xref: /freebsd/sys/kern/vfs_vnops.c (revision 3332f1b444d4a73238e9f59cca27bfc95fe936bd)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/prng.h>
74 #include <sys/sx.h>
75 #include <sys/sleepqueue.h>
76 #include <sys/sysctl.h>
77 #include <sys/ttycom.h>
78 #include <sys/conf.h>
79 #include <sys/syslog.h>
80 #include <sys/unistd.h>
81 #include <sys/user.h>
82 #include <sys/ktrace.h>
83 
84 #include <security/audit/audit.h>
85 #include <security/mac/mac_framework.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_extern.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pager.h>
94 
95 #ifdef HWPMC_HOOKS
96 #include <sys/pmckern.h>
97 #endif
98 
99 static fo_rdwr_t	vn_read;
100 static fo_rdwr_t	vn_write;
101 static fo_rdwr_t	vn_io_fault;
102 static fo_truncate_t	vn_truncate;
103 static fo_ioctl_t	vn_ioctl;
104 static fo_poll_t	vn_poll;
105 static fo_kqfilter_t	vn_kqfilter;
106 static fo_close_t	vn_closefile;
107 static fo_mmap_t	vn_mmap;
108 static fo_fallocate_t	vn_fallocate;
109 static fo_fspacectl_t	vn_fspacectl;
110 
111 struct 	fileops vnops = {
112 	.fo_read = vn_io_fault,
113 	.fo_write = vn_io_fault,
114 	.fo_truncate = vn_truncate,
115 	.fo_ioctl = vn_ioctl,
116 	.fo_poll = vn_poll,
117 	.fo_kqfilter = vn_kqfilter,
118 	.fo_stat = vn_statfile,
119 	.fo_close = vn_closefile,
120 	.fo_chmod = vn_chmod,
121 	.fo_chown = vn_chown,
122 	.fo_sendfile = vn_sendfile,
123 	.fo_seek = vn_seek,
124 	.fo_fill_kinfo = vn_fill_kinfo,
125 	.fo_mmap = vn_mmap,
126 	.fo_fallocate = vn_fallocate,
127 	.fo_fspacectl = vn_fspacectl,
128 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
129 };
130 
131 const u_int io_hold_cnt = 16;
132 static int vn_io_fault_enable = 1;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
134     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
135 static int vn_io_fault_prefault = 0;
136 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
137     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
138 static int vn_io_pgcache_read_enable = 1;
139 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
140     &vn_io_pgcache_read_enable, 0,
141     "Enable copying from page cache for reads, avoiding fs");
142 static u_long vn_io_faults_cnt;
143 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
144     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
145 
146 static int vfs_allow_read_dir = 0;
147 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
148     &vfs_allow_read_dir, 0,
149     "Enable read(2) of directory by root for filesystems that support it");
150 
151 /*
152  * Returns true if vn_io_fault mode of handling the i/o request should
153  * be used.
154  */
155 static bool
156 do_vn_io_fault(struct vnode *vp, struct uio *uio)
157 {
158 	struct mount *mp;
159 
160 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
161 	    (mp = vp->v_mount) != NULL &&
162 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
163 }
164 
165 /*
166  * Structure used to pass arguments to vn_io_fault1(), to do either
167  * file- or vnode-based I/O calls.
168  */
169 struct vn_io_fault_args {
170 	enum {
171 		VN_IO_FAULT_FOP,
172 		VN_IO_FAULT_VOP
173 	} kind;
174 	struct ucred *cred;
175 	int flags;
176 	union {
177 		struct fop_args_tag {
178 			struct file *fp;
179 			fo_rdwr_t *doio;
180 		} fop_args;
181 		struct vop_args_tag {
182 			struct vnode *vp;
183 		} vop_args;
184 	} args;
185 };
186 
187 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
188     struct vn_io_fault_args *args, struct thread *td);
189 
190 int
191 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
192 {
193 	struct thread *td = curthread;
194 
195 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
196 }
197 
198 static uint64_t
199 open2nameif(int fmode, u_int vn_open_flags)
200 {
201 	uint64_t res;
202 
203 	res = ISOPEN | LOCKLEAF;
204 	if ((fmode & O_RESOLVE_BENEATH) != 0)
205 		res |= RBENEATH;
206 	if ((fmode & O_EMPTY_PATH) != 0)
207 		res |= EMPTYPATH;
208 	if ((fmode & FREAD) != 0)
209 		res |= OPENREAD;
210 	if ((fmode & FWRITE) != 0)
211 		res |= OPENWRITE;
212 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
213 		res |= AUDITVNODE1;
214 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
215 		res |= NOCAPCHECK;
216 	return (res);
217 }
218 
219 /*
220  * Common code for vnode open operations via a name lookup.
221  * Lookup the vnode and invoke VOP_CREATE if needed.
222  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
223  *
224  * Note that this does NOT free nameidata for the successful case,
225  * due to the NDINIT being done elsewhere.
226  */
227 int
228 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
229     struct ucred *cred, struct file *fp)
230 {
231 	struct vnode *vp;
232 	struct mount *mp;
233 	struct vattr vat;
234 	struct vattr *vap = &vat;
235 	int fmode, error;
236 	bool first_open;
237 
238 restart:
239 	first_open = false;
240 	fmode = *flagp;
241 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
242 	    O_EXCL | O_DIRECTORY) ||
243 	    (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
244 		return (EINVAL);
245 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
246 		ndp->ni_cnd.cn_nameiop = CREATE;
247 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
248 		/*
249 		 * Set NOCACHE to avoid flushing the cache when
250 		 * rolling in many files at once.
251 		 *
252 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
253 		 * exist despite NOCACHE.
254 		 */
255 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
256 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
257 			ndp->ni_cnd.cn_flags |= FOLLOW;
258 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
259 			bwillwrite();
260 		if ((error = namei(ndp)) != 0)
261 			return (error);
262 		if (ndp->ni_vp == NULL) {
263 			VATTR_NULL(vap);
264 			vap->va_type = VREG;
265 			vap->va_mode = cmode;
266 			if (fmode & O_EXCL)
267 				vap->va_vaflags |= VA_EXCLUSIVE;
268 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
269 				NDFREE(ndp, NDF_ONLY_PNBUF);
270 				vput(ndp->ni_dvp);
271 				if ((error = vn_start_write(NULL, &mp,
272 				    V_XSLEEP | PCATCH)) != 0)
273 					return (error);
274 				NDREINIT(ndp);
275 				goto restart;
276 			}
277 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
278 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
279 #ifdef MAC
280 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
281 			    &ndp->ni_cnd, vap);
282 			if (error == 0)
283 #endif
284 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
285 				    &ndp->ni_cnd, vap);
286 			vp = ndp->ni_vp;
287 			if (error == 0 && (fmode & O_EXCL) != 0 &&
288 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
289 				VI_LOCK(vp);
290 				vp->v_iflag |= VI_FOPENING;
291 				VI_UNLOCK(vp);
292 				first_open = true;
293 			}
294 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
295 			    false);
296 			vn_finished_write(mp);
297 			if (error) {
298 				NDFREE(ndp, NDF_ONLY_PNBUF);
299 				if (error == ERELOOKUP) {
300 					NDREINIT(ndp);
301 					goto restart;
302 				}
303 				return (error);
304 			}
305 			fmode &= ~O_TRUNC;
306 		} else {
307 			if (ndp->ni_dvp == ndp->ni_vp)
308 				vrele(ndp->ni_dvp);
309 			else
310 				vput(ndp->ni_dvp);
311 			ndp->ni_dvp = NULL;
312 			vp = ndp->ni_vp;
313 			if (fmode & O_EXCL) {
314 				error = EEXIST;
315 				goto bad;
316 			}
317 			if (vp->v_type == VDIR) {
318 				error = EISDIR;
319 				goto bad;
320 			}
321 			fmode &= ~O_CREAT;
322 		}
323 	} else {
324 		ndp->ni_cnd.cn_nameiop = LOOKUP;
325 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
326 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
327 		    FOLLOW;
328 		if ((fmode & FWRITE) == 0)
329 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
330 		if ((error = namei(ndp)) != 0)
331 			return (error);
332 		vp = ndp->ni_vp;
333 	}
334 	error = vn_open_vnode(vp, fmode, cred, curthread, fp);
335 	if (first_open) {
336 		VI_LOCK(vp);
337 		vp->v_iflag &= ~VI_FOPENING;
338 		wakeup(vp);
339 		VI_UNLOCK(vp);
340 	}
341 	if (error)
342 		goto bad;
343 	*flagp = fmode;
344 	return (0);
345 bad:
346 	NDFREE(ndp, NDF_ONLY_PNBUF);
347 	vput(vp);
348 	*flagp = fmode;
349 	ndp->ni_vp = NULL;
350 	return (error);
351 }
352 
353 static int
354 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
355 {
356 	struct flock lf;
357 	int error, lock_flags, type;
358 
359 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
360 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
361 		return (0);
362 	KASSERT(fp != NULL, ("open with flock requires fp"));
363 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
364 		return (EOPNOTSUPP);
365 
366 	lock_flags = VOP_ISLOCKED(vp);
367 	VOP_UNLOCK(vp);
368 
369 	lf.l_whence = SEEK_SET;
370 	lf.l_start = 0;
371 	lf.l_len = 0;
372 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
373 	type = F_FLOCK;
374 	if ((fmode & FNONBLOCK) == 0)
375 		type |= F_WAIT;
376 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
377 		type |= F_FIRSTOPEN;
378 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
379 	if (error == 0)
380 		fp->f_flag |= FHASLOCK;
381 
382 	vn_lock(vp, lock_flags | LK_RETRY);
383 	return (error);
384 }
385 
386 /*
387  * Common code for vnode open operations once a vnode is located.
388  * Check permissions, and call the VOP_OPEN routine.
389  */
390 int
391 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
392     struct thread *td, struct file *fp)
393 {
394 	accmode_t accmode;
395 	int error;
396 
397 	if (vp->v_type == VLNK) {
398 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
399 			return (EMLINK);
400 	}
401 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
402 		return (ENOTDIR);
403 
404 	accmode = 0;
405 	if ((fmode & O_PATH) == 0) {
406 		if (vp->v_type == VSOCK)
407 			return (EOPNOTSUPP);
408 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
409 			if (vp->v_type == VDIR)
410 				return (EISDIR);
411 			accmode |= VWRITE;
412 		}
413 		if ((fmode & FREAD) != 0)
414 			accmode |= VREAD;
415 		if ((fmode & O_APPEND) && (fmode & FWRITE))
416 			accmode |= VAPPEND;
417 #ifdef MAC
418 		if ((fmode & O_CREAT) != 0)
419 			accmode |= VCREAT;
420 #endif
421 	}
422 	if ((fmode & FEXEC) != 0)
423 		accmode |= VEXEC;
424 #ifdef MAC
425 	if ((fmode & O_VERIFY) != 0)
426 		accmode |= VVERIFY;
427 	error = mac_vnode_check_open(cred, vp, accmode);
428 	if (error != 0)
429 		return (error);
430 
431 	accmode &= ~(VCREAT | VVERIFY);
432 #endif
433 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
434 		error = VOP_ACCESS(vp, accmode, cred, td);
435 		if (error != 0)
436 			return (error);
437 	}
438 	if ((fmode & O_PATH) != 0) {
439 		if (vp->v_type != VFIFO && vp->v_type != VSOCK &&
440 		    VOP_ACCESS(vp, VREAD, cred, td) == 0)
441 			fp->f_flag |= FKQALLOWED;
442 		return (0);
443 	}
444 
445 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
446 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
447 	error = VOP_OPEN(vp, fmode, cred, td, fp);
448 	if (error != 0)
449 		return (error);
450 
451 	error = vn_open_vnode_advlock(vp, fmode, fp);
452 	if (error == 0 && (fmode & FWRITE) != 0) {
453 		error = VOP_ADD_WRITECOUNT(vp, 1);
454 		if (error == 0) {
455 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
456 			     __func__, vp, vp->v_writecount);
457 		}
458 	}
459 
460 	/*
461 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
462 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
463 	 */
464 	if (error != 0) {
465 		if (fp != NULL) {
466 			/*
467 			 * Arrange the call by having fdrop() to use
468 			 * vn_closefile().  This is to satisfy
469 			 * filesystems like devfs or tmpfs, which
470 			 * override fo_close().
471 			 */
472 			fp->f_flag |= FOPENFAILED;
473 			fp->f_vnode = vp;
474 			if (fp->f_ops == &badfileops) {
475 				fp->f_type = DTYPE_VNODE;
476 				fp->f_ops = &vnops;
477 			}
478 			vref(vp);
479 		} else {
480 			/*
481 			 * If there is no fp, due to kernel-mode open,
482 			 * we can call VOP_CLOSE() now.
483 			 */
484 			if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 &&
485 			    !MNT_EXTENDED_SHARED(vp->v_mount) &&
486 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
487 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
488 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
489 			    cred, td);
490 		}
491 	}
492 
493 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
494 	return (error);
495 
496 }
497 
498 /*
499  * Check for write permissions on the specified vnode.
500  * Prototype text segments cannot be written.
501  * It is racy.
502  */
503 int
504 vn_writechk(struct vnode *vp)
505 {
506 
507 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
508 	/*
509 	 * If there's shared text associated with
510 	 * the vnode, try to free it up once.  If
511 	 * we fail, we can't allow writing.
512 	 */
513 	if (VOP_IS_TEXT(vp))
514 		return (ETXTBSY);
515 
516 	return (0);
517 }
518 
519 /*
520  * Vnode close call
521  */
522 static int
523 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
524     struct thread *td, bool keep_ref)
525 {
526 	struct mount *mp;
527 	int error, lock_flags;
528 
529 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
530 	    MNT_EXTENDED_SHARED(vp->v_mount))
531 		lock_flags = LK_SHARED;
532 	else
533 		lock_flags = LK_EXCLUSIVE;
534 
535 	vn_start_write(vp, &mp, V_WAIT);
536 	vn_lock(vp, lock_flags | LK_RETRY);
537 	AUDIT_ARG_VNODE1(vp);
538 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
539 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
540 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
541 		    __func__, vp, vp->v_writecount);
542 	}
543 	error = VOP_CLOSE(vp, flags, file_cred, td);
544 	if (keep_ref)
545 		VOP_UNLOCK(vp);
546 	else
547 		vput(vp);
548 	vn_finished_write(mp);
549 	return (error);
550 }
551 
552 int
553 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
554     struct thread *td)
555 {
556 
557 	return (vn_close1(vp, flags, file_cred, td, false));
558 }
559 
560 /*
561  * Heuristic to detect sequential operation.
