xref: /freebsd/sys/kern/vfs_vnops.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/stat.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/mman.h>
63 #include <sys/mount.h>
64 #include <sys/mutex.h>
65 #include <sys/namei.h>
66 #include <sys/vnode.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/filio.h>
70 #include <sys/resourcevar.h>
71 #include <sys/rwlock.h>
72 #include <sys/sx.h>
73 #include <sys/sysctl.h>
74 #include <sys/ttycom.h>
75 #include <sys/conf.h>
76 #include <sys/syslog.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 
80 #include <security/audit/audit.h>
81 #include <security/mac/mac_framework.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vnode_pager.h>
90 
91 #ifdef HWPMC_HOOKS
92 #include <sys/pmckern.h>
93 #endif
94 
95 static fo_rdwr_t	vn_read;
96 static fo_rdwr_t	vn_write;
97 static fo_rdwr_t	vn_io_fault;
98 static fo_truncate_t	vn_truncate;
99 static fo_ioctl_t	vn_ioctl;
100 static fo_poll_t	vn_poll;
101 static fo_kqfilter_t	vn_kqfilter;
102 static fo_stat_t	vn_statfile;
103 static fo_close_t	vn_closefile;
104 static fo_mmap_t	vn_mmap;
105 
106 struct 	fileops vnops = {
107 	.fo_read = vn_io_fault,
108 	.fo_write = vn_io_fault,
109 	.fo_truncate = vn_truncate,
110 	.fo_ioctl = vn_ioctl,
111 	.fo_poll = vn_poll,
112 	.fo_kqfilter = vn_kqfilter,
113 	.fo_stat = vn_statfile,
114 	.fo_close = vn_closefile,
115 	.fo_chmod = vn_chmod,
116 	.fo_chown = vn_chown,
117 	.fo_sendfile = vn_sendfile,
118 	.fo_seek = vn_seek,
119 	.fo_fill_kinfo = vn_fill_kinfo,
120 	.fo_mmap = vn_mmap,
121 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
122 };
123 
124 static const int io_hold_cnt = 16;
125 static int vn_io_fault_enable = 1;
126 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
127     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
128 static int vn_io_fault_prefault = 0;
129 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
130     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
131 static u_long vn_io_faults_cnt;
132 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
133     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
134 
135 /*
136  * Returns true if vn_io_fault mode of handling the i/o request should
137  * be used.
138  */
139 static bool
140 do_vn_io_fault(struct vnode *vp, struct uio *uio)
141 {
142 	struct mount *mp;
143 
144 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
145 	    (mp = vp->v_mount) != NULL &&
146 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
147 }
148 
149 /*
150  * Structure used to pass arguments to vn_io_fault1(), to do either
151  * file- or vnode-based I/O calls.
152  */
153 struct vn_io_fault_args {
154 	enum {
155 		VN_IO_FAULT_FOP,
156 		VN_IO_FAULT_VOP
157 	} kind;
158 	struct ucred *cred;
159 	int flags;
160 	union {
161 		struct fop_args_tag {
162 			struct file *fp;
163 			fo_rdwr_t *doio;
164 		} fop_args;
165 		struct vop_args_tag {
166 			struct vnode *vp;
167 		} vop_args;
168 	} args;
169 };
170 
171 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
172     struct vn_io_fault_args *args, struct thread *td);
173 
174 int
175 vn_open(ndp, flagp, cmode, fp)
176 	struct nameidata *ndp;
177 	int *flagp, cmode;
178 	struct file *fp;
179 {
180 	struct thread *td = ndp->ni_cnd.cn_thread;
181 
182 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
183 }
184 
185 /*
186  * Common code for vnode open operations via a name lookup.
187  * Lookup the vnode and invoke VOP_CREATE if needed.
188  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
189  *
190  * Note that this does NOT free nameidata for the successful case,
191  * due to the NDINIT being done elsewhere.
192  */
193 int
194 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
195     struct ucred *cred, struct file *fp)
196 {
197 	struct vnode *vp;
198 	struct mount *mp;
199 	struct thread *td = ndp->ni_cnd.cn_thread;
200 	struct vattr vat;
201 	struct vattr *vap = &vat;
202 	int fmode, error;
203 
204 restart:
205 	fmode = *flagp;
206 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
207 	    O_EXCL | O_DIRECTORY))
208 		return (EINVAL);
209 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
210 		ndp->ni_cnd.cn_nameiop = CREATE;
211 		/*
212 		 * Set NOCACHE to avoid flushing the cache when
213 		 * rolling in many files at once.
214 		*/
215 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
216 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
217 			ndp->ni_cnd.cn_flags |= FOLLOW;
218 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
219 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
220 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
221 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
222 		bwillwrite();
223 		if ((error = namei(ndp)) != 0)
224 			return (error);
225 		if (ndp->ni_vp == NULL) {
226 			VATTR_NULL(vap);
227 			vap->va_type = VREG;
228 			vap->va_mode = cmode;
229 			if (fmode & O_EXCL)
230 				vap->va_vaflags |= VA_EXCLUSIVE;
231 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
232 				NDFREE(ndp, NDF_ONLY_PNBUF);
233 				vput(ndp->ni_dvp);
234 				if ((error = vn_start_write(NULL, &mp,
235 				    V_XSLEEP | PCATCH)) != 0)
236 					return (error);
237 				goto restart;
238 			}
239 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
240 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
241 #ifdef MAC
242 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
243 			    &ndp->ni_cnd, vap);
244 			if (error == 0)
245 #endif
246 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
247 						   &ndp->ni_cnd, vap);
248 			vput(ndp->ni_dvp);
249 			vn_finished_write(mp);
250 			if (error) {
251 				NDFREE(ndp, NDF_ONLY_PNBUF);
252 				return (error);
253 			}
254 			fmode &= ~O_TRUNC;
255 			vp = ndp->ni_vp;
256 		} else {
257 			if (ndp->ni_dvp == ndp->ni_vp)
258 				vrele(ndp->ni_dvp);
259 			else
260 				vput(ndp->ni_dvp);
261 			ndp->ni_dvp = NULL;
262 			vp = ndp->ni_vp;
263 			if (fmode & O_EXCL) {
264 				error = EEXIST;
265 				goto bad;
266 			}
267 			fmode &= ~O_CREAT;
268 		}
269 	} else {
270 		ndp->ni_cnd.cn_nameiop = LOOKUP;
271 		ndp->ni_cnd.cn_flags = ISOPEN |
272 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
273 		if (!(fmode & FWRITE))
274 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
275 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
276 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
277 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
278 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
279 		if ((error = namei(ndp)) != 0)
280 			return (error);
281 		vp = ndp->ni_vp;
282 	}
283 	error = vn_open_vnode(vp, fmode, cred, td, fp);
284 	if (error)
285 		goto bad;
286 	*flagp = fmode;
287 	return (0);
288 bad:
289 	NDFREE(ndp, NDF_ONLY_PNBUF);
290 	vput(vp);
291 	*flagp = fmode;
292 	ndp->ni_vp = NULL;
293 	return (error);
294 }
295 
296 /*
297  * Common code for vnode open operations once a vnode is located.
298  * Check permissions, and call the VOP_OPEN routine.
299  */
300 int
301 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
302     struct thread *td, struct file *fp)
303 {
304 	accmode_t accmode;
305 	struct flock lf;
306 	int error, lock_flags, type;
307 
308 	if (vp->v_type == VLNK)
309 		return (EMLINK);
310 	if (vp->v_type == VSOCK)
311 		return (EOPNOTSUPP);
312 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
313 		return (ENOTDIR);
314 	accmode = 0;
315 	if (fmode & (FWRITE | O_TRUNC)) {
316 		if (vp->v_type == VDIR)
317 			return (EISDIR);
318 		accmode |= VWRITE;
319 	}
320 	if (fmode & FREAD)
321 		accmode |= VREAD;
322 	if (fmode & FEXEC)
323 		accmode |= VEXEC;
324 	if ((fmode & O_APPEND) && (fmode & FWRITE))
325 		accmode |= VAPPEND;
326 #ifdef MAC
327 	if (fmode & O_CREAT)
328 		accmode |= VCREAT;
329 	if (fmode & O_VERIFY)
330 		accmode |= VVERIFY;
331 	error = mac_vnode_check_open(cred, vp, accmode);
332 	if (error)
333 		return (error);
334 
335 	accmode &= ~(VCREAT | VVERIFY);
336 #endif
337 	if ((fmode & O_CREAT) == 0) {
338 		if (accmode & VWRITE) {
339 			error = vn_writechk(vp);
340 			if (error)
341 				return (error);
342 		}
343 		if (accmode) {
344 		        error = VOP_ACCESS(vp, accmode, cred, td);
345 			if (error)
346 				return (error);
347 		}
348 	}
349 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
350 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
351 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
352 		return (error);
353 
354 	while ((fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
355 		KASSERT(fp != NULL, ("open with flock requires fp"));
356 		if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) {
357 			error = EOPNOTSUPP;
358 			break;
359 		}
360 		lock_flags = VOP_ISLOCKED(vp);
361 		VOP_UNLOCK(vp, 0);
362 		lf.l_whence = SEEK_SET;
363 		lf.l_start = 0;
364 		lf.l_len = 0;
365 		if (fmode & O_EXLOCK)
366 			lf.l_type = F_WRLCK;
367 		else
368 			lf.l_type = F_RDLCK;
369 		type = F_FLOCK;
370 		if ((fmode & FNONBLOCK) == 0)
371 			type |= F_WAIT;
372 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
373 		if (error == 0)
374 			fp->f_flag |= FHASLOCK;
375 		vn_lock(vp, lock_flags | LK_RETRY);
376 		if (error != 0)
377 			break;
378 		if ((vp->v_iflag & VI_DOOMED) != 0) {
379 			error = ENOENT;
380 			break;
381 		}
382 
383 		/*
384 		 * Another thread might have used this vnode as an
385 		 * executable while the vnode lock was dropped.
