xref: /freebsd/sys/kern/vfs_vnops.c (revision 18849b5da0c5eaa88500b457be05b038813b51b1)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Copyright (c) 2012 Konstantin Belousov <kib@FreeBSD.org>
11  * Copyright (c) 2013, 2014 The FreeBSD Foundation
12  *
13  * Portions of this software were developed by Konstantin Belousov
14  * under sponsorship from the FreeBSD Foundation.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)vfs_vnops.c	8.2 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_hwpmc_hooks.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/disk.h>
51 #include <sys/fail.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/kdb.h>
55 #include <sys/stat.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/limits.h>
59 #include <sys/lock.h>
60 #include <sys/mman.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/vnode.h>
65 #include <sys/bio.h>
66 #include <sys/buf.h>
67 #include <sys/filio.h>
68 #include <sys/resourcevar.h>
69 #include <sys/rwlock.h>
70 #include <sys/sx.h>
71 #include <sys/sysctl.h>
72 #include <sys/ttycom.h>
73 #include <sys/conf.h>
74 #include <sys/syslog.h>
75 #include <sys/unistd.h>
76 #include <sys/user.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vnode_pager.h>
88 
89 #ifdef HWPMC_HOOKS
90 #include <sys/pmckern.h>
91 #endif
92 
93 static fo_rdwr_t	vn_read;
94 static fo_rdwr_t	vn_write;
95 static fo_rdwr_t	vn_io_fault;
96 static fo_truncate_t	vn_truncate;
97 static fo_ioctl_t	vn_ioctl;
98 static fo_poll_t	vn_poll;
99 static fo_kqfilter_t	vn_kqfilter;
100 static fo_stat_t	vn_statfile;
101 static fo_close_t	vn_closefile;
102 static fo_mmap_t	vn_mmap;
103 
104 struct 	fileops vnops = {
105 	.fo_read = vn_io_fault,
106 	.fo_write = vn_io_fault,
107 	.fo_truncate = vn_truncate,
108 	.fo_ioctl = vn_ioctl,
109 	.fo_poll = vn_poll,
110 	.fo_kqfilter = vn_kqfilter,
111 	.fo_stat = vn_statfile,
112 	.fo_close = vn_closefile,
113 	.fo_chmod = vn_chmod,
114 	.fo_chown = vn_chown,
115 	.fo_sendfile = vn_sendfile,
116 	.fo_seek = vn_seek,
117 	.fo_fill_kinfo = vn_fill_kinfo,
118 	.fo_mmap = vn_mmap,
119 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE
120 };
121 
122 static const int io_hold_cnt = 16;
123 static int vn_io_fault_enable = 1;
124 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RW,
125     &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance");
126 static int vn_io_fault_prefault = 0;
127 SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RW,
128     &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting");
129 static u_long vn_io_faults_cnt;
130 SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD,
131     &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers");
132 
133 /*
134  * Returns true if vn_io_fault mode of handling the i/o request should
135  * be used.
136  */
137 static bool
138 do_vn_io_fault(struct vnode *vp, struct uio *uio)
139 {
140 	struct mount *mp;
141 
142 	return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG &&
143 	    (mp = vp->v_mount) != NULL &&
144 	    (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable);
145 }
146 
147 /*
148  * Structure used to pass arguments to vn_io_fault1(), to do either
149  * file- or vnode-based I/O calls.
150  */
151 struct vn_io_fault_args {
152 	enum {
153 		VN_IO_FAULT_FOP,
154 		VN_IO_FAULT_VOP
155 	} kind;
156 	struct ucred *cred;
157 	int flags;
158 	union {
159 		struct fop_args_tag {
160 			struct file *fp;
161 			fo_rdwr_t *doio;
162 		} fop_args;
163 		struct vop_args_tag {
164 			struct vnode *vp;
165 		} vop_args;
166 	} args;
167 };
168 
169 static int vn_io_fault1(struct vnode *vp, struct uio *uio,
170     struct vn_io_fault_args *args, struct thread *td);
171 
172 int
173 vn_open(ndp, flagp, cmode, fp)
174 	struct nameidata *ndp;
175 	int *flagp, cmode;
176 	struct file *fp;
177 {
178 	struct thread *td = ndp->ni_cnd.cn_thread;
179 
180 	return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp));
181 }
182 
183 /*
184  * Common code for vnode open operations via a name lookup.
