1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org> 11 * Copyright (c) 2013, 2014 The FreeBSD Foundation 12 * 13 * Portions of this software were developed by Konstantin Belousov 14 * under sponsorship from the FreeBSD Foundation. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_hwpmc_hooks.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/disk.h> 51 #include <sys/fail.h> 52 #include <sys/fcntl.h> 53 #include <sys/file.h> 54 #include <sys/kdb.h> 55 #include <sys/stat.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/limits.h> 59 #include <sys/lock.h> 60 #include <sys/mman.h> 61 #include <sys/mount.h> 62 #include <sys/mutex.h> 63 #include <sys/namei.h> 64 #include <sys/vnode.h> 65 #include <sys/bio.h> 66 #include <sys/buf.h> 67 #include <sys/filio.h> 68 #include <sys/resourcevar.h> 69 #include <sys/rwlock.h> 70 #include <sys/sx.h> 71 #include <sys/sysctl.h> 72 #include <sys/ttycom.h> 73 #include <sys/conf.h> 74 #include <sys/syslog.h> 75 #include <sys/unistd.h> 76 #include <sys/user.h> 77 78 #include <security/audit/audit.h> 79 #include <security/mac/mac_framework.h> 80 81 #include <vm/vm.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vnode_pager.h> 88 89 #ifdef HWPMC_HOOKS 90 #include <sys/pmckern.h> 91 #endif 92 93 static fo_rdwr_t vn_read; 94 static fo_rdwr_t vn_write; 95 static fo_rdwr_t vn_io_fault; 96 static fo_truncate_t vn_truncate; 97 static fo_ioctl_t vn_ioctl; 98 static fo_poll_t vn_poll; 99 static fo_kqfilter_t vn_kqfilter; 100 static fo_stat_t vn_statfile; 101 static fo_close_t vn_closefile; 102 static fo_mmap_t vn_mmap; 103 104 struct fileops vnops = { 105 .fo_read = vn_io_fault, 106 .fo_write = vn_io_fault, 107 .fo_truncate = vn_truncate, 108 .fo_ioctl = vn_ioctl, 109 .fo_poll = vn_poll, 110 .fo_kqfilter = vn_kqfilter, 111 .fo_stat = vn_statfile, 112 .fo_close = vn_closefile, 113 .fo_chmod = vn_chmod, 114 .fo_chown = vn_chown, 115 .fo_sendfile = vn_sendfile, 116 .fo_seek = vn_seek, 117 .fo_fill_kinfo = vn_fill_kinfo, 118 .fo_mmap = vn_mmap, 119 .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE 120 }; 121 122 static const int io_hold_cnt = 16; 123 static int vn_io_fault_enable = 1; 124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW, 125 &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); 126 static int vn_io_fault_prefault = 0; 127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW, 128 &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting"); 129 static u_long vn_io_faults_cnt; 130 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, 131 &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); 132 133 /* 134 * Returns true if vn_io_fault mode of handling the i/o request should 135 * be used. 136 */ 137 static bool 138 do_vn_io_fault(struct vnode *vp, struct uio *uio) 139 { 140 struct mount *mp; 141 142 return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG && 143 (mp = vp->v_mount) != NULL && 144 (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable); 145 } 146 147 /* 148 * Structure used to pass arguments to vn_io_fault1(), to do either 149 * file- or vnode-based I/O calls. 150 */ 151 struct vn_io_fault_args { 152 enum { 153 VN_IO_FAULT_FOP, 154 VN_IO_FAULT_VOP 155 } kind; 156 struct ucred *cred; 157 int flags; 158 union { 159 struct fop_args_tag { 160 struct file *fp; 161 fo_rdwr_t *doio; 162 } fop_args; 163 struct vop_args_tag { 164 struct vnode *vp; 165 } vop_args; 166 } args; 167 }; 168 169 static int vn_io_fault1(struct vnode *vp, struct uio *uio, 170 struct vn_io_fault_args *args, struct thread *td); 171 172 int 173 vn_open(ndp, flagp, cmode, fp) 174 struct nameidata *ndp; 175 int *flagp, cmode; 176 struct file *fp; 177 { 178 struct thread *td = ndp->ni_cnd.cn_thread; 179 180 return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); 181 } 182 183 /* 184 * Common code for vnode open operations via a name lookup. 185 * Lookup the vnode and invoke VOP_CREATE if needed. 186 * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. 187 * 188 * Note that this does NOT free nameidata for the successful case, 189 * due to the NDINIT being done elsewhere. 190 */ 191 int 192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, 193 struct ucred *cred, struct file *fp) 194 { 195 struct vnode *vp; 196 struct mount *mp; 197 struct thread *td = ndp->ni_cnd.cn_thread; 198 struct vattr vat; 199 struct vattr *vap = &vat; 200 int fmode, error; 201 202 restart: 203 fmode = *flagp; 204 if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT | 205 O_EXCL | O_DIRECTORY)) 206 return (EINVAL); 207 else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) { 208 ndp->ni_cnd.cn_nameiop = CREATE; 209 /* 210 * Set NOCACHE to avoid flushing the cache when 211 * rolling in many files at once. 212 */ 213 ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE; 214 if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) 215 ndp->ni_cnd.cn_flags |= FOLLOW; 216 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 217 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 218 if (vn_open_flags & VN_OPEN_NOCAPCHECK) 219 ndp->ni_cnd.cn_flags |= NOCAPCHECK; 220 bwillwrite(); 221 if ((error = namei(ndp)) != 0) 222 return (error); 223 if (ndp->ni_vp == NULL) { 224 VATTR_NULL(vap); 225 vap->va_type = VREG; 226 vap->va_mode = cmode; 227 if (fmode & O_EXCL) 228 vap->va_vaflags |= VA_EXCLUSIVE; 229 if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { 230 NDFREE(ndp, NDF_ONLY_PNBUF); 231 vput(ndp->ni_dvp); 232 if ((error = vn_start_write(NULL, &mp, 233 V_XSLEEP | PCATCH)) != 0) 234 return (error); 235 goto restart; 236 } 237 if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0) 238 ndp->ni_cnd.cn_flags |= MAKEENTRY; 239 #ifdef MAC 240 error = mac_vnode_check_create(cred, ndp->ni_dvp, 241 &ndp->ni_cnd, vap); 242 if (error == 0) 243 #endif 244 error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, 245 &ndp->ni_cnd, vap); 246 vput(ndp->ni_dvp); 247 vn_finished_write(mp); 248 if (error) { 249 NDFREE(ndp, NDF_ONLY_PNBUF); 250 return (error); 251 } 252 fmode &= ~O_TRUNC; 253 vp = ndp->ni_vp; 254 } else { 255 if (ndp->ni_dvp == ndp->ni_vp) 256 vrele(ndp->ni_dvp); 257 else 258 vput(ndp->ni_dvp); 259 ndp->ni_dvp = NULL; 260 vp = ndp->ni_vp; 261 if (fmode & O_EXCL) { 262 error = EEXIST; 263 goto bad; 264 } 265 fmode &= ~O_CREAT; 266 } 267 } else { 268 ndp->ni_cnd.cn_nameiop = LOOKUP; 269 ndp->ni_cnd.cn_flags = ISOPEN | 270 ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF; 271 if (!(fmode & FWRITE)) 272 ndp->ni_cnd.cn_flags |= LOCKSHARED; 273 if (!(vn_open_flags & VN_OPEN_NOAUDIT)) 274 ndp->ni_cnd.cn_flags |= AUDITVNODE1; 275 if (vn_open_flags & VN_OPEN_NOCAPCHECK) 276 ndp->ni_cnd.cn_flags |= NOCAPCHECK; 277 if ((error = namei(ndp)) != 0) 278 return (error); 279 vp = ndp->ni_vp; 280 } 281 error = vn_open_vnode(vp, fmode, cred, td, fp); 282 if (error) 283 goto bad; 284 *flagp = fmode; 285 return (0); 286 bad: 287 NDFREE(ndp, NDF_ONLY_PNBUF); 288 vput(vp); 289 *flagp = fmode; 290 ndp->ni_vp = NULL; 291 return (error); 292 } 293 294 /* 295 * Common code for vnode open operations once a vnode is located. 296 * Check permissions, and call the VOP_OPEN routine. 297 */ 298 int 299 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, 300 struct thread *td, struct file *fp) 301 { 302 accmode_t accmode; 303 struct flock lf; 304 int error, lock_flags, type; 305 306 if (vp->v_type == VLNK) 307 return (EMLINK); 308 if (vp->v_type == VSOCK) 309 return (EOPNOTSUPP); 310 if (vp->v_type != VDIR && fmode & O_DIRECTORY) 311 return (ENOTDIR); 312 accmode = 0; 313 if (fmode & (FWRITE | O_TRUNC)) { 314 if (vp->v_type == VDIR) 315 return (EISDIR); 316 accmode |= VWRITE; 317 } 318 if (fmode & FREAD) 319 accmode |= VREAD; 320 if (fmode & FEXEC) 321 accmode |= VEXEC; 322 if ((fmode & O_APPEND) && (fmode & FWRITE)) 323 accmode |= VAPPEND; 324 #ifdef MAC 325 if (fmode & O_CREAT) 326 accmode |= VCREAT; 327 if (fmode & O_VERIFY) 328 accmode |= VVERIFY; 329 error = mac_vnode_check_open(cred, vp, accmode); 330 if (error) 331 return (error); 332 333 accmode &= ~(VCREAT | VVERIFY); 334 #endif 335 if ((fmode & O_CREAT) == 0) { 336 if (accmode & VWRITE) { 337 error = vn_writechk(vp); 338 if (error) 339 return (error); 340 } 341 if (accmode) { 342 error = VOP_ACCESS(vp, accmode, cred, td); 343 if (error) 344 return (error); 345 } 346 } 347 if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 348 vn_lock(vp, LK_UPGRADE | LK_RETRY); 349 if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0) 350 return (error); 351 352 if (fmode & (O_EXLOCK | O_SHLOCK)) { 353 KASSERT(fp != NULL, ("open with flock requires fp")); 354 lock_flags = VOP_ISLOCKED(vp); 355 VOP_UNLOCK(vp, 0); 356 lf.l_whence = SEEK_SET; 357 lf.l_start = 0; 358 lf.l_len = 0; 359 if (fmode & O_EXLOCK) 360 lf.l_type = F_WRLCK; 361 else 362 lf.l_type = F_RDLCK; 363 type = F_FLOCK; 364 if ((fmode & FNONBLOCK) == 0) 365 type |= F_WAIT; 366 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); 367 if (error == 0) 368 fp->f_flag |= FHASLOCK; 369 vn_lock(vp, lock_flags | LK_RETRY); 370 if (error == 0 && vp->v_iflag & VI_DOOMED) 371 error = ENOENT; 372 373 /* 374 * Another thread might have used this vnode as an 375 * executable while the vnode lock was dropped. 