386 		 * Ensure the vnode is still able to be opened for
387 		 * writing after the lock has been obtained.
388 		 */
389 		if ((accmode & VWRITE) != 0)
390 			error = vn_writechk(vp);
391 		break;
392 	}
393 
394 	if (error != 0) {
395 		fp->f_flag |= FOPENFAILED;
396 		fp->f_vnode = vp;
397 		if (fp->f_ops == &badfileops) {
398 			fp->f_type = DTYPE_VNODE;
399 			fp->f_ops = &vnops;
400 		}
401 		vref(vp);
402 	} else if  ((fmode & FWRITE) != 0) {
403 		VOP_ADD_WRITECOUNT(vp, 1);
404 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
405 		    __func__, vp, vp->v_writecount);
406 	}
407 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
408 	return (error);
409 }
410 
411 /*
412  * Check for write permissions on the specified vnode.
413  * Prototype text segments cannot be written.
414  */
415 int
416 vn_writechk(struct vnode *vp)
417 {
418 
419 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
420 	/*
421 	 * If there's shared text associated with
422 	 * the vnode, try to free it up once.  If
423 	 * we fail, we can't allow writing.
424 	 */
425 	if (VOP_IS_TEXT(vp))
426 		return (ETXTBSY);
427 
428 	return (0);
429 }
430 
431 /*
432  * Vnode close call
433  */
434 static int
435 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
436     struct thread *td, bool keep_ref)
437 {
438 	struct mount *mp;
439 	int error, lock_flags;
440 
441 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
442 	    MNT_EXTENDED_SHARED(vp->v_mount))
443 		lock_flags = LK_SHARED;
444 	else
445 		lock_flags = LK_EXCLUSIVE;
446 
447 	vn_start_write(vp, &mp, V_WAIT);
448 	vn_lock(vp, lock_flags | LK_RETRY);
449 	AUDIT_ARG_VNODE1(vp);
450 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
451 		VNASSERT(vp->v_writecount > 0, vp,
452 		    ("vn_close: negative writecount"));
453 		VOP_ADD_WRITECOUNT(vp, -1);
454 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
455 		    __func__, vp, vp->v_writecount);
456 	}
457 	error = VOP_CLOSE(vp, flags, file_cred, td);
458 	if (keep_ref)
459 		VOP_UNLOCK(vp, 0);
460 	else
461 		vput(vp);
462 	vn_finished_write(mp);
463 	return (error);
464 }
465 
466 int
467 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
468     struct thread *td)
469 {
470 
471 	return (vn_close1(vp, flags, file_cred, td, false));
472 }
473 
474 /*
475  * Heuristic to detect sequential operation.
476  */
477 static int
478 sequential_heuristic(struct uio *uio, struct file *fp)
479 {
480 
481 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
482 	if (fp->f_flag & FRDAHEAD)
483 		return (fp->f_seqcount << IO_SEQSHIFT);
484 
485 	/*
486 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
487 	 * that the first I/O is normally considered to be slightly
488 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
489 	 * unless previous seeks have reduced f_seqcount to 0, in which
490 	 * case offset 0 is not special.
491 	 */
492 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
493 	    uio->uio_offset == fp->f_nextoff) {
494 		/*
495 		 * f_seqcount is in units of fixed-size blocks so that it
496 		 * depends mainly on the amount of sequential I/O and not
497 		 * much on the number of sequential I/O's.  The fixed size
498 		 * of 16384 is hard-coded here since it is (not quite) just
499 		 * a magic size that works well here.  This size is more
500 		 * closely related to the best I/O size for real disks than
501 		 * to any block size used by software.
502 		 */
503 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
504 		if (fp->f_seqcount > IO_SEQMAX)
505 			fp->f_seqcount = IO_SEQMAX;
506 		return (fp->f_seqcount << IO_SEQSHIFT);
507 	}
508 
509 	/* Not sequential.  Quickly draw-down sequentiality. */
510 	if (fp->f_seqcount > 1)
511 		fp->f_seqcount = 1;
512 	else
513 		fp->f_seqcount = 0;
514 	return (0);
515 }
516 
517 /*
518  * Package up an I/O request on a vnode into a uio and do it.
519  */
520 int
521 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
522     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
523     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
524 {
525 	struct uio auio;
526 	struct iovec aiov;
527 	struct mount *mp;
528 	struct ucred *cred;
529 	void *rl_cookie;
530 	struct vn_io_fault_args args;
531 	int error, lock_flags;
532 
533 	auio.uio_iov = &aiov;
534 	auio.uio_iovcnt = 1;
535 	aiov.iov_base = base;
536 	aiov.iov_len = len;
537 	auio.uio_resid = len;
538 	auio.uio_offset = offset;
539 	auio.uio_segflg = segflg;
540 	auio.uio_rw = rw;
541 	auio.uio_td = td;
542 	error = 0;
543 
544 	if ((ioflg & IO_NODELOCKED) == 0) {
545 		if ((ioflg & IO_RANGELOCKED) == 0) {
546 			if (rw == UIO_READ) {
547 				rl_cookie = vn_rangelock_rlock(vp, offset,
548 				    offset + len);
549 			} else {
550 				rl_cookie = vn_rangelock_wlock(vp, offset,
551 				    offset + len);
552 			}
553 		} else
554 			rl_cookie = NULL;
555 		mp = NULL;
556 		if (rw == UIO_WRITE) {
557 			if (vp->v_type != VCHR &&
558 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
559 			    != 0)
560 				goto out;
561 			if (MNT_SHARED_WRITES(mp) ||
562 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
563 				lock_flags = LK_SHARED;
564 			else
565 				lock_flags = LK_EXCLUSIVE;
566 		} else
567 			lock_flags = LK_SHARED;
568 		vn_lock(vp, lock_flags | LK_RETRY);
569 	} else
570 		rl_cookie = NULL;
571 
572 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
573 #ifdef MAC
574 	if ((ioflg & IO_NOMACCHECK) == 0) {
575 		if (rw == UIO_READ)
576 			error = mac_vnode_check_read(active_cred, file_cred,
577 			    vp);
578 		else
579 			error = mac_vnode_check_write(active_cred, file_cred,
580 			    vp);
581 	}
582 #endif
583 	if (error == 0) {
584 		if (file_cred != NULL)
585 			cred = file_cred;
586 		else
587 			cred = active_cred;
588 		if (do_vn_io_fault(vp, &auio)) {
589 			args.kind = VN_IO_FAULT_VOP;
590 			args.cred = cred;
591 			args.flags = ioflg;
592 			args.args.vop_args.vp = vp;
593 			error = vn_io_fault1(vp, &auio, &args, td);
594 		} else if (rw == UIO_READ) {
595 			error = VOP_READ(vp, &auio, ioflg, cred);
596 		} else /* if (rw == UIO_WRITE) */ {
597 			error = VOP_WRITE(vp, &auio, ioflg, cred);
598 		}
599 	}
600 	if (aresid)
601 		*aresid = auio.uio_resid;
602 	else
603 		if (auio.uio_resid && error == 0)
604 			error = EIO;
605 	if ((ioflg & IO_NODELOCKED) == 0) {
606 		VOP_UNLOCK(vp, 0);
607 		if (mp != NULL)
608 			vn_finished_write(mp);
609 	}
610  out:
611 	if (rl_cookie != NULL)
612 		vn_rangelock_unlock(vp, rl_cookie);
613 	return (error);
614 }
615 
616 /*
617  * Package up an I/O request on a vnode into a uio and do it.  The I/O
618  * request is split up into smaller chunks and we try to avoid saturating
619  * the buffer cache while potentially holding a vnode locked, so we
620  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
621  * to give other processes a chance to lock the vnode (either other processes
622  * core'ing the same binary, or unrelated processes scanning the directory).
623  */
624 int
625 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
626     file_cred, aresid, td)
627 	enum uio_rw rw;
628 	struct vnode *vp;
629 	void *base;
630 	size_t len;
631 	off_t offset;
632 	enum uio_seg segflg;
633 	int ioflg;
634 	struct ucred *active_cred;
635 	struct ucred *file_cred;
636 	size_t *aresid;
637 	struct thread *td;
638 {
639 	int error = 0;
640 	ssize_t iaresid;
641 
642 	do {
643 		int chunk;
644 
645 		/*
646 		 * Force `offset' to a multiple of MAXBSIZE except possibly
647 		 * for the first chunk, so that filesystems only need to
648 		 * write full blocks except possibly for the first and last
649 		 * chunks.
650 		 */
651 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
652 
653 		if (chunk > len)
654 			chunk = len;
655 		if (rw != UIO_READ && vp->v_type == VREG)
656 			bwillwrite();
657 		iaresid = 0;
658 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
659 		    ioflg, active_cred, file_cred, &iaresid, td);
660 		len -= chunk;	/* aresid calc already includes length */
661 		if (error)
662 			break;
663 		offset += chunk;
664 		base = (char *)base + chunk;
665 		kern_yield(PRI_USER);
666 	} while (len);
667 	if (aresid)
668 		*aresid = len + iaresid;
669 	return (error);
670 }
671 
672 off_t
673 foffset_lock(struct file *fp, int flags)
674 {
675 	struct mtx *mtxp;
676 	off_t res;
677 
678 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
679 
680 #if OFF_MAX <= LONG_MAX
681 	/*
682 	 * Caller only wants the current f_offset value.  Assume that
683 	 * the long and shorter integer types reads are atomic.
