xref: /freebsd/sys/kern/vfs_vnops.c (revision 1c05a6ea6b849ff95e539c31adea887c644a6a01)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_hwpmc_hooks.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/disk.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kdb.h>
55 #include <sys/stat.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/limits.h>
59 #include <sys/lock.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/vnode.h>
65 #include <sys/bio.h>
66 #include <sys/buf.h>
67 #include <sys/filio.h>
68 #include <sys/resourcevar.h>
69 #include <sys/rwlock.h>
70 #include <sys/sx.h>
71 #include <sys/sysctl.h>
72 #include <sys/ttycom.h>
73 #include <sys/conf.h>
74 #include <sys/syslog.h>
75 #include <sys/unistd.h>
76 #include <sys/user.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vnode_pager.h>
88 
89 #ifdef HWPMC_HOOKS
90 #include <sys/pmckern.h>
91 #endif
92 
93 static fo_rdwr_t	vn_read;
94 static fo_rdwr_t	vn_write;
95 static fo_rdwr_t	vn_io_fault;
96 static fo_truncate_t	vn_truncate;
97 static fo_ioctl_t	vn_ioctl;
98 static fo_poll_t	vn_poll;
99 static fo_kqfilter_t	vn_kqfilter;
100 static fo_stat_t	vn_statfile;
101 static fo_close_t	vn_closefile;
102 static fo_mmap_t	vn_mmap;
103 
104 struct 	fileops vnops = {
105 	.fo_read = vn_io_fault,
106 	.fo_write = vn_io_fault,
107 	.fo_truncate = vn_truncate,
108 	.fo_ioctl = vn_ioctl,
109 	.fo_poll = vn_poll,
110 	.fo_kqfilter = vn_kqfilter,
111 	.fo_stat = vn_statfile,
112 	.fo_close = vn_closefile,
113 	.fo_chmod = vn_chmod,
114 	.fo_chown = vn_chown,
115 	.fo_sendfile = vn_sendfile,
116 	.fo_seek = vn_seek,
117 	.fo_fill_kinfo = vn_fill_kinfo,
118 	.fo_mmap = vn_mmap,
119 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
120 };
121 
122 static const int io_hold_cnt = 16;
123 static int vn_io_fault_enable = 1;
124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
125     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
126 static int vn_io_fault_prefault = 0;
127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
128     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
129 static u_long vn_io_faults_cnt;
130 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
131     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
132 
133 /*
134  * Returns true if vn_io_fault mode of handling the i/o request should
135  * be used.
136  */
137 static bool
138 do_vn_io_fault(struct vnode *vp, struct uio *uio)
139 {
140 	struct mount *mp;
141 
142 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
143 	    (mp = vp->v_mount) != NULL &&
144 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
145 }
146 
147 /*
148  * Structure used to pass arguments to vn_io_fault1(), to do either
149  * file- or vnode-based I/O calls.
150  */
151 struct vn_io_fault_args {
152 	enum {
153 		VN_IO_FAULT_FOP,
154 		VN_IO_FAULT_VOP
155 	} kind;
156 	struct ucred *cred;
157 	int flags;
158 	union {
159 		struct fop_args_tag {
160 			struct file *fp;
161 			fo_rdwr_t *doio;
162 		} fop_args;
163 		struct vop_args_tag {
164 			struct vnode *vp;
165 		} vop_args;
166 	} args;
167 };
168 
169 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
170     struct vn_io_fault_args *args, struct thread *td);
171 
172 int
173 vn_open(ndp, flagp, cmode, fp)
174 	struct nameidata *ndp;
175 	int *flagp, cmode;
176 	struct file *fp;
177 {
178 	struct thread *td = ndp->ni_cnd.cn_thread;
179 
180 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
181 }
182 
183 /*
184  * Common code for vnode open operations via a name lookup.
185  * Lookup the vnode and invoke VOP_CREATE if needed.
186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
187  *
188  * Note that this does NOT free nameidata for the successful case,
189  * due to the NDINIT being done elsewhere.
190  */
191 int
192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
193     struct ucred *cred, struct file *fp)
194 {
195 	struct vnode *vp;
196 	struct mount *mp;
197 	struct thread *td = ndp->ni_cnd.cn_thread;
198 	struct vattr vat;
199 	struct vattr *vap = &vat;
200 	int fmode, error;
201 
202 restart:
203 	fmode = *flagp;
204 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
205 	    O_EXCL | O_DIRECTORY))
206 		return (EINVAL);
207 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
208 		ndp->ni_cnd.cn_nameiop = CREATE;
209 		/*
210 		 * Set NOCACHE to avoid flushing the cache when
211 		 * rolling in many files at once.
212 		*/
213 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
214 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
215 			ndp->ni_cnd.cn_flags |= FOLLOW;
216 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
217 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
218 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
219 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
220 		bwillwrite();
221 		if ((error = namei(ndp)) != 0)
222 			return (error);
223 		if (ndp->ni_vp == NULL) {
224 			VATTR_NULL(vap);
225 			vap->va_type = VREG;
226 			vap->va_mode = cmode;
227 			if (fmode & O_EXCL)
228 				vap->va_vaflags |= VA_EXCLUSIVE;
229 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
230 				NDFREE(ndp, NDF_ONLY_PNBUF);
231 				vput(ndp->ni_dvp);
232 				if ((error = vn_start_write(NULL, &mp,
233 				    V_XSLEEP | PCATCH)) != 0)
234 					return (error);
235 				goto restart;
236 			}
237 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
238 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
239 #ifdef MAC
240 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
241 			    &ndp->ni_cnd, vap);
242 			if (error == 0)
243 #endif
244 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
245 						   &ndp->ni_cnd, vap);
246 			vput(ndp->ni_dvp);
247 			vn_finished_write(mp);
248 			if (error) {
249 				NDFREE(ndp, NDF_ONLY_PNBUF);
250 				return (error);
251 			}
252 			fmode &= ~O_TRUNC;
253 			vp = ndp->ni_vp;
254 		} else {
255 			if (ndp->ni_dvp == ndp->ni_vp)
256 				vrele(ndp->ni_dvp);
257 			else
258 				vput(ndp->ni_dvp);
259 			ndp->ni_dvp = NULL;
260 			vp = ndp->ni_vp;
261 			if (fmode & O_EXCL) {
262 				error = EEXIST;
263 				goto bad;
264 			}
265 			fmode &= ~O_CREAT;
266 		}
267 	} else {
268 		ndp->ni_cnd.cn_nameiop = LOOKUP;
269 		ndp->ni_cnd.cn_flags = ISOPEN |
270 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
271 		if (!(fmode & FWRITE))
272 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
273 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
274 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
275 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
276 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
277 		if ((error = namei(ndp)) != 0)
278 			return (error);
279 		vp = ndp->ni_vp;
280 	}
281 	error = vn_open_vnode(vp, fmode, cred, td, fp);
282 	if (error)
283 		goto bad;
284 	*flagp = fmode;
285 	return (0);
286 bad:
287 	NDFREE(ndp, NDF_ONLY_PNBUF);
288 	vput(vp);
289 	*flagp = fmode;
290 	ndp->ni_vp = NULL;
291 	return (error);
292 }
293 
294 /*
295  * Common code for vnode open operations once a vnode is located.
296  * Check permissions, and call the VOP_OPEN routine.
297  */
298 int
299 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
300     struct thread *td, struct file *fp)
301 {
302 	accmode_t accmode;
303 	struct flock lf;
304 	int error, lock_flags, type;
305 
306 	if (vp->v_type == VLNK)
307 		return (EMLINK);
308 	if (vp->v_type == VSOCK)
309 		return (EOPNOTSUPP);
310 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
311 		return (ENOTDIR);
312 	accmode = 0;
313 	if (fmode & (FWRITE | O_TRUNC)) {
314 		if (vp->v_type == VDIR)
315 			return (EISDIR);
316 		accmode |= VWRITE;
317 	}
318 	if (fmode & FREAD)
319 		accmode |= VREAD;
320 	if (fmode & FEXEC)
321 		accmode |= VEXEC;
322 	if ((fmode & O_APPEND) && (fmode & FWRITE))
323 		accmode |= VAPPEND;
324 #ifdef MAC
325 	if (fmode & O_CREAT)
326 		accmode |= VCREAT;
327 	if (fmode & O_VERIFY)
328 		accmode |= VVERIFY;
329 	error = mac_vnode_check_open(cred, vp, accmode);
330 	if (error)
331 		return (error);
332 
333 	accmode &= ~(VCREAT | VVERIFY);
334 #endif
335 	if ((fmode & O_CREAT) == 0) {
336 		if (accmode & VWRITE) {
337 			error = vn_writechk(vp);
338 			if (error)
339 				return (error);
340 		}
341 		if (accmode) {
342 		        error = VOP_ACCESS(vp, accmode, cred, td);
343 			if (error)
344 				return (error);
345 		}
346 	}
347 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
348 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
349 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
350 		return (error);
351 
352 	while ((fmode & (O_EXLOCK | O_SHLOCK)) != 0) {
353 		KASSERT(fp != NULL, ("open with flock requires fp"));
354 		if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) {
355 			error = EOPNOTSUPP;
356 			break;
357 		}
358 		lock_flags = VOP_ISLOCKED(vp);
359 		VOP_UNLOCK(vp, 0);
360 		lf.l_whence = SEEK_SET;
361 		lf.l_start = 0;
362 		lf.l_len = 0;
363 		if (fmode & O_EXLOCK)
364 			lf.l_type = F_WRLCK;
365 		else
366 			lf.l_type = F_RDLCK;
367 		type = F_FLOCK;
368 		if ((fmode & FNONBLOCK) == 0)
369 			type |= F_WAIT;
370 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
371 		if (error == 0)
372 			fp->f_flag |= FHASLOCK;
373 		vn_lock(vp, lock_flags | LK_RETRY);
374 		if (error != 0)
375 			break;
376 		if ((vp->v_iflag & VI_DOOMED) != 0) {
377 			error = ENOENT;
378 			break;
379 		}
380 
381 		/*
382 		 * Another thread might have used this vnode as an
383 		 * executable while the vnode lock was dropped.
