xref: /freebsd/sys/kern/vfs_vnops.c (revision 4d293dd8dcde59fc9842a0ce1125fef8fcf83a8c)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_hwpmc_hooks.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/disk.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kdb.h>
55 #include <sys/stat.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/limits.h>
59 #include <sys/lock.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/vnode.h>
65 #include <sys/bio.h>
66 #include <sys/buf.h>
67 #include <sys/filio.h>
68 #include <sys/resourcevar.h>
69 #include <sys/rwlock.h>
70 #include <sys/sx.h>
71 #include <sys/sysctl.h>
72 #include <sys/ttycom.h>
73 #include <sys/conf.h>
74 #include <sys/syslog.h>
75 #include <sys/unistd.h>
76 #include <sys/user.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vnode_pager.h>
88 
89 #ifdef HWPMC_HOOKS
90 #include <sys/pmckern.h>
91 #endif
92 
93 static fo_rdwr_t	vn_read;
94 static fo_rdwr_t	vn_write;
95 static fo_rdwr_t	vn_io_fault;
96 static fo_truncate_t	vn_truncate;
97 static fo_ioctl_t	vn_ioctl;
98 static fo_poll_t	vn_poll;
99 static fo_kqfilter_t	vn_kqfilter;
100 static fo_stat_t	vn_statfile;
101 static fo_close_t	vn_closefile;
102 static fo_mmap_t	vn_mmap;
103 
104 struct 	fileops vnops = {
105 	.fo_read = vn_io_fault,
106 	.fo_write = vn_io_fault,
107 	.fo_truncate = vn_truncate,
108 	.fo_ioctl = vn_ioctl,
109 	.fo_poll = vn_poll,
110 	.fo_kqfilter = vn_kqfilter,
111 	.fo_stat = vn_statfile,
112 	.fo_close = vn_closefile,
113 	.fo_chmod = vn_chmod,
114 	.fo_chown = vn_chown,
115 	.fo_sendfile = vn_sendfile,
116 	.fo_seek = vn_seek,
117 	.fo_fill_kinfo = vn_fill_kinfo,
118 	.fo_mmap = vn_mmap,
119 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
120 };
121 
122 static const int io_hold_cnt = 16;
123 static int vn_io_fault_enable = 1;
124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
125     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
126 static int vn_io_fault_prefault = 0;
127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
128     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
129 static u_long vn_io_faults_cnt;
130 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
131     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
132 
133 /*
134  * Returns true if vn_io_fault mode of handling the i/o request should
135  * be used.
136  */
137 static bool
138 do_vn_io_fault(struct vnode *vp, struct uio *uio)
139 {
140 	struct mount *mp;
141 
142 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
143 	    (mp = vp->v_mount) != NULL &&
144 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
145 }
146 
147 /*
148  * Structure used to pass arguments to vn_io_fault1(), to do either
149  * file- or vnode-based I/O calls.
150  */
151 struct vn_io_fault_args {
152 	enum {
153 		VN_IO_FAULT_FOP,
154 		VN_IO_FAULT_VOP
155 	} kind;
156 	struct ucred *cred;
157 	int flags;
158 	union {
159 		struct fop_args_tag {
160 			struct file *fp;
161 			fo_rdwr_t *doio;
162 		} fop_args;
163 		struct vop_args_tag {
164 			struct vnode *vp;
165 		} vop_args;
166 	} args;
167 };
168 
169 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
170     struct vn_io_fault_args *args, struct thread *td);
171 
172 int
173 vn_open(ndp, flagp, cmode, fp)
174 	struct nameidata *ndp;
175 	int *flagp, cmode;
176 	struct file *fp;
177 {
178 	struct thread *td = ndp->ni_cnd.cn_thread;
179 
180 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
181 }
182 
183 /*
184  * Common code for vnode open operations via a name lookup.
185  * Lookup the vnode and invoke VOP_CREATE if needed.
186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
187  *
188  * Note that this does NOT free nameidata for the successful case,
189  * due to the NDINIT being done elsewhere.
190  */
191 int
192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
193     struct ucred *cred, struct file *fp)
194 {
195 	struct vnode *vp;
196 	struct mount *mp;
197 	struct thread *td = ndp->ni_cnd.cn_thread;
198 	struct vattr vat;
199 	struct vattr *vap = &vat;
200 	int fmode, error;
201 
202 restart:
203 	fmode = *flagp;
204 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
205 	    O_EXCL | O_DIRECTORY))
206 		return (EINVAL);
207 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
208 		ndp->ni_cnd.cn_nameiop = CREATE;
209 		/*
210 		 * Set NOCACHE to avoid flushing the cache when
211 		 * rolling in many files at once.
212 		*/
213 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
214 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
215 			ndp->ni_cnd.cn_flags |= FOLLOW;
216 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
217 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
218 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
219 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
220 		bwillwrite();
221 		if ((error = namei(ndp)) != 0)
222 			return (error);
223 		if (ndp->ni_vp == NULL) {
224 			VATTR_NULL(vap);
225 			vap->va_type = VREG;
226 			vap->va_mode = cmode;
227 			if (fmode & O_EXCL)
228 				vap->va_vaflags |= VA_EXCLUSIVE;
229 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
230 				NDFREE(ndp, NDF_ONLY_PNBUF);
231 				vput(ndp->ni_dvp);
232 				if ((error = vn_start_write(NULL, &mp,
233 				    V_XSLEEP | PCATCH)) != 0)
234 					return (error);
235 				goto restart;
236 			}
237 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
238 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
239 #ifdef MAC
240 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
241 			    &ndp->ni_cnd, vap);
242 			if (error == 0)
243 #endif
244 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
245 						   &ndp->ni_cnd, vap);
246 			vput(ndp->ni_dvp);
247 			vn_finished_write(mp);
248 			if (error) {
249 				NDFREE(ndp, NDF_ONLY_PNBUF);
250 				return (error);
251 			}
252 			fmode &= ~O_TRUNC;
253 			vp = ndp->ni_vp;
254 		} else {
255 			if (ndp->ni_dvp == ndp->ni_vp)
256 				vrele(ndp->ni_dvp);
257 			else
258 				vput(ndp->ni_dvp);
259 			ndp->ni_dvp = NULL;
260 			vp = ndp->ni_vp;
261 			if (fmode & O_EXCL) {
262 				error = EEXIST;
263 				goto bad;
264 			}
265 			fmode &= ~O_CREAT;
266 		}
267 	} else {
268 		ndp->ni_cnd.cn_nameiop = LOOKUP;
269 		ndp->ni_cnd.cn_flags = ISOPEN |
270 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
271 		if (!(fmode & FWRITE))
272 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
273 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
274 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
275 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
276 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
277 		if ((error = namei(ndp)) != 0)
278 			return (error);
279 		vp = ndp->ni_vp;
280 	}
281 	error = vn_open_vnode(vp, fmode, cred, td, fp);
282 	if (error)
283 		goto bad;
284 	*flagp = fmode;
285 	return (0);
286 bad:
287 	NDFREE(ndp, NDF_ONLY_PNBUF);
288 	vput(vp);
289 	*flagp = fmode;
290 	ndp->ni_vp = NULL;
291 	return (error);
292 }
293 
294 /*
295  * Common code for vnode open operations once a vnode is located.
296  * Check permissions, and call the VOP_OPEN routine.
297  */
298 int
299 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
300     struct thread *td, struct file *fp)
301 {
302 	struct mount *mp;
303 	accmode_t accmode;
304 	struct flock lf;
305 	int error, have_flock, lock_flags, type;
306 
307 	if (vp->v_type == VLNK)
308 		return (EMLINK);
309 	if (vp->v_type == VSOCK)
310 		return (EOPNOTSUPP);
311 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
312 		return (ENOTDIR);
313 	accmode = 0;
314 	if (fmode & (FWRITE | O_TRUNC)) {
315 		if (vp->v_type == VDIR)
316 			return (EISDIR);
317 		accmode |= VWRITE;
318 	}
319 	if (fmode & FREAD)
320 		accmode |= VREAD;
321 	if (fmode & FEXEC)
322 		accmode |= VEXEC;
323 	if ((fmode & O_APPEND) && (fmode & FWRITE))
324 		accmode |= VAPPEND;
325 #ifdef MAC
326 	if (fmode & O_CREAT)
327 		accmode |= VCREAT;
328 	if (fmode & O_VERIFY)
329 		accmode |= VVERIFY;
330 	error = mac_vnode_check_open(cred, vp, accmode);
331 	if (error)
332 		return (error);
333 
334 	accmode &= ~(VCREAT | VVERIFY);
335 #endif
336 	if ((fmode & O_CREAT) == 0) {
337 		if (accmode & VWRITE) {
338 			error = vn_writechk(vp);
339 			if (error)
340 				return (error);
341 		}
342 		if (accmode) {
343 		        error = VOP_ACCESS(vp, accmode, cred, td);
344 			if (error)
345 				return (error);
346 		}
347 	}
348 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
349 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
350 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
351 		return (error);
352 
353 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
354 		KASSERT(fp != NULL, ("open with flock requires fp"));
355 		lock_flags = VOP_ISLOCKED(vp);
356 		VOP_UNLOCK(vp, 0);
357 		lf.l_whence = SEEK_SET;
358 		lf.l_start = 0;
359 		lf.l_len = 0;
360 		if (fmode & O_EXLOCK)
361 			lf.l_type = F_WRLCK;
362 		else
363 			lf.l_type = F_RDLCK;
364 		type = F_FLOCK;
365 		if ((fmode & FNONBLOCK) == 0)
366 			type |= F_WAIT;
367 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
368 		have_flock = (error == 0);
369 		vn_lock(vp, lock_flags | LK_RETRY);
370 		if (error == 0 && vp->v_iflag & VI_DOOMED)
371 			error = ENOENT;
372 		/*
373 		 * Another thread might have used this vnode as an
374 		 * executable while the vnode lock was dropped.
