xref: /freebsd/sys/kern/vfs_vnops.c (revision 2faf504d1ab821fe2b9df9d2afb49bb35e1334f4)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
13  * Copyright (c) 2013, 2014 The FreeBSD Foundation
14  *
15  * Portions of this software were developed by Konstantin Belousov
16  * under sponsorship from the FreeBSD Foundation.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_hwpmc_hooks.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/disk.h>
53 #include <sys/fail.h>
54 #include <sys/fcntl.h>
55 #include <sys/file.h>
56 #include <sys/kdb.h>
57 #include <sys/ktr.h>
58 #include <sys/stat.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/limits.h>
62 #include <sys/lock.h>
63 #include <sys/mman.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/namei.h>
67 #include <sys/vnode.h>
68 #include <sys/bio.h>
69 #include <sys/buf.h>
70 #include <sys/filio.h>
71 #include <sys/resourcevar.h>
72 #include <sys/rwlock.h>
73 #include <sys/prng.h>
74 #include <sys/sx.h>
75 #include <sys/sleepqueue.h>
76 #include <sys/sysctl.h>
77 #include <sys/ttycom.h>
78 #include <sys/conf.h>
79 #include <sys/syslog.h>
80 #include <sys/unistd.h>
81 #include <sys/user.h>
82 #include <sys/ktrace.h>
83 
84 #include <security/audit/audit.h>
85 #include <security/mac/mac_framework.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_extern.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pager.h>
94 
95 #ifdef HWPMC_HOOKS
96 #include <sys/pmckern.h>
97 #endif
98 
99 static fo_rdwr_t	vn_read;
100 static fo_rdwr_t	vn_write;
101 static fo_rdwr_t	vn_io_fault;
102 static fo_truncate_t	vn_truncate;
103 static fo_ioctl_t	vn_ioctl;
104 static fo_poll_t	vn_poll;
105 static fo_kqfilter_t	vn_kqfilter;
106 static fo_close_t	vn_closefile;
107 static fo_mmap_t	vn_mmap;
108 static fo_fallocate_t	vn_fallocate;
109 static fo_fspacectl_t	vn_fspacectl;
110 
111 struct 	fileops vnops = {
112 	.fo_read = vn_io_fault,
113 	.fo_write = vn_io_fault,
114 	.fo_truncate = vn_truncate,
115 	.fo_ioctl = vn_ioctl,
116 	.fo_poll = vn_poll,
117 	.fo_kqfilter = vn_kqfilter,
118 	.fo_stat = vn_statfile,
119 	.fo_close = vn_closefile,
120 	.fo_chmod = vn_chmod,
121 	.fo_chown = vn_chown,
122 	.fo_sendfile = vn_sendfile,
123 	.fo_seek = vn_seek,
124 	.fo_fill_kinfo = vn_fill_kinfo,
125 	.fo_mmap = vn_mmap,
126 	.fo_fallocate = vn_fallocate,
127 	.fo_fspacectl = vn_fspacectl,
128 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
129 };
130 
131 const u_int io_hold_cnt = 16;
132 static int vn_io_fault_enable = 1;
133 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN,
134     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
135 static int vn_io_fault_prefault = 0;
136 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN,
137     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
138 static int vn_io_pgcache_read_enable = 1;
139 SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN,
140     &vn_io_pgcache_read_enable, 0,
141     "Enable copying from page cache for reads, avoiding fs");
142 static u_long vn_io_faults_cnt;
143 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
144     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
145 
146 static int vfs_allow_read_dir = 0;
147 SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW,
148     &vfs_allow_read_dir, 0,
149     "Enable read(2) of directory by root for filesystems that support it");
150 
151 /*
152  * Returns true if vn_io_fault mode of handling the i/o request should
153  * be used.
154  */
155 static bool
156 do_vn_io_fault(struct vnode *vp, struct uio *uio)
157 {
158 	struct mount *mp;
159 
160 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
161 	    (mp = vp->v_mount) != NULL &&
162 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
163 }
164 
165 /*
166  * Structure used to pass arguments to vn_io_fault1(), to do either
167  * file- or vnode-based I/O calls.
168  */
169 struct vn_io_fault_args {
170 	enum {
171 		VN_IO_FAULT_FOP,
172 		VN_IO_FAULT_VOP
173 	} kind;
174 	struct ucred *cred;
175 	int flags;
176 	union {
177 		struct fop_args_tag {
178 			struct file *fp;
179 			fo_rdwr_t *doio;
180 		} fop_args;
181 		struct vop_args_tag {
182 			struct vnode *vp;
183 		} vop_args;
184 	} args;
185 };
186 
187 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
188     struct vn_io_fault_args *args, struct thread *td);
189 
190 int
191 vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp)
192 {
193 	struct thread *td = ndp->ni_cnd.cn_thread;
194 
195 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
196 }
197 
198 static uint64_t
199 open2nameif(int fmode, u_int vn_open_flags)
200 {
201 	uint64_t res;
202 
203 	res = ISOPEN | LOCKLEAF;
204 	if ((fmode & O_RESOLVE_BENEATH) != 0)
205 		res |= RBENEATH;
206 	if ((fmode & O_EMPTY_PATH) != 0)
207 		res |= EMPTYPATH;
208 	if ((fmode & FREAD) != 0)
209 		res |= OPENREAD;
210 	if ((fmode & FWRITE) != 0)
211 		res |= OPENWRITE;
212 	if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0)
213 		res |= AUDITVNODE1;
214 	if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0)
215 		res |= NOCAPCHECK;
216 	return (res);
217 }
218 
219 /*
220  * Common code for vnode open operations via a name lookup.
221  * Lookup the vnode and invoke VOP_CREATE if needed.
222  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
223  *
224  * Note that this does NOT free nameidata for the successful case,
225  * due to the NDINIT being done elsewhere.
226  */
227 int
228 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
229     struct ucred *cred, struct file *fp)
230 {
231 	struct vnode *vp;
232 	struct mount *mp;
233 	struct thread *td = ndp->ni_cnd.cn_thread;
234 	struct vattr vat;
235 	struct vattr *vap = &vat;
236 	int fmode, error;
237 	bool first_open;
238 
239 restart:
240 	first_open = false;
241 	fmode = *flagp;
242 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
243 	    O_EXCL | O_DIRECTORY) ||
244 	    (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH))
245 		return (EINVAL);
246 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
247 		ndp->ni_cnd.cn_nameiop = CREATE;
248 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
249 		/*
250 		 * Set NOCACHE to avoid flushing the cache when
251 		 * rolling in many files at once.
252 		 *
253 		 * Set NC_KEEPPOSENTRY to keep positive entries if they already
254 		 * exist despite NOCACHE.
255 		 */
256 		ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY;
257 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
258 			ndp->ni_cnd.cn_flags |= FOLLOW;
259 		if ((vn_open_flags & VN_OPEN_INVFS) == 0)
260 			bwillwrite();
261 		if ((error = namei(ndp)) != 0)
262 			return (error);
263 		if (ndp->ni_vp == NULL) {
264 			VATTR_NULL(vap);
265 			vap->va_type = VREG;
266 			vap->va_mode = cmode;
267 			if (fmode & O_EXCL)
268 				vap->va_vaflags |= VA_EXCLUSIVE;
269 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
270 				NDFREE(ndp, NDF_ONLY_PNBUF);
271 				vput(ndp->ni_dvp);
272 				if ((error = vn_start_write(NULL, &mp,
273 				    V_XSLEEP | PCATCH)) != 0)
274 					return (error);
275 				NDREINIT(ndp);
276 				goto restart;
277 			}
278 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
279 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
280 #ifdef MAC
281 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
282 			    &ndp->ni_cnd, vap);
283 			if (error == 0)
284 #endif
285 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
286 				    &ndp->ni_cnd, vap);
287 			vp = ndp->ni_vp;
288 			if (error == 0 && (fmode & O_EXCL) != 0 &&
289 			    (fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
290 				VI_LOCK(vp);
291 				vp->v_iflag |= VI_FOPENING;
292 				VI_UNLOCK(vp);
293 				first_open = true;
294 			}
295 			VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL,
296 			    false);
297 			vn_finished_write(mp);
298 			if (error) {
299 				NDFREE(ndp, NDF_ONLY_PNBUF);
300 				if (error == ERELOOKUP) {
301 					NDREINIT(ndp);
302 					goto restart;
303 				}
304 				return (error);
305 			}
306 			fmode &= ~O_TRUNC;
307 		} else {
308 			if (ndp->ni_dvp == ndp->ni_vp)
309 				vrele(ndp->ni_dvp);
310 			else
311 				vput(ndp->ni_dvp);
312 			ndp->ni_dvp = NULL;
313 			vp = ndp->ni_vp;
314 			if (fmode & O_EXCL) {
315 				error = EEXIST;
316 				goto bad;
317 			}
318 			if (vp->v_type == VDIR) {
319 				error = EISDIR;
320 				goto bad;
321 			}
322 			fmode &= ~O_CREAT;
323 		}
324 	} else {
325 		ndp->ni_cnd.cn_nameiop = LOOKUP;
326 		ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags);
327 		ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW :
328 		    FOLLOW;
329 		if ((fmode & FWRITE) == 0)
330 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
331 		if ((error = namei(ndp)) != 0)
332 			return (error);
333 		vp = ndp->ni_vp;
334 	}
335 	error = vn_open_vnode(vp, fmode, cred, td, fp);
336 	if (first_open) {
337 		VI_LOCK(vp);
338 		vp->v_iflag &= ~VI_FOPENING;
339 		wakeup(vp);
340 		VI_UNLOCK(vp);
341 	}
342 	if (error)
343 		goto bad;
344 	*flagp = fmode;
345 	return (0);
346 bad:
347 	NDFREE(ndp, NDF_ONLY_PNBUF);
348 	vput(vp);
349 	*flagp = fmode;
350 	ndp->ni_vp = NULL;
351 	return (error);
352 }
353 
354 static int
355 vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp)
356 {
357 	struct flock lf;
358 	int error, lock_flags, type;
359 
360 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock");
361 	if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0)
362 		return (0);
363 	KASSERT(fp != NULL, ("open with flock requires fp"));
364 	if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE)
365 		return (EOPNOTSUPP);
366 
367 	lock_flags = VOP_ISLOCKED(vp);
368 	VOP_UNLOCK(vp);
369 
370 	lf.l_whence = SEEK_SET;
371 	lf.l_start = 0;
372 	lf.l_len = 0;
373 	lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK;
374 	type = F_FLOCK;
375 	if ((fmode & FNONBLOCK) == 0)
376 		type |= F_WAIT;
377 	if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
378 		type |= F_FIRSTOPEN;
379 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
380 	if (error == 0)
381 		fp->f_flag |= FHASLOCK;
382 
383 	vn_lock(vp, lock_flags | LK_RETRY);
384 	return (error);
385 }
386 
387 /*
388  * Common code for vnode open operations once a vnode is located.
389  * Check permissions, and call the VOP_OPEN routine.
390  */
391 int
392 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
393     struct thread *td, struct file *fp)
394 {
395 	accmode_t accmode;
396 	int error;
397 
398 	if (vp->v_type == VLNK) {
399 		if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0)
400 			return (EMLINK);
401 	}
402 	if (vp->v_type == VSOCK)
403 		return (EOPNOTSUPP);
404 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
405 		return (ENOTDIR);
406 
407 	accmode = 0;
408 	if ((fmode & O_PATH) == 0) {
409 		if ((fmode & (FWRITE | O_TRUNC)) != 0) {
410 			if (vp->v_type == VDIR)
411 				return (EISDIR);
412 			accmode |= VWRITE;
413 		}
414 		if ((fmode & FREAD) != 0)
415 			accmode |= VREAD;
416 		if ((fmode & O_APPEND) && (fmode & FWRITE))
417 			accmode |= VAPPEND;
418 #ifdef MAC
419 		if ((fmode & O_CREAT) != 0)
420 			accmode |= VCREAT;
421 #endif
422 	}
423 	if ((fmode & FEXEC) != 0)
424 		accmode |= VEXEC;
425 #ifdef MAC
426 	if ((fmode & O_VERIFY) != 0)
427 		accmode |= VVERIFY;
428 	error = mac_vnode_check_open(cred, vp, accmode);
429 	if (error != 0)
430 		return (error);
431 
432 	accmode &= ~(VCREAT | VVERIFY);
433 #endif
434 	if ((fmode & O_CREAT) == 0 && accmode != 0) {
435 		error = VOP_ACCESS(vp, accmode, cred, td);
436 		if (error != 0)
437 			return (error);
438 	}
439 	if ((fmode & O_PATH) != 0) {
440 		if (vp->v_type == VFIFO)
441 			error = EPIPE;
442 		else
443 			error = VOP_ACCESS(vp, VREAD, cred, td);
444 		if (error == 0)
445 			fp->f_flag |= FKQALLOWED;
446 		return (0);
447 	}
448 
449 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
450 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
451 	error = VOP_OPEN(vp, fmode, cred, td, fp);
452 	if (error != 0)
453 		return (error);
454 
455 	error = vn_open_vnode_advlock(vp, fmode, fp);
456 	if (error == 0 && (fmode & FWRITE) != 0) {
457 		error = VOP_ADD_WRITECOUNT(vp, 1);
458 		if (error == 0) {
459 			CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
460 			     __func__, vp, vp->v_writecount);
461 		}
462 	}
463 
464 	/*
465 	 * Error from advlock or VOP_ADD_WRITECOUNT() still requires
466 	 * calling VOP_CLOSE() to pair with earlier VOP_OPEN().
467 	 */
468 	if (error != 0) {
469 		if (fp != NULL) {
470 			/*
471 			 * Arrange the call by having fdrop() to use
472 			 * vn_closefile().  This is to satisfy
473 			 * filesystems like devfs or tmpfs, which
474 			 * override fo_close().
475 			 */
476 			fp->f_flag |= FOPENFAILED;
477 			fp->f_vnode = vp;
478 			if (fp->f_ops == &badfileops) {
479 				fp->f_type = DTYPE_VNODE;
480 				fp->f_ops = &vnops;
481 			}
482 			vref(vp);
483 		} else {
484 			/*
485 			 * If there is no fp, due to kernel-mode open,
486 			 * we can call VOP_CLOSE() now.
487 			 */
488 			if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 &&
489 			    !MNT_EXTENDED_SHARED(vp->v_mount) &&
490 			    VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
491 				vn_lock(vp, LK_UPGRADE | LK_RETRY);
492 			(void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC),
493 			    cred, td);
494 		}
495 	}
496 
497 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
498 	return (error);
499 
500 }
501 
502 /*
503  * Check for write permissions on the specified vnode.
504  * Prototype text segments cannot be written.
505  * It is racy.
506  */
507 int
508 vn_writechk(struct vnode *vp)
509 {
510 
511 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
512 	/*
513 	 * If there's shared text associated with
514 	 * the vnode, try to free it up once.  If
515 	 * we fail, we can't allow writing.