384 		 * Ensure the vnode is still able to be opened for
385 		 * writing after the lock has been obtained.
386 		 */
387 		if ((accmode & VWRITE) != 0)
388 			error = vn_writechk(vp);
389 		break;
390 	}
391 
392 	if (error != 0) {
393 		fp->f_flag |= FOPENFAILED;
394 		fp->f_vnode = vp;
395 		if (fp->f_ops == &badfileops) {
396 			fp->f_type = DTYPE_VNODE;
397 			fp->f_ops = &vnops;
398 		}
399 		vref(vp);
400 	} else if  ((fmode & FWRITE) != 0) {
401 		VOP_ADD_WRITECOUNT(vp, 1);
402 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
403 		    __func__, vp, vp->v_writecount);
404 	}
405 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
406 	return (error);
407 }
408 
409 /*
410  * Check for write permissions on the specified vnode.
411  * Prototype text segments cannot be written.
412  */
413 int
414 vn_writechk(struct vnode *vp)
415 {
416 
417 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
418 	/*
419 	 * If there's shared text associated with
420 	 * the vnode, try to free it up once.  If
421 	 * we fail, we can't allow writing.
422 	 */
423 	if (VOP_IS_TEXT(vp))
424 		return (ETXTBSY);
425 
426 	return (0);
427 }
428 
429 /*
430  * Vnode close call
431  */
432 static int
433 vn_close1(struct vnode *vp, int flags, struct ucred *file_cred,
434     struct thread *td, bool keep_ref)
435 {
436 	struct mount *mp;
437 	int error, lock_flags;
438 
439 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
440 	    MNT_EXTENDED_SHARED(vp->v_mount))
441 		lock_flags = LK_SHARED;
442 	else
443 		lock_flags = LK_EXCLUSIVE;
444 
445 	vn_start_write(vp, &mp, V_WAIT);
446 	vn_lock(vp, lock_flags | LK_RETRY);
447 	AUDIT_ARG_VNODE1(vp);
448 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
449 		VNASSERT(vp->v_writecount > 0, vp,
450 		    ("vn_close: negative writecount"));
451 		VOP_ADD_WRITECOUNT(vp, -1);
452 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
453 		    __func__, vp, vp->v_writecount);
454 	}
455 	error = VOP_CLOSE(vp, flags, file_cred, td);
456 	if (keep_ref)
457 		VOP_UNLOCK(vp, 0);
458 	else
459 		vput(vp);
460 	vn_finished_write(mp);
461 	return (error);
462 }
463 
464 int
465 vn_close(struct vnode *vp, int flags, struct ucred *file_cred,
466     struct thread *td)
467 {
468 
469 	return (vn_close1(vp, flags, file_cred, td, false));
470 }
471 
472 /*
473  * Heuristic to detect sequential operation.
474  */
475 static int
476 sequential_heuristic(struct uio *uio, struct file *fp)
477 {
478 
479 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
480 	if (fp->f_flag & FRDAHEAD)
481 		return (fp->f_seqcount << IO_SEQSHIFT);
482 
483 	/*
484 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
485 	 * that the first I/O is normally considered to be slightly
486 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
487 	 * unless previous seeks have reduced f_seqcount to 0, in which
488 	 * case offset 0 is not special.
489 	 */
490 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
491 	    uio->uio_offset == fp->f_nextoff) {
492 		/*
493 		 * f_seqcount is in units of fixed-size blocks so that it
494 		 * depends mainly on the amount of sequential I/O and not
495 		 * much on the number of sequential I/O's.  The fixed size
496 		 * of 16384 is hard-coded here since it is (not quite) just
497 		 * a magic size that works well here.  This size is more
498 		 * closely related to the best I/O size for real disks than
499 		 * to any block size used by software.
500 		 */
501 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
502 		if (fp->f_seqcount > IO_SEQMAX)
503 			fp->f_seqcount = IO_SEQMAX;
504 		return (fp->f_seqcount << IO_SEQSHIFT);
505 	}
506 
507 	/* Not sequential.  Quickly draw-down sequentiality. */
508 	if (fp->f_seqcount > 1)
509 		fp->f_seqcount = 1;
510 	else
511 		fp->f_seqcount = 0;
512 	return (0);
513 }
514 
515 /*
516  * Package up an I/O request on a vnode into a uio and do it.
517  */
518 int
519 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
520     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
521     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
522 {
523 	struct uio auio;
524 	struct iovec aiov;
525 	struct mount *mp;
526 	struct ucred *cred;
527 	void *rl_cookie;
528 	struct vn_io_fault_args args;
529 	int error, lock_flags;
530 
531 	auio.uio_iov = &aiov;
532 	auio.uio_iovcnt = 1;
533 	aiov.iov_base = base;
534 	aiov.iov_len = len;
535 	auio.uio_resid = len;
536 	auio.uio_offset = offset;
537 	auio.uio_segflg = segflg;
538 	auio.uio_rw = rw;
539 	auio.uio_td = td;
540 	error = 0;
541 
542 	if ((ioflg & IO_NODELOCKED) == 0) {
543 		if ((ioflg & IO_RANGELOCKED) == 0) {
544 			if (rw == UIO_READ) {
545 				rl_cookie = vn_rangelock_rlock(vp, offset,
546 				    offset + len);
547 			} else {
548 				rl_cookie = vn_rangelock_wlock(vp, offset,
549 				    offset + len);
550 			}
551 		} else
552 			rl_cookie = NULL;
553 		mp = NULL;
554 		if (rw == UIO_WRITE) {
555 			if (vp->v_type != VCHR &&
556 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
557 			    != 0)
558 				goto out;
559 			if (MNT_SHARED_WRITES(mp) ||
560 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
561 				lock_flags = LK_SHARED;
562 			else
563 				lock_flags = LK_EXCLUSIVE;
564 		} else
565 			lock_flags = LK_SHARED;
566 		vn_lock(vp, lock_flags | LK_RETRY);
567 	} else
568 		rl_cookie = NULL;
569 
570 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
571 #ifdef MAC
572 	if ((ioflg & IO_NOMACCHECK) == 0) {
573 		if (rw == UIO_READ)
574 			error = mac_vnode_check_read(active_cred, file_cred,
575 			    vp);
576 		else
577 			error = mac_vnode_check_write(active_cred, file_cred,
578 			    vp);
579 	}
580 #endif
581 	if (error == 0) {
582 		if (file_cred != NULL)
583 			cred = file_cred;
584 		else
585 			cred = active_cred;
586 		if (do_vn_io_fault(vp, &auio)) {
587 			args.kind = VN_IO_FAULT_VOP;
588 			args.cred = cred;
589 			args.flags = ioflg;
590 			args.args.vop_args.vp = vp;
591 			error = vn_io_fault1(vp, &auio, &args, td);
592 		} else if (rw == UIO_READ) {
593 			error = VOP_READ(vp, &auio, ioflg, cred);
594 		} else /* if (rw == UIO_WRITE) */ {
595 			error = VOP_WRITE(vp, &auio, ioflg, cred);
596 		}
597 	}
598 	if (aresid)
599 		*aresid = auio.uio_resid;
600 	else
601 		if (auio.uio_resid && error == 0)
602 			error = EIO;
603 	if ((ioflg & IO_NODELOCKED) == 0) {
604 		VOP_UNLOCK(vp, 0);
605 		if (mp != NULL)
606 			vn_finished_write(mp);
607 	}
608  out:
609 	if (rl_cookie != NULL)
610 		vn_rangelock_unlock(vp, rl_cookie);
611 	return (error);
612 }
613 
614 /*
615  * Package up an I/O request on a vnode into a uio and do it.  The I/O
616  * request is split up into smaller chunks and we try to avoid saturating
617  * the buffer cache while potentially holding a vnode locked, so we
618  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
619  * to give other processes a chance to lock the vnode (either other processes
620  * core'ing the same binary, or unrelated processes scanning the directory).
621  */
622 int
623 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
624     file_cred, aresid, td)
625 	enum uio_rw rw;
626 	struct vnode *vp;
627 	void *base;
628 	size_t len;
629 	off_t offset;
630 	enum uio_seg segflg;
631 	int ioflg;
632 	struct ucred *active_cred;
633 	struct ucred *file_cred;
634 	size_t *aresid;
635 	struct thread *td;
636 {
637 	int error = 0;
638 	ssize_t iaresid;
639 
640 	do {
641 		int chunk;
642 
643 		/*
644 		 * Force `offset' to a multiple of MAXBSIZE except possibly
645 		 * for the first chunk, so that filesystems only need to
646 		 * write full blocks except possibly for the first and last
647 		 * chunks.
