xref: /freebsd/sys/kern/vfs_vnops.c (revision 31d62a73c2e6ac0ff413a7a17700ffc7dce254ef)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/stat.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/mman.h>
63 #include <sys/mount.h>
64 #include <sys/mutex.h>
65 #include <sys/namei.h>
66 #include <sys/vnode.h>
67 #include <sys/bio.h>
68 #include <sys/buf.h>
69 #include <sys/filio.h>
70 #include <sys/resourcevar.h>
71 #include <sys/rwlock.h>
72 #include <sys/sx.h>
73 #include <sys/sysctl.h>
74 #include <sys/ttycom.h>
75 #include <sys/conf.h>
76 #include <sys/syslog.h>
77 #include <sys/unistd.h>
78 #include <sys/user.h>
79 
80 #include <security/audit/audit.h>
81 #include <security/mac/mac_framework.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vnode_pager.h>
90 
91 #ifdef HWPMC_HOOKS
92 #include <sys/pmckern.h>
93 #endif
94 
95 static fo_rdwr_t	vn_read;
96 static fo_rdwr_t	vn_write;
97 static fo_rdwr_t	vn_io_fault;
98 static fo_truncate_t	vn_truncate;
99 static fo_ioctl_t	vn_ioctl;
100 static fo_poll_t	vn_poll;
101 static fo_kqfilter_t	vn_kqfilter;
102 static fo_stat_t	vn_statfile;
103 static fo_close_t	vn_closefile;
104 static fo_mmap_t	vn_mmap;
105 
106 struct 	fileops vnops = {
107 	.fo_read = vn_io_fault,
108 	.fo_write = vn_io_fault,
109 	.fo_truncate = vn_truncate,
110 	.fo_ioctl = vn_ioctl,
111 	.fo_poll = vn_poll,
112 	.fo_kqfilter = vn_kqfilter,
113 	.fo_stat = vn_statfile,
114 	.fo_close = vn_closefile,
115 	.fo_chmod = vn_chmod,
116 	.fo_chown = vn_chown,
117 	.fo_sendfile = vn_sendfile,
118 	.fo_seek = vn_seek,
119 	.fo_fill_kinfo = vn_fill_kinfo,
120 	.fo_mmap = vn_mmap,
121 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
122 };
123 
124 static const int io_hold_cnt = 16;
125 static int vn_io_fault_enable = 1;
126 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
127     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
128 static int vn_io_fault_prefault = 0;
129 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
130     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
131 static u_long vn_io_faults_cnt;
132 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
133     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
134 
135 /*
136  * Returns true if vn_io_fault mode of handling the i/o request should
137  * be used.
138  */
139 static bool
140 do_vn_io_fault(struct vnode *vp, struct uio *uio)
141 {
142 	struct mount *mp;
143 
144 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
145 	    (mp = vp->v_mount) != NULL &&
146 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
147 }
148 
149 /*
150  * Structure used to pass arguments to vn_io_fault1(), to do either
151  * file- or vnode-based I/O calls.
152  */
153 struct vn_io_fault_args {
154 	enum {
155 		VN_IO_FAULT_FOP,
156 		VN_IO_FAULT_VOP
157 	} kind;
158 	struct ucred *cred;
159 	int flags;
160 	union {
161 		struct fop_args_tag {
162 			struct file *fp;
163 			fo_rdwr_t *doio;
164 		} fop_args;
165 		struct vop_args_tag {
166 			struct vnode *vp;
167 		} vop_args;
168 	} args;
169 };
170 
171 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
172     struct vn_io_fault_args *args, struct thread *td);
173 
174 int
175 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
176 {
177 	struct thread *td = ndp->ni_cnd.cn_thread;
178 
179 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
180 }
181 
182 /*
183  * Common code for vnode open operations via a name lookup.
184  * Lookup the vnode and invoke VOP_CREATE if needed.
185  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
186  *
187  * Note that this does NOT free nameidata for the successful case,
188  * due to the NDINIT being done elsewhere.
189  */
190 int
191 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
192     struct ucred *cred, struct file *fp)
193 {
194 	struct vnode *vp;
195 	struct mount *mp;
196 	struct thread *td = ndp->ni_cnd.cn_thread;
197 	struct vattr vat;
198 	struct vattr *vap = &vat;
199 	int fmode, error;
200 
201 restart:
202 	fmode = *flagp;
203 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
204 	    O_EXCL | O_DIRECTORY))
205 		return (EINVAL);
206 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
207 		ndp->ni_cnd.cn_nameiop = CREATE;
208 		/*
209 		 * Set NOCACHE to avoid flushing the cache when
210 		 * rolling in many files at once.
211 		*/
212 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
213 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
214 			ndp->ni_cnd.cn_flags |= FOLLOW;
215 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
216 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
217 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
218 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
219 		bwillwrite();
220 		if ((error = namei(ndp)) != 0)
221 			return (error);
222 		if (ndp->ni_vp == NULL) {
223 			VATTR_NULL(vap);
224 			vap->va_type = VREG;
225 			vap->va_mode = cmode;
226 			if (fmode & O_EXCL)
227 				vap->va_vaflags |= VA_EXCLUSIVE;
228 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
229 				NDFREE(ndp, NDF_ONLY_PNBUF);
230 				vput(ndp->ni_dvp);
231 				if ((error = vn_start_write(NULL, &mp,
232 				    V_XSLEEP | PCATCH)) != 0)
233 					return (error);
234 				goto restart;
235 			}
236 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
237 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
238 #ifdef MAC
239 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
240 			    &ndp->ni_cnd, vap);
241 			if (error == 0)
242 #endif
243 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
244 						   &ndp->ni_cnd, vap);
245 			vput(ndp->ni_dvp);
246 			vn_finished_write(mp);
247 			if (error) {
248 				NDFREE(ndp, NDF_ONLY_PNBUF);
249 				return (error);
250 			}
251 			fmode &= ~O_TRUNC;
252 			vp = ndp->ni_vp;
253 		} else {
254 			if (ndp->ni_dvp == ndp->ni_vp)
255 				vrele(ndp->ni_dvp);
256 			else
257 				vput(ndp->ni_dvp);
258 			ndp->ni_dvp = NULL;
259 			vp = ndp->ni_vp;
260 			if (fmode & O_EXCL) {
261 				error = EEXIST;
262 				goto bad;
263 			}
264 			fmode &= ~O_CREAT;
265 		}
266 	} else {
267 		ndp->ni_cnd.cn_nameiop = LOOKUP;
268 		ndp->ni_cnd.cn_flags = ISOPEN |
269 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
270 		if (!(fmode & FWRITE))
271 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
272 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
273 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
274 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
275 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
276 		if ((error = namei(ndp)) != 0)
277 			return (error);
278 		vp = ndp->ni_vp;
279 	}
280 	error = vn_open_vnode(vp, fmode, cred, td, fp);
281 	if (error)
282 		goto bad;
283 	*flagp = fmode;
284 	return (0);
285 bad:
286 	NDFREE(ndp, NDF_ONLY_PNBUF);
287 	vput(vp);
288 	*flagp = fmode;
289 	ndp->ni_vp = NULL;
290 	return (error);
291 }
292 
293 /*
294  * Common code for vnode open operations once a vnode is located.
295  * Check permissions, and call the VOP_OPEN routine.
296  */
297 int
298 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
299     struct thread *td, struct file *fp)
300 {
301 	accmode_t accmode;
302 	struct flock lf;
303 	int error, lock_flags, type;
304 
305 	if (vp->v_type == VLNK)
306 		return (EMLINK);
307 	if (vp->v_type == VSOCK)
308 		return (EOPNOTSUPP);
309 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
310 		return (ENOTDIR);
311 	accmode = 0;
312 	if (fmode & (FWRITE | O_TRUNC)) {
313 		if (vp->v_type == VDIR)
314 			return (EISDIR);
315 		accmode |= VWRITE;
316 	}
317 	if (fmode & FREAD)
318 		accmode |= VREAD;
319 	if (fmode & FEXEC)
320 		accmode |= VEXEC;
321 	if ((fmode & O_APPEND) && (fmode & FWRITE))
322 		accmode |= VAPPEND;
323 #ifdef MAC
324 	if (fmode & O_CREAT)
325 		accmode |= VCREAT;
326 	if (fmode & O_VERIFY)
327 		accmode |= VVERIFY;
328 	error = mac_vnode_check_open(cred, vp, accmode);
329 	if (error)
330 		return (error);
331 
332 	accmode &= ~(VCREAT | VVERIFY);
333 #endif
334 	if ((fmode & O_CREAT) == 0) {
335 		if (accmode & VWRITE) {
336 			error = vn_writechk(vp);
337 			if (error)
338 				return (error);
339 		}
340 		if (accmode) {
341 		        error = VOP_ACCESS(vp, accmode, cred, td);
342 			if (error)
343 				return (error);
344 		}
345 	}
346 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
347 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
348 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
349 		return (error);
350 
351 	while ((fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
352 		KASSERT(fp != NULL, ("open with flock requires fp"));
353 		if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) {
354 			error = EOPNOTSUPP;
355 			break;
356 		}
357 		lock_flags = VOP_ISLOCKED(vp);
358 		VOP_UNLOCK(vp, 0);
359 		lf.l_whence = SEEK_SET;
360 		lf.l_start = 0;
361 		lf.l_len = 0;
362 		if (fmode & O_EXLOCK)
363 			lf.l_type = F_WRLCK;
364 		else
365 			lf.l_type = F_RDLCK;
366 		type = F_FLOCK;
367 		if ((fmode & FNONBLOCK) == 0)
368 			type |= F_WAIT;
369 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
370 		if (error == 0)
371 			fp->f_flag |= FHASLOCK;
372 		vn_lock(vp, lock_flags | LK_RETRY);
373 		if (error != 0)
374 			break;
375 		if ((vp->v_iflag & VI_DOOMED) != 0) {
376 			error = ENOENT;
377 			break;
378 		}
379 
380 		/*
381 		 * Another thread might have used this vnode as an
382 		 * executable while the vnode lock was dropped.