684 	 */
685 	if ((flags & FOF_NOLOCK) != 0)
686 		return (fp->f_offset);
687 #endif
688 
689 	/*
690 	 * According to McKusick the vn lock was protecting f_offset here.
691 	 * It is now protected by the FOFFSET_LOCKED flag.
692 	 */
693 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
694 	mtx_lock(mtxp);
695 	if ((flags & FOF_NOLOCK) == 0) {
696 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
697 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
698 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
699 			    "vofflock", 0);
700 		}
701 		fp->f_vnread_flags |= FOFFSET_LOCKED;
702 	}
703 	res = fp->f_offset;
704 	mtx_unlock(mtxp);
705 	return (res);
706 }
707 
708 void
709 foffset_unlock(struct file *fp, off_t val, int flags)
710 {
711 	struct mtx *mtxp;
712 
713 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
714 
715 #if OFF_MAX <= LONG_MAX
716 	if ((flags & FOF_NOLOCK) != 0) {
717 		if ((flags & FOF_NOUPDATE) == 0)
718 			fp->f_offset = val;
719 		if ((flags & FOF_NEXTOFF) != 0)
720 			fp->f_nextoff = val;
721 		return;
722 	}
723 #endif
724 
725 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
726 	mtx_lock(mtxp);
727 	if ((flags & FOF_NOUPDATE) == 0)
728 		fp->f_offset = val;
729 	if ((flags & FOF_NEXTOFF) != 0)
730 		fp->f_nextoff = val;
731 	if ((flags & FOF_NOLOCK) == 0) {
732 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
733 		    ("Lost FOFFSET_LOCKED"));
734 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
735 			wakeup(&fp->f_vnread_flags);
736 		fp->f_vnread_flags = 0;
737 	}
738 	mtx_unlock(mtxp);
739 }
740 
741 void
742 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
743 {
744 
745 	if ((flags & FOF_OFFSET) == 0)
746 		uio->uio_offset = foffset_lock(fp, flags);
747 }
748 
749 void
750 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
751 {
752 
753 	if ((flags & FOF_OFFSET) == 0)
754 		foffset_unlock(fp, uio->uio_offset, flags);
755 }
756 
757 static int
758 get_advice(struct file *fp, struct uio *uio)
759 {
760 	struct mtx *mtxp;
761 	int ret;
762 
763 	ret = POSIX_FADV_NORMAL;
764 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
765 		return (ret);
766 
767 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
768 	mtx_lock(mtxp);
769 	if (fp->f_advice != NULL &&
770 	    uio->uio_offset >= fp->f_advice->fa_start &&
771 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
772 		ret = fp->f_advice->fa_advice;
773 	mtx_unlock(mtxp);
774 	return (ret);
775 }
776 
777 /*
778  * File table vnode read routine.
779  */
780 static int
781 vn_read(fp, uio, active_cred, flags, td)
782 	struct file *fp;
783 	struct uio *uio;
784 	struct ucred *active_cred;
785 	int flags;
786 	struct thread *td;
787 {
788 	struct vnode *vp;
789 	off_t orig_offset;
790 	int error, ioflag;
791 	int advice;
792 
793 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
794 	    uio->uio_td, td));
795 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
796 	vp = fp->f_vnode;
797 	ioflag = 0;
798 	if (fp->f_flag & FNONBLOCK)
799 		ioflag |= IO_NDELAY;
800 	if (fp->f_flag & O_DIRECT)
801 		ioflag |= IO_DIRECT;
802 	advice = get_advice(fp, uio);
803 	vn_lock(vp, LK_SHARED | LK_RETRY);
804 
805 	switch (advice) {
806 	case POSIX_FADV_NORMAL:
807 	case POSIX_FADV_SEQUENTIAL:
808 	case POSIX_FADV_NOREUSE:
809 		ioflag |= sequential_heuristic(uio, fp);
810 		break;
811 	case POSIX_FADV_RANDOM:
812 		/* Disable read-ahead for random I/O. */
813 		break;
814 	}
815 	orig_offset = uio->uio_offset;
816 
817 #ifdef MAC
818 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
819 	if (error == 0)
820 #endif
821 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
822 	fp->f_nextoff = uio->uio_offset;
823 	VOP_UNLOCK(vp, 0);
824 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
825 	    orig_offset != uio->uio_offset)
826 		/*
827 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
828 		 * for the backing file after a POSIX_FADV_NOREUSE
829 		 * read(2).
830 		 */
831 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
832 		    POSIX_FADV_DONTNEED);
833 	return (error);
834 }
835 
836 /*
837  * File table vnode write routine.
838  */
839 static int
840 vn_write(fp, uio, active_cred, flags, td)
841 	struct file *fp;
842 	struct uio *uio;
843 	struct ucred *active_cred;
844 	int flags;
845 	struct thread *td;
846 {
847 	struct vnode *vp;
848 	struct mount *mp;
849 	off_t orig_offset;
850 	int error, ioflag, lock_flags;
851 	int advice;
852 
853 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
854 	    uio->uio_td, td));
855 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
856 	vp = fp->f_vnode;
857 	if (vp->v_type == VREG)
858 		bwillwrite();
859 	ioflag = IO_UNIT;
860 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
861 		ioflag |= IO_APPEND;
862 	if (fp->f_flag & FNONBLOCK)
863 		ioflag |= IO_NDELAY;
864 	if (fp->f_flag & O_DIRECT)
865 		ioflag |= IO_DIRECT;
866 	if ((fp->f_flag & O_FSYNC) ||
867 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
868 		ioflag |= IO_SYNC;
869 	mp = NULL;
870 	if (vp->v_type != VCHR &&
871 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
872 		goto unlock;
873 
874 	advice = get_advice(fp, uio);
875 
876 	if (MNT_SHARED_WRITES(mp) ||
877 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
878 		lock_flags = LK_SHARED;
879 	} else {
880 		lock_flags = LK_EXCLUSIVE;
881 	}
882 
883 	vn_lock(vp, lock_flags | LK_RETRY);
884 	switch (advice) {
885 	case POSIX_FADV_NORMAL:
886 	case POSIX_FADV_SEQUENTIAL:
887 	case POSIX_FADV_NOREUSE:
888 		ioflag |= sequential_heuristic(uio, fp);
889 		break;
890 	case POSIX_FADV_RANDOM:
891 		/* XXX: Is this correct? */
892 		break;
893 	}
894 	orig_offset = uio->uio_offset;
895 
896 #ifdef MAC
897 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
898 	if (error == 0)
899 #endif
900 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
901 	fp->f_nextoff = uio->uio_offset;
902 	VOP_UNLOCK(vp, 0);
903 	if (vp->v_type != VCHR)
904 		vn_finished_write(mp);
905 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
906 	    orig_offset != uio->uio_offset)
907 		/*
908 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
909 		 * for the backing file after a POSIX_FADV_NOREUSE
910 		 * write(2).
911 		 */
912 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
913 		    POSIX_FADV_DONTNEED);
914 unlock:
915 	return (error);
916 }
917 
918 /*
919  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
920  * prevent the following deadlock:
921  *
922  * Assume that the thread A reads from the vnode vp1 into userspace
923  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
924  * currently not resident, then system ends up with the call chain
925  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
926  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
927  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
928  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
929  * backed by the pages of vnode vp1, and some page in buf2 is not
930  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
931  *
932  * To prevent the lock order reversal and deadlock, vn_io_fault() does
933  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
934  * Instead, it first tries to do the whole range i/o with pagefaults
935  * disabled. If all pages in the i/o buffer are resident and mapped,
936  * VOP will succeed (ignoring the genuine filesystem errors).
937  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
938  * i/o in chunks, with all pages in the chunk prefaulted and held
939  * using vm_fault_quick_hold_pages().
940  *
941  * Filesystems using this deadlock avoidance scheme should use the
942  * array of the held pages from uio, saved in the curthread->td_ma,
943  * instead of doing uiomove().  A helper function
944  * vn_io_fault_uiomove() converts uiomove request into
945  * uiomove_fromphys() over td_ma array.
946  *
947  * Since vnode locks do not cover the whole i/o anymore, rangelocks
948  * make the current i/o request atomic with respect to other i/os and
949  * truncations.
950  */
951 
952 /*
953  * Decode vn_io_fault_args and perform the corresponding i/o.