648 		 */
649 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
650 
651 		if (chunk > len)
652 			chunk = len;
653 		if (rw != UIO_READ && vp->v_type == VREG)
654 			bwillwrite();
655 		iaresid = 0;
656 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
657 		    ioflg, active_cred, file_cred, &iaresid, td);
658 		len -= chunk;	/* aresid calc already includes length */
659 		if (error)
660 			break;
661 		offset += chunk;
662 		base = (char *)base + chunk;
663 		kern_yield(PRI_USER);
664 	} while (len);
665 	if (aresid)
666 		*aresid = len + iaresid;
667 	return (error);
668 }
669 
670 off_t
671 foffset_lock(struct file *fp, int flags)
672 {
673 	struct mtx *mtxp;
674 	off_t res;
675 
676 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
677 
678 #if OFF_MAX <= LONG_MAX
679 	/*
680 	 * Caller only wants the current f_offset value.  Assume that
681 	 * the long and shorter integer types reads are atomic.
682 	 */
683 	if ((flags & FOF_NOLOCK) != 0)
684 		return (fp->f_offset);
685 #endif
686 
687 	/*
688 	 * According to McKusick the vn lock was protecting f_offset here.
689 	 * It is now protected by the FOFFSET_LOCKED flag.
690 	 */
691 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
692 	mtx_lock(mtxp);
693 	if ((flags & FOF_NOLOCK) == 0) {
694 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
695 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
696 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
697 			    "vofflock", 0);
698 		}
699 		fp->f_vnread_flags |= FOFFSET_LOCKED;
700 	}
701 	res = fp->f_offset;
702 	mtx_unlock(mtxp);
703 	return (res);
704 }
705 
706 void
707 foffset_unlock(struct file *fp, off_t val, int flags)
708 {
709 	struct mtx *mtxp;
710 
711 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
712 
713 #if OFF_MAX <= LONG_MAX
714 	if ((flags & FOF_NOLOCK) != 0) {
715 		if ((flags & FOF_NOUPDATE) == 0)
716 			fp->f_offset = val;
717 		if ((flags & FOF_NEXTOFF) != 0)
718 			fp->f_nextoff = val;
719 		return;
720 	}
721 #endif
722 
723 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
724 	mtx_lock(mtxp);
725 	if ((flags & FOF_NOUPDATE) == 0)
726 		fp->f_offset = val;
727 	if ((flags & FOF_NEXTOFF) != 0)
728 		fp->f_nextoff = val;
729 	if ((flags & FOF_NOLOCK) == 0) {
730 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
731 		    ("Lost FOFFSET_LOCKED"));
732 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
733 			wakeup(&fp->f_vnread_flags);
734 		fp->f_vnread_flags = 0;
735 	}
736 	mtx_unlock(mtxp);
737 }
738 
739 void
740 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
741 {
742 
743 	if ((flags & FOF_OFFSET) == 0)
744 		uio->uio_offset = foffset_lock(fp, flags);
745 }
746 
747 void
748 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
749 {
750 
751 	if ((flags & FOF_OFFSET) == 0)
752 		foffset_unlock(fp, uio->uio_offset, flags);
753 }
754 
755 static int
756 get_advice(struct file *fp, struct uio *uio)
757 {
758 	struct mtx *mtxp;
759 	int ret;
760 
761 	ret = POSIX_FADV_NORMAL;
762 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
763 		return (ret);
764 
765 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
766 	mtx_lock(mtxp);
767 	if (fp->f_advice != NULL &&
768 	    uio->uio_offset >= fp->f_advice->fa_start &&
769 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
770 		ret = fp->f_advice->fa_advice;
771 	mtx_unlock(mtxp);
772 	return (ret);
773 }
774 
775 /*
776  * File table vnode read routine.
777  */
778 static int
779 vn_read(fp, uio, active_cred, flags, td)
780 	struct file *fp;
781 	struct uio *uio;
782 	struct ucred *active_cred;
783 	int flags;
784 	struct thread *td;
785 {
786 	struct vnode *vp;
787 	off_t orig_offset;
788 	int error, ioflag;
789 	int advice;
790 
791 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
792 	    uio->uio_td, td));
793 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
794 	vp = fp->f_vnode;
795 	ioflag = 0;
796 	if (fp->f_flag & FNONBLOCK)
797 		ioflag |= IO_NDELAY;
798 	if (fp->f_flag & O_DIRECT)
799 		ioflag |= IO_DIRECT;
800 	advice = get_advice(fp, uio);
801 	vn_lock(vp, LK_SHARED | LK_RETRY);
802 
803 	switch (advice) {
804 	case POSIX_FADV_NORMAL:
805 	case POSIX_FADV_SEQUENTIAL:
806 	case POSIX_FADV_NOREUSE:
807 		ioflag |= sequential_heuristic(uio, fp);
808 		break;
809 	case POSIX_FADV_RANDOM:
810 		/* Disable read-ahead for random I/O. */
811 		break;
812 	}
813 	orig_offset = uio->uio_offset;
814 
815 #ifdef MAC
816 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
817 	if (error == 0)
818 #endif
819 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
820 	fp->f_nextoff = uio->uio_offset;
821 	VOP_UNLOCK(vp, 0);
822 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
823 	    orig_offset != uio->uio_offset)
824 		/*
825 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
826 		 * for the backing file after a POSIX_FADV_NOREUSE
827 		 * read(2).
828 		 */
829 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
830 		    POSIX_FADV_DONTNEED);
831 	return (error);
832 }
833 
834 /*
835  * File table vnode write routine.
836  */
837 static int
838 vn_write(fp, uio, active_cred, flags, td)
839 	struct file *fp;
840 	struct uio *uio;
841 	struct ucred *active_cred;
842 	int flags;
843 	struct thread *td;
844 {
845 	struct vnode *vp;
846 	struct mount *mp;
847 	off_t orig_offset;
848 	int error, ioflag, lock_flags;
849 	int advice;
850 
851 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
852 	    uio->uio_td, td));
853 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
854 	vp = fp->f_vnode;
855 	if (vp->v_type == VREG)
856 		bwillwrite();
857 	ioflag = IO_UNIT;
858 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
859 		ioflag |= IO_APPEND;
860 	if (fp->f_flag & FNONBLOCK)
861 		ioflag |= IO_NDELAY;
862 	if (fp->f_flag & O_DIRECT)
863 		ioflag |= IO_DIRECT;
864 	if ((fp->f_flag & O_FSYNC) ||
865 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
866 		ioflag |= IO_SYNC;
867 	mp = NULL;
868 	if (vp->v_type != VCHR &&
869 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
870 		goto unlock;
871 
872 	advice = get_advice(fp, uio);
873 
874 	if (MNT_SHARED_WRITES(mp) ||
875 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
876 		lock_flags = LK_SHARED;
877 	} else {
878 		lock_flags = LK_EXCLUSIVE;
879 	}
880 
881 	vn_lock(vp, lock_flags | LK_RETRY);
882 	switch (advice) {
883 	case POSIX_FADV_NORMAL:
884 	case POSIX_FADV_SEQUENTIAL:
885 	case POSIX_FADV_NOREUSE:
886 		ioflag |= sequential_heuristic(uio, fp);
887 		break;
888 	case POSIX_FADV_RANDOM:
889 		/* XXX: Is this correct? */
890 		break;
891 	}
892 	orig_offset = uio->uio_offset;
893 
894 #ifdef MAC
895 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
896 	if (error == 0)
897 #endif
898 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
899 	fp->f_nextoff = uio->uio_offset;
900 	VOP_UNLOCK(vp, 0);
901 	if (vp->v_type != VCHR)
902 		vn_finished_write(mp);
903 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
904 	    orig_offset != uio->uio_offset)
905 		/*
906 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
907 		 * for the backing file after a POSIX_FADV_NOREUSE
908 		 * write(2).
909 		 */
910 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
911 		    POSIX_FADV_DONTNEED);
912 unlock:
913 	return (error);
914 }
915 
916 /*
917  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
918  * prevent the following deadlock:
919  *
920  * Assume that the thread A reads from the vnode vp1 into userspace
921  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
922  * currently not resident, then system ends up with the call chain
923  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
924  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
925  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
926  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
927  * backed by the pages of vnode vp1, and some page in buf2 is not
928  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
929  *
930  * To prevent the lock order reversal and deadlock, vn_io_fault() does
931  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
932  * Instead, it first tries to do the whole range i/o with pagefaults
933  * disabled. If all pages in the i/o buffer are resident and mapped,
934  * VOP will succeed (ignoring the genuine filesystem errors).
935  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
936  * i/o in chunks, with all pages in the chunk prefaulted and held
937  * using vm_fault_quick_hold_pages().
938  *
939  * Filesystems using this deadlock avoidance scheme should use the
940  * array of the held pages from uio, saved in the curthread->td_ma,
941  * instead of doing uiomove().  A helper function
942  * vn_io_fault_uiomove() converts uiomove request into
943  * uiomove_fromphys() over td_ma array.
944  *
945  * Since vnode locks do not cover the whole i/o anymore, rangelocks
946  * make the current i/o request atomic with respect to other i/os and
947  * truncations.
948  */
949 
950 /*
951  * Decode vn_io_fault_args and perform the corresponding i/o.