516 	 */
517 	if (VOP_IS_TEXT(vp))
518 		return (ETXTBSY);
519 
520 	return (0);
521 }
522 
523 /*
524  * Vnode close call
525  */
526 static int
527 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
528     struct thread *td, bool keep_ref)
529 {
530 	struct mount *mp;
531 	int error, lock_flags;
532 
533 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
534 	    MNT_EXTENDED_SHARED(vp->v_mount))
535 		lock_flags = LK_SHARED;
536 	else
537 		lock_flags = LK_EXCLUSIVE;
538 
539 	vn_start_write(vp, &mp, V_WAIT);
540 	vn_lock(vp, lock_flags | LK_RETRY);
541 	AUDIT_ARG_VNODE1(vp);
542 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
543 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
544 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
545 		    __func__, vp, vp->v_writecount);
546 	}
547 	error = VOP_CLOSE(vp, flags, file_cred, td);
548 	if (keep_ref)
549 		VOP_UNLOCK(vp);
550 	else
551 		vput(vp);
552 	vn_finished_write(mp);
553 	return (error);
554 }
555 
556 int
557 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
558     struct thread *td)
559 {
560 
561 	return (vn_close1(vp, flags, file_cred, td, false));
562 }
563 
564 /*
565  * Heuristic to detect sequential operation.
566  */
567 static int
568 sequential_heuristic(struct uio *uio, struct file *fp)
569 {
570 	enum uio_rw rw;
571 
572 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
573 
574 	rw = uio->uio_rw;
575 	if (fp->f_flag & FRDAHEAD)
576 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
577 
578 	/*
579 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
580 	 * that the first I/O is normally considered to be slightly
581 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
582 	 * unless previous seeks have reduced f_seqcount to 0, in which
583 	 * case offset 0 is not special.
584 	 */
585 	if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) ||
586 	    uio->uio_offset == fp->f_nextoff[rw]) {
587 		/*
588 		 * f_seqcount is in units of fixed-size blocks so that it
589 		 * depends mainly on the amount of sequential I/O and not
590 		 * much on the number of sequential I/O's.  The fixed size
591 		 * of 16384 is hard-coded here since it is (not quite) just
592 		 * a magic size that works well here.  This size is more
593 		 * closely related to the best I/O size for real disks than
594 		 * to any block size used by software.
595 		 */
596 		if (uio->uio_resid >= IO_SEQMAX * 16384)
597 			fp->f_seqcount[rw] = IO_SEQMAX;
598 		else {
599 			fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384);
600 			if (fp->f_seqcount[rw] > IO_SEQMAX)
601 				fp->f_seqcount[rw] = IO_SEQMAX;
602 		}
603 		return (fp->f_seqcount[rw] << IO_SEQSHIFT);
604 	}
605 
606 	/* Not sequential.  Quickly draw-down sequentiality. */
607 	if (fp->f_seqcount[rw] > 1)
608 		fp->f_seqcount[rw] = 1;
609 	else
610 		fp->f_seqcount[rw] = 0;
611 	return (0);
612 }
613 
614 /*
615  * Package up an I/O request on a vnode into a uio and do it.
616  */
617 int
618 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
619     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
620     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
621 {
622 	struct uio auio;
623 	struct iovec aiov;
624 	struct mount *mp;
625 	struct ucred *cred;
626 	void *rl_cookie;
627 	struct vn_io_fault_args args;
628 	int error, lock_flags;
629 
630 	if (offset < 0 && vp->v_type != VCHR)
631 		return (EINVAL);
632 	auio.uio_iov = &aiov;
633 	auio.uio_iovcnt = 1;
634 	aiov.iov_base = base;
635 	aiov.iov_len = len;
636 	auio.uio_resid = len;
637 	auio.uio_offset = offset;
638 	auio.uio_segflg = segflg;
639 	auio.uio_rw = rw;
640 	auio.uio_td = td;
641 	error = 0;
642 
643 	if ((ioflg & IO_NODELOCKED) == 0) {
644 		if ((ioflg & IO_RANGELOCKED) == 0) {
645 			if (rw == UIO_READ) {
646 				rl_cookie = vn_rangelock_rlock(vp, offset,
647 				    offset + len);
648 			} else if ((ioflg & IO_APPEND) != 0) {
649 				rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
650 			} else {
651 				rl_cookie = vn_rangelock_wlock(vp, offset,
652 				    offset + len);
653 			}
654 		} else
655 			rl_cookie = NULL;
656 		mp = NULL;
657 		if (rw == UIO_WRITE) {
658 			if (vp->v_type != VCHR &&
659 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
660 			    != 0)
661 				goto out;
662 			lock_flags = vn_lktype_write(mp, vp);
663 		} else
664 			lock_flags = LK_SHARED;
665 		vn_lock(vp, lock_flags | LK_RETRY);
666 	} else
667 		rl_cookie = NULL;
668 
669 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
670 #ifdef MAC
671 	if ((ioflg & IO_NOMACCHECK) == 0) {
672 		if (rw == UIO_READ)
673 			error = mac_vnode_check_read(active_cred, file_cred,
674 			    vp);
675 		else
676 			error = mac_vnode_check_write(active_cred, file_cred,
677 			    vp);
678 	}
679 #endif
680 	if (error == 0) {
681 		if (file_cred != NULL)
682 			cred = file_cred;
683 		else
684 			cred = active_cred;
685 		if (do_vn_io_fault(vp, &auio)) {
686 			args.kind = VN_IO_FAULT_VOP;
687 			args.cred = cred;
688 			args.flags = ioflg;
689 			args.args.vop_args.vp = vp;
690 			error = vn_io_fault1(vp, &auio, &args, td);
691 		} else if (rw == UIO_READ) {
692 			error = VOP_READ(vp, &auio, ioflg, cred);
693 		} else /* if (rw == UIO_WRITE) */ {
694 			error = VOP_WRITE(vp, &auio, ioflg, cred);
695 		}
696 	}
697 	if (aresid)
698 		*aresid = auio.uio_resid;
699 	else
700 		if (auio.uio_resid && error == 0)
701 			error = EIO;
702 	if ((ioflg & IO_NODELOCKED) == 0) {
703 		VOP_UNLOCK(vp);
704 		if (mp != NULL)
705 			vn_finished_write(mp);
706 	}
707  out:
708 	if (rl_cookie != NULL)
709 		vn_rangelock_unlock(vp, rl_cookie);
710 	return (error);
711 }
712 
713 /*
714  * Package up an I/O request on a vnode into a uio and do it.  The I/O
715  * request is split up into smaller chunks and we try to avoid saturating
716  * the buffer cache while potentially holding a vnode locked, so we
717  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
718  * to give other processes a chance to lock the vnode (either other processes
719  * core'ing the same binary, or unrelated processes scanning the directory).
720  */
721 int
722 vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len,
723     off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred,
724     struct ucred *file_cred, size_t *aresid, struct thread *td)
725 {
726 	int error = 0;
727 	ssize_t iaresid;
728 
729 	do {
730 		int chunk;
731 
732 		/*
733 		 * Force `offset' to a multiple of MAXBSIZE except possibly
734 		 * for the first chunk, so that filesystems only need to
735 		 * write full blocks except possibly for the first and last
736 		 * chunks.
737 		 */
738 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
739 
740 		if (chunk > len)
741 			chunk = len;
742 		if (rw != UIO_READ && vp->v_type == VREG)
743 			bwillwrite();
744 		iaresid = 0;
745 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
746 		    ioflg, active_cred, file_cred, &iaresid, td);
747 		len -= chunk;	/* aresid calc already includes length */
748 		if (error)
749 			break;
750 		offset += chunk;
751 		base = (char *)base + chunk;
752 		kern_yield(PRI_USER);
753 	} while (len);
754 	if (aresid)
755 		*aresid = len + iaresid;
756 	return (error);
757 }
758 
759 #if OFF_MAX <= LONG_MAX
760 off_t
761 foffset_lock(struct file *fp, int flags)
762 {
763 	volatile short *flagsp;
764 	off_t res;
765 	short state;
766 
767 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
768 
769 	if ((flags & FOF_NOLOCK) != 0)
770 		return (atomic_load_long(&fp->f_offset));
771 
772 	/*
773 	 * According to McKusick the vn lock was protecting f_offset here.
774 	 * It is now protected by the FOFFSET_LOCKED flag.
775 	 */
776 	flagsp = &fp->f_vnread_flags;
777 	if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED))
778 		return (atomic_load_long(&fp->f_offset));
779 
780 	sleepq_lock(&fp->f_vnread_flags);
781 	state = atomic_load_16(flagsp);
782 	for (;;) {
783 		if ((state & FOFFSET_LOCKED) == 0) {
784 			if (!atomic_fcmpset_acq_16(flagsp, &state,
785 			    FOFFSET_LOCKED))
786 				continue;
787 			break;
788 		}
789 		if ((state & FOFFSET_LOCK_WAITING) == 0) {
790 			if (!atomic_fcmpset_acq_16(flagsp, &state,
791 			    state | FOFFSET_LOCK_WAITING))
792 				continue;
793 		}
794 		DROP_GIANT();
795 		sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0);
796 		sleepq_wait(&fp->f_vnread_flags, PUSER -1);
797 		PICKUP_GIANT();
798 		sleepq_lock(&fp->f_vnread_flags);
799 		state = atomic_load_16(flagsp);
800 	}
801 	res = atomic_load_long(&fp->f_offset);
802 	sleepq_release(&fp->f_vnread_flags);
803 	return (res);
804 }
805 
806 void
807 foffset_unlock(struct file *fp, off_t val, int flags)
808 {
809 	volatile short *flagsp;
810 	short state;
811 
812 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
813 
814 	if ((flags & FOF_NOUPDATE) == 0)
815 		atomic_store_long(&fp->f_offset, val);
816 	if ((flags & FOF_NEXTOFF_R) != 0)
817 		fp->f_nextoff[UIO_READ] = val;
818 	if ((flags & FOF_NEXTOFF_W) != 0)
819 		fp->f_nextoff[UIO_WRITE] = val;
820 
821 	if ((flags & FOF_NOLOCK) != 0)
822 		return;
823 
824 	flagsp = &fp->f_vnread_flags;
825 	state = atomic_load_16(flagsp);
826 	if ((state & FOFFSET_LOCK_WAITING) == 0 &&
827 	    atomic_cmpset_rel_16(flagsp, state, 0))
828 		return;
829 
830 	sleepq_lock(&fp->f_vnread_flags);
831 	MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0);
832 	MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0);
833 	fp->f_vnread_flags = 0;
834 	sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0);
835 	sleepq_release(&fp->f_vnread_flags);
836 }
837 #else
838 off_t
839 foffset_lock(struct file *fp, int flags)
840 {
841 	struct mtx *mtxp;
842 	off_t res;
843 
844 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
845 
846 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
847 	mtx_lock(mtxp);
848 	if ((flags & FOF_NOLOCK) == 0) {
849 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
850 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
851 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
852 			    "vofflock", 0);
853 		}
854 		fp->f_vnread_flags |= FOFFSET_LOCKED;
855 	}
856 	res = fp->f_offset;
857 	mtx_unlock(mtxp);
858 	return (res);
859 }
860 
861 void
862 foffset_unlock(struct file *fp, off_t val, int flags)
863 {
864 	struct mtx *mtxp;
865 
866 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
867 
868 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
869 	mtx_lock(mtxp);
870 	if ((flags & FOF_NOUPDATE) == 0)
871 		fp->f_offset = val;
872 	if ((flags & FOF_NEXTOFF_R) != 0)
873 		fp->f_nextoff[UIO_READ] = val;
874 	if ((flags & FOF_NEXTOFF_W) != 0)
875 		fp->f_nextoff[UIO_WRITE] = val;
876 	if ((flags & FOF_NOLOCK) == 0) {
877 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
878 		    ("Lost FOFFSET_LOCKED"));
879 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
880 			wakeup(&fp->f_vnread_flags);
881 		fp->f_vnread_flags = 0;
882 	}
883 	mtx_unlock(mtxp);
884 }
885 #endif
886 
887 void
888 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
889 {
890 
891 	if ((flags & FOF_OFFSET) == 0)
892 		uio->uio_offset = foffset_lock(fp, flags);
893 }
894 
895 void
896 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
897 {
898 
899 	if ((flags & FOF_OFFSET) == 0)
900 		foffset_unlock(fp, uio->uio_offset, flags);
901 }
902 
903 static int
904 get_advice(struct file *fp, struct uio *uio)
905 {
906 	struct mtx *mtxp;
907 	int ret;
908 
909 	ret = POSIX_FADV_NORMAL;
910 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
911 		return (ret);
912 
913 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
914 	mtx_lock(mtxp);
915 	if (fp->f_advice != NULL &&
916 	    uio->uio_offset >= fp->f_advice->fa_start &&
917 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
918 		ret = fp->f_advice->fa_advice;
919 	mtx_unlock(mtxp);
920 	return (ret);
921 }
922 
923 static int
924 get_write_ioflag(struct file *fp)
925 {
926 	int ioflag;
927 	struct mount *mp;
928 	struct vnode *vp;
929 
930 	ioflag = 0;
931 	vp = fp->f_vnode;
932 	mp = atomic_load_ptr(&vp->v_mount);
933 
934 	if ((fp->f_flag & O_DIRECT) != 0)
935 		ioflag |= IO_DIRECT;
936 
937 	if ((fp->f_flag & O_FSYNC) != 0 ||
938 	    (mp != NULL && (mp->mnt_flag & MNT_SYNCHRONOUS) != 0))
939 		ioflag |= IO_SYNC;
940 
941 	/*
942 	 * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE()
943 	 * or VOP_DEALLOCATE() implementations that don't understand IO_DATASYNC
944 	 * fall back to full O_SYNC behavior.
945 	 */
946 	if ((fp->f_flag & O_DSYNC) != 0)
947 		ioflag |= IO_SYNC | IO_DATASYNC;
948 
949 	return (ioflag);
950 }
951 
952 int
953 vn_read_from_obj(struct vnode *vp, struct uio *uio)
954 {
955 	vm_object_t obj;
956 	vm_page_t ma[io_hold_cnt + 2];
957 	off_t off, vsz;
958 	ssize_t resid;
959 	int error, i, j;
960 
961 	MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2));
962 	obj = atomic_load_ptr(&vp->v_object);
963 	if (obj == NULL)
964 		return (EJUSTRETURN);
965 
966 	/*
967 	 * Depends on type stability of vm_objects.
968 	 */
969 	vm_object_pip_add(obj, 1);
970 	if ((obj->flags & OBJ_DEAD) != 0) {
971 		/*
972 		 * Note that object might be already reused from the
973 		 * vnode, and the OBJ_DEAD flag cleared.  This is fine,
974 		 * we recheck for DOOMED vnode state after all pages
975 		 * are busied, and retract then.