562  */
563 static int
564 sequential_heuristic(struct uio *uio, struct file *fp)
565 {
566 	enum uio_rw rw;
567 
568 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
569 
570 	rw = uio->uio_rw;
571 	if (fp->f_flag & FRDAHEAD)
572 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
573 
574 	/*
575 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
576 	 * that the first I/O is normally considered to be slightly
577 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
578 	 * unless previous seeks have reduced f_seqcount to 0, in which
579 	 * case offset 0 is not special.
580 	 */
581 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
582 	    uio->uio_offset == fp->f_nextoff[rw]) {
583 		/*
584 		 * f_seqcount is in units of fixed-size blocks so that it
585 		 * depends mainly on the amount of sequential I/O and not
586 		 * much on the number of sequential I/O's.  The fixed size
587 		 * of 16384 is hard-coded here since it is (not quite) just
588 		 * a magic size that works well here.  This size is more
589 		 * closely related to the best I/O size for real disks than
590 		 * to any block size used by software.
591 		 */
592 		if (uio->uio_resid >= IO_SEQMAX * 16384)
593 			fp->f_seqcount[rw] = IO_SEQMAX;
594 		else {
595 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
596 			if (fp->f_seqcount[rw] > IO_SEQMAX)
597 				fp->f_seqcount[rw] = IO_SEQMAX;
598 		}
599 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
600 	}
601 
602 	/* Not sequential.  Quickly draw-down sequentiality. */
603 	if (fp->f_seqcount[rw] > 1)
604 		fp->f_seqcount[rw] = 1;
605 	else
606 		fp->f_seqcount[rw] = 0;
607 	return (0);
608 }
609 
610 /*
611  * Package up an I/O request on a vnode into a uio and do it.
612  */
613 int
614 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
615     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
616     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
617 {
618 	struct uio auio;
619 	struct iovec aiov;
620 	struct mount *mp;
621 	struct ucred *cred;
622 	void *rl_cookie;
623 	struct vn_io_fault_args args;
624 	int error, lock_flags;
625 
626 	if (offset < 0 && vp->v_type != VCHR)
627 		return (EINVAL);
628 	auio.uio_iov = &aiov;
629 	auio.uio_iovcnt = 1;
630 	aiov.iov_base = base;
631 	aiov.iov_len = len;
632 	auio.uio_resid = len;
633 	auio.uio_offset = offset;
634 	auio.uio_segflg = segflg;
635 	auio.uio_rw = rw;
636 	auio.uio_td = td;
637 	error = 0;
638 
639 	if ((ioflg & IO_NODELOCKED) == 0) {
640 		if ((ioflg & IO_RANGELOCKED) == 0) {
641 			if (rw == UIO_READ) {
642 				rl_cookie = vn_rangelock_rlock(vp, offset,
643 				    offset + len);
644 			} else if ((ioflg & IO_APPEND) != 0) {
645 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
646 			} else {
647 				rl_cookie = vn_rangelock_wlock(vp, offset,
648 				    offset + len);
649 			}
650 		} else
651 			rl_cookie = NULL;
652 		mp = NULL;
653 		if (rw == UIO_WRITE) {
654 			if (vp->v_type != VCHR &&
655 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
656 			    != 0)
657 				goto out;
658 			lock_flags = vn_lktype_write(mp, vp);
659 		} else
660 			lock_flags = LK_SHARED;
661 		vn_lock(vp, lock_flags | LK_RETRY);
662 	} else
663 		rl_cookie = NULL;
664 
665 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
666 #ifdef MAC
667 	if ((ioflg & IO_NOMACCHECK) == 0) {
668 		if (rw == UIO_READ)
669 			error = mac_vnode_check_read(active_cred, file_cred,
670 			    vp);
671 		else
672 			error = mac_vnode_check_write(active_cred, file_cred,
673 			    vp);
674 	}
675 #endif
676 	if (error == 0) {
677 		if (file_cred != NULL)
678 			cred = file_cred;
679 		else
680 			cred = active_cred;
681 		if (do_vn_io_fault(vp, &auio)) {
682 			args.kind = VN_IO_FAULT_VOP;
683 			args.cred = cred;
684 			args.flags = ioflg;
685 			args.args.vop_args.vp = vp;
686 			error = vn_io_fault1(vp, &auio, &args, td);
687 		} else if (rw == UIO_READ) {
688 			error = VOP_READ(vp, &auio, ioflg, cred);
689 		} else /* if (rw == UIO_WRITE) */ {
690 			error = VOP_WRITE(vp, &auio, ioflg, cred);
691 		}
692 	}
693 	if (aresid)
694 		*aresid = auio.uio_resid;
695 	else
696 		if (auio.uio_resid && error == 0)
697 			error = EIO;
698 	if ((ioflg & IO_NODELOCKED) == 0) {
699 		VOP_UNLOCK(vp);
700 		if (mp != NULL)
701 			vn_finished_write(mp);
702 	}
703  out:
704 	if (rl_cookie != NULL)
705 		vn_rangelock_unlock(vp, rl_cookie);
706 	return (error);
707 }
708 
709 /*
710  * Package up an I/O request on a vnode into a uio and do it.  The I/O
711  * request is split up into smaller chunks and we try to avoid saturating
712  * the buffer cache while potentially holding a vnode locked, so we
713  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
714  * to give other processes a chance to lock the vnode (either other processes
715  * core'ing the same binary, or unrelated processes scanning the directory).
716  */
717 int
718 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
719     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
720     struct ucred *file_cred, size_t *aresid, struct thread *td)
721 {
722 	int error = 0;
723 	ssize_t iaresid;
724 
725 	do {
726 		int chunk;
727 
728 		/*
729 		 * Force `offset' to a multiple of MAXBSIZE except possibly
730 		 * for the first chunk, so that filesystems only need to
731 		 * write full blocks except possibly for the first and last
732 		 * chunks.
733 		 */
734 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
735 
736 		if (chunk > len)
737 			chunk = len;
738 		if (rw != UIO_READ && vp->v_type == VREG)
739 			bwillwrite();
740 		iaresid = 0;
741 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
742 		    ioflg, active_cred, file_cred, &iaresid, td);
743 		len -= chunk;	/* aresid calc already includes length */
744 		if (error)
745 			break;
746 		offset += chunk;
747 		base = (char *)base + chunk;
748 		kern_yield(PRI_USER);
749 	} while (len);
750 	if (aresid)
751 		*aresid = len + iaresid;
752 	return (error);
753 }
754 
755 #if OFF_MAX <= LONG_MAX
756 off_t
757 foffset_lock(struct file *fp, int flags)
758 {
759 	volatile short *flagsp;
760 	off_t res;
761 	short state;
762 
763 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
764 
765 	if ((flags & FOF_NOLOCK) != 0)
766 		return (atomic_load_long(&fp->f_offset));
767 
768 	/*
769 	 * According to McKusick the vn lock was protecting f_offset here.
770 	 * It is now protected by the FOFFSET_LOCKED flag.
771 	 */
772 	flagsp = &fp->f_vnread_flags;
773 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
774 		return (atomic_load_long(&fp->f_offset));
775 
776 	sleepq_lock(&fp->f_vnread_flags);
777 	state = atomic_load_16(flagsp);
778 	for (;;) {
779 		if ((state & FOFFSET_LOCKED) == 0) {
780 			if (!atomic_fcmpset_acq_16(flagsp, &state,
781 			    FOFFSET_LOCKED))
782 				continue;
783 			break;
784 		}
785 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
786 			if (!atomic_fcmpset_acq_16(flagsp, &state,
787 			    state | FOFFSET_LOCK_WAITING))
788 				continue;
789 		}
790 		DROP_GIANT();
791 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
792 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
793 		PICKUP_GIANT();
794 		sleepq_lock(&fp->f_vnread_flags);
795 		state = atomic_load_16(flagsp);
796 	}
797 	res = atomic_load_long(&fp->f_offset);
798 	sleepq_release(&fp->f_vnread_flags);
799 	return (res);
800 }
801 
802 void
803 foffset_unlock(struct file *fp, off_t val, int flags)
804 {
805 	volatile short *flagsp;
806 	short state;
807 
808 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
809 
810 	if ((flags & FOF_NOUPDATE) == 0)
811 		atomic_store_long(&fp->f_offset, val);
812 	if ((flags & FOF_NEXTOFF_R) != 0)
813 		fp->f_nextoff[UIO_READ] = val;
814 	if ((flags & FOF_NEXTOFF_W) != 0)
815 		fp->f_nextoff[UIO_WRITE] = val;
816 
817 	if ((flags & FOF_NOLOCK) != 0)
818 		return;
819 
820 	flagsp = &fp->f_vnread_flags;
821 	state = atomic_load_16(flagsp);
822 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
823 	    atomic_cmpset_rel_16(flagsp, state, 0))
824 		return;
825 
826 	sleepq_lock(&fp->f_vnread_flags);
827 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
828 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
829 	fp->f_vnread_flags = 0;
830 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
831 	sleepq_release(&fp->f_vnread_flags);
832 }
833 #else
834 off_t
835 foffset_lock(struct file *fp, int flags)
836 {
837 	struct mtx *mtxp;
838 	off_t res;
839 
840 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
841 
842 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
843 	mtx_lock(mtxp);
844 	if ((flags & FOF_NOLOCK) == 0) {
845 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
846 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
847 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
848 			    "vofflock", 0);
849 		}
850 		fp->f_vnread_flags |= FOFFSET_LOCKED;
851 	}
852 	res = fp->f_offset;
853 	mtx_unlock(mtxp);
854 	return (res);
855 }
856 
857 void
858 foffset_unlock(struct file *fp, off_t val, int flags)
859 {
860 	struct mtx *mtxp;
861 
862 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
863 
864 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
865 	mtx_lock(mtxp);
866 	if ((flags & FOF_NOUPDATE) == 0)
867 		fp->f_offset = val;
868 	if ((flags & FOF_NEXTOFF_R) != 0)
869 		fp->f_nextoff[UIO_READ] = val;
870 	if ((flags & FOF_NEXTOFF_W) != 0)
871 		fp->f_nextoff[UIO_WRITE] = val;
872 	if ((flags & FOF_NOLOCK) == 0) {
873 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
874 		    ("Lost FOFFSET_LOCKED"));
875 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
876 			wakeup(&fp->f_vnread_flags);
877 		fp->f_vnread_flags = 0;
878 	}
879 	mtx_unlock(mtxp);
880 }
881 #endif
882 
883 void
884 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
885 {
886 
887 	if ((flags & FOF_OFFSET) == 0)
888 		uio->uio_offset = foffset_lock(fp, flags);
889 }
890 
891 void
892 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
893 {
894 
895 	if ((flags & FOF_OFFSET) == 0)
896 		foffset_unlock(fp, uio->uio_offset, flags);
897 }
898 
899 static int
900 get_advice(struct file *fp, struct uio *uio)
901 {
902 	struct mtx *mtxp;
903 	int ret;
904 
905 	ret = POSIX_FADV_NORMAL;
906 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
907 		return (ret);
908 
909 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
910 	mtx_lock(mtxp);
911 	if (fp->f_advice != NULL &&
912 	    uio->uio_offset >= fp->f_advice->fa_start &&
913 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
914 		ret = fp->f_advice->fa_advice;
915 	mtx_unlock(mtxp);
916 	return (ret);
917 }
918 
919 static int
920 get_write_ioflag(struct file *fp)
921 {
922 	int ioflag;
923 	struct mount *mp;
924 	struct vnode *vp;
925 
926 	ioflag = 0;
927 	vp = fp->f_vnode;
928 	mp = atomic_load_ptr(&vp->v_mount);
929 
930 	if ((fp->f_flag & O_DIRECT) != 0)
931 		ioflag |= IO_DIRECT;
932 
933 	if ((fp->f_flag & O_FSYNC) != 0 ||
934 	    (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
935 		ioflag |= IO_SYNC;
936 
937 	/*
938 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
939 	 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
940 	 * fall back to full O_SYNC behavior.
941 	 */
942 	if ((fp->f_flag & O_DSYNC) != 0)
943 		ioflag |= IO_SYNC | IO_DATASYNC;
944 
945 	return (ioflag);
946 }
947 
948 int
949 vn_read_from_obj(struct vnode *vp, struct uio *uio)
950 {
951 	vm_object_t obj;
952 	vm_page_t ma[io_hold_cnt + 2];
953 	off_t off, vsz;
954 	ssize_t resid;
955 	int error, i, j;
956 
957 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
958 	obj = atomic_load_ptr(&vp->v_object);
959 	if (obj == NULL)
960 		return (EJUSTRETURN);
961 
962 	/*
963 	 * Depends on type stability of vm_objects.
964 	 */
965 	vm_object_pip_add(obj, 1);
966 	if ((obj->flags & OBJ_DEAD) != 0) {
967 		/*
968 		 * Note that object might be already reused from the
969 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
970 		 * we recheck for DOOMED vnode state after all pages
971 		 * are busied, and retract then.
972 		 *
973 		 * But we check for OBJ_DEAD to ensure that we do not
974 		 * busy pages while vm_object_terminate_pages()
975 		 * processes the queue.
976 		 */
977 		error = EJUSTRETURN;
978 		goto out_pip;
979 	}
980 
981 	resid = uio->uio_resid;
982 	off = uio->uio_offset;
983 	for (i = 0; resid > 0; i++) {
984 		MPASS(i < io_hold_cnt + 2);
985 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
986 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
987 		    VM_ALLOC_NOWAIT);
988 		if (ma[i] == NULL)
989 			break;
990 
991 		/*
992 		 * Skip invalid pages.  Valid mask can be partial only
993 		 * at EOF, and we clip later.