375 		 * Ensure the vnode is still able to be opened for
376 		 * writing after the lock has been obtained.
377 		 */
378 		if (error == 0 && accmode & VWRITE)
379 			error = vn_writechk(vp);
380 		if (error) {
381 			VOP_UNLOCK(vp, 0);
382 			if (have_flock) {
383 				lf.l_whence = SEEK_SET;
384 				lf.l_start = 0;
385 				lf.l_len = 0;
386 				lf.l_type = F_UNLCK;
387 				(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf,
388 				    F_FLOCK);
389 			}
390 			vn_start_write(vp, &mp, V_WAIT);
391 			vn_lock(vp, lock_flags | LK_RETRY);
392 			(void)VOP_CLOSE(vp, fmode, cred, td);
393 			vn_finished_write(mp);
394 			/* Prevent second close from fdrop()->vn_close(). */
395 			if (fp != NULL)
396 				fp->f_ops= &badfileops;
397 			return (error);
398 		}
399 		fp->f_flag |= FHASLOCK;
400 	}
401 	if (fmode & FWRITE) {
402 		VOP_ADD_WRITECOUNT(vp, 1);
403 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
404 		    __func__, vp, vp->v_writecount);
405 	}
406 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
407 	return (0);
408 }
409 
410 /*
411  * Check for write permissions on the specified vnode.
412  * Prototype text segments cannot be written.
413  */
414 int
415 vn_writechk(vp)
416 	register struct vnode *vp;
417 {
418 
419 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
420 	/*
421 	 * If there's shared text associated with
422 	 * the vnode, try to free it up once.  If
423 	 * we fail, we can't allow writing.
424 	 */
425 	if (VOP_IS_TEXT(vp))
426 		return (ETXTBSY);
427 
428 	return (0);
429 }
430 
431 /*
432  * Vnode close call
433  */
434 int
435 vn_close(vp, flags, file_cred, td)
436 	register struct vnode *vp;
437 	int flags;
438 	struct ucred *file_cred;
439 	struct thread *td;
440 {
441 	struct mount *mp;
442 	int error, lock_flags;
443 
444 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
445 	    MNT_EXTENDED_SHARED(vp->v_mount))
446 		lock_flags = LK_SHARED;
447 	else
448 		lock_flags = LK_EXCLUSIVE;
449 
450 	vn_start_write(vp, &mp, V_WAIT);
451 	vn_lock(vp, lock_flags | LK_RETRY);
452 	if (flags & FWRITE) {
453 		VNASSERT(vp->v_writecount > 0, vp,
454 		    ("vn_close: negative writecount"));
455 		VOP_ADD_WRITECOUNT(vp, -1);
456 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
457 		    __func__, vp, vp->v_writecount);
458 	}
459 	error = VOP_CLOSE(vp, flags, file_cred, td);
460 	vput(vp);
461 	vn_finished_write(mp);
462 	return (error);
463 }
464 
465 /*
466  * Heuristic to detect sequential operation.
467  */
468 static int
469 sequential_heuristic(struct uio *uio, struct file *fp)
470 {
471 
472 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
473 	if (fp->f_flag & FRDAHEAD)
474 		return (fp->f_seqcount << IO_SEQSHIFT);
475 
476 	/*
477 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
478 	 * that the first I/O is normally considered to be slightly
479 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
480 	 * unless previous seeks have reduced f_seqcount to 0, in which
481 	 * case offset 0 is not special.
482 	 */
483 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
484 	    uio->uio_offset == fp->f_nextoff) {
485 		/*
486 		 * f_seqcount is in units of fixed-size blocks so that it
487 		 * depends mainly on the amount of sequential I/O and not
488 		 * much on the number of sequential I/O's.  The fixed size
489 		 * of 16384 is hard-coded here since it is (not quite) just
490 		 * a magic size that works well here.  This size is more
491 		 * closely related to the best I/O size for real disks than
492 		 * to any block size used by software.
493 		 */
494 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
495 		if (fp->f_seqcount > IO_SEQMAX)
496 			fp->f_seqcount = IO_SEQMAX;
497 		return (fp->f_seqcount << IO_SEQSHIFT);
498 	}
499 
500 	/* Not sequential.  Quickly draw-down sequentiality. */
501 	if (fp->f_seqcount > 1)
502 		fp->f_seqcount = 1;
503 	else
504 		fp->f_seqcount = 0;
505 	return (0);
506 }
507 
508 /*
509  * Package up an I/O request on a vnode into a uio and do it.
510  */
511 int
512 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
513     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
514     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
515 {
516 	struct uio auio;
517 	struct iovec aiov;
518 	struct mount *mp;
519 	struct ucred *cred;
520 	void *rl_cookie;
521 	struct vn_io_fault_args args;
522 	int error, lock_flags;
523 
524 	auio.uio_iov = &aiov;
525 	auio.uio_iovcnt = 1;
526 	aiov.iov_base = base;
527 	aiov.iov_len = len;
528 	auio.uio_resid = len;
529 	auio.uio_offset = offset;
530 	auio.uio_segflg = segflg;
531 	auio.uio_rw = rw;
532 	auio.uio_td = td;
533 	error = 0;
534 
535 	if ((ioflg & IO_NODELOCKED) == 0) {
536 		if ((ioflg & IO_RANGELOCKED) == 0) {
537 			if (rw == UIO_READ) {
538 				rl_cookie = vn_rangelock_rlock(vp, offset,
539 				    offset + len);
540 			} else {
541 				rl_cookie = vn_rangelock_wlock(vp, offset,
542 				    offset + len);
543 			}
544 		} else
545 			rl_cookie = NULL;
546 		mp = NULL;
547 		if (rw == UIO_WRITE) {
548 			if (vp->v_type != VCHR &&
549 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
550 			    != 0)
551 				goto out;
552 			if (MNT_SHARED_WRITES(mp) ||
553 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
554 				lock_flags = LK_SHARED;
555 			else
556 				lock_flags = LK_EXCLUSIVE;
557 		} else
558 			lock_flags = LK_SHARED;
559 		vn_lock(vp, lock_flags | LK_RETRY);
560 	} else
561 		rl_cookie = NULL;
562 
563 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
564 #ifdef MAC
565 	if ((ioflg & IO_NOMACCHECK) == 0) {
566 		if (rw == UIO_READ)
567 			error = mac_vnode_check_read(active_cred, file_cred,
568 			    vp);
569 		else
570 			error = mac_vnode_check_write(active_cred, file_cred,
571 			    vp);
572 	}
573 #endif
574 	if (error == 0) {
575 		if (file_cred != NULL)
576 			cred = file_cred;
577 		else
578 			cred = active_cred;
579 		if (do_vn_io_fault(vp, &auio)) {
580 			args.kind = VN_IO_FAULT_VOP;
581 			args.cred = cred;
582 			args.flags = ioflg;
583 			args.args.vop_args.vp = vp;
584 			error = vn_io_fault1(vp, &auio, &args, td);
585 		} else if (rw == UIO_READ) {
586 			error = VOP_READ(vp, &auio, ioflg, cred);
587 		} else /* if (rw == UIO_WRITE) */ {
588 			error = VOP_WRITE(vp, &auio, ioflg, cred);
589 		}
590 	}
591 	if (aresid)
592 		*aresid = auio.uio_resid;
593 	else
594 		if (auio.uio_resid && error == 0)
595 			error = EIO;
596 	if ((ioflg & IO_NODELOCKED) == 0) {
597 		VOP_UNLOCK(vp, 0);
598 		if (mp != NULL)
599 			vn_finished_write(mp);
600 	}
601  out:
602 	if (rl_cookie != NULL)
603 		vn_rangelock_unlock(vp, rl_cookie);
604 	return (error);
605 }
606 
607 /*
608  * Package up an I/O request on a vnode into a uio and do it.  The I/O
609  * request is split up into smaller chunks and we try to avoid saturating
610  * the buffer cache while potentially holding a vnode locked, so we
611  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
612  * to give other processes a chance to lock the vnode (either other processes
613  * core'ing the same binary, or unrelated processes scanning the directory).
614  */
615 int
616 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
617     file_cred, aresid, td)
618 	enum uio_rw rw;
619 	struct vnode *vp;
620 	void *base;
621 	size_t len;
622 	off_t offset;
623 	enum uio_seg segflg;
624 	int ioflg;
625 	struct ucred *active_cred;
626 	struct ucred *file_cred;
627 	size_t *aresid;
628 	struct thread *td;
629 {
630 	int error = 0;
631 	ssize_t iaresid;
632 
633 	do {
634 		int chunk;
635 
636 		/*
637 		 * Force `offset' to a multiple of MAXBSIZE except possibly
638 		 * for the first chunk, so that filesystems only need to
639 		 * write full blocks except possibly for the first and last
640 		 * chunks.