383 		 * Ensure the vnode is still able to be opened for
384 		 * writing after the lock has been obtained.
385 		 */
386 		if ((accmode & VWRITE) != 0)
387 			error = vn_writechk(vp);
388 		break;
389 	}
390 
391 	if (error != 0) {
392 		fp->f_flag |= FOPENFAILED;
393 		fp->f_vnode = vp;
394 		if (fp->f_ops == &badfileops) {
395 			fp->f_type = DTYPE_VNODE;
396 			fp->f_ops = &vnops;
397 		}
398 		vref(vp);
399 	} else if  ((fmode & FWRITE) != 0) {
400 		VOP_ADD_WRITECOUNT(vp, 1);
401 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
402 		    __func__, vp, vp->v_writecount);
403 	}
404 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
405 	return (error);
406 }
407 
408 /*
409  * Check for write permissions on the specified vnode.
410  * Prototype text segments cannot be written.
411  */
412 int
413 vn_writechk(struct vnode *vp)
414 {
415 
416 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
417 	/*
418 	 * If there's shared text associated with
419 	 * the vnode, try to free it up once.  If
420 	 * we fail, we can't allow writing.
421 	 */
422 	if (VOP_IS_TEXT(vp))
423 		return (ETXTBSY);
424 
425 	return (0);
426 }
427 
428 /*
429  * Vnode close call
430  */
431 static int
432 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
433     struct thread *td, bool keep_ref)
434 {
435 	struct mount *mp;
436 	int error, lock_flags;
437 
438 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
439 	    MNT_EXTENDED_SHARED(vp->v_mount))
440 		lock_flags = LK_SHARED;
441 	else
442 		lock_flags = LK_EXCLUSIVE;
443 
444 	vn_start_write(vp, &mp, V_WAIT);
445 	vn_lock(vp, lock_flags | LK_RETRY);
446 	AUDIT_ARG_VNODE1(vp);
447 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
448 		VNASSERT(vp->v_writecount > 0, vp,
449 		    ("vn_close: negative writecount"));
450 		VOP_ADD_WRITECOUNT(vp, -1);
451 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
452 		    __func__, vp, vp->v_writecount);
453 	}
454 	error = VOP_CLOSE(vp, flags, file_cred, td);
455 	if (keep_ref)
456 		VOP_UNLOCK(vp, 0);
457 	else
458 		vput(vp);
459 	vn_finished_write(mp);
460 	return (error);
461 }
462 
463 int
464 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
465     struct thread *td)
466 {
467 
468 	return (vn_close1(vp, flags, file_cred, td, false));
469 }
470 
471 /*
472  * Heuristic to detect sequential operation.
473  */
474 static int
475 sequential_heuristic(struct uio *uio, struct file *fp)
476 {
477 
478 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
479 	if (fp->f_flag & FRDAHEAD)
480 		return (fp->f_seqcount << IO_SEQSHIFT);
481 
482 	/*
483 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
484 	 * that the first I/O is normally considered to be slightly
485 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
486 	 * unless previous seeks have reduced f_seqcount to 0, in which
487 	 * case offset 0 is not special.
488 	 */
489 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
490 	    uio->uio_offset == fp->f_nextoff) {
491 		/*
492 		 * f_seqcount is in units of fixed-size blocks so that it
493 		 * depends mainly on the amount of sequential I/O and not
494 		 * much on the number of sequential I/O's.  The fixed size
495 		 * of 16384 is hard-coded here since it is (not quite) just
496 		 * a magic size that works well here.  This size is more
497 		 * closely related to the best I/O size for real disks than
498 		 * to any block size used by software.
499 		 */
500 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
501 		if (fp->f_seqcount > IO_SEQMAX)
502 			fp->f_seqcount = IO_SEQMAX;
503 		return (fp->f_seqcount << IO_SEQSHIFT);
504 	}
505 
506 	/* Not sequential.  Quickly draw-down sequentiality. */
507 	if (fp->f_seqcount > 1)
508 		fp->f_seqcount = 1;
509 	else
510 		fp->f_seqcount = 0;
511 	return (0);
512 }
513 
514 /*
515  * Package up an I/O request on a vnode into a uio and do it.
516  */
517 int
518 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
519     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
520     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
521 {
522 	struct uio auio;
523 	struct iovec aiov;
524 	struct mount *mp;
525 	struct ucred *cred;
526 	void *rl_cookie;
527 	struct vn_io_fault_args args;
528 	int error, lock_flags;
529 
530 	if (offset < 0 && vp->v_type != VCHR)
531 		return (EINVAL);
532 	auio.uio_iov = &aiov;
533 	auio.uio_iovcnt = 1;
534 	aiov.iov_base = base;
535 	aiov.iov_len = len;
536 	auio.uio_resid = len;
537 	auio.uio_offset = offset;
538 	auio.uio_segflg = segflg;
539 	auio.uio_rw = rw;
540 	auio.uio_td = td;
541 	error = 0;
542 
543 	if ((ioflg & IO_NODELOCKED) == 0) {
544 		if ((ioflg & IO_RANGELOCKED) == 0) {
545 			if (rw == UIO_READ) {
546 				rl_cookie = vn_rangelock_rlock(vp, offset,
547 				    offset + len);
548 			} else {
549 				rl_cookie = vn_rangelock_wlock(vp, offset,
550 				    offset + len);
551 			}
552 		} else
553 			rl_cookie = NULL;
554 		mp = NULL;
555 		if (rw == UIO_WRITE) {
556 			if (vp->v_type != VCHR &&
557 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
558 			    != 0)
559 				goto out;
560 			if (MNT_SHARED_WRITES(mp) ||
561 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
562 				lock_flags = LK_SHARED;
563 			else
564 				lock_flags = LK_EXCLUSIVE;
565 		} else
566 			lock_flags = LK_SHARED;
567 		vn_lock(vp, lock_flags | LK_RETRY);
568 	} else
569 		rl_cookie = NULL;
570 
571 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
572 #ifdef MAC
573 	if ((ioflg & IO_NOMACCHECK) == 0) {
574 		if (rw == UIO_READ)
575 			error = mac_vnode_check_read(active_cred, file_cred,
576 			    vp);
577 		else
578 			error = mac_vnode_check_write(active_cred, file_cred,
579 			    vp);
580 	}
581 #endif
582 	if (error == 0) {
583 		if (file_cred != NULL)
584 			cred = file_cred;
585 		else
586 			cred = active_cred;
587 		if (do_vn_io_fault(vp, &auio)) {
588 			args.kind = VN_IO_FAULT_VOP;
589 			args.cred = cred;
590 			args.flags = ioflg;
591 			args.args.vop_args.vp = vp;
592 			error = vn_io_fault1(vp, &auio, &args, td);
593 		} else if (rw == UIO_READ) {
594 			error = VOP_READ(vp, &auio, ioflg, cred);
595 		} else /* if (rw == UIO_WRITE) */ {
596 			error = VOP_WRITE(vp, &auio, ioflg, cred);
597 		}
598 	}
599 	if (aresid)
600 		*aresid = auio.uio_resid;
601 	else
602 		if (auio.uio_resid && error == 0)
603 			error = EIO;
604 	if ((ioflg & IO_NODELOCKED) == 0) {
605 		VOP_UNLOCK(vp, 0);
606 		if (mp != NULL)
607 			vn_finished_write(mp);
608 	}
609  out:
610 	if (rl_cookie != NULL)
611 		vn_rangelock_unlock(vp, rl_cookie);
612 	return (error);
613 }
614 
615 /*
616  * Package up an I/O request on a vnode into a uio and do it.  The I/O
617  * request is split up into smaller chunks and we try to avoid saturating
618  * the buffer cache while potentially holding a vnode locked, so we
619  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
620  * to give other processes a chance to lock the vnode (either other processes
621  * core'ing the same binary, or unrelated processes scanning the directory).
622  */
623 int
624 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
625     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
626     struct ucred *file_cred, size_t *aresid, struct thread *td)
627 {
628 	int error = 0;
629 	ssize_t iaresid;
630 
631 	do {
632 		int chunk;
633 
634 		/*
635 		 * Force `offset' to a multiple of MAXBSIZE except possibly
636 		 * for the first chunk, so that filesystems only need to
637 		 * write full blocks except possibly for the first and last
638 		 * chunks.