376 * Ensure the vnode is still able to be opened for 377 * writing after the lock has been obtained. 378 */ 379 if (error == 0 && accmode & VWRITE) 380 error = vn_writechk(vp); 381 382 if (error != 0) { 383 fp->f_flag |= FOPENFAILED; 384 fp->f_vnode = vp; 385 if (fp->f_ops == &badfileops) { 386 fp->f_type = DTYPE_VNODE; 387 fp->f_ops = &vnops; 388 } 389 vref(vp); 390 } 391 } 392 if (error == 0 && fmode & FWRITE) { 393 VOP_ADD_WRITECOUNT(vp, 1); 394 CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", 395 __func__, vp, vp->v_writecount); 396 } 397 ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); 398 return (error); 399 } 400 401 /* 402 * Check for write permissions on the specified vnode. 403 * Prototype text segments cannot be written. 404 */ 405 int 406 vn_writechk(vp) 407 register struct vnode *vp; 408 { 409 410 ASSERT_VOP_LOCKED(vp, "vn_writechk"); 411 /* 412 * If there's shared text associated with 413 * the vnode, try to free it up once. If 414 * we fail, we can't allow writing. 415 */ 416 if (VOP_IS_TEXT(vp)) 417 return (ETXTBSY); 418 419 return (0); 420 } 421 422 /* 423 * Vnode close call 424 */ 425 int 426 vn_close(vp, flags, file_cred, td) 427 register struct vnode *vp; 428 int flags; 429 struct ucred *file_cred; 430 struct thread *td; 431 { 432 struct mount *mp; 433 int error, lock_flags; 434 435 if (vp->v_type != VFIFO && (flags & FWRITE) == 0 && 436 MNT_EXTENDED_SHARED(vp->v_mount)) 437 lock_flags = LK_SHARED; 438 else 439 lock_flags = LK_EXCLUSIVE; 440 441 vn_start_write(vp, &mp, V_WAIT); 442 vn_lock(vp, lock_flags | LK_RETRY); 443 if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) { 444 VNASSERT(vp->v_writecount > 0, vp, 445 ("vn_close: negative writecount")); 446 VOP_ADD_WRITECOUNT(vp, -1); 447 CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", 448 __func__, vp, vp->v_writecount); 449 } 450 error = VOP_CLOSE(vp, flags, file_cred, td); 451 vput(vp); 452 vn_finished_write(mp); 453 return (error); 454 } 455 456 /* 457 * Heuristic to detect sequential operation. 458 */ 459 static int 460 sequential_heuristic(struct uio *uio, struct file *fp) 461 { 462 463 ASSERT_VOP_LOCKED(fp->f_vnode, __func__); 464 if (fp->f_flag & FRDAHEAD) 465 return (fp->f_seqcount << IO_SEQSHIFT); 466 467 /* 468 * Offset 0 is handled specially. open() sets f_seqcount to 1 so 469 * that the first I/O is normally considered to be slightly 470 * sequential. Seeking to offset 0 doesn't change sequentiality 471 * unless previous seeks have reduced f_seqcount to 0, in which 472 * case offset 0 is not special. 473 */ 474 if ((uio->uio_offset == 0 && fp->f_seqcount > 0) || 475 uio->uio_offset == fp->f_nextoff) { 476 /* 477 * f_seqcount is in units of fixed-size blocks so that it 478 * depends mainly on the amount of sequential I/O and not 479 * much on the number of sequential I/O's. The fixed size 480 * of 16384 is hard-coded here since it is (not quite) just 481 * a magic size that works well here. This size is more 482 * closely related to the best I/O size for real disks than 483 * to any block size used by software. 484 */ 485 fp->f_seqcount += howmany(uio->uio_resid, 16384); 486 if (fp->f_seqcount > IO_SEQMAX) 487 fp->f_seqcount = IO_SEQMAX; 488 return (fp->f_seqcount << IO_SEQSHIFT); 489 } 490 491 /* Not sequential. Quickly draw-down sequentiality. */ 492 if (fp->f_seqcount > 1) 493 fp->f_seqcount = 1; 494 else 495 fp->f_seqcount = 0; 496 return (0); 497 } 498 499 /* 500 * Package up an I/O request on a vnode into a uio and do it. 501 */ 502 int 503 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, 504 enum uio_seg segflg, int ioflg, struct ucred *active_cred, 505 struct ucred *file_cred, ssize_t *aresid, struct thread *td) 506 { 507 struct uio auio; 508 struct iovec aiov; 509 struct mount *mp; 510 struct ucred *cred; 511 void *rl_cookie; 512 struct vn_io_fault_args args; 513 int error, lock_flags; 514 515 auio.uio_iov = &aiov; 516 auio.uio_iovcnt = 1; 517 aiov.iov_base = base; 518 aiov.iov_len = len; 519 auio.uio_resid = len; 520 auio.uio_offset = offset; 521 auio.uio_segflg = segflg; 522 auio.uio_rw = rw; 523 auio.uio_td = td; 524 error = 0; 525 526 if ((ioflg & IO_NODELOCKED) == 0) { 527 if ((ioflg & IO_RANGELOCKED) == 0) { 528 if (rw == UIO_READ) { 529 rl_cookie = vn_rangelock_rlock(vp, offset, 530 offset + len); 531 } else { 532 rl_cookie = vn_rangelock_wlock(vp, offset, 533 offset + len); 534 } 535 } else 536 rl_cookie = NULL; 537 mp = NULL; 538 if (rw == UIO_WRITE) { 539 if (vp->v_type != VCHR && 540 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) 541 != 0) 542 goto out; 543 if (MNT_SHARED_WRITES(mp) || 544 ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) 545 lock_flags = LK_SHARED; 546 else 547 lock_flags = LK_EXCLUSIVE; 548 } else 549 lock_flags = LK_SHARED; 550 vn_lock(vp, lock_flags | LK_RETRY); 551 } else 552 rl_cookie = NULL; 553 554 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 555 #ifdef MAC 556 if ((ioflg & IO_NOMACCHECK) == 0) { 557 if (rw == UIO_READ) 558 error = mac_vnode_check_read(active_cred, file_cred, 559 vp); 560 else 561 error = mac_vnode_check_write(active_cred, file_cred, 562 vp); 563 } 564 #endif 565 if (error == 0) { 566 if (file_cred != NULL) 567 cred = file_cred; 568 else 569 cred = active_cred; 570 if (do_vn_io_fault(vp, &auio)) { 571 args.kind = VN_IO_FAULT_VOP; 572 args.cred = cred; 573 args.flags = ioflg; 574 args.args.vop_args.vp = vp; 575 error = vn_io_fault1(vp, &auio, &args, td); 576 } else if (rw == UIO_READ) { 577 error = VOP_READ(vp, &auio, ioflg, cred); 578 } else /* if (rw == UIO_WRITE) */ { 579 error = VOP_WRITE(vp, &auio, ioflg, cred); 580 } 581 } 582 if (aresid) 583 *aresid = auio.uio_resid; 584 else 585 if (auio.uio_resid && error == 0) 586 error = EIO; 587 if ((ioflg & IO_NODELOCKED) == 0) { 588 VOP_UNLOCK(vp, 0); 589 if (mp != NULL) 590 vn_finished_write(mp); 591 } 592 out: 593 if (rl_cookie != NULL) 594 vn_rangelock_unlock(vp, rl_cookie); 595 return (error); 596 } 597 598 /* 599 * Package up an I/O request on a vnode into a uio and do it. The I/O 600 * request is split up into smaller chunks and we try to avoid saturating 601 * the buffer cache while potentially holding a vnode locked, so we 602 * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() 603 * to give other processes a chance to lock the vnode (either other processes 604 * core'ing the same binary, or unrelated processes scanning the directory). 605 */ 606 int 607 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred, 608 file_cred, aresid, td) 609 enum uio_rw rw; 610 struct vnode *vp; 611 void *base; 612 size_t len; 613 off_t offset; 614 enum uio_seg segflg; 615 int ioflg; 616 struct ucred *active_cred; 617 struct ucred *file_cred; 618 size_t *aresid; 619 struct thread *td; 620 { 621 int error = 0; 622 ssize_t iaresid; 623 624 do { 625 int chunk; 626 627 /* 628 * Force `offset' to a multiple of MAXBSIZE except possibly 629 * for the first chunk, so that filesystems only need to 630 * write full blocks except possibly for the first and last 631 * chunks. 