954  */
955 static int
956 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
957     struct thread *td)
958 {
959 	int error, save;
960 
961 	error = 0;
962 	save = vm_fault_disable_pagefaults();
963 	switch (args->kind) {
964 	case VN_IO_FAULT_FOP:
965 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
966 		    uio, args->cred, args->flags, td);
967 		break;
968 	case VN_IO_FAULT_VOP:
969 		if (uio->uio_rw == UIO_READ) {
970 			error = VOP_READ(args->args.vop_args.vp, uio,
971 			    args->flags, args->cred);
972 		} else if (uio->uio_rw == UIO_WRITE) {
973 			error = VOP_WRITE(args->args.vop_args.vp, uio,
974 			    args->flags, args->cred);
975 		}
976 		break;
977 	default:
978 		panic("vn_io_fault_doio: unknown kind of io %d %d",
979 		    args->kind, uio->uio_rw);
980 	}
981 	vm_fault_enable_pagefaults(save);
982 	return (error);
983 }
984 
985 static int
986 vn_io_fault_touch(char *base, const struct uio *uio)
987 {
988 	int r;
989 
990 	r = fubyte(base);
991 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
992 		return (EFAULT);
993 	return (0);
994 }
995 
996 static int
997 vn_io_fault_prefault_user(const struct uio *uio)
998 {
999 	char *base;
1000 	const struct iovec *iov;
1001 	size_t len;
1002 	ssize_t resid;
1003 	int error, i;
1004 
1005 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1006 	    ("vn_io_fault_prefault userspace"));
1007 
1008 	error = i = 0;
1009 	iov = uio->uio_iov;
1010 	resid = uio->uio_resid;
1011 	base = iov->iov_base;
1012 	len = iov->iov_len;
1013 	while (resid > 0) {
1014 		error = vn_io_fault_touch(base, uio);
1015 		if (error != 0)
1016 			break;
1017 		if (len < PAGE_SIZE) {
1018 			if (len != 0) {
1019 				error = vn_io_fault_touch(base + len - 1, uio);
1020 				if (error != 0)
1021 					break;
1022 				resid -= len;
1023 			}
1024 			if (++i >= uio->uio_iovcnt)
1025 				break;
1026 			iov = uio->uio_iov + i;
1027 			base = iov->iov_base;
1028 			len = iov->iov_len;
1029 		} else {
1030 			len -= PAGE_SIZE;
1031 			base += PAGE_SIZE;
1032 			resid -= PAGE_SIZE;
1033 		}
1034 	}
1035 	return (error);
1036 }
1037 
1038 /*
1039  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1040  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1041  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1042  * into args and call vn_io_fault1() to handle faults during the user
1043  * mode buffer accesses.
1044  */
1045 static int
1046 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1047     struct thread *td)
1048 {
1049 	vm_page_t ma[io_hold_cnt + 2];
1050 	struct uio *uio_clone, short_uio;
1051 	struct iovec short_iovec[1];
1052 	vm_page_t *prev_td_ma;
1053 	vm_prot_t prot;
1054 	vm_offset_t addr, end;
1055 	size_t len, resid;
1056 	ssize_t adv;
1057 	int error, cnt, saveheld, prev_td_ma_cnt;
1058 
1059 	if (vn_io_fault_prefault) {
1060 		error = vn_io_fault_prefault_user(uio);
1061 		if (error != 0)
1062 			return (error); /* Or ignore ? */
1063 	}
1064 
1065 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1066 
1067 	/*
1068 	 * The UFS follows IO_UNIT directive and replays back both
1069 	 * uio_offset and uio_resid if an error is encountered during the
1070 	 * operation.  But, since the iovec may be already advanced,
1071 	 * uio is still in an inconsistent state.
1072 	 *
1073 	 * Cache a copy of the original uio, which is advanced to the redo
1074 	 * point using UIO_NOCOPY below.
1075 	 */
1076 	uio_clone = cloneuio(uio);
1077 	resid = uio->uio_resid;
1078 
1079 	short_uio.uio_segflg = UIO_USERSPACE;
1080 	short_uio.uio_rw = uio->uio_rw;
1081 	short_uio.uio_td = uio->uio_td;
1082 
1083 	error = vn_io_fault_doio(args, uio, td);
1084 	if (error != EFAULT)
1085 		goto out;
1086 
1087 	atomic_add_long(&vn_io_faults_cnt, 1);
1088 	uio_clone->uio_segflg = UIO_NOCOPY;
1089 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1090 	uio_clone->uio_segflg = uio->uio_segflg;
1091 
1092 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1093 	prev_td_ma = td->td_ma;
1094 	prev_td_ma_cnt = td->td_ma_cnt;
1095 
1096 	while (uio_clone->uio_resid != 0) {
1097 		len = uio_clone->uio_iov->iov_len;
1098 		if (len == 0) {
1099 			KASSERT(uio_clone->uio_iovcnt >= 1,
1100 			    ("iovcnt underflow"));
1101 			uio_clone->uio_iov++;
1102 			uio_clone->uio_iovcnt--;
1103 			continue;
1104 		}
1105 		if (len > io_hold_cnt * PAGE_SIZE)
1106 			len = io_hold_cnt * PAGE_SIZE;
1107 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1108 		end = round_page(addr + len);
1109 		if (end < addr) {
1110 			error = EFAULT;
1111 			break;
1112 		}
1113 		cnt = atop(end - trunc_page(addr));
1114 		/*
1115 		 * A perfectly misaligned address and length could cause
1116 		 * both the start and the end of the chunk to use partial
1117 		 * page.  +2 accounts for such a situation.
1118 		 */
1119 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1120 		    addr, len, prot, ma, io_hold_cnt + 2);
1121 		if (cnt == -1) {
1122 			error = EFAULT;
1123 			break;
1124 		}
1125 		short_uio.uio_iov = &short_iovec[0];
1126 		short_iovec[0].iov_base = (void *)addr;
1127 		short_uio.uio_iovcnt = 1;
1128 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1129 		short_uio.uio_offset = uio_clone->uio_offset;
1130 		td->td_ma = ma;
1131 		td->td_ma_cnt = cnt;
1132 
1133 		error = vn_io_fault_doio(args, &short_uio, td);
1134 		vm_page_unhold_pages(ma, cnt);
1135 		adv = len - short_uio.uio_resid;
1136 
1137 		uio_clone->uio_iov->iov_base =
1138 		    (char *)uio_clone->uio_iov->iov_base + adv;
1139 		uio_clone->uio_iov->iov_len -= adv;
1140 		uio_clone->uio_resid -= adv;
1141 		uio_clone->uio_offset += adv;
1142 
1143 		uio->uio_resid -= adv;
1144 		uio->uio_offset += adv;
1145 
1146 		if (error != 0 || adv == 0)
1147 			break;
1148 	}
1149 	td->td_ma = prev_td_ma;
1150 	td->td_ma_cnt = prev_td_ma_cnt;
1151 	curthread_pflags_restore(saveheld);
1152 out:
1153 	free(uio_clone, M_IOV);
1154 	return (error);
1155 }
1156 
1157 static int
1158 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1159     int flags, struct thread *td)
1160 {
1161 	fo_rdwr_t *doio;
1162 	struct vnode *vp;
1163 	void *rl_cookie;
1164 	struct vn_io_fault_args args;
1165 	int error;
1166 
1167 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1168 	vp = fp->f_vnode;
1169 	foffset_lock_uio(fp, uio, flags);
1170 	if (do_vn_io_fault(vp, uio)) {
1171 		args.kind = VN_IO_FAULT_FOP;
1172 		args.args.fop_args.fp = fp;
1173 		args.args.fop_args.doio = doio;
1174 		args.cred = active_cred;
1175 		args.flags = flags | FOF_OFFSET;
1176 		if (uio->uio_rw == UIO_READ) {
1177 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1178 			    uio->uio_offset + uio->uio_resid);
1179 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1180 		    (flags & FOF_OFFSET) == 0) {
1181 			/* For appenders, punt and lock the whole range. */
1182 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1183 		} else {
1184 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1185 			    uio->uio_offset + uio->uio_resid);
1186 		}
1187 		error = vn_io_fault1(vp, uio, &args, td);
1188 		vn_rangelock_unlock(vp, rl_cookie);
1189 	} else {
1190 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1191 	}
1192 	foffset_unlock_uio(fp, uio, flags);
1193 	return (error);
1194 }
1195 
1196 /*
1197  * Helper function to perform the requested uiomove operation using
1198  * the held pages for io->uio_iov[0].iov_base buffer instead of
1199  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1200  * instead of iov_base prevents page faults that could occur due to
1201  * pmap_collect() invalidating the mapping created by
1202  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1203  * object cleanup revoking the write access from page mappings.
1204  *
1205  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1206  * instead of plain uiomove().
1207  */
1208 int
1209 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1210 {
1211 	struct uio transp_uio;
1212 	struct iovec transp_iov[1];
1213 	struct thread *td;
1214 	size_t adv;
1215 	int error, pgadv;
1216 
1217 	td = curthread;
1218 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1219 	    uio->uio_segflg != UIO_USERSPACE)
1220 		return (uiomove(data, xfersize, uio));
1221 
1222 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1223 	transp_iov[0].iov_base = data;
1224 	transp_uio.uio_iov = &transp_iov[0];
1225 	transp_uio.uio_iovcnt = 1;
1226 	if (xfersize > uio->uio_resid)
1227 		xfersize = uio->uio_resid;
1228 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1229 	transp_uio.uio_offset = 0;
1230 	transp_uio.uio_segflg = UIO_SYSSPACE;
1231 	/*
1232 	 * Since transp_iov points to data, and td_ma page array
1233 	 * corresponds to original uio->uio_iov, we need to invert the
1234 	 * direction of the i/o operation as passed to
1235 	 * uiomove_fromphys().