641 		 */
642 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
643 
644 		if (chunk > len)
645 			chunk = len;
646 		if (rw != UIO_READ && vp->v_type == VREG)
647 			bwillwrite();
648 		iaresid = 0;
649 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
650 		    ioflg, active_cred, file_cred, &iaresid, td);
651 		len -= chunk;	/* aresid calc already includes length */
652 		if (error)
653 			break;
654 		offset += chunk;
655 		base = (char *)base + chunk;
656 		kern_yield(PRI_USER);
657 	} while (len);
658 	if (aresid)
659 		*aresid = len + iaresid;
660 	return (error);
661 }
662 
663 off_t
664 foffset_lock(struct file *fp, int flags)
665 {
666 	struct mtx *mtxp;
667 	off_t res;
668 
669 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
670 
671 #if OFF_MAX <= LONG_MAX
672 	/*
673 	 * Caller only wants the current f_offset value.  Assume that
674 	 * the long and shorter integer types reads are atomic.
675 	 */
676 	if ((flags & FOF_NOLOCK) != 0)
677 		return (fp->f_offset);
678 #endif
679 
680 	/*
681 	 * According to McKusick the vn lock was protecting f_offset here.
682 	 * It is now protected by the FOFFSET_LOCKED flag.
683 	 */
684 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
685 	mtx_lock(mtxp);
686 	if ((flags & FOF_NOLOCK) == 0) {
687 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
688 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
689 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
690 			    "vofflock", 0);
691 		}
692 		fp->f_vnread_flags |= FOFFSET_LOCKED;
693 	}
694 	res = fp->f_offset;
695 	mtx_unlock(mtxp);
696 	return (res);
697 }
698 
699 void
700 foffset_unlock(struct file *fp, off_t val, int flags)
701 {
702 	struct mtx *mtxp;
703 
704 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
705 
706 #if OFF_MAX <= LONG_MAX
707 	if ((flags & FOF_NOLOCK) != 0) {
708 		if ((flags & FOF_NOUPDATE) == 0)
709 			fp->f_offset = val;
710 		if ((flags & FOF_NEXTOFF) != 0)
711 			fp->f_nextoff = val;
712 		return;
713 	}
714 #endif
715 
716 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
717 	mtx_lock(mtxp);
718 	if ((flags & FOF_NOUPDATE) == 0)
719 		fp->f_offset = val;
720 	if ((flags & FOF_NEXTOFF) != 0)
721 		fp->f_nextoff = val;
722 	if ((flags & FOF_NOLOCK) == 0) {
723 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
724 		    ("Lost FOFFSET_LOCKED"));
725 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
726 			wakeup(&fp->f_vnread_flags);
727 		fp->f_vnread_flags = 0;
728 	}
729 	mtx_unlock(mtxp);
730 }
731 
732 void
733 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
734 {
735 
736 	if ((flags & FOF_OFFSET) == 0)
737 		uio->uio_offset = foffset_lock(fp, flags);
738 }
739 
740 void
741 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
742 {
743 
744 	if ((flags & FOF_OFFSET) == 0)
745 		foffset_unlock(fp, uio->uio_offset, flags);
746 }
747 
748 static int
749 get_advice(struct file *fp, struct uio *uio)
750 {
751 	struct mtx *mtxp;
752 	int ret;
753 
754 	ret = POSIX_FADV_NORMAL;
755 	if (fp->f_advice == NULL)
756 		return (ret);
757 
758 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
759 	mtx_lock(mtxp);
760 	if (uio->uio_offset >= fp->f_advice->fa_start &&
761 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
762 		ret = fp->f_advice->fa_advice;
763 	mtx_unlock(mtxp);
764 	return (ret);
765 }
766 
767 /*
768  * File table vnode read routine.
769  */
770 static int
771 vn_read(fp, uio, active_cred, flags, td)
772 	struct file *fp;
773 	struct uio *uio;
774 	struct ucred *active_cred;
775 	int flags;
776 	struct thread *td;
777 {
778 	struct vnode *vp;
779 	off_t orig_offset;
780 	int error, ioflag;
781 	int advice;
782 
783 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
784 	    uio->uio_td, td));
785 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
786 	vp = fp->f_vnode;
787 	ioflag = 0;
788 	if (fp->f_flag & FNONBLOCK)
789 		ioflag |= IO_NDELAY;
790 	if (fp->f_flag & O_DIRECT)
791 		ioflag |= IO_DIRECT;
792 	advice = get_advice(fp, uio);
793 	vn_lock(vp, LK_SHARED | LK_RETRY);
794 
795 	switch (advice) {
796 	case POSIX_FADV_NORMAL:
797 	case POSIX_FADV_SEQUENTIAL:
798 	case POSIX_FADV_NOREUSE:
799 		ioflag |= sequential_heuristic(uio, fp);
800 		break;
801 	case POSIX_FADV_RANDOM:
802 		/* Disable read-ahead for random I/O. */
803 		break;
804 	}
805 	orig_offset = uio->uio_offset;
806 
807 #ifdef MAC
808 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
809 	if (error == 0)
810 #endif
811 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
812 	fp->f_nextoff = uio->uio_offset;
813 	VOP_UNLOCK(vp, 0);
814 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
815 	    orig_offset != uio->uio_offset)
816 		/*
817 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
818 		 * for the backing file after a POSIX_FADV_NOREUSE
819 		 * read(2).
820 		 */
821 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
822 		    POSIX_FADV_DONTNEED);
823 	return (error);
824 }
825 
826 /*
827  * File table vnode write routine.
828  */
829 static int
830 vn_write(fp, uio, active_cred, flags, td)
831 	struct file *fp;
832 	struct uio *uio;
833 	struct ucred *active_cred;
834 	int flags;
835 	struct thread *td;
836 {
837 	struct vnode *vp;
838 	struct mount *mp;
839 	off_t orig_offset;
840 	int error, ioflag, lock_flags;
841 	int advice;
842 
843 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
844 	    uio->uio_td, td));
845 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
846 	vp = fp->f_vnode;
847 	if (vp->v_type == VREG)
848 		bwillwrite();
849 	ioflag = IO_UNIT;
850 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
851 		ioflag |= IO_APPEND;
852 	if (fp->f_flag & FNONBLOCK)
853 		ioflag |= IO_NDELAY;
854 	if (fp->f_flag & O_DIRECT)
855 		ioflag |= IO_DIRECT;
856 	if ((fp->f_flag & O_FSYNC) ||
857 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
858 		ioflag |= IO_SYNC;
859 	mp = NULL;
860 	if (vp->v_type != VCHR &&
861 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
862 		goto unlock;
863 
864 	advice = get_advice(fp, uio);
865 
866 	if (MNT_SHARED_WRITES(mp) ||
867 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
868 		lock_flags = LK_SHARED;
869 	} else {
870 		lock_flags = LK_EXCLUSIVE;
871 	}
872 
873 	vn_lock(vp, lock_flags | LK_RETRY);
874 	switch (advice) {
875 	case POSIX_FADV_NORMAL:
876 	case POSIX_FADV_SEQUENTIAL:
877 	case POSIX_FADV_NOREUSE:
878 		ioflag |= sequential_heuristic(uio, fp);
879 		break;
880 	case POSIX_FADV_RANDOM:
881 		/* XXX: Is this correct? */
882 		break;
883 	}
884 	orig_offset = uio->uio_offset;
885 
886 #ifdef MAC
887 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
888 	if (error == 0)
889 #endif
890 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
891 	fp->f_nextoff = uio->uio_offset;
892 	VOP_UNLOCK(vp, 0);
893 	if (vp->v_type != VCHR)
894 		vn_finished_write(mp);
895 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
896 	    orig_offset != uio->uio_offset)
897 		/*
898 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
899 		 * for the backing file after a POSIX_FADV_NOREUSE
900 		 * write(2).
901 		 */
902 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
903 		    POSIX_FADV_DONTNEED);
904 unlock:
905 	return (error);
906 }
907 
908 /*
909  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
910  * prevent the following deadlock:
911  *
912  * Assume that the thread A reads from the vnode vp1 into userspace
913  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
914  * currently not resident, then system ends up with the call chain
915  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
916  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
917  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
918  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
919  * backed by the pages of vnode vp1, and some page in buf2 is not
920  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
921  *
922  * To prevent the lock order reversal and deadlock, vn_io_fault() does
923  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
924  * Instead, it first tries to do the whole range i/o with pagefaults
925  * disabled. If all pages in the i/o buffer are resident and mapped,
926  * VOP will succeed (ignoring the genuine filesystem errors).
927  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
928  * i/o in chunks, with all pages in the chunk prefaulted and held
929  * using vm_fault_quick_hold_pages().
930  *
931  * Filesystems using this deadlock avoidance scheme should use the
932  * array of the held pages from uio, saved in the curthread->td_ma,
933  * instead of doing uiomove().  A helper function
934  * vn_io_fault_uiomove() converts uiomove request into
935  * uiomove_fromphys() over td_ma array.
936  *
937  * Since vnode locks do not cover the whole i/o anymore, rangelocks
938  * make the current i/o request atomic with respect to other i/os and
939  * truncations.
940  */
941 
942 /*
943  * Decode vn_io_fault_args and perform the corresponding i/o.