639 		 */
640 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
641 
642 		if (chunk > len)
643 			chunk = len;
644 		if (rw != UIO_READ && vp->v_type == VREG)
645 			bwillwrite();
646 		iaresid = 0;
647 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
648 		    ioflg, active_cred, file_cred, &iaresid, td);
649 		len -= chunk;	/* aresid calc already includes length */
650 		if (error)
651 			break;
652 		offset += chunk;
653 		base = (char *)base + chunk;
654 		kern_yield(PRI_USER);
655 	} while (len);
656 	if (aresid)
657 		*aresid = len + iaresid;
658 	return (error);
659 }
660 
661 off_t
662 foffset_lock(struct file *fp, int flags)
663 {
664 	struct mtx *mtxp;
665 	off_t res;
666 
667 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
668 
669 #if OFF_MAX <= LONG_MAX
670 	/*
671 	 * Caller only wants the current f_offset value.  Assume that
672 	 * the long and shorter integer types reads are atomic.
673 	 */
674 	if ((flags & FOF_NOLOCK) != 0)
675 		return (fp->f_offset);
676 #endif
677 
678 	/*
679 	 * According to McKusick the vn lock was protecting f_offset here.
680 	 * It is now protected by the FOFFSET_LOCKED flag.
681 	 */
682 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
683 	mtx_lock(mtxp);
684 	if ((flags & FOF_NOLOCK) == 0) {
685 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
686 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
687 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
688 			    "vofflock", 0);
689 		}
690 		fp->f_vnread_flags |= FOFFSET_LOCKED;
691 	}
692 	res = fp->f_offset;
693 	mtx_unlock(mtxp);
694 	return (res);
695 }
696 
697 void
698 foffset_unlock(struct file *fp, off_t val, int flags)
699 {
700 	struct mtx *mtxp;
701 
702 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
703 
704 #if OFF_MAX <= LONG_MAX
705 	if ((flags & FOF_NOLOCK) != 0) {
706 		if ((flags & FOF_NOUPDATE) == 0)
707 			fp->f_offset = val;
708 		if ((flags & FOF_NEXTOFF) != 0)
709 			fp->f_nextoff = val;
710 		return;
711 	}
712 #endif
713 
714 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
715 	mtx_lock(mtxp);
716 	if ((flags & FOF_NOUPDATE) == 0)
717 		fp->f_offset = val;
718 	if ((flags & FOF_NEXTOFF) != 0)
719 		fp->f_nextoff = val;
720 	if ((flags & FOF_NOLOCK) == 0) {
721 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
722 		    ("Lost FOFFSET_LOCKED"));
723 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
724 			wakeup(&fp->f_vnread_flags);
725 		fp->f_vnread_flags = 0;
726 	}
727 	mtx_unlock(mtxp);
728 }
729 
730 void
731 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
732 {
733 
734 	if ((flags & FOF_OFFSET) == 0)
735 		uio->uio_offset = foffset_lock(fp, flags);
736 }
737 
738 void
739 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
740 {
741 
742 	if ((flags & FOF_OFFSET) == 0)
743 		foffset_unlock(fp, uio->uio_offset, flags);
744 }
745 
746 static int
747 get_advice(struct file *fp, struct uio *uio)
748 {
749 	struct mtx *mtxp;
750 	int ret;
751 
752 	ret = POSIX_FADV_NORMAL;
753 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
754 		return (ret);
755 
756 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
757 	mtx_lock(mtxp);
758 	if (fp->f_advice != NULL &&
759 	    uio->uio_offset >= fp->f_advice->fa_start &&
760 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
761 		ret = fp->f_advice->fa_advice;
762 	mtx_unlock(mtxp);
763 	return (ret);
764 }
765 
766 /*
767  * File table vnode read routine.
768  */
769 static int
770 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
771     struct thread *td)
772 {
773 	struct vnode *vp;
774 	off_t orig_offset;
775 	int error, ioflag;
776 	int advice;
777 
778 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
779 	    uio->uio_td, td));
780 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
781 	vp = fp->f_vnode;
782 	ioflag = 0;
783 	if (fp->f_flag & FNONBLOCK)
784 		ioflag |= IO_NDELAY;
785 	if (fp->f_flag & O_DIRECT)
786 		ioflag |= IO_DIRECT;
787 	advice = get_advice(fp, uio);
788 	vn_lock(vp, LK_SHARED | LK_RETRY);
789 
790 	switch (advice) {
791 	case POSIX_FADV_NORMAL:
792 	case POSIX_FADV_SEQUENTIAL:
793 	case POSIX_FADV_NOREUSE:
794 		ioflag |= sequential_heuristic(uio, fp);
795 		break;
796 	case POSIX_FADV_RANDOM:
797 		/* Disable read-ahead for random I/O. */
798 		break;
799 	}
800 	orig_offset = uio->uio_offset;
801 
802 #ifdef MAC
803 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
804 	if (error == 0)
805 #endif
806 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
807 	fp->f_nextoff = uio->uio_offset;
808 	VOP_UNLOCK(vp, 0);
809 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
810 	    orig_offset != uio->uio_offset)
811 		/*
812 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
813 		 * for the backing file after a POSIX_FADV_NOREUSE
814 		 * read(2).
815 		 */
816 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
817 		    POSIX_FADV_DONTNEED);
818 	return (error);
819 }
820 
821 /*
822  * File table vnode write routine.
823  */
824 static int
825 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
826     struct thread *td)
827 {
828 	struct vnode *vp;
829 	struct mount *mp;
830 	off_t orig_offset;
831 	int error, ioflag, lock_flags;
832 	int advice;
833 
834 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
835 	    uio->uio_td, td));
836 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
837 	vp = fp->f_vnode;
838 	if (vp->v_type == VREG)
839 		bwillwrite();
840 	ioflag = IO_UNIT;
841 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
842 		ioflag |= IO_APPEND;
843 	if (fp->f_flag & FNONBLOCK)
844 		ioflag |= IO_NDELAY;
845 	if (fp->f_flag & O_DIRECT)
846 		ioflag |= IO_DIRECT;
847 	if ((fp->f_flag & O_FSYNC) ||
848 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
849 		ioflag |= IO_SYNC;
850 	mp = NULL;
851 	if (vp->v_type != VCHR &&
852 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
853 		goto unlock;
854 
855 	advice = get_advice(fp, uio);
856 
857 	if (MNT_SHARED_WRITES(mp) ||
858 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
859 		lock_flags = LK_SHARED;
860 	} else {
861 		lock_flags = LK_EXCLUSIVE;
862 	}
863 
864 	vn_lock(vp, lock_flags | LK_RETRY);
865 	switch (advice) {
866 	case POSIX_FADV_NORMAL:
867 	case POSIX_FADV_SEQUENTIAL:
868 	case POSIX_FADV_NOREUSE:
869 		ioflag |= sequential_heuristic(uio, fp);
870 		break;
871 	case POSIX_FADV_RANDOM:
872 		/* XXX: Is this correct? */
873 		break;
874 	}
875 	orig_offset = uio->uio_offset;
876 
877 #ifdef MAC
878 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
879 	if (error == 0)
880 #endif
881 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
882 	fp->f_nextoff = uio->uio_offset;
883 	VOP_UNLOCK(vp, 0);
884 	if (vp->v_type != VCHR)
885 		vn_finished_write(mp);
886 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
887 	    orig_offset != uio->uio_offset)
888 		/*
889 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
890 		 * for the backing file after a POSIX_FADV_NOREUSE
891 		 * write(2).
892 		 */
893 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
894 		    POSIX_FADV_DONTNEED);
895 unlock:
896 	return (error);
897 }
898 
899 /*
900  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
901  * prevent the following deadlock:
902  *
903  * Assume that the thread A reads from the vnode vp1 into userspace
904  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
905  * currently not resident, then system ends up with the call chain
906  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
907  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
908  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
909  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
910  * backed by the pages of vnode vp1, and some page in buf2 is not
911  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
912  *
913  * To prevent the lock order reversal and deadlock, vn_io_fault() does
914  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
915  * Instead, it first tries to do the whole range i/o with pagefaults
916  * disabled. If all pages in the i/o buffer are resident and mapped,
917  * VOP will succeed (ignoring the genuine filesystem errors).
918  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
919  * i/o in chunks, with all pages in the chunk prefaulted and held
920  * using vm_fault_quick_hold_pages().
921  *
922  * Filesystems using this deadlock avoidance scheme should use the
923  * array of the held pages from uio, saved in the curthread->td_ma,
924  * instead of doing uiomove().  A helper function
925  * vn_io_fault_uiomove() converts uiomove request into
926  * uiomove_fromphys() over td_ma array.
927  *
928  * Since vnode locks do not cover the whole i/o anymore, rangelocks
929  * make the current i/o request atomic with respect to other i/os and
930  * truncations.
931  */
932 
933 /*
934  * Decode vn_io_fault_args and perform the corresponding i/o.