952  */
953 static int
954 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
955     struct thread *td)
956 {
957 
958 	switch (args->kind) {
959 	case VN_IO_FAULT_FOP:
960 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
961 		    uio, args->cred, args->flags, td));
962 	case VN_IO_FAULT_VOP:
963 		if (uio->uio_rw == UIO_READ) {
964 			return (VOP_READ(args->args.vop_args.vp, uio,
965 			    args->flags, args->cred));
966 		} else if (uio->uio_rw == UIO_WRITE) {
967 			return (VOP_WRITE(args->args.vop_args.vp, uio,
968 			    args->flags, args->cred));
969 		}
970 		break;
971 	}
972 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
973 	    uio->uio_rw);
974 }
975 
976 static int
977 vn_io_fault_touch(char *base, const struct uio *uio)
978 {
979 	int r;
980 
981 	r = fubyte(base);
982 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
983 		return (EFAULT);
984 	return (0);
985 }
986 
987 static int
988 vn_io_fault_prefault_user(const struct uio *uio)
989 {
990 	char *base;
991 	const struct iovec *iov;
992 	size_t len;
993 	ssize_t resid;
994 	int error, i;
995 
996 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
997 	    ("vn_io_fault_prefault userspace"));
998 
999 	error = i = 0;
1000 	iov = uio->uio_iov;
1001 	resid = uio->uio_resid;
1002 	base = iov->iov_base;
1003 	len = iov->iov_len;
1004 	while (resid > 0) {
1005 		error = vn_io_fault_touch(base, uio);
1006 		if (error != 0)
1007 			break;
1008 		if (len < PAGE_SIZE) {
1009 			if (len != 0) {
1010 				error = vn_io_fault_touch(base + len - 1, uio);
1011 				if (error != 0)
1012 					break;
1013 				resid -= len;
1014 			}
1015 			if (++i >= uio->uio_iovcnt)
1016 				break;
1017 			iov = uio->uio_iov + i;
1018 			base = iov->iov_base;
1019 			len = iov->iov_len;
1020 		} else {
1021 			len -= PAGE_SIZE;
1022 			base += PAGE_SIZE;
1023 			resid -= PAGE_SIZE;
1024 		}
1025 	}
1026 	return (error);
1027 }
1028 
1029 /*
1030  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1031  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1032  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1033  * into args and call vn_io_fault1() to handle faults during the user
1034  * mode buffer accesses.
1035  */
1036 static int
1037 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1038     struct thread *td)
1039 {
1040 	vm_page_t ma[io_hold_cnt + 2];
1041 	struct uio *uio_clone, short_uio;
1042 	struct iovec short_iovec[1];
1043 	vm_page_t *prev_td_ma;
1044 	vm_prot_t prot;
1045 	vm_offset_t addr, end;
1046 	size_t len, resid;
1047 	ssize_t adv;
1048 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1049 
1050 	if (vn_io_fault_prefault) {
1051 		error = vn_io_fault_prefault_user(uio);
1052 		if (error != 0)
1053 			return (error); /* Or ignore ? */
1054 	}
1055 
1056 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1057 
1058 	/*
1059 	 * The UFS follows IO_UNIT directive and replays back both
1060 	 * uio_offset and uio_resid if an error is encountered during the
1061 	 * operation.  But, since the iovec may be already advanced,
1062 	 * uio is still in an inconsistent state.
1063 	 *
1064 	 * Cache a copy of the original uio, which is advanced to the redo
1065 	 * point using UIO_NOCOPY below.
1066 	 */
1067 	uio_clone = cloneuio(uio);
1068 	resid = uio->uio_resid;
1069 
1070 	short_uio.uio_segflg = UIO_USERSPACE;
1071 	short_uio.uio_rw = uio->uio_rw;
1072 	short_uio.uio_td = uio->uio_td;
1073 
1074 	save = vm_fault_disable_pagefaults();
1075 	error = vn_io_fault_doio(args, uio, td);
1076 	if (error != EFAULT)
1077 		goto out;
1078 
1079 	atomic_add_long(&vn_io_faults_cnt, 1);
1080 	uio_clone->uio_segflg = UIO_NOCOPY;
1081 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1082 	uio_clone->uio_segflg = uio->uio_segflg;
1083 
1084 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1085 	prev_td_ma = td->td_ma;
1086 	prev_td_ma_cnt = td->td_ma_cnt;
1087 
1088 	while (uio_clone->uio_resid != 0) {
1089 		len = uio_clone->uio_iov->iov_len;
1090 		if (len == 0) {
1091 			KASSERT(uio_clone->uio_iovcnt >= 1,
1092 			    ("iovcnt underflow"));
1093 			uio_clone->uio_iov++;
1094 			uio_clone->uio_iovcnt--;
1095 			continue;
1096 		}
1097 		if (len > io_hold_cnt * PAGE_SIZE)
1098 			len = io_hold_cnt * PAGE_SIZE;
1099 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1100 		end = round_page(addr + len);
1101 		if (end < addr) {
1102 			error = EFAULT;
1103 			break;
1104 		}
1105 		cnt = atop(end - trunc_page(addr));
1106 		/*
1107 		 * A perfectly misaligned address and length could cause
1108 		 * both the start and the end of the chunk to use partial
1109 		 * page.  +2 accounts for such a situation.
1110 		 */
1111 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1112 		    addr, len, prot, ma, io_hold_cnt + 2);
1113 		if (cnt == -1) {
1114 			error = EFAULT;
1115 			break;
1116 		}
1117 		short_uio.uio_iov = &short_iovec[0];
1118 		short_iovec[0].iov_base = (void *)addr;
1119 		short_uio.uio_iovcnt = 1;
1120 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1121 		short_uio.uio_offset = uio_clone->uio_offset;
1122 		td->td_ma = ma;
1123 		td->td_ma_cnt = cnt;
1124 
1125 		error = vn_io_fault_doio(args, &short_uio, td);
1126 		vm_page_unhold_pages(ma, cnt);
1127 		adv = len - short_uio.uio_resid;
1128 
1129 		uio_clone->uio_iov->iov_base =
1130 		    (char *)uio_clone->uio_iov->iov_base + adv;
1131 		uio_clone->uio_iov->iov_len -= adv;
1132 		uio_clone->uio_resid -= adv;
1133 		uio_clone->uio_offset += adv;
1134 
1135 		uio->uio_resid -= adv;
1136 		uio->uio_offset += adv;
1137 
1138 		if (error != 0 || adv == 0)
1139 			break;
1140 	}
1141 	td->td_ma = prev_td_ma;
1142 	td->td_ma_cnt = prev_td_ma_cnt;
1143 	curthread_pflags_restore(saveheld);
1144 out:
1145 	vm_fault_enable_pagefaults(save);
1146 	free(uio_clone, M_IOV);
1147 	return (error);
1148 }
1149 
1150 static int
1151 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1152     int flags, struct thread *td)
1153 {
1154 	fo_rdwr_t *doio;
1155 	struct vnode *vp;
1156 	void *rl_cookie;
1157 	struct vn_io_fault_args args;
1158 	int error;
1159 
1160 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1161 	vp = fp->f_vnode;
1162 	foffset_lock_uio(fp, uio, flags);
1163 	if (do_vn_io_fault(vp, uio)) {
1164 		args.kind = VN_IO_FAULT_FOP;
1165 		args.args.fop_args.fp = fp;
1166 		args.args.fop_args.doio = doio;
1167 		args.cred = active_cred;
1168 		args.flags = flags | FOF_OFFSET;
1169 		if (uio->uio_rw == UIO_READ) {
1170 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1171 			    uio->uio_offset + uio->uio_resid);
1172 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1173 		    (flags & FOF_OFFSET) == 0) {
1174 			/* For appenders, punt and lock the whole range. */
1175 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1176 		} else {
1177 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1178 			    uio->uio_offset + uio->uio_resid);
1179 		}
1180 		error = vn_io_fault1(vp, uio, &args, td);
1181 		vn_rangelock_unlock(vp, rl_cookie);
1182 	} else {
1183 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1184 	}
1185 	foffset_unlock_uio(fp, uio, flags);
1186 	return (error);
1187 }
1188 
1189 /*
1190  * Helper function to perform the requested uiomove operation using
1191  * the held pages for io->uio_iov[0].iov_base buffer instead of
1192  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1193  * instead of iov_base prevents page faults that could occur due to
1194  * pmap_collect() invalidating the mapping created by
1195  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1196  * object cleanup revoking the write access from page mappings.
1197  *
1198  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1199  * instead of plain uiomove().
1200  */
1201 int
1202 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1203 {
1204 	struct uio transp_uio;
1205 	struct iovec transp_iov[1];
1206 	struct thread *td;
1207 	size_t adv;
1208 	int error, pgadv;
1209 
1210 	td = curthread;
1211 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1212 	    uio->uio_segflg != UIO_USERSPACE)
1213 		return (uiomove(data, xfersize, uio));
1214 
1215 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1216 	transp_iov[0].iov_base = data;
1217 	transp_uio.uio_iov = &transp_iov[0];
1218 	transp_uio.uio_iovcnt = 1;
1219 	if (xfersize > uio->uio_resid)
1220 		xfersize = uio->uio_resid;
1221 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1222 	transp_uio.uio_offset = 0;
1223 	transp_uio.uio_segflg = UIO_SYSSPACE;
1224 	/*
1225 	 * Since transp_iov points to data, and td_ma page array
1226 	 * corresponds to original uio->uio_iov, we need to invert the
1227 	 * direction of the i/o operation as passed to
1228 	 * uiomove_fromphys().