944  */
945 static int
946 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
947     struct thread *td)
948 {
949 
950 	switch (args->kind) {
951 	case VN_IO_FAULT_FOP:
952 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
953 		    uio, args->cred, args->flags, td));
954 	case VN_IO_FAULT_VOP:
955 		if (uio->uio_rw == UIO_READ) {
956 			return (VOP_READ(args->args.vop_args.vp, uio,
957 			    args->flags, args->cred));
958 		} else if (uio->uio_rw == UIO_WRITE) {
959 			return (VOP_WRITE(args->args.vop_args.vp, uio,
960 			    args->flags, args->cred));
961 		}
962 		break;
963 	}
964 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
965 	    uio->uio_rw);
966 }
967 
968 static int
969 vn_io_fault_touch(char *base, const struct uio *uio)
970 {
971 	int r;
972 
973 	r = fubyte(base);
974 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
975 		return (EFAULT);
976 	return (0);
977 }
978 
979 static int
980 vn_io_fault_prefault_user(const struct uio *uio)
981 {
982 	char *base;
983 	const struct iovec *iov;
984 	size_t len;
985 	ssize_t resid;
986 	int error, i;
987 
988 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
989 	    ("vn_io_fault_prefault userspace"));
990 
991 	error = i = 0;
992 	iov = uio->uio_iov;
993 	resid = uio->uio_resid;
994 	base = iov->iov_base;
995 	len = iov->iov_len;
996 	while (resid > 0) {
997 		error = vn_io_fault_touch(base, uio);
998 		if (error != 0)
999 			break;
1000 		if (len < PAGE_SIZE) {
1001 			if (len != 0) {
1002 				error = vn_io_fault_touch(base + len - 1, uio);
1003 				if (error != 0)
1004 					break;
1005 				resid -= len;
1006 			}
1007 			if (++i >= uio->uio_iovcnt)
1008 				break;
1009 			iov = uio->uio_iov + i;
1010 			base = iov->iov_base;
1011 			len = iov->iov_len;
1012 		} else {
1013 			len -= PAGE_SIZE;
1014 			base += PAGE_SIZE;
1015 			resid -= PAGE_SIZE;
1016 		}
1017 	}
1018 	return (error);
1019 }
1020 
1021 /*
1022  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1023  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1024  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1025  * into args and call vn_io_fault1() to handle faults during the user
1026  * mode buffer accesses.
1027  */
1028 static int
1029 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1030     struct thread *td)
1031 {
1032 	vm_page_t ma[io_hold_cnt + 2];
1033 	struct uio *uio_clone, short_uio;
1034 	struct iovec short_iovec[1];
1035 	vm_page_t *prev_td_ma;
1036 	vm_prot_t prot;
1037 	vm_offset_t addr, end;
1038 	size_t len, resid;
1039 	ssize_t adv;
1040 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1041 
1042 	if (vn_io_fault_prefault) {
1043 		error = vn_io_fault_prefault_user(uio);
1044 		if (error != 0)
1045 			return (error); /* Or ignore ? */
1046 	}
1047 
1048 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1049 
1050 	/*
1051 	 * The UFS follows IO_UNIT directive and replays back both
1052 	 * uio_offset and uio_resid if an error is encountered during the
1053 	 * operation.  But, since the iovec may be already advanced,
1054 	 * uio is still in an inconsistent state.
1055 	 *
1056 	 * Cache a copy of the original uio, which is advanced to the redo
1057 	 * point using UIO_NOCOPY below.
1058 	 */
1059 	uio_clone = cloneuio(uio);
1060 	resid = uio->uio_resid;
1061 
1062 	short_uio.uio_segflg = UIO_USERSPACE;
1063 	short_uio.uio_rw = uio->uio_rw;
1064 	short_uio.uio_td = uio->uio_td;
1065 
1066 	save = vm_fault_disable_pagefaults();
1067 	error = vn_io_fault_doio(args, uio, td);
1068 	if (error != EFAULT)
1069 		goto out;
1070 
1071 	atomic_add_long(&vn_io_faults_cnt, 1);
1072 	uio_clone->uio_segflg = UIO_NOCOPY;
1073 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1074 	uio_clone->uio_segflg = uio->uio_segflg;
1075 
1076 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1077 	prev_td_ma = td->td_ma;
1078 	prev_td_ma_cnt = td->td_ma_cnt;
1079 
1080 	while (uio_clone->uio_resid != 0) {
1081 		len = uio_clone->uio_iov->iov_len;
1082 		if (len == 0) {
1083 			KASSERT(uio_clone->uio_iovcnt >= 1,
1084 			    ("iovcnt underflow"));
1085 			uio_clone->uio_iov++;
1086 			uio_clone->uio_iovcnt--;
1087 			continue;
1088 		}
1089 		if (len > io_hold_cnt * PAGE_SIZE)
1090 			len = io_hold_cnt * PAGE_SIZE;
1091 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1092 		end = round_page(addr + len);
1093 		if (end < addr) {
1094 			error = EFAULT;
1095 			break;
1096 		}
1097 		cnt = atop(end - trunc_page(addr));
1098 		/*
1099 		 * A perfectly misaligned address and length could cause
1100 		 * both the start and the end of the chunk to use partial
1101 		 * page.  +2 accounts for such a situation.
1102 		 */
1103 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1104 		    addr, len, prot, ma, io_hold_cnt + 2);
1105 		if (cnt == -1) {
1106 			error = EFAULT;
1107 			break;
1108 		}
1109 		short_uio.uio_iov = &short_iovec[0];
1110 		short_iovec[0].iov_base = (void *)addr;
1111 		short_uio.uio_iovcnt = 1;
1112 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1113 		short_uio.uio_offset = uio_clone->uio_offset;
1114 		td->td_ma = ma;
1115 		td->td_ma_cnt = cnt;
1116 
1117 		error = vn_io_fault_doio(args, &short_uio, td);
1118 		vm_page_unhold_pages(ma, cnt);
1119 		adv = len - short_uio.uio_resid;
1120 
1121 		uio_clone->uio_iov->iov_base =
1122 		    (char *)uio_clone->uio_iov->iov_base + adv;
1123 		uio_clone->uio_iov->iov_len -= adv;
1124 		uio_clone->uio_resid -= adv;
1125 		uio_clone->uio_offset += adv;
1126 
1127 		uio->uio_resid -= adv;
1128 		uio->uio_offset += adv;
1129 
1130 		if (error != 0 || adv == 0)
1131 			break;
1132 	}
1133 	td->td_ma = prev_td_ma;
1134 	td->td_ma_cnt = prev_td_ma_cnt;
1135 	curthread_pflags_restore(saveheld);
1136 out:
1137 	vm_fault_enable_pagefaults(save);
1138 	free(uio_clone, M_IOV);
1139 	return (error);
1140 }
1141 
1142 static int
1143 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1144     int flags, struct thread *td)
1145 {
1146 	fo_rdwr_t *doio;
1147 	struct vnode *vp;
1148 	void *rl_cookie;
1149 	struct vn_io_fault_args args;
1150 	int error;
1151 
1152 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1153 	vp = fp->f_vnode;
1154 	foffset_lock_uio(fp, uio, flags);
1155 	if (do_vn_io_fault(vp, uio)) {
1156 		args.kind = VN_IO_FAULT_FOP;
1157 		args.args.fop_args.fp = fp;
1158 		args.args.fop_args.doio = doio;
1159 		args.cred = active_cred;
1160 		args.flags = flags | FOF_OFFSET;
1161 		if (uio->uio_rw == UIO_READ) {
1162 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1163 			    uio->uio_offset + uio->uio_resid);
1164 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1165 		    (flags & FOF_OFFSET) == 0) {
1166 			/* For appenders, punt and lock the whole range. */
1167 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1168 		} else {
1169 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1170 			    uio->uio_offset + uio->uio_resid);
1171 		}
1172 		error = vn_io_fault1(vp, uio, &args, td);
1173 		vn_rangelock_unlock(vp, rl_cookie);
1174 	} else {
1175 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1176 	}
1177 	foffset_unlock_uio(fp, uio, flags);
1178 	return (error);
1179 }
1180 
1181 /*
1182  * Helper function to perform the requested uiomove operation using
1183  * the held pages for io->uio_iov[0].iov_base buffer instead of
1184  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1185  * instead of iov_base prevents page faults that could occur due to
1186  * pmap_collect() invalidating the mapping created by
1187  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1188  * object cleanup revoking the write access from page mappings.
1189  *
1190  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1191  * instead of plain uiomove().
1192  */
1193 int
1194 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1195 {
1196 	struct uio transp_uio;
1197 	struct iovec transp_iov[1];
1198 	struct thread *td;
1199 	size_t adv;
1200 	int error, pgadv;
1201 
1202 	td = curthread;
1203 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1204 	    uio->uio_segflg != UIO_USERSPACE)
1205 		return (uiomove(data, xfersize, uio));
1206 
1207 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1208 	transp_iov[0].iov_base = data;
1209 	transp_uio.uio_iov = &transp_iov[0];
1210 	transp_uio.uio_iovcnt = 1;
1211 	if (xfersize > uio->uio_resid)
1212 		xfersize = uio->uio_resid;
1213 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1214 	transp_uio.uio_offset = 0;
1215 	transp_uio.uio_segflg = UIO_SYSSPACE;
1216 	/*
1217 	 * Since transp_iov points to data, and td_ma page array
1218 	 * corresponds to original uio->uio_iov, we need to invert the
1219 	 * direction of the i/o operation as passed to
1220 	 * uiomove_fromphys().