185  * Lookup the vnode and invoke VOP_CREATE if needed.
186  * Check permissions, and call the VOP_OPEN or VOP_CREATE routine.
187  *
188  * Note that this does NOT free nameidata for the successful case,
189  * due to the NDINIT being done elsewhere.
190  */
191 int
192 vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags,
193     struct ucred *cred, struct file *fp)
194 {
195 	struct vnode *vp;
196 	struct mount *mp;
197 	struct thread *td = ndp->ni_cnd.cn_thread;
198 	struct vattr vat;
199 	struct vattr *vap = &vat;
200 	int fmode, error;
201 
202 restart:
203 	fmode = *flagp;
204 	if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT |
205 	    O_EXCL | O_DIRECTORY))
206 		return (EINVAL);
207 	else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) {
208 		ndp->ni_cnd.cn_nameiop = CREATE;
209 		/*
210 		 * Set NOCACHE to avoid flushing the cache when
211 		 * rolling in many files at once.
212 		*/
213 		ndp->ni_cnd.cn_flags = ISOPEN | LOCKPARENT | LOCKLEAF | NOCACHE;
214 		if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0)
215 			ndp->ni_cnd.cn_flags |= FOLLOW;
216 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
217 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
218 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
219 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
220 		bwillwrite();
221 		if ((error = namei(ndp)) != 0)
222 			return (error);
223 		if (ndp->ni_vp == NULL) {
224 			VATTR_NULL(vap);
225 			vap->va_type = VREG;
226 			vap->va_mode = cmode;
227 			if (fmode & O_EXCL)
228 				vap->va_vaflags |= VA_EXCLUSIVE;
229 			if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) {
230 				NDFREE(ndp, NDF_ONLY_PNBUF);
231 				vput(ndp->ni_dvp);
232 				if ((error = vn_start_write(NULL, &mp,
233 				    V_XSLEEP | PCATCH)) != 0)
234 					return (error);
235 				goto restart;
236 			}
237 			if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0)
238 				ndp->ni_cnd.cn_flags |= MAKEENTRY;
239 #ifdef MAC
240 			error = mac_vnode_check_create(cred, ndp->ni_dvp,
241 			    &ndp->ni_cnd, vap);
242 			if (error == 0)
243 #endif
244 				error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp,
245 						   &ndp->ni_cnd, vap);
246 			vput(ndp->ni_dvp);
247 			vn_finished_write(mp);
248 			if (error) {
249 				NDFREE(ndp, NDF_ONLY_PNBUF);
250 				return (error);
251 			}
252 			fmode &= ~O_TRUNC;
253 			vp = ndp->ni_vp;
254 		} else {
255 			if (ndp->ni_dvp == ndp->ni_vp)
256 				vrele(ndp->ni_dvp);
257 			else
258 				vput(ndp->ni_dvp);
259 			ndp->ni_dvp = NULL;
260 			vp = ndp->ni_vp;
261 			if (fmode & O_EXCL) {
262 				error = EEXIST;
263 				goto bad;
264 			}
265 			fmode &= ~O_CREAT;
266 		}
267 	} else {
268 		ndp->ni_cnd.cn_nameiop = LOOKUP;
269 		ndp->ni_cnd.cn_flags = ISOPEN |
270 		    ((fmode & O_NOFOLLOW) ? NOFOLLOW : FOLLOW) | LOCKLEAF;
271 		if (!(fmode & FWRITE))
272 			ndp->ni_cnd.cn_flags |= LOCKSHARED;
273 		if (!(vn_open_flags & VN_OPEN_NOAUDIT))
274 			ndp->ni_cnd.cn_flags |= AUDITVNODE1;
275 		if (vn_open_flags & VN_OPEN_NOCAPCHECK)
276 			ndp->ni_cnd.cn_flags |= NOCAPCHECK;
277 		if ((error = namei(ndp)) != 0)
278 			return (error);
279 		vp = ndp->ni_vp;
280 	}
281 	error = vn_open_vnode(vp, fmode, cred, td, fp);
282 	if (error)
283 		goto bad;
284 	*flagp = fmode;
285 	return (0);
286 bad:
287 	NDFREE(ndp, NDF_ONLY_PNBUF);
288 	vput(vp);
289 	*flagp = fmode;
290 	ndp->ni_vp = NULL;
291 	return (error);
292 }
293 
294 /*
295  * Common code for vnode open operations once a vnode is located.