935  */
936 static int
937 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
938     struct thread *td)
939 {
940 	int error, save;
941 
942 	error = 0;
943 	save = vm_fault_disable_pagefaults();
944 	switch (args->kind) {
945 	case VN_IO_FAULT_FOP:
946 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
947 		    uio, args->cred, args->flags, td);
948 		break;
949 	case VN_IO_FAULT_VOP:
950 		if (uio->uio_rw == UIO_READ) {
951 			error = VOP_READ(args->args.vop_args.vp, uio,
952 			    args->flags, args->cred);
953 		} else if (uio->uio_rw == UIO_WRITE) {
954 			error = VOP_WRITE(args->args.vop_args.vp, uio,
955 			    args->flags, args->cred);
956 		}
957 		break;
958 	default:
959 		panic("vn_io_fault_doio: unknown kind of io %d %d",
960 		    args->kind, uio->uio_rw);
961 	}
962 	vm_fault_enable_pagefaults(save);
963 	return (error);
964 }
965 
966 static int
967 vn_io_fault_touch(char *base, const struct uio *uio)
968 {
969 	int r;
970 
971 	r = fubyte(base);
972 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
973 		return (EFAULT);
974 	return (0);
975 }
976 
977 static int
978 vn_io_fault_prefault_user(const struct uio *uio)
979 {
980 	char *base;
981 	const struct iovec *iov;
982 	size_t len;
983 	ssize_t resid;
984 	int error, i;
985 
986 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
987 	    ("vn_io_fault_prefault userspace"));
988 
989 	error = i = 0;
990 	iov = uio->uio_iov;
991 	resid = uio->uio_resid;
992 	base = iov->iov_base;
993 	len = iov->iov_len;
994 	while (resid > 0) {
995 		error = vn_io_fault_touch(base, uio);
996 		if (error != 0)
997 			break;
998 		if (len < PAGE_SIZE) {
999 			if (len != 0) {
1000 				error = vn_io_fault_touch(base + len - 1, uio);
1001 				if (error != 0)
1002 					break;
1003 				resid -= len;
1004 			}
1005 			if (++i >= uio->uio_iovcnt)
1006 				break;
1007 			iov = uio->uio_iov + i;
1008 			base = iov->iov_base;
1009 			len = iov->iov_len;
1010 		} else {
1011 			len -= PAGE_SIZE;
1012 			base += PAGE_SIZE;
1013 			resid -= PAGE_SIZE;
1014 		}
1015 	}
1016 	return (error);
1017 }
1018 
1019 /*
1020  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1021  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1022  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1023  * into args and call vn_io_fault1() to handle faults during the user
1024  * mode buffer accesses.
1025  */
1026 static int
1027 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1028     struct thread *td)
1029 {
1030 	vm_page_t ma[io_hold_cnt + 2];
1031 	struct uio *uio_clone, short_uio;
1032 	struct iovec short_iovec[1];
1033 	vm_page_t *prev_td_ma;
1034 	vm_prot_t prot;
1035 	vm_offset_t addr, end;
1036 	size_t len, resid;
1037 	ssize_t adv;
1038 	int error, cnt, saveheld, prev_td_ma_cnt;
1039 
1040 	if (vn_io_fault_prefault) {
1041 		error = vn_io_fault_prefault_user(uio);
1042 		if (error != 0)
1043 			return (error); /* Or ignore ? */
1044 	}
1045 
1046 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1047 
1048 	/*
1049 	 * The UFS follows IO_UNIT directive and replays back both
1050 	 * uio_offset and uio_resid if an error is encountered during the
1051 	 * operation.  But, since the iovec may be already advanced,
1052 	 * uio is still in an inconsistent state.
1053 	 *
1054 	 * Cache a copy of the original uio, which is advanced to the redo
1055 	 * point using UIO_NOCOPY below.
1056 	 */
1057 	uio_clone = cloneuio(uio);
1058 	resid = uio->uio_resid;
1059 
1060 	short_uio.uio_segflg = UIO_USERSPACE;
1061 	short_uio.uio_rw = uio->uio_rw;
1062 	short_uio.uio_td = uio->uio_td;
1063 
1064 	error = vn_io_fault_doio(args, uio, td);
1065 	if (error != EFAULT)
1066 		goto out;
1067 
1068 	atomic_add_long(&vn_io_faults_cnt, 1);
1069 	uio_clone->uio_segflg = UIO_NOCOPY;
1070 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1071 	uio_clone->uio_segflg = uio->uio_segflg;
1072 
1073 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1074 	prev_td_ma = td->td_ma;
1075 	prev_td_ma_cnt = td->td_ma_cnt;
1076 
1077 	while (uio_clone->uio_resid != 0) {
1078 		len = uio_clone->uio_iov->iov_len;
1079 		if (len == 0) {
1080 			KASSERT(uio_clone->uio_iovcnt >= 1,
1081 			    ("iovcnt underflow"));
1082 			uio_clone->uio_iov++;
1083 			uio_clone->uio_iovcnt--;
1084 			continue;
1085 		}
1086 		if (len > io_hold_cnt * PAGE_SIZE)
1087 			len = io_hold_cnt * PAGE_SIZE;
1088 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1089 		end = round_page(addr + len);
1090 		if (end < addr) {
1091 			error = EFAULT;
1092 			break;
1093 		}
1094 		cnt = atop(end - trunc_page(addr));
1095 		/*
1096 		 * A perfectly misaligned address and length could cause
1097 		 * both the start and the end of the chunk to use partial
1098 		 * page.  +2 accounts for such a situation.
1099 		 */
1100 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1101 		    addr, len, prot, ma, io_hold_cnt + 2);
1102 		if (cnt == -1) {
1103 			error = EFAULT;
1104 			break;
1105 		}
1106 		short_uio.uio_iov = &short_iovec[0];
1107 		short_iovec[0].iov_base = (void *)addr;
1108 		short_uio.uio_iovcnt = 1;
1109 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1110 		short_uio.uio_offset = uio_clone->uio_offset;
1111 		td->td_ma = ma;
1112 		td->td_ma_cnt = cnt;
1113 
1114 		error = vn_io_fault_doio(args, &short_uio, td);
1115 		vm_page_unhold_pages(ma, cnt);
1116 		adv = len - short_uio.uio_resid;
1117 
1118 		uio_clone->uio_iov->iov_base =
1119 		    (char *)uio_clone->uio_iov->iov_base + adv;
1120 		uio_clone->uio_iov->iov_len -= adv;
1121 		uio_clone->uio_resid -= adv;
1122 		uio_clone->uio_offset += adv;
1123 
1124 		uio->uio_resid -= adv;
1125 		uio->uio_offset += adv;
1126 
1127 		if (error != 0 || adv == 0)
1128 			break;
1129 	}
1130 	td->td_ma = prev_td_ma;
1131 	td->td_ma_cnt = prev_td_ma_cnt;
1132 	curthread_pflags_restore(saveheld);
1133 out:
1134 	free(uio_clone, M_IOV);
1135 	return (error);
1136 }
1137 
1138 static int
1139 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1140     int flags, struct thread *td)
1141 {
1142 	fo_rdwr_t *doio;
1143 	struct vnode *vp;
1144 	void *rl_cookie;
1145 	struct vn_io_fault_args args;
1146 	int error;
1147 
1148 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1149 	vp = fp->f_vnode;
1150 	foffset_lock_uio(fp, uio, flags);
1151 	if (do_vn_io_fault(vp, uio)) {
1152 		args.kind = VN_IO_FAULT_FOP;
1153 		args.args.fop_args.fp = fp;
1154 		args.args.fop_args.doio = doio;
1155 		args.cred = active_cred;
1156 		args.flags = flags | FOF_OFFSET;
1157 		if (uio->uio_rw == UIO_READ) {
1158 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1159 			    uio->uio_offset + uio->uio_resid);
1160 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1161 		    (flags & FOF_OFFSET) == 0) {
1162 			/* For appenders, punt and lock the whole range. */
1163 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1164 		} else {
1165 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1166 			    uio->uio_offset + uio->uio_resid);
1167 		}
1168 		error = vn_io_fault1(vp, uio, &args, td);
1169 		vn_rangelock_unlock(vp, rl_cookie);
1170 	} else {
1171 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1172 	}
1173 	foffset_unlock_uio(fp, uio, flags);
1174 	return (error);
1175 }
1176 
1177 /*
1178  * Helper function to perform the requested uiomove operation using
1179  * the held pages for io->uio_iov[0].iov_base buffer instead of
1180  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1181  * instead of iov_base prevents page faults that could occur due to
1182  * pmap_collect() invalidating the mapping created by
1183  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1184  * object cleanup revoking the write access from page mappings.
1185  *
1186  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1187  * instead of plain uiomove().
1188  */
1189 int
1190 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1191 {
1192 	struct uio transp_uio;
1193 	struct iovec transp_iov[1];
1194 	struct thread *td;
1195 	size_t adv;
1196 	int error, pgadv;
1197 
1198 	td = curthread;
1199 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1200 	    uio->uio_segflg != UIO_USERSPACE)
1201 		return (uiomove(data, xfersize, uio));
1202 
1203 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1204 	transp_iov[0].iov_base = data;
1205 	transp_uio.uio_iov = &transp_iov[0];
1206 	transp_uio.uio_iovcnt = 1;
1207 	if (xfersize > uio->uio_resid)
1208 		xfersize = uio->uio_resid;
1209 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1210 	transp_uio.uio_offset = 0;
1211 	transp_uio.uio_segflg = UIO_SYSSPACE;
1212 	/*
1213 	 * Since transp_iov points to data, and td_ma page array
1214 	 * corresponds to original uio->uio_iov, we need to invert the
1215 	 * direction of the i/o operation as passed to
1216 	 * uiomove_fromphys().