1221 	 */
1222 	switch (uio->uio_rw) {
1223 	case UIO_WRITE:
1224 		transp_uio.uio_rw = UIO_READ;
1225 		break;
1226 	case UIO_READ:
1227 		transp_uio.uio_rw = UIO_WRITE;
1228 		break;
1229 	}
1230 	transp_uio.uio_td = uio->uio_td;
1231 	error = uiomove_fromphys(td->td_ma,
1232 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1233 	    xfersize, &transp_uio);
1234 	adv = xfersize - transp_uio.uio_resid;
1235 	pgadv =
1236 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1237 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1238 	td->td_ma += pgadv;
1239 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1240 	    pgadv));
1241 	td->td_ma_cnt -= pgadv;
1242 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1243 	uio->uio_iov->iov_len -= adv;
1244 	uio->uio_resid -= adv;
1245 	uio->uio_offset += adv;
1246 	return (error);
1247 }
1248 
1249 int
1250 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1251     struct uio *uio)
1252 {
1253 	struct thread *td;
1254 	vm_offset_t iov_base;
1255 	int cnt, pgadv;
1256 
1257 	td = curthread;
1258 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1259 	    uio->uio_segflg != UIO_USERSPACE)
1260 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1261 
1262 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1263 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1264 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1265 	switch (uio->uio_rw) {
1266 	case UIO_WRITE:
1267 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1268 		    offset, cnt);
1269 		break;
1270 	case UIO_READ:
1271 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1272 		    cnt);
1273 		break;
1274 	}
1275 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1276 	td->td_ma += pgadv;
1277 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1278 	    pgadv));
1279 	td->td_ma_cnt -= pgadv;
1280 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1281 	uio->uio_iov->iov_len -= cnt;
1282 	uio->uio_resid -= cnt;
1283 	uio->uio_offset += cnt;
1284 	return (0);
1285 }
1286 
1287 
1288 /*
1289  * File table truncate routine.
1290  */
1291 static int
1292 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1293     struct thread *td)
1294 {
1295 	struct vattr vattr;
1296 	struct mount *mp;
1297 	struct vnode *vp;
1298 	void *rl_cookie;
1299 	int error;
1300 
1301 	vp = fp->f_vnode;
1302 
1303 	/*
1304 	 * Lock the whole range for truncation.  Otherwise split i/o
1305 	 * might happen partly before and partly after the truncation.
1306 	 */
1307 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1308 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1309 	if (error)
1310 		goto out1;
1311 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1312 	if (vp->v_type == VDIR) {
1313 		error = EISDIR;
1314 		goto out;
1315 	}
1316 #ifdef MAC
1317 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1318 	if (error)
1319 		goto out;
1320 #endif
1321 	error = vn_writechk(vp);
1322 	if (error == 0) {
1323 		VATTR_NULL(&vattr);
1324 		vattr.va_size = length;
1325 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1326 	}
1327 out:
1328 	VOP_UNLOCK(vp, 0);
1329 	vn_finished_write(mp);
1330 out1:
1331 	vn_rangelock_unlock(vp, rl_cookie);
1332 	return (error);
1333 }
1334 
1335 /*
1336  * File table vnode stat routine.
1337  */
1338 static int
1339 vn_statfile(fp, sb, active_cred, td)
1340 	struct file *fp;
1341 	struct stat *sb;
1342 	struct ucred *active_cred;
1343 	struct thread *td;
1344 {
1345 	struct vnode *vp = fp->f_vnode;
1346 	int error;
1347 
1348 	vn_lock(vp, LK_SHARED | LK_RETRY);
1349 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1350 	VOP_UNLOCK(vp, 0);
1351 
1352 	return (error);
1353 }
1354 
1355 /*
1356  * Stat a vnode; implementation for the stat syscall
1357  */
1358 int
1359 vn_stat(vp, sb, active_cred, file_cred, td)
1360 	struct vnode *vp;
1361 	register struct stat *sb;
1362 	struct ucred *active_cred;
1363 	struct ucred *file_cred;
1364 	struct thread *td;
1365 {
1366 	struct vattr vattr;
1367 	register struct vattr *vap;
1368 	int error;
1369 	u_short mode;
1370 
1371 #ifdef MAC
1372 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1373 	if (error)
1374 		return (error);
1375 #endif
1376 
1377 	vap = &vattr;
1378 
1379 	/*
1380 	 * Initialize defaults for new and unusual fields, so that file
1381 	 * systems which don't support these fields don't need to know
1382 	 * about them.
1383 	 */
1384 	vap->va_birthtime.tv_sec = -1;
1385 	vap->va_birthtime.tv_nsec = 0;
1386 	vap->va_fsid = VNOVAL;
1387 	vap->va_rdev = NODEV;
1388 
1389 	error = VOP_GETATTR(vp, vap, active_cred);
1390 	if (error)
1391 		return (error);
1392 
1393 	/*
1394 	 * Zero the spare stat fields
1395 	 */
1396 	bzero(sb, sizeof *sb);
1397 
1398 	/*
1399 	 * Copy from vattr table
1400 	 */
1401 	if (vap->va_fsid != VNOVAL)
1402 		sb->st_dev = vap->va_fsid;
1403 	else
1404 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1405 	sb->st_ino = vap->va_fileid;
1406 	mode = vap->va_mode;
1407 	switch (vap->va_type) {
1408 	case VREG:
1409 		mode |= S_IFREG;
1410 		break;
1411 	case VDIR:
1412 		mode |= S_IFDIR;
1413 		break;
1414 	case VBLK:
1415 		mode |= S_IFBLK;
1416 		break;
1417 	case VCHR:
1418 		mode |= S_IFCHR;
1419 		break;
1420 	case VLNK:
1421 		mode |= S_IFLNK;
1422 		break;
1423 	case VSOCK:
1424 		mode |= S_IFSOCK;
1425 		break;
1426 	case VFIFO:
1427 		mode |= S_IFIFO;
1428 		break;
1429 	default:
1430 		return (EBADF);
1431 	};
1432 	sb->st_mode = mode;
1433 	sb->st_nlink = vap->va_nlink;
1434 	sb->st_uid = vap->va_uid;
1435 	sb->st_gid = vap->va_gid;
1436 	sb->st_rdev = vap->va_rdev;
1437 	if (vap->va_size > OFF_MAX)
1438 		return (EOVERFLOW);
1439 	sb->st_size = vap->va_size;
1440 	sb->st_atim = vap->va_atime;
1441 	sb->st_mtim = vap->va_mtime;
1442 	sb->st_ctim = vap->va_ctime;
1443 	sb->st_birthtim = vap->va_birthtime;
1444 
1445         /*
1446 	 * According to www.opengroup.org, the meaning of st_blksize is
1447 	 *   "a filesystem-specific preferred I/O block size for this
1448 	 *    object.  In some filesystem types, this may vary from file
1449 	 *    to file"
1450 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1451 	 */
1452 
1453 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1454 
1455 	sb->st_flags = vap->va_flags;
1456 	if (priv_check(td, PRIV_VFS_GENERATION))
1457 		sb->st_gen = 0;
1458 	else
1459 		sb->st_gen = vap->va_gen;
1460 
1461 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1462 	return (0);
1463 }
1464 
1465 /*
1466  * File table vnode ioctl routine.
1467  */
1468 static int
1469 vn_ioctl(fp, com, data, active_cred, td)
1470 	struct file *fp;
1471 	u_long com;
1472 	void *data;
1473 	struct ucred *active_cred;
1474 	struct thread *td;
1475 {
1476 	struct vattr vattr;
1477 	struct vnode *vp;
1478 	int error;
1479 
1480 	vp = fp->f_vnode;
1481 	switch (vp->v_type) {
1482 	case VDIR:
1483 	case VREG:
1484 		switch (com) {
1485 		case FIONREAD:
1486 			vn_lock(vp, LK_SHARED | LK_RETRY);
1487 			error = VOP_GETATTR(vp, &vattr, active_cred);
1488 			VOP_UNLOCK(vp, 0);
1489 			if (error == 0)
1490 				*(int *)data = vattr.va_size - fp->f_offset;
1491 			return (error);
1492 		case FIONBIO:
1493 		case FIOASYNC:
1494 			return (0);
1495 		default:
1496 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1497 			    active_cred, td));
1498 		}
1499 	default:
1500 		return (ENOTTY);
1501 	}
1502 }
1503 
1504 /*
1505  * File table vnode poll routine.
1506  */
1507 static int
1508 vn_poll(fp, events, active_cred, td)
1509 	struct file *fp;
1510 	int events;
1511 	struct ucred *active_cred;
1512 	struct thread *td;
1513 {
1514 	struct vnode *vp;
1515 	int error;
1516 
1517 	vp = fp->f_vnode;
1518 #ifdef MAC
1519 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1520 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1521 	VOP_UNLOCK(vp, 0);
1522 	if (!error)
1523 #endif
1524 
1525 	error = VOP_POLL(vp, events, fp->f_cred, td);
1526 	return (error);
1527 }
1528 
1529 /*
1530  * Acquire the requested lock and then check for validity.  LK_RETRY
1531  * permits vn_lock to return doomed vnodes.