296  * Check permissions, and call the VOP_OPEN routine.
297  */
298 int
299 vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred,
300     struct thread *td, struct file *fp)
301 {
302 	accmode_t accmode;
303 	struct flock lf;
304 	int error, lock_flags, type;
305 
306 	if (vp->v_type == VLNK)
307 		return (EMLINK);
308 	if (vp->v_type == VSOCK)
309 		return (EOPNOTSUPP);
310 	if (vp->v_type != VDIR && fmode & O_DIRECTORY)
311 		return (ENOTDIR);
312 	accmode = 0;
313 	if (fmode & (FWRITE | O_TRUNC)) {
314 		if (vp->v_type == VDIR)
315 			return (EISDIR);
316 		accmode |= VWRITE;
317 	}
318 	if (fmode & FREAD)
319 		accmode |= VREAD;
320 	if (fmode & FEXEC)
321 		accmode |= VEXEC;
322 	if ((fmode & O_APPEND) && (fmode & FWRITE))
323 		accmode |= VAPPEND;
324 #ifdef MAC
325 	if (fmode & O_CREAT)
326 		accmode |= VCREAT;
327 	if (fmode & O_VERIFY)
328 		accmode |= VVERIFY;
329 	error = mac_vnode_check_open(cred, vp, accmode);
330 	if (error)
331 		return (error);
332 
333 	accmode &= ~(VCREAT | VVERIFY);
334 #endif
335 	if ((fmode & O_CREAT) == 0) {
336 		if (accmode & VWRITE) {
337 			error = vn_writechk(vp);
338 			if (error)
339 				return (error);
340 		}
341 		if (accmode) {
342 		        error = VOP_ACCESS(vp, accmode, cred, td);
343 			if (error)
344 				return (error);
345 		}
346 	}
347 	if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
348 		vn_lock(vp, LK_UPGRADE | LK_RETRY);
349 	if ((error = VOP_OPEN(vp, fmode, cred, td, fp)) != 0)
350 		return (error);
351 
352 	if (fmode & (O_EXLOCK | O_SHLOCK)) {
353 		KASSERT(fp != NULL, ("open with flock requires fp"));
354 		lock_flags = VOP_ISLOCKED(vp);
355 		VOP_UNLOCK(vp, 0);
356 		lf.l_whence = SEEK_SET;
357 		lf.l_start = 0;
358 		lf.l_len = 0;
359 		if (fmode & O_EXLOCK)
360 			lf.l_type = F_WRLCK;
361 		else
362 			lf.l_type = F_RDLCK;
363 		type = F_FLOCK;
364 		if ((fmode & FNONBLOCK) == 0)
365 			type |= F_WAIT;
366 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type);
367 		if (error == 0)
368 			fp->f_flag |= FHASLOCK;
369 		vn_lock(vp, lock_flags | LK_RETRY);
370 		if (error == 0 && vp->v_iflag & VI_DOOMED)
371 			error = ENOENT;
372 
373 		/*
374 		 * Another thread might have used this vnode as an
375 		 * executable while the vnode lock was dropped.
376 		 * Ensure the vnode is still able to be opened for
377 		 * writing after the lock has been obtained.