994 		 */
995 		if (vm_page_none_valid(ma[i])) {
996 			vm_page_sunbusy(ma[i]);
997 			break;
998 		}
999 
1000 		resid -= PAGE_SIZE;
1001 		off += PAGE_SIZE;
1002 	}
1003 	if (i == 0) {
1004 		error = EJUSTRETURN;
1005 		goto out_pip;
1006 	}
1007 
1008 	/*
1009 	 * Check VIRF_DOOMED after we busied our pages.  Since
1010 	 * vgonel() terminates the vnode' vm_object, it cannot
1011 	 * process past pages busied by us.
1012 	 */
1013 	if (VN_IS_DOOMED(vp)) {
1014 		error = EJUSTRETURN;
1015 		goto out;
1016 	}
1017 
1018 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1019 	if (resid > uio->uio_resid)
1020 		resid = uio->uio_resid;
1021 
1022 	/*
1023 	 * Unlocked read of vnp_size is safe because truncation cannot
1024 	 * pass busied page.  But we load vnp_size into a local
1025 	 * variable so that possible concurrent extension does not
1026 	 * break calculation.
1027 	 */
1028 #if defined(__powerpc__) && !defined(__powerpc64__)
1029 	vsz = obj->un_pager.vnp.vnp_size;
1030 #else
1031 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1032 #endif
1033 	if (uio->uio_offset >= vsz) {
1034 		error = EJUSTRETURN;
1035 		goto out;
1036 	}
1037 	if (uio->uio_offset + resid > vsz)
1038 		resid = vsz - uio->uio_offset;
1039 
1040 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1041 
1042 out:
1043 	for (j = 0; j < i; j++) {
1044 		if (error == 0)
1045 			vm_page_reference(ma[j]);
1046 		vm_page_sunbusy(ma[j]);
1047 	}
1048 out_pip:
1049 	vm_object_pip_wakeup(obj);
1050 	if (error != 0)
1051 		return (error);
1052 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1053 }
1054 
1055 /*
1056  * File table vnode read routine.
1057  */
1058 static int
1059 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1060     struct thread *td)
1061 {
1062 	struct vnode *vp;
1063 	off_t orig_offset;
1064 	int error, ioflag;
1065 	int advice;
1066 
1067 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1068 	    uio->uio_td, td));
1069 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1070 	vp = fp->f_vnode;
1071 	ioflag = 0;
1072 	if (fp->f_flag & FNONBLOCK)
1073 		ioflag |= IO_NDELAY;
1074 	if (fp->f_flag & O_DIRECT)
1075 		ioflag |= IO_DIRECT;
1076 
1077 	/*
1078 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
1079 	 * allows us to avoid unneeded work outright.
1080 	 */
1081 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1082 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1083 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1084 		if (error == 0) {
1085 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1086 			return (0);
1087 		}
1088 		if (error != EJUSTRETURN)
1089 			return (error);
1090 	}
1091 
1092 	advice = get_advice(fp, uio);
1093 	vn_lock(vp, LK_SHARED | LK_RETRY);
1094 
1095 	switch (advice) {
1096 	case POSIX_FADV_NORMAL:
1097 	case POSIX_FADV_SEQUENTIAL:
1098 	case POSIX_FADV_NOREUSE:
1099 		ioflag |= sequential_heuristic(uio, fp);
1100 		break;
1101 	case POSIX_FADV_RANDOM:
1102 		/* Disable read-ahead for random I/O. */
1103 		break;
1104 	}
1105 	orig_offset = uio->uio_offset;
1106 
1107 #ifdef MAC
1108 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1109 	if (error == 0)
1110 #endif
1111 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1112 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1113 	VOP_UNLOCK(vp);
1114 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1115 	    orig_offset != uio->uio_offset)
1116 		/*
1117 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1118 		 * for the backing file after a POSIX_FADV_NOREUSE
1119 		 * read(2).
1120 		 */
1121 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1122 		    POSIX_FADV_DONTNEED);
1123 	return (error);
1124 }
1125 
1126 /*
1127  * File table vnode write routine.
1128  */
1129 static int
1130 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1131     struct thread *td)
1132 {
1133 	struct vnode *vp;
1134 	struct mount *mp;
1135 	off_t orig_offset;
1136 	int error, ioflag;
1137 	int advice;
1138 	bool need_finished_write;
1139 
1140 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1141 	    uio->uio_td, td));
1142 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1143 	vp = fp->f_vnode;
1144 	if (vp->v_type == VREG)
1145 		bwillwrite();
1146 	ioflag = IO_UNIT;
1147 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1148 		ioflag |= IO_APPEND;
1149 	if ((fp->f_flag & FNONBLOCK) != 0)
1150 		ioflag |= IO_NDELAY;
1151 	ioflag |= get_write_ioflag(fp);
1152 
1153 	mp = NULL;
1154 	need_finished_write = false;
1155 	if (vp->v_type != VCHR) {
1156 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1157 		if (error != 0)
1158 			goto unlock;
1159 		need_finished_write = true;
1160 	}
1161 
1162 	advice = get_advice(fp, uio);
1163 
1164 	vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1165 	switch (advice) {
1166 	case POSIX_FADV_NORMAL:
1167 	case POSIX_FADV_SEQUENTIAL:
1168 	case POSIX_FADV_NOREUSE:
1169 		ioflag |= sequential_heuristic(uio, fp);
1170 		break;
1171 	case POSIX_FADV_RANDOM:
1172 		/* XXX: Is this correct? */
1173 		break;
1174 	}
1175 	orig_offset = uio->uio_offset;
1176 
1177 #ifdef MAC
1178 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1179 	if (error == 0)
1180 #endif
1181 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1182 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1183 	VOP_UNLOCK(vp);
1184 	if (need_finished_write)
1185 		vn_finished_write(mp);
1186 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1187 	    orig_offset != uio->uio_offset)
1188 		/*
1189 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1190 		 * for the backing file after a POSIX_FADV_NOREUSE
1191 		 * write(2).
1192 		 */
1193 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1194 		    POSIX_FADV_DONTNEED);
1195 unlock:
1196 	return (error);
1197 }
1198 
1199 /*
1200  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1201  * prevent the following deadlock:
1202  *
1203  * Assume that the thread A reads from the vnode vp1 into userspace
1204  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1205  * currently not resident, then system ends up with the call chain
1206  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1207  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1208  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1209  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1210  * backed by the pages of vnode vp1, and some page in buf2 is not
1211  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1212  *
1213  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1214  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1215  * Instead, it first tries to do the whole range i/o with pagefaults
1216  * disabled. If all pages in the i/o buffer are resident and mapped,
1217  * VOP will succeed (ignoring the genuine filesystem errors).
1218  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1219  * i/o in chunks, with all pages in the chunk prefaulted and held
1220  * using vm_fault_quick_hold_pages().
1221  *
1222  * Filesystems using this deadlock avoidance scheme should use the
1223  * array of the held pages from uio, saved in the curthread->td_ma,
1224  * instead of doing uiomove().  A helper function
1225  * vn_io_fault_uiomove() converts uiomove request into
1226  * uiomove_fromphys() over td_ma array.
1227  *
1228  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1229  * make the current i/o request atomic with respect to other i/os and
1230  * truncations.
1231  */
1232 
1233 /*
1234  * Decode vn_io_fault_args and perform the corresponding i/o.
1235  */
1236 static int
1237 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1238     struct thread *td)
1239 {
1240 	int error, save;
1241 
1242 	error = 0;
1243 	save = vm_fault_disable_pagefaults();
1244 	switch (args->kind) {
1245 	case VN_IO_FAULT_FOP:
1246 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1247 		    uio, args->cred, args->flags, td);
1248 		break;
1249 	case VN_IO_FAULT_VOP:
1250 		if (uio->uio_rw == UIO_READ) {
1251 			error = VOP_READ(args->args.vop_args.vp, uio,
1252 			    args->flags, args->cred);
1253 		} else if (uio->uio_rw == UIO_WRITE) {
1254 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1255 			    args->flags, args->cred);
1256 		}
1257 		break;
1258 	default:
1259 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1260 		    args->kind, uio->uio_rw);
1261 	}
1262 	vm_fault_enable_pagefaults(save);
1263 	return (error);
1264 }
1265 
1266 static int
1267 vn_io_fault_touch(char *base, const struct uio *uio)
1268 {
1269 	int r;
1270 
1271 	r = fubyte(base);
1272 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1273 		return (EFAULT);
1274 	return (0);
1275 }
1276 
1277 static int
1278 vn_io_fault_prefault_user(const struct uio *uio)
1279 {
1280 	char *base;
1281 	const struct iovec *iov;
1282 	size_t len;
1283 	ssize_t resid;
1284 	int error, i;
1285 
1286 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1287 	    ("vn_io_fault_prefault userspace"));
1288 
1289 	error = i = 0;
1290 	iov = uio->uio_iov;
1291 	resid = uio->uio_resid;
1292 	base = iov->iov_base;
1293 	len = iov->iov_len;
1294 	while (resid > 0) {
1295 		error = vn_io_fault_touch(base, uio);
1296 		if (error != 0)
1297 			break;
1298 		if (len < PAGE_SIZE) {
1299 			if (len != 0) {
1300 				error = vn_io_fault_touch(base + len - 1, uio);
1301 				if (error != 0)
1302 					break;
1303 				resid -= len;
1304 			}
1305 			if (++i >= uio->uio_iovcnt)
1306 				break;
1307 			iov = uio->uio_iov + i;
1308 			base = iov->iov_base;
1309 			len = iov->iov_len;
1310 		} else {
1311 			len -= PAGE_SIZE;
1312 			base += PAGE_SIZE;
1313 			resid -= PAGE_SIZE;
1314 		}
1315 	}
1316 	return (error);
1317 }
1318 
1319 /*
1320  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1321  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1322  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1323  * into args and call vn_io_fault1() to handle faults during the user
1324  * mode buffer accesses.
1325  */
1326 static int
1327 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1328     struct thread *td)
1329 {
1330 	vm_page_t ma[io_hold_cnt + 2];
1331 	struct uio *uio_clone, short_uio;
1332 	struct iovec short_iovec[1];
1333 	vm_page_t *prev_td_ma;
1334 	vm_prot_t prot;
1335 	vm_offset_t addr, end;
1336 	size_t len, resid;
1337 	ssize_t adv;
1338 	int error, cnt, saveheld, prev_td_ma_cnt;
1339 
1340 	if (vn_io_fault_prefault) {
1341 		error = vn_io_fault_prefault_user(uio);
1342 		if (error != 0)
1343 			return (error); /* Or ignore ? */
1344 	}
1345 
1346 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1347 
1348 	/*
1349 	 * The UFS follows IO_UNIT directive and replays back both
1350 	 * uio_offset and uio_resid if an error is encountered during the
1351 	 * operation.  But, since the iovec may be already advanced,
1352 	 * uio is still in an inconsistent state.
1353 	 *
1354 	 * Cache a copy of the original uio, which is advanced to the redo
1355 	 * point using UIO_NOCOPY below.
1356 	 */
1357 	uio_clone = cloneuio(uio);
1358 	resid = uio->uio_resid;
1359 
1360 	short_uio.uio_segflg = UIO_USERSPACE;
1361 	short_uio.uio_rw = uio->uio_rw;
1362 	short_uio.uio_td = uio->uio_td;
1363 
1364 	error = vn_io_fault_doio(args, uio, td);
1365 	if (error != EFAULT)
1366 		goto out;
1367 
1368 	atomic_add_long(&vn_io_faults_cnt, 1);
1369 	uio_clone->uio_segflg = UIO_NOCOPY;
1370 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1371 	uio_clone->uio_segflg = uio->uio_segflg;
1372 
1373 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1374 	prev_td_ma = td->td_ma;
1375 	prev_td_ma_cnt = td->td_ma_cnt;
1376 
1377 	while (uio_clone->uio_resid != 0) {
1378 		len = uio_clone->uio_iov->iov_len;
1379 		if (len == 0) {
1380 			KASSERT(uio_clone->uio_iovcnt >= 1,
1381 			    ("iovcnt underflow"));
1382 			uio_clone->uio_iov++;
1383 			uio_clone->uio_iovcnt--;
1384 			continue;
1385 		}
1386 		if (len > ptoa(io_hold_cnt))
1387 			len = ptoa(io_hold_cnt);
1388 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1389 		end = round_page(addr + len);
1390 		if (end < addr) {
1391 			error = EFAULT;
1392 			break;
1393 		}
1394 		cnt = atop(end - trunc_page(addr));
1395 		/*
1396 		 * A perfectly misaligned address and length could cause
1397 		 * both the start and the end of the chunk to use partial
1398 		 * page.  +2 accounts for such a situation.
1399 		 */
1400 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1401 		    addr, len, prot, ma, io_hold_cnt + 2);
1402 		if (cnt == -1) {
1403 			error = EFAULT;
1404 			break;
1405 		}
1406 		short_uio.uio_iov = &short_iovec[0];
1407 		short_iovec[0].iov_base = (void *)addr;
1408 		short_uio.uio_iovcnt = 1;
1409 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1410 		short_uio.uio_offset = uio_clone->uio_offset;
1411 		td->td_ma = ma;
1412 		td->td_ma_cnt = cnt;
1413 
1414 		error = vn_io_fault_doio(args, &short_uio, td);
1415 		vm_page_unhold_pages(ma, cnt);
1416 		adv = len - short_uio.uio_resid;
1417 
1418 		uio_clone->uio_iov->iov_base =
1419 		    (char *)uio_clone->uio_iov->iov_base + adv;
1420 		uio_clone->uio_iov->iov_len -= adv;
1421 		uio_clone->uio_resid -= adv;
1422 		uio_clone->uio_offset += adv;
1423 
1424 		uio->uio_resid -= adv;
1425 		uio->uio_offset += adv;
1426 
1427 		if (error != 0 || adv == 0)
1428 			break;
1429 	}
1430 	td->td_ma = prev_td_ma;
1431 	td->td_ma_cnt = prev_td_ma_cnt;
1432 	curthread_pflags_restore(saveheld);
1433 out:
1434 	free(uio_clone, M_IOV);
1435 	return (error);
1436 }
1437 
1438 static int
1439 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1440     int flags, struct thread *td)
1441 {
1442 	fo_rdwr_t *doio;
1443 	struct vnode *vp;
1444 	void *rl_cookie;
1445 	struct vn_io_fault_args args;
1446 	int error;
1447 
1448 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1449 	vp = fp->f_vnode;
1450 
1451 	/*
1452 	 * The ability to read(2) on a directory has historically been
1453 	 * allowed for all users, but this can and has been the source of
1454 	 * at least one security issue in the past.  As such, it is now hidden
1455 	 * away behind a sysctl for those that actually need it to use it, and
1456 	 * restricted to root when it's turned on to make it relatively safe to
1457 	 * leave on for longer sessions of need.