976 		 *
977 		 * But we check for OBJ_DEAD to ensure that we do not
978 		 * busy pages while vm_object_terminate_pages()
979 		 * processes the queue.
980 		 */
981 		error = EJUSTRETURN;
982 		goto out_pip;
983 	}
984 
985 	resid = uio->uio_resid;
986 	off = uio->uio_offset;
987 	for (i = 0; resid > 0; i++) {
988 		MPASS(i < io_hold_cnt + 2);
989 		ma[i] = vm_page_grab_unlocked(obj, atop(off),
990 		    VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY |
991 		    VM_ALLOC_NOWAIT);
992 		if (ma[i] == NULL)
993 			break;
994 
995 		/*
996 		 * Skip invalid pages.  Valid mask can be partial only
997 		 * at EOF, and we clip later.
998 		 */
999 		if (vm_page_none_valid(ma[i])) {
1000 			vm_page_sunbusy(ma[i]);
1001 			break;
1002 		}
1003 
1004 		resid -= PAGE_SIZE;
1005 		off += PAGE_SIZE;
1006 	}
1007 	if (i == 0) {
1008 		error = EJUSTRETURN;
1009 		goto out_pip;
1010 	}
1011 
1012 	/*
1013 	 * Check VIRF_DOOMED after we busied our pages.  Since
1014 	 * vgonel() terminates the vnode' vm_object, it cannot
1015 	 * process past pages busied by us.
1016 	 */
1017 	if (VN_IS_DOOMED(vp)) {
1018 		error = EJUSTRETURN;
1019 		goto out;
1020 	}
1021 
1022 	resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1);
1023 	if (resid > uio->uio_resid)
1024 		resid = uio->uio_resid;
1025 
1026 	/*
1027 	 * Unlocked read of vnp_size is safe because truncation cannot
1028 	 * pass busied page.  But we load vnp_size into a local
1029 	 * variable so that possible concurrent extension does not
1030 	 * break calculation.
1031 	 */
1032 #if defined(__powerpc__) && !defined(__powerpc64__)
1033 	vsz = obj->un_pager.vnp.vnp_size;
1034 #else
1035 	vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size);
1036 #endif
1037 	if (uio->uio_offset >= vsz) {
1038 		error = EJUSTRETURN;
1039 		goto out;
1040 	}
1041 	if (uio->uio_offset + resid > vsz)
1042 		resid = vsz - uio->uio_offset;
1043 
1044 	error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio);
1045 
1046 out:
1047 	for (j = 0; j < i; j++) {
1048 		if (error == 0)
1049 			vm_page_reference(ma[j]);
1050 		vm_page_sunbusy(ma[j]);
1051 	}
1052 out_pip:
1053 	vm_object_pip_wakeup(obj);
1054 	if (error != 0)
1055 		return (error);
1056 	return (uio->uio_resid == 0 ? 0 : EJUSTRETURN);
1057 }
1058 
1059 /*
1060  * File table vnode read routine.
1061  */
1062 static int
1063 vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1064     struct thread *td)
1065 {
1066 	struct vnode *vp;
1067 	off_t orig_offset;
1068 	int error, ioflag;
1069 	int advice;
1070 
1071 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1072 	    uio->uio_td, td));
1073 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1074 	vp = fp->f_vnode;
1075 	ioflag = 0;
1076 	if (fp->f_flag & FNONBLOCK)
1077 		ioflag |= IO_NDELAY;
1078 	if (fp->f_flag & O_DIRECT)
1079 		ioflag |= IO_DIRECT;
1080 
1081 	/*
1082 	 * Try to read from page cache.  VIRF_DOOMED check is racy but
1083 	 * allows us to avoid unneeded work outright.
1084 	 */
1085 	if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() &&
1086 	    (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) {
1087 		error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred);
1088 		if (error == 0) {
1089 			fp->f_nextoff[UIO_READ] = uio->uio_offset;
1090 			return (0);
1091 		}
1092 		if (error != EJUSTRETURN)
1093 			return (error);
1094 	}
1095 
1096 	advice = get_advice(fp, uio);
1097 	vn_lock(vp, LK_SHARED | LK_RETRY);
1098 
1099 	switch (advice) {
1100 	case POSIX_FADV_NORMAL:
1101 	case POSIX_FADV_SEQUENTIAL:
1102 	case POSIX_FADV_NOREUSE:
1103 		ioflag |= sequential_heuristic(uio, fp);
1104 		break;
1105 	case POSIX_FADV_RANDOM:
1106 		/* Disable read-ahead for random I/O. */
1107 		break;
1108 	}
1109 	orig_offset = uio->uio_offset;
1110 
1111 #ifdef MAC
1112 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
1113 	if (error == 0)
1114 #endif
1115 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
1116 	fp->f_nextoff[UIO_READ] = uio->uio_offset;
1117 	VOP_UNLOCK(vp);
1118 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1119 	    orig_offset != uio->uio_offset)
1120 		/*
1121 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1122 		 * for the backing file after a POSIX_FADV_NOREUSE
1123 		 * read(2).
1124 		 */
1125 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1126 		    POSIX_FADV_DONTNEED);
1127 	return (error);
1128 }
1129 
1130 /*
1131  * File table vnode write routine.
1132  */
1133 static int
1134 vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags,
1135     struct thread *td)
1136 {
1137 	struct vnode *vp;
1138 	struct mount *mp;
1139 	off_t orig_offset;
1140 	int error, ioflag;
1141 	int advice;
1142 	bool need_finished_write;
1143 
1144 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
1145 	    uio->uio_td, td));
1146 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
1147 	vp = fp->f_vnode;
1148 	if (vp->v_type == VREG)
1149 		bwillwrite();
1150 	ioflag = IO_UNIT;
1151 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND) != 0)
1152 		ioflag |= IO_APPEND;
1153 	if ((fp->f_flag & FNONBLOCK) != 0)
1154 		ioflag |= IO_NDELAY;
1155 	ioflag |= get_write_ioflag(fp);
1156 
1157 	mp = NULL;
1158 	need_finished_write = false;
1159 	if (vp->v_type != VCHR) {
1160 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1161 		if (error != 0)
1162 			goto unlock;
1163 		need_finished_write = true;
1164 	}
1165 
1166 	advice = get_advice(fp, uio);
1167 
1168 	vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
1169 	switch (advice) {
1170 	case POSIX_FADV_NORMAL:
1171 	case POSIX_FADV_SEQUENTIAL:
1172 	case POSIX_FADV_NOREUSE:
1173 		ioflag |= sequential_heuristic(uio, fp);
1174 		break;
1175 	case POSIX_FADV_RANDOM:
1176 		/* XXX: Is this correct? */
1177 		break;
1178 	}
1179 	orig_offset = uio->uio_offset;
1180 
1181 #ifdef MAC
1182 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1183 	if (error == 0)
1184 #endif
1185 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
1186 	fp->f_nextoff[UIO_WRITE] = uio->uio_offset;
1187 	VOP_UNLOCK(vp);
1188 	if (need_finished_write)
1189 		vn_finished_write(mp);
1190 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
1191 	    orig_offset != uio->uio_offset)
1192 		/*
1193 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
1194 		 * for the backing file after a POSIX_FADV_NOREUSE
1195 		 * write(2).
1196 		 */
1197 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
1198 		    POSIX_FADV_DONTNEED);
1199 unlock:
1200 	return (error);
1201 }
1202 
1203 /*
1204  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
1205  * prevent the following deadlock:
1206  *
1207  * Assume that the thread A reads from the vnode vp1 into userspace
1208  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
1209  * currently not resident, then system ends up with the call chain
1210  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
1211  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
1212  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
1213  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
1214  * backed by the pages of vnode vp1, and some page in buf2 is not
1215  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
1216  *
1217  * To prevent the lock order reversal and deadlock, vn_io_fault() does
1218  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
1219  * Instead, it first tries to do the whole range i/o with pagefaults
1220  * disabled. If all pages in the i/o buffer are resident and mapped,
1221  * VOP will succeed (ignoring the genuine filesystem errors).
1222  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
1223  * i/o in chunks, with all pages in the chunk prefaulted and held
1224  * using vm_fault_quick_hold_pages().
1225  *
1226  * Filesystems using this deadlock avoidance scheme should use the
1227  * array of the held pages from uio, saved in the curthread->td_ma,
1228  * instead of doing uiomove().  A helper function
1229  * vn_io_fault_uiomove() converts uiomove request into
1230  * uiomove_fromphys() over td_ma array.
1231  *
1232  * Since vnode locks do not cover the whole i/o anymore, rangelocks
1233  * make the current i/o request atomic with respect to other i/os and
1234  * truncations.
1235  */
1236 
1237 /*
1238  * Decode vn_io_fault_args and perform the corresponding i/o.
1239  */
1240 static int
1241 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
1242     struct thread *td)
1243 {
1244 	int error, save;
1245 
1246 	error = 0;
1247 	save = vm_fault_disable_pagefaults();
1248 	switch (args->kind) {
1249 	case VN_IO_FAULT_FOP:
1250 		error = (args->args.fop_args.doio)(args->args.fop_args.fp,
1251 		    uio, args->cred, args->flags, td);
1252 		break;
1253 	case VN_IO_FAULT_VOP:
1254 		if (uio->uio_rw == UIO_READ) {
1255 			error = VOP_READ(args->args.vop_args.vp, uio,
1256 			    args->flags, args->cred);
1257 		} else if (uio->uio_rw == UIO_WRITE) {
1258 			error = VOP_WRITE(args->args.vop_args.vp, uio,
1259 			    args->flags, args->cred);
1260 		}
1261 		break;
1262 	default:
1263 		panic("vn_io_fault_doio: unknown kind of io %d %d",
1264 		    args->kind, uio->uio_rw);
1265 	}
1266 	vm_fault_enable_pagefaults(save);
1267 	return (error);
1268 }
1269 
1270 static int
1271 vn_io_fault_touch(char *base, const struct uio *uio)
1272 {
1273 	int r;
1274 
1275 	r = fubyte(base);
1276 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
1277 		return (EFAULT);
1278 	return (0);
1279 }
1280 
1281 static int
1282 vn_io_fault_prefault_user(const struct uio *uio)
1283 {
1284 	char *base;
1285 	const struct iovec *iov;
1286 	size_t len;
1287 	ssize_t resid;
1288 	int error, i;
1289 
1290 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
1291 	    ("vn_io_fault_prefault userspace"));
1292 
1293 	error = i = 0;
1294 	iov = uio->uio_iov;
1295 	resid = uio->uio_resid;
1296 	base = iov->iov_base;
1297 	len = iov->iov_len;
1298 	while (resid > 0) {
1299 		error = vn_io_fault_touch(base, uio);
1300 		if (error != 0)
1301 			break;
1302 		if (len < PAGE_SIZE) {
1303 			if (len != 0) {
1304 				error = vn_io_fault_touch(base + len - 1, uio);
1305 				if (error != 0)
1306 					break;
1307 				resid -= len;
1308 			}
1309 			if (++i >= uio->uio_iovcnt)
1310 				break;
1311 			iov = uio->uio_iov + i;
1312 			base = iov->iov_base;
1313 			len = iov->iov_len;
1314 		} else {
1315 			len -= PAGE_SIZE;
1316 			base += PAGE_SIZE;
1317 			resid -= PAGE_SIZE;
1318 		}
1319 	}
1320 	return (error);
1321 }
1322 
1323 /*
1324  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1325  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1326  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1327  * into args and call vn_io_fault1() to handle faults during the user
1328  * mode buffer accesses.
1329  */
1330 static int
1331 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1332     struct thread *td)
1333 {
1334 	vm_page_t ma[io_hold_cnt + 2];
1335 	struct uio *uio_clone, short_uio;
1336 	struct iovec short_iovec[1];
1337 	vm_page_t *prev_td_ma;
1338 	vm_prot_t prot;
1339 	vm_offset_t addr, end;
1340 	size_t len, resid;
1341 	ssize_t adv;
1342 	int error, cnt, saveheld, prev_td_ma_cnt;
1343 
1344 	if (vn_io_fault_prefault) {
1345 		error = vn_io_fault_prefault_user(uio);
1346 		if (error != 0)
1347 			return (error); /* Or ignore ? */
1348 	}
1349 
1350 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1351 
1352 	/*
1353 	 * The UFS follows IO_UNIT directive and replays back both
1354 	 * uio_offset and uio_resid if an error is encountered during the
1355 	 * operation.  But, since the iovec may be already advanced,
1356 	 * uio is still in an inconsistent state.
1357 	 *
1358 	 * Cache a copy of the original uio, which is advanced to the redo
1359 	 * point using UIO_NOCOPY below.
1360 	 */
1361 	uio_clone = cloneuio(uio);
1362 	resid = uio->uio_resid;
1363 
1364 	short_uio.uio_segflg = UIO_USERSPACE;
1365 	short_uio.uio_rw = uio->uio_rw;
1366 	short_uio.uio_td = uio->uio_td;
1367 
1368 	error = vn_io_fault_doio(args, uio, td);
1369 	if (error != EFAULT)
1370 		goto out;
1371 
1372 	atomic_add_long(&vn_io_faults_cnt, 1);
1373 	uio_clone->uio_segflg = UIO_NOCOPY;
1374 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1375 	uio_clone->uio_segflg = uio->uio_segflg;
1376 
1377 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1378 	prev_td_ma = td->td_ma;
1379 	prev_td_ma_cnt = td->td_ma_cnt;
1380 
1381 	while (uio_clone->uio_resid != 0) {
1382 		len = uio_clone->uio_iov->iov_len;
1383 		if (len == 0) {
1384 			KASSERT(uio_clone->uio_iovcnt >= 1,
1385 			    ("iovcnt underflow"));
1386 			uio_clone->uio_iov++;
1387 			uio_clone->uio_iovcnt--;
1388 			continue;
1389 		}
1390 		if (len > ptoa(io_hold_cnt))
1391 			len = ptoa(io_hold_cnt);
1392 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1393 		end = round_page(addr + len);
1394 		if (end < addr) {
1395 			error = EFAULT;
1396 			break;
1397 		}
1398 		cnt = atop(end - trunc_page(addr));
1399 		/*
1400 		 * A perfectly misaligned address and length could cause
1401 		 * both the start and the end of the chunk to use partial
1402 		 * page.  +2 accounts for such a situation.