378 		 */
379 		if (error == 0 && accmode & VWRITE)
380 			error = vn_writechk(vp);
381 
382 		if (error != 0) {
383 			fp->f_flag |= FOPENFAILED;
384 			fp->f_vnode = vp;
385 			if (fp->f_ops == &badfileops) {
386 				fp->f_type = DTYPE_VNODE;
387 				fp->f_ops = &vnops;
388 			}
389 			vref(vp);
390 		}
391 	}
392 	if (error == 0 && fmode & FWRITE) {
393 		VOP_ADD_WRITECOUNT(vp, 1);
394 		CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d",
395 		    __func__, vp, vp->v_writecount);
396 	}
397 	ASSERT_VOP_LOCKED(vp, "vn_open_vnode");
398 	return (error);
399 }
400 
401 /*
402  * Check for write permissions on the specified vnode.
403  * Prototype text segments cannot be written.
404  */
405 int
406 vn_writechk(vp)
407 	register struct vnode *vp;
408 {
409 
410 	ASSERT_VOP_LOCKED(vp, "vn_writechk");
411 	/*
412 	 * If there's shared text associated with
413 	 * the vnode, try to free it up once.  If
414 	 * we fail, we can't allow writing.
415 	 */
416 	if (VOP_IS_TEXT(vp))
417 		return (ETXTBSY);
418 
419 	return (0);
420 }
421 
422 /*
423  * Vnode close call
424  */
425 int
426 vn_close(vp, flags, file_cred, td)
427 	register struct vnode *vp;
428 	int flags;
429 	struct ucred *file_cred;
430 	struct thread *td;
431 {
432 	struct mount *mp;
433 	int error, lock_flags;
434 
435 	if (vp->v_type != VFIFO && (flags & FWRITE) == 0 &&
436 	    MNT_EXTENDED_SHARED(vp->v_mount))
437 		lock_flags = LK_SHARED;
438 	else
439 		lock_flags = LK_EXCLUSIVE;
440 
441 	vn_start_write(vp, &mp, V_WAIT);
442 	vn_lock(vp, lock_flags | LK_RETRY);
443 	if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) {
444 		VNASSERT(vp->v_writecount > 0, vp,
445 		    ("vn_close: negative writecount"));
446 		VOP_ADD_WRITECOUNT(vp, -1);
447 		CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d",
448 		    __func__, vp, vp->v_writecount);
449 	}
450 	error = VOP_CLOSE(vp, flags, file_cred, td);
451 	vput(vp);
452 	vn_finished_write(mp);
453 	return (error);
454 }
455 
456 /*
457  * Heuristic to detect sequential operation.
458  */
459 static int
460 sequential_heuristic(struct uio *uio, struct file *fp)
461 {
462 
463 	ASSERT_VOP_LOCKED(fp->f_vnode, __func__);
464 	if (fp->f_flag & FRDAHEAD)
465 		return (fp->f_seqcount << IO_SEQSHIFT);
466 
467 	/*
468 	 * Offset 0 is handled specially.  open() sets f_seqcount to 1 so
469 	 * that the first I/O is normally considered to be slightly
470 	 * sequential.  Seeking to offset 0 doesn't change sequentiality
471 	 * unless previous seeks have reduced f_seqcount to 0, in which
472 	 * case offset 0 is not special.
473 	 */
474 	if ((uio->uio_offset == 0 && fp->f_seqcount > 0) ||
475 	    uio->uio_offset == fp->f_nextoff) {
476 		/*
477 		 * f_seqcount is in units of fixed-size blocks so that it
478 		 * depends mainly on the amount of sequential I/O and not
479 		 * much on the number of sequential I/O's.  The fixed size
480 		 * of 16384 is hard-coded here since it is (not quite) just
481 		 * a magic size that works well here.  This size is more
482 		 * closely related to the best I/O size for real disks than
483 		 * to any block size used by software.
484 		 */
485 		fp->f_seqcount += howmany(uio->uio_resid, 16384);
486 		if (fp->f_seqcount > IO_SEQMAX)
487 			fp->f_seqcount = IO_SEQMAX;
488 		return (fp->f_seqcount << IO_SEQSHIFT);
489 	}
490 
491 	/* Not sequential.  Quickly draw-down sequentiality. */
492 	if (fp->f_seqcount > 1)
493 		fp->f_seqcount = 1;
494 	else
495 		fp->f_seqcount = 0;
496 	return (0);
497 }
498 
499 /*
500  * Package up an I/O request on a vnode into a uio and do it.