1458 	 */
1459 	if (vp->v_type == VDIR) {
1460 		KASSERT(uio->uio_rw == UIO_READ,
1461 		    ("illegal write attempted on a directory"));
1462 		if (!vfs_allow_read_dir)
1463 			return (EISDIR);
1464 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1465 			return (EISDIR);
1466 	}
1467 
1468 	foffset_lock_uio(fp, uio, flags);
1469 	if (do_vn_io_fault(vp, uio)) {
1470 		args.kind = VN_IO_FAULT_FOP;
1471 		args.args.fop_args.fp = fp;
1472 		args.args.fop_args.doio = doio;
1473 		args.cred = active_cred;
1474 		args.flags = flags | FOF_OFFSET;
1475 		if (uio->uio_rw == UIO_READ) {
1476 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1477 			    uio->uio_offset + uio->uio_resid);
1478 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1479 		    (flags & FOF_OFFSET) == 0) {
1480 			/* For appenders, punt and lock the whole range. */
1481 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1482 		} else {
1483 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1484 			    uio->uio_offset + uio->uio_resid);
1485 		}
1486 		error = vn_io_fault1(vp, uio, &args, td);
1487 		vn_rangelock_unlock(vp, rl_cookie);
1488 	} else {
1489 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1490 	}
1491 	foffset_unlock_uio(fp, uio, flags);
1492 	return (error);
1493 }
1494 
1495 /*
1496  * Helper function to perform the requested uiomove operation using
1497  * the held pages for io->uio_iov[0].iov_base buffer instead of
1498  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1499  * instead of iov_base prevents page faults that could occur due to
1500  * pmap_collect() invalidating the mapping created by
1501  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1502  * object cleanup revoking the write access from page mappings.
1503  *
1504  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1505  * instead of plain uiomove().
1506  */
1507 int
1508 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1509 {
1510 	struct uio transp_uio;
1511 	struct iovec transp_iov[1];
1512 	struct thread *td;
1513 	size_t adv;
1514 	int error, pgadv;
1515 
1516 	td = curthread;
1517 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1518 	    uio->uio_segflg != UIO_USERSPACE)
1519 		return (uiomove(data, xfersize, uio));
1520 
1521 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1522 	transp_iov[0].iov_base = data;
1523 	transp_uio.uio_iov = &transp_iov[0];
1524 	transp_uio.uio_iovcnt = 1;
1525 	if (xfersize > uio->uio_resid)
1526 		xfersize = uio->uio_resid;
1527 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1528 	transp_uio.uio_offset = 0;
1529 	transp_uio.uio_segflg = UIO_SYSSPACE;
1530 	/*
1531 	 * Since transp_iov points to data, and td_ma page array
1532 	 * corresponds to original uio->uio_iov, we need to invert the
1533 	 * direction of the i/o operation as passed to
1534 	 * uiomove_fromphys().
1535 	 */
1536 	switch (uio->uio_rw) {
1537 	case UIO_WRITE:
1538 		transp_uio.uio_rw = UIO_READ;
1539 		break;
1540 	case UIO_READ:
1541 		transp_uio.uio_rw = UIO_WRITE;
1542 		break;
1543 	}
1544 	transp_uio.uio_td = uio->uio_td;
1545 	error = uiomove_fromphys(td->td_ma,
1546 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1547 	    xfersize, &transp_uio);
1548 	adv = xfersize - transp_uio.uio_resid;
1549 	pgadv =
1550 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1551 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1552 	td->td_ma += pgadv;
1553 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1554 	    pgadv));
1555 	td->td_ma_cnt -= pgadv;
1556 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1557 	uio->uio_iov->iov_len -= adv;
1558 	uio->uio_resid -= adv;
1559 	uio->uio_offset += adv;
1560 	return (error);
1561 }
1562 
1563 int
1564 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1565     struct uio *uio)
1566 {
1567 	struct thread *td;
1568 	vm_offset_t iov_base;
1569 	int cnt, pgadv;
1570 
1571 	td = curthread;
1572 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1573 	    uio->uio_segflg != UIO_USERSPACE)
1574 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1575 
1576 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1577 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1578 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1579 	switch (uio->uio_rw) {
1580 	case UIO_WRITE:
1581 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1582 		    offset, cnt);
1583 		break;
1584 	case UIO_READ:
1585 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1586 		    cnt);
1587 		break;
1588 	}
1589 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1590 	td->td_ma += pgadv;
1591 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1592 	    pgadv));
1593 	td->td_ma_cnt -= pgadv;
1594 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1595 	uio->uio_iov->iov_len -= cnt;
1596 	uio->uio_resid -= cnt;
1597 	uio->uio_offset += cnt;
1598 	return (0);
1599 }
1600 
1601 /*
1602  * File table truncate routine.
1603  */
1604 static int
1605 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1606     struct thread *td)
1607 {
1608 	struct mount *mp;
1609 	struct vnode *vp;
1610 	void *rl_cookie;
1611 	int error;
1612 
1613 	vp = fp->f_vnode;
1614 
1615 retry:
1616 	/*
1617 	 * Lock the whole range for truncation.  Otherwise split i/o
1618 	 * might happen partly before and partly after the truncation.
1619 	 */
1620 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1621 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1622 	if (error)
1623 		goto out1;
1624 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1625 	AUDIT_ARG_VNODE1(vp);
1626 	if (vp->v_type == VDIR) {
1627 		error = EISDIR;
1628 		goto out;
1629 	}
1630 #ifdef MAC
1631 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1632 	if (error)
1633 		goto out;
1634 #endif
1635 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1636 	    fp->f_cred);
1637 out:
1638 	VOP_UNLOCK(vp);
1639 	vn_finished_write(mp);
1640 out1:
1641 	vn_rangelock_unlock(vp, rl_cookie);
1642 	if (error == ERELOOKUP)
1643 		goto retry;
1644 	return (error);
1645 }
1646 
1647 /*
1648  * Truncate a file that is already locked.
1649  */
1650 int
1651 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1652     struct ucred *cred)
1653 {
1654 	struct vattr vattr;
1655 	int error;
1656 
1657 	error = VOP_ADD_WRITECOUNT(vp, 1);
1658 	if (error == 0) {
1659 		VATTR_NULL(&vattr);
1660 		vattr.va_size = length;
1661 		if (sync)
1662 			vattr.va_vaflags |= VA_SYNC;
1663 		error = VOP_SETATTR(vp, &vattr, cred);
1664 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1665 	}
1666 	return (error);
1667 }
1668 
1669 /*
1670  * File table vnode stat routine.
1671  */
1672 int
1673 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred)
1674 {
1675 	struct vnode *vp = fp->f_vnode;
1676 	int error;
1677 
1678 	vn_lock(vp, LK_SHARED | LK_RETRY);
1679 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred);
1680 	VOP_UNLOCK(vp);
1681 
1682 	return (error);
1683 }
1684 
1685 /*
1686  * File table vnode ioctl routine.
1687  */
1688 static int
1689 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1690     struct thread *td)
1691 {
1692 	struct vattr vattr;
1693 	struct vnode *vp;
1694 	struct fiobmap2_arg *bmarg;
1695 	int error;
1696 
1697 	vp = fp->f_vnode;
1698 	switch (vp->v_type) {
1699 	case VDIR:
1700 	case VREG:
1701 		switch (com) {
1702 		case FIONREAD:
1703 			vn_lock(vp, LK_SHARED | LK_RETRY);
1704 			error = VOP_GETATTR(vp, &vattr, active_cred);
1705 			VOP_UNLOCK(vp);
1706 			if (error == 0)
1707 				*(int *)data = vattr.va_size - fp->f_offset;
1708 			return (error);
1709 		case FIOBMAP2:
1710 			bmarg = (struct fiobmap2_arg *)data;
1711 			vn_lock(vp, LK_SHARED | LK_RETRY);
1712 #ifdef MAC
1713 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1714 			    vp);
1715 			if (error == 0)
1716 #endif
1717 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1718 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1719 			VOP_UNLOCK(vp);
1720 			return (error);
1721 		case FIONBIO:
1722 		case FIOASYNC:
1723 			return (0);
1724 		default:
1725 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1726 			    active_cred, td));
1727 		}
1728 		break;
1729 	case VCHR:
1730 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1731 		    active_cred, td));
1732 	default:
1733 		return (ENOTTY);
1734 	}
1735 }
1736 
1737 /*
1738  * File table vnode poll routine.
1739  */
1740 static int
1741 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1742     struct thread *td)
1743 {
1744 	struct vnode *vp;
1745 	int error;
1746 
1747 	vp = fp->f_vnode;
1748 #if defined(MAC) || defined(AUDIT)
1749 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1750 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1751 		AUDIT_ARG_VNODE1(vp);
1752 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1753 		VOP_UNLOCK(vp);
1754 		if (error != 0)
1755 			return (error);
1756 	}
1757 #endif
1758 	error = VOP_POLL(vp, events, fp->f_cred, td);
1759 	return (error);
1760 }
1761 
1762 /*
1763  * Acquire the requested lock and then check for validity.  LK_RETRY
1764  * permits vn_lock to return doomed vnodes.
1765  */
1766 static int __noinline
1767 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1768     int error)
1769 {
1770 
1771 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1772 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1773 
1774 	if (error == 0)
1775 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1776 
1777 	if ((flags & LK_RETRY) == 0) {
1778 		if (error == 0) {
1779 			VOP_UNLOCK(vp);
1780 			error = ENOENT;
1781 		}
1782 		return (error);
1783 	}
1784 
1785 	/*
1786 	 * LK_RETRY case.
1787 	 *
1788 	 * Nothing to do if we got the lock.
1789 	 */
1790 	if (error == 0)
1791 		return (0);
1792 
1793 	/*
1794 	 * Interlock was dropped by the call in _vn_lock.
1795 	 */
1796 	flags &= ~LK_INTERLOCK;
1797 	do {
1798 		error = VOP_LOCK1(vp, flags, file, line);
1799 	} while (error != 0);
1800 	return (0);
1801 }
1802 
1803 int
1804 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1805 {
1806 	int error;
1807 
1808 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1809 	    ("vn_lock: no locktype (%d passed)", flags));
1810 	VNPASS(vp->v_holdcnt > 0, vp);
1811 	error = VOP_LOCK1(vp, flags, file, line);
1812 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1813 		return (_vn_lock_fallback(vp, flags, file, line, error));
1814 	return (0);
1815 }
1816 
1817 /*
1818  * File table vnode close routine.
1819  */
1820 static int
1821 vn_closefile(struct file *fp, struct thread *td)
1822 {
1823 	struct vnode *vp;
1824 	struct flock lf;
1825 	int error;
1826 	bool ref;
1827 
1828 	vp = fp->f_vnode;
1829 	fp->f_ops = &badfileops;
1830 	ref = (fp->f_flag & FHASLOCK) != 0;
1831 
1832 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1833 
1834 	if (__predict_false(ref)) {
1835 		lf.l_whence = SEEK_SET;
1836 		lf.l_start = 0;
1837 		lf.l_len = 0;
1838 		lf.l_type = F_UNLCK;
1839 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1840 		vrele(vp);
1841 	}
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Preparing to start a filesystem write operation. If the operation is
1847  * permitted, then we bump the count of operations in progress and
1848  * proceed. If a suspend request is in progress, we wait until the
1849  * suspension is over, and then proceed.
1850  */
1851 static int
1852 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1853 {
1854 	struct mount_pcpu *mpcpu;
1855 	int error, mflags;
1856 
1857 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1858 	    vfs_op_thread_enter(mp, mpcpu)) {
1859 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1860 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1861 		vfs_op_thread_exit(mp, mpcpu);
1862 		return (0);
1863 	}
1864 
1865 	if (mplocked)
1866 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1867 	else
1868 		MNT_ILOCK(mp);
1869 
1870 	error = 0;
1871 
1872 	/*
1873 	 * Check on status of suspension.
1874 	 */
1875 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1876 	    mp->mnt_susp_owner != curthread) {
1877 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1878 		    (flags & PCATCH) : 0) | (PUSER - 1);
1879 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1880 			if (flags & V_NOWAIT) {
1881 				error = EWOULDBLOCK;
1882 				goto unlock;
1883 			}
1884 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1885 			    "suspfs", 0);
1886 			if (error)
1887 				goto unlock;
1888 		}
1889 	}
1890 	if (flags & V_XSLEEP)
1891 		goto unlock;
1892 	mp->mnt_writeopcount++;
1893 unlock:
1894 	if (error != 0 || (flags & V_XSLEEP) != 0)
1895 		MNT_REL(mp);
1896 	MNT_IUNLOCK(mp);
1897 	return (error);
1898 }
1899 
1900 int
1901 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1902 {
1903 	struct mount *mp;
1904 	int error;
1905 
1906 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1907 	    ("V_MNTREF requires mp"));
1908 
1909 	error = 0;
1910 	/*
1911 	 * If a vnode is provided, get and return the mount point that
1912 	 * to which it will write.