1217 	 */
1218 	switch (uio->uio_rw) {
1219 	case UIO_WRITE:
1220 		transp_uio.uio_rw = UIO_READ;
1221 		break;
1222 	case UIO_READ:
1223 		transp_uio.uio_rw = UIO_WRITE;
1224 		break;
1225 	}
1226 	transp_uio.uio_td = uio->uio_td;
1227 	error = uiomove_fromphys(td->td_ma,
1228 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1229 	    xfersize, &transp_uio);
1230 	adv = xfersize - transp_uio.uio_resid;
1231 	pgadv =
1232 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1233 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1234 	td->td_ma += pgadv;
1235 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1236 	    pgadv));
1237 	td->td_ma_cnt -= pgadv;
1238 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1239 	uio->uio_iov->iov_len -= adv;
1240 	uio->uio_resid -= adv;
1241 	uio->uio_offset += adv;
1242 	return (error);
1243 }
1244 
1245 int
1246 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1247     struct uio *uio)
1248 {
1249 	struct thread *td;
1250 	vm_offset_t iov_base;
1251 	int cnt, pgadv;
1252 
1253 	td = curthread;
1254 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1255 	    uio->uio_segflg != UIO_USERSPACE)
1256 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1257 
1258 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1259 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1260 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1261 	switch (uio->uio_rw) {
1262 	case UIO_WRITE:
1263 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1264 		    offset, cnt);
1265 		break;
1266 	case UIO_READ:
1267 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1268 		    cnt);
1269 		break;
1270 	}
1271 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1272 	td->td_ma += pgadv;
1273 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1274 	    pgadv));
1275 	td->td_ma_cnt -= pgadv;
1276 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1277 	uio->uio_iov->iov_len -= cnt;
1278 	uio->uio_resid -= cnt;
1279 	uio->uio_offset += cnt;
1280 	return (0);
1281 }
1282 
1283 
1284 /*
1285  * File table truncate routine.
1286  */
1287 static int
1288 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1289     struct thread *td)
1290 {
1291 	struct vattr vattr;
1292 	struct mount *mp;
1293 	struct vnode *vp;
1294 	void *rl_cookie;
1295 	int error;
1296 
1297 	vp = fp->f_vnode;
1298 
1299 	/*
1300 	 * Lock the whole range for truncation.  Otherwise split i/o
1301 	 * might happen partly before and partly after the truncation.
1302 	 */
1303 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1304 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1305 	if (error)
1306 		goto out1;
1307 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1308 	AUDIT_ARG_VNODE1(vp);
1309 	if (vp->v_type == VDIR) {
1310 		error = EISDIR;
1311 		goto out;
1312 	}
1313 #ifdef MAC
1314 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1315 	if (error)
1316 		goto out;
1317 #endif
1318 	error = vn_writechk(vp);
1319 	if (error == 0) {
1320 		VATTR_NULL(&vattr);
1321 		vattr.va_size = length;
1322 		if ((fp->f_flag & O_FSYNC) != 0)
1323 			vattr.va_vaflags |= VA_SYNC;
1324 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1325 	}
1326 out:
1327 	VOP_UNLOCK(vp, 0);
1328 	vn_finished_write(mp);
1329 out1:
1330 	vn_rangelock_unlock(vp, rl_cookie);
1331 	return (error);
1332 }
1333 
1334 /*
1335  * File table vnode stat routine.
1336  */
1337 static int
1338 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1339     struct thread *td)
1340 {
1341 	struct vnode *vp = fp->f_vnode;
1342 	int error;
1343 
1344 	vn_lock(vp, LK_SHARED | LK_RETRY);
1345 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1346 	VOP_UNLOCK(vp, 0);
1347 
1348 	return (error);
1349 }
1350 
1351 /*
1352  * Stat a vnode; implementation for the stat syscall
1353  */
1354 int
1355 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1356     struct ucred *file_cred, struct thread *td)
1357 {
1358 	struct vattr vattr;
1359 	struct vattr *vap;
1360 	int error;
1361 	u_short mode;
1362 
1363 	AUDIT_ARG_VNODE1(vp);
1364 #ifdef MAC
1365 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1366 	if (error)
1367 		return (error);
1368 #endif
1369 
1370 	vap = &vattr;
1371 
1372 	/*
1373 	 * Initialize defaults for new and unusual fields, so that file
1374 	 * systems which don't support these fields don't need to know
1375 	 * about them.
1376 	 */
1377 	vap->va_birthtime.tv_sec = -1;
1378 	vap->va_birthtime.tv_nsec = 0;
1379 	vap->va_fsid = VNOVAL;
1380 	vap->va_rdev = NODEV;
1381 
1382 	error = VOP_GETATTR(vp, vap, active_cred);
1383 	if (error)
1384 		return (error);
1385 
1386 	/*
1387 	 * Zero the spare stat fields
1388 	 */
1389 	bzero(sb, sizeof *sb);
1390 
1391 	/*
1392 	 * Copy from vattr table
1393 	 */
1394 	if (vap->va_fsid != VNOVAL)
1395 		sb->st_dev = vap->va_fsid;
1396 	else
1397 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1398 	sb->st_ino = vap->va_fileid;
1399 	mode = vap->va_mode;
1400 	switch (vap->va_type) {
1401 	case VREG:
1402 		mode |= S_IFREG;
1403 		break;
1404 	case VDIR:
1405 		mode |= S_IFDIR;
1406 		break;
1407 	case VBLK:
1408 		mode |= S_IFBLK;
1409 		break;
1410 	case VCHR:
1411 		mode |= S_IFCHR;
1412 		break;
1413 	case VLNK:
1414 		mode |= S_IFLNK;
1415 		break;
1416 	case VSOCK:
1417 		mode |= S_IFSOCK;
1418 		break;
1419 	case VFIFO:
1420 		mode |= S_IFIFO;
1421 		break;
1422 	default:
1423 		return (EBADF);
1424 	}
1425 	sb->st_mode = mode;
1426 	sb->st_nlink = vap->va_nlink;
1427 	sb->st_uid = vap->va_uid;
1428 	sb->st_gid = vap->va_gid;
1429 	sb->st_rdev = vap->va_rdev;
1430 	if (vap->va_size > OFF_MAX)
1431 		return (EOVERFLOW);
1432 	sb->st_size = vap->va_size;
1433 	sb->st_atim = vap->va_atime;
1434 	sb->st_mtim = vap->va_mtime;
1435 	sb->st_ctim = vap->va_ctime;
1436 	sb->st_birthtim = vap->va_birthtime;
1437 
1438         /*
1439 	 * According to www.opengroup.org, the meaning of st_blksize is
1440 	 *   "a filesystem-specific preferred I/O block size for this
1441 	 *    object.  In some filesystem types, this may vary from file
1442 	 *    to file"
1443 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1444 	 */
1445 
1446 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1447 
1448 	sb->st_flags = vap->va_flags;
1449 	if (priv_check(td, PRIV_VFS_GENERATION))
1450 		sb->st_gen = 0;
1451 	else
1452 		sb->st_gen = vap->va_gen;
1453 
1454 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1455 	return (0);
1456 }
1457 
1458 /*
1459  * File table vnode ioctl routine.
1460  */
1461 static int
1462 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1463     struct thread *td)
1464 {
1465 	struct vattr vattr;
1466 	struct vnode *vp;
1467 	int error;
1468 
1469 	vp = fp->f_vnode;
1470 	switch (vp->v_type) {
1471 	case VDIR:
1472 	case VREG:
1473 		switch (com) {
1474 		case FIONREAD:
1475 			vn_lock(vp, LK_SHARED | LK_RETRY);
1476 			error = VOP_GETATTR(vp, &vattr, active_cred);
1477 			VOP_UNLOCK(vp, 0);
1478 			if (error == 0)
1479 				*(int *)data = vattr.va_size - fp->f_offset;
1480 			return (error);
1481 		case FIONBIO:
1482 		case FIOASYNC:
1483 			return (0);
1484 		default:
1485 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1486 			    active_cred, td));
1487 		}
1488 		break;
1489 	case VCHR:
1490 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1491 		    active_cred, td));
1492 	default:
1493 		return (ENOTTY);
1494 	}
1495 }
1496 
1497 /*
1498  * File table vnode poll routine.
1499  */
1500 static int
1501 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1502     struct thread *td)
1503 {
1504 	struct vnode *vp;
1505 	int error;
1506 
1507 	vp = fp->f_vnode;
1508 #ifdef MAC
1509 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1510 	AUDIT_ARG_VNODE1(vp);
1511 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1512 	VOP_UNLOCK(vp, 0);
1513 	if (!error)
1514 #endif
1515 
1516 	error = VOP_POLL(vp, events, fp->f_cred, td);
1517 	return (error);
1518 }
1519 
1520 /*
1521  * Acquire the requested lock and then check for validity.  LK_RETRY
1522  * permits vn_lock to return doomed vnodes.
1523  */
1524 int
1525 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1526 {
1527 	int error;
1528 
1529 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1530 	    ("vn_lock: no locktype"));
1531 	VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
1532 retry:
1533 	error = VOP_LOCK1(vp, flags, file, line);
1534 	flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1535 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1536 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1537 
1538 	if ((flags & LK_RETRY) == 0) {
1539 		if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1540 			VOP_UNLOCK(vp, 0);
1541 			error = ENOENT;
1542 		}
1543 	} else if (error != 0)
1544 		goto retry;
1545 	return (error);
1546 }
1547 
1548 /*
1549  * File table vnode close routine.