632 */ 633 chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; 634 635 if (chunk > len) 636 chunk = len; 637 if (rw != UIO_READ && vp->v_type == VREG) 638 bwillwrite(); 639 iaresid = 0; 640 error = vn_rdwr(rw, vp, base, chunk, offset, segflg, 641 ioflg, active_cred, file_cred, &iaresid, td); 642 len -= chunk; /* aresid calc already includes length */ 643 if (error) 644 break; 645 offset += chunk; 646 base = (char *)base + chunk; 647 kern_yield(PRI_USER); 648 } while (len); 649 if (aresid) 650 *aresid = len + iaresid; 651 return (error); 652 } 653 654 off_t 655 foffset_lock(struct file *fp, int flags) 656 { 657 struct mtx *mtxp; 658 off_t res; 659 660 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 661 662 #if OFF_MAX <= LONG_MAX 663 /* 664 * Caller only wants the current f_offset value. Assume that 665 * the long and shorter integer types reads are atomic. 666 */ 667 if ((flags & FOF_NOLOCK) != 0) 668 return (fp->f_offset); 669 #endif 670 671 /* 672 * According to McKusick the vn lock was protecting f_offset here. 673 * It is now protected by the FOFFSET_LOCKED flag. 674 */ 675 mtxp = mtx_pool_find(mtxpool_sleep, fp); 676 mtx_lock(mtxp); 677 if ((flags & FOF_NOLOCK) == 0) { 678 while (fp->f_vnread_flags & FOFFSET_LOCKED) { 679 fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; 680 msleep(&fp->f_vnread_flags, mtxp, PUSER -1, 681 "vofflock", 0); 682 } 683 fp->f_vnread_flags |= FOFFSET_LOCKED; 684 } 685 res = fp->f_offset; 686 mtx_unlock(mtxp); 687 return (res); 688 } 689 690 void 691 foffset_unlock(struct file *fp, off_t val, int flags) 692 { 693 struct mtx *mtxp; 694 695 KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); 696 697 #if OFF_MAX <= LONG_MAX 698 if ((flags & FOF_NOLOCK) != 0) { 699 if ((flags & FOF_NOUPDATE) == 0) 700 fp->f_offset = val; 701 if ((flags & FOF_NEXTOFF) != 0) 702 fp->f_nextoff = val; 703 return; 704 } 705 #endif 706 707 mtxp = mtx_pool_find(mtxpool_sleep, fp); 708 mtx_lock(mtxp); 709 if ((flags & FOF_NOUPDATE) == 0) 710 fp->f_offset = val; 711 if ((flags & FOF_NEXTOFF) != 0) 712 fp->f_nextoff = val; 713 if ((flags & FOF_NOLOCK) == 0) { 714 KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, 715 ("Lost FOFFSET_LOCKED")); 716 if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) 717 wakeup(&fp->f_vnread_flags); 718 fp->f_vnread_flags = 0; 719 } 720 mtx_unlock(mtxp); 721 } 722 723 void 724 foffset_lock_uio(struct file *fp, struct uio *uio, int flags) 725 { 726 727 if ((flags & FOF_OFFSET) == 0) 728 uio->uio_offset = foffset_lock(fp, flags); 729 } 730 731 void 732 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) 733 { 734 735 if ((flags & FOF_OFFSET) == 0) 736 foffset_unlock(fp, uio->uio_offset, flags); 737 } 738 739 static int 740 get_advice(struct file *fp, struct uio *uio) 741 { 742 struct mtx *mtxp; 743 int ret; 744 745 ret = POSIX_FADV_NORMAL; 746 if (fp->f_advice == NULL) 747 return (ret); 748 749 mtxp = mtx_pool_find(mtxpool_sleep, fp); 750 mtx_lock(mtxp); 751 if (uio->uio_offset >= fp->f_advice->fa_start && 752 uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) 753 ret = fp->f_advice->fa_advice; 754 mtx_unlock(mtxp); 755 return (ret); 756 } 757 758 /* 759 * File table vnode read routine. 760 */ 761 static int 762 vn_read(fp, uio, active_cred, flags, td) 763 struct file *fp; 764 struct uio *uio; 765 struct ucred *active_cred; 766 int flags; 767 struct thread *td; 768 { 769 struct vnode *vp; 770 off_t orig_offset; 771 int error, ioflag; 772 int advice; 773 774 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 775 uio->uio_td, td)); 776 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 777 vp = fp->f_vnode; 778 ioflag = 0; 779 if (fp->f_flag & FNONBLOCK) 780 ioflag |= IO_NDELAY; 781 if (fp->f_flag & O_DIRECT) 782 ioflag |= IO_DIRECT; 783 advice = get_advice(fp, uio); 784 vn_lock(vp, LK_SHARED | LK_RETRY); 785 786 switch (advice) { 787 case POSIX_FADV_NORMAL: 788 case POSIX_FADV_SEQUENTIAL: 789 case POSIX_FADV_NOREUSE: 790 ioflag |= sequential_heuristic(uio, fp); 791 break; 792 case POSIX_FADV_RANDOM: 793 /* Disable read-ahead for random I/O. */ 794 break; 795 } 796 orig_offset = uio->uio_offset; 797 798 #ifdef MAC 799 error = mac_vnode_check_read(active_cred, fp->f_cred, vp); 800 if (error == 0) 801 #endif 802 error = VOP_READ(vp, uio, ioflag, fp->f_cred); 803 fp->f_nextoff = uio->uio_offset; 804 VOP_UNLOCK(vp, 0); 805 if (error == 0 && advice == POSIX_FADV_NOREUSE && 806 orig_offset != uio->uio_offset) 807 /* 808 * Use POSIX_FADV_DONTNEED to flush pages and buffers 809 * for the backing file after a POSIX_FADV_NOREUSE 810 * read(2). 811 */ 812 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, 813 POSIX_FADV_DONTNEED); 814 return (error); 815 } 816 817 /* 818 * File table vnode write routine. 819 */ 820 static int 821 vn_write(fp, uio, active_cred, flags, td) 822 struct file *fp; 823 struct uio *uio; 824 struct ucred *active_cred; 825 int flags; 826 struct thread *td; 827 { 828 struct vnode *vp; 829 struct mount *mp; 830 off_t orig_offset; 831 int error, ioflag, lock_flags; 832 int advice; 833 834 KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", 835 uio->uio_td, td)); 836 KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); 837 vp = fp->f_vnode; 838 if (vp->v_type == VREG) 839 bwillwrite(); 840 ioflag = IO_UNIT; 841 if (vp->v_type == VREG && (fp->f_flag & O_APPEND)) 842 ioflag |= IO_APPEND; 843 if (fp->f_flag & FNONBLOCK) 844 ioflag |= IO_NDELAY; 845 if (fp->f_flag & O_DIRECT) 846 ioflag |= IO_DIRECT; 847 if ((fp->f_flag & O_FSYNC) || 848 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS))) 849 ioflag |= IO_SYNC; 850 mp = NULL; 851 if (vp->v_type != VCHR && 852 (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) 853 goto unlock; 854 855 advice = get_advice(fp, uio); 856 857 if (MNT_SHARED_WRITES(mp) || 858 (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) { 859 lock_flags = LK_SHARED; 860 } else { 861 lock_flags = LK_EXCLUSIVE; 862 } 863 864 vn_lock(vp, lock_flags | LK_RETRY); 865 switch (advice) { 866 case POSIX_FADV_NORMAL: 867 case POSIX_FADV_SEQUENTIAL: 868 case POSIX_FADV_NOREUSE: 869 ioflag |= sequential_heuristic(uio, fp); 870 break; 871 case POSIX_FADV_RANDOM: 872 /* XXX: Is this correct? */ 873 break; 874 } 875 orig_offset = uio->uio_offset; 876 877 #ifdef MAC 878 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 879 if (error == 0) 880 #endif 881 error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); 882 fp->f_nextoff = uio->uio_offset; 883 VOP_UNLOCK(vp, 0); 884 if (vp->v_type != VCHR) 885 vn_finished_write(mp); 886 if (error == 0 && advice == POSIX_FADV_NOREUSE && 887 orig_offset != uio->uio_offset) 888 /* 889 * Use POSIX_FADV_DONTNEED to flush pages and buffers 890 * for the backing file after a POSIX_FADV_NOREUSE 891 * write(2). 892 */ 893 error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, 894 POSIX_FADV_DONTNEED); 895 unlock: 896 return (error); 897 } 898 899 /* 900 * The vn_io_fault() is a wrapper around vn_read() and vn_write() to 901 * prevent the following deadlock: 902 * 903 * Assume that the thread A reads from the vnode vp1 into userspace 904 * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is 905 * currently not resident, then system ends up with the call chain 906 * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> 907 * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) 908 * which establishes lock order vp1->vn_lock, then vp2->vn_lock. 909 * If, at the same time, thread B reads from vnode vp2 into buffer buf2 910 * backed by the pages of vnode vp1, and some page in buf2 is not 911 * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. 912 * 913 * To prevent the lock order reversal and deadlock, vn_io_fault() does 914 * not allow page faults to happen during VOP_READ() or VOP_WRITE(). 915 * Instead, it first tries to do the whole range i/o with pagefaults 916 * disabled. If all pages in the i/o buffer are resident and mapped, 917 * VOP will succeed (ignoring the genuine filesystem errors). 918 * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do 919 * i/o in chunks, with all pages in the chunk prefaulted and held 920 * using vm_fault_quick_hold_pages(). 921 * 922 * Filesystems using this deadlock avoidance scheme should use the 923 * array of the held pages from uio, saved in the curthread->td_ma, 924 * instead of doing uiomove(). A helper function 925 * vn_io_fault_uiomove() converts uiomove request into 926 * uiomove_fromphys() over td_ma array. 927 * 928 * Since vnode locks do not cover the whole i/o anymore, rangelocks 929 * make the current i/o request atomic with respect to other i/os and 930 * truncations. 