1403 		 */
1404 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1405 		    addr, len, prot, ma, io_hold_cnt + 2);
1406 		if (cnt == -1) {
1407 			error = EFAULT;
1408 			break;
1409 		}
1410 		short_uio.uio_iov = &short_iovec[0];
1411 		short_iovec[0].iov_base = (void *)addr;
1412 		short_uio.uio_iovcnt = 1;
1413 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1414 		short_uio.uio_offset = uio_clone->uio_offset;
1415 		td->td_ma = ma;
1416 		td->td_ma_cnt = cnt;
1417 
1418 		error = vn_io_fault_doio(args, &short_uio, td);
1419 		vm_page_unhold_pages(ma, cnt);
1420 		adv = len - short_uio.uio_resid;
1421 
1422 		uio_clone->uio_iov->iov_base =
1423 		    (char *)uio_clone->uio_iov->iov_base + adv;
1424 		uio_clone->uio_iov->iov_len -= adv;
1425 		uio_clone->uio_resid -= adv;
1426 		uio_clone->uio_offset += adv;
1427 
1428 		uio->uio_resid -= adv;
1429 		uio->uio_offset += adv;
1430 
1431 		if (error != 0 || adv == 0)
1432 			break;
1433 	}
1434 	td->td_ma = prev_td_ma;
1435 	td->td_ma_cnt = prev_td_ma_cnt;
1436 	curthread_pflags_restore(saveheld);
1437 out:
1438 	free(uio_clone, M_IOV);
1439 	return (error);
1440 }
1441 
1442 static int
1443 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1444     int flags, struct thread *td)
1445 {
1446 	fo_rdwr_t *doio;
1447 	struct vnode *vp;
1448 	void *rl_cookie;
1449 	struct vn_io_fault_args args;
1450 	int error;
1451 
1452 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1453 	vp = fp->f_vnode;
1454 
1455 	/*
1456 	 * The ability to read(2) on a directory has historically been
1457 	 * allowed for all users, but this can and has been the source of
1458 	 * at least one security issue in the past.  As such, it is now hidden
1459 	 * away behind a sysctl for those that actually need it to use it, and
1460 	 * restricted to root when it's turned on to make it relatively safe to
1461 	 * leave on for longer sessions of need.
1462 	 */
1463 	if (vp->v_type == VDIR) {
1464 		KASSERT(uio->uio_rw == UIO_READ,
1465 		    ("illegal write attempted on a directory"));
1466 		if (!vfs_allow_read_dir)
1467 			return (EISDIR);
1468 		if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0)
1469 			return (EISDIR);
1470 	}
1471 
1472 	foffset_lock_uio(fp, uio, flags);
1473 	if (do_vn_io_fault(vp, uio)) {
1474 		args.kind = VN_IO_FAULT_FOP;
1475 		args.args.fop_args.fp = fp;
1476 		args.args.fop_args.doio = doio;
1477 		args.cred = active_cred;
1478 		args.flags = flags | FOF_OFFSET;
1479 		if (uio->uio_rw == UIO_READ) {
1480 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1481 			    uio->uio_offset + uio->uio_resid);
1482 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1483 		    (flags & FOF_OFFSET) == 0) {
1484 			/* For appenders, punt and lock the whole range. */
1485 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1486 		} else {
1487 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1488 			    uio->uio_offset + uio->uio_resid);
1489 		}
1490 		error = vn_io_fault1(vp, uio, &args, td);
1491 		vn_rangelock_unlock(vp, rl_cookie);
1492 	} else {
1493 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1494 	}
1495 	foffset_unlock_uio(fp, uio, flags);
1496 	return (error);
1497 }
1498 
1499 /*
1500  * Helper function to perform the requested uiomove operation using
1501  * the held pages for io->uio_iov[0].iov_base buffer instead of
1502  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1503  * instead of iov_base prevents page faults that could occur due to
1504  * pmap_collect() invalidating the mapping created by
1505  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1506  * object cleanup revoking the write access from page mappings.
1507  *
1508  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1509  * instead of plain uiomove().
1510  */
1511 int
1512 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1513 {
1514 	struct uio transp_uio;
1515 	struct iovec transp_iov[1];
1516 	struct thread *td;
1517 	size_t adv;
1518 	int error, pgadv;
1519 
1520 	td = curthread;
1521 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1522 	    uio->uio_segflg != UIO_USERSPACE)
1523 		return (uiomove(data, xfersize, uio));
1524 
1525 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1526 	transp_iov[0].iov_base = data;
1527 	transp_uio.uio_iov = &transp_iov[0];
1528 	transp_uio.uio_iovcnt = 1;
1529 	if (xfersize > uio->uio_resid)
1530 		xfersize = uio->uio_resid;
1531 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1532 	transp_uio.uio_offset = 0;
1533 	transp_uio.uio_segflg = UIO_SYSSPACE;
1534 	/*
1535 	 * Since transp_iov points to data, and td_ma page array
1536 	 * corresponds to original uio->uio_iov, we need to invert the
1537 	 * direction of the i/o operation as passed to
1538 	 * uiomove_fromphys().
1539 	 */
1540 	switch (uio->uio_rw) {
1541 	case UIO_WRITE:
1542 		transp_uio.uio_rw = UIO_READ;
1543 		break;
1544 	case UIO_READ:
1545 		transp_uio.uio_rw = UIO_WRITE;
1546 		break;
1547 	}
1548 	transp_uio.uio_td = uio->uio_td;
1549 	error = uiomove_fromphys(td->td_ma,
1550 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1551 	    xfersize, &transp_uio);
1552 	adv = xfersize - transp_uio.uio_resid;
1553 	pgadv =
1554 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1555 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1556 	td->td_ma += pgadv;
1557 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1558 	    pgadv));
1559 	td->td_ma_cnt -= pgadv;
1560 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1561 	uio->uio_iov->iov_len -= adv;
1562 	uio->uio_resid -= adv;
1563 	uio->uio_offset += adv;
1564 	return (error);
1565 }
1566 
1567 int
1568 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1569     struct uio *uio)
1570 {
1571 	struct thread *td;
1572 	vm_offset_t iov_base;
1573 	int cnt, pgadv;
1574 
1575 	td = curthread;
1576 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1577 	    uio->uio_segflg != UIO_USERSPACE)
1578 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1579 
1580 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1581 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1582 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1583 	switch (uio->uio_rw) {
1584 	case UIO_WRITE:
1585 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1586 		    offset, cnt);
1587 		break;
1588 	case UIO_READ:
1589 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1590 		    cnt);
1591 		break;
1592 	}
1593 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1594 	td->td_ma += pgadv;
1595 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1596 	    pgadv));
1597 	td->td_ma_cnt -= pgadv;
1598 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1599 	uio->uio_iov->iov_len -= cnt;
1600 	uio->uio_resid -= cnt;
1601 	uio->uio_offset += cnt;
1602 	return (0);
1603 }
1604 
1605 /*
1606  * File table truncate routine.
1607  */
1608 static int
1609 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1610     struct thread *td)
1611 {
1612 	struct mount *mp;
1613 	struct vnode *vp;
1614 	void *rl_cookie;
1615 	int error;
1616 
1617 	vp = fp->f_vnode;
1618 
1619 retry:
1620 	/*
1621 	 * Lock the whole range for truncation.  Otherwise split i/o
1622 	 * might happen partly before and partly after the truncation.
1623 	 */
1624 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1625 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1626 	if (error)
1627 		goto out1;
1628 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1629 	AUDIT_ARG_VNODE1(vp);
1630 	if (vp->v_type == VDIR) {
1631 		error = EISDIR;
1632 		goto out;
1633 	}
1634 #ifdef MAC
1635 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1636 	if (error)
1637 		goto out;
1638 #endif
1639 	error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0,
1640 	    fp->f_cred);
1641 out:
1642 	VOP_UNLOCK(vp);
1643 	vn_finished_write(mp);
1644 out1:
1645 	vn_rangelock_unlock(vp, rl_cookie);
1646 	if (error == ERELOOKUP)
1647 		goto retry;
1648 	return (error);
1649 }
1650 
1651 /*
1652  * Truncate a file that is already locked.
1653  */
1654 int
1655 vn_truncate_locked(struct vnode *vp, off_t length, bool sync,
1656     struct ucred *cred)
1657 {
1658 	struct vattr vattr;
1659 	int error;
1660 
1661 	error = VOP_ADD_WRITECOUNT(vp, 1);
1662 	if (error == 0) {
1663 		VATTR_NULL(&vattr);
1664 		vattr.va_size = length;
1665 		if (sync)
1666 			vattr.va_vaflags |= VA_SYNC;
1667 		error = VOP_SETATTR(vp, &vattr, cred);
1668 		VOP_ADD_WRITECOUNT_CHECKED(vp, -1);
1669 	}
1670 	return (error);
1671 }
1672 
1673 /*
1674  * File table vnode stat routine.
1675  */
1676 int
1677 vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred,
1678     struct thread *td)
1679 {
1680 	struct vnode *vp = fp->f_vnode;
1681 	int error;
1682 
1683 	vn_lock(vp, LK_SHARED | LK_RETRY);
1684 	error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td);
1685 	VOP_UNLOCK(vp);
1686 
1687 	return (error);
1688 }
1689 
1690 /*
1691  * File table vnode ioctl routine.
1692  */
1693 static int
1694 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1695     struct thread *td)
1696 {
1697 	struct vattr vattr;
1698 	struct vnode *vp;
1699 	struct fiobmap2_arg *bmarg;
1700 	int error;
1701 
1702 	vp = fp->f_vnode;
1703 	switch (vp->v_type) {
1704 	case VDIR:
1705 	case VREG:
1706 		switch (com) {
1707 		case FIONREAD:
1708 			vn_lock(vp, LK_SHARED | LK_RETRY);
1709 			error = VOP_GETATTR(vp, &vattr, active_cred);
1710 			VOP_UNLOCK(vp);
1711 			if (error == 0)
1712 				*(int *)data = vattr.va_size - fp->f_offset;
1713 			return (error);
1714 		case FIOBMAP2:
1715 			bmarg = (struct fiobmap2_arg *)data;
1716 			vn_lock(vp, LK_SHARED | LK_RETRY);
1717 #ifdef MAC
1718 			error = mac_vnode_check_read(active_cred, fp->f_cred,
1719 			    vp);
1720 			if (error == 0)
1721 #endif
1722 				error = VOP_BMAP(vp, bmarg->bn, NULL,
1723 				    &bmarg->bn, &bmarg->runp, &bmarg->runb);
1724 			VOP_UNLOCK(vp);
1725 			return (error);
1726 		case FIONBIO:
1727 		case FIOASYNC:
1728 			return (0);
1729 		default:
1730 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1731 			    active_cred, td));
1732 		}
1733 		break;
1734 	case VCHR:
1735 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1736 		    active_cred, td));
1737 	default:
1738 		return (ENOTTY);
1739 	}
1740 }
1741 
1742 /*
1743  * File table vnode poll routine.
1744  */
1745 static int
1746 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1747     struct thread *td)
1748 {
1749 	struct vnode *vp;
1750 	int error;
1751 
1752 	vp = fp->f_vnode;
1753 #if defined(MAC) || defined(AUDIT)
1754 	if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) {
1755 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1756 		AUDIT_ARG_VNODE1(vp);
1757 		error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1758 		VOP_UNLOCK(vp);
1759 		if (error != 0)
1760 			return (error);
1761 	}
1762 #endif
1763 	error = VOP_POLL(vp, events, fp->f_cred, td);
1764 	return (error);
1765 }
1766 
1767 /*
1768  * Acquire the requested lock and then check for validity.  LK_RETRY
1769  * permits vn_lock to return doomed vnodes.
1770  */
1771 static int __noinline
1772 _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line,
1773     int error)
1774 {
1775 
1776 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1777 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1778 
1779 	if (error == 0)
1780 		VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed"));
1781 
1782 	if ((flags & LK_RETRY) == 0) {
1783 		if (error == 0) {
1784 			VOP_UNLOCK(vp);
1785 			error = ENOENT;
1786 		}
1787 		return (error);
1788 	}
1789 
1790 	/*
1791 	 * LK_RETRY case.
1792 	 *
1793 	 * Nothing to do if we got the lock.
1794 	 */
1795 	if (error == 0)
1796 		return (0);
1797 
1798 	/*
1799 	 * Interlock was dropped by the call in _vn_lock.
1800 	 */
1801 	flags &= ~LK_INTERLOCK;
1802 	do {
1803 		error = VOP_LOCK1(vp, flags, file, line);
1804 	} while (error != 0);
1805 	return (0);
1806 }
1807 
1808 int
1809 _vn_lock(struct vnode *vp, int flags, const char *file, int line)
1810 {
1811 	int error;
1812 
1813 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1814 	    ("vn_lock: no locktype (%d passed)", flags));
1815 	VNPASS(vp->v_holdcnt > 0, vp);
1816 	error = VOP_LOCK1(vp, flags, file, line);
1817 	if (__predict_false(error != 0 || VN_IS_DOOMED(vp)))
1818 		return (_vn_lock_fallback(vp, flags, file, line, error));
1819 	return (0);
1820 }
1821 
1822 /*
1823  * File table vnode close routine.
1824  */
1825 static int
1826 vn_closefile(struct file *fp, struct thread *td)
1827 {
1828 	struct vnode *vp;
1829 	struct flock lf;
1830 	int error;
1831 	bool ref;
1832 
1833 	vp = fp->f_vnode;
1834 	fp->f_ops = &badfileops;
1835 	ref = (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1836 
1837 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1838 
1839 	if (__predict_false(ref)) {
1840 		lf.l_whence = SEEK_SET;
1841 		lf.l_start = 0;
1842 		lf.l_len = 0;
1843 		lf.l_type = F_UNLCK;
1844 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1845 		vrele(vp);
1846 	}
1847 	return (error);
1848 }
1849 
1850 /*
1851  * Preparing to start a filesystem write operation. If the operation is
1852  * permitted, then we bump the count of operations in progress and
1853  * proceed. If a suspend request is in progress, we wait until the
1854  * suspension is over, and then proceed.
1855  */
1856 static int
1857 vn_start_write_refed(struct mount *mp, int flags, bool mplocked)
1858 {
1859 	struct mount_pcpu *mpcpu;
1860 	int error, mflags;
1861 
1862 	if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 &&
1863 	    vfs_op_thread_enter(mp, mpcpu)) {
1864 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
1865 		vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1);
1866 		vfs_op_thread_exit(mp, mpcpu);
1867 		return (0);
1868 	}
1869 
1870 	if (mplocked)
1871 		mtx_assert(MNT_MTX(mp), MA_OWNED);
1872 	else
1873 		MNT_ILOCK(mp);
1874 
1875 	error = 0;
1876 
1877 	/*
1878 	 * Check on status of suspension.
1879 	 */
1880 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1881 	    mp->mnt_susp_owner != curthread) {
1882 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1883 		    (flags & PCATCH) : 0) | (PUSER - 1);
1884 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1885 			if (flags & V_NOWAIT) {
1886 				error = EWOULDBLOCK;
1887 				goto unlock;
1888 			}
1889 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1890 			    "suspfs", 0);
1891 			if (error)
1892 				goto unlock;
1893 		}
1894 	}
1895 	if (flags & V_XSLEEP)
1896 		goto unlock;
1897 	mp->mnt_writeopcount++;
1898 unlock:
1899 	if (error != 0 || (flags & V_XSLEEP) != 0)
1900 		MNT_REL(mp);
1901 	MNT_IUNLOCK(mp);
1902 	return (error);
1903 }
1904 
1905 int
1906 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1907 {
1908 	struct mount *mp;
1909 	int error;
1910 
1911 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1912 	    ("V_MNTREF requires mp"));
1913 
1914 	error = 0;
1915 	/*
1916 	 * If a vnode is provided, get and return the mount point that
1917 	 * to which it will write.