1550  */
1551 static int
1552 vn_closefile(struct file *fp, struct thread *td)
1553 {
1554 	struct vnode *vp;
1555 	struct flock lf;
1556 	int error;
1557 	bool ref;
1558 
1559 	vp = fp->f_vnode;
1560 	fp->f_ops = &badfileops;
1561 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1562 
1563 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1564 
1565 	if (__predict_false(ref)) {
1566 		lf.l_whence = SEEK_SET;
1567 		lf.l_start = 0;
1568 		lf.l_len = 0;
1569 		lf.l_type = F_UNLCK;
1570 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1571 		vrele(vp);
1572 	}
1573 	return (error);
1574 }
1575 
1576 static bool
1577 vn_suspendable(struct mount *mp)
1578 {
1579 
1580 	return (mp->mnt_op->vfs_susp_clean != NULL);
1581 }
1582 
1583 /*
1584  * Preparing to start a filesystem write operation. If the operation is
1585  * permitted, then we bump the count of operations in progress and
1586  * proceed. If a suspend request is in progress, we wait until the
1587  * suspension is over, and then proceed.
1588  */
1589 static int
1590 vn_start_write_locked(struct mount *mp, int flags)
1591 {
1592 	int error, mflags;
1593 
1594 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1595 	error = 0;
1596 
1597 	/*
1598 	 * Check on status of suspension.
1599 	 */
1600 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1601 	    mp->mnt_susp_owner != curthread) {
1602 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1603 		    (flags & PCATCH) : 0) | (PUSER - 1);
1604 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1605 			if (flags & V_NOWAIT) {
1606 				error = EWOULDBLOCK;
1607 				goto unlock;
1608 			}
1609 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1610 			    "suspfs", 0);
1611 			if (error)
1612 				goto unlock;
1613 		}
1614 	}
1615 	if (flags & V_XSLEEP)
1616 		goto unlock;
1617 	mp->mnt_writeopcount++;
1618 unlock:
1619 	if (error != 0 || (flags & V_XSLEEP) != 0)
1620 		MNT_REL(mp);
1621 	MNT_IUNLOCK(mp);
1622 	return (error);
1623 }
1624 
1625 int
1626 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1627 {
1628 	struct mount *mp;
1629 	int error;
1630 
1631 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1632 	    ("V_MNTREF requires mp"));
1633 
1634 	error = 0;
1635 	/*
1636 	 * If a vnode is provided, get and return the mount point that
1637 	 * to which it will write.
1638 	 */
1639 	if (vp != NULL) {
1640 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1641 			*mpp = NULL;
1642 			if (error != EOPNOTSUPP)
1643 				return (error);
1644 			return (0);
1645 		}
1646 	}
1647 	if ((mp = *mpp) == NULL)
1648 		return (0);
1649 
1650 	if (!vn_suspendable(mp)) {
1651 		if (vp != NULL || (flags & V_MNTREF) != 0)
1652 			vfs_rel(mp);
1653 		return (0);
1654 	}
1655 
1656 	/*
1657 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1658 	 * a vfs_ref().
1659 	 * As long as a vnode is not provided we need to acquire a
1660 	 * refcount for the provided mountpoint too, in order to
1661 	 * emulate a vfs_ref().
1662 	 */
1663 	MNT_ILOCK(mp);
1664 	if (vp == NULL && (flags & V_MNTREF) == 0)
1665 		MNT_REF(mp);
1666 
1667 	return (vn_start_write_locked(mp, flags));
1668 }
1669 
1670 /*
1671  * Secondary suspension. Used by operations such as vop_inactive
1672  * routines that are needed by the higher level functions. These
1673  * are allowed to proceed until all the higher level functions have
1674  * completed (indicated by mnt_writeopcount dropping to zero). At that
1675  * time, these operations are halted until the suspension is over.
1676  */
1677 int
1678 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1679 {
1680 	struct mount *mp;
1681 	int error;
1682 
1683 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1684 	    ("V_MNTREF requires mp"));
1685 
1686  retry:
1687 	if (vp != NULL) {
1688 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1689 			*mpp = NULL;
1690 			if (error != EOPNOTSUPP)
1691 				return (error);
1692 			return (0);
1693 		}
1694 	}
1695 	/*
1696 	 * If we are not suspended or have not yet reached suspended
1697 	 * mode, then let the operation proceed.
1698 	 */
1699 	if ((mp = *mpp) == NULL)
1700 		return (0);
1701 
1702 	if (!vn_suspendable(mp)) {
1703 		if (vp != NULL || (flags & V_MNTREF) != 0)
1704 			vfs_rel(mp);
1705 		return (0);
1706 	}
1707 
1708 	/*
1709 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1710 	 * a vfs_ref().
1711 	 * As long as a vnode is not provided we need to acquire a
1712 	 * refcount for the provided mountpoint too, in order to
1713 	 * emulate a vfs_ref().
1714 	 */
1715 	MNT_ILOCK(mp);
1716 	if (vp == NULL && (flags & V_MNTREF) == 0)
1717 		MNT_REF(mp);
1718 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1719 		mp->mnt_secondary_writes++;
1720 		mp->mnt_secondary_accwrites++;
1721 		MNT_IUNLOCK(mp);
1722 		return (0);
1723 	}
1724 	if (flags & V_NOWAIT) {
1725 		MNT_REL(mp);
1726 		MNT_IUNLOCK(mp);
1727 		return (EWOULDBLOCK);
1728 	}
1729 	/*
1730 	 * Wait for the suspension to finish.
1731 	 */
1732 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1733 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1734 	    "suspfs", 0);
1735 	vfs_rel(mp);
1736 	if (error == 0)
1737 		goto retry;
1738 	return (error);
1739 }
1740 
1741 /*
1742  * Filesystem write operation has completed. If we are suspending and this
1743  * operation is the last one, notify the suspender that the suspension is
1744  * now in effect.
1745  */
1746 void
1747 vn_finished_write(struct mount *mp)
1748 {
1749 	if (mp == NULL || !vn_suspendable(mp))
1750 		return;
1751 	MNT_ILOCK(mp);
1752 	MNT_REL(mp);
1753 	mp->mnt_writeopcount--;
1754 	if (mp->mnt_writeopcount < 0)
1755 		panic("vn_finished_write: neg cnt");
1756 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1757 	    mp->mnt_writeopcount <= 0)
1758 		wakeup(&mp->mnt_writeopcount);
1759 	MNT_IUNLOCK(mp);
1760 }
1761 
1762 
1763 /*
1764  * Filesystem secondary write operation has completed. If we are
1765  * suspending and this operation is the last one, notify the suspender
1766  * that the suspension is now in effect.
1767  */
1768 void
1769 vn_finished_secondary_write(struct mount *mp)
1770 {
1771 	if (mp == NULL || !vn_suspendable(mp))
1772 		return;
1773 	MNT_ILOCK(mp);
1774 	MNT_REL(mp);
1775 	mp->mnt_secondary_writes--;
1776 	if (mp->mnt_secondary_writes < 0)
1777 		panic("vn_finished_secondary_write: neg cnt");
1778 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1779 	    mp->mnt_secondary_writes <= 0)
1780 		wakeup(&mp->mnt_secondary_writes);
1781 	MNT_IUNLOCK(mp);
1782 }
1783 
1784 
1785 
1786 /*
1787  * Request a filesystem to suspend write operations.
1788  */
1789 int
1790 vfs_write_suspend(struct mount *mp, int flags)
1791 {
1792 	int error;
1793 
1794 	MPASS(vn_suspendable(mp));
1795 
1796 	MNT_ILOCK(mp);
1797 	if (mp->mnt_susp_owner == curthread) {
1798 		MNT_IUNLOCK(mp);
1799 		return (EALREADY);
1800 	}
1801 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1802 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1803 
1804 	/*
1805 	 * Unmount holds a write reference on the mount point.  If we
1806 	 * own busy reference and drain for writers, we deadlock with
1807 	 * the reference draining in the unmount path.  Callers of
1808 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1809 	 * vfs_busy() reference is owned and caller is not in the
1810 	 * unmount context.
1811 	 */
1812 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1813 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1814 		MNT_IUNLOCK(mp);
1815 		return (EBUSY);
1816 	}
1817 
1818 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1819 	mp->mnt_susp_owner = curthread;
1820 	if (mp->mnt_writeopcount > 0)
1821 		(void) msleep(&mp->mnt_writeopcount,
1822 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1823 	else
1824 		MNT_IUNLOCK(mp);
1825 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1826 		vfs_write_resume(mp, 0);
1827 	return (error);
1828 }
1829 
1830 /*
1831  * Request a filesystem to resume write operations.
1832  */
1833 void
1834 vfs_write_resume(struct mount *mp, int flags)
1835 {
1836 
1837 	MPASS(vn_suspendable(mp));
1838 
1839 	MNT_ILOCK(mp);
1840 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1841 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1842 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1843 				       MNTK_SUSPENDED);
1844 		mp->mnt_susp_owner = NULL;
1845 		wakeup(&mp->mnt_writeopcount);
1846 		wakeup(&mp->mnt_flag);
1847 		curthread->td_pflags &= ~TDP_IGNSUSP;
1848 		if ((flags & VR_START_WRITE) != 0) {
1849 			MNT_REF(mp);
1850 			mp->mnt_writeopcount++;
1851 		}
1852 		MNT_IUNLOCK(mp);
1853 		if ((flags & VR_NO_SUSPCLR) == 0)
1854 			VFS_SUSP_CLEAN(mp);
1855 	} else if ((flags & VR_START_WRITE) != 0) {
1856 		MNT_REF(mp);
1857 		vn_start_write_locked(mp, 0);
1858 	} else {
1859 		MNT_IUNLOCK(mp);
1860 	}
1861 }
1862 
1863 /*
1864  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1865  * methods.