931 */ 932 933 /* 934 * Decode vn_io_fault_args and perform the corresponding i/o. 935 */ 936 static int 937 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio, 938 struct thread *td) 939 { 940 941 switch (args->kind) { 942 case VN_IO_FAULT_FOP: 943 return ((args->args.fop_args.doio)(args->args.fop_args.fp, 944 uio, args->cred, args->flags, td)); 945 case VN_IO_FAULT_VOP: 946 if (uio->uio_rw == UIO_READ) { 947 return (VOP_READ(args->args.vop_args.vp, uio, 948 args->flags, args->cred)); 949 } else if (uio->uio_rw == UIO_WRITE) { 950 return (VOP_WRITE(args->args.vop_args.vp, uio, 951 args->flags, args->cred)); 952 } 953 break; 954 } 955 panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind, 956 uio->uio_rw); 957 } 958 959 static int 960 vn_io_fault_touch(char *base, const struct uio *uio) 961 { 962 int r; 963 964 r = fubyte(base); 965 if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1)) 966 return (EFAULT); 967 return (0); 968 } 969 970 static int 971 vn_io_fault_prefault_user(const struct uio *uio) 972 { 973 char *base; 974 const struct iovec *iov; 975 size_t len; 976 ssize_t resid; 977 int error, i; 978 979 KASSERT(uio->uio_segflg == UIO_USERSPACE, 980 ("vn_io_fault_prefault userspace")); 981 982 error = i = 0; 983 iov = uio->uio_iov; 984 resid = uio->uio_resid; 985 base = iov->iov_base; 986 len = iov->iov_len; 987 while (resid > 0) { 988 error = vn_io_fault_touch(base, uio); 989 if (error != 0) 990 break; 991 if (len < PAGE_SIZE) { 992 if (len != 0) { 993 error = vn_io_fault_touch(base + len - 1, uio); 994 if (error != 0) 995 break; 996 resid -= len; 997 } 998 if (++i >= uio->uio_iovcnt) 999 break; 1000 iov = uio->uio_iov + i; 1001 base = iov->iov_base; 1002 len = iov->iov_len; 1003 } else { 1004 len -= PAGE_SIZE; 1005 base += PAGE_SIZE; 1006 resid -= PAGE_SIZE; 1007 } 1008 } 1009 return (error); 1010 } 1011 1012 /* 1013 * Common code for vn_io_fault(), agnostic to the kind of i/o request. 1014 * Uses vn_io_fault_doio() to make the call to an actual i/o function. 1015 * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request 1016 * into args and call vn_io_fault1() to handle faults during the user 1017 * mode buffer accesses. 1018 */ 1019 static int 1020 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, 1021 struct thread *td) 1022 { 1023 vm_page_t ma[io_hold_cnt + 2]; 1024 struct uio *uio_clone, short_uio; 1025 struct iovec short_iovec[1]; 1026 vm_page_t *prev_td_ma; 1027 vm_prot_t prot; 1028 vm_offset_t addr, end; 1029 size_t len, resid; 1030 ssize_t adv; 1031 int error, cnt, save, saveheld, prev_td_ma_cnt; 1032 1033 if (vn_io_fault_prefault) { 1034 error = vn_io_fault_prefault_user(uio); 1035 if (error != 0) 1036 return (error); /* Or ignore ? */ 1037 } 1038 1039 prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ; 1040 1041 /* 1042 * The UFS follows IO_UNIT directive and replays back both 1043 * uio_offset and uio_resid if an error is encountered during the 1044 * operation. But, since the iovec may be already advanced, 1045 * uio is still in an inconsistent state. 1046 * 1047 * Cache a copy of the original uio, which is advanced to the redo 1048 * point using UIO_NOCOPY below. 1049 */ 1050 uio_clone = cloneuio(uio); 1051 resid = uio->uio_resid; 1052 1053 short_uio.uio_segflg = UIO_USERSPACE; 1054 short_uio.uio_rw = uio->uio_rw; 1055 short_uio.uio_td = uio->uio_td; 1056 1057 save = vm_fault_disable_pagefaults(); 1058 error = vn_io_fault_doio(args, uio, td); 1059 if (error != EFAULT) 1060 goto out; 1061 1062 atomic_add_long(&vn_io_faults_cnt, 1); 1063 uio_clone->uio_segflg = UIO_NOCOPY; 1064 uiomove(NULL, resid - uio->uio_resid, uio_clone); 1065 uio_clone->uio_segflg = uio->uio_segflg; 1066 1067 saveheld = curthread_pflags_set(TDP_UIOHELD); 1068 prev_td_ma = td->td_ma; 1069 prev_td_ma_cnt = td->td_ma_cnt; 1070 1071 while (uio_clone->uio_resid != 0) { 1072 len = uio_clone->uio_iov->iov_len; 1073 if (len == 0) { 1074 KASSERT(uio_clone->uio_iovcnt >= 1, 1075 ("iovcnt underflow")); 1076 uio_clone->uio_iov++; 1077 uio_clone->uio_iovcnt--; 1078 continue; 1079 } 1080 if (len > io_hold_cnt * PAGE_SIZE) 1081 len = io_hold_cnt * PAGE_SIZE; 1082 addr = (uintptr_t)uio_clone->uio_iov->iov_base; 1083 end = round_page(addr + len); 1084 if (end < addr) { 1085 error = EFAULT; 1086 break; 1087 } 1088 cnt = atop(end - trunc_page(addr)); 1089 /* 1090 * A perfectly misaligned address and length could cause 1091 * both the start and the end of the chunk to use partial 1092 * page. +2 accounts for such a situation. 1093 */ 1094 cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, 1095 addr, len, prot, ma, io_hold_cnt + 2); 1096 if (cnt == -1) { 1097 error = EFAULT; 1098 break; 1099 } 1100 short_uio.uio_iov = &short_iovec[0]; 1101 short_iovec[0].iov_base = (void *)addr; 1102 short_uio.uio_iovcnt = 1; 1103 short_uio.uio_resid = short_iovec[0].iov_len = len; 1104 short_uio.uio_offset = uio_clone->uio_offset; 1105 td->td_ma = ma; 1106 td->td_ma_cnt = cnt; 1107 1108 error = vn_io_fault_doio(args, &short_uio, td); 1109 vm_page_unhold_pages(ma, cnt); 1110 adv = len - short_uio.uio_resid; 1111 1112 uio_clone->uio_iov->iov_base = 1113 (char *)uio_clone->uio_iov->iov_base + adv; 1114 uio_clone->uio_iov->iov_len -= adv; 1115 uio_clone->uio_resid -= adv; 1116 uio_clone->uio_offset += adv; 1117 1118 uio->uio_resid -= adv; 1119 uio->uio_offset += adv; 1120 1121 if (error != 0 || adv == 0) 1122 break; 1123 } 1124 td->td_ma = prev_td_ma; 1125 td->td_ma_cnt = prev_td_ma_cnt; 1126 curthread_pflags_restore(saveheld); 1127 out: 1128 vm_fault_enable_pagefaults(save); 1129 free(uio_clone, M_IOV); 1130 return (error); 1131 } 1132 1133 static int 1134 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, 1135 int flags, struct thread *td) 1136 { 1137 fo_rdwr_t *doio; 1138 struct vnode *vp; 1139 void *rl_cookie; 1140 struct vn_io_fault_args args; 1141 int error; 1142 1143 doio = uio->uio_rw == UIO_READ ? vn_read : vn_write; 1144 vp = fp->f_vnode; 1145 foffset_lock_uio(fp, uio, flags); 1146 if (do_vn_io_fault(vp, uio)) { 1147 args.kind = VN_IO_FAULT_FOP; 1148 args.args.fop_args.fp = fp; 1149 args.args.fop_args.doio = doio; 1150 args.cred = active_cred; 1151 args.flags = flags | FOF_OFFSET; 1152 if (uio->uio_rw == UIO_READ) { 1153 rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, 1154 uio->uio_offset + uio->uio_resid); 1155 } else if ((fp->f_flag & O_APPEND) != 0 || 1156 (flags & FOF_OFFSET) == 0) { 1157 /* For appenders, punt and lock the whole range. */ 1158 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1159 } else { 1160 rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, 1161 uio->uio_offset + uio->uio_resid); 1162 } 1163 error = vn_io_fault1(vp, uio, &args, td); 1164 vn_rangelock_unlock(vp, rl_cookie); 1165 } else { 1166 error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); 1167 } 1168 foffset_unlock_uio(fp, uio, flags); 1169 return (error); 1170 } 1171 1172 /* 1173 * Helper function to perform the requested uiomove operation using 1174 * the held pages for io->uio_iov[0].iov_base buffer instead of 1175 * copyin/copyout. Access to the pages with uiomove_fromphys() 1176 * instead of iov_base prevents page faults that could occur due to 1177 * pmap_collect() invalidating the mapping created by 1178 * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or 1179 * object cleanup revoking the write access from page mappings. 1180 * 1181 * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() 1182 * instead of plain uiomove(). 1183 */ 1184 int 1185 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) 1186 { 1187 struct uio transp_uio; 1188 struct iovec transp_iov[1]; 1189 struct thread *td; 1190 size_t adv; 1191 int error, pgadv; 1192 1193 td = curthread; 1194 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1195 uio->uio_segflg != UIO_USERSPACE) 1196 return (uiomove(data, xfersize, uio)); 1197 1198 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1199 transp_iov[0].iov_base = data; 1200 transp_uio.uio_iov = &transp_iov[0]; 1201 transp_uio.uio_iovcnt = 1; 1202 if (xfersize > uio->uio_resid) 1203 xfersize = uio->uio_resid; 1204 transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; 1205 transp_uio.uio_offset = 0; 1206 transp_uio.uio_segflg = UIO_SYSSPACE; 1207 /* 1208 * Since transp_iov points to data, and td_ma page array 1209 * corresponds to original uio->uio_iov, we need to invert the 1210 * direction of the i/o operation as passed to 1211 * uiomove_fromphys(). 