1913 	 */
1914 	if (vp != NULL) {
1915 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1916 			*mpp = NULL;
1917 			if (error != EOPNOTSUPP)
1918 				return (error);
1919 			return (0);
1920 		}
1921 	}
1922 	if ((mp = *mpp) == NULL)
1923 		return (0);
1924 
1925 	/*
1926 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1927 	 * a vfs_ref().
1928 	 * As long as a vnode is not provided we need to acquire a
1929 	 * refcount for the provided mountpoint too, in order to
1930 	 * emulate a vfs_ref().
1931 	 */
1932 	if (vp == NULL && (flags & V_MNTREF) == 0)
1933 		vfs_ref(mp);
1934 
1935 	return (vn_start_write_refed(mp, flags, false));
1936 }
1937 
1938 /*
1939  * Secondary suspension. Used by operations such as vop_inactive
1940  * routines that are needed by the higher level functions. These
1941  * are allowed to proceed until all the higher level functions have
1942  * completed (indicated by mnt_writeopcount dropping to zero). At that
1943  * time, these operations are halted until the suspension is over.
1944  */
1945 int
1946 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1947 {
1948 	struct mount *mp;
1949 	int error;
1950 
1951 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1952 	    ("V_MNTREF requires mp"));
1953 
1954  retry:
1955 	if (vp != NULL) {
1956 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1957 			*mpp = NULL;
1958 			if (error != EOPNOTSUPP)
1959 				return (error);
1960 			return (0);
1961 		}
1962 	}
1963 	/*
1964 	 * If we are not suspended or have not yet reached suspended
1965 	 * mode, then let the operation proceed.
1966 	 */
1967 	if ((mp = *mpp) == NULL)
1968 		return (0);
1969 
1970 	/*
1971 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1972 	 * a vfs_ref().
1973 	 * As long as a vnode is not provided we need to acquire a
1974 	 * refcount for the provided mountpoint too, in order to
1975 	 * emulate a vfs_ref().
1976 	 */
1977 	MNT_ILOCK(mp);
1978 	if (vp == NULL && (flags & V_MNTREF) == 0)
1979 		MNT_REF(mp);
1980 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1981 		mp->mnt_secondary_writes++;
1982 		mp->mnt_secondary_accwrites++;
1983 		MNT_IUNLOCK(mp);
1984 		return (0);
1985 	}
1986 	if (flags & V_NOWAIT) {
1987 		MNT_REL(mp);
1988 		MNT_IUNLOCK(mp);
1989 		return (EWOULDBLOCK);
1990 	}
1991 	/*
1992 	 * Wait for the suspension to finish.
1993 	 */
1994 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1995 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1996 	    "suspfs", 0);
1997 	vfs_rel(mp);
1998 	if (error == 0)
1999 		goto retry;
2000 	return (error);
2001 }
2002 
2003 /*
2004  * Filesystem write operation has completed. If we are suspending and this
2005  * operation is the last one, notify the suspender that the suspension is
2006  * now in effect.
2007  */
2008 void
2009 vn_finished_write(struct mount *mp)
2010 {
2011 	struct mount_pcpu *mpcpu;
2012 	int c;
2013 
2014 	if (mp == NULL)
2015 		return;
2016 
2017 	if (vfs_op_thread_enter(mp, mpcpu)) {
2018 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2019 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2020 		vfs_op_thread_exit(mp, mpcpu);
2021 		return;
2022 	}
2023 
2024 	MNT_ILOCK(mp);
2025 	vfs_assert_mount_counters(mp);
2026 	MNT_REL(mp);
2027 	c = --mp->mnt_writeopcount;
2028 	if (mp->mnt_vfs_ops == 0) {
2029 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2030 		MNT_IUNLOCK(mp);
2031 		return;
2032 	}
2033 	if (c < 0)
2034 		vfs_dump_mount_counters(mp);
2035 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2036 		wakeup(&mp->mnt_writeopcount);
2037 	MNT_IUNLOCK(mp);
2038 }
2039 
2040 /*
2041  * Filesystem secondary write operation has completed. If we are
2042  * suspending and this operation is the last one, notify the suspender
2043  * that the suspension is now in effect.
2044  */
2045 void
2046 vn_finished_secondary_write(struct mount *mp)
2047 {
2048 	if (mp == NULL)
2049 		return;
2050 	MNT_ILOCK(mp);
2051 	MNT_REL(mp);
2052 	mp->mnt_secondary_writes--;
2053 	if (mp->mnt_secondary_writes < 0)
2054 		panic("vn_finished_secondary_write: neg cnt");
2055 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2056 	    mp->mnt_secondary_writes <= 0)
2057 		wakeup(&mp->mnt_secondary_writes);
2058 	MNT_IUNLOCK(mp);
2059 }
2060 
2061 /*
2062  * Request a filesystem to suspend write operations.
2063  */
2064 int
2065 vfs_write_suspend(struct mount *mp, int flags)
2066 {
2067 	int error;
2068 
2069 	vfs_op_enter(mp);
2070 
2071 	MNT_ILOCK(mp);
2072 	vfs_assert_mount_counters(mp);
2073 	if (mp->mnt_susp_owner == curthread) {
2074 		vfs_op_exit_locked(mp);
2075 		MNT_IUNLOCK(mp);
2076 		return (EALREADY);
2077 	}
2078 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2079 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2080 
2081 	/*
2082 	 * Unmount holds a write reference on the mount point.  If we
2083 	 * own busy reference and drain for writers, we deadlock with
2084 	 * the reference draining in the unmount path.  Callers of
2085 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2086 	 * vfs_busy() reference is owned and caller is not in the
2087 	 * unmount context.
2088 	 */
2089 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2090 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2091 		vfs_op_exit_locked(mp);
2092 		MNT_IUNLOCK(mp);
2093 		return (EBUSY);
2094 	}
2095 
2096 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2097 	mp->mnt_susp_owner = curthread;
2098 	if (mp->mnt_writeopcount > 0)
2099 		(void) msleep(&mp->mnt_writeopcount,
2100 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2101 	else
2102 		MNT_IUNLOCK(mp);
2103 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2104 		vfs_write_resume(mp, 0);
2105 		/* vfs_write_resume does vfs_op_exit() for us */
2106 	}
2107 	return (error);
2108 }
2109 
2110 /*
2111  * Request a filesystem to resume write operations.
2112  */
2113 void
2114 vfs_write_resume(struct mount *mp, int flags)
2115 {
2116 
2117 	MNT_ILOCK(mp);
2118 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2119 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2120 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2121 				       MNTK_SUSPENDED);
2122 		mp->mnt_susp_owner = NULL;
2123 		wakeup(&mp->mnt_writeopcount);
2124 		wakeup(&mp->mnt_flag);
2125 		curthread->td_pflags &= ~TDP_IGNSUSP;
2126 		if ((flags & VR_START_WRITE) != 0) {
2127 			MNT_REF(mp);
2128 			mp->mnt_writeopcount++;
2129 		}
2130 		MNT_IUNLOCK(mp);
2131 		if ((flags & VR_NO_SUSPCLR) == 0)
2132 			VFS_SUSP_CLEAN(mp);
2133 		vfs_op_exit(mp);
2134 	} else if ((flags & VR_START_WRITE) != 0) {
2135 		MNT_REF(mp);
2136 		vn_start_write_refed(mp, 0, true);
2137 	} else {
2138 		MNT_IUNLOCK(mp);
2139 	}
2140 }
2141 
2142 /*
2143  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2144  * methods.
2145  */
2146 int
2147 vfs_write_suspend_umnt(struct mount *mp)
2148 {
2149 	int error;
2150 
2151 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2152 	    ("vfs_write_suspend_umnt: recursed"));
2153 
2154 	/* dounmount() already called vn_start_write(). */
2155 	for (;;) {
2156 		vn_finished_write(mp);
2157 		error = vfs_write_suspend(mp, 0);
2158 		if (error != 0) {
2159 			vn_start_write(NULL, &mp, V_WAIT);
2160 			return (error);
2161 		}
2162 		MNT_ILOCK(mp);
2163 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2164 			break;
2165 		MNT_IUNLOCK(mp);
2166 		vn_start_write(NULL, &mp, V_WAIT);
2167 	}
2168 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2169 	wakeup(&mp->mnt_flag);
2170 	MNT_IUNLOCK(mp);
2171 	curthread->td_pflags |= TDP_IGNSUSP;
2172 	return (0);
2173 }
2174 
2175 /*
2176  * Implement kqueues for files by translating it to vnode operation.
2177  */
2178 static int
2179 vn_kqfilter(struct file *fp, struct knote *kn)
2180 {
2181 
2182 	return (VOP_KQFILTER(fp->f_vnode, kn));
2183 }
2184 
2185 int
2186 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2187 {
2188 	if ((fp->f_flag & FKQALLOWED) == 0)
2189 		return (EBADF);
2190 	return (vn_kqfilter(fp, kn));
2191 }
2192 
2193 /*
2194  * Simplified in-kernel wrapper calls for extended attribute access.
2195  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2196  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2197  */
2198 int
2199 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2200     const char *attrname, int *buflen, char *buf, struct thread *td)
2201 {
2202 	struct uio	auio;
2203 	struct iovec	iov;
2204 	int	error;
2205 
2206 	iov.iov_len = *buflen;
2207 	iov.iov_base = buf;
2208 
2209 	auio.uio_iov = &iov;
2210 	auio.uio_iovcnt = 1;
2211 	auio.uio_rw = UIO_READ;
2212 	auio.uio_segflg = UIO_SYSSPACE;
2213 	auio.uio_td = td;
2214 	auio.uio_offset = 0;
2215 	auio.uio_resid = *buflen;
2216 
2217 	if ((ioflg & IO_NODELOCKED) == 0)
2218 		vn_lock(vp, LK_SHARED | LK_RETRY);
2219 
2220 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2221 
2222 	/* authorize attribute retrieval as kernel */
2223 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2224 	    td);
2225 
2226 	if ((ioflg & IO_NODELOCKED) == 0)
2227 		VOP_UNLOCK(vp);
2228 
2229 	if (error == 0) {
2230 		*buflen = *buflen - auio.uio_resid;
2231 	}
2232 
2233 	return (error);
2234 }
2235 
2236 /*
2237  * XXX failure mode if partially written?
2238  */
2239 int
2240 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2241     const char *attrname, int buflen, char *buf, struct thread *td)
2242 {
2243 	struct uio	auio;
2244 	struct iovec	iov;
2245 	struct mount	*mp;
2246 	int	error;
2247 
2248 	iov.iov_len = buflen;
2249 	iov.iov_base = buf;
2250 
2251 	auio.uio_iov = &iov;
2252 	auio.uio_iovcnt = 1;
2253 	auio.uio_rw = UIO_WRITE;
2254 	auio.uio_segflg = UIO_SYSSPACE;
2255 	auio.uio_td = td;
2256 	auio.uio_offset = 0;
2257 	auio.uio_resid = buflen;
2258 
2259 	if ((ioflg & IO_NODELOCKED) == 0) {
2260 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2261 			return (error);
2262 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2263 	}
2264 
2265 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2266 
2267 	/* authorize attribute setting as kernel */
2268 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2269 
2270 	if ((ioflg & IO_NODELOCKED) == 0) {
2271 		vn_finished_write(mp);
2272 		VOP_UNLOCK(vp);
2273 	}
2274 
2275 	return (error);
2276 }
2277 
2278 int
2279 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2280     const char *attrname, struct thread *td)
2281 {
2282 	struct mount	*mp;
2283 	int	error;
2284 
2285 	if ((ioflg & IO_NODELOCKED) == 0) {
2286 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2287 			return (error);
2288 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2289 	}
2290 
2291 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2292 
2293 	/* authorize attribute removal as kernel */
2294 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2295 	if (error == EOPNOTSUPP)
2296 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2297 		    NULL, td);
2298 
2299 	if ((ioflg & IO_NODELOCKED) == 0) {
2300 		vn_finished_write(mp);
2301 		VOP_UNLOCK(vp);
2302 	}
2303 
2304 	return (error);
2305 }
2306 
2307 static int
2308 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2309     struct vnode **rvp)
2310 {
2311 
2312 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2313 }
2314 
2315 int
2316 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2317 {
2318 
2319 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2320 	    lkflags, rvp));
2321 }
2322 
2323 int
2324 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2325     int lkflags, struct vnode **rvp)
2326 {
2327 	struct mount *mp;
2328 	int ltype, error;
2329 
2330 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2331 	mp = vp->v_mount;
2332 	ltype = VOP_ISLOCKED(vp);
2333 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2334 	    ("vn_vget_ino: vp not locked"));
2335 	error = vfs_busy(mp, MBF_NOWAIT);
2336 	if (error != 0) {
2337 		vfs_ref(mp);
2338 		VOP_UNLOCK(vp);
2339 		error = vfs_busy(mp, 0);
2340 		vn_lock(vp, ltype | LK_RETRY);
2341 		vfs_rel(mp);
2342 		if (error != 0)
2343 			return (ENOENT);
2344 		if (VN_IS_DOOMED(vp)) {
2345 			vfs_unbusy(mp);
2346 			return (ENOENT);
2347 		}
2348 	}
2349 	VOP_UNLOCK(vp);
2350 	error = alloc(mp, alloc_arg, lkflags, rvp);
2351 	vfs_unbusy(mp);
2352 	if (error != 0 || *rvp != vp)
2353 		vn_lock(vp, ltype | LK_RETRY);
2354 	if (VN_IS_DOOMED(vp)) {
2355 		if (error == 0) {
2356 			if (*rvp == vp)
2357 				vunref(vp);
2358 			else
2359 				vput(*rvp);
2360 		}
2361 		error = ENOENT;
2362 	}
2363 	return (error);
2364 }
2365 
2366 int
2367 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2368     struct thread *td)
2369 {
2370 	off_t lim;
2371 	bool ktr_write;
2372 
2373 	if (td == NULL)
2374 		return (0);
2375 
2376 	/*
2377 	 * There are conditions where the limit is to be ignored.
2378 	 * However, since it is almost never reached, check it first.