1866  */
1867 int
1868 vfs_write_suspend_umnt(struct mount *mp)
1869 {
1870 	int error;
1871 
1872 	MPASS(vn_suspendable(mp));
1873 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1874 	    ("vfs_write_suspend_umnt: recursed"));
1875 
1876 	/* dounmount() already called vn_start_write(). */
1877 	for (;;) {
1878 		vn_finished_write(mp);
1879 		error = vfs_write_suspend(mp, 0);
1880 		if (error != 0) {
1881 			vn_start_write(NULL, &mp, V_WAIT);
1882 			return (error);
1883 		}
1884 		MNT_ILOCK(mp);
1885 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1886 			break;
1887 		MNT_IUNLOCK(mp);
1888 		vn_start_write(NULL, &mp, V_WAIT);
1889 	}
1890 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1891 	wakeup(&mp->mnt_flag);
1892 	MNT_IUNLOCK(mp);
1893 	curthread->td_pflags |= TDP_IGNSUSP;
1894 	return (0);
1895 }
1896 
1897 /*
1898  * Implement kqueues for files by translating it to vnode operation.
1899  */
1900 static int
1901 vn_kqfilter(struct file *fp, struct knote *kn)
1902 {
1903 
1904 	return (VOP_KQFILTER(fp->f_vnode, kn));
1905 }
1906 
1907 /*
1908  * Simplified in-kernel wrapper calls for extended attribute access.
1909  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1910  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1911  */
1912 int
1913 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1914     const char *attrname, int *buflen, char *buf, struct thread *td)
1915 {
1916 	struct uio	auio;
1917 	struct iovec	iov;
1918 	int	error;
1919 
1920 	iov.iov_len = *buflen;
1921 	iov.iov_base = buf;
1922 
1923 	auio.uio_iov = &iov;
1924 	auio.uio_iovcnt = 1;
1925 	auio.uio_rw = UIO_READ;
1926 	auio.uio_segflg = UIO_SYSSPACE;
1927 	auio.uio_td = td;
1928 	auio.uio_offset = 0;
1929 	auio.uio_resid = *buflen;
1930 
1931 	if ((ioflg & IO_NODELOCKED) == 0)
1932 		vn_lock(vp, LK_SHARED | LK_RETRY);
1933 
1934 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1935 
1936 	/* authorize attribute retrieval as kernel */
1937 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1938 	    td);
1939 
1940 	if ((ioflg & IO_NODELOCKED) == 0)
1941 		VOP_UNLOCK(vp, 0);
1942 
1943 	if (error == 0) {
1944 		*buflen = *buflen - auio.uio_resid;
1945 	}
1946 
1947 	return (error);
1948 }
1949 
1950 /*
1951  * XXX failure mode if partially written?
1952  */
1953 int
1954 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1955     const char *attrname, int buflen, char *buf, struct thread *td)
1956 {
1957 	struct uio	auio;
1958 	struct iovec	iov;
1959 	struct mount	*mp;
1960 	int	error;
1961 
1962 	iov.iov_len = buflen;
1963 	iov.iov_base = buf;
1964 
1965 	auio.uio_iov = &iov;
1966 	auio.uio_iovcnt = 1;
1967 	auio.uio_rw = UIO_WRITE;
1968 	auio.uio_segflg = UIO_SYSSPACE;
1969 	auio.uio_td = td;
1970 	auio.uio_offset = 0;
1971 	auio.uio_resid = buflen;
1972 
1973 	if ((ioflg & IO_NODELOCKED) == 0) {
1974 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1975 			return (error);
1976 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1977 	}
1978 
1979 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1980 
1981 	/* authorize attribute setting as kernel */
1982 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1983 
1984 	if ((ioflg & IO_NODELOCKED) == 0) {
1985 		vn_finished_write(mp);
1986 		VOP_UNLOCK(vp, 0);
1987 	}
1988 
1989 	return (error);
1990 }
1991 
1992 int
1993 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
1994     const char *attrname, struct thread *td)
1995 {
1996 	struct mount	*mp;
1997 	int	error;
1998 
1999 	if ((ioflg & IO_NODELOCKED) == 0) {
2000 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2001 			return (error);
2002 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2003 	}
2004 
2005 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2006 
2007 	/* authorize attribute removal as kernel */
2008 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2009 	if (error == EOPNOTSUPP)
2010 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2011 		    NULL, td);
2012 
2013 	if ((ioflg & IO_NODELOCKED) == 0) {
2014 		vn_finished_write(mp);
2015 		VOP_UNLOCK(vp, 0);
2016 	}
2017 
2018 	return (error);
2019 }
2020 
2021 static int
2022 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2023     struct vnode **rvp)
2024 {
2025 
2026 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2027 }
2028 
2029 int
2030 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2031 {
2032 
2033 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2034 	    lkflags, rvp));
2035 }
2036 
2037 int
2038 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2039     int lkflags, struct vnode **rvp)
2040 {
2041 	struct mount *mp;
2042 	int ltype, error;
2043 
2044 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2045 	mp = vp->v_mount;
2046 	ltype = VOP_ISLOCKED(vp);
2047 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2048 	    ("vn_vget_ino: vp not locked"));
2049 	error = vfs_busy(mp, MBF_NOWAIT);
2050 	if (error != 0) {
2051 		vfs_ref(mp);
2052 		VOP_UNLOCK(vp, 0);
2053 		error = vfs_busy(mp, 0);
2054 		vn_lock(vp, ltype | LK_RETRY);
2055 		vfs_rel(mp);
2056 		if (error != 0)
2057 			return (ENOENT);
2058 		if (vp->v_iflag & VI_DOOMED) {
2059 			vfs_unbusy(mp);
2060 			return (ENOENT);
2061 		}
2062 	}
2063 	VOP_UNLOCK(vp, 0);
2064 	error = alloc(mp, alloc_arg, lkflags, rvp);
2065 	vfs_unbusy(mp);
2066 	if (*rvp != vp)
2067 		vn_lock(vp, ltype | LK_RETRY);
2068 	if (vp->v_iflag & VI_DOOMED) {
2069 		if (error == 0) {
2070 			if (*rvp == vp)
2071 				vunref(vp);
2072 			else
2073 				vput(*rvp);
2074 		}
2075 		error = ENOENT;
2076 	}
2077 	return (error);
2078 }
2079 
2080 int
2081 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2082     struct thread *td)
2083 {
2084 
2085 	if (vp->v_type != VREG || td == NULL)
2086 		return (0);
2087 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2088 	    lim_cur(td, RLIMIT_FSIZE)) {
2089 		PROC_LOCK(td->td_proc);
2090 		kern_psignal(td->td_proc, SIGXFSZ);
2091 		PROC_UNLOCK(td->td_proc);
2092 		return (EFBIG);
2093 	}
2094 	return (0);
2095 }
2096 
2097 int
2098 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2099     struct thread *td)
2100 {
2101 	struct vnode *vp;
2102 
2103 	vp = fp->f_vnode;
2104 #ifdef AUDIT
2105 	vn_lock(vp, LK_SHARED | LK_RETRY);
2106 	AUDIT_ARG_VNODE1(vp);
2107 	VOP_UNLOCK(vp, 0);
2108 #endif
2109 	return (setfmode(td, active_cred, vp, mode));
2110 }
2111 
2112 int
2113 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2114     struct thread *td)
2115 {
2116 	struct vnode *vp;
2117 
2118 	vp = fp->f_vnode;
2119 #ifdef AUDIT
2120 	vn_lock(vp, LK_SHARED | LK_RETRY);
2121 	AUDIT_ARG_VNODE1(vp);
2122 	VOP_UNLOCK(vp, 0);
2123 #endif
2124 	return (setfown(td, active_cred, vp, uid, gid));
2125 }
2126 
2127 void
2128 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2129 {
2130 	vm_object_t object;
2131 
2132 	if ((object = vp->v_object) == NULL)
2133 		return;
2134 	VM_OBJECT_WLOCK(object);
2135 	vm_object_page_remove(object, start, end, 0);
2136 	VM_OBJECT_WUNLOCK(object);
2137 }
2138 
2139 int
2140 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2141 {
2142 	struct vattr va;
2143 	daddr_t bn, bnp;
2144 	uint64_t bsize;
2145 	off_t noff;
2146 	int error;
2147 
2148 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2149 	    ("Wrong command %lu", cmd));
2150 
2151 	if (vn_lock(vp, LK_SHARED) != 0)
2152 		return (EBADF);
2153 	if (vp->v_type != VREG) {
2154 		error = ENOTTY;
2155 		goto unlock;
2156 	}
2157 	error = VOP_GETATTR(vp, &va, cred);
2158 	if (error != 0)
2159 		goto unlock;
2160 	noff = *off;
2161 	if (noff >= va.va_size) {
2162 		error = ENXIO;
2163 		goto unlock;
2164 	}
2165 	bsize = vp->v_mount->mnt_stat.f_iosize;
2166 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2167 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2168 		if (error == EOPNOTSUPP) {
2169 			error = ENOTTY;
2170 			goto unlock;
2171 		}
2172 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2173 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2174 			noff = bn * bsize;
2175 			if (noff < *off)
2176 				noff = *off;
2177 			goto unlock;
2178 		}
2179 	}
2180 	if (noff > va.va_size)
2181 		noff = va.va_size;
2182 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2183 	if (cmd == FIOSEEKDATA)
2184 		error = ENXIO;
2185 unlock:
2186 	VOP_UNLOCK(vp, 0);
2187 	if (error == 0)
2188 		*off = noff;
2189 	return (error);
2190 }
2191 
2192 int
2193 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2194 {
2195 	struct ucred *cred;
2196 	struct vnode *vp;
2197 	struct vattr vattr;
2198 	off_t foffset, size;
2199 	int error, noneg;
2200 
2201 	cred = td->td_ucred;
2202 	vp = fp->f_vnode;
2203 	foffset = foffset_lock(fp, 0);
2204 	noneg = (vp->v_type != VCHR);
2205 	error = 0;
2206 	switch (whence) {
2207 	case L_INCR:
2208 		if (noneg &&
2209 		    (foffset < 0 ||
2210 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2211 			error = EOVERFLOW;
2212 			break;
2213 		}
2214 		offset += foffset;
2215 		break;
2216 	case L_XTND:
2217 		vn_lock(vp, LK_SHARED | LK_RETRY);
2218 		error = VOP_GETATTR(vp, &vattr, cred);
2219 		VOP_UNLOCK(vp, 0);
2220 		if (error)
2221 			break;
2222 
2223 		/*
2224 		 * If the file references a disk device, then fetch
2225 		 * the media size and use that to determine the ending
2226 		 * offset.