1229 	 */
1230 	switch (uio->uio_rw) {
1231 	case UIO_WRITE:
1232 		transp_uio.uio_rw = UIO_READ;
1233 		break;
1234 	case UIO_READ:
1235 		transp_uio.uio_rw = UIO_WRITE;
1236 		break;
1237 	}
1238 	transp_uio.uio_td = uio->uio_td;
1239 	error = uiomove_fromphys(td->td_ma,
1240 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1241 	    xfersize, &transp_uio);
1242 	adv = xfersize - transp_uio.uio_resid;
1243 	pgadv =
1244 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1245 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1246 	td->td_ma += pgadv;
1247 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1248 	    pgadv));
1249 	td->td_ma_cnt -= pgadv;
1250 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1251 	uio->uio_iov->iov_len -= adv;
1252 	uio->uio_resid -= adv;
1253 	uio->uio_offset += adv;
1254 	return (error);
1255 }
1256 
1257 int
1258 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1259     struct uio *uio)
1260 {
1261 	struct thread *td;
1262 	vm_offset_t iov_base;
1263 	int cnt, pgadv;
1264 
1265 	td = curthread;
1266 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1267 	    uio->uio_segflg != UIO_USERSPACE)
1268 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1269 
1270 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1271 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1272 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1273 	switch (uio->uio_rw) {
1274 	case UIO_WRITE:
1275 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1276 		    offset, cnt);
1277 		break;
1278 	case UIO_READ:
1279 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1280 		    cnt);
1281 		break;
1282 	}
1283 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1284 	td->td_ma += pgadv;
1285 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1286 	    pgadv));
1287 	td->td_ma_cnt -= pgadv;
1288 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1289 	uio->uio_iov->iov_len -= cnt;
1290 	uio->uio_resid -= cnt;
1291 	uio->uio_offset += cnt;
1292 	return (0);
1293 }
1294 
1295 
1296 /*
1297  * File table truncate routine.
1298  */
1299 static int
1300 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1301     struct thread *td)
1302 {
1303 	struct vattr vattr;
1304 	struct mount *mp;
1305 	struct vnode *vp;
1306 	void *rl_cookie;
1307 	int error;
1308 
1309 	vp = fp->f_vnode;
1310 
1311 	/*
1312 	 * Lock the whole range for truncation.  Otherwise split i/o
1313 	 * might happen partly before and partly after the truncation.
1314 	 */
1315 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1316 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1317 	if (error)
1318 		goto out1;
1319 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1320 	AUDIT_ARG_VNODE1(vp);
1321 	if (vp->v_type == VDIR) {
1322 		error = EISDIR;
1323 		goto out;
1324 	}
1325 #ifdef MAC
1326 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1327 	if (error)
1328 		goto out;
1329 #endif
1330 	error = vn_writechk(vp);
1331 	if (error == 0) {
1332 		VATTR_NULL(&vattr);
1333 		vattr.va_size = length;
1334 		if ((fp->f_flag & O_FSYNC) != 0)
1335 			vattr.va_vaflags |= VA_SYNC;
1336 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1337 	}
1338 out:
1339 	VOP_UNLOCK(vp, 0);
1340 	vn_finished_write(mp);
1341 out1:
1342 	vn_rangelock_unlock(vp, rl_cookie);
1343 	return (error);
1344 }
1345 
1346 /*
1347  * File table vnode stat routine.
1348  */
1349 static int
1350 vn_statfile(fp, sb, active_cred, td)
1351 	struct file *fp;
1352 	struct stat *sb;
1353 	struct ucred *active_cred;
1354 	struct thread *td;
1355 {
1356 	struct vnode *vp = fp->f_vnode;
1357 	int error;
1358 
1359 	vn_lock(vp, LK_SHARED | LK_RETRY);
1360 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1361 	VOP_UNLOCK(vp, 0);
1362 
1363 	return (error);
1364 }
1365 
1366 /*
1367  * Stat a vnode; implementation for the stat syscall
1368  */
1369 int
1370 vn_stat(struct vnode *vp, struct stat *sb, struct ucred *active_cred,
1371     struct ucred *file_cred, struct thread *td)
1372 {
1373 	struct vattr vattr;
1374 	struct vattr *vap;
1375 	int error;
1376 	u_short mode;
1377 
1378 	AUDIT_ARG_VNODE1(vp);
1379 #ifdef MAC
1380 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1381 	if (error)
1382 		return (error);
1383 #endif
1384 
1385 	vap = &vattr;
1386 
1387 	/*
1388 	 * Initialize defaults for new and unusual fields, so that file
1389 	 * systems which don't support these fields don't need to know
1390 	 * about them.
1391 	 */
1392 	vap->va_birthtime.tv_sec = -1;
1393 	vap->va_birthtime.tv_nsec = 0;
1394 	vap->va_fsid = VNOVAL;
1395 	vap->va_rdev = NODEV;
1396 
1397 	error = VOP_GETATTR(vp, vap, active_cred);
1398 	if (error)
1399 		return (error);
1400 
1401 	/*
1402 	 * Zero the spare stat fields
1403 	 */
1404 	bzero(sb, sizeof *sb);
1405 
1406 	/*
1407 	 * Copy from vattr table
1408 	 */
1409 	if (vap->va_fsid != VNOVAL)
1410 		sb->st_dev = vap->va_fsid;
1411 	else
1412 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1413 	sb->st_ino = vap->va_fileid;
1414 	mode = vap->va_mode;
1415 	switch (vap->va_type) {
1416 	case VREG:
1417 		mode |= S_IFREG;
1418 		break;
1419 	case VDIR:
1420 		mode |= S_IFDIR;
1421 		break;
1422 	case VBLK:
1423 		mode |= S_IFBLK;
1424 		break;
1425 	case VCHR:
1426 		mode |= S_IFCHR;
1427 		break;
1428 	case VLNK:
1429 		mode |= S_IFLNK;
1430 		break;
1431 	case VSOCK:
1432 		mode |= S_IFSOCK;
1433 		break;
1434 	case VFIFO:
1435 		mode |= S_IFIFO;
1436 		break;
1437 	default:
1438 		return (EBADF);
1439 	}
1440 	sb->st_mode = mode;
1441 	sb->st_nlink = vap->va_nlink;
1442 	sb->st_uid = vap->va_uid;
1443 	sb->st_gid = vap->va_gid;
1444 	sb->st_rdev = vap->va_rdev;
1445 	if (vap->va_size > OFF_MAX)
1446 		return (EOVERFLOW);
1447 	sb->st_size = vap->va_size;
1448 	sb->st_atim = vap->va_atime;
1449 	sb->st_mtim = vap->va_mtime;
1450 	sb->st_ctim = vap->va_ctime;
1451 	sb->st_birthtim = vap->va_birthtime;
1452 
1453         /*
1454 	 * According to www.opengroup.org, the meaning of st_blksize is
1455 	 *   "a filesystem-specific preferred I/O block size for this
1456 	 *    object.  In some filesystem types, this may vary from file
1457 	 *    to file"
1458 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1459 	 */
1460 
1461 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1462 
1463 	sb->st_flags = vap->va_flags;
1464 	if (priv_check(td, PRIV_VFS_GENERATION))
1465 		sb->st_gen = 0;
1466 	else
1467 		sb->st_gen = vap->va_gen;
1468 
1469 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1470 	return (0);
1471 }
1472 
1473 /*
1474  * File table vnode ioctl routine.
1475  */
1476 static int
1477 vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
1478     struct thread *td)
1479 {
1480 	struct vattr vattr;
1481 	struct vnode *vp;
1482 	int error;
1483 
1484 	vp = fp->f_vnode;
1485 	switch (vp->v_type) {
1486 	case VDIR:
1487 	case VREG:
1488 		switch (com) {
1489 		case FIONREAD:
1490 			vn_lock(vp, LK_SHARED | LK_RETRY);
1491 			error = VOP_GETATTR(vp, &vattr, active_cred);
1492 			VOP_UNLOCK(vp, 0);
1493 			if (error == 0)
1494 				*(int *)data = vattr.va_size - fp->f_offset;
1495 			return (error);
1496 		case FIONBIO:
1497 		case FIOASYNC:
1498 			return (0);
1499 		default:
1500 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1501 			    active_cred, td));
1502 		}
1503 		break;
1504 	case VCHR:
1505 		return (VOP_IOCTL(vp, com, data, fp->f_flag,
1506 		    active_cred, td));
1507 	default:
1508 		return (ENOTTY);
1509 	}
1510 }
1511 
1512 /*
1513  * File table vnode poll routine.
1514  */
1515 static int
1516 vn_poll(struct file *fp, int events, struct ucred *active_cred,
1517     struct thread *td)
1518 {
1519 	struct vnode *vp;
1520 	int error;
1521 
1522 	vp = fp->f_vnode;
1523 #ifdef MAC
1524 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1525 	AUDIT_ARG_VNODE1(vp);
1526 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1527 	VOP_UNLOCK(vp, 0);
1528 	if (!error)
1529 #endif
1530 
1531 	error = VOP_POLL(vp, events, fp->f_cred, td);
1532 	return (error);
1533 }
1534 
1535 /*
1536  * Acquire the requested lock and then check for validity.  LK_RETRY
1537  * permits vn_lock to return doomed vnodes.
1538  */
1539 int
1540 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1541 {
1542 	int error;
1543 
1544 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1545 	    ("vn_lock: no locktype"));
1546 	VNASSERT(vp->v_holdcnt != 0, vp, ("vn_lock: zero hold count"));
1547 retry:
1548 	error = VOP_LOCK1(vp, flags, file, line);
1549 	flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1550 	KASSERT((flags & LK_RETRY) == 0 || error == 0,
1551 	    ("vn_lock: error %d incompatible with flags %#x", error, flags));
1552 
1553 	if ((flags & LK_RETRY) == 0) {
1554 		if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1555 			VOP_UNLOCK(vp, 0);
1556 			error = ENOENT;
1557 		}
1558 	} else if (error != 0)
1559 		goto retry;
1560 	return (error);
1561 }
1562 
1563 /*
1564  * File table vnode close routine.