2379 	 */
2380 	ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2381 	lim = lim_cur(td, RLIMIT_FSIZE);
2382 	if (__predict_false(ktr_write))
2383 		lim = td->td_ktr_io_lim;
2384 	if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2385 		return (0);
2386 
2387 	/*
2388 	 * The limit is reached.
2389 	 */
2390 	if (vp->v_type != VREG ||
2391 	    (td->td_pflags2 & TDP2_ACCT) != 0)
2392 		return (0);
2393 
2394 	if (!ktr_write || ktr_filesize_limit_signal) {
2395 		PROC_LOCK(td->td_proc);
2396 		kern_psignal(td->td_proc, SIGXFSZ);
2397 		PROC_UNLOCK(td->td_proc);
2398 	}
2399 	return (EFBIG);
2400 }
2401 
2402 int
2403 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2404     struct thread *td)
2405 {
2406 	struct vnode *vp;
2407 
2408 	vp = fp->f_vnode;
2409 #ifdef AUDIT
2410 	vn_lock(vp, LK_SHARED | LK_RETRY);
2411 	AUDIT_ARG_VNODE1(vp);
2412 	VOP_UNLOCK(vp);
2413 #endif
2414 	return (setfmode(td, active_cred, vp, mode));
2415 }
2416 
2417 int
2418 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2419     struct thread *td)
2420 {
2421 	struct vnode *vp;
2422 
2423 	vp = fp->f_vnode;
2424 #ifdef AUDIT
2425 	vn_lock(vp, LK_SHARED | LK_RETRY);
2426 	AUDIT_ARG_VNODE1(vp);
2427 	VOP_UNLOCK(vp);
2428 #endif
2429 	return (setfown(td, active_cred, vp, uid, gid));
2430 }
2431 
2432 void
2433 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2434 {
2435 	vm_object_t object;
2436 
2437 	if ((object = vp->v_object) == NULL)
2438 		return;
2439 	VM_OBJECT_WLOCK(object);
2440 	vm_object_page_remove(object, start, end, 0);
2441 	VM_OBJECT_WUNLOCK(object);
2442 }
2443 
2444 int
2445 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2446     struct ucred *cred)
2447 {
2448 	struct vattr va;
2449 	daddr_t bn, bnp;
2450 	uint64_t bsize;
2451 	off_t noff;
2452 	int error;
2453 
2454 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2455 	    ("%s: Wrong command %lu", __func__, cmd));
2456 	ASSERT_VOP_LOCKED(vp, "vn_bmap_seekhole_locked");
2457 
2458 	if (vp->v_type != VREG) {
2459 		error = ENOTTY;
2460 		goto out;
2461 	}
2462 	error = VOP_GETATTR(vp, &va, cred);
2463 	if (error != 0)
2464 		goto out;
2465 	noff = *off;
2466 	if (noff >= va.va_size) {
2467 		error = ENXIO;
2468 		goto out;
2469 	}
2470 	bsize = vp->v_mount->mnt_stat.f_iosize;
2471 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2472 	    noff % bsize) {
2473 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2474 		if (error == EOPNOTSUPP) {
2475 			error = ENOTTY;
2476 			goto out;
2477 		}
2478 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2479 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2480 			noff = bn * bsize;
2481 			if (noff < *off)
2482 				noff = *off;
2483 			goto out;
2484 		}
2485 	}
2486 	if (noff > va.va_size)
2487 		noff = va.va_size;
2488 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2489 	if (cmd == FIOSEEKDATA)
2490 		error = ENXIO;
2491 out:
2492 	if (error == 0)
2493 		*off = noff;
2494 	return (error);
2495 }
2496 
2497 int
2498 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2499 {
2500 	int error;
2501 
2502 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2503 	    ("%s: Wrong command %lu", __func__, cmd));
2504 
2505 	if (vn_lock(vp, LK_SHARED) != 0)
2506 		return (EBADF);
2507 	error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2508 	VOP_UNLOCK(vp);
2509 	return (error);
2510 }
2511 
2512 int
2513 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2514 {
2515 	struct ucred *cred;
2516 	struct vnode *vp;
2517 	struct vattr vattr;
2518 	off_t foffset, size;
2519 	int error, noneg;
2520 
2521 	cred = td->td_ucred;
2522 	vp = fp->f_vnode;
2523 	foffset = foffset_lock(fp, 0);
2524 	noneg = (vp->v_type != VCHR);
2525 	error = 0;
2526 	switch (whence) {
2527 	case L_INCR:
2528 		if (noneg &&
2529 		    (foffset < 0 ||
2530 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2531 			error = EOVERFLOW;
2532 			break;
2533 		}
2534 		offset += foffset;
2535 		break;
2536 	case L_XTND:
2537 		vn_lock(vp, LK_SHARED | LK_RETRY);
2538 		error = VOP_GETATTR(vp, &vattr, cred);
2539 		VOP_UNLOCK(vp);
2540 		if (error)
2541 			break;
2542 
2543 		/*
2544 		 * If the file references a disk device, then fetch
2545 		 * the media size and use that to determine the ending
2546 		 * offset.
2547 		 */
2548 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2549 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2550 			vattr.va_size = size;
2551 		if (noneg &&
2552 		    (vattr.va_size > OFF_MAX ||
2553 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2554 			error = EOVERFLOW;
2555 			break;
2556 		}
2557 		offset += vattr.va_size;
2558 		break;
2559 	case L_SET:
2560 		break;
2561 	case SEEK_DATA:
2562 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2563 		if (error == ENOTTY)
2564 			error = EINVAL;
2565 		break;
2566 	case SEEK_HOLE:
2567 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2568 		if (error == ENOTTY)
2569 			error = EINVAL;
2570 		break;
2571 	default:
2572 		error = EINVAL;
2573 	}
2574 	if (error == 0 && noneg && offset < 0)
2575 		error = EINVAL;
2576 	if (error != 0)
2577 		goto drop;
2578 	VFS_KNOTE_UNLOCKED(vp, 0);
2579 	td->td_uretoff.tdu_off = offset;
2580 drop:
2581 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2582 	return (error);
2583 }
2584 
2585 int
2586 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2587     struct thread *td)
2588 {
2589 	int error;
2590 
2591 	/*
2592 	 * Grant permission if the caller is the owner of the file, or
2593 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2594 	 * on the file.  If the time pointer is null, then write
2595 	 * permission on the file is also sufficient.
2596 	 *
2597 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2598 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2599 	 * will be allowed to set the times [..] to the current
2600 	 * server time.
2601 	 */
2602 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2603 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2604 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2605 	return (error);
2606 }
2607 
2608 int
2609 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2610 {
2611 	struct vnode *vp;
2612 	int error;
2613 
2614 	if (fp->f_type == DTYPE_FIFO)
2615 		kif->kf_type = KF_TYPE_FIFO;
2616 	else
2617 		kif->kf_type = KF_TYPE_VNODE;
2618 	vp = fp->f_vnode;
2619 	vref(vp);
2620 	FILEDESC_SUNLOCK(fdp);
2621 	error = vn_fill_kinfo_vnode(vp, kif);
2622 	vrele(vp);
2623 	FILEDESC_SLOCK(fdp);
2624 	return (error);
2625 }
2626 
2627 static inline void
2628 vn_fill_junk(struct kinfo_file *kif)
2629 {
2630 	size_t len, olen;
2631 
2632 	/*
2633 	 * Simulate vn_fullpath returning changing values for a given
2634 	 * vp during e.g. coredump.
2635 	 */
2636 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2637 	olen = strlen(kif->kf_path);
2638 	if (len < olen)
2639 		strcpy(&kif->kf_path[len - 1], "$");
2640 	else
2641 		for (; olen < len; olen++)
2642 			strcpy(&kif->kf_path[olen], "A");
2643 }
2644 
2645 int
2646 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2647 {
2648 	struct vattr va;
2649 	char *fullpath, *freepath;
2650 	int error;
2651 
2652 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2653 	freepath = NULL;
2654 	fullpath = "-";
2655 	error = vn_fullpath(vp, &fullpath, &freepath);
2656 	if (error == 0) {
2657 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2658 	}
2659 	if (freepath != NULL)
2660 		free(freepath, M_TEMP);
2661 
2662 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2663 		vn_fill_junk(kif);
2664 	);
2665 
2666 	/*
2667 	 * Retrieve vnode attributes.
2668 	 */
2669 	va.va_fsid = VNOVAL;
2670 	va.va_rdev = NODEV;
2671 	vn_lock(vp, LK_SHARED | LK_RETRY);
2672 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2673 	VOP_UNLOCK(vp);
2674 	if (error != 0)
2675 		return (error);
2676 	if (va.va_fsid != VNOVAL)
2677 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2678 	else
2679 		kif->kf_un.kf_file.kf_file_fsid =
2680 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2681 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2682 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2683 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2684 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2685 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2686 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2687 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2688 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2689 	return (0);
2690 }
2691 
2692 int
2693 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2694     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2695     struct thread *td)
2696 {
2697 #ifdef HWPMC_HOOKS
2698 	struct pmckern_map_in pkm;
2699 #endif
2700 	struct mount *mp;
2701 	struct vnode *vp;
2702 	vm_object_t object;
2703 	vm_prot_t maxprot;
2704 	boolean_t writecounted;
2705 	int error;
2706 
2707 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2708     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2709 	/*
2710 	 * POSIX shared-memory objects are defined to have
2711 	 * kernel persistence, and are not defined to support
2712 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2713 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2714 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2715 	 * flag to request this behavior.
2716 	 */
2717 	if ((fp->f_flag & FPOSIXSHM) != 0)
2718 		flags |= MAP_NOSYNC;
2719 #endif
2720 	vp = fp->f_vnode;
2721 
2722 	/*
2723 	 * Ensure that file and memory protections are
2724 	 * compatible.  Note that we only worry about
2725 	 * writability if mapping is shared; in this case,
2726 	 * current and max prot are dictated by the open file.
2727 	 * XXX use the vnode instead?  Problem is: what
2728 	 * credentials do we use for determination? What if
2729 	 * proc does a setuid?
2730 	 */
2731 	mp = vp->v_mount;
2732 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2733 		maxprot = VM_PROT_NONE;
2734 		if ((prot & VM_PROT_EXECUTE) != 0)
2735 			return (EACCES);
2736 	} else
2737 		maxprot = VM_PROT_EXECUTE;
2738 	if ((fp->f_flag & FREAD) != 0)
2739 		maxprot |= VM_PROT_READ;
2740 	else if ((prot & VM_PROT_READ) != 0)
2741 		return (EACCES);
2742 
2743 	/*
2744 	 * If we are sharing potential changes via MAP_SHARED and we
2745 	 * are trying to get write permission although we opened it
2746 	 * without asking for it, bail out.
2747 	 */
2748 	if ((flags & MAP_SHARED) != 0) {
2749 		if ((fp->f_flag & FWRITE) != 0)
2750 			maxprot |= VM_PROT_WRITE;
2751 		else if ((prot & VM_PROT_WRITE) != 0)
2752 			return (EACCES);
2753 	} else {
2754 		maxprot |= VM_PROT_WRITE;
2755 		cap_maxprot |= VM_PROT_WRITE;
2756 	}
2757 	maxprot &= cap_maxprot;
2758 
2759 	/*
2760 	 * For regular files and shared memory, POSIX requires that
2761 	 * the value of foff be a legitimate offset within the data
2762 	 * object.  In particular, negative offsets are invalid.
2763 	 * Blocking negative offsets and overflows here avoids
2764 	 * possible wraparound or user-level access into reserved
2765 	 * ranges of the data object later.  In contrast, POSIX does
2766 	 * not dictate how offsets are used by device drivers, so in
2767 	 * the case of a device mapping a negative offset is passed
2768 	 * on.
2769 	 */
2770 	if (
2771 #ifdef _LP64
2772 	    size > OFF_MAX ||
2773 #endif
2774 	    foff > OFF_MAX - size)
2775 		return (EINVAL);
2776 
2777 	writecounted = FALSE;
2778 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2779 	    &foff, &object, &writecounted);
2780 	if (error != 0)
2781 		return (error);
2782 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2783 	    foff, writecounted, td);
2784 	if (error != 0) {
2785 		/*
2786 		 * If this mapping was accounted for in the vnode's
2787 		 * writecount, then undo that now.
2788 		 */
2789 		if (writecounted)
2790 			vm_pager_release_writecount(object, 0, size);
2791 		vm_object_deallocate(object);
2792 	}
2793 #ifdef HWPMC_HOOKS
2794 	/* Inform hwpmc(4) if an executable is being mapped. */
2795 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2796 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2797 			pkm.pm_file = vp;
2798 			pkm.pm_address = (uintptr_t) *addr;
2799 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2800 		}
2801 	}
2802 #endif
2803 	return (error);
2804 }
2805 
2806 void
2807 vn_fsid(struct vnode *vp, struct vattr *va)
2808 {
2809 	fsid_t *f;
2810 
2811 	f = &vp->v_mount->mnt_stat.f_fsid;
2812 	va->va_fsid = (uint32_t)f->val[1];
2813 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2814 	va->va_fsid += (uint32_t)f->val[0];
2815 }
2816 
2817 int
2818 vn_fsync_buf(struct vnode *vp, int waitfor)
2819 {
2820 	struct buf *bp, *nbp;
2821 	struct bufobj *bo;
2822 	struct mount *mp;
2823 	int error, maxretry;
2824 
2825 	error = 0;
2826 	maxretry = 10000;     /* large, arbitrarily chosen */
2827 	mp = NULL;
2828 	if (vp->v_type == VCHR) {
2829 		VI_LOCK(vp);
2830 		mp = vp->v_rdev->si_mountpt;
2831 		VI_UNLOCK(vp);
2832 	}
2833 	bo = &vp->v_bufobj;
2834 	BO_LOCK(bo);
2835 loop1:
2836 	/*
2837 	 * MARK/SCAN initialization to avoid infinite loops.
2838 	 */
2839         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2840 		bp->b_vflags &= ~BV_SCANNED;
2841 		bp->b_error = 0;
2842 	}
2843 
2844 	/*
2845 	 * Flush all dirty buffers associated with a vnode.