1236 	 */
1237 	switch (uio->uio_rw) {
1238 	case UIO_WRITE:
1239 		transp_uio.uio_rw = UIO_READ;
1240 		break;
1241 	case UIO_READ:
1242 		transp_uio.uio_rw = UIO_WRITE;
1243 		break;
1244 	}
1245 	transp_uio.uio_td = uio->uio_td;
1246 	error = uiomove_fromphys(td->td_ma,
1247 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1248 	    xfersize, &transp_uio);
1249 	adv = xfersize - transp_uio.uio_resid;
1250 	pgadv =
1251 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1252 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1253 	td->td_ma += pgadv;
1254 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1255 	    pgadv));
1256 	td->td_ma_cnt -= pgadv;
1257 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1258 	uio->uio_iov->iov_len -= adv;
1259 	uio->uio_resid -= adv;
1260 	uio->uio_offset += adv;
1261 	return (error);
1262 }
1263 
1264 int
1265 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1266     struct uio *uio)
1267 {
1268 	struct thread *td;
1269 	vm_offset_t iov_base;
1270 	int cnt, pgadv;
1271 
1272 	td = curthread;
1273 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1274 	    uio->uio_segflg != UIO_USERSPACE)
1275 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1276 
1277 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1278 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1279 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1280 	switch (uio->uio_rw) {
1281 	case UIO_WRITE:
1282 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1283 		    offset, cnt);
1284 		break;
1285 	case UIO_READ:
1286 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1287 		    cnt);
1288 		break;
1289 	}
1290 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1291 	td->td_ma += pgadv;
1292 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1293 	    pgadv));
1294 	td->td_ma_cnt -= pgadv;
1295 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1296 	uio->uio_iov->iov_len -= cnt;
1297 	uio->uio_resid -= cnt;
1298 	uio->uio_offset += cnt;
1299 	return (0);
1300 }
1301 
1302 
1303 /*
1304  * File table truncate routine.
1305  */
1306 static int
1307 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1308     struct thread *td)
1309 {
1310 	struct vattr vattr;
1311 	struct mount *mp;
1312 	struct vnode *vp;
1313 	void *rl_cookie;
1314 	int error;
1315 
1316 	vp = fp->f_vnode;
1317 
1318 	/*
1319 	 * Lock the whole range for truncation.  Otherwise split i/o
1320 	 * might happen partly before and partly after the truncation.
1321 	 */
1322 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1323 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1324 	if (error)
1325 		goto out1;
1326 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1327 	AUDIT_ARG_VNODE1(vp);
1328 	if (vp->v_type == VDIR) {
1329 		error = EISDIR;
1330 		goto out;
1331 	}
1332 #ifdef MAC
1333 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1334 	if (error)
1335 		goto out;
1336 #endif
1337 	error = vn_writechk(vp);
1338 	if (error == 0) {
1339 		VATTR_NULL(&vattr);
1340 		vattr.va_size = length;
1341 		if ((fp->f_flag & O_FSYNC) != 0)
1342 			vattr.va_vaflags |= VA_SYNC;
1343 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1344 	}
1345 out:
1346 	VOP_UNLOCK(vp, 0);
1347 	vn_finished_write(mp);
1348 out1:
1349 	vn_rangelock_unlock(vp, rl_cookie);
1350 	return (error);
1351 }
1352 
1353 /*
1354  * File table vnode stat routine.
1355  */
1356 static int
1357 vn_statfile(fp, sb, active_cred, td)
1358 	struct file *fp;
1359 	struct stat *sb;
1360 	struct ucred *active_cred;
1361 	struct thread *td;
1362 {
1363 	struct vnode *vp = fp->f_vnode;
1364 	int error;
1365 
1366 	vn_lock(vp, LK_SHARED | LK_RETRY);
1367 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1368 	VOP_UNLOCK(vp, 0);
1369 
1370 	return (error);
1371 }
1372 
1373 /*
1374  * Stat a vnode; implementation for the stat syscall
1375  */
1376 int
1377 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1378     struct ucred *file_cred, struct thread *td)
1379 {
1380 	struct vattr vattr;
1381 	struct vattr *vap;
1382 	int error;
1383 	u_short mode;
1384 
1385 	AUDIT_ARG_VNODE1(vp);
1386 #ifdef MAC
1387 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1388 	if (error)
1389 		return (error);
1390 #endif
1391 
1392 	vap = &vattr;
1393 
1394 	/*
1395 	 * Initialize defaults for new and unusual fields, so that file
1396 	 * systems which don't support these fields don't need to know
1397 	 * about them.
1398 	 */
1399 	vap->va_birthtime.tv_sec = -1;
1400 	vap->va_birthtime.tv_nsec = 0;
1401 	vap->va_fsid = VNOVAL;
1402 	vap->va_rdev = NODEV;
1403 
1404 	error = VOP_GETATTR(vp, vap, active_cred);
1405 	if (error)
1406 		return (error);
1407 
1408 	/*
1409 	 * Zero the spare stat fields
1410 	 */
1411 	bzero(sb, sizeof *sb);
1412 
1413 	/*
1414 	 * Copy from vattr table
1415 	 */
1416 	if (vap->va_fsid != VNOVAL)
1417 		sb->st_dev = vap->va_fsid;
1418 	else
1419 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1420 	sb->st_ino = vap->va_fileid;
1421 	mode = vap->va_mode;
1422 	switch (vap->va_type) {
1423 	case VREG:
1424 		mode |= S_IFREG;
1425 		break;
1426 	case VDIR:
1427 		mode |= S_IFDIR;
1428 		break;
1429 	case VBLK:
1430 		mode |= S_IFBLK;
1431 		break;
1432 	case VCHR:
1433 		mode |= S_IFCHR;
1434 		break;
1435 	case VLNK:
1436 		mode |= S_IFLNK;
1437 		break;
1438 	case VSOCK:
1439 		mode |= S_IFSOCK;
1440 		break;
1441 	case VFIFO:
1442 		mode |= S_IFIFO;
1443 		break;
1444 	default:
1445 		return (EBADF);
1446 	}
1447 	sb->st_mode = mode;
1448 	sb->st_nlink = vap->va_nlink;
1449 	sb->st_uid = vap->va_uid;
1450 	sb->st_gid = vap->va_gid;
1451 	sb->st_rdev = vap->va_rdev;
1452 	if (vap->va_size > OFF_MAX)
1453 		return (EOVERFLOW);
1454 	sb->st_size = vap->va_size;
1455 	sb->st_atim = vap->va_atime;
1456 	sb->st_mtim = vap->va_mtime;
1457 	sb->st_ctim = vap->va_ctime;
1458 	sb->st_birthtim = vap->va_birthtime;
1459 
1460         /*
1461 	 * According to www.opengroup.org, the meaning of st_blksize is
1462 	 *   "a filesystem-specific preferred I/O block size for this
1463 	 *    object.  In some filesystem types, this may vary from file
1464 	 *    to file"
1465 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1466 	 */
1467 
1468 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1469 
1470 	sb->st_flags = vap->va_flags;
1471 	if (priv_check(td, PRIV_VFS_GENERATION))
1472 		sb->st_gen = 0;
1473 	else
1474 		sb->st_gen = vap->va_gen;
1475 
1476 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1477 	return (0);
1478 }
1479 
1480 /*
1481  * File table vnode ioctl routine.
1482  */
1483 static int
1484 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1485     struct thread *td)
1486 {
1487 	struct vattr vattr;
1488 	struct vnode *vp;
1489 	int error;
1490 
1491 	vp = fp->f_vnode;
1492 	switch (vp->v_type) {
1493 	case VDIR:
1494 	case VREG:
1495 		switch (com) {
1496 		case FIONREAD:
1497 			vn_lock(vp, LK_SHARED | LK_RETRY);
1498 			error = VOP_GETATTR(vp, &vattr, active_cred);
1499 			VOP_UNLOCK(vp, 0);
1500 			if (error == 0)
1501 				*(int *)data = vattr.va_size - fp->f_offset;
1502 			return (error);
1503 		case FIONBIO:
1504 		case FIOASYNC:
1505 			return (0);
1506 		default:
1507 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1508 			    active_cred, td));
1509 		}
1510 		break;
1511 	case VCHR:
1512 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1513 		    active_cred, td));
1514 	default:
1515 		return (ENOTTY);
1516 	}
1517 }
1518 
1519 /*
1520  * File table vnode poll routine.
1521  */
1522 static int
1523 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1524     struct thread *td)
1525 {
1526 	struct vnode *vp;
1527 	int error;
1528 
1529 	vp = fp->f_vnode;
1530 #ifdef MAC
1531 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1532 	AUDIT_ARG_VNODE1(vp);
1533 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1534 	VOP_UNLOCK(vp, 0);
1535 	if (!error)
1536 #endif
1537 
1538 	error = VOP_POLL(vp, events, fp->f_cred, td);
1539 	return (error);
1540 }
1541 
1542 /*
1543  * Acquire the requested lock and then check for validity.  LK_RETRY
1544  * permits vn_lock to return doomed vnodes.
1545  */
1546 int
1547 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1548 {
1549 	int error;
1550 
1551 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1552 	    ("vn_lock: no locktype"));
1553 	VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
1554 retry:
1555 	error = VOP_LOCK1(vp, flags, file, line);
1556 	flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1557 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1558 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1559 
1560 	if ((flags & LK_RETRY) == 0) {
1561 		if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1562 			VOP_UNLOCK(vp, 0);
1563 			error = ENOENT;
1564 		}
1565 	} else if (error != 0)
1566 		goto retry;
1567 	return (error);
1568 }
1569 
1570 /*
1571  * File table vnode close routine.