1918 	 */
1919 	if (vp != NULL) {
1920 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1921 			*mpp = NULL;
1922 			if (error != EOPNOTSUPP)
1923 				return (error);
1924 			return (0);
1925 		}
1926 	}
1927 	if ((mp = *mpp) == NULL)
1928 		return (0);
1929 
1930 	/*
1931 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1932 	 * a vfs_ref().
1933 	 * As long as a vnode is not provided we need to acquire a
1934 	 * refcount for the provided mountpoint too, in order to
1935 	 * emulate a vfs_ref().
1936 	 */
1937 	if (vp == NULL && (flags & V_MNTREF) == 0)
1938 		vfs_ref(mp);
1939 
1940 	return (vn_start_write_refed(mp, flags, false));
1941 }
1942 
1943 /*
1944  * Secondary suspension. Used by operations such as vop_inactive
1945  * routines that are needed by the higher level functions. These
1946  * are allowed to proceed until all the higher level functions have
1947  * completed (indicated by mnt_writeopcount dropping to zero). At that
1948  * time, these operations are halted until the suspension is over.
1949  */
1950 int
1951 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1952 {
1953 	struct mount *mp;
1954 	int error;
1955 
1956 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1957 	    ("V_MNTREF requires mp"));
1958 
1959  retry:
1960 	if (vp != NULL) {
1961 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1962 			*mpp = NULL;
1963 			if (error != EOPNOTSUPP)
1964 				return (error);
1965 			return (0);
1966 		}
1967 	}
1968 	/*
1969 	 * If we are not suspended or have not yet reached suspended
1970 	 * mode, then let the operation proceed.
1971 	 */
1972 	if ((mp = *mpp) == NULL)
1973 		return (0);
1974 
1975 	/*
1976 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1977 	 * a vfs_ref().
1978 	 * As long as a vnode is not provided we need to acquire a
1979 	 * refcount for the provided mountpoint too, in order to
1980 	 * emulate a vfs_ref().
1981 	 */
1982 	MNT_ILOCK(mp);
1983 	if (vp == NULL && (flags & V_MNTREF) == 0)
1984 		MNT_REF(mp);
1985 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1986 		mp->mnt_secondary_writes++;
1987 		mp->mnt_secondary_accwrites++;
1988 		MNT_IUNLOCK(mp);
1989 		return (0);
1990 	}
1991 	if (flags & V_NOWAIT) {
1992 		MNT_REL(mp);
1993 		MNT_IUNLOCK(mp);
1994 		return (EWOULDBLOCK);
1995 	}
1996 	/*
1997 	 * Wait for the suspension to finish.
1998 	 */
1999 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
2000 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
2001 	    "suspfs", 0);
2002 	vfs_rel(mp);
2003 	if (error == 0)
2004 		goto retry;
2005 	return (error);
2006 }
2007 
2008 /*
2009  * Filesystem write operation has completed. If we are suspending and this
2010  * operation is the last one, notify the suspender that the suspension is
2011  * now in effect.
2012  */
2013 void
2014 vn_finished_write(struct mount *mp)
2015 {
2016 	struct mount_pcpu *mpcpu;
2017 	int c;
2018 
2019 	if (mp == NULL)
2020 		return;
2021 
2022 	if (vfs_op_thread_enter(mp, mpcpu)) {
2023 		vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1);
2024 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
2025 		vfs_op_thread_exit(mp, mpcpu);
2026 		return;
2027 	}
2028 
2029 	MNT_ILOCK(mp);
2030 	vfs_assert_mount_counters(mp);
2031 	MNT_REL(mp);
2032 	c = --mp->mnt_writeopcount;
2033 	if (mp->mnt_vfs_ops == 0) {
2034 		MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0);
2035 		MNT_IUNLOCK(mp);
2036 		return;
2037 	}
2038 	if (c < 0)
2039 		vfs_dump_mount_counters(mp);
2040 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0)
2041 		wakeup(&mp->mnt_writeopcount);
2042 	MNT_IUNLOCK(mp);
2043 }
2044 
2045 /*
2046  * Filesystem secondary write operation has completed. If we are
2047  * suspending and this operation is the last one, notify the suspender
2048  * that the suspension is now in effect.
2049  */
2050 void
2051 vn_finished_secondary_write(struct mount *mp)
2052 {
2053 	if (mp == NULL)
2054 		return;
2055 	MNT_ILOCK(mp);
2056 	MNT_REL(mp);
2057 	mp->mnt_secondary_writes--;
2058 	if (mp->mnt_secondary_writes < 0)
2059 		panic("vn_finished_secondary_write: neg cnt");
2060 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
2061 	    mp->mnt_secondary_writes <= 0)
2062 		wakeup(&mp->mnt_secondary_writes);
2063 	MNT_IUNLOCK(mp);
2064 }
2065 
2066 /*
2067  * Request a filesystem to suspend write operations.
2068  */
2069 int
2070 vfs_write_suspend(struct mount *mp, int flags)
2071 {
2072 	int error;
2073 
2074 	vfs_op_enter(mp);
2075 
2076 	MNT_ILOCK(mp);
2077 	vfs_assert_mount_counters(mp);
2078 	if (mp->mnt_susp_owner == curthread) {
2079 		vfs_op_exit_locked(mp);
2080 		MNT_IUNLOCK(mp);
2081 		return (EALREADY);
2082 	}
2083 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
2084 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
2085 
2086 	/*
2087 	 * Unmount holds a write reference on the mount point.  If we
2088 	 * own busy reference and drain for writers, we deadlock with
2089 	 * the reference draining in the unmount path.  Callers of
2090 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
2091 	 * vfs_busy() reference is owned and caller is not in the
2092 	 * unmount context.
2093 	 */
2094 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
2095 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
2096 		vfs_op_exit_locked(mp);
2097 		MNT_IUNLOCK(mp);
2098 		return (EBUSY);
2099 	}
2100 
2101 	mp->mnt_kern_flag |= MNTK_SUSPEND;
2102 	mp->mnt_susp_owner = curthread;
2103 	if (mp->mnt_writeopcount > 0)
2104 		(void) msleep(&mp->mnt_writeopcount,
2105 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
2106 	else
2107 		MNT_IUNLOCK(mp);
2108 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) {
2109 		vfs_write_resume(mp, 0);
2110 		/* vfs_write_resume does vfs_op_exit() for us */
2111 	}
2112 	return (error);
2113 }
2114 
2115 /*
2116  * Request a filesystem to resume write operations.
2117  */
2118 void
2119 vfs_write_resume(struct mount *mp, int flags)
2120 {
2121 
2122 	MNT_ILOCK(mp);
2123 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
2124 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
2125 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
2126 				       MNTK_SUSPENDED);
2127 		mp->mnt_susp_owner = NULL;
2128 		wakeup(&mp->mnt_writeopcount);
2129 		wakeup(&mp->mnt_flag);
2130 		curthread->td_pflags &= ~TDP_IGNSUSP;
2131 		if ((flags & VR_START_WRITE) != 0) {
2132 			MNT_REF(mp);
2133 			mp->mnt_writeopcount++;
2134 		}
2135 		MNT_IUNLOCK(mp);
2136 		if ((flags & VR_NO_SUSPCLR) == 0)
2137 			VFS_SUSP_CLEAN(mp);
2138 		vfs_op_exit(mp);
2139 	} else if ((flags & VR_START_WRITE) != 0) {
2140 		MNT_REF(mp);
2141 		vn_start_write_refed(mp, 0, true);
2142 	} else {
2143 		MNT_IUNLOCK(mp);
2144 	}
2145 }
2146 
2147 /*
2148  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
2149  * methods.
2150  */
2151 int
2152 vfs_write_suspend_umnt(struct mount *mp)
2153 {
2154 	int error;
2155 
2156 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
2157 	    ("vfs_write_suspend_umnt: recursed"));
2158 
2159 	/* dounmount() already called vn_start_write(). */
2160 	for (;;) {
2161 		vn_finished_write(mp);
2162 		error = vfs_write_suspend(mp, 0);
2163 		if (error != 0) {
2164 			vn_start_write(NULL, &mp, V_WAIT);
2165 			return (error);
2166 		}
2167 		MNT_ILOCK(mp);
2168 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
2169 			break;
2170 		MNT_IUNLOCK(mp);
2171 		vn_start_write(NULL, &mp, V_WAIT);
2172 	}
2173 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
2174 	wakeup(&mp->mnt_flag);
2175 	MNT_IUNLOCK(mp);
2176 	curthread->td_pflags |= TDP_IGNSUSP;
2177 	return (0);
2178 }
2179 
2180 /*
2181  * Implement kqueues for files by translating it to vnode operation.
2182  */
2183 static int
2184 vn_kqfilter(struct file *fp, struct knote *kn)
2185 {
2186 
2187 	return (VOP_KQFILTER(fp->f_vnode, kn));
2188 }
2189 
2190 int
2191 vn_kqfilter_opath(struct file *fp, struct knote *kn)
2192 {
2193 	if ((fp->f_flag & FKQALLOWED) == 0)
2194 		return (EBADF);
2195 	return (vn_kqfilter(fp, kn));
2196 }
2197 
2198 /*
2199  * Simplified in-kernel wrapper calls for extended attribute access.
2200  * Both calls pass in a NULL credential, authorizing as "kernel" access.
2201  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
2202  */
2203 int
2204 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
2205     const char *attrname, int *buflen, char *buf, struct thread *td)
2206 {
2207 	struct uio	auio;
2208 	struct iovec	iov;
2209 	int	error;
2210 
2211 	iov.iov_len = *buflen;
2212 	iov.iov_base = buf;
2213 
2214 	auio.uio_iov = &iov;
2215 	auio.uio_iovcnt = 1;
2216 	auio.uio_rw = UIO_READ;
2217 	auio.uio_segflg = UIO_SYSSPACE;
2218 	auio.uio_td = td;
2219 	auio.uio_offset = 0;
2220 	auio.uio_resid = *buflen;
2221 
2222 	if ((ioflg & IO_NODELOCKED) == 0)
2223 		vn_lock(vp, LK_SHARED | LK_RETRY);
2224 
2225 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2226 
2227 	/* authorize attribute retrieval as kernel */
2228 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
2229 	    td);
2230 
2231 	if ((ioflg & IO_NODELOCKED) == 0)
2232 		VOP_UNLOCK(vp);
2233 
2234 	if (error == 0) {
2235 		*buflen = *buflen - auio.uio_resid;
2236 	}
2237 
2238 	return (error);
2239 }
2240 
2241 /*
2242  * XXX failure mode if partially written?
2243  */
2244 int
2245 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
2246     const char *attrname, int buflen, char *buf, struct thread *td)
2247 {
2248 	struct uio	auio;
2249 	struct iovec	iov;
2250 	struct mount	*mp;
2251 	int	error;
2252 
2253 	iov.iov_len = buflen;
2254 	iov.iov_base = buf;
2255 
2256 	auio.uio_iov = &iov;
2257 	auio.uio_iovcnt = 1;
2258 	auio.uio_rw = UIO_WRITE;
2259 	auio.uio_segflg = UIO_SYSSPACE;
2260 	auio.uio_td = td;
2261 	auio.uio_offset = 0;
2262 	auio.uio_resid = buflen;
2263 
2264 	if ((ioflg & IO_NODELOCKED) == 0) {
2265 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2266 			return (error);
2267 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2268 	}
2269 
2270 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2271 
2272 	/* authorize attribute setting as kernel */
2273 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
2274 
2275 	if ((ioflg & IO_NODELOCKED) == 0) {
2276 		vn_finished_write(mp);
2277 		VOP_UNLOCK(vp);
2278 	}
2279 
2280 	return (error);
2281 }
2282 
2283 int
2284 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2285     const char *attrname, struct thread *td)
2286 {
2287 	struct mount	*mp;
2288 	int	error;
2289 
2290 	if ((ioflg & IO_NODELOCKED) == 0) {
2291 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2292 			return (error);
2293 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2294 	}
2295 
2296 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2297 
2298 	/* authorize attribute removal as kernel */
2299 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2300 	if (error == EOPNOTSUPP)
2301 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2302 		    NULL, td);
2303 
2304 	if ((ioflg & IO_NODELOCKED) == 0) {
2305 		vn_finished_write(mp);
2306 		VOP_UNLOCK(vp);
2307 	}
2308 
2309 	return (error);
2310 }
2311 
2312 static int
2313 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2314     struct vnode **rvp)
2315 {
2316 
2317 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2318 }
2319 
2320 int
2321 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2322 {
2323 
2324 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2325 	    lkflags, rvp));
2326 }
2327 
2328 int
2329 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2330     int lkflags, struct vnode **rvp)
2331 {
2332 	struct mount *mp;
2333 	int ltype, error;
2334 
2335 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2336 	mp = vp->v_mount;
2337 	ltype = VOP_ISLOCKED(vp);
2338 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2339 	    ("vn_vget_ino: vp not locked"));
2340 	error = vfs_busy(mp, MBF_NOWAIT);
2341 	if (error != 0) {
2342 		vfs_ref(mp);
2343 		VOP_UNLOCK(vp);
2344 		error = vfs_busy(mp, 0);
2345 		vn_lock(vp, ltype | LK_RETRY);
2346 		vfs_rel(mp);
2347 		if (error != 0)
2348 			return (ENOENT);
2349 		if (VN_IS_DOOMED(vp)) {
2350 			vfs_unbusy(mp);
2351 			return (ENOENT);
2352 		}
2353 	}
2354 	VOP_UNLOCK(vp);
2355 	error = alloc(mp, alloc_arg, lkflags, rvp);
2356 	vfs_unbusy(mp);
2357 	if (error != 0 || *rvp != vp)
2358 		vn_lock(vp, ltype | LK_RETRY);
2359 	if (VN_IS_DOOMED(vp)) {
2360 		if (error == 0) {
2361 			if (*rvp == vp)
2362 				vunref(vp);
2363 			else
2364 				vput(*rvp);
2365 		}
2366 		error = ENOENT;
2367 	}
2368 	return (error);
2369 }
2370 
2371 int
2372 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2373     struct thread *td)
2374 {
2375 	off_t lim;
2376 	bool ktr_write;
2377 
2378 	if (td == NULL)
2379 		return (0);
2380 
2381 	/*
2382 	 * There are conditions where the limit is to be ignored.
2383 	 * However, since it is almost never reached, check it first.