1565  */
1566 static int
1567 vn_closefile(struct file *fp, struct thread *td)
1568 {
1569 	struct vnode *vp;
1570 	struct flock lf;
1571 	int error;
1572 	bool ref;
1573 
1574 	vp = fp->f_vnode;
1575 	fp->f_ops = &badfileops;
1576 	ref= (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE;
1577 
1578 	error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref);
1579 
1580 	if (__predict_false(ref)) {
1581 		lf.l_whence = SEEK_SET;
1582 		lf.l_start = 0;
1583 		lf.l_len = 0;
1584 		lf.l_type = F_UNLCK;
1585 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1586 		vrele(vp);
1587 	}
1588 	return (error);
1589 }
1590 
1591 static bool
1592 vn_suspendable(struct mount *mp)
1593 {
1594 
1595 	return (mp->mnt_op->vfs_susp_clean != NULL);
1596 }
1597 
1598 /*
1599  * Preparing to start a filesystem write operation. If the operation is
1600  * permitted, then we bump the count of operations in progress and
1601  * proceed. If a suspend request is in progress, we wait until the
1602  * suspension is over, and then proceed.
1603  */
1604 static int
1605 vn_start_write_locked(struct mount *mp, int flags)
1606 {
1607 	int error, mflags;
1608 
1609 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1610 	error = 0;
1611 
1612 	/*
1613 	 * Check on status of suspension.
1614 	 */
1615 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1616 	    mp->mnt_susp_owner != curthread) {
1617 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1618 		    (flags & PCATCH) : 0) | (PUSER - 1);
1619 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1620 			if (flags & V_NOWAIT) {
1621 				error = EWOULDBLOCK;
1622 				goto unlock;
1623 			}
1624 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1625 			    "suspfs", 0);
1626 			if (error)
1627 				goto unlock;
1628 		}
1629 	}
1630 	if (flags & V_XSLEEP)
1631 		goto unlock;
1632 	mp->mnt_writeopcount++;
1633 unlock:
1634 	if (error != 0 || (flags & V_XSLEEP) != 0)
1635 		MNT_REL(mp);
1636 	MNT_IUNLOCK(mp);
1637 	return (error);
1638 }
1639 
1640 int
1641 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1642 {
1643 	struct mount *mp;
1644 	int error;
1645 
1646 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1647 	    ("V_MNTREF requires mp"));
1648 
1649 	error = 0;
1650 	/*
1651 	 * If a vnode is provided, get and return the mount point that
1652 	 * to which it will write.
1653 	 */
1654 	if (vp != NULL) {
1655 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1656 			*mpp = NULL;
1657 			if (error != EOPNOTSUPP)
1658 				return (error);
1659 			return (0);
1660 		}
1661 	}
1662 	if ((mp = *mpp) == NULL)
1663 		return (0);
1664 
1665 	if (!vn_suspendable(mp)) {
1666 		if (vp != NULL || (flags & V_MNTREF) != 0)
1667 			vfs_rel(mp);
1668 		return (0);
1669 	}
1670 
1671 	/*
1672 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1673 	 * a vfs_ref().
1674 	 * As long as a vnode is not provided we need to acquire a
1675 	 * refcount for the provided mountpoint too, in order to
1676 	 * emulate a vfs_ref().
1677 	 */
1678 	MNT_ILOCK(mp);
1679 	if (vp == NULL && (flags & V_MNTREF) == 0)
1680 		MNT_REF(mp);
1681 
1682 	return (vn_start_write_locked(mp, flags));
1683 }
1684 
1685 /*
1686  * Secondary suspension. Used by operations such as vop_inactive
1687  * routines that are needed by the higher level functions. These
1688  * are allowed to proceed until all the higher level functions have
1689  * completed (indicated by mnt_writeopcount dropping to zero). At that
1690  * time, these operations are halted until the suspension is over.
1691  */
1692 int
1693 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1694 {
1695 	struct mount *mp;
1696 	int error;
1697 
1698 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1699 	    ("V_MNTREF requires mp"));
1700 
1701  retry:
1702 	if (vp != NULL) {
1703 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1704 			*mpp = NULL;
1705 			if (error != EOPNOTSUPP)
1706 				return (error);
1707 			return (0);
1708 		}
1709 	}
1710 	/*
1711 	 * If we are not suspended or have not yet reached suspended
1712 	 * mode, then let the operation proceed.
1713 	 */
1714 	if ((mp = *mpp) == NULL)
1715 		return (0);
1716 
1717 	if (!vn_suspendable(mp)) {
1718 		if (vp != NULL || (flags & V_MNTREF) != 0)
1719 			vfs_rel(mp);
1720 		return (0);
1721 	}
1722 
1723 	/*
1724 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1725 	 * a vfs_ref().
1726 	 * As long as a vnode is not provided we need to acquire a
1727 	 * refcount for the provided mountpoint too, in order to
1728 	 * emulate a vfs_ref().
1729 	 */
1730 	MNT_ILOCK(mp);
1731 	if (vp == NULL && (flags & V_MNTREF) == 0)
1732 		MNT_REF(mp);
1733 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1734 		mp->mnt_secondary_writes++;
1735 		mp->mnt_secondary_accwrites++;
1736 		MNT_IUNLOCK(mp);
1737 		return (0);
1738 	}
1739 	if (flags & V_NOWAIT) {
1740 		MNT_REL(mp);
1741 		MNT_IUNLOCK(mp);
1742 		return (EWOULDBLOCK);
1743 	}
1744 	/*
1745 	 * Wait for the suspension to finish.
1746 	 */
1747 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1748 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1749 	    "suspfs", 0);
1750 	vfs_rel(mp);
1751 	if (error == 0)
1752 		goto retry;
1753 	return (error);
1754 }
1755 
1756 /*
1757  * Filesystem write operation has completed. If we are suspending and this
1758  * operation is the last one, notify the suspender that the suspension is
1759  * now in effect.
1760  */
1761 void
1762 vn_finished_write(struct mount *mp)
1763 {
1764 	if (mp == NULL || !vn_suspendable(mp))
1765 		return;
1766 	MNT_ILOCK(mp);
1767 	MNT_REL(mp);
1768 	mp->mnt_writeopcount--;
1769 	if (mp->mnt_writeopcount < 0)
1770 		panic("vn_finished_write: neg cnt");
1771 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1772 	    mp->mnt_writeopcount <= 0)
1773 		wakeup(&mp->mnt_writeopcount);
1774 	MNT_IUNLOCK(mp);
1775 }
1776 
1777 
1778 /*
1779  * Filesystem secondary write operation has completed. If we are
1780  * suspending and this operation is the last one, notify the suspender
1781  * that the suspension is now in effect.
1782  */
1783 void
1784 vn_finished_secondary_write(struct mount *mp)
1785 {
1786 	if (mp == NULL || !vn_suspendable(mp))
1787 		return;
1788 	MNT_ILOCK(mp);
1789 	MNT_REL(mp);
1790 	mp->mnt_secondary_writes--;
1791 	if (mp->mnt_secondary_writes < 0)
1792 		panic("vn_finished_secondary_write: neg cnt");
1793 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1794 	    mp->mnt_secondary_writes <= 0)
1795 		wakeup(&mp->mnt_secondary_writes);
1796 	MNT_IUNLOCK(mp);
1797 }
1798 
1799 
1800 
1801 /*
1802  * Request a filesystem to suspend write operations.
1803  */
1804 int
1805 vfs_write_suspend(struct mount *mp, int flags)
1806 {
1807 	int error;
1808 
1809 	MPASS(vn_suspendable(mp));
1810 
1811 	MNT_ILOCK(mp);
1812 	if (mp->mnt_susp_owner == curthread) {
1813 		MNT_IUNLOCK(mp);
1814 		return (EALREADY);
1815 	}
1816 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1817 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1818 
1819 	/*
1820 	 * Unmount holds a write reference on the mount point.  If we
1821 	 * own busy reference and drain for writers, we deadlock with
1822 	 * the reference draining in the unmount path.  Callers of
1823 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1824 	 * vfs_busy() reference is owned and caller is not in the
1825 	 * unmount context.
1826 	 */
1827 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1828 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1829 		MNT_IUNLOCK(mp);
1830 		return (EBUSY);
1831 	}
1832 
1833 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1834 	mp->mnt_susp_owner = curthread;
1835 	if (mp->mnt_writeopcount > 0)
1836 		(void) msleep(&mp->mnt_writeopcount,
1837 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1838 	else
1839 		MNT_IUNLOCK(mp);
1840 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1841 		vfs_write_resume(mp, 0);
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Request a filesystem to resume write operations.
1847  */
1848 void
1849 vfs_write_resume(struct mount *mp, int flags)
1850 {
1851 
1852 	MPASS(vn_suspendable(mp));
1853 
1854 	MNT_ILOCK(mp);
1855 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1856 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1857 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1858 				       MNTK_SUSPENDED);
1859 		mp->mnt_susp_owner = NULL;
1860 		wakeup(&mp->mnt_writeopcount);
1861 		wakeup(&mp->mnt_flag);
1862 		curthread->td_pflags &= ~TDP_IGNSUSP;
1863 		if ((flags & VR_START_WRITE) != 0) {
1864 			MNT_REF(mp);
1865 			mp->mnt_writeopcount++;
1866 		}
1867 		MNT_IUNLOCK(mp);
1868 		if ((flags & VR_NO_SUSPCLR) == 0)
1869 			VFS_SUSP_CLEAN(mp);
1870 	} else if ((flags & VR_START_WRITE) != 0) {
1871 		MNT_REF(mp);
1872 		vn_start_write_locked(mp, 0);
1873 	} else {
1874 		MNT_IUNLOCK(mp);
1875 	}
1876 }
1877 
1878 /*
1879  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1880  * methods.