1572  */
1573 static int
1574 vn_closefile(struct file *fp, struct thread *td)
1575 {
1576 	struct vnode *vp;
1577 	struct flock lf;
1578 	int error;
1579 	bool ref;
1580 
1581 	vp = fp->f_vnode;
1582 	fp->f_ops = &badfileops;
1583 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1584 
1585 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1586 
1587 	if (__predict_false(ref)) {
1588 		lf.l_whence = SEEK_SET;
1589 		lf.l_start = 0;
1590 		lf.l_len = 0;
1591 		lf.l_type = F_UNLCK;
1592 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1593 		vrele(vp);
1594 	}
1595 	return (error);
1596 }
1597 
1598 static bool
1599 vn_suspendable(struct mount *mp)
1600 {
1601 
1602 	return (mp->mnt_op->vfs_susp_clean != NULL);
1603 }
1604 
1605 /*
1606  * Preparing to start a filesystem write operation. If the operation is
1607  * permitted, then we bump the count of operations in progress and
1608  * proceed. If a suspend request is in progress, we wait until the
1609  * suspension is over, and then proceed.
1610  */
1611 static int
1612 vn_start_write_locked(struct mount *mp, int flags)
1613 {
1614 	int error, mflags;
1615 
1616 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1617 	error = 0;
1618 
1619 	/*
1620 	 * Check on status of suspension.
1621 	 */
1622 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1623 	    mp->mnt_susp_owner != curthread) {
1624 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1625 		    (flags & PCATCH) : 0) | (PUSER - 1);
1626 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1627 			if (flags & V_NOWAIT) {
1628 				error = EWOULDBLOCK;
1629 				goto unlock;
1630 			}
1631 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1632 			    "suspfs", 0);
1633 			if (error)
1634 				goto unlock;
1635 		}
1636 	}
1637 	if (flags & V_XSLEEP)
1638 		goto unlock;
1639 	mp->mnt_writeopcount++;
1640 unlock:
1641 	if (error != 0 || (flags & V_XSLEEP) != 0)
1642 		MNT_REL(mp);
1643 	MNT_IUNLOCK(mp);
1644 	return (error);
1645 }
1646 
1647 int
1648 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1649 {
1650 	struct mount *mp;
1651 	int error;
1652 
1653 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1654 	    ("V_MNTREF requires mp"));
1655 
1656 	error = 0;
1657 	/*
1658 	 * If a vnode is provided, get and return the mount point that
1659 	 * to which it will write.
1660 	 */
1661 	if (vp != NULL) {
1662 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1663 			*mpp = NULL;
1664 			if (error != EOPNOTSUPP)
1665 				return (error);
1666 			return (0);
1667 		}
1668 	}
1669 	if ((mp = *mpp) == NULL)
1670 		return (0);
1671 
1672 	if (!vn_suspendable(mp)) {
1673 		if (vp != NULL || (flags & V_MNTREF) != 0)
1674 			vfs_rel(mp);
1675 		return (0);
1676 	}
1677 
1678 	/*
1679 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1680 	 * a vfs_ref().
1681 	 * As long as a vnode is not provided we need to acquire a
1682 	 * refcount for the provided mountpoint too, in order to
1683 	 * emulate a vfs_ref().
1684 	 */
1685 	MNT_ILOCK(mp);
1686 	if (vp == NULL && (flags & V_MNTREF) == 0)
1687 		MNT_REF(mp);
1688 
1689 	return (vn_start_write_locked(mp, flags));
1690 }
1691 
1692 /*
1693  * Secondary suspension. Used by operations such as vop_inactive
1694  * routines that are needed by the higher level functions. These
1695  * are allowed to proceed until all the higher level functions have
1696  * completed (indicated by mnt_writeopcount dropping to zero). At that
1697  * time, these operations are halted until the suspension is over.
1698  */
1699 int
1700 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1701 {
1702 	struct mount *mp;
1703 	int error;
1704 
1705 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1706 	    ("V_MNTREF requires mp"));
1707 
1708  retry:
1709 	if (vp != NULL) {
1710 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1711 			*mpp = NULL;
1712 			if (error != EOPNOTSUPP)
1713 				return (error);
1714 			return (0);
1715 		}
1716 	}
1717 	/*
1718 	 * If we are not suspended or have not yet reached suspended
1719 	 * mode, then let the operation proceed.
1720 	 */
1721 	if ((mp = *mpp) == NULL)
1722 		return (0);
1723 
1724 	if (!vn_suspendable(mp)) {
1725 		if (vp != NULL || (flags & V_MNTREF) != 0)
1726 			vfs_rel(mp);
1727 		return (0);
1728 	}
1729 
1730 	/*
1731 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1732 	 * a vfs_ref().
1733 	 * As long as a vnode is not provided we need to acquire a
1734 	 * refcount for the provided mountpoint too, in order to
1735 	 * emulate a vfs_ref().
1736 	 */
1737 	MNT_ILOCK(mp);
1738 	if (vp == NULL && (flags & V_MNTREF) == 0)
1739 		MNT_REF(mp);
1740 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1741 		mp->mnt_secondary_writes++;
1742 		mp->mnt_secondary_accwrites++;
1743 		MNT_IUNLOCK(mp);
1744 		return (0);
1745 	}
1746 	if (flags & V_NOWAIT) {
1747 		MNT_REL(mp);
1748 		MNT_IUNLOCK(mp);
1749 		return (EWOULDBLOCK);
1750 	}
1751 	/*
1752 	 * Wait for the suspension to finish.
1753 	 */
1754 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1755 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1756 	    "suspfs", 0);
1757 	vfs_rel(mp);
1758 	if (error == 0)
1759 		goto retry;
1760 	return (error);
1761 }
1762 
1763 /*
1764  * Filesystem write operation has completed. If we are suspending and this
1765  * operation is the last one, notify the suspender that the suspension is
1766  * now in effect.
1767  */
1768 void
1769 vn_finished_write(struct mount *mp)
1770 {
1771 	if (mp == NULL || !vn_suspendable(mp))
1772 		return;
1773 	MNT_ILOCK(mp);
1774 	MNT_REL(mp);
1775 	mp->mnt_writeopcount--;
1776 	if (mp->mnt_writeopcount < 0)
1777 		panic("vn_finished_write: neg cnt");
1778 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1779 	    mp->mnt_writeopcount <= 0)
1780 		wakeup(&mp->mnt_writeopcount);
1781 	MNT_IUNLOCK(mp);
1782 }
1783 
1784 
1785 /*
1786  * Filesystem secondary write operation has completed. If we are
1787  * suspending and this operation is the last one, notify the suspender
1788  * that the suspension is now in effect.
1789  */
1790 void
1791 vn_finished_secondary_write(struct mount *mp)
1792 {
1793 	if (mp == NULL || !vn_suspendable(mp))
1794 		return;
1795 	MNT_ILOCK(mp);
1796 	MNT_REL(mp);
1797 	mp->mnt_secondary_writes--;
1798 	if (mp->mnt_secondary_writes < 0)
1799 		panic("vn_finished_secondary_write: neg cnt");
1800 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1801 	    mp->mnt_secondary_writes <= 0)
1802 		wakeup(&mp->mnt_secondary_writes);
1803 	MNT_IUNLOCK(mp);
1804 }
1805 
1806 
1807 
1808 /*
1809  * Request a filesystem to suspend write operations.
1810  */
1811 int
1812 vfs_write_suspend(struct mount *mp, int flags)
1813 {
1814 	int error;
1815 
1816 	MPASS(vn_suspendable(mp));
1817 
1818 	MNT_ILOCK(mp);
1819 	if (mp->mnt_susp_owner == curthread) {
1820 		MNT_IUNLOCK(mp);
1821 		return (EALREADY);
1822 	}
1823 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1824 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1825 
1826 	/*
1827 	 * Unmount holds a write reference on the mount point.  If we
1828 	 * own busy reference and drain for writers, we deadlock with
1829 	 * the reference draining in the unmount path.  Callers of
1830 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1831 	 * vfs_busy() reference is owned and caller is not in the
1832 	 * unmount context.
1833 	 */
1834 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1835 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1836 		MNT_IUNLOCK(mp);
1837 		return (EBUSY);
1838 	}
1839 
1840 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1841 	mp->mnt_susp_owner = curthread;
1842 	if (mp->mnt_writeopcount > 0)
1843 		(void) msleep(&mp->mnt_writeopcount,
1844 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1845 	else
1846 		MNT_IUNLOCK(mp);
1847 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1848 		vfs_write_resume(mp, 0);
1849 	return (error);
1850 }
1851 
1852 /*
1853  * Request a filesystem to resume write operations.
1854  */
1855 void
1856 vfs_write_resume(struct mount *mp, int flags)
1857 {
1858 
1859 	MPASS(vn_suspendable(mp));
1860 
1861 	MNT_ILOCK(mp);
1862 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1863 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1864 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1865 				       MNTK_SUSPENDED);
1866 		mp->mnt_susp_owner = NULL;
1867 		wakeup(&mp->mnt_writeopcount);
1868 		wakeup(&mp->mnt_flag);
1869 		curthread->td_pflags &= ~TDP_IGNSUSP;
1870 		if ((flags & VR_START_WRITE) != 0) {
1871 			MNT_REF(mp);
1872 			mp->mnt_writeopcount++;
1873 		}
1874 		MNT_IUNLOCK(mp);
1875 		if ((flags & VR_NO_SUSPCLR) == 0)
1876 			VFS_SUSP_CLEAN(mp);
1877 	} else if ((flags & VR_START_WRITE) != 0) {
1878 		MNT_REF(mp);
1879 		vn_start_write_locked(mp, 0);
1880 	} else {
1881 		MNT_IUNLOCK(mp);
1882 	}
1883 }
1884 
1885 /*
1886  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1887  * methods.