1532  */
1533 int
1534 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1535 {
1536 	int error;
1537 
1538 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1539 	    ("vn_lock called with no locktype."));
1540 	do {
1541 #ifdef DEBUG_VFS_LOCKS
1542 		KASSERT(vp->v_holdcnt != 0,
1543 		    ("vn_lock %p: zero hold count", vp));
1544 #endif
1545 		error = VOP_LOCK1(vp, flags, file, line);
1546 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1547 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1548 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occured (%d)",
1549 		    flags, error));
1550 		/*
1551 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1552 		 * If RETRY is not set, we return ENOENT instead.
1553 		 */
1554 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1555 		    (flags & LK_RETRY) == 0) {
1556 			VOP_UNLOCK(vp, 0);
1557 			error = ENOENT;
1558 			break;
1559 		}
1560 	} while (flags & LK_RETRY && error != 0);
1561 	return (error);
1562 }
1563 
1564 /*
1565  * File table vnode close routine.
1566  */
1567 static int
1568 vn_closefile(fp, td)
1569 	struct file *fp;
1570 	struct thread *td;
1571 {
1572 	struct vnode *vp;
1573 	struct flock lf;
1574 	int error;
1575 
1576 	vp = fp->f_vnode;
1577 	fp->f_ops = &badfileops;
1578 
1579 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1580 		vref(vp);
1581 
1582 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1583 
1584 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1585 		lf.l_whence = SEEK_SET;
1586 		lf.l_start = 0;
1587 		lf.l_len = 0;
1588 		lf.l_type = F_UNLCK;
1589 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1590 		vrele(vp);
1591 	}
1592 	return (error);
1593 }
1594 
1595 static bool
1596 vn_suspendable(struct mount *mp)
1597 {
1598 
1599 	return (mp->mnt_op->vfs_susp_clean != NULL);
1600 }
1601 
1602 /*
1603  * Preparing to start a filesystem write operation. If the operation is
1604  * permitted, then we bump the count of operations in progress and
1605  * proceed. If a suspend request is in progress, we wait until the
1606  * suspension is over, and then proceed.
1607  */
1608 static int
1609 vn_start_write_locked(struct mount *mp, int flags)
1610 {
1611 	int error, mflags;
1612 
1613 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1614 	error = 0;
1615 
1616 	/*
1617 	 * Check on status of suspension.
1618 	 */
1619 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1620 	    mp->mnt_susp_owner != curthread) {
1621 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1622 		    (flags & PCATCH) : 0) | (PUSER - 1);
1623 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1624 			if (flags & V_NOWAIT) {
1625 				error = EWOULDBLOCK;
1626 				goto unlock;
1627 			}
1628 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1629 			    "suspfs", 0);
1630 			if (error)
1631 				goto unlock;
1632 		}
1633 	}
1634 	if (flags & V_XSLEEP)
1635 		goto unlock;
1636 	mp->mnt_writeopcount++;
1637 unlock:
1638 	if (error != 0 || (flags & V_XSLEEP) != 0)
1639 		MNT_REL(mp);
1640 	MNT_IUNLOCK(mp);
1641 	return (error);
1642 }
1643 
1644 int
1645 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1646 {
1647 	struct mount *mp;
1648 	int error;
1649 
1650 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1651 	    ("V_MNTREF requires mp"));
1652 
1653 	error = 0;
1654 	/*
1655 	 * If a vnode is provided, get and return the mount point that
1656 	 * to which it will write.
1657 	 */
1658 	if (vp != NULL) {
1659 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1660 			*mpp = NULL;
1661 			if (error != EOPNOTSUPP)
1662 				return (error);
1663 			return (0);
1664 		}
1665 	}
1666 	if ((mp = *mpp) == NULL)
1667 		return (0);
1668 
1669 	if (!vn_suspendable(mp)) {
1670 		if (vp != NULL || (flags & V_MNTREF) != 0)
1671 			vfs_rel(mp);
1672 		return (0);
1673 	}
1674 
1675 	/*
1676 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1677 	 * a vfs_ref().
1678 	 * As long as a vnode is not provided we need to acquire a
1679 	 * refcount for the provided mountpoint too, in order to
1680 	 * emulate a vfs_ref().
1681 	 */
1682 	MNT_ILOCK(mp);
1683 	if (vp == NULL && (flags & V_MNTREF) == 0)
1684 		MNT_REF(mp);
1685 
1686 	return (vn_start_write_locked(mp, flags));
1687 }
1688 
1689 /*
1690  * Secondary suspension. Used by operations such as vop_inactive
1691  * routines that are needed by the higher level functions. These
1692  * are allowed to proceed until all the higher level functions have
1693  * completed (indicated by mnt_writeopcount dropping to zero). At that
1694  * time, these operations are halted until the suspension is over.
1695  */
1696 int
1697 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1698 {
1699 	struct mount *mp;
1700 	int error;
1701 
1702 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1703 	    ("V_MNTREF requires mp"));
1704 
1705  retry:
1706 	if (vp != NULL) {
1707 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1708 			*mpp = NULL;
1709 			if (error != EOPNOTSUPP)
1710 				return (error);
1711 			return (0);
1712 		}
1713 	}
1714 	/*
1715 	 * If we are not suspended or have not yet reached suspended
1716 	 * mode, then let the operation proceed.
1717 	 */
1718 	if ((mp = *mpp) == NULL)
1719 		return (0);
1720 
1721 	if (!vn_suspendable(mp)) {
1722 		if (vp != NULL || (flags & V_MNTREF) != 0)
1723 			vfs_rel(mp);
1724 		return (0);
1725 	}
1726 
1727 	/*
1728 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1729 	 * a vfs_ref().
1730 	 * As long as a vnode is not provided we need to acquire a
1731 	 * refcount for the provided mountpoint too, in order to
1732 	 * emulate a vfs_ref().
1733 	 */
1734 	MNT_ILOCK(mp);
1735 	if (vp == NULL && (flags & V_MNTREF) == 0)
1736 		MNT_REF(mp);
1737 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1738 		mp->mnt_secondary_writes++;
1739 		mp->mnt_secondary_accwrites++;
1740 		MNT_IUNLOCK(mp);
1741 		return (0);
1742 	}
1743 	if (flags & V_NOWAIT) {
1744 		MNT_REL(mp);
1745 		MNT_IUNLOCK(mp);
1746 		return (EWOULDBLOCK);
1747 	}
1748 	/*
1749 	 * Wait for the suspension to finish.
1750 	 */
1751 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1752 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1753 	    "suspfs", 0);
1754 	vfs_rel(mp);
1755 	if (error == 0)
1756 		goto retry;
1757 	return (error);
1758 }
1759 
1760 /*
1761  * Filesystem write operation has completed. If we are suspending and this
1762  * operation is the last one, notify the suspender that the suspension is
1763  * now in effect.
1764  */
1765 void
1766 vn_finished_write(mp)
1767 	struct mount *mp;
1768 {
1769 	if (mp == NULL || !vn_suspendable(mp))
1770 		return;
1771 	MNT_ILOCK(mp);
1772 	MNT_REL(mp);
1773 	mp->mnt_writeopcount--;
1774 	if (mp->mnt_writeopcount < 0)
1775 		panic("vn_finished_write: neg cnt");
1776 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1777 	    mp->mnt_writeopcount <= 0)
1778 		wakeup(&mp->mnt_writeopcount);
1779 	MNT_IUNLOCK(mp);
1780 }
1781 
1782 
1783 /*
1784  * Filesystem secondary write operation has completed. If we are
1785  * suspending and this operation is the last one, notify the suspender
1786  * that the suspension is now in effect.
1787  */
1788 void
1789 vn_finished_secondary_write(mp)
1790 	struct mount *mp;
1791 {
1792 	if (mp == NULL || !vn_suspendable(mp))
1793 		return;
1794 	MNT_ILOCK(mp);
1795 	MNT_REL(mp);
1796 	mp->mnt_secondary_writes--;
1797 	if (mp->mnt_secondary_writes < 0)
1798 		panic("vn_finished_secondary_write: neg cnt");
1799 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1800 	    mp->mnt_secondary_writes <= 0)
1801 		wakeup(&mp->mnt_secondary_writes);
1802 	MNT_IUNLOCK(mp);
1803 }
1804 
1805 
1806 
1807 /*
1808  * Request a filesystem to suspend write operations.
1809  */
1810 int
1811 vfs_write_suspend(struct mount *mp, int flags)
1812 {
1813 	int error;
1814 
1815 	MPASS(vn_suspendable(mp));
1816 
1817 	MNT_ILOCK(mp);
1818 	if (mp->mnt_susp_owner == curthread) {
1819 		MNT_IUNLOCK(mp);
1820 		return (EALREADY);
1821 	}
1822 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1823 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1824 
1825 	/*
1826 	 * Unmount holds a write reference on the mount point.  If we
1827 	 * own busy reference and drain for writers, we deadlock with
1828 	 * the reference draining in the unmount path.  Callers of
1829 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1830 	 * vfs_busy() reference is owned and caller is not in the
1831 	 * unmount context.
1832 	 */
1833 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1834 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1835 		MNT_IUNLOCK(mp);
1836 		return (EBUSY);
1837 	}
1838 
1839 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1840 	mp->mnt_susp_owner = curthread;
1841 	if (mp->mnt_writeopcount > 0)
1842 		(void) msleep(&mp->mnt_writeopcount,
1843 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1844 	else
1845 		MNT_IUNLOCK(mp);
1846 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1847 		vfs_write_resume(mp, 0);
1848 	return (error);
1849 }
1850 
1851 /*
1852  * Request a filesystem to resume write operations.