1881  */
1882 int
1883 vfs_write_suspend_umnt(struct mount *mp)
1884 {
1885 	int error;
1886 
1887 	MPASS(vn_suspendable(mp));
1888 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1889 	    ("vfs_write_suspend_umnt: recursed"));
1890 
1891 	/* dounmount() already called vn_start_write(). */
1892 	for (;;) {
1893 		vn_finished_write(mp);
1894 		error = vfs_write_suspend(mp, 0);
1895 		if (error != 0) {
1896 			vn_start_write(NULL, &mp, V_WAIT);
1897 			return (error);
1898 		}
1899 		MNT_ILOCK(mp);
1900 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1901 			break;
1902 		MNT_IUNLOCK(mp);
1903 		vn_start_write(NULL, &mp, V_WAIT);
1904 	}
1905 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1906 	wakeup(&mp->mnt_flag);
1907 	MNT_IUNLOCK(mp);
1908 	curthread->td_pflags |= TDP_IGNSUSP;
1909 	return (0);
1910 }
1911 
1912 /*
1913  * Implement kqueues for files by translating it to vnode operation.
1914  */
1915 static int
1916 vn_kqfilter(struct file *fp, struct knote *kn)
1917 {
1918 
1919 	return (VOP_KQFILTER(fp->f_vnode, kn));
1920 }
1921 
1922 /*
1923  * Simplified in-kernel wrapper calls for extended attribute access.
1924  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1925  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1926  */
1927 int
1928 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1929     const char *attrname, int *buflen, char *buf, struct thread *td)
1930 {
1931 	struct uio	auio;
1932 	struct iovec	iov;
1933 	int	error;
1934 
1935 	iov.iov_len = *buflen;
1936 	iov.iov_base = buf;
1937 
1938 	auio.uio_iov = &iov;
1939 	auio.uio_iovcnt = 1;
1940 	auio.uio_rw = UIO_READ;
1941 	auio.uio_segflg = UIO_SYSSPACE;
1942 	auio.uio_td = td;
1943 	auio.uio_offset = 0;
1944 	auio.uio_resid = *buflen;
1945 
1946 	if ((ioflg & IO_NODELOCKED) == 0)
1947 		vn_lock(vp, LK_SHARED | LK_RETRY);
1948 
1949 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1950 
1951 	/* authorize attribute retrieval as kernel */
1952 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1953 	    td);
1954 
1955 	if ((ioflg & IO_NODELOCKED) == 0)
1956 		VOP_UNLOCK(vp, 0);
1957 
1958 	if (error == 0) {
1959 		*buflen = *buflen - auio.uio_resid;
1960 	}
1961 
1962 	return (error);
1963 }
1964 
1965 /*
1966  * XXX failure mode if partially written?
1967  */
1968 int
1969 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1970     const char *attrname, int buflen, char *buf, struct thread *td)
1971 {
1972 	struct uio	auio;
1973 	struct iovec	iov;
1974 	struct mount	*mp;
1975 	int	error;
1976 
1977 	iov.iov_len = buflen;
1978 	iov.iov_base = buf;
1979 
1980 	auio.uio_iov = &iov;
1981 	auio.uio_iovcnt = 1;
1982 	auio.uio_rw = UIO_WRITE;
1983 	auio.uio_segflg = UIO_SYSSPACE;
1984 	auio.uio_td = td;
1985 	auio.uio_offset = 0;
1986 	auio.uio_resid = buflen;
1987 
1988 	if ((ioflg & IO_NODELOCKED) == 0) {
1989 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1990 			return (error);
1991 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1992 	}
1993 
1994 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1995 
1996 	/* authorize attribute setting as kernel */
1997 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1998 
1999 	if ((ioflg & IO_NODELOCKED) == 0) {
2000 		vn_finished_write(mp);
2001 		VOP_UNLOCK(vp, 0);
2002 	}
2003 
2004 	return (error);
2005 }
2006 
2007 int
2008 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2009     const char *attrname, struct thread *td)
2010 {
2011 	struct mount	*mp;
2012 	int	error;
2013 
2014 	if ((ioflg & IO_NODELOCKED) == 0) {
2015 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2016 			return (error);
2017 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2018 	}
2019 
2020 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2021 
2022 	/* authorize attribute removal as kernel */
2023 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2024 	if (error == EOPNOTSUPP)
2025 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2026 		    NULL, td);
2027 
2028 	if ((ioflg & IO_NODELOCKED) == 0) {
2029 		vn_finished_write(mp);
2030 		VOP_UNLOCK(vp, 0);
2031 	}
2032 
2033 	return (error);
2034 }
2035 
2036 static int
2037 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2038     struct vnode **rvp)
2039 {
2040 
2041 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2042 }
2043 
2044 int
2045 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2046 {
2047 
2048 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2049 	    lkflags, rvp));
2050 }
2051 
2052 int
2053 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2054     int lkflags, struct vnode **rvp)
2055 {
2056 	struct mount *mp;
2057 	int ltype, error;
2058 
2059 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2060 	mp = vp->v_mount;
2061 	ltype = VOP_ISLOCKED(vp);
2062 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2063 	    ("vn_vget_ino: vp not locked"));
2064 	error = vfs_busy(mp, MBF_NOWAIT);
2065 	if (error != 0) {
2066 		vfs_ref(mp);
2067 		VOP_UNLOCK(vp, 0);
2068 		error = vfs_busy(mp, 0);
2069 		vn_lock(vp, ltype | LK_RETRY);
2070 		vfs_rel(mp);
2071 		if (error != 0)
2072 			return (ENOENT);
2073 		if (vp->v_iflag & VI_DOOMED) {
2074 			vfs_unbusy(mp);
2075 			return (ENOENT);
2076 		}
2077 	}
2078 	VOP_UNLOCK(vp, 0);
2079 	error = alloc(mp, alloc_arg, lkflags, rvp);
2080 	vfs_unbusy(mp);
2081 	if (*rvp != vp)
2082 		vn_lock(vp, ltype | LK_RETRY);
2083 	if (vp->v_iflag & VI_DOOMED) {
2084 		if (error == 0) {
2085 			if (*rvp == vp)
2086 				vunref(vp);
2087 			else
2088 				vput(*rvp);
2089 		}
2090 		error = ENOENT;
2091 	}
2092 	return (error);
2093 }
2094 
2095 int
2096 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2097     struct thread *td)
2098 {
2099 
2100 	if (vp->v_type != VREG || td == NULL)
2101 		return (0);
2102 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2103 	    lim_cur(td, RLIMIT_FSIZE)) {
2104 		PROC_LOCK(td->td_proc);
2105 		kern_psignal(td->td_proc, SIGXFSZ);
2106 		PROC_UNLOCK(td->td_proc);
2107 		return (EFBIG);
2108 	}
2109 	return (0);
2110 }
2111 
2112 int
2113 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2114     struct thread *td)
2115 {
2116 	struct vnode *vp;
2117 
2118 	vp = fp->f_vnode;
2119 #ifdef AUDIT
2120 	vn_lock(vp, LK_SHARED | LK_RETRY);
2121 	AUDIT_ARG_VNODE1(vp);
2122 	VOP_UNLOCK(vp, 0);
2123 #endif
2124 	return (setfmode(td, active_cred, vp, mode));
2125 }
2126 
2127 int
2128 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2129     struct thread *td)
2130 {
2131 	struct vnode *vp;
2132 
2133 	vp = fp->f_vnode;
2134 #ifdef AUDIT
2135 	vn_lock(vp, LK_SHARED | LK_RETRY);
2136 	AUDIT_ARG_VNODE1(vp);
2137 	VOP_UNLOCK(vp, 0);
2138 #endif
2139 	return (setfown(td, active_cred, vp, uid, gid));
2140 }
2141 
2142 void
2143 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2144 {
2145 	vm_object_t object;
2146 
2147 	if ((object = vp->v_object) == NULL)
2148 		return;
2149 	VM_OBJECT_WLOCK(object);
2150 	vm_object_page_remove(object, start, end, 0);
2151 	VM_OBJECT_WUNLOCK(object);
2152 }
2153 
2154 int
2155 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2156 {
2157 	struct vattr va;
2158 	daddr_t bn, bnp;
2159 	uint64_t bsize;
2160 	off_t noff;
2161 	int error;
2162 
2163 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2164 	    ("Wrong command %lu", cmd));
2165 
2166 	if (vn_lock(vp, LK_SHARED) != 0)
2167 		return (EBADF);
2168 	if (vp->v_type != VREG) {
2169 		error = ENOTTY;
2170 		goto unlock;
2171 	}
2172 	error = VOP_GETATTR(vp, &va, cred);
2173 	if (error != 0)
2174 		goto unlock;
2175 	noff = *off;
2176 	if (noff >= va.va_size) {
2177 		error = ENXIO;
2178 		goto unlock;
2179 	}
2180 	bsize = vp->v_mount->mnt_stat.f_iosize;
2181 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2182 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2183 		if (error == EOPNOTSUPP) {
2184 			error = ENOTTY;
2185 			goto unlock;
2186 		}
2187 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2188 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2189 			noff = bn * bsize;
2190 			if (noff < *off)
2191 				noff = *off;
2192 			goto unlock;
2193 		}
2194 	}
2195 	if (noff > va.va_size)
2196 		noff = va.va_size;
2197 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2198 	if (cmd == FIOSEEKDATA)
2199 		error = ENXIO;
2200 unlock:
2201 	VOP_UNLOCK(vp, 0);
2202 	if (error == 0)
2203 		*off = noff;
2204 	return (error);
2205 }
2206 
2207 int
2208 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2209 {
2210 	struct ucred *cred;
2211 	struct vnode *vp;
2212 	struct vattr vattr;
2213 	off_t foffset, size;
2214 	int error, noneg;
2215 
2216 	cred = td->td_ucred;
2217 	vp = fp->f_vnode;
2218 	foffset = foffset_lock(fp, 0);
2219 	noneg = (vp->v_type != VCHR);
2220 	error = 0;
2221 	switch (whence) {
2222 	case L_INCR:
2223 		if (noneg &&
2224 		    (foffset < 0 ||
2225 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2226 			error = EOVERFLOW;
2227 			break;
2228 		}
2229 		offset += foffset;
2230 		break;
2231 	case L_XTND:
2232 		vn_lock(vp, LK_SHARED | LK_RETRY);
2233 		error = VOP_GETATTR(vp, &vattr, cred);
2234 		VOP_UNLOCK(vp, 0);
2235 		if (error)
2236 			break;
2237 
2238 		/*
2239 		 * If the file references a disk device, then fetch
2240 		 * the media size and use that to determine the ending
2241 		 * offset.