1888  */
1889 int
1890 vfs_write_suspend_umnt(struct mount *mp)
1891 {
1892 	int error;
1893 
1894 	MPASS(vn_suspendable(mp));
1895 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1896 	    ("vfs_write_suspend_umnt: recursed"));
1897 
1898 	/* dounmount() already called vn_start_write(). */
1899 	for (;;) {
1900 		vn_finished_write(mp);
1901 		error = vfs_write_suspend(mp, 0);
1902 		if (error != 0) {
1903 			vn_start_write(NULL, &mp, V_WAIT);
1904 			return (error);
1905 		}
1906 		MNT_ILOCK(mp);
1907 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1908 			break;
1909 		MNT_IUNLOCK(mp);
1910 		vn_start_write(NULL, &mp, V_WAIT);
1911 	}
1912 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1913 	wakeup(&mp->mnt_flag);
1914 	MNT_IUNLOCK(mp);
1915 	curthread->td_pflags |= TDP_IGNSUSP;
1916 	return (0);
1917 }
1918 
1919 /*
1920  * Implement kqueues for files by translating it to vnode operation.
1921  */
1922 static int
1923 vn_kqfilter(struct file *fp, struct knote *kn)
1924 {
1925 
1926 	return (VOP_KQFILTER(fp->f_vnode, kn));
1927 }
1928 
1929 /*
1930  * Simplified in-kernel wrapper calls for extended attribute access.
1931  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1932  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1933  */
1934 int
1935 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1936     const char *attrname, int *buflen, char *buf, struct thread *td)
1937 {
1938 	struct uio	auio;
1939 	struct iovec	iov;
1940 	int	error;
1941 
1942 	iov.iov_len = *buflen;
1943 	iov.iov_base = buf;
1944 
1945 	auio.uio_iov = &iov;
1946 	auio.uio_iovcnt = 1;
1947 	auio.uio_rw = UIO_READ;
1948 	auio.uio_segflg = UIO_SYSSPACE;
1949 	auio.uio_td = td;
1950 	auio.uio_offset = 0;
1951 	auio.uio_resid = *buflen;
1952 
1953 	if ((ioflg & IO_NODELOCKED) == 0)
1954 		vn_lock(vp, LK_SHARED | LK_RETRY);
1955 
1956 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1957 
1958 	/* authorize attribute retrieval as kernel */
1959 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1960 	    td);
1961 
1962 	if ((ioflg & IO_NODELOCKED) == 0)
1963 		VOP_UNLOCK(vp, 0);
1964 
1965 	if (error == 0) {
1966 		*buflen = *buflen - auio.uio_resid;
1967 	}
1968 
1969 	return (error);
1970 }
1971 
1972 /*
1973  * XXX failure mode if partially written?
1974  */
1975 int
1976 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1977     const char *attrname, int buflen, char *buf, struct thread *td)
1978 {
1979 	struct uio	auio;
1980 	struct iovec	iov;
1981 	struct mount	*mp;
1982 	int	error;
1983 
1984 	iov.iov_len = buflen;
1985 	iov.iov_base = buf;
1986 
1987 	auio.uio_iov = &iov;
1988 	auio.uio_iovcnt = 1;
1989 	auio.uio_rw = UIO_WRITE;
1990 	auio.uio_segflg = UIO_SYSSPACE;
1991 	auio.uio_td = td;
1992 	auio.uio_offset = 0;
1993 	auio.uio_resid = buflen;
1994 
1995 	if ((ioflg & IO_NODELOCKED) == 0) {
1996 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1997 			return (error);
1998 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1999 	}
2000 
2001 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2002 
2003 	/* authorize attribute setting as kernel */
2004 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2005 
2006 	if ((ioflg & IO_NODELOCKED) == 0) {
2007 		vn_finished_write(mp);
2008 		VOP_UNLOCK(vp, 0);
2009 	}
2010 
2011 	return (error);
2012 }
2013 
2014 int
2015 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2016     const char *attrname, struct thread *td)
2017 {
2018 	struct mount	*mp;
2019 	int	error;
2020 
2021 	if ((ioflg & IO_NODELOCKED) == 0) {
2022 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2023 			return (error);
2024 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2025 	}
2026 
2027 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2028 
2029 	/* authorize attribute removal as kernel */
2030 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2031 	if (error == EOPNOTSUPP)
2032 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2033 		    NULL, td);
2034 
2035 	if ((ioflg & IO_NODELOCKED) == 0) {
2036 		vn_finished_write(mp);
2037 		VOP_UNLOCK(vp, 0);
2038 	}
2039 
2040 	return (error);
2041 }
2042 
2043 static int
2044 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2045     struct vnode **rvp)
2046 {
2047 
2048 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2049 }
2050 
2051 int
2052 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2053 {
2054 
2055 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2056 	    lkflags, rvp));
2057 }
2058 
2059 int
2060 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2061     int lkflags, struct vnode **rvp)
2062 {
2063 	struct mount *mp;
2064 	int ltype, error;
2065 
2066 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2067 	mp = vp->v_mount;
2068 	ltype = VOP_ISLOCKED(vp);
2069 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2070 	    ("vn_vget_ino: vp not locked"));
2071 	error = vfs_busy(mp, MBF_NOWAIT);
2072 	if (error != 0) {
2073 		vfs_ref(mp);
2074 		VOP_UNLOCK(vp, 0);
2075 		error = vfs_busy(mp, 0);
2076 		vn_lock(vp, ltype | LK_RETRY);
2077 		vfs_rel(mp);
2078 		if (error != 0)
2079 			return (ENOENT);
2080 		if (vp->v_iflag & VI_DOOMED) {
2081 			vfs_unbusy(mp);
2082 			return (ENOENT);
2083 		}
2084 	}
2085 	VOP_UNLOCK(vp, 0);
2086 	error = alloc(mp, alloc_arg, lkflags, rvp);
2087 	vfs_unbusy(mp);
2088 	if (*rvp != vp)
2089 		vn_lock(vp, ltype | LK_RETRY);
2090 	if (vp->v_iflag & VI_DOOMED) {
2091 		if (error == 0) {
2092 			if (*rvp == vp)
2093 				vunref(vp);
2094 			else
2095 				vput(*rvp);
2096 		}
2097 		error = ENOENT;
2098 	}
2099 	return (error);
2100 }
2101 
2102 int
2103 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2104     struct thread *td)
2105 {
2106 
2107 	if (vp->v_type != VREG || td == NULL)
2108 		return (0);
2109 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2110 	    lim_cur(td, RLIMIT_FSIZE)) {
2111 		PROC_LOCK(td->td_proc);
2112 		kern_psignal(td->td_proc, SIGXFSZ);
2113 		PROC_UNLOCK(td->td_proc);
2114 		return (EFBIG);
2115 	}
2116 	return (0);
2117 }
2118 
2119 int
2120 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2121     struct thread *td)
2122 {
2123 	struct vnode *vp;
2124 
2125 	vp = fp->f_vnode;
2126 #ifdef AUDIT
2127 	vn_lock(vp, LK_SHARED | LK_RETRY);
2128 	AUDIT_ARG_VNODE1(vp);
2129 	VOP_UNLOCK(vp, 0);
2130 #endif
2131 	return (setfmode(td, active_cred, vp, mode));
2132 }
2133 
2134 int
2135 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2136     struct thread *td)
2137 {
2138 	struct vnode *vp;
2139 
2140 	vp = fp->f_vnode;
2141 #ifdef AUDIT
2142 	vn_lock(vp, LK_SHARED | LK_RETRY);
2143 	AUDIT_ARG_VNODE1(vp);
2144 	VOP_UNLOCK(vp, 0);
2145 #endif
2146 	return (setfown(td, active_cred, vp, uid, gid));
2147 }
2148 
2149 void
2150 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2151 {
2152 	vm_object_t object;
2153 
2154 	if ((object = vp->v_object) == NULL)
2155 		return;
2156 	VM_OBJECT_WLOCK(object);
2157 	vm_object_page_remove(object, start, end, 0);
2158 	VM_OBJECT_WUNLOCK(object);
2159 }
2160 
2161 int
2162 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2163 {
2164 	struct vattr va;
2165 	daddr_t bn, bnp;
2166 	uint64_t bsize;
2167 	off_t noff;
2168 	int error;
2169 
2170 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2171 	    ("Wrong command %lu", cmd));
2172 
2173 	if (vn_lock(vp, LK_SHARED) != 0)
2174 		return (EBADF);
2175 	if (vp->v_type != VREG) {
2176 		error = ENOTTY;
2177 		goto unlock;
2178 	}
2179 	error = VOP_GETATTR(vp, &va, cred);
2180 	if (error != 0)
2181 		goto unlock;
2182 	noff = *off;
2183 	if (noff >= va.va_size) {
2184 		error = ENXIO;
2185 		goto unlock;
2186 	}
2187 	bsize = vp->v_mount->mnt_stat.f_iosize;
2188 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2189 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2190 		if (error == EOPNOTSUPP) {
2191 			error = ENOTTY;
2192 			goto unlock;
2193 		}
2194 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2195 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2196 			noff = bn * bsize;
2197 			if (noff < *off)
2198 				noff = *off;
2199 			goto unlock;
2200 		}
2201 	}
2202 	if (noff > va.va_size)
2203 		noff = va.va_size;
2204 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2205 	if (cmd == FIOSEEKDATA)
2206 		error = ENXIO;
2207 unlock:
2208 	VOP_UNLOCK(vp, 0);
2209 	if (error == 0)
2210 		*off = noff;
2211 	return (error);
2212 }
2213 
2214 int
2215 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2216 {
2217 	struct ucred *cred;
2218 	struct vnode *vp;
2219 	struct vattr vattr;
2220 	off_t foffset, size;
2221 	int error, noneg;
2222 
2223 	cred = td->td_ucred;
2224 	vp = fp->f_vnode;
2225 	foffset = foffset_lock(fp, 0);
2226 	noneg = (vp->v_type != VCHR);
2227 	error = 0;
2228 	switch (whence) {
2229 	case L_INCR:
2230 		if (noneg &&
2231 		    (foffset < 0 ||
2232 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2233 			error = EOVERFLOW;
2234 			break;
2235 		}
2236 		offset += foffset;
2237 		break;
2238 	case L_XTND:
2239 		vn_lock(vp, LK_SHARED | LK_RETRY);
2240 		error = VOP_GETATTR(vp, &vattr, cred);
2241 		VOP_UNLOCK(vp, 0);
2242 		if (error)
2243 			break;
2244 
2245 		/*
2246 		 * If the file references a disk device, then fetch
2247 		 * the media size and use that to determine the ending
2248 		 * offset.
