 	int error;
2390 
2391 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2392     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2393 	/*
2394 	 * POSIX shared-memory objects are defined to have
2395 	 * kernel persistence, and are not defined to support
2396 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2397 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2398 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2399 	 * flag to request this behavior.
2400 	 */
2401 	if ((fp->f_flag & FPOSIXSHM) != 0)
2402 		flags |= MAP_NOSYNC;
2403 #endif
2404 	vp = fp->f_vnode;
2405 
2406 	/*
2407 	 * Ensure that file and memory protections are
2408 	 * compatible.  Note that we only worry about
2409 	 * writability if mapping is shared; in this case,
2410 	 * current and max prot are dictated by the open file.
2411 	 * XXX use the vnode instead?  Problem is: what
2412 	 * credentials do we use for determination? What if
2413 	 * proc does a setuid?
2414 	 */
2415 	mp = vp->v_mount;
2416 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0)
2417 		maxprot = VM_PROT_NONE;
2418 	else
2419 		maxprot = VM_PROT_EXECUTE;
2420 	if ((fp->f_flag & FREAD) != 0)
2421 		maxprot |= VM_PROT_READ;
2422 	else if ((prot & VM_PROT_READ) != 0)
2423 		return (EACCES);
2424 
2425 	/*
2426 	 * If we are sharing potential changes via MAP_SHARED and we
2427 	 * are trying to get write permission although we opened it
2428 	 * without asking for it, bail out.
2429 	 */
2430 	if ((flags & MAP_SHARED) != 0) {
2431 		if ((fp->f_flag & FWRITE) != 0)
2432 			maxprot |= VM_PROT_WRITE;
2433 		else if ((prot & VM_PROT_WRITE) != 0)
2434 			return (EACCES);
2435 	} else {
2436 		maxprot |= VM_PROT_WRITE;
2437 		cap_maxprot |= VM_PROT_WRITE;
2438 	}
2439 	maxprot &= cap_maxprot;
2440 
2441 	writecounted = FALSE;
2442 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2443 	    &foff, &object, &writecounted);
2444 	if (error != 0)
2445 		return (error);
2446 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2447 	    foff, writecounted, td);
2448 	if (error != 0) {
2449 		/*
2450 		 * If this mapping was accounted for in the vnode's
2451 		 * writecount, then undo that now.
2452 		 */
2453 		if (writecounted)
2454 			vnode_pager_release_writecount(object, 0, size);
2455 		vm_object_deallocate(object);
2456 	}
2457 #ifdef HWPMC_HOOKS
2458 	/* Inform hwpmc(4) if an executable is being mapped. */
2459 	if (error == 0 && (prot & VM_PROT_EXECUTE) != 0) {
2460 		pkm.pm_file = vp;
2461 		pkm.pm_address = (uintptr_t) *addr;
2462 		PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2463 	}
2464 #endif
2465 	return (error);
2466 }
2467