501  */
502 int
503 vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset,
504     enum uio_seg segflg, int ioflg, struct ucred *active_cred,
505     struct ucred *file_cred, ssize_t *aresid, struct thread *td)
506 {
507 	struct uio auio;
508 	struct iovec aiov;
509 	struct mount *mp;
510 	struct ucred *cred;
511 	void *rl_cookie;
512 	struct vn_io_fault_args args;
513 	int error, lock_flags;
514 
515 	auio.uio_iov = &aiov;
516 	auio.uio_iovcnt = 1;
517 	aiov.iov_base = base;
518 	aiov.iov_len = len;
519 	auio.uio_resid = len;
520 	auio.uio_offset = offset;
521 	auio.uio_segflg = segflg;
522 	auio.uio_rw = rw;
523 	auio.uio_td = td;
524 	error = 0;
525 
526 	if ((ioflg & IO_NODELOCKED) == 0) {
527 		if ((ioflg & IO_RANGELOCKED) == 0) {
528 			if (rw == UIO_READ) {
529 				rl_cookie = vn_rangelock_rlock(vp, offset,
530 				    offset + len);
531 			} else {
532 				rl_cookie = vn_rangelock_wlock(vp, offset,
533 				    offset + len);
534 			}
535 		} else
536 			rl_cookie = NULL;
537 		mp = NULL;
538 		if (rw == UIO_WRITE) {
539 			if (vp->v_type != VCHR &&
540 			    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH))
541 			    != 0)
542 				goto out;
543 			if (MNT_SHARED_WRITES(mp) ||
544 			    ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount)))
545 				lock_flags = LK_SHARED;
546 			else
547 				lock_flags = LK_EXCLUSIVE;
548 		} else
549 			lock_flags = LK_SHARED;
550 		vn_lock(vp, lock_flags | LK_RETRY);
551 	} else
552 		rl_cookie = NULL;
553 
554 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
555 #ifdef MAC
556 	if ((ioflg & IO_NOMACCHECK) == 0) {
557 		if (rw == UIO_READ)
558 			error = mac_vnode_check_read(active_cred, file_cred,
559 			    vp);
560 		else
561 			error = mac_vnode_check_write(active_cred, file_cred,
562 			    vp);
563 	}
564 #endif
565 	if (error == 0) {
566 		if (file_cred != NULL)
567 			cred = file_cred;
568 		else
569 			cred = active_cred;
570 		if (do_vn_io_fault(vp, &auio)) {
571 			args.kind = VN_IO_FAULT_VOP;
572 			args.cred = cred;
573 			args.flags = ioflg;
574 			args.args.vop_args.vp = vp;
575 			error = vn_io_fault1(vp, &auio, &args, td);
576 		} else if (rw == UIO_READ) {
577 			error = VOP_READ(vp, &auio, ioflg, cred);
578 		} else /* if (rw == UIO_WRITE) */ {
579 			error = VOP_WRITE(vp, &auio, ioflg, cred);
580 		}
581 	}
582 	if (aresid)
583 		*aresid = auio.uio_resid;
584 	else
585 		if (auio.uio_resid && error == 0)
586 			error = EIO;
587 	if ((ioflg & IO_NODELOCKED) == 0) {
588 		VOP_UNLOCK(vp, 0);
589 		if (mp != NULL)
590 			vn_finished_write(mp);
591 	}
592  out:
593 	if (rl_cookie != NULL)
594 		vn_rangelock_unlock(vp, rl_cookie);
595 	return (error);
596 }
597 
598 /*
599  * Package up an I/O request on a vnode into a uio and do it.  The I/O
600  * request is split up into smaller chunks and we try to avoid saturating
601  * the buffer cache while potentially holding a vnode locked, so we
602  * check bwillwrite() before calling vn_rdwr().  We also call kern_yield()
603  * to give other processes a chance to lock the vnode (either other processes
604  * core'ing the same binary, or unrelated processes scanning the directory).