2846 	 */
2847 loop2:
2848 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2849 		if ((bp->b_vflags & BV_SCANNED) != 0)
2850 			continue;
2851 		bp->b_vflags |= BV_SCANNED;
2852 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2853 			if (waitfor != MNT_WAIT)
2854 				continue;
2855 			if (BUF_LOCK(bp,
2856 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2857 			    BO_LOCKPTR(bo)) != 0) {
2858 				BO_LOCK(bo);
2859 				goto loop1;
2860 			}
2861 			BO_LOCK(bo);
2862 		}
2863 		BO_UNLOCK(bo);
2864 		KASSERT(bp->b_bufobj == bo,
2865 		    ("bp %p wrong b_bufobj %p should be %p",
2866 		    bp, bp->b_bufobj, bo));
2867 		if ((bp->b_flags & B_DELWRI) == 0)
2868 			panic("fsync: not dirty");
2869 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2870 			vfs_bio_awrite(bp);
2871 		} else {
2872 			bremfree(bp);
2873 			bawrite(bp);
2874 		}
2875 		if (maxretry < 1000)
2876 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2877 		BO_LOCK(bo);
2878 		goto loop2;
2879 	}
2880 
2881 	/*
2882 	 * If synchronous the caller expects us to completely resolve all
2883 	 * dirty buffers in the system.  Wait for in-progress I/O to
2884 	 * complete (which could include background bitmap writes), then
2885 	 * retry if dirty blocks still exist.
2886 	 */
2887 	if (waitfor == MNT_WAIT) {
2888 		bufobj_wwait(bo, 0, 0);
2889 		if (bo->bo_dirty.bv_cnt > 0) {
2890 			/*
2891 			 * If we are unable to write any of these buffers
2892 			 * then we fail now rather than trying endlessly
2893 			 * to write them out.
2894 			 */
2895 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2896 				if ((error = bp->b_error) != 0)
2897 					break;
2898 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2899 			    (error == 0 && --maxretry >= 0))
2900 				goto loop1;
2901 			if (error == 0)
2902 				error = EAGAIN;
2903 		}
2904 	}
2905 	BO_UNLOCK(bo);
2906 	if (error != 0)
2907 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2908 
2909 	return (error);
2910 }
2911 
2912 /*
2913  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
2914  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
2915  * to do the actual copy.
2916  * vn_generic_copy_file_range() is factored out, so it can be called
2917  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
2918  * different file systems.
2919  */
2920 int
2921 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
2922     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
2923     struct ucred *outcred, struct thread *fsize_td)
2924 {
2925 	int error;
2926 	size_t len;
2927 	uint64_t uval;
2928 
2929 	len = *lenp;
2930 	*lenp = 0;		/* For error returns. */
2931 	error = 0;
2932 
2933 	/* Do some sanity checks on the arguments. */
2934 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
2935 		error = EISDIR;
2936 	else if (*inoffp < 0 || *outoffp < 0 ||
2937 	    invp->v_type != VREG || outvp->v_type != VREG)
2938 		error = EINVAL;
2939 	if (error != 0)
2940 		goto out;
2941 
2942 	/* Ensure offset + len does not wrap around. */
2943 	uval = *inoffp;
2944 	uval += len;
2945 	if (uval > INT64_MAX)
2946 		len = INT64_MAX - *inoffp;
2947 	uval = *outoffp;
2948 	uval += len;
2949 	if (uval > INT64_MAX)
2950 		len = INT64_MAX - *outoffp;
2951 	if (len == 0)
2952 		goto out;
2953 
2954 	/*
2955 	 * If the two vnode are for the same file system, call
2956 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
2957 	 * which can handle copies across multiple file systems.
2958 	 */
2959 	*lenp = len;
2960 	if (invp->v_mount == outvp->v_mount)
2961 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
2962 		    lenp, flags, incred, outcred, fsize_td);
2963 	else
2964 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
2965 		    outoffp, lenp, flags, incred, outcred, fsize_td);
2966 out:
2967 	return (error);
2968 }
2969 
2970 /*
2971  * Test len bytes of data starting at dat for all bytes == 0.
2972  * Return true if all bytes are zero, false otherwise.
2973  * Expects dat to be well aligned.
2974  */
2975 static bool
2976 mem_iszero(void *dat, int len)
2977 {
2978 	int i;
2979 	const u_int *p;
2980 	const char *cp;
2981 
2982 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
2983 		if (len >= sizeof(*p)) {
2984 			if (*p != 0)
2985 				return (false);
2986 		} else {
2987 			cp = (const char *)p;
2988 			for (i = 0; i < len; i++, cp++)
2989 				if (*cp != '\0')
2990 					return (false);
2991 		}
2992 	}
2993 	return (true);
2994 }
2995 
2996 /*
2997  * Look for a hole in the output file and, if found, adjust *outoffp
2998  * and *xferp to skip past the hole.
2999  * *xferp is the entire hole length to be written and xfer2 is how many bytes
3000  * to be written as 0's upon return.
3001  */
3002 static off_t
3003 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3004     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3005 {
3006 	int error;
3007 	off_t delta;
3008 
3009 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3010 		*dataoffp = *outoffp;
3011 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3012 		    curthread);
3013 		if (error == 0) {
3014 			*holeoffp = *dataoffp;
3015 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3016 			    curthread);
3017 		}
3018 		if (error != 0 || *holeoffp == *dataoffp) {
3019 			/*
3020 			 * Since outvp is unlocked, it may be possible for
3021 			 * another thread to do a truncate(), lseek(), write()
3022 			 * creating a hole at startoff between the above
3023 			 * VOP_IOCTL() calls, if the other thread does not do
3024 			 * rangelocking.
3025 			 * If that happens, *holeoffp == *dataoffp and finding
3026 			 * the hole has failed, so disable vn_skip_hole().
3027 			 */
3028 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
3029 			return (xfer2);
3030 		}
3031 		KASSERT(*dataoffp >= *outoffp,
3032 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3033 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
3034 		KASSERT(*holeoffp > *dataoffp,
3035 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3036 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3037 	}
3038 
3039 	/*
3040 	 * If there is a hole before the data starts, advance *outoffp and
3041 	 * *xferp past the hole.
3042 	 */
3043 	if (*dataoffp > *outoffp) {
3044 		delta = *dataoffp - *outoffp;
3045 		if (delta >= *xferp) {
3046 			/* Entire *xferp is a hole. */
3047 			*outoffp += *xferp;
3048 			*xferp = 0;
3049 			return (0);
3050 		}
3051 		*xferp -= delta;
3052 		*outoffp += delta;
3053 		xfer2 = MIN(xfer2, *xferp);
3054 	}
3055 
3056 	/*
3057 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3058 	 * that the write ends at the start of the hole.
3059 	 * *holeoffp should always be greater than *outoffp, but for the
3060 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3061 	 * value.
3062 	 */
3063 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3064 		xfer2 = *holeoffp - *outoffp;
3065 	return (xfer2);
3066 }
3067 
3068 /*
3069  * Write an xfer sized chunk to outvp in blksize blocks from dat.
3070  * dat is a maximum of blksize in length and can be written repeatedly in
3071  * the chunk.
3072  * If growfile == true, just grow the file via vn_truncate_locked() instead
3073  * of doing actual writes.
3074  * If checkhole == true, a hole is being punched, so skip over any hole
3075  * already in the output file.
3076  */
3077 static int
3078 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3079     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3080 {
3081 	struct mount *mp;
3082 	off_t dataoff, holeoff, xfer2;
3083 	int error;
3084 
3085 	/*
3086 	 * Loop around doing writes of blksize until write has been completed.
3087 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3088 	 * done for each iteration, since the xfer argument can be very
3089 	 * large if there is a large hole to punch in the output file.
3090 	 */
3091 	error = 0;
3092 	holeoff = 0;
3093 	do {
3094 		xfer2 = MIN(xfer, blksize);
3095 		if (checkhole) {
3096 			/*
3097 			 * Punching a hole.  Skip writing if there is
3098 			 * already a hole in the output file.
3099 			 */
3100 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3101 			    &dataoff, &holeoff, cred);
3102 			if (xfer == 0)
3103 				break;
3104 			if (holeoff < 0)
3105 				checkhole = false;
3106 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3107 			    (intmax_t)xfer2));
3108 		}
3109 		bwillwrite();
3110 		mp = NULL;
3111 		error = vn_start_write(outvp, &mp, V_WAIT);
3112 		if (error != 0)
3113 			break;
3114 		if (growfile) {
3115 			error = vn_lock(outvp, LK_EXCLUSIVE);
3116 			if (error == 0) {
3117 				error = vn_truncate_locked(outvp, outoff + xfer,
3118 				    false, cred);
3119 				VOP_UNLOCK(outvp);
3120 			}
3121 		} else {
3122 			error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3123 			if (error == 0) {
3124 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3125 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3126 				    curthread->td_ucred, cred, NULL, curthread);
3127 				outoff += xfer2;
3128 				xfer -= xfer2;
3129 				VOP_UNLOCK(outvp);
3130 			}
3131 		}
3132 		if (mp != NULL)
3133 			vn_finished_write(mp);
3134 	} while (!growfile && xfer > 0 && error == 0);
3135 	return (error);
3136 }
3137 
3138 /*
3139  * Copy a byte range of one file to another.  This function can handle the
3140  * case where invp and outvp are on different file systems.
3141  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3142  * is no better file system specific way to do it.
3143  */
3144 int
3145 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3146     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3147     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3148 {
3149 	struct vattr va, inva;
3150 	struct mount *mp;
3151 	struct uio io;
3152 	off_t startoff, endoff, xfer, xfer2;
3153 	u_long blksize;
3154 	int error, interrupted;
3155 	bool cantseek, readzeros, eof, lastblock, holetoeof;
3156 	ssize_t aresid;
3157 	size_t copylen, len, rem, savlen;
3158 	char *dat;
3159 	long holein, holeout;
3160 	struct timespec curts, endts;
3161 
3162 	holein = holeout = 0;
3163 	savlen = len = *lenp;
3164 	error = 0;
3165 	interrupted = 0;
3166 	dat = NULL;
3167 
3168 	error = vn_lock(invp, LK_SHARED);
3169 	if (error != 0)
3170 		goto out;
3171 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3172 		holein = 0;
3173 	if (holein > 0)
3174 		error = VOP_GETATTR(invp, &inva, incred);
3175 	VOP_UNLOCK(invp);
3176 	if (error != 0)
3177 		goto out;
3178 
3179 	mp = NULL;
3180 	error = vn_start_write(outvp, &mp, V_WAIT);
3181 	if (error == 0)
3182 		error = vn_lock(outvp, LK_EXCLUSIVE);
3183 	if (error == 0) {
3184 		/*
3185 		 * If fsize_td != NULL, do a vn_rlimit_fsize() call,
3186 		 * now that outvp is locked.
3187 		 */
3188 		if (fsize_td != NULL) {
3189 			io.uio_offset = *outoffp;
3190 			io.uio_resid = len;
3191 			error = vn_rlimit_fsize(outvp, &io, fsize_td);
3192 			if (error != 0)
3193 				error = EFBIG;
3194 		}
3195 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3196 			holeout = 0;
3197 		/*
3198 		 * Holes that are past EOF do not need to be written as a block
3199 		 * of zero bytes.  So, truncate the output file as far as
3200 		 * possible and then use va.va_size to decide if writing 0
3201 		 * bytes is necessary in the loop below.
3202 		 */
3203 		if (error == 0)
3204 			error = VOP_GETATTR(outvp, &va, outcred);
3205 		if (error == 0 && va.va_size > *outoffp && va.va_size <=
3206 		    *outoffp + len) {
3207 #ifdef MAC
3208 			error = mac_vnode_check_write(curthread->td_ucred,
3209 			    outcred, outvp);
3210 			if (error == 0)
3211 #endif
3212 				error = vn_truncate_locked(outvp, *outoffp,
3213 				    false, outcred);
3214 			if (error == 0)
3215 				va.va_size = *outoffp;
3216 		}
3217 		VOP_UNLOCK(outvp);
3218 	}
3219 	if (mp != NULL)
3220 		vn_finished_write(mp);
3221 	if (error != 0)
3222 		goto out;
3223 
3224 	/*
3225 	 * Set the blksize to the larger of the hole sizes for invp and outvp.
3226 	 * If hole sizes aren't available, set the blksize to the larger
3227 	 * f_iosize of invp and outvp.
3228 	 * This code expects the hole sizes and f_iosizes to be powers of 2.
3229 	 * This value is clipped at 4Kbytes and 1Mbyte.
3230 	 */
3231 	blksize = MAX(holein, holeout);
3232 
3233 	/* Clip len to end at an exact multiple of hole size. */
3234 	if (blksize > 1) {
3235 		rem = *inoffp % blksize;
3236 		if (rem > 0)
3237 			rem = blksize - rem;
3238 		if (len > rem && len - rem > blksize)
3239 			len = savlen = rounddown(len - rem, blksize) + rem;
3240 	}
3241 
3242 	if (blksize <= 1)
3243 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3244 		    outvp->v_mount->mnt_stat.f_iosize);
3245 	if (blksize < 4096)
3246 		blksize = 4096;
3247 	else if (blksize > 1024 * 1024)
3248 		blksize = 1024 * 1024;
3249 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3250 
3251 	/*
3252 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3253 	 * to find holes.  Otherwise, just scan the read block for all 0s
3254 	 * in the inner loop where the data copying is done.
3255 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3256 	 * support holes on the server, but do not support FIOSEEKHOLE.
3257 	 * The kernel flag COPY_FILE_RANGE_TIMEO1SEC is used to indicate
3258 	 * that this function should return after 1second with a partial
3259 	 * completion.