1853  */
1854 void
1855 vfs_write_resume(struct mount *mp, int flags)
1856 {
1857 
1858 	MPASS(vn_suspendable(mp));
1859 
1860 	MNT_ILOCK(mp);
1861 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1862 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1863 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1864 				       MNTK_SUSPENDED);
1865 		mp->mnt_susp_owner = NULL;
1866 		wakeup(&mp->mnt_writeopcount);
1867 		wakeup(&mp->mnt_flag);
1868 		curthread->td_pflags &= ~TDP_IGNSUSP;
1869 		if ((flags & VR_START_WRITE) != 0) {
1870 			MNT_REF(mp);
1871 			mp->mnt_writeopcount++;
1872 		}
1873 		MNT_IUNLOCK(mp);
1874 		if ((flags & VR_NO_SUSPCLR) == 0)
1875 			VFS_SUSP_CLEAN(mp);
1876 	} else if ((flags & VR_START_WRITE) != 0) {
1877 		MNT_REF(mp);
1878 		vn_start_write_locked(mp, 0);
1879 	} else {
1880 		MNT_IUNLOCK(mp);
1881 	}
1882 }
1883 
1884 /*
1885  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1886  * methods.
1887  */
1888 int
1889 vfs_write_suspend_umnt(struct mount *mp)
1890 {
1891 	int error;
1892 
1893 	MPASS(vn_suspendable(mp));
1894 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1895 	    ("vfs_write_suspend_umnt: recursed"));
1896 
1897 	/* dounmount() already called vn_start_write(). */
1898 	for (;;) {
1899 		vn_finished_write(mp);
1900 		error = vfs_write_suspend(mp, 0);
1901 		if (error != 0) {
1902 			vn_start_write(NULL, &mp, V_WAIT);
1903 			return (error);
1904 		}
1905 		MNT_ILOCK(mp);
1906 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1907 			break;
1908 		MNT_IUNLOCK(mp);
1909 		vn_start_write(NULL, &mp, V_WAIT);
1910 	}
1911 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1912 	wakeup(&mp->mnt_flag);
1913 	MNT_IUNLOCK(mp);
1914 	curthread->td_pflags |= TDP_IGNSUSP;
1915 	return (0);
1916 }
1917 
1918 /*
1919  * Implement kqueues for files by translating it to vnode operation.
1920  */
1921 static int
1922 vn_kqfilter(struct file *fp, struct knote *kn)
1923 {
1924 
1925 	return (VOP_KQFILTER(fp->f_vnode, kn));
1926 }
1927 
1928 /*
1929  * Simplified in-kernel wrapper calls for extended attribute access.
1930  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1931  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1932  */
1933 int
1934 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1935     const char *attrname, int *buflen, char *buf, struct thread *td)
1936 {
1937 	struct uio	auio;
1938 	struct iovec	iov;
1939 	int	error;
1940 
1941 	iov.iov_len = *buflen;
1942 	iov.iov_base = buf;
1943 
1944 	auio.uio_iov = &iov;
1945 	auio.uio_iovcnt = 1;
1946 	auio.uio_rw = UIO_READ;
1947 	auio.uio_segflg = UIO_SYSSPACE;
1948 	auio.uio_td = td;
1949 	auio.uio_offset = 0;
1950 	auio.uio_resid = *buflen;
1951 
1952 	if ((ioflg & IO_NODELOCKED) == 0)
1953 		vn_lock(vp, LK_SHARED | LK_RETRY);
1954 
1955 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1956 
1957 	/* authorize attribute retrieval as kernel */
1958 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1959 	    td);
1960 
1961 	if ((ioflg & IO_NODELOCKED) == 0)
1962 		VOP_UNLOCK(vp, 0);
1963 
1964 	if (error == 0) {
1965 		*buflen = *buflen - auio.uio_resid;
1966 	}
1967 
1968 	return (error);
1969 }
1970 
1971 /*
1972  * XXX failure mode if partially written?
1973  */
1974 int
1975 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1976     const char *attrname, int buflen, char *buf, struct thread *td)
1977 {
1978 	struct uio	auio;
1979 	struct iovec	iov;
1980 	struct mount	*mp;
1981 	int	error;
1982 
1983 	iov.iov_len = buflen;
1984 	iov.iov_base = buf;
1985 
1986 	auio.uio_iov = &iov;
1987 	auio.uio_iovcnt = 1;
1988 	auio.uio_rw = UIO_WRITE;
1989 	auio.uio_segflg = UIO_SYSSPACE;
1990 	auio.uio_td = td;
1991 	auio.uio_offset = 0;
1992 	auio.uio_resid = buflen;
1993 
1994 	if ((ioflg & IO_NODELOCKED) == 0) {
1995 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1996 			return (error);
1997 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1998 	}
1999 
2000 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2001 
2002 	/* authorize attribute setting as kernel */
2003 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2004 
2005 	if ((ioflg & IO_NODELOCKED) == 0) {
2006 		vn_finished_write(mp);
2007 		VOP_UNLOCK(vp, 0);
2008 	}
2009 
2010 	return (error);
2011 }
2012 
2013 int
2014 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2015     const char *attrname, struct thread *td)
2016 {
2017 	struct mount	*mp;
2018 	int	error;
2019 
2020 	if ((ioflg & IO_NODELOCKED) == 0) {
2021 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2022 			return (error);
2023 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2024 	}
2025 
2026 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2027 
2028 	/* authorize attribute removal as kernel */
2029 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2030 	if (error == EOPNOTSUPP)
2031 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2032 		    NULL, td);
2033 
2034 	if ((ioflg & IO_NODELOCKED) == 0) {
2035 		vn_finished_write(mp);
2036 		VOP_UNLOCK(vp, 0);
2037 	}
2038 
2039 	return (error);
2040 }
2041 
2042 static int
2043 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2044     struct vnode **rvp)
2045 {
2046 
2047 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2048 }
2049 
2050 int
2051 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2052 {
2053 
2054 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2055 	    lkflags, rvp));
2056 }
2057 
2058 int
2059 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2060     int lkflags, struct vnode **rvp)
2061 {
2062 	struct mount *mp;
2063 	int ltype, error;
2064 
2065 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2066 	mp = vp->v_mount;
2067 	ltype = VOP_ISLOCKED(vp);
2068 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2069 	    ("vn_vget_ino: vp not locked"));
2070 	error = vfs_busy(mp, MBF_NOWAIT);
2071 	if (error != 0) {
2072 		vfs_ref(mp);
2073 		VOP_UNLOCK(vp, 0);
2074 		error = vfs_busy(mp, 0);
2075 		vn_lock(vp, ltype | LK_RETRY);
2076 		vfs_rel(mp);
2077 		if (error != 0)
2078 			return (ENOENT);
2079 		if (vp->v_iflag & VI_DOOMED) {
2080 			vfs_unbusy(mp);
2081 			return (ENOENT);
2082 		}
2083 	}
2084 	VOP_UNLOCK(vp, 0);
2085 	error = alloc(mp, alloc_arg, lkflags, rvp);
2086 	vfs_unbusy(mp);
2087 	if (*rvp != vp)
2088 		vn_lock(vp, ltype | LK_RETRY);
2089 	if (vp->v_iflag & VI_DOOMED) {
2090 		if (error == 0) {
2091 			if (*rvp == vp)
2092 				vunref(vp);
2093 			else
2094 				vput(*rvp);
2095 		}
2096 		error = ENOENT;
2097 	}
2098 	return (error);
2099 }
2100 
2101 int
2102 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2103     struct thread *td)
2104 {
2105 
2106 	if (vp->v_type != VREG || td == NULL)
2107 		return (0);
2108 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2109 	    lim_cur(td, RLIMIT_FSIZE)) {
2110 		PROC_LOCK(td->td_proc);
2111 		kern_psignal(td->td_proc, SIGXFSZ);
2112 		PROC_UNLOCK(td->td_proc);
2113 		return (EFBIG);
2114 	}
2115 	return (0);
2116 }
2117 
2118 int
2119 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2120     struct thread *td)
2121 {
2122 	struct vnode *vp;
2123 
2124 	vp = fp->f_vnode;
2125 #ifdef AUDIT
2126 	vn_lock(vp, LK_SHARED | LK_RETRY);
2127 	AUDIT_ARG_VNODE1(vp);
2128 	VOP_UNLOCK(vp, 0);
2129 #endif
2130 	return (setfmode(td, active_cred, vp, mode));
2131 }
2132 
2133 int
2134 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2135     struct thread *td)
2136 {
2137 	struct vnode *vp;
2138 
2139 	vp = fp->f_vnode;
2140 #ifdef AUDIT
2141 	vn_lock(vp, LK_SHARED | LK_RETRY);
2142 	AUDIT_ARG_VNODE1(vp);
2143 	VOP_UNLOCK(vp, 0);
2144 #endif
2145 	return (setfown(td, active_cred, vp, uid, gid));
2146 }
2147 
2148 void
2149 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2150 {
2151 	vm_object_t object;
2152 
2153 	if ((object = vp->v_object) == NULL)
2154 		return;
2155 	VM_OBJECT_WLOCK(object);
2156 	vm_object_page_remove(object, start, end, 0);
2157 	VM_OBJECT_WUNLOCK(object);
2158 }
2159 
2160 int
2161 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2162 {
2163 	struct vattr va;
2164 	daddr_t bn, bnp;
2165 	uint64_t bsize;
2166 	off_t noff;
2167 	int error;
2168 
2169 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2170 	    ("Wrong command %lu", cmd));
2171 
2172 	if (vn_lock(vp, LK_SHARED) != 0)
2173 		return (EBADF);
2174 	if (vp->v_type != VREG) {
2175 		error = ENOTTY;
2176 		goto unlock;
2177 	}
2178 	error = VOP_GETATTR(vp, &va, cred);
2179 	if (error != 0)
2180 		goto unlock;
2181 	noff = *off;
2182 	if (noff >= va.va_size) {
2183 		error = ENXIO;
2184 		goto unlock;
2185 	}
2186 	bsize = vp->v_mount->mnt_stat.f_iosize;
2187 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2188 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2189 		if (error == EOPNOTSUPP) {
2190 			error = ENOTTY;
2191 			goto unlock;
2192 		}
2193 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2194 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2195 			noff = bn * bsize;
2196 			if (noff < *off)
2197 				noff = *off;
2198 			goto unlock;
2199 		}
2200 	}
2201 	if (noff > va.va_size)
2202 		noff = va.va_size;
2203 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2204 	if (cmd == FIOSEEKDATA)
2205 		error = ENXIO;
2206 unlock:
2207 	VOP_UNLOCK(vp, 0);
2208 	if (error == 0)
2209 		*off = noff;
2210 	return (error);
2211 }
2212 
2213 int
2214 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2215 {
2216 	struct ucred *cred;
2217 	struct vnode *vp;
2218 	struct vattr vattr;
2219 	off_t foffset, size;
2220 	int error, noneg;
2221 
2222 	cred = td->td_ucred;
2223 	vp = fp->f_vnode;
2224 	foffset = foffset_lock(fp, 0);
2225 	noneg = (vp->v_type != VCHR);
2226 	error = 0;
2227 	switch (whence) {
2228 	case L_INCR:
2229 		if (noneg &&
2230 		    (foffset < 0 ||
2231 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2232 			error = EOVERFLOW;
2233 			break;
2234 		}
2235 		offset += foffset;
2236 		break;
2237 	case L_XTND:
2238 		vn_lock(vp, LK_SHARED | LK_RETRY);
2239 		error = VOP_GETATTR(vp, &vattr, cred);
2240 		VOP_UNLOCK(vp, 0);
2241 		if (error)
2242 			break;
2243 
2244 		/*
2245 		 * If the file references a disk device, then fetch
2246 		 * the media size and use that to determine the ending
2247 		 * offset.