1212 */ 1213 switch (uio->uio_rw) { 1214 case UIO_WRITE: 1215 transp_uio.uio_rw = UIO_READ; 1216 break; 1217 case UIO_READ: 1218 transp_uio.uio_rw = UIO_WRITE; 1219 break; 1220 } 1221 transp_uio.uio_td = uio->uio_td; 1222 error = uiomove_fromphys(td->td_ma, 1223 ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, 1224 xfersize, &transp_uio); 1225 adv = xfersize - transp_uio.uio_resid; 1226 pgadv = 1227 (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - 1228 (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); 1229 td->td_ma += pgadv; 1230 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1231 pgadv)); 1232 td->td_ma_cnt -= pgadv; 1233 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; 1234 uio->uio_iov->iov_len -= adv; 1235 uio->uio_resid -= adv; 1236 uio->uio_offset += adv; 1237 return (error); 1238 } 1239 1240 int 1241 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, 1242 struct uio *uio) 1243 { 1244 struct thread *td; 1245 vm_offset_t iov_base; 1246 int cnt, pgadv; 1247 1248 td = curthread; 1249 if ((td->td_pflags & TDP_UIOHELD) == 0 || 1250 uio->uio_segflg != UIO_USERSPACE) 1251 return (uiomove_fromphys(ma, offset, xfersize, uio)); 1252 1253 KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); 1254 cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize; 1255 iov_base = (vm_offset_t)uio->uio_iov->iov_base; 1256 switch (uio->uio_rw) { 1257 case UIO_WRITE: 1258 pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma, 1259 offset, cnt); 1260 break; 1261 case UIO_READ: 1262 pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK, 1263 cnt); 1264 break; 1265 } 1266 pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT); 1267 td->td_ma += pgadv; 1268 KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, 1269 pgadv)); 1270 td->td_ma_cnt -= pgadv; 1271 uio->uio_iov->iov_base = (char *)(iov_base + cnt); 1272 uio->uio_iov->iov_len -= cnt; 1273 uio->uio_resid -= cnt; 1274 uio->uio_offset += cnt; 1275 return (0); 1276 } 1277 1278 1279 /* 1280 * File table truncate routine. 1281 */ 1282 static int 1283 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, 1284 struct thread *td) 1285 { 1286 struct vattr vattr; 1287 struct mount *mp; 1288 struct vnode *vp; 1289 void *rl_cookie; 1290 int error; 1291 1292 vp = fp->f_vnode; 1293 1294 /* 1295 * Lock the whole range for truncation. Otherwise split i/o 1296 * might happen partly before and partly after the truncation. 1297 */ 1298 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); 1299 error = vn_start_write(vp, &mp, V_WAIT | PCATCH); 1300 if (error) 1301 goto out1; 1302 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1303 if (vp->v_type == VDIR) { 1304 error = EISDIR; 1305 goto out; 1306 } 1307 #ifdef MAC 1308 error = mac_vnode_check_write(active_cred, fp->f_cred, vp); 1309 if (error) 1310 goto out; 1311 #endif 1312 error = vn_writechk(vp); 1313 if (error == 0) { 1314 VATTR_NULL(&vattr); 1315 vattr.va_size = length; 1316 error = VOP_SETATTR(vp, &vattr, fp->f_cred); 1317 } 1318 out: 1319 VOP_UNLOCK(vp, 0); 1320 vn_finished_write(mp); 1321 out1: 1322 vn_rangelock_unlock(vp, rl_cookie); 1323 return (error); 1324 } 1325 1326 /* 1327 * File table vnode stat routine. 1328 */ 1329 static int 1330 vn_statfile(fp, sb, active_cred, td) 1331 struct file *fp; 1332 struct stat *sb; 1333 struct ucred *active_cred; 1334 struct thread *td; 1335 { 1336 struct vnode *vp = fp->f_vnode; 1337 int error; 1338 1339 vn_lock(vp, LK_SHARED | LK_RETRY); 1340 error = vn_stat(vp, sb, active_cred, fp->f_cred, td); 1341 VOP_UNLOCK(vp, 0); 1342 1343 return (error); 1344 } 1345 1346 /* 1347 * Stat a vnode; implementation for the stat syscall 1348 */ 1349 int 1350 vn_stat(vp, sb, active_cred, file_cred, td) 1351 struct vnode *vp; 1352 register struct stat *sb; 1353 struct ucred *active_cred; 1354 struct ucred *file_cred; 1355 struct thread *td; 1356 { 1357 struct vattr vattr; 1358 register struct vattr *vap; 1359 int error; 1360 u_short mode; 1361 1362 #ifdef MAC 1363 error = mac_vnode_check_stat(active_cred, file_cred, vp); 1364 if (error) 1365 return (error); 1366 #endif 1367 1368 vap = &vattr; 1369 1370 /* 1371 * Initialize defaults for new and unusual fields, so that file 1372 * systems which don't support these fields don't need to know 1373 * about them. 1374 */ 1375 vap->va_birthtime.tv_sec = -1; 1376 vap->va_birthtime.tv_nsec = 0; 1377 vap->va_fsid = VNOVAL; 1378 vap->va_rdev = NODEV; 1379 1380 error = VOP_GETATTR(vp, vap, active_cred); 1381 if (error) 1382 return (error); 1383 1384 /* 1385 * Zero the spare stat fields 1386 */ 1387 bzero(sb, sizeof *sb); 1388 1389 /* 1390 * Copy from vattr table 1391 */ 1392 if (vap->va_fsid != VNOVAL) 1393 sb->st_dev = vap->va_fsid; 1394 else 1395 sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0]; 1396 sb->st_ino = vap->va_fileid; 1397 mode = vap->va_mode; 1398 switch (vap->va_type) { 1399 case VREG: 1400 mode |= S_IFREG; 1401 break; 1402 case VDIR: 1403 mode |= S_IFDIR; 1404 break; 1405 case VBLK: 1406 mode |= S_IFBLK; 1407 break; 1408 case VCHR: 1409 mode |= S_IFCHR; 1410 break; 1411 case VLNK: 1412 mode |= S_IFLNK; 1413 break; 1414 case VSOCK: 1415 mode |= S_IFSOCK; 1416 break; 1417 case VFIFO: 1418 mode |= S_IFIFO; 1419 break; 1420 default: 1421 return (EBADF); 1422 }; 1423 sb->st_mode = mode; 1424 sb->st_nlink = vap->va_nlink; 1425 sb->st_uid = vap->va_uid; 1426 sb->st_gid = vap->va_gid; 1427 sb->st_rdev = vap->va_rdev; 1428 if (vap->va_size > OFF_MAX) 1429 return (EOVERFLOW); 1430 sb->st_size = vap->va_size; 1431 sb->st_atim = vap->va_atime; 1432 sb->st_mtim = vap->va_mtime; 1433 sb->st_ctim = vap->va_ctime; 1434 sb->st_birthtim = vap->va_birthtime; 1435 1436 /* 1437 * According to www.opengroup.org, the meaning of st_blksize is 1438 * "a filesystem-specific preferred I/O block size for this 1439 * object. In some filesystem types, this may vary from file 1440 * to file" 1441 * Use miminum/default of PAGE_SIZE (e.g. for VCHR). 1442 */ 1443 1444 sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize); 1445 1446 sb->st_flags = vap->va_flags; 1447 if (priv_check(td, PRIV_VFS_GENERATION)) 1448 sb->st_gen = 0; 1449 else 1450 sb->st_gen = vap->va_gen; 1451 1452 sb->st_blocks = vap->va_bytes / S_BLKSIZE; 1453 return (0); 1454 } 1455 1456 /* 1457 * File table vnode ioctl routine. 1458 */ 1459 static int 1460 vn_ioctl(fp, com, data, active_cred, td) 1461 struct file *fp; 1462 u_long com; 1463 void *data; 1464 struct ucred *active_cred; 1465 struct thread *td; 1466 { 1467 struct vattr vattr; 1468 struct vnode *vp; 1469 int error; 1470 1471 vp = fp->f_vnode; 1472 switch (vp->v_type) { 1473 case VDIR: 1474 case VREG: 1475 switch (com) { 1476 case FIONREAD: 1477 vn_lock(vp, LK_SHARED | LK_RETRY); 1478 error = VOP_GETATTR(vp, &vattr, active_cred); 1479 VOP_UNLOCK(vp, 0); 1480 if (error == 0) 1481 *(int *)data = vattr.va_size - fp->f_offset; 1482 return (error); 1483 case FIONBIO: 1484 case FIOASYNC: 1485 return (0); 1486 default: 1487 return (VOP_IOCTL(vp, com, data, fp->f_flag, 1488 active_cred, td)); 1489 } 1490 default: 1491 return (ENOTTY); 1492 } 1493 } 1494 1495 /* 1496 * File table vnode poll routine. 1497 */ 1498 static int 1499 vn_poll(fp, events, active_cred, td) 1500 struct file *fp; 1501 int events; 1502 struct ucred *active_cred; 1503 struct thread *td; 1504 { 1505 struct vnode *vp; 1506 int error; 1507 1508 vp = fp->f_vnode; 1509 #ifdef MAC 1510 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1511 error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); 1512 VOP_UNLOCK(vp, 0); 1513 if (!error) 1514 #endif 1515 1516 error = VOP_POLL(vp, events, fp->f_cred, td); 1517 return (error); 1518 } 1519 1520 /* 1521 * Acquire the requested lock and then check for validity. LK_RETRY 1522 * permits vn_lock to return doomed vnodes. 1523 */ 1524 int 1525 _vn_lock(struct vnode *vp, int flags, char *file, int line) 1526 { 1527 int error; 1528 1529 VNASSERT((flags & LK_TYPE_MASK) != 0, vp, 1530 ("vn_lock called with no locktype.")); 1531 do { 1532 #ifdef DEBUG_VFS_LOCKS 1533 KASSERT(vp->v_holdcnt != 0, 1534 ("vn_lock %p: zero hold count", vp)); 1535 #endif 1536 error = VOP_LOCK1(vp, flags, file, line); 1537 flags &= ~LK_INTERLOCK; /* Interlock is always dropped. */ 1538 KASSERT((flags & LK_RETRY) == 0 || error == 0, 1539 ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)", 1540 flags, error)); 1541 /* 1542 * Callers specify LK_RETRY if they wish to get dead vnodes. 