3260 	 */
3261 	if ((flags & COPY_FILE_RANGE_TIMEO1SEC) != 0) {
3262 		getnanouptime(&endts);
3263 		endts.tv_sec++;
3264 	} else
3265 		timespecclear(&endts);
3266 	holetoeof = eof = false;
3267 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3268 		endoff = 0;			/* To shut up compilers. */
3269 		cantseek = true;
3270 		startoff = *inoffp;
3271 		copylen = len;
3272 
3273 		/*
3274 		 * Find the next data area.  If there is just a hole to EOF,
3275 		 * FIOSEEKDATA should fail with ENXIO.
3276 		 * (I do not know if any file system will report a hole to
3277 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3278 		 *  will fail for those file systems.)
3279 		 *
3280 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3281 		 * the code just falls through to the inner copy loop.
3282 		 */
3283 		error = EINVAL;
3284 		if (holein > 0) {
3285 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3286 			    incred, curthread);
3287 			if (error == ENXIO) {
3288 				startoff = endoff = inva.va_size;
3289 				eof = holetoeof = true;
3290 				error = 0;
3291 			}
3292 		}
3293 		if (error == 0 && !holetoeof) {
3294 			endoff = startoff;
3295 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3296 			    incred, curthread);
3297 			/*
3298 			 * Since invp is unlocked, it may be possible for
3299 			 * another thread to do a truncate(), lseek(), write()
3300 			 * creating a hole at startoff between the above
3301 			 * VOP_IOCTL() calls, if the other thread does not do
3302 			 * rangelocking.
3303 			 * If that happens, startoff == endoff and finding
3304 			 * the hole has failed, so set an error.
3305 			 */
3306 			if (error == 0 && startoff == endoff)
3307 				error = EINVAL; /* Any error. Reset to 0. */
3308 		}
3309 		if (error == 0) {
3310 			if (startoff > *inoffp) {
3311 				/* Found hole before data block. */
3312 				xfer = MIN(startoff - *inoffp, len);
3313 				if (*outoffp < va.va_size) {
3314 					/* Must write 0s to punch hole. */
3315 					xfer2 = MIN(va.va_size - *outoffp,
3316 					    xfer);
3317 					memset(dat, 0, MIN(xfer2, blksize));
3318 					error = vn_write_outvp(outvp, dat,
3319 					    *outoffp, xfer2, blksize, false,
3320 					    holeout > 0, outcred);
3321 				}
3322 
3323 				if (error == 0 && *outoffp + xfer >
3324 				    va.va_size && (xfer == len || holetoeof)) {
3325 					/* Grow output file (hole at end). */
3326 					error = vn_write_outvp(outvp, dat,
3327 					    *outoffp, xfer, blksize, true,
3328 					    false, outcred);
3329 				}
3330 				if (error == 0) {
3331 					*inoffp += xfer;
3332 					*outoffp += xfer;
3333 					len -= xfer;
3334 					if (len < savlen) {
3335 						interrupted = sig_intr();
3336 						if (timespecisset(&endts) &&
3337 						    interrupted == 0) {
3338 							getnanouptime(&curts);
3339 							if (timespeccmp(&curts,
3340 							    &endts, >=))
3341 								interrupted =
3342 								    EINTR;
3343 						}
3344 					}
3345 				}
3346 			}
3347 			copylen = MIN(len, endoff - startoff);
3348 			cantseek = false;
3349 		} else {
3350 			cantseek = true;
3351 			startoff = *inoffp;
3352 			copylen = len;
3353 			error = 0;
3354 		}
3355 
3356 		xfer = blksize;
3357 		if (cantseek) {
3358 			/*
3359 			 * Set first xfer to end at a block boundary, so that
3360 			 * holes are more likely detected in the loop below via
3361 			 * the for all bytes 0 method.
3362 			 */
3363 			xfer -= (*inoffp % blksize);
3364 		}
3365 		/* Loop copying the data block. */
3366 		while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
3367 			if (copylen < xfer)
3368 				xfer = copylen;
3369 			error = vn_lock(invp, LK_SHARED);
3370 			if (error != 0)
3371 				goto out;
3372 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3373 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3374 			    curthread->td_ucred, incred, &aresid,
3375 			    curthread);
3376 			VOP_UNLOCK(invp);
3377 			lastblock = false;
3378 			if (error == 0 && aresid > 0) {
3379 				/* Stop the copy at EOF on the input file. */
3380 				xfer -= aresid;
3381 				eof = true;
3382 				lastblock = true;
3383 			}
3384 			if (error == 0) {
3385 				/*
3386 				 * Skip the write for holes past the initial EOF
3387 				 * of the output file, unless this is the last
3388 				 * write of the output file at EOF.
3389 				 */
3390 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3391 				    false;
3392 				if (xfer == len)
3393 					lastblock = true;
3394 				if (!cantseek || *outoffp < va.va_size ||
3395 				    lastblock || !readzeros)
3396 					error = vn_write_outvp(outvp, dat,
3397 					    *outoffp, xfer, blksize,
3398 					    readzeros && lastblock &&
3399 					    *outoffp >= va.va_size, false,
3400 					    outcred);
3401 				if (error == 0) {
3402 					*inoffp += xfer;
3403 					startoff += xfer;
3404 					*outoffp += xfer;
3405 					copylen -= xfer;
3406 					len -= xfer;
3407 					if (len < savlen) {
3408 						interrupted = sig_intr();
3409 						if (timespecisset(&endts) &&
3410 						    interrupted == 0) {
3411 							getnanouptime(&curts);
3412 							if (timespeccmp(&curts,
3413 							    &endts, >=))
3414 								interrupted =
3415 								    EINTR;
3416 						}
3417 					}
3418 				}
3419 			}
3420 			xfer = blksize;
3421 		}
3422 	}
3423 out:
3424 	*lenp = savlen - len;
3425 	free(dat, M_TEMP);
3426 	return (error);
3427 }
3428 
3429 static int
3430 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3431 {
3432 	struct mount *mp;
3433 	struct vnode *vp;
3434 	off_t olen, ooffset;
3435 	int error;
3436 #ifdef AUDIT
3437 	int audited_vnode1 = 0;
3438 #endif
3439 
3440 	vp = fp->f_vnode;
3441 	if (vp->v_type != VREG)
3442 		return (ENODEV);
3443 
3444 	/* Allocating blocks may take a long time, so iterate. */
3445 	for (;;) {
3446 		olen = len;
3447 		ooffset = offset;
3448 
3449 		bwillwrite();
3450 		mp = NULL;
3451 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
3452 		if (error != 0)
3453 			break;
3454 		error = vn_lock(vp, LK_EXCLUSIVE);
3455 		if (error != 0) {
3456 			vn_finished_write(mp);
3457 			break;
3458 		}
3459 #ifdef AUDIT
3460 		if (!audited_vnode1) {
3461 			AUDIT_ARG_VNODE1(vp);
3462 			audited_vnode1 = 1;
3463 		}
3464 #endif
3465 #ifdef MAC
3466 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3467 		if (error == 0)
3468 #endif
3469 			error = VOP_ALLOCATE(vp, &offset, &len, 0,
3470 			    td->td_ucred);
3471 		VOP_UNLOCK(vp);
3472 		vn_finished_write(mp);
3473 
3474 		if (olen + ooffset != offset + len) {
3475 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3476 			    ooffset, olen, offset, len);
3477 		}
3478 		if (error != 0 || len == 0)
3479 			break;
3480 		KASSERT(olen > len, ("Iteration did not make progress?"));
3481 		maybe_yield();
3482 	}
3483 
3484 	return (error);
3485 }
3486 
3487 static int
3488 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3489     int ioflag, struct ucred *cred, struct ucred *active_cred,
3490     struct ucred *file_cred)
3491 {
3492 	struct mount *mp;
3493 	void *rl_cookie;
3494 	off_t off, len;
3495 	int error;
3496 #ifdef AUDIT
3497 	bool audited_vnode1 = false;
3498 #endif
3499 
3500 	rl_cookie = NULL;
3501 	error = 0;
3502 	mp = NULL;
3503 	off = *offset;
3504 	len = *length;
3505 
3506 	if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3507 		rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3508 	while (len > 0 && error == 0) {
3509 		/*
3510 		 * Try to deallocate the longest range in one pass.
3511 		 * In case a pass takes too long to be executed, it returns
3512 		 * partial result. The residue will be proceeded in the next
3513 		 * pass.
3514 		 */
3515 
3516 		if ((ioflag & IO_NODELOCKED) == 0) {
3517 			bwillwrite();
3518 			if ((error = vn_start_write(vp, &mp,
3519 			    V_WAIT | PCATCH)) != 0)
3520 				goto out;
3521 			vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3522 		}
3523 #ifdef AUDIT
3524 		if (!audited_vnode1) {
3525 			AUDIT_ARG_VNODE1(vp);
3526 			audited_vnode1 = true;
3527 		}
3528 #endif
3529 
3530 #ifdef MAC
3531 		if ((ioflag & IO_NOMACCHECK) == 0)
3532 			error = mac_vnode_check_write(active_cred, file_cred,
3533 			    vp);
3534 #endif
3535 		if (error == 0)
3536 			error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3537 			    cred);
3538 
3539 		if ((ioflag & IO_NODELOCKED) == 0) {
3540 			VOP_UNLOCK(vp);
3541 			if (mp != NULL) {
3542 				vn_finished_write(mp);
3543 				mp = NULL;
3544 			}
3545 		}
3546 		if (error == 0 && len != 0)
3547 			maybe_yield();
3548 	}
3549 out:
3550 	if (rl_cookie != NULL)
3551 		vn_rangelock_unlock(vp, rl_cookie);
3552 	*offset = off;
3553 	*length = len;
3554 	return (error);
3555 }
3556 
3557 /*
3558  * This function is supposed to be used in the situations where the deallocation
3559  * is not triggered by a user request.
3560  */
3561 int
3562 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3563     int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3564 {
3565 	struct ucred *cred;
3566 
3567 	if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3568 	    flags != 0)
3569 		return (EINVAL);
3570 	if (vp->v_type != VREG)
3571 		return (ENODEV);
3572 
3573 	cred = file_cred != NOCRED ? file_cred : active_cred;
3574 	return (vn_deallocate_impl(vp, offset, length, flags, ioflag, cred,
3575 	    active_cred, file_cred));
3576 }
3577 
3578 static int
3579 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3580     struct ucred *active_cred, struct thread *td)
3581 {
3582 	int error;
3583 	struct vnode *vp;
3584 	int ioflag;
3585 
3586 	vp = fp->f_vnode;
3587 
3588 	if (cmd != SPACECTL_DEALLOC || *offset < 0 || *length <= 0 ||
3589 	    *length > OFF_MAX - *offset || flags != 0)
3590 		return (EINVAL);
3591 	if (vp->v_type != VREG)
3592 		return (ENODEV);
3593 
3594 	ioflag = get_write_ioflag(fp);
3595 
3596 	switch (cmd) {
3597 	case SPACECTL_DEALLOC:
3598 		error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3599 		    active_cred, active_cred, fp->f_cred);
3600 		break;
3601 	default:
3602 		panic("vn_fspacectl: unknown cmd %d", cmd);
3603 	}
3604 
3605 	return (error);
3606 }
3607 
3608 static u_long vn_lock_pair_pause_cnt;
3609 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
3610     &vn_lock_pair_pause_cnt, 0,
3611     "Count of vn_lock_pair deadlocks");
3612 
3613 u_int vn_lock_pair_pause_max;
3614 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
3615     &vn_lock_pair_pause_max, 0,
3616     "Max ticks for vn_lock_pair deadlock avoidance sleep");
3617 
3618 static void
3619 vn_lock_pair_pause(const char *wmesg)
3620 {
3621 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
3622 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
3623 }
3624 
3625 /*
3626  * Lock pair of vnodes vp1, vp2, avoiding lock order reversal.
3627  * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1
3628  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
3629  * can be NULL.
3630  *
3631  * The function returns with both vnodes exclusively locked, and
3632  * guarantees that it does not create lock order reversal with other
3633  * threads during its execution.  Both vnodes could be unlocked
3634  * temporary (and reclaimed).
3635  */
3636 void
3637 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2,
3638     bool vp2_locked)
3639 {
3640 	int error;
3641 
3642 	if (vp1 == NULL && vp2 == NULL)
3643 		return;
3644 	if (vp1 != NULL) {
3645 		if (vp1_locked)
3646 			ASSERT_VOP_ELOCKED(vp1, "vp1");
3647 		else
3648 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
3649 	} else {
3650 		vp1_locked = true;
3651 	}
3652 	if (vp2 != NULL) {
3653 		if (vp2_locked)
3654 			ASSERT_VOP_ELOCKED(vp2, "vp2");
3655 		else
3656 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
3657 	} else {
3658 		vp2_locked = true;
3659 	}
3660 	if (!vp1_locked && !vp2_locked) {
3661 		vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3662 		vp1_locked = true;
3663 	}
3664 
3665 	for (;;) {
3666 		if (vp1_locked && vp2_locked)
3667 			break;
3668 		if (vp1_locked && vp2 != NULL) {
3669 			if (vp1 != NULL) {
3670 				error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT,
3671 				    __FILE__, __LINE__);
3672 				if (error == 0)
3673 					break;
3674 				VOP_UNLOCK(vp1);
3675 				vp1_locked = false;
3676 				vn_lock_pair_pause("vlp1");
3677 			}
3678 			vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3679 			vp2_locked = true;
3680 		}
3681 		if (vp2_locked && vp1 != NULL) {
3682 			if (vp2 != NULL) {
3683 				error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT,
3684 				    __FILE__, __LINE__);
3685 				if (error == 0)
3686 					break;
3687 				VOP_UNLOCK(vp2);
3688 				vp2_locked = false;
3689 				vn_lock_pair_pause("vlp2");
3690 			}
3691 			vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3692 			vp1_locked = true;
3693 		}
3694 	}
3695 	if (vp1 != NULL)
3696 		ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
3697 	if (vp2 != NULL)
3698 		ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
3699 }
3700 
3701 int
3702 vn_lktype_write(struct mount *mp, struct vnode *vp)
3703 {
3704 	if (MNT_SHARED_WRITES(mp) ||
3705 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
3706 		return (LK_SHARED);
3707 	return (LK_EXCLUSIVE);
3708 }
3709