2249 		 */
2250 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2251 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2252 			vattr.va_size = size;
2253 		if (noneg &&
2254 		    (vattr.va_size > OFF_MAX ||
2255 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2256 			error = EOVERFLOW;
2257 			break;
2258 		}
2259 		offset += vattr.va_size;
2260 		break;
2261 	case L_SET:
2262 		break;
2263 	case SEEK_DATA:
2264 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2265 		break;
2266 	case SEEK_HOLE:
2267 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2268 		break;
2269 	default:
2270 		error = EINVAL;
2271 	}
2272 	if (error == 0 && noneg && offset < 0)
2273 		error = EINVAL;
2274 	if (error != 0)
2275 		goto drop;
2276 	VFS_KNOTE_UNLOCKED(vp, 0);
2277 	td->td_uretoff.tdu_off = offset;
2278 drop:
2279 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2280 	return (error);
2281 }
2282 
2283 int
2284 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2285     struct thread *td)
2286 {
2287 	int error;
2288 
2289 	/*
2290 	 * Grant permission if the caller is the owner of the file, or
2291 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2292 	 * on the file.  If the time pointer is null, then write
2293 	 * permission on the file is also sufficient.
2294 	 *
2295 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2296 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2297 	 * will be allowed to set the times [..] to the current
2298 	 * server time.
2299 	 */
2300 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2301 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2302 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2303 	return (error);
2304 }
2305 
2306 int
2307 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2308 {
2309 	struct vnode *vp;
2310 	int error;
2311 
2312 	if (fp->f_type == DTYPE_FIFO)
2313 		kif->kf_type = KF_TYPE_FIFO;
2314 	else
2315 		kif->kf_type = KF_TYPE_VNODE;
2316 	vp = fp->f_vnode;
2317 	vref(vp);
2318 	FILEDESC_SUNLOCK(fdp);
2319 	error = vn_fill_kinfo_vnode(vp, kif);
2320 	vrele(vp);
2321 	FILEDESC_SLOCK(fdp);
2322 	return (error);
2323 }
2324 
2325 static inline void
2326 vn_fill_junk(struct kinfo_file *kif)
2327 {
2328 	size_t len, olen;
2329 
2330 	/*
2331 	 * Simulate vn_fullpath returning changing values for a given
2332 	 * vp during e.g. coredump.
2333 	 */
2334 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2335 	olen = strlen(kif->kf_path);
2336 	if (len < olen)
2337 		strcpy(&kif->kf_path[len - 1], "$");
2338 	else
2339 		for (; olen < len; olen++)
2340 			strcpy(&kif->kf_path[olen], "A");
2341 }
2342 
2343 int
2344 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2345 {
2346 	struct vattr va;
2347 	char *fullpath, *freepath;
2348 	int error;
2349 
2350 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2351 	freepath = NULL;
2352 	fullpath = "-";
2353 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2354 	if (error == 0) {
2355 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2356 	}
2357 	if (freepath != NULL)
2358 		free(freepath, M_TEMP);
2359 
2360 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2361 		vn_fill_junk(kif);
2362 	);
2363 
2364 	/*
2365 	 * Retrieve vnode attributes.
2366 	 */
2367 	va.va_fsid = VNOVAL;
2368 	va.va_rdev = NODEV;
2369 	vn_lock(vp, LK_SHARED | LK_RETRY);
2370 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2371 	VOP_UNLOCK(vp, 0);
2372 	if (error != 0)
2373 		return (error);
2374 	if (va.va_fsid != VNOVAL)
2375 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2376 	else
2377 		kif->kf_un.kf_file.kf_file_fsid =
2378 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2379 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2380 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2381 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2382 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2383 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2384 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2385 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2386 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2387 	return (0);
2388 }
2389 
2390 int
2391 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2392     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2393     struct thread *td)
2394 {
2395 #ifdef HWPMC_HOOKS
2396 	struct pmckern_map_in pkm;
2397 #endif
2398 	struct mount *mp;
2399 	struct vnode *vp;
2400 	vm_object_t object;
2401 	vm_prot_t maxprot;
2402 	boolean_t writecounted;
2403 	int error;
2404 
2405 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2406     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2407 	/*
2408 	 * POSIX shared-memory objects are defined to have
2409 	 * kernel persistence, and are not defined to support
2410 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2411 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2412 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2413 	 * flag to request this behavior.
2414 	 */
2415 	if ((fp->f_flag & FPOSIXSHM) != 0)
2416 		flags |= MAP_NOSYNC;
2417 #endif
2418 	vp = fp->f_vnode;
2419 
2420 	/*
2421 	 * Ensure that file and memory protections are
2422 	 * compatible.  Note that we only worry about
2423 	 * writability if mapping is shared; in this case,
2424 	 * current and max prot are dictated by the open file.
2425 	 * XXX use the vnode instead?  Problem is: what
2426 	 * credentials do we use for determination? What if
2427 	 * proc does a setuid?
2428 	 */
2429 	mp = vp->v_mount;
2430 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2431 		maxprot = VM_PROT_NONE;
2432 		if ((prot & VM_PROT_EXECUTE) != 0)
2433 			return (EACCES);
2434 	} else
2435 		maxprot = VM_PROT_EXECUTE;
2436 	if ((fp->f_flag & FREAD) != 0)
2437 		maxprot |= VM_PROT_READ;
2438 	else if ((prot & VM_PROT_READ) != 0)
2439 		return (EACCES);
2440 
2441 	/*
2442 	 * If we are sharing potential changes via MAP_SHARED and we
2443 	 * are trying to get write permission although we opened it
2444 	 * without asking for it, bail out.
2445 	 */
2446 	if ((flags & MAP_SHARED) != 0) {
2447 		if ((fp->f_flag & FWRITE) != 0)
2448 			maxprot |= VM_PROT_WRITE;
2449 		else if ((prot & VM_PROT_WRITE) != 0)
2450 			return (EACCES);
2451 	} else {
2452 		maxprot |= VM_PROT_WRITE;
2453 		cap_maxprot |= VM_PROT_WRITE;
2454 	}
2455 	maxprot &= cap_maxprot;
2456 
2457 	/*
2458 	 * For regular files and shared memory, POSIX requires that
2459 	 * the value of foff be a legitimate offset within the data
2460 	 * object.  In particular, negative offsets are invalid.
2461 	 * Blocking negative offsets and overflows here avoids
2462 	 * possible wraparound or user-level access into reserved
2463 	 * ranges of the data object later.  In contrast, POSIX does
2464 	 * not dictate how offsets are used by device drivers, so in
2465 	 * the case of a device mapping a negative offset is passed
2466 	 * on.
2467 	 */
2468 	if (
2469 #ifdef _LP64
2470 	    size > OFF_MAX ||
2471 #endif
2472 	    foff < 0 || foff > OFF_MAX - size)
2473 		return (EINVAL);
2474 
2475 	writecounted = FALSE;
2476 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2477 	    &foff, &object, &writecounted);
2478 	if (error != 0)
2479 		return (error);
2480 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2481 	    foff, writecounted, td);
2482 	if (error != 0) {
2483 		/*
2484 		 * If this mapping was accounted for in the vnode's
2485 		 * writecount, then undo that now.
2486 		 */
2487 		if (writecounted)
2488 			vnode_pager_release_writecount(object, 0, size);
2489 		vm_object_deallocate(object);
2490 	}
2491 #ifdef HWPMC_HOOKS
2492 	/* Inform hwpmc(4) if an executable is being mapped. */
2493 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2494 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2495 			pkm.pm_file = vp;
2496 			pkm.pm_address = (uintptr_t) *addr;
2497 			PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2498 		}
2499 	}
2500 #endif
2501 	return (error);
2502 }
2503 
2504 void
2505 vn_fsid(struct vnode *vp, struct vattr *va)
2506 {
2507 	fsid_t *f;
2508 
2509 	f = &vp->v_mount->mnt_stat.f_fsid;
2510 	va->va_fsid = (uint32_t)f->val[1];
2511 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2512 	va->va_fsid += (uint32_t)f->val[0];
2513 }
2514