605  */
606 int
607 vn_rdwr_inchunks(rw, vp, base, len, offset, segflg, ioflg, active_cred,
608     file_cred, aresid, td)
609 	enum uio_rw rw;
610 	struct vnode *vp;
611 	void *base;
612 	size_t len;
613 	off_t offset;
614 	enum uio_seg segflg;
615 	int ioflg;
616 	struct ucred *active_cred;
617 	struct ucred *file_cred;
618 	size_t *aresid;
619 	struct thread *td;
620 {
621 	int error = 0;
622 	ssize_t iaresid;
623 
624 	do {
625 		int chunk;
626 
627 		/*
628 		 * Force `offset' to a multiple of MAXBSIZE except possibly
629 		 * for the first chunk, so that filesystems only need to
630 		 * write full blocks except possibly for the first and last
631 		 * chunks.
632 		 */
633 		chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE;
634 
635 		if (chunk > len)
636 			chunk = len;
637 		if (rw != UIO_READ && vp->v_type == VREG)
638 			bwillwrite();
639 		iaresid = 0;
640 		error = vn_rdwr(rw, vp, base, chunk, offset, segflg,
641 		    ioflg, active_cred, file_cred, &iaresid, td);
642 		len -= chunk;	/* aresid calc already includes length */
643 		if (error)
644 			break;
645 		offset += chunk;
646 		base = (char *)base + chunk;
647 		kern_yield(PRI_USER);
648 	} while (len);
649 	if (aresid)
650 		*aresid = len + iaresid;
651 	return (error);
652 }
653 
654 off_t
655 foffset_lock(struct file *fp, int flags)
656 {
657 	struct mtx *mtxp;
658 	off_t res;
659 
660 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
661 
662 #if OFF_MAX <= LONG_MAX
663 	/*
664 	 * Caller only wants the current f_offset value.  Assume that
665 	 * the long and shorter integer types reads are atomic.
666 	 */
667 	if ((flags & FOF_NOLOCK) != 0)
668 		return (fp->f_offset);
669 #endif
670 
671 	/*
672 	 * According to McKusick the vn lock was protecting f_offset here.
673 	 * It is now protected by the FOFFSET_LOCKED flag.
674 	 */
675 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
676 	mtx_lock(mtxp);
677 	if ((flags & FOF_NOLOCK) == 0) {
678 		while (fp->f_vnread_flags & FOFFSET_LOCKED) {
679 			fp->f_vnread_flags |= FOFFSET_LOCK_WAITING;
680 			msleep(&fp->f_vnread_flags, mtxp, PUSER -1,
681 			    "vofflock", 0);
682 		}
683 		fp->f_vnread_flags |= FOFFSET_LOCKED;
684 	}
685 	res = fp->f_offset;
686 	mtx_unlock(mtxp);
687 	return (res);
688 }
689 
690 void
691 foffset_unlock(struct file *fp, off_t val, int flags)
692 {
693 	struct mtx *mtxp;
694 
695 	KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed"));
696 
697 #if OFF_MAX <= LONG_MAX
698 	if ((flags & FOF_NOLOCK) != 0) {
699 		if ((flags & FOF_NOUPDATE) == 0)
700 			fp->f_offset = val;
701 		if ((flags & FOF_NEXTOFF) != 0)
702 			fp->f_nextoff = val;
703 		return;
704 	}
705 #endif
706 
707 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
708 	mtx_lock(mtxp);
709 	if ((flags & FOF_NOUPDATE) == 0)
710 		fp->f_offset = val;
711 	if ((flags & FOF_NEXTOFF) != 0)
712 		fp->f_nextoff = val;
713 	if ((flags & FOF_NOLOCK) == 0) {
714 		KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0,
715 		    ("Lost FOFFSET_LOCKED"));
716 		if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING)
717 			wakeup(&fp->f_vnread_flags);
718 		fp->f_vnread_flags = 0;
719 	}
720 	mtx_unlock(mtxp);
721 }
722 
723 void
724 foffset_lock_uio(struct file *fp, struct uio *uio, int flags)
725 {
726 
727 	if ((flags & FOF_OFFSET) == 0)
728 		uio->uio_offset = foffset_lock(fp, flags);
729 }
730 
731 void
732 foffset_unlock_uio(struct file *fp, struct uio *uio, int flags)
733 {
734 
735 	if ((flags & FOF_OFFSET) == 0)
736 		foffset_unlock(fp, uio->uio_offset, flags);
737 }
738 
739 static int
740 get_advice(struct file *fp, struct uio *uio)
741 {
742 	struct mtx *mtxp;
743 	int ret;
744 
745 	ret = POSIX_FADV_NORMAL;
746 	if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG)
747 		return (ret);
748 
749 	mtxp = mtx_pool_find(mtxpool_sleep, fp);
750 	mtx_lock(mtxp);
751 	if (fp->f_advice != NULL &&
752 	    uio->uio_offset >= fp->f_advice->fa_start &&
753 	    uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end)
754 		ret = fp->f_advice->fa_advice;
755 	mtx_unlock(mtxp);
756 	return (ret);
757 }
758 
759 /*
760  * File table vnode read routine.