2384 	 */
2385 	ktr_write = (td->td_pflags & TDP_INKTRACE) != 0;
2386 	lim = lim_cur(td, RLIMIT_FSIZE);
2387 	if (__predict_false(ktr_write))
2388 		lim = td->td_ktr_io_lim;
2389 	if (__predict_true((uoff_t)uio->uio_offset + uio->uio_resid <= lim))
2390 		return (0);
2391 
2392 	/*
2393 	 * The limit is reached.
2394 	 */
2395 	if (vp->v_type != VREG ||
2396 	    (td->td_pflags2 & TDP2_ACCT) != 0)
2397 		return (0);
2398 
2399 	if (!ktr_write || ktr_filesize_limit_signal) {
2400 		PROC_LOCK(td->td_proc);
2401 		kern_psignal(td->td_proc, SIGXFSZ);
2402 		PROC_UNLOCK(td->td_proc);
2403 	}
2404 	return (EFBIG);
2405 }
2406 
2407 int
2408 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2409     struct thread *td)
2410 {
2411 	struct vnode *vp;
2412 
2413 	vp = fp->f_vnode;
2414 #ifdef AUDIT
2415 	vn_lock(vp, LK_SHARED | LK_RETRY);
2416 	AUDIT_ARG_VNODE1(vp);
2417 	VOP_UNLOCK(vp);
2418 #endif
2419 	return (setfmode(td, active_cred, vp, mode));
2420 }
2421 
2422 int
2423 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2424     struct thread *td)
2425 {
2426 	struct vnode *vp;
2427 
2428 	vp = fp->f_vnode;
2429 #ifdef AUDIT
2430 	vn_lock(vp, LK_SHARED | LK_RETRY);
2431 	AUDIT_ARG_VNODE1(vp);
2432 	VOP_UNLOCK(vp);
2433 #endif
2434 	return (setfown(td, active_cred, vp, uid, gid));
2435 }
2436 
2437 void
2438 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2439 {
2440 	vm_object_t object;
2441 
2442 	if ((object = vp->v_object) == NULL)
2443 		return;
2444 	VM_OBJECT_WLOCK(object);
2445 	vm_object_page_remove(object, start, end, 0);
2446 	VM_OBJECT_WUNLOCK(object);
2447 }
2448 
2449 int
2450 vn_bmap_seekhole_locked(struct vnode *vp, u_long cmd, off_t *off,
2451     struct ucred *cred)
2452 {
2453 	struct vattr va;
2454 	daddr_t bn, bnp;
2455 	uint64_t bsize;
2456 	off_t noff;
2457 	int error;
2458 
2459 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2460 	    ("%s: Wrong command %lu", __func__, cmd));
2461 	ASSERT_VOP_LOCKED(vp, "vn_bmap_seekhole_locked");
2462 
2463 	if (vp->v_type != VREG) {
2464 		error = ENOTTY;
2465 		goto out;
2466 	}
2467 	error = VOP_GETATTR(vp, &va, cred);
2468 	if (error != 0)
2469 		goto out;
2470 	noff = *off;
2471 	if (noff >= va.va_size) {
2472 		error = ENXIO;
2473 		goto out;
2474 	}
2475 	bsize = vp->v_mount->mnt_stat.f_iosize;
2476 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize -
2477 	    noff % bsize) {
2478 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2479 		if (error == EOPNOTSUPP) {
2480 			error = ENOTTY;
2481 			goto out;
2482 		}
2483 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2484 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2485 			noff = bn * bsize;
2486 			if (noff < *off)
2487 				noff = *off;
2488 			goto out;
2489 		}
2490 	}
2491 	if (noff > va.va_size)
2492 		noff = va.va_size;
2493 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2494 	if (cmd == FIOSEEKDATA)
2495 		error = ENXIO;
2496 out:
2497 	if (error == 0)
2498 		*off = noff;
2499 	return (error);
2500 }
2501 
2502 int
2503 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2504 {
2505 	int error;
2506 
2507 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2508 	    ("%s: Wrong command %lu", __func__, cmd));
2509 
2510 	if (vn_lock(vp, LK_SHARED) != 0)
2511 		return (EBADF);
2512 	error = vn_bmap_seekhole_locked(vp, cmd, off, cred);
2513 	VOP_UNLOCK(vp);
2514 	return (error);
2515 }
2516 
2517 int
2518 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2519 {
2520 	struct ucred *cred;
2521 	struct vnode *vp;
2522 	struct vattr vattr;
2523 	off_t foffset, size;
2524 	int error, noneg;
2525 
2526 	cred = td->td_ucred;
2527 	vp = fp->f_vnode;
2528 	foffset = foffset_lock(fp, 0);
2529 	noneg = (vp->v_type != VCHR);
2530 	error = 0;
2531 	switch (whence) {
2532 	case L_INCR:
2533 		if (noneg &&
2534 		    (foffset < 0 ||
2535 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2536 			error = EOVERFLOW;
2537 			break;
2538 		}
2539 		offset += foffset;
2540 		break;
2541 	case L_XTND:
2542 		vn_lock(vp, LK_SHARED | LK_RETRY);
2543 		error = VOP_GETATTR(vp, &vattr, cred);
2544 		VOP_UNLOCK(vp);
2545 		if (error)
2546 			break;
2547 
2548 		/*
2549 		 * If the file references a disk device, then fetch
2550 		 * the media size and use that to determine the ending
2551 		 * offset.
2552 		 */
2553 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2554 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2555 			vattr.va_size = size;
2556 		if (noneg &&
2557 		    (vattr.va_size > OFF_MAX ||
2558 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2559 			error = EOVERFLOW;
2560 			break;
2561 		}
2562 		offset += vattr.va_size;
2563 		break;
2564 	case L_SET:
2565 		break;
2566 	case SEEK_DATA:
2567 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2568 		if (error == ENOTTY)
2569 			error = EINVAL;
2570 		break;
2571 	case SEEK_HOLE:
2572 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2573 		if (error == ENOTTY)
2574 			error = EINVAL;
2575 		break;
2576 	default:
2577 		error = EINVAL;
2578 	}
2579 	if (error == 0 && noneg && offset < 0)
2580 		error = EINVAL;
2581 	if (error != 0)
2582 		goto drop;
2583 	VFS_KNOTE_UNLOCKED(vp, 0);
2584 	td->td_uretoff.tdu_off = offset;
2585 drop:
2586 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2587 	return (error);
2588 }
2589 
2590 int
2591 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2592     struct thread *td)
2593 {
2594 	int error;
2595 
2596 	/*
2597 	 * Grant permission if the caller is the owner of the file, or
2598 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2599 	 * on the file.  If the time pointer is null, then write
2600 	 * permission on the file is also sufficient.
2601 	 *
2602 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2603 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2604 	 * will be allowed to set the times [..] to the current
2605 	 * server time.
2606 	 */
2607 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2608 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2609 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2610 	return (error);
2611 }
2612 
2613 int
2614 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2615 {
2616 	struct vnode *vp;
2617 	int error;
2618 
2619 	if (fp->f_type == DTYPE_FIFO)
2620 		kif->kf_type = KF_TYPE_FIFO;
2621 	else
2622 		kif->kf_type = KF_TYPE_VNODE;
2623 	vp = fp->f_vnode;
2624 	vref(vp);
2625 	FILEDESC_SUNLOCK(fdp);
2626 	error = vn_fill_kinfo_vnode(vp, kif);
2627 	vrele(vp);
2628 	FILEDESC_SLOCK(fdp);
2629 	return (error);
2630 }
2631 
2632 static inline void
2633 vn_fill_junk(struct kinfo_file *kif)
2634 {
2635 	size_t len, olen;
2636 
2637 	/*
2638 	 * Simulate vn_fullpath returning changing values for a given
2639 	 * vp during e.g. coredump.
2640 	 */
2641 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2642 	olen = strlen(kif->kf_path);
2643 	if (len < olen)
2644 		strcpy(&kif->kf_path[len - 1], "$");
2645 	else
2646 		for (; olen < len; olen++)
2647 			strcpy(&kif->kf_path[olen], "A");
2648 }
2649 
2650 int
2651 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2652 {
2653 	struct vattr va;
2654 	char *fullpath, *freepath;
2655 	int error;
2656 
2657 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2658 	freepath = NULL;
2659 	fullpath = "-";
2660 	error = vn_fullpath(vp, &fullpath, &freepath);
2661 	if (error == 0) {
2662 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2663 	}
2664 	if (freepath != NULL)
2665 		free(freepath, M_TEMP);
2666 
2667 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2668 		vn_fill_junk(kif);
2669 	);
2670 
2671 	/*
2672 	 * Retrieve vnode attributes.
2673 	 */
2674 	va.va_fsid = VNOVAL;
2675 	va.va_rdev = NODEV;
2676 	vn_lock(vp, LK_SHARED | LK_RETRY);
2677 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2678 	VOP_UNLOCK(vp);
2679 	if (error != 0)
2680 		return (error);
2681 	if (va.va_fsid != VNOVAL)
2682 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2683 	else
2684 		kif->kf_un.kf_file.kf_file_fsid =
2685 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2686 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2687 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2688 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2689 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2690 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2691 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2692 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2693 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2694 	return (0);
2695 }
2696 
2697 int
2698 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2699     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2700     struct thread *td)
2701 {
2702 #ifdef HWPMC_HOOKS
2703 	struct pmckern_map_in pkm;
2704 #endif
2705 	struct mount *mp;
2706 	struct vnode *vp;
2707 	vm_object_t object;
2708 	vm_prot_t maxprot;
2709 	boolean_t writecounted;
2710 	int error;
2711 
2712 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2713     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2714 	/*
2715 	 * POSIX shared-memory objects are defined to have
2716 	 * kernel persistence, and are not defined to support
2717 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2718 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2719 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2720 	 * flag to request this behavior.
2721 	 */
2722 	if ((fp->f_flag & FPOSIXSHM) != 0)
2723 		flags |= MAP_NOSYNC;
2724 #endif
2725 	vp = fp->f_vnode;
2726 
2727 	/*
2728 	 * Ensure that file and memory protections are
2729 	 * compatible.  Note that we only worry about
2730 	 * writability if mapping is shared; in this case,
2731 	 * current and max prot are dictated by the open file.
2732 	 * XXX use the vnode instead?  Problem is: what
2733 	 * credentials do we use for determination? What if
2734 	 * proc does a setuid?
2735 	 */
2736 	mp = vp->v_mount;
2737 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2738 		maxprot = VM_PROT_NONE;
2739 		if ((prot & VM_PROT_EXECUTE) != 0)
2740 			return (EACCES);
2741 	} else
2742 		maxprot = VM_PROT_EXECUTE;
2743 	if ((fp->f_flag & FREAD) != 0)
2744 		maxprot |= VM_PROT_READ;
2745 	else if ((prot & VM_PROT_READ) != 0)
2746 		return (EACCES);
2747 
2748 	/*
2749 	 * If we are sharing potential changes via MAP_SHARED and we
2750 	 * are trying to get write permission although we opened it
2751 	 * without asking for it, bail out.
2752 	 */
2753 	if ((flags & MAP_SHARED) != 0) {
2754 		if ((fp->f_flag & FWRITE) != 0)
2755 			maxprot |= VM_PROT_WRITE;
2756 		else if ((prot & VM_PROT_WRITE) != 0)
2757 			return (EACCES);
2758 	} else {
2759 		maxprot |= VM_PROT_WRITE;
2760 		cap_maxprot |= VM_PROT_WRITE;
2761 	}
2762 	maxprot &= cap_maxprot;
2763 
2764 	/*
2765 	 * For regular files and shared memory, POSIX requires that
2766 	 * the value of foff be a legitimate offset within the data
2767 	 * object.  In particular, negative offsets are invalid.
2768 	 * Blocking negative offsets and overflows here avoids
2769 	 * possible wraparound or user-level access into reserved
2770 	 * ranges of the data object later.  In contrast, POSIX does
2771 	 * not dictate how offsets are used by device drivers, so in
2772 	 * the case of a device mapping a negative offset is passed
2773 	 * on.
2774 	 */
2775 	if (
2776 #ifdef _LP64
2777 	    size > OFF_MAX ||
2778 #endif
2779 	    foff > OFF_MAX - size)
2780 		return (EINVAL);
2781 
2782 	writecounted = FALSE;
2783 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2784 	    &foff, &object, &writecounted);
2785 	if (error != 0)
2786 		return (error);
2787 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2788 	    foff, writecounted, td);
2789 	if (error != 0) {
2790 		/*
2791 		 * If this mapping was accounted for in the vnode's
2792 		 * writecount, then undo that now.
2793 		 */
2794 		if (writecounted)
2795 			vm_pager_release_writecount(object, 0, size);
2796 		vm_object_deallocate(object);
2797 	}
2798 #ifdef HWPMC_HOOKS
2799 	/* Inform hwpmc(4) if an executable is being mapped. */
2800 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2801 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2802 			pkm.pm_file = vp;
2803 			pkm.pm_address = (uintptr_t) *addr;
2804 			PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm);
2805 		}
2806 	}
2807 #endif
2808 	return (error);
2809 }
2810 
2811 void
2812 vn_fsid(struct vnode *vp, struct vattr *va)
2813 {
2814 	fsid_t *f;
2815 
2816 	f = &vp->v_mount->mnt_stat.f_fsid;
2817 	va->va_fsid = (uint32_t)f->val[1];
2818 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2819 	va->va_fsid += (uint32_t)f->val[0];
2820 }
2821 
2822 int
2823 vn_fsync_buf(struct vnode *vp, int waitfor)
2824 {
2825 	struct buf *bp, *nbp;
2826 	struct bufobj *bo;
2827 	struct mount *mp;
2828 	int error, maxretry;
2829 
2830 	error = 0;
2831 	maxretry = 10000;     /* large, arbitrarily chosen */
2832 	mp = NULL;
2833 	if (vp->v_type == VCHR) {
2834 		VI_LOCK(vp);
2835 		mp = vp->v_rdev->si_mountpt;
2836 		VI_UNLOCK(vp);
2837 	}
2838 	bo = &vp->v_bufobj;
2839 	BO_LOCK(bo);
2840 loop1:
2841 	/*
2842 	 * MARK/SCAN initialization to avoid infinite loops.
2843 	 */
2844         TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
2845 		bp->b_vflags &= ~BV_SCANNED;
2846 		bp->b_error = 0;
2847 	}
2848 
2849 	/*
2850 	 * Flush all dirty buffers associated with a vnode.