2227 		 */
2228 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2229 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2230 			vattr.va_size = size;
2231 		if (noneg &&
2232 		    (vattr.va_size > OFF_MAX ||
2233 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2234 			error = EOVERFLOW;
2235 			break;
2236 		}
2237 		offset += vattr.va_size;
2238 		break;
2239 	case L_SET:
2240 		break;
2241 	case SEEK_DATA:
2242 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2243 		break;
2244 	case SEEK_HOLE:
2245 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2246 		break;
2247 	default:
2248 		error = EINVAL;
2249 	}
2250 	if (error == 0 && noneg && offset < 0)
2251 		error = EINVAL;
2252 	if (error != 0)
2253 		goto drop;
2254 	VFS_KNOTE_UNLOCKED(vp, 0);
2255 	td->td_uretoff.tdu_off = offset;
2256 drop:
2257 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2258 	return (error);
2259 }
2260 
2261 int
2262 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2263     struct thread *td)
2264 {
2265 	int error;
2266 
2267 	/*
2268 	 * Grant permission if the caller is the owner of the file, or
2269 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2270 	 * on the file.  If the time pointer is null, then write
2271 	 * permission on the file is also sufficient.
2272 	 *
2273 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2274 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2275 	 * will be allowed to set the times [..] to the current
2276 	 * server time.
2277 	 */
2278 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2279 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2280 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2281 	return (error);
2282 }
2283 
2284 int
2285 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2286 {
2287 	struct vnode *vp;
2288 	int error;
2289 
2290 	if (fp->f_type == DTYPE_FIFO)
2291 		kif->kf_type = KF_TYPE_FIFO;
2292 	else
2293 		kif->kf_type = KF_TYPE_VNODE;
2294 	vp = fp->f_vnode;
2295 	vref(vp);
2296 	FILEDESC_SUNLOCK(fdp);
2297 	error = vn_fill_kinfo_vnode(vp, kif);
2298 	vrele(vp);
2299 	FILEDESC_SLOCK(fdp);
2300 	return (error);
2301 }
2302 
2303 static inline void
2304 vn_fill_junk(struct kinfo_file *kif)
2305 {
2306 	size_t len, olen;
2307 
2308 	/*
2309 	 * Simulate vn_fullpath returning changing values for a given
2310 	 * vp during e.g. coredump.
2311 	 */
2312 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2313 	olen = strlen(kif->kf_path);
2314 	if (len < olen)
2315 		strcpy(&kif->kf_path[len - 1], "$");
2316 	else
2317 		for (; olen < len; olen++)
2318 			strcpy(&kif->kf_path[olen], "A");
2319 }
2320 
2321 int
2322 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2323 {
2324 	struct vattr va;
2325 	char *fullpath, *freepath;
2326 	int error;
2327 
2328 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2329 	freepath = NULL;
2330 	fullpath = "-";
2331 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2332 	if (error == 0) {
2333 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2334 	}
2335 	if (freepath != NULL)
2336 		free(freepath, M_TEMP);
2337 
2338 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2339 		vn_fill_junk(kif);
2340 	);
2341 
2342 	/*
2343 	 * Retrieve vnode attributes.
2344 	 */
2345 	va.va_fsid = VNOVAL;
2346 	va.va_rdev = NODEV;
2347 	vn_lock(vp, LK_SHARED | LK_RETRY);
2348 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2349 	VOP_UNLOCK(vp, 0);
2350 	if (error != 0)
2351 		return (error);
2352 	if (va.va_fsid != VNOVAL)
2353 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2354 	else
2355 		kif->kf_un.kf_file.kf_file_fsid =
2356 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2357 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2358 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2359 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2360 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2361 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2362 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2363 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2364 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2365 	return (0);
2366 }
2367 
2368 int
2369 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2370     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2371     struct thread *td)
2372 {
2373 #ifdef HWPMC_HOOKS
2374 	struct pmckern_map_in pkm;
2375 #endif
2376 	struct mount *mp;
2377 	struct vnode *vp;
2378 	vm_object_t object;
2379 	vm_prot_t maxprot;
2380 	boolean_t writecounted;
2381 	int error;
2382 
2383 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2384     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2385 	/*
2386 	 * POSIX shared-memory objects are defined to have
2387 	 * kernel persistence, and are not defined to support
2388 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2389 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2390 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2391 	 * flag to request this behavior.
2392 	 */
2393 	if ((fp->f_flag & FPOSIXSHM) != 0)
2394 		flags |= MAP_NOSYNC;
2395 #endif
2396 	vp = fp->f_vnode;
2397 
2398 	/*
2399 	 * Ensure that file and memory protections are
2400 	 * compatible.  Note that we only worry about
2401 	 * writability if mapping is shared; in this case,
2402 	 * current and max prot are dictated by the open file.
2403 	 * XXX use the vnode instead?  Problem is: what
2404 	 * credentials do we use for determination? What if
2405 	 * proc does a setuid?
2406 	 */
2407 	mp = vp->v_mount;
2408 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2409 		maxprot = VM_PROT_NONE;
2410 		if ((prot & VM_PROT_EXECUTE) != 0)
2411 			return (EACCES);
2412 	} else
2413 		maxprot = VM_PROT_EXECUTE;
2414 	if ((fp->f_flag & FREAD) != 0)
2415 		maxprot |= VM_PROT_READ;
2416 	else if ((prot & VM_PROT_READ) != 0)
2417 		return (EACCES);
2418 
2419 	/*
2420 	 * If we are sharing potential changes via MAP_SHARED and we
2421 	 * are trying to get write permission although we opened it
2422 	 * without asking for it, bail out.
2423 	 */
2424 	if ((flags & MAP_SHARED) != 0) {
2425 		if ((fp->f_flag & FWRITE) != 0)
2426 			maxprot |= VM_PROT_WRITE;
2427 		else if ((prot & VM_PROT_WRITE) != 0)
2428 			return (EACCES);
2429 	} else {
2430 		maxprot |= VM_PROT_WRITE;
2431 		cap_maxprot |= VM_PROT_WRITE;
2432 	}
2433 	maxprot &= cap_maxprot;
2434 
2435 	/*
2436 	 * For regular files and shared memory, POSIX requires that
2437 	 * the value of foff be a legitimate offset within the data
2438 	 * object.  In particular, negative offsets are invalid.
2439 	 * Blocking negative offsets and overflows here avoids
2440 	 * possible wraparound or user-level access into reserved
2441 	 * ranges of the data object later.  In contrast, POSIX does
2442 	 * not dictate how offsets are used by device drivers, so in
2443 	 * the case of a device mapping a negative offset is passed
2444 	 * on.
2445 	 */
2446 	if (
2447 #ifdef _LP64
2448 	    size > OFF_MAX ||
2449 #endif
2450 	    foff < 0 || foff > OFF_MAX - size)
2451 		return (EINVAL);
2452 
2453 	writecounted = FALSE;
2454 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2455 	    &foff, &object, &writecounted);
2456 	if (error != 0)
2457 		return (error);
2458 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2459 	    foff, writecounted, td);
2460 	if (error != 0) {
2461 		/*
2462 		 * If this mapping was accounted for in the vnode's
2463 		 * writecount, then undo that now.
2464 		 */
2465 		if (writecounted)
2466 			vnode_pager_release_writecount(object, 0, size);
2467 		vm_object_deallocate(object);
2468 	}
2469 #ifdef HWPMC_HOOKS
2470 	/* Inform hwpmc(4) if an executable is being mapped. */
2471 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2472 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2473 			pkm.pm_file = vp;
2474 			pkm.pm_address = (uintptr_t) *addr;
2475 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2476 		}
2477 	}
2478 #endif
2479 	return (error);
2480 }
2481 
2482 void
2483 vn_fsid(struct vnode *vp, struct vattr *va)
2484 {
2485 	fsid_t *f;
2486 
2487 	f = &vp->v_mount->mnt_stat.f_fsid;
2488 	va->va_fsid = (uint32_t)f->val[1];
2489 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2490 	va->va_fsid += (uint32_t)f->val[0];
2491 }
2492