761  */
762 static int
763 vn_read(fp, uio, active_cred, flags, td)
764 	struct file *fp;
765 	struct uio *uio;
766 	struct ucred *active_cred;
767 	int flags;
768 	struct thread *td;
769 {
770 	struct vnode *vp;
771 	off_t orig_offset;
772 	int error, ioflag;
773 	int advice;
774 
775 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
776 	    uio->uio_td, td));
777 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
778 	vp = fp->f_vnode;
779 	ioflag = 0;
780 	if (fp->f_flag & FNONBLOCK)
781 		ioflag |= IO_NDELAY;
782 	if (fp->f_flag & O_DIRECT)
783 		ioflag |= IO_DIRECT;
784 	advice = get_advice(fp, uio);
785 	vn_lock(vp, LK_SHARED | LK_RETRY);
786 
787 	switch (advice) {
788 	case POSIX_FADV_NORMAL:
789 	case POSIX_FADV_SEQUENTIAL:
790 	case POSIX_FADV_NOREUSE:
791 		ioflag |= sequential_heuristic(uio, fp);
792 		break;
793 	case POSIX_FADV_RANDOM:
794 		/* Disable read-ahead for random I/O. */
795 		break;
796 	}
797 	orig_offset = uio->uio_offset;
798 
799 #ifdef MAC
800 	error = mac_vnode_check_read(active_cred, fp->f_cred, vp);
801 	if (error == 0)
802 #endif
803 		error = VOP_READ(vp, uio, ioflag, fp->f_cred);
804 	fp->f_nextoff = uio->uio_offset;
805 	VOP_UNLOCK(vp, 0);
806 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
807 	    orig_offset != uio->uio_offset)
808 		/*
809 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
810 		 * for the backing file after a POSIX_FADV_NOREUSE
811 		 * read(2).
812 		 */
813 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
814 		    POSIX_FADV_DONTNEED);
815 	return (error);
816 }
817 
818 /*
819  * File table vnode write routine.
820  */
821 static int
822 vn_write(fp, uio, active_cred, flags, td)
823 	struct file *fp;
824 	struct uio *uio;
825 	struct ucred *active_cred;
826 	int flags;
827 	struct thread *td;
828 {
829 	struct vnode *vp;
830 	struct mount *mp;
831 	off_t orig_offset;
832 	int error, ioflag, lock_flags;
833 	int advice;
834 
835 	KASSERT(uio->uio_td == td, ("uio_td %p is not td %p",
836 	    uio->uio_td, td));
837 	KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET"));
838 	vp = fp->f_vnode;
839 	if (vp->v_type == VREG)
840 		bwillwrite();
841 	ioflag = IO_UNIT;
842 	if (vp->v_type == VREG && (fp->f_flag & O_APPEND))
843 		ioflag |= IO_APPEND;
844 	if (fp->f_flag & FNONBLOCK)
845 		ioflag |= IO_NDELAY;
846 	if (fp->f_flag & O_DIRECT)
847 		ioflag |= IO_DIRECT;
848 	if ((fp->f_flag & O_FSYNC) ||
849 	    (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SYNCHRONOUS)))
850 		ioflag |= IO_SYNC;
851 	mp = NULL;
852 	if (vp->v_type != VCHR &&
853 	    (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0)
854 		goto unlock;
855 
856 	advice = get_advice(fp, uio);
857 
858 	if (MNT_SHARED_WRITES(mp) ||
859 	    (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) {
860 		lock_flags = LK_SHARED;
861 	} else {
862 		lock_flags = LK_EXCLUSIVE;
863 	}
864 
865 	vn_lock(vp, lock_flags | LK_RETRY);
866 	switch (advice) {
867 	case POSIX_FADV_NORMAL:
868 	case POSIX_FADV_SEQUENTIAL:
869 	case POSIX_FADV_NOREUSE:
870 		ioflag |= sequential_heuristic(uio, fp);
871 		break;
872 	case POSIX_FADV_RANDOM:
873 		/* XXX: Is this correct? */
874 		break;