1543 * If RETRY is not set, we return ENOENT instead. 1544 */ 1545 if (error == 0 && vp->v_iflag & VI_DOOMED && 1546 (flags & LK_RETRY) == 0) { 1547 VOP_UNLOCK(vp, 0); 1548 error = ENOENT; 1549 break; 1550 } 1551 } while (flags & LK_RETRY && error != 0); 1552 return (error); 1553 } 1554 1555 /* 1556 * File table vnode close routine. 1557 */ 1558 static int 1559 vn_closefile(fp, td) 1560 struct file *fp; 1561 struct thread *td; 1562 { 1563 struct vnode *vp; 1564 struct flock lf; 1565 int error; 1566 1567 vp = fp->f_vnode; 1568 fp->f_ops = &badfileops; 1569 1570 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) 1571 vref(vp); 1572 1573 error = vn_close(vp, fp->f_flag, fp->f_cred, td); 1574 1575 if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) { 1576 lf.l_whence = SEEK_SET; 1577 lf.l_start = 0; 1578 lf.l_len = 0; 1579 lf.l_type = F_UNLCK; 1580 (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); 1581 vrele(vp); 1582 } 1583 return (error); 1584 } 1585 1586 static bool 1587 vn_suspendable(struct mount *mp) 1588 { 1589 1590 return (mp->mnt_op->vfs_susp_clean != NULL); 1591 } 1592 1593 /* 1594 * Preparing to start a filesystem write operation. If the operation is 1595 * permitted, then we bump the count of operations in progress and 1596 * proceed. If a suspend request is in progress, we wait until the 1597 * suspension is over, and then proceed. 1598 */ 1599 static int 1600 vn_start_write_locked(struct mount *mp, int flags) 1601 { 1602 int error, mflags; 1603 1604 mtx_assert(MNT_MTX(mp), MA_OWNED); 1605 error = 0; 1606 1607 /* 1608 * Check on status of suspension. 1609 */ 1610 if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || 1611 mp->mnt_susp_owner != curthread) { 1612 mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? 1613 (flags & PCATCH) : 0) | (PUSER - 1); 1614 while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1615 if (flags & V_NOWAIT) { 1616 error = EWOULDBLOCK; 1617 goto unlock; 1618 } 1619 error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, 1620 "suspfs", 0); 1621 if (error) 1622 goto unlock; 1623 } 1624 } 1625 if (flags & V_XSLEEP) 1626 goto unlock; 1627 mp->mnt_writeopcount++; 1628 unlock: 1629 if (error != 0 || (flags & V_XSLEEP) != 0) 1630 MNT_REL(mp); 1631 MNT_IUNLOCK(mp); 1632 return (error); 1633 } 1634 1635 int 1636 vn_start_write(struct vnode *vp, struct mount **mpp, int flags) 1637 { 1638 struct mount *mp; 1639 int error; 1640 1641 KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL), 1642 ("V_MNTREF requires mp")); 1643 1644 error = 0; 1645 /* 1646 * If a vnode is provided, get and return the mount point that 1647 * to which it will write. 1648 */ 1649 if (vp != NULL) { 1650 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1651 *mpp = NULL; 1652 if (error != EOPNOTSUPP) 1653 return (error); 1654 return (0); 1655 } 1656 } 1657 if ((mp = *mpp) == NULL) 1658 return (0); 1659 1660 if (!vn_suspendable(mp)) { 1661 if (vp != NULL || (flags & V_MNTREF) != 0) 1662 vfs_rel(mp); 1663 return (0); 1664 } 1665 1666 /* 1667 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1668 * a vfs_ref(). 1669 * As long as a vnode is not provided we need to acquire a 1670 * refcount for the provided mountpoint too, in order to 1671 * emulate a vfs_ref(). 1672 */ 1673 MNT_ILOCK(mp); 1674 if (vp == NULL && (flags & V_MNTREF) == 0) 1675 MNT_REF(mp); 1676 1677 return (vn_start_write_locked(mp, flags)); 1678 } 1679 1680 /* 1681 * Secondary suspension. Used by operations such as vop_inactive 1682 * routines that are needed by the higher level functions. These 1683 * are allowed to proceed until all the higher level functions have 1684 * completed (indicated by mnt_writeopcount dropping to zero). At that 1685 * time, these operations are halted until the suspension is over. 1686 */ 1687 int 1688 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags) 1689 { 1690 struct mount *mp; 1691 int error; 1692 1693 KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL), 1694 ("V_MNTREF requires mp")); 1695 1696 retry: 1697 if (vp != NULL) { 1698 if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { 1699 *mpp = NULL; 1700 if (error != EOPNOTSUPP) 1701 return (error); 1702 return (0); 1703 } 1704 } 1705 /* 1706 * If we are not suspended or have not yet reached suspended 1707 * mode, then let the operation proceed. 1708 */ 1709 if ((mp = *mpp) == NULL) 1710 return (0); 1711 1712 if (!vn_suspendable(mp)) { 1713 if (vp != NULL || (flags & V_MNTREF) != 0) 1714 vfs_rel(mp); 1715 return (0); 1716 } 1717 1718 /* 1719 * VOP_GETWRITEMOUNT() returns with the mp refcount held through 1720 * a vfs_ref(). 1721 * As long as a vnode is not provided we need to acquire a 1722 * refcount for the provided mountpoint too, in order to 1723 * emulate a vfs_ref(). 1724 */ 1725 MNT_ILOCK(mp); 1726 if (vp == NULL && (flags & V_MNTREF) == 0) 1727 MNT_REF(mp); 1728 if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { 1729 mp->mnt_secondary_writes++; 1730 mp->mnt_secondary_accwrites++; 1731 MNT_IUNLOCK(mp); 1732 return (0); 1733 } 1734 if (flags & V_NOWAIT) { 1735 MNT_REL(mp); 1736 MNT_IUNLOCK(mp); 1737 return (EWOULDBLOCK); 1738 } 1739 /* 1740 * Wait for the suspension to finish. 1741 */ 1742 error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP | 1743 ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0), 1744 "suspfs", 0); 1745 vfs_rel(mp); 1746 if (error == 0) 1747 goto retry; 1748 return (error); 1749 } 1750 1751 /* 1752 * Filesystem write operation has completed. If we are suspending and this 1753 * operation is the last one, notify the suspender that the suspension is 1754 * now in effect. 1755 */ 1756 void 1757 vn_finished_write(mp) 1758 struct mount *mp; 1759 { 1760 if (mp == NULL || !vn_suspendable(mp)) 1761 return; 1762 MNT_ILOCK(mp); 1763 MNT_REL(mp); 1764 mp->mnt_writeopcount--; 1765 if (mp->mnt_writeopcount < 0) 1766 panic("vn_finished_write: neg cnt"); 1767 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1768 mp->mnt_writeopcount <= 0) 1769 wakeup(&mp->mnt_writeopcount); 1770 MNT_IUNLOCK(mp); 1771 } 1772 1773 1774 /* 1775 * Filesystem secondary write operation has completed. If we are 1776 * suspending and this operation is the last one, notify the suspender 1777 * that the suspension is now in effect. 1778 */ 1779 void 1780 vn_finished_secondary_write(mp) 1781 struct mount *mp; 1782 { 1783 if (mp == NULL || !vn_suspendable(mp)) 1784 return; 1785 MNT_ILOCK(mp); 1786 MNT_REL(mp); 1787 mp->mnt_secondary_writes--; 1788 if (mp->mnt_secondary_writes < 0) 1789 panic("vn_finished_secondary_write: neg cnt"); 1790 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && 1791 mp->mnt_secondary_writes <= 0) 1792 wakeup(&mp->mnt_secondary_writes); 1793 MNT_IUNLOCK(mp); 1794 } 1795 1796 1797 1798 /* 1799 * Request a filesystem to suspend write operations. 1800 */ 1801 int 1802 vfs_write_suspend(struct mount *mp, int flags) 1803 { 1804 int error; 1805 1806 MPASS(vn_suspendable(mp)); 1807 1808 MNT_ILOCK(mp); 1809 if (mp->mnt_susp_owner == curthread) { 1810 MNT_IUNLOCK(mp); 1811 return (EALREADY); 1812 } 1813 while (mp->mnt_kern_flag & MNTK_SUSPEND) 1814 msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); 1815 1816 /* 1817 * Unmount holds a write reference on the mount point. If we 1818 * own busy reference and drain for writers, we deadlock with 1819 * the reference draining in the unmount path. Callers of 1820 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if 1821 * vfs_busy() reference is owned and caller is not in the 1822 * unmount context. 1823 */ 1824 if ((flags & VS_SKIP_UNMOUNT) != 0 && 1825 (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { 1826 MNT_IUNLOCK(mp); 1827 return (EBUSY); 1828 } 1829 1830 mp->mnt_kern_flag |= MNTK_SUSPEND; 1831 mp->mnt_susp_owner = curthread; 1832 if (mp->mnt_writeopcount > 0) 1833 (void) msleep(&mp->mnt_writeopcount, 1834 MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); 1835 else 1836 MNT_IUNLOCK(mp); 1837 if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) 1838 vfs_write_resume(mp, 0); 1839 return (error); 1840 } 1841 1842 /* 1843 * Request a filesystem to resume write operations. 