2242 		 */
2243 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2244 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2245 			vattr.va_size = size;
2246 		if (noneg &&
2247 		    (vattr.va_size > OFF_MAX ||
2248 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2249 			error = EOVERFLOW;
2250 			break;
2251 		}
2252 		offset += vattr.va_size;
2253 		break;
2254 	case L_SET:
2255 		break;
2256 	case SEEK_DATA:
2257 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2258 		break;
2259 	case SEEK_HOLE:
2260 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2261 		break;
2262 	default:
2263 		error = EINVAL;
2264 	}
2265 	if (error == 0 && noneg && offset < 0)
2266 		error = EINVAL;
2267 	if (error != 0)
2268 		goto drop;
2269 	VFS_KNOTE_UNLOCKED(vp, 0);
2270 	td->td_uretoff.tdu_off = offset;
2271 drop:
2272 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2273 	return (error);
2274 }
2275 
2276 int
2277 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2278     struct thread *td)
2279 {
2280 	int error;
2281 
2282 	/*
2283 	 * Grant permission if the caller is the owner of the file, or
2284 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2285 	 * on the file.  If the time pointer is null, then write
2286 	 * permission on the file is also sufficient.
2287 	 *
2288 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2289 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2290 	 * will be allowed to set the times [..] to the current
2291 	 * server time.
2292 	 */
2293 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2294 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2295 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2296 	return (error);
2297 }
2298 
2299 int
2300 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2301 {
2302 	struct vnode *vp;
2303 	int error;
2304 
2305 	if (fp->f_type == DTYPE_FIFO)
2306 		kif->kf_type = KF_TYPE_FIFO;
2307 	else
2308 		kif->kf_type = KF_TYPE_VNODE;
2309 	vp = fp->f_vnode;
2310 	vref(vp);
2311 	FILEDESC_SUNLOCK(fdp);
2312 	error = vn_fill_kinfo_vnode(vp, kif);
2313 	vrele(vp);
2314 	FILEDESC_SLOCK(fdp);
2315 	return (error);
2316 }
2317 
2318 static inline void
2319 vn_fill_junk(struct kinfo_file *kif)
2320 {
2321 	size_t len, olen;
2322 
2323 	/*
2324 	 * Simulate vn_fullpath returning changing values for a given
2325 	 * vp during e.g. coredump.
2326 	 */
2327 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2328 	olen = strlen(kif->kf_path);
2329 	if (len < olen)
2330 		strcpy(&kif->kf_path[len - 1], "$");
2331 	else
2332 		for (; olen < len; olen++)
2333 			strcpy(&kif->kf_path[olen], "A");
2334 }
2335 
2336 int
2337 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2338 {
2339 	struct vattr va;
2340 	char *fullpath, *freepath;
2341 	int error;
2342 
2343 	kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type);
2344 	freepath = NULL;
2345 	fullpath = "-";
2346 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2347 	if (error == 0) {
2348 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2349 	}
2350 	if (freepath != NULL)
2351 		free(freepath, M_TEMP);
2352 
2353 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2354 		vn_fill_junk(kif);
2355 	);
2356 
2357 	/*
2358 	 * Retrieve vnode attributes.
2359 	 */
2360 	va.va_fsid = VNOVAL;
2361 	va.va_rdev = NODEV;
2362 	vn_lock(vp, LK_SHARED | LK_RETRY);
2363 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2364 	VOP_UNLOCK(vp, 0);
2365 	if (error != 0)
2366 		return (error);
2367 	if (va.va_fsid != VNOVAL)
2368 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2369 	else
2370 		kif->kf_un.kf_file.kf_file_fsid =
2371 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2372 	kif->kf_un.kf_file.kf_file_fsid_freebsd11 =
2373 	    kif->kf_un.kf_file.kf_file_fsid; /* truncate */
2374 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2375 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2376 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2377 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2378 	kif->kf_un.kf_file.kf_file_rdev_freebsd11 =
2379 	    kif->kf_un.kf_file.kf_file_rdev; /* truncate */
2380 	return (0);
2381 }
2382 
2383 int
2384 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2385     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2386     struct thread *td)
2387 {
2388 #ifdef HWPMC_HOOKS
2389 	struct pmckern_map_in pkm;
2390 #endif
2391 	struct mount *mp;
2392 	struct vnode *vp;
2393 	vm_object_t object;
2394 	vm_prot_t maxprot;
2395 	boolean_t writecounted;
2396 	int error;
2397 
2398 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2399     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2400 	/*
2401 	 * POSIX shared-memory objects are defined to have
2402 	 * kernel persistence, and are not defined to support
2403 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2404 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2405 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2406 	 * flag to request this behavior.
2407 	 */
2408 	if ((fp->f_flag & FPOSIXSHM) != 0)
2409 		flags |= MAP_NOSYNC;
2410 #endif
2411 	vp = fp->f_vnode;
2412 
2413 	/*
2414 	 * Ensure that file and memory protections are
2415 	 * compatible.  Note that we only worry about
2416 	 * writability if mapping is shared; in this case,
2417 	 * current and max prot are dictated by the open file.
2418 	 * XXX use the vnode instead?  Problem is: what
2419 	 * credentials do we use for determination? What if
2420 	 * proc does a setuid?
2421 	 */
2422 	mp = vp->v_mount;
2423 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) {
2424 		maxprot = VM_PROT_NONE;
2425 		if ((prot & VM_PROT_EXECUTE) != 0)
2426 			return (EACCES);
2427 	} else
2428 		maxprot = VM_PROT_EXECUTE;
2429 	if ((fp->f_flag & FREAD) != 0)
2430 		maxprot |= VM_PROT_READ;
2431 	else if ((prot & VM_PROT_READ) != 0)
2432 		return (EACCES);
2433 
2434 	/*
2435 	 * If we are sharing potential changes via MAP_SHARED and we
2436 	 * are trying to get write permission although we opened it
2437 	 * without asking for it, bail out.
2438 	 */
2439 	if ((flags & MAP_SHARED) != 0) {
2440 		if ((fp->f_flag & FWRITE) != 0)
2441 			maxprot |= VM_PROT_WRITE;
2442 		else if ((prot & VM_PROT_WRITE) != 0)
2443 			return (EACCES);
2444 	} else {
2445 		maxprot |= VM_PROT_WRITE;
2446 		cap_maxprot |= VM_PROT_WRITE;
2447 	}
2448 	maxprot &= cap_maxprot;
2449 
2450 	/*
2451 	 * For regular files and shared memory, POSIX requires that
2452 	 * the value of foff be a legitimate offset within the data
2453 	 * object.  In particular, negative offsets are invalid.
2454 	 * Blocking negative offsets and overflows here avoids
2455 	 * possible wraparound or user-level access into reserved
2456 	 * ranges of the data object later.  In contrast, POSIX does
2457 	 * not dictate how offsets are used by device drivers, so in
2458 	 * the case of a device mapping a negative offset is passed
2459 	 * on.
2460 	 */
2461 	if (
2462 #ifdef _LP64
2463 	    size > OFF_MAX ||
2464 #endif
2465 	    foff < 0 || foff > OFF_MAX - size)
2466 		return (EINVAL);
2467 
2468 	writecounted = FALSE;
2469 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2470 	    &foff, &object, &writecounted);
2471 	if (error != 0)
2472 		return (error);
2473 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2474 	    foff, writecounted, td);
2475 	if (error != 0) {
2476 		/*
2477 		 * If this mapping was accounted for in the vnode's
2478 		 * writecount, then undo that now.
2479 		 */
2480 		if (writecounted)
2481 			vnode_pager_release_writecount(object, 0, size);
2482 		vm_object_deallocate(object);
2483 	}
2484 #ifdef HWPMC_HOOKS
2485 	/* Inform hwpmc(4) if an executable is being mapped. */
2486 	if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) {
2487 		if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) {
2488 			pkm.pm_file = vp;
2489 			pkm.pm_address = (uintptr_t) *addr;
2490 			PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2491 		}
2492 	}
2493 #endif
2494 	return (error);
2495 }
2496 
2497 void
2498 vn_fsid(struct vnode *vp, struct vattr *va)
2499 {
2500 	fsid_t *f;
2501 
2502 	f = &vp->v_mount->mnt_stat.f_fsid;
2503 	va->va_fsid = (uint32_t)f->val[1];
2504 	va->va_fsid <<= sizeof(f->val[1]) * NBBY;
2505 	va->va_fsid += (uint32_t)f->val[0];
2506 }
2507