875 	}
876 	orig_offset = uio->uio_offset;
877 
878 #ifdef MAC
879 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
880 	if (error == 0)
881 #endif
882 		error = VOP_WRITE(vp, uio, ioflag, fp->f_cred);
883 	fp->f_nextoff = uio->uio_offset;
884 	VOP_UNLOCK(vp, 0);
885 	if (vp->v_type != VCHR)
886 		vn_finished_write(mp);
887 	if (error == 0 && advice == POSIX_FADV_NOREUSE &&
888 	    orig_offset != uio->uio_offset)
889 		/*
890 		 * Use POSIX_FADV_DONTNEED to flush pages and buffers
891 		 * for the backing file after a POSIX_FADV_NOREUSE
892 		 * write(2).
893 		 */
894 		error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1,
895 		    POSIX_FADV_DONTNEED);
896 unlock:
897 	return (error);
898 }
899 
900 /*
901  * The vn_io_fault() is a wrapper around vn_read() and vn_write() to
902  * prevent the following deadlock:
903  *
904  * Assume that the thread A reads from the vnode vp1 into userspace
905  * buffer buf1 backed by the pages of vnode vp2.  If a page in buf1 is
906  * currently not resident, then system ends up with the call chain
907  *   vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] ->
908  *     vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2)
909  * which establishes lock order vp1->vn_lock, then vp2->vn_lock.
910  * If, at the same time, thread B reads from vnode vp2 into buffer buf2
911  * backed by the pages of vnode vp1, and some page in buf2 is not
912  * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock.
913  *
914  * To prevent the lock order reversal and deadlock, vn_io_fault() does
915  * not allow page faults to happen during VOP_READ() or VOP_WRITE().
916  * Instead, it first tries to do the whole range i/o with pagefaults
917  * disabled. If all pages in the i/o buffer are resident and mapped,
918  * VOP will succeed (ignoring the genuine filesystem errors).
919  * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do
920  * i/o in chunks, with all pages in the chunk prefaulted and held
921  * using vm_fault_quick_hold_pages().
922  *
923  * Filesystems using this deadlock avoidance scheme should use the
924  * array of the held pages from uio, saved in the curthread->td_ma,
925  * instead of doing uiomove().  A helper function
926  * vn_io_fault_uiomove() converts uiomove request into
927  * uiomove_fromphys() over td_ma array.
928  *
929  * Since vnode locks do not cover the whole i/o anymore, rangelocks
930  * make the current i/o request atomic with respect to other i/os and
931  * truncations.
932  */
933 
934 /*
935  * Decode vn_io_fault_args and perform the corresponding i/o.
936  */
937 static int
938 vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio,
939     struct thread *td)
940 {
941 
942 	switch (args->kind) {
943 	case VN_IO_FAULT_FOP:
944 		return ((args->args.fop_args.doio)(args->args.fop_args.fp,
945 		    uio, args->cred, args->flags, td));
946 	case VN_IO_FAULT_VOP:
947 		if (uio->uio_rw == UIO_READ) {
948 			return (VOP_READ(args->args.vop_args.vp, uio,
949 			    args->flags, args->cred));
950 		} else if (uio->uio_rw == UIO_WRITE) {
951 			return (VOP_WRITE(args->args.vop_args.vp, uio,
952 			    args->flags, args->cred));
953 		}
954 		