1844 */ 1845 void 1846 vfs_write_resume(struct mount *mp, int flags) 1847 { 1848 1849 MPASS(vn_suspendable(mp)); 1850 1851 MNT_ILOCK(mp); 1852 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { 1853 KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); 1854 mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | 1855 MNTK_SUSPENDED); 1856 mp->mnt_susp_owner = NULL; 1857 wakeup(&mp->mnt_writeopcount); 1858 wakeup(&mp->mnt_flag); 1859 curthread->td_pflags &= ~TDP_IGNSUSP; 1860 if ((flags & VR_START_WRITE) != 0) { 1861 MNT_REF(mp); 1862 mp->mnt_writeopcount++; 1863 } 1864 MNT_IUNLOCK(mp); 1865 if ((flags & VR_NO_SUSPCLR) == 0) 1866 VFS_SUSP_CLEAN(mp); 1867 } else if ((flags & VR_START_WRITE) != 0) { 1868 MNT_REF(mp); 1869 vn_start_write_locked(mp, 0); 1870 } else { 1871 MNT_IUNLOCK(mp); 1872 } 1873 } 1874 1875 /* 1876 * Helper loop around vfs_write_suspend() for filesystem unmount VFS 1877 * methods. 1878 */ 1879 int 1880 vfs_write_suspend_umnt(struct mount *mp) 1881 { 1882 int error; 1883 1884 MPASS(vn_suspendable(mp)); 1885 KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0, 1886 ("vfs_write_suspend_umnt: recursed")); 1887 1888 /* dounmount() already called vn_start_write(). */ 1889 for (;;) { 1890 vn_finished_write(mp); 1891 error = vfs_write_suspend(mp, 0); 1892 if (error != 0) { 1893 vn_start_write(NULL, &mp, V_WAIT); 1894 return (error); 1895 } 1896 MNT_ILOCK(mp); 1897 if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0) 1898 break; 1899 MNT_IUNLOCK(mp); 1900 vn_start_write(NULL, &mp, V_WAIT); 1901 } 1902 mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); 1903 wakeup(&mp->mnt_flag); 1904 MNT_IUNLOCK(mp); 1905 curthread->td_pflags |= TDP_IGNSUSP; 1906 return (0); 1907 } 1908 1909 /* 1910 * Implement kqueues for files by translating it to vnode operation. 1911 */ 1912 static int 1913 vn_kqfilter(struct file *fp, struct knote *kn) 1914 { 1915 1916 return (VOP_KQFILTER(fp->f_vnode, kn)); 1917 } 1918 1919 /* 1920 * Simplified in-kernel wrapper calls for extended attribute access. 1921 * Both calls pass in a NULL credential, authorizing as "kernel" access. 1922 * Set IO_NODELOCKED in ioflg if the vnode is already locked. 1923 */ 1924 int 1925 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, 1926 const char *attrname, int *buflen, char *buf, struct thread *td) 1927 { 1928 struct uio auio; 1929 struct iovec iov; 1930 int error; 1931 1932 iov.iov_len = *buflen; 1933 iov.iov_base = buf; 1934 1935 auio.uio_iov = &iov; 1936 auio.uio_iovcnt = 1; 1937 auio.uio_rw = UIO_READ; 1938 auio.uio_segflg = UIO_SYSSPACE; 1939 auio.uio_td = td; 1940 auio.uio_offset = 0; 1941 auio.uio_resid = *buflen; 1942 1943 if ((ioflg & IO_NODELOCKED) == 0) 1944 vn_lock(vp, LK_SHARED | LK_RETRY); 1945 1946 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1947 1948 /* authorize attribute retrieval as kernel */ 1949 error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, 1950 td); 1951 1952 if ((ioflg & IO_NODELOCKED) == 0) 1953 VOP_UNLOCK(vp, 0); 1954 1955 if (error == 0) { 1956 *buflen = *buflen - auio.uio_resid; 1957 } 1958 1959 return (error); 1960 } 1961 1962 /* 1963 * XXX failure mode if partially written? 1964 */ 1965 int 1966 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, 1967 const char *attrname, int buflen, char *buf, struct thread *td) 1968 { 1969 struct uio auio; 1970 struct iovec iov; 1971 struct mount *mp; 1972 int error; 1973 1974 iov.iov_len = buflen; 1975 iov.iov_base = buf; 1976 1977 auio.uio_iov = &iov; 1978 auio.uio_iovcnt = 1; 1979 auio.uio_rw = UIO_WRITE; 1980 auio.uio_segflg = UIO_SYSSPACE; 1981 auio.uio_td = td; 1982 auio.uio_offset = 0; 1983 auio.uio_resid = buflen; 1984 1985 if ((ioflg & IO_NODELOCKED) == 0) { 1986 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 1987 return (error); 1988 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1989 } 1990 1991 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 1992 1993 /* authorize attribute setting as kernel */ 1994 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); 1995 1996 if ((ioflg & IO_NODELOCKED) == 0) { 1997 vn_finished_write(mp); 1998 VOP_UNLOCK(vp, 0); 1999 } 2000 2001 return (error); 2002 } 2003 2004 int 2005 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, 2006 const char *attrname, struct thread *td) 2007 { 2008 struct mount *mp; 2009 int error; 2010 2011 if ((ioflg & IO_NODELOCKED) == 0) { 2012 if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) 2013 return (error); 2014 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2015 } 2016 2017 ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); 2018 2019 /* authorize attribute removal as kernel */ 2020 error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); 2021 if (error == EOPNOTSUPP) 2022 error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, 2023 NULL, td); 2024 2025 if ((ioflg & IO_NODELOCKED) == 0) { 2026 vn_finished_write(mp); 2027 VOP_UNLOCK(vp, 0); 2028 } 2029 2030 return (error); 2031 } 2032 2033 static int 2034 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags, 2035 struct vnode **rvp) 2036 { 2037 2038 return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp)); 2039 } 2040 2041 int 2042 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) 2043 { 2044 2045 return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino, 2046 lkflags, rvp)); 2047 } 2048 2049 int 2050 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, 2051 int lkflags, struct vnode **rvp) 2052 { 2053 struct mount *mp; 2054 int ltype, error; 2055 2056 ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get"); 2057 mp = vp->v_mount; 2058 ltype = VOP_ISLOCKED(vp); 2059 KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, 2060 ("vn_vget_ino: vp not locked")); 2061 error = vfs_busy(mp, MBF_NOWAIT); 2062 if (error != 0) { 2063 vfs_ref(mp); 2064 VOP_UNLOCK(vp, 0); 2065 error = vfs_busy(mp, 0); 2066 vn_lock(vp, ltype | LK_RETRY); 2067 vfs_rel(mp); 2068 if (error != 0) 2069 return (ENOENT); 2070 if (vp->v_iflag & VI_DOOMED) { 2071 vfs_unbusy(mp); 2072 return (ENOENT); 2073 } 2074 } 2075 VOP_UNLOCK(vp, 0); 2076 error = alloc(mp, alloc_arg, lkflags, rvp); 2077 vfs_unbusy(mp); 2078 if (*rvp != vp) 2079 vn_lock(vp, ltype | LK_RETRY); 2080 if (vp->v_iflag & VI_DOOMED) { 2081 if (error == 0) { 2082 if (*rvp == vp) 2083 vunref(vp); 2084 else 2085 vput(*rvp); 2086 } 2087 error = ENOENT; 2088 } 2089 return (error); 2090 } 2091 2092 int 2093 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, 2094 struct thread *td) 2095 { 2096 2097 if (vp->v_type != VREG || td == NULL) 2098 return (0); 2099 if ((uoff_t)uio->uio_offset + uio->uio_resid > 2100 lim_cur(td, RLIMIT_FSIZE)) { 2101 PROC_LOCK(td->td_proc); 2102 kern_psignal(td->td_proc, SIGXFSZ); 2103 PROC_UNLOCK(td->td_proc); 2104 return (EFBIG); 2105 } 2106 return (0); 2107 } 2108 2109 int 2110 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, 2111 struct thread *td) 2112 { 2113 struct vnode *vp; 2114 2115 vp = fp->f_vnode; 2116 #ifdef AUDIT 2117 vn_lock(vp, LK_SHARED | LK_RETRY); 2118 AUDIT_ARG_VNODE1(vp); 2119 VOP_UNLOCK(vp, 0); 2120 #endif 2121 return (setfmode(td, active_cred, vp, mode)); 2122 } 2123 2124 int 2125 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, 2126 struct thread *td) 2127 { 2128 struct vnode *vp; 2129 2130 vp = fp->f_vnode; 2131 #ifdef AUDIT 2132 vn_lock(vp, LK_SHARED | LK_RETRY); 2133 AUDIT_ARG_VNODE1(vp); 2134 VOP_UNLOCK(vp, 0); 2135 #endif 2136 return (setfown(td, active_cred, vp, uid, gid)); 2137 } 2138 2139 void 2140 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) 2141 { 2142 vm_object_t object; 2143 2144 if ((object = vp->v_object) == NULL) 2145 return; 2146 VM_OBJECT_WLOCK(object); 2147 vm_object_page_remove(object, start, end, 0); 2148 VM_OBJECT_WUNLOCK(object); 2149 } 2150 2151 int 2152 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) 2153 { 2154 struct vattr va; 2155 daddr_t bn, bnp; 2156 uint64_t bsize; 2157 off_t noff; 2158 int error; 2159 2160 KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, 2161 ("Wrong command %lu", cmd)); 2162 2163 if (vn_lock(vp, LK_SHARED) != 0) 2164 return (EBADF); 2165 if (vp->v_type != VREG) { 2166 error = ENOTTY; 2167 goto unlock; 2168 } 2169 error = VOP_GETATTR(vp, &va, cred); 2170 if (error != 0) 2171 goto unlock; 2172 noff = *off; 2173 if (noff >= va.va_size) { 2174 error = ENXIO; 2175 goto unlock; 2176 } 2177 bsize = vp->v_mount->mnt_stat.f_iosize; 2178 for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) { 2179 error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); 2180 if (error == EOPNOTSUPP) { 2181 error = ENOTTY; 2182 goto unlock; 2183 } 2184 if ((bnp == -1 && cmd == FIOSEEKHOLE) || 2185 (bnp != -1 && cmd == FIOSEEKDATA)) { 2186 noff = bn * bsize; 2187 if (noff < *off) 2188 noff = *off; 2189 goto unlock; 2190 } 2191 } 2192 if (noff > va.va_size) 2193 noff = va.va_size; 2194 /* noff == va.va_size. There is an implicit hole at the end of file. */ 2195 if (cmd == FIOSEEKDATA) 2196 error = ENXIO; 2197 unlock: 2198 VOP_UNLOCK(vp, 0); 2199 if (error == 0) 2200 *off = noff; 2201 return (error); 2202 } 2203 2204 int 2205 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td) 2206 { 2207 struct ucred *cred; 2208 struct vnode *vp; 2209 struct vattr vattr; 2210 off_t foffset, size; 2211 int error, noneg; 2212 2213 cred = td->td_ucred; 2214 vp = fp->f_vnode; 2215 foffset = foffset_lock(fp, 0); 2216 noneg = (vp->v_type != VCHR); 2217 error = 0; 2218 switch (whence) { 2219 case L_INCR: 2220 if (noneg && 2221 (foffset < 0 || 2222 (offset > 0 && foffset > OFF_MAX - offset))) { 2223 error = EOVERFLOW; 2224 break; 2225 } 2226 offset += foffset; 2227 break; 2228 case L_XTND: 2229 vn_lock(vp, LK_SHARED | LK_RETRY); 2230 error = VOP_GETATTR(vp, &vattr, cred); 2231 VOP_UNLOCK(vp, 0); 2232 if (error) 2233 break; 2234 2235 /* 2236 * If the file references a disk device, then fetch 2237 * the media size and use that to determine the ending 2238 * offset. 2239 */ 2240 if (vattr.va_size == 0 && vp->v_type == VCHR && 2241 fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0) 2242 vattr.va_size = size; 2243 if (noneg && 2244 (vattr.va_size > OFF_MAX || 2245 (offset > 0 && vattr.va_size > OFF_MAX - offset))) { 2246 error = EOVERFLOW; 2247 break; 2248 } 2249 offset += vattr.va_size; 2250 break; 2251 case L_SET: 2252 break; 2253 case SEEK_DATA: 2254 error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td); 2255 break; 2256 case SEEK_HOLE: 2257 error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td); 2258 break; 2259 default: 2260 error = EINVAL; 2261 } 2262 if (error == 0 && noneg && offset < 0) 2263 error = EINVAL; 2264 if (error != 0) 2265 goto drop; 2266 VFS_KNOTE_UNLOCKED(vp, 0); 2267 td->td_uretoff.tdu_off = offset; 2268 drop: 2269 foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0); 2270 return (error); 2271 } 2272 2273 int 2274 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, 2275 struct thread *td) 2276 { 2277 int error; 2278 2279 /* 2280 * Grant permission if the caller is the owner of the file, or 2281 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on 2282 * on the file. If the time pointer is null, then write 2283 * permission on the file is also sufficient. 2284 * 2285 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes: 2286 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES 2287 * will be allowed to set the times [..] to the current 2288 * server time. 2289 */ 2290 error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td); 2291 if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0) 2292 error = VOP_ACCESS(vp, VWRITE, cred, td); 2293 return (error); 2294 } 2295 2296 int 2297 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) 2298 { 2299 struct vnode *vp; 2300 int error; 2301 2302 if (fp->f_type == DTYPE_FIFO) 2303 kif->kf_type = KF_TYPE_FIFO; 2304 else 2305 kif->kf_type = KF_TYPE_VNODE; 2306 vp = fp->f_vnode; 2307 vref(vp); 2308 FILEDESC_SUNLOCK(fdp); 2309 error = vn_fill_kinfo_vnode(vp, kif); 2310 vrele(vp); 2311 FILEDESC_SLOCK(fdp); 2312 return (error); 2313 } 2314 2315 static inline void 2316 vn_fill_junk(struct kinfo_file *kif) 2317 { 2318 size_t len, olen; 2319 2320 /* 2321 * Simulate vn_fullpath returning changing values for a given 2322 * vp during e.g. coredump. 2323 */ 2324 len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1; 2325 olen = strlen(kif->kf_path); 2326 if (len < olen) 2327 strcpy(&kif->kf_path[len - 1], "$"); 2328 else 2329 for (; olen < len; olen++) 2330 strcpy(&kif->kf_path[olen], "A"); 2331 } 2332 2333 int 2334 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif) 2335 { 2336 struct vattr va; 2337 char *fullpath, *freepath; 2338 int error; 2339 2340 kif->kf_vnode_type = vntype_to_kinfo(vp->v_type); 2341 freepath = NULL; 2342 fullpath = "-"; 2343 error = vn_fullpath(curthread, vp, &fullpath, &freepath); 2344 if (error == 0) { 2345 strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); 2346 } 2347 if (freepath != NULL) 2348 free(freepath, M_TEMP); 2349 2350 KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path, 2351 vn_fill_junk(kif); 2352 ); 2353 2354 /* 2355 * Retrieve vnode attributes. 2356 */ 2357 va.va_fsid = VNOVAL; 2358 va.va_rdev = NODEV; 2359 vn_lock(vp, LK_SHARED | LK_RETRY); 2360 error = VOP_GETATTR(vp, &va, curthread->td_ucred); 2361 VOP_UNLOCK(vp, 0); 2362 if (error != 0) 2363 return (error); 2364 if (va.va_fsid != VNOVAL) 2365 kif->kf_un.kf_file.kf_file_fsid = va.va_fsid; 2366 else 2367 kif->kf_un.kf_file.kf_file_fsid = 2368 vp->v_mount->mnt_stat.f_fsid.val[0]; 2369 kif->kf_un.kf_file.kf_file_fileid = va.va_fileid; 2370 kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode); 2371 kif->kf_un.kf_file.kf_file_size = va.va_size; 2372 kif->kf_un.kf_file.kf_file_rdev = va.va_rdev; 2373 return (0); 2374 } 2375 2376 int 2377 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, 2378 vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, 2379 struct thread *td) 2380 { 2381 #ifdef HWPMC_HOOKS 2382 struct pmckern_map_in pkm; 2383 #endif 2384 struct mount *mp; 2385 struct vnode *vp; 2386 vm_object_t object; 2387 vm_prot_t maxprot; 2388 boolean_t writecounted; 2389 int error; 2390 2391 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \ 2392 defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) 2393 /* 2394 * POSIX shared-memory objects are defined to have 2395 * kernel persistence, and are not defined to support 2396 * read(2)/write(2) -- or even open(2). Thus, we can 2397 * use MAP_ASYNC to trade on-disk coherence for speed. 2398 * The shm_open(3) library routine turns on the FPOSIXSHM 2399 * flag to request this behavior. 2400 */ 2401 if ((fp->f_flag & FPOSIXSHM) != 0) 2402 flags |= MAP_NOSYNC; 2403 #endif 2404 vp = fp->f_vnode; 2405 2406 /* 2407 * Ensure that file and memory protections are 2408 * compatible. Note that we only worry about 2409 * writability if mapping is shared; in this case, 2410 * current and max prot are dictated by the open file. 2411 * XXX use the vnode instead? Problem is: what 2412 * credentials do we use for determination? What if 2413 * proc does a setuid? 2414 */ 2415 mp = vp->v_mount; 2416 if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) 2417 maxprot = VM_PROT_NONE; 2418 else 2419 maxprot = VM_PROT_EXECUTE; 2420 if ((fp->f_flag & FREAD) != 0) 2421 maxprot |= VM_PROT_READ; 2422 else if ((prot & VM_PROT_READ) != 0) 2423 return (EACCES); 2424 2425 /* 2426 * If we are sharing potential changes via MAP_SHARED and we 2427 * are trying to get write permission although we opened it 2428 * without asking for it, bail out. 2429 */ 2430 if ((flags & MAP_SHARED) != 0) { 2431 if ((fp->f_flag & FWRITE) != 0) 2432 maxprot |= VM_PROT_WRITE; 2433 else if ((prot & VM_PROT_WRITE) != 0) 2434 return (EACCES); 2435 } else { 2436 maxprot |= VM_PROT_WRITE; 2437 cap_maxprot |= VM_PROT_WRITE; 2438 } 2439 maxprot &= cap_maxprot; 2440 2441 writecounted = FALSE; 2442 error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp, 2443 &foff, &object, &writecounted); 2444 if (error != 0) 2445 return (error); 2446 error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, 2447 foff, writecounted, td); 2448 if (error != 0) { 2449 /* 2450 * If this mapping was accounted for in the vnode's 2451 * writecount, then undo that now. 2452 */ 2453 if (writecounted) 2454 vnode_pager_release_writecount(object, 0, size); 2455 vm_object_deallocate(object); 2456 } 2457 #ifdef HWPMC_HOOKS 2458 /* Inform hwpmc(4) if an executable is being mapped. */ 2459 if (error == 0 && (prot & VM_PROT_EXECUTE) != 0) { 2460 pkm.pm_file = vp; 2461 pkm.pm_address = (uintptr_t) *addr; 2462 PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm); 2463 } 2464 #endif 2465 return (error); 2466 } 2467