2851 	 */
2852 loop2:
2853 	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2854 		if ((bp->b_vflags & BV_SCANNED) != 0)
2855 			continue;
2856 		bp->b_vflags |= BV_SCANNED;
2857 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
2858 			if (waitfor != MNT_WAIT)
2859 				continue;
2860 			if (BUF_LOCK(bp,
2861 			    LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL,
2862 			    BO_LOCKPTR(bo)) != 0) {
2863 				BO_LOCK(bo);
2864 				goto loop1;
2865 			}
2866 			BO_LOCK(bo);
2867 		}
2868 		BO_UNLOCK(bo);
2869 		KASSERT(bp->b_bufobj == bo,
2870 		    ("bp %p wrong b_bufobj %p should be %p",
2871 		    bp, bp->b_bufobj, bo));
2872 		if ((bp->b_flags & B_DELWRI) == 0)
2873 			panic("fsync: not dirty");
2874 		if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) {
2875 			vfs_bio_awrite(bp);
2876 		} else {
2877 			bremfree(bp);
2878 			bawrite(bp);
2879 		}
2880 		if (maxretry < 1000)
2881 			pause("dirty", hz < 1000 ? 1 : hz / 1000);
2882 		BO_LOCK(bo);
2883 		goto loop2;
2884 	}
2885 
2886 	/*
2887 	 * If synchronous the caller expects us to completely resolve all
2888 	 * dirty buffers in the system.  Wait for in-progress I/O to
2889 	 * complete (which could include background bitmap writes), then
2890 	 * retry if dirty blocks still exist.
2891 	 */
2892 	if (waitfor == MNT_WAIT) {
2893 		bufobj_wwait(bo, 0, 0);
2894 		if (bo->bo_dirty.bv_cnt > 0) {
2895 			/*
2896 			 * If we are unable to write any of these buffers
2897 			 * then we fail now rather than trying endlessly
2898 			 * to write them out.
2899 			 */
2900 			TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
2901 				if ((error = bp->b_error) != 0)
2902 					break;
2903 			if ((mp != NULL && mp->mnt_secondary_writes > 0) ||
2904 			    (error == 0 && --maxretry >= 0))
2905 				goto loop1;
2906 			if (error == 0)
2907 				error = EAGAIN;
2908 		}
2909 	}
2910 	BO_UNLOCK(bo);
2911 	if (error != 0)
2912 		vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error);
2913 
2914 	return (error);
2915 }
2916 
2917 /*
2918  * Copies a byte range from invp to outvp.  Calls VOP_COPY_FILE_RANGE()
2919  * or vn_generic_copy_file_range() after rangelocking the byte ranges,
2920  * to do the actual copy.
2921  * vn_generic_copy_file_range() is factored out, so it can be called
2922  * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from
2923  * different file systems.
2924  */
2925 int
2926 vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp,
2927     off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred,
2928     struct ucred *outcred, struct thread *fsize_td)
2929 {
2930 	int error;
2931 	size_t len;
2932 	uint64_t uval;
2933 
2934 	len = *lenp;
2935 	*lenp = 0;		/* For error returns. */
2936 	error = 0;
2937 
2938 	/* Do some sanity checks on the arguments. */
2939 	if (invp->v_type == VDIR || outvp->v_type == VDIR)
2940 		error = EISDIR;
2941 	else if (*inoffp < 0 || *outoffp < 0 ||
2942 	    invp->v_type != VREG || outvp->v_type != VREG)
2943 		error = EINVAL;
2944 	if (error != 0)
2945 		goto out;
2946 
2947 	/* Ensure offset + len does not wrap around. */
2948 	uval = *inoffp;
2949 	uval += len;
2950 	if (uval > INT64_MAX)
2951 		len = INT64_MAX - *inoffp;
2952 	uval = *outoffp;
2953 	uval += len;
2954 	if (uval > INT64_MAX)
2955 		len = INT64_MAX - *outoffp;
2956 	if (len == 0)
2957 		goto out;
2958 
2959 	/*
2960 	 * If the two vnode are for the same file system, call
2961 	 * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range()
2962 	 * which can handle copies across multiple file systems.
2963 	 */
2964 	*lenp = len;
2965 	if (invp->v_mount == outvp->v_mount)
2966 		error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp,
2967 		    lenp, flags, incred, outcred, fsize_td);
2968 	else
2969 		error = vn_generic_copy_file_range(invp, inoffp, outvp,
2970 		    outoffp, lenp, flags, incred, outcred, fsize_td);
2971 out:
2972 	return (error);
2973 }
2974 
2975 /*
2976  * Test len bytes of data starting at dat for all bytes == 0.
2977  * Return true if all bytes are zero, false otherwise.
2978  * Expects dat to be well aligned.
2979  */
2980 static bool
2981 mem_iszero(void *dat, int len)
2982 {
2983 	int i;
2984 	const u_int *p;
2985 	const char *cp;
2986 
2987 	for (p = dat; len > 0; len -= sizeof(*p), p++) {
2988 		if (len >= sizeof(*p)) {
2989 			if (*p != 0)
2990 				return (false);
2991 		} else {
2992 			cp = (const char *)p;
2993 			for (i = 0; i < len; i++, cp++)
2994 				if (*cp != '\0')
2995 					return (false);
2996 		}
2997 	}
2998 	return (true);
2999 }
3000 
3001 /*
3002  * Look for a hole in the output file and, if found, adjust *outoffp
3003  * and *xferp to skip past the hole.
3004  * *xferp is the entire hole length to be written and xfer2 is how many bytes
3005  * to be written as 0's upon return.
3006  */
3007 static off_t
3008 vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp,
3009     off_t *dataoffp, off_t *holeoffp, struct ucred *cred)
3010 {
3011 	int error;
3012 	off_t delta;
3013 
3014 	if (*holeoffp == 0 || *holeoffp <= *outoffp) {
3015 		*dataoffp = *outoffp;
3016 		error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred,
3017 		    curthread);
3018 		if (error == 0) {
3019 			*holeoffp = *dataoffp;
3020 			error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred,
3021 			    curthread);
3022 		}
3023 		if (error != 0 || *holeoffp == *dataoffp) {
3024 			/*
3025 			 * Since outvp is unlocked, it may be possible for
3026 			 * another thread to do a truncate(), lseek(), write()
3027 			 * creating a hole at startoff between the above
3028 			 * VOP_IOCTL() calls, if the other thread does not do
3029 			 * rangelocking.
3030 			 * If that happens, *holeoffp == *dataoffp and finding
3031 			 * the hole has failed, so disable vn_skip_hole().
3032 			 */
3033 			*holeoffp = -1;	/* Disable use of vn_skip_hole(). */
3034 			return (xfer2);
3035 		}
3036 		KASSERT(*dataoffp >= *outoffp,
3037 		    ("vn_skip_hole: dataoff=%jd < outoff=%jd",
3038 		    (intmax_t)*dataoffp, (intmax_t)*outoffp));
3039 		KASSERT(*holeoffp > *dataoffp,
3040 		    ("vn_skip_hole: holeoff=%jd <= dataoff=%jd",
3041 		    (intmax_t)*holeoffp, (intmax_t)*dataoffp));
3042 	}
3043 
3044 	/*
3045 	 * If there is a hole before the data starts, advance *outoffp and
3046 	 * *xferp past the hole.
3047 	 */
3048 	if (*dataoffp > *outoffp) {
3049 		delta = *dataoffp - *outoffp;
3050 		if (delta >= *xferp) {
3051 			/* Entire *xferp is a hole. */
3052 			*outoffp += *xferp;
3053 			*xferp = 0;
3054 			return (0);
3055 		}
3056 		*xferp -= delta;
3057 		*outoffp += delta;
3058 		xfer2 = MIN(xfer2, *xferp);
3059 	}
3060 
3061 	/*
3062 	 * If a hole starts before the end of this xfer2, reduce this xfer2 so
3063 	 * that the write ends at the start of the hole.
3064 	 * *holeoffp should always be greater than *outoffp, but for the
3065 	 * non-INVARIANTS case, check this to make sure xfer2 remains a sane
3066 	 * value.
3067 	 */
3068 	if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2)
3069 		xfer2 = *holeoffp - *outoffp;
3070 	return (xfer2);
3071 }
3072 
3073 /*
3074  * Write an xfer sized chunk to outvp in blksize blocks from dat.
3075  * dat is a maximum of blksize in length and can be written repeatedly in
3076  * the chunk.
3077  * If growfile == true, just grow the file via vn_truncate_locked() instead
3078  * of doing actual writes.
3079  * If checkhole == true, a hole is being punched, so skip over any hole
3080  * already in the output file.
3081  */
3082 static int
3083 vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer,
3084     u_long blksize, bool growfile, bool checkhole, struct ucred *cred)
3085 {
3086 	struct mount *mp;
3087 	off_t dataoff, holeoff, xfer2;
3088 	int error;
3089 
3090 	/*
3091 	 * Loop around doing writes of blksize until write has been completed.
3092 	 * Lock/unlock on each loop iteration so that a bwillwrite() can be
3093 	 * done for each iteration, since the xfer argument can be very
3094 	 * large if there is a large hole to punch in the output file.
3095 	 */
3096 	error = 0;
3097 	holeoff = 0;
3098 	do {
3099 		xfer2 = MIN(xfer, blksize);
3100 		if (checkhole) {
3101 			/*
3102 			 * Punching a hole.  Skip writing if there is
3103 			 * already a hole in the output file.
3104 			 */
3105 			xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer,
3106 			    &dataoff, &holeoff, cred);
3107 			if (xfer == 0)
3108 				break;
3109 			if (holeoff < 0)
3110 				checkhole = false;
3111 			KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd",
3112 			    (intmax_t)xfer2));
3113 		}
3114 		bwillwrite();
3115 		mp = NULL;
3116 		error = vn_start_write(outvp, &mp, V_WAIT);
3117 		if (error != 0)
3118 			break;
3119 		if (growfile) {
3120 			error = vn_lock(outvp, LK_EXCLUSIVE);
3121 			if (error == 0) {
3122 				error = vn_truncate_locked(outvp, outoff + xfer,
3123 				    false, cred);
3124 				VOP_UNLOCK(outvp);
3125 			}
3126 		} else {
3127 			error = vn_lock(outvp, vn_lktype_write(mp, outvp));
3128 			if (error == 0) {
3129 				error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2,
3130 				    outoff, UIO_SYSSPACE, IO_NODELOCKED,
3131 				    curthread->td_ucred, cred, NULL, curthread);
3132 				outoff += xfer2;
3133 				xfer -= xfer2;
3134 				VOP_UNLOCK(outvp);
3135 			}
3136 		}
3137 		if (mp != NULL)
3138 			vn_finished_write(mp);
3139 	} while (!growfile && xfer > 0 && error == 0);
3140 	return (error);
3141 }
3142 
3143 /*
3144  * Copy a byte range of one file to another.  This function can handle the
3145  * case where invp and outvp are on different file systems.
3146  * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there
3147  * is no better file system specific way to do it.
3148  */
3149 int
3150 vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp,
3151     struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags,
3152     struct ucred *incred, struct ucred *outcred, struct thread *fsize_td)
3153 {
3154 	struct vattr va, inva;
3155 	struct mount *mp;
3156 	struct uio io;
3157 	off_t startoff, endoff, xfer, xfer2;
3158 	u_long blksize;
3159 	int error, interrupted;
3160 	bool cantseek, readzeros, eof, lastblock, holetoeof;
3161 	ssize_t aresid;
3162 	size_t copylen, len, rem, savlen;
3163 	char *dat;
3164 	long holein, holeout;
3165 
3166 	holein = holeout = 0;
3167 	savlen = len = *lenp;
3168 	error = 0;
3169 	interrupted = 0;
3170 	dat = NULL;
3171 
3172 	error = vn_lock(invp, LK_SHARED);
3173 	if (error != 0)
3174 		goto out;
3175 	if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0)
3176 		holein = 0;
3177 	if (holein > 0)
3178 		error = VOP_GETATTR(invp, &inva, incred);
3179 	VOP_UNLOCK(invp);
3180 	if (error != 0)
3181 		goto out;
3182 
3183 	mp = NULL;
3184 	error = vn_start_write(outvp, &mp, V_WAIT);
3185 	if (error == 0)
3186 		error = vn_lock(outvp, LK_EXCLUSIVE);
3187 	if (error == 0) {
3188 		/*
3189 		 * If fsize_td != NULL, do a vn_rlimit_fsize() call,
3190 		 * now that outvp is locked.
3191 		 */
3192 		if (fsize_td != NULL) {
3193 			io.uio_offset = *outoffp;
3194 			io.uio_resid = len;
3195 			error = vn_rlimit_fsize(outvp, &io, fsize_td);
3196 			if (error != 0)
3197 				error = EFBIG;
3198 		}
3199 		if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0)
3200 			holeout = 0;
3201 		/*
3202 		 * Holes that are past EOF do not need to be written as a block
3203 		 * of zero bytes.  So, truncate the output file as far as
3204 		 * possible and then use va.va_size to decide if writing 0
3205 		 * bytes is necessary in the loop below.
3206 		 */
3207 		if (error == 0)
3208 			error = VOP_GETATTR(outvp, &va, outcred);
3209 		if (error == 0 && va.va_size > *outoffp && va.va_size <=
3210 		    *outoffp + len) {
3211 #ifdef MAC
3212 			error = mac_vnode_check_write(curthread->td_ucred,
3213 			    outcred, outvp);
3214 			if (error == 0)
3215 #endif
3216 				error = vn_truncate_locked(outvp, *outoffp,
3217 				    false, outcred);
3218 			if (error == 0)
3219 				va.va_size = *outoffp;
3220 		}
3221 		VOP_UNLOCK(outvp);
3222 	}
3223 	if (mp != NULL)
3224 		vn_finished_write(mp);
3225 	if (error != 0)
3226 		goto out;
3227 
3228 	/*
3229 	 * Set the blksize to the larger of the hole sizes for invp and outvp.
3230 	 * If hole sizes aren't available, set the blksize to the larger
3231 	 * f_iosize of invp and outvp.
3232 	 * This code expects the hole sizes and f_iosizes to be powers of 2.
3233 	 * This value is clipped at 4Kbytes and 1Mbyte.
3234 	 */
3235 	blksize = MAX(holein, holeout);
3236 
3237 	/* Clip len to end at an exact multiple of hole size. */
3238 	if (blksize > 1) {
3239 		rem = *inoffp % blksize;
3240 		if (rem > 0)
3241 			rem = blksize - rem;
3242 		if (len > rem && len - rem > blksize)
3243 			len = savlen = rounddown(len - rem, blksize) + rem;
3244 	}
3245 
3246 	if (blksize <= 1)
3247 		blksize = MAX(invp->v_mount->mnt_stat.f_iosize,
3248 		    outvp->v_mount->mnt_stat.f_iosize);
3249 	if (blksize < 4096)
3250 		blksize = 4096;
3251 	else if (blksize > 1024 * 1024)
3252 		blksize = 1024 * 1024;
3253 	dat = malloc(blksize, M_TEMP, M_WAITOK);
3254 
3255 	/*
3256 	 * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA
3257 	 * to find holes.  Otherwise, just scan the read block for all 0s
3258 	 * in the inner loop where the data copying is done.
3259 	 * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may
3260 	 * support holes on the server, but do not support FIOSEEKHOLE.
3261 	 */
3262 	holetoeof = eof = false;
3263 	while (len > 0 && error == 0 && !eof && interrupted == 0) {
3264 		endoff = 0;			/* To shut up compilers. */
3265 		cantseek = true;
3266 		startoff = *inoffp;
3267 		copylen = len;
3268 
3269 		/*
3270 		 * Find the next data area.  If there is just a hole to EOF,
3271 		 * FIOSEEKDATA should fail with ENXIO.
3272 		 * (I do not know if any file system will report a hole to
3273 		 *  EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA
3274 		 *  will fail for those file systems.)
3275 		 *
3276 		 * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE,
3277 		 * the code just falls through to the inner copy loop.
3278 		 */
3279 		error = EINVAL;
3280 		if (holein > 0) {
3281 			error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0,
3282 			    incred, curthread);
3283 			if (error == ENXIO) {
3284 				startoff = endoff = inva.va_size;
3285 				eof = holetoeof = true;
3286 				error = 0;
3287 			}
3288 		}
3289 		if (error == 0 && !holetoeof) {
3290 			endoff = startoff;
3291 			error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0,
3292 			    incred, curthread);
3293 			/*
3294 			 * Since invp is unlocked, it may be possible for
3295 			 * another thread to do a truncate(), lseek(), write()
3296 			 * creating a hole at startoff between the above
3297 			 * VOP_IOCTL() calls, if the other thread does not do
3298 			 * rangelocking.
3299 			 * If that happens, startoff == endoff and finding
3300 			 * the hole has failed, so set an error.
3301 			 */
3302 			if (error == 0 && startoff == endoff)
3303 				error = EINVAL; /* Any error. Reset to 0. */
3304 		}
3305 		if (error == 0) {
3306 			if (startoff > *inoffp) {
3307 				/* Found hole before data block. */
3308 				xfer = MIN(startoff - *inoffp, len);
3309 				if (*outoffp < va.va_size) {
3310 					/* Must write 0s to punch hole. */
3311 					xfer2 = MIN(va.va_size - *outoffp,
3312 					    xfer);
3313 					memset(dat, 0, MIN(xfer2, blksize));
3314 					error = vn_write_outvp(outvp, dat,
3315 					    *outoffp, xfer2, blksize, false,
3316 					    holeout > 0, outcred);
3317 				}
3318 
3319 				if (error == 0 && *outoffp + xfer >
3320 				    va.va_size && (xfer == len || holetoeof)) {
3321 					/* Grow output file (hole at end). */
3322 					error = vn_write_outvp(outvp, dat,
3323 					    *outoffp, xfer, blksize, true,
3324 					    false, outcred);
3325 				}
3326 				if (error == 0) {
3327 					*inoffp += xfer;
3328 					*outoffp += xfer;
3329 					len -= xfer;
3330 					if (len < savlen)
3331 						interrupted = sig_intr();
3332 				}
3333 			}
3334 			copylen = MIN(len, endoff - startoff);
3335 			cantseek = false;
3336 		} else {
3337 			cantseek = true;
3338 			startoff = *inoffp;
3339 			copylen = len;
3340 			error = 0;
3341 		}
3342 
3343 		xfer = blksize;
3344 		if (cantseek) {
3345 			/*
3346 			 * Set first xfer to end at a block boundary, so that
3347 			 * holes are more likely detected in the loop below via
3348 			 * the for all bytes 0 method.
3349 			 */
3350 			xfer -= (*inoffp % blksize);
3351 		}
3352 		/* Loop copying the data block. */
3353 		while (copylen > 0 && error == 0 && !eof && interrupted == 0) {
3354 			if (copylen < xfer)
3355 				xfer = copylen;
3356 			error = vn_lock(invp, LK_SHARED);
3357 			if (error != 0)
3358 				goto out;
3359 			error = vn_rdwr(UIO_READ, invp, dat, xfer,
3360 			    startoff, UIO_SYSSPACE, IO_NODELOCKED,
3361 			    curthread->td_ucred, incred, &aresid,
3362 			    curthread);
3363 			VOP_UNLOCK(invp);
3364 			lastblock = false;
3365 			if (error == 0 && aresid > 0) {
3366 				/* Stop the copy at EOF on the input file. */
3367 				xfer -= aresid;
3368 				eof = true;
3369 				lastblock = true;
3370 			}
3371 			if (error == 0) {
3372 				/*
3373 				 * Skip the write for holes past the initial EOF
3374 				 * of the output file, unless this is the last
3375 				 * write of the output file at EOF.
3376 				 */
3377 				readzeros = cantseek ? mem_iszero(dat, xfer) :
3378 				    false;
3379 				if (xfer == len)
3380 					lastblock = true;
3381 				if (!cantseek || *outoffp < va.va_size ||
3382 				    lastblock || !readzeros)
3383 					error = vn_write_outvp(outvp, dat,
3384 					    *outoffp, xfer, blksize,
3385 					    readzeros && lastblock &&
3386 					    *outoffp >= va.va_size, false,
3387 					    outcred);
3388 				if (error == 0) {
3389 					*inoffp += xfer;
3390 					startoff += xfer;
3391 					*outoffp += xfer;
3392 					copylen -= xfer;
3393 					len -= xfer;
3394 					if (len < savlen)
3395 						interrupted = sig_intr();
3396 				}
3397 			}
3398 			xfer = blksize;
3399 		}
3400 	}
3401 out:
3402 	*lenp = savlen - len;
3403 	free(dat, M_TEMP);
3404 	return (error);
3405 }
3406 
3407 static int
3408 vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
3409 {
3410 	struct mount *mp;
3411 	struct vnode *vp;
3412 	off_t olen, ooffset;
3413 	int error;
3414 #ifdef AUDIT
3415 	int audited_vnode1 = 0;
3416 #endif
3417 
3418 	vp = fp->f_vnode;
3419 	if (vp->v_type != VREG)
3420 		return (ENODEV);
3421 
3422 	/* Allocating blocks may take a long time, so iterate. */
3423 	for (;;) {
3424 		olen = len;
3425 		ooffset = offset;
3426 
3427 		bwillwrite();
3428 		mp = NULL;
3429 		error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
3430 		if (error != 0)
3431 			break;
3432 		error = vn_lock(vp, LK_EXCLUSIVE);
3433 		if (error != 0) {
3434 			vn_finished_write(mp);
3435 			break;
3436 		}
3437 #ifdef AUDIT
3438 		if (!audited_vnode1) {
3439 			AUDIT_ARG_VNODE1(vp);
3440 			audited_vnode1 = 1;
3441 		}
3442 #endif
3443 #ifdef MAC
3444 		error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp);
3445 		if (error == 0)
3446 #endif
3447 			error = VOP_ALLOCATE(vp, &offset, &len);
3448 		VOP_UNLOCK(vp);
3449 		vn_finished_write(mp);
3450 
3451 		if (olen + ooffset != offset + len) {
3452 			panic("offset + len changed from %jx/%jx to %jx/%jx",
3453 			    ooffset, olen, offset, len);
3454 		}
3455 		if (error != 0 || len == 0)
3456 			break;
3457 		KASSERT(olen > len, ("Iteration did not make progress?"));
3458 		maybe_yield();
3459 	}
3460 
3461 	return (error);
3462 }
3463 
3464 static int
3465 vn_deallocate_impl(struct vnode *vp, off_t *offset, off_t *length, int flags,
3466     int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3467 {
3468 	struct mount *mp;
3469 	void *rl_cookie;
3470 	off_t off, len;
3471 	int error;
3472 #ifdef AUDIT
3473 	bool audited_vnode1 = false;
3474 #endif
3475 
3476 	rl_cookie = NULL;
3477 	error = 0;
3478 	mp = NULL;
3479 	off = *offset;
3480 	len = *length;
3481 
3482 	if ((ioflag & (IO_NODELOCKED | IO_RANGELOCKED)) == 0)
3483 		rl_cookie = vn_rangelock_wlock(vp, off, off + len);
3484 	while (len > 0 && error == 0) {
3485 		/*
3486 		 * Try to deallocate the longest range in one pass.
3487 		 * In case a pass takes too long to be executed, it returns
3488 		 * partial result. The residue will be proceeded in the next
3489 		 * pass.
3490 		 */
3491 
3492 		if ((ioflag & IO_NODELOCKED) == 0) {
3493 			bwillwrite();
3494 			if ((error = vn_start_write(vp, &mp,
3495 			    V_WAIT | PCATCH)) != 0)
3496 				goto out;
3497 			vn_lock(vp, vn_lktype_write(mp, vp) | LK_RETRY);
3498 		}
3499 #ifdef AUDIT
3500 		if (!audited_vnode1) {
3501 			AUDIT_ARG_VNODE1(vp);
3502 			audited_vnode1 = true;
3503 		}
3504 #endif
3505 
3506 #ifdef MAC
3507 		if ((ioflag & IO_NOMACCHECK) == 0)
3508 			error = mac_vnode_check_write(active_cred, file_cred,
3509 			    vp);
3510 #endif
3511 		if (error == 0)
3512 			error = VOP_DEALLOCATE(vp, &off, &len, flags, ioflag,
3513 			    active_cred);
3514 
3515 		if ((ioflag & IO_NODELOCKED) == 0) {
3516 			VOP_UNLOCK(vp);
3517 			if (mp != NULL) {
3518 				vn_finished_write(mp);
3519 				mp = NULL;
3520 			}
3521 		}
3522 	}
3523 out:
3524 	if (rl_cookie != NULL)
3525 		vn_rangelock_unlock(vp, rl_cookie);
3526 	*offset = off;
3527 	*length = len;
3528 	return (error);
3529 }
3530 
3531 int
3532 vn_deallocate(struct vnode *vp, off_t *offset, off_t *length, int flags,
3533     int ioflag, struct ucred *active_cred, struct ucred *file_cred)
3534 {
3535 	if (*offset < 0 || *length <= 0 || *length > OFF_MAX - *offset ||
3536 	    flags != 0)
3537 		return (EINVAL);
3538 	if (vp->v_type != VREG)
3539 		return (ENODEV);
3540 
3541 	return (vn_deallocate_impl(vp, offset, length, flags, ioflag,
3542 	    active_cred, file_cred));
3543 }
3544 
3545 static int
3546 vn_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
3547     struct ucred *active_cred, struct thread *td)
3548 {
3549 	int error;
3550 	struct vnode *vp;
3551 	int ioflag;
3552 
3553 	vp = fp->f_vnode;
3554 
3555 	if (cmd != SPACECTL_DEALLOC || *offset < 0 || *length <= 0 ||
3556 	    *length > OFF_MAX - *offset || flags != 0)
3557 		return (EINVAL);
3558 	if (vp->v_type != VREG)
3559 		return (ENODEV);
3560 
3561 	ioflag = get_write_ioflag(fp);
3562 
3563 	switch (cmd) {
3564 	case SPACECTL_DEALLOC:
3565 		error = vn_deallocate_impl(vp, offset, length, flags, ioflag,
3566 		    active_cred, fp->f_cred);
3567 		break;
3568 	default:
3569 		panic("vn_fspacectl: unknown cmd %d", cmd);
3570 	}
3571 
3572 	return (error);
3573 }
3574 
3575 static u_long vn_lock_pair_pause_cnt;
3576 SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD,
3577     &vn_lock_pair_pause_cnt, 0,
3578     "Count of vn_lock_pair deadlocks");
3579 
3580 u_int vn_lock_pair_pause_max;
3581 SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW,
3582     &vn_lock_pair_pause_max, 0,
3583     "Max ticks for vn_lock_pair deadlock avoidance sleep");
3584 
3585 static void
3586 vn_lock_pair_pause(const char *wmesg)
3587 {
3588 	atomic_add_long(&vn_lock_pair_pause_cnt, 1);
3589 	pause(wmesg, prng32_bounded(vn_lock_pair_pause_max));
3590 }
3591 
3592 /*
3593  * Lock pair of vnodes vp1, vp2, avoiding lock order reversal.
3594  * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1
3595  * must be unlocked.  Same for vp2 and vp2_locked.  One of the vnodes
3596  * can be NULL.
3597  *
3598  * The function returns with both vnodes exclusively locked, and
3599  * guarantees that it does not create lock order reversal with other
3600  * threads during its execution.  Both vnodes could be unlocked
3601  * temporary (and reclaimed).
3602  */
3603 void
3604 vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2,
3605     bool vp2_locked)
3606 {
3607 	int error;
3608 
3609 	if (vp1 == NULL && vp2 == NULL)
3610 		return;
3611 	if (vp1 != NULL) {
3612 		if (vp1_locked)
3613 			ASSERT_VOP_ELOCKED(vp1, "vp1");
3614 		else
3615 			ASSERT_VOP_UNLOCKED(vp1, "vp1");
3616 	} else {
3617 		vp1_locked = true;
3618 	}
3619 	if (vp2 != NULL) {
3620 		if (vp2_locked)
3621 			ASSERT_VOP_ELOCKED(vp2, "vp2");
3622 		else
3623 			ASSERT_VOP_UNLOCKED(vp2, "vp2");
3624 	} else {
3625 		vp2_locked = true;
3626 	}
3627 	if (!vp1_locked && !vp2_locked) {
3628 		vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3629 		vp1_locked = true;
3630 	}
3631 
3632 	for (;;) {
3633 		if (vp1_locked && vp2_locked)
3634 			break;
3635 		if (vp1_locked && vp2 != NULL) {
3636 			if (vp1 != NULL) {
3637 				error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT,
3638 				    __FILE__, __LINE__);
3639 				if (error == 0)
3640 					break;
3641 				VOP_UNLOCK(vp1);
3642 				vp1_locked = false;
3643 				vn_lock_pair_pause("vlp1");
3644 			}
3645 			vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3646 			vp2_locked = true;
3647 		}
3648 		if (vp2_locked && vp1 != NULL) {
3649 			if (vp2 != NULL) {
3650 				error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT,
3651 				    __FILE__, __LINE__);
3652 				if (error == 0)
3653 					break;
3654 				VOP_UNLOCK(vp2);
3655 				vp2_locked = false;
3656 				vn_lock_pair_pause("vlp2");
3657 			}
3658 			vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY);
3659 			vp1_locked = true;
3660 		}
3661 	}
3662 	if (vp1 != NULL)
3663 		ASSERT_VOP_ELOCKED(vp1, "vp1 ret");
3664 	if (vp2 != NULL)
3665 		ASSERT_VOP_ELOCKED(vp2, "vp2 ret");
3666 }
3667 
3668 int
3669 vn_lktype_write(struct mount *mp, struct vnode *vp)
3670 {
3671 	if (MNT_SHARED_WRITES(mp) ||
3672 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount)))
3673 		return (LK_SHARED);
3674 	return (LK_EXCLUSIVE);
3675 }
3676