2248 		 */
2249 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2250 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2251 			vattr.va_size = size;
2252 		if (noneg &&
2253 		    (vattr.va_size > OFF_MAX ||
2254 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2255 			error = EOVERFLOW;
2256 			break;
2257 		}
2258 		offset += vattr.va_size;
2259 		break;
2260 	case L_SET:
2261 		break;
2262 	case SEEK_DATA:
2263 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2264 		break;
2265 	case SEEK_HOLE:
2266 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2267 		break;
2268 	default:
2269 		error = EINVAL;
2270 	}
2271 	if (error == 0 && noneg && offset < 0)
2272 		error = EINVAL;
2273 	if (error != 0)
2274 		goto drop;
2275 	VFS_KNOTE_UNLOCKED(vp, 0);
2276 	td->td_uretoff.tdu_off = offset;
2277 drop:
2278 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2279 	return (error);
2280 }
2281 
2282 int
2283 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2284     struct thread *td)
2285 {
2286 	int error;
2287 
2288 	/*
2289 	 * Grant permission if the caller is the owner of the file, or
2290 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2291 	 * on the file.  If the time pointer is null, then write
2292 	 * permission on the file is also sufficient.
2293 	 *
2294 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2295 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2296 	 * will be allowed to set the times [..] to the current
2297 	 * server time.
2298 	 */
2299 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2300 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2301 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2302 	return (error);
2303 }
2304 
2305 int
2306 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2307 {
2308 	struct vnode *vp;
2309 	int error;
2310 
2311 	if (fp->f_type == DTYPE_FIFO)
2312 		kif->kf_type = KF_TYPE_FIFO;
2313 	else
2314 		kif->kf_type = KF_TYPE_VNODE;
2315 	vp = fp->f_vnode;
2316 	vref(vp);
2317 	FILEDESC_SUNLOCK(fdp);
2318 	error = vn_fill_kinfo_vnode(vp, kif);
2319 	vrele(vp);
2320 	FILEDESC_SLOCK(fdp);
2321 	return (error);
2322 }
2323 
2324 static inline void
2325 vn_fill_junk(struct kinfo_file *kif)
2326 {
2327 	size_t len, olen;
2328 
2329 	/*
2330 	 * Simulate vn_fullpath returning changing values for a given
2331 	 * vp during e.g. coredump.
2332 	 */
2333 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2334 	olen = strlen(kif->kf_path);
2335 	if (len < olen)
2336 		strcpy(&kif->kf_path[len - 1], "$");
2337 	else
2338 		for (; olen < len; olen++)
2339 			strcpy(&kif->kf_path[olen], "A");
2340 }
2341 
2342 int
2343 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2344 {
2345 	struct vattr va;
2346 	char *fullpath, *freepath;
2347 	int error;
2348 
2349 	kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
2350 	freepath = NULL;
2351 	fullpath = "-";
2352 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2353 	if (error == 0) {
2354 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2355 	}
2356 	if (freepath != NULL)
2357 		free(freepath, M_TEMP);
2358 
2359 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2360 		vn_fill_junk(kif);
2361 	);
2362 
2363 	/*
2364 	 * Retrieve vnode attributes.
2365 	 */
2366 	va.va_fsid = VNOVAL;
2367 	va.va_rdev = NODEV;
2368 	vn_lock(vp, LK_SHARED | LK_RETRY);
2369 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2370 	VOP_UNLOCK(vp, 0);
2371 	if (error != 0)
2372 		return (error);
2373 	if (va.va_fsid != VNOVAL)
2374 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2375 	else
2376 		kif->kf_un.kf_file.kf_file_fsid =
2377 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2378 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2379 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2380 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2381 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2382 	return (0);
2383 }
2384 
2385 int
2386 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2387     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2388     struct thread *td)
2389 {
2390 #ifdef HWPMC_HOOKS
2391 	struct pmckern_map_in pkm;
2392 #endif
2393 	struct mount *mp;
2394 	struct vnode *vp;
2395 	vm_object_t object;
2396 	vm_prot_t maxprot;
2397 	boolean_t writecounted;
2398 	int error;
2399 
2400 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2401     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2402 	/*
2403 	 * POSIX shared-memory objects are defined to have
2404 	 * kernel persistence, and are not defined to support
2405 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2406 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2407 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2408 	 * flag to request this behavior.
2409 	 */
2410 	if ((fp->f_flag & FPOSIXSHM) != 0)
2411 		flags |= MAP_NOSYNC;
2412 #endif
2413 	vp = fp->f_vnode;
2414 
2415 	/*
2416 	 * Ensure that file and memory protections are
2417 	 * compatible.  Note that we only worry about
2418 	 * writability if mapping is shared; in this case,
2419 	 * current and max prot are dictated by the open file.
2420 	 * XXX use the vnode instead?  Problem is: what
2421 	 * credentials do we use for determination? What if
2422 	 * proc does a setuid?
2423 	 */
2424 	mp = vp->v_mount;
2425 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0)
2426 		maxprot = VM_PROT_NONE;
2427 	else
2428 		maxprot = VM_PROT_EXECUTE;
2429 	if ((fp->f_flag & FREAD) != 0)
2430 		maxprot |= VM_PROT_READ;
2431 	else if ((prot & VM_PROT_READ) != 0)
2432 		return (EACCES);
2433 
2434 	/*
2435 	 * If we are sharing potential changes via MAP_SHARED and we
2436 	 * are trying to get write permission although we opened it
2437 	 * without asking for it, bail out.
2438 	 */
2439 	if ((flags & MAP_SHARED) != 0) {
2440 		if ((fp->f_flag & FWRITE) != 0)
2441 			maxprot |= VM_PROT_WRITE;
2442 		else if ((prot & VM_PROT_WRITE) != 0)
2443 			return (EACCES);
2444 	} else {
2445 		maxprot |= VM_PROT_WRITE;
2446 		cap_maxprot |= VM_PROT_WRITE;
2447 	}
2448 	maxprot &= cap_maxprot;
2449 
2450 	writecounted = FALSE;
2451 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2452 	    &foff, &object, &writecounted);
2453 	if (error != 0)
2454 		return (error);
2455 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2456 	    foff, writecounted, td);
2457 	if (error != 0) {
2458 		/*
2459 		 * If this mapping was accounted for in the vnode's
2460 		 * writecount, then undo that now.
2461 		 */
2462 		if (writecounted)
2463 			vnode_pager_release_writecount(object, 0, size);
2464 		vm_object_deallocate(object);
2465 	}
2466 #ifdef HWPMC_HOOKS
2467 	/* Inform hwpmc(4) if an executable is being mapped. */
2468 	if (error == 0 && (prot & VM_PROT_EXECUTE) != 0) {
2469 		pkm.pm_file = vp;
2470 		pkm.pm_address = (uintptr_t) *addr;
2471 		PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2472 	}
2473 #endif
2474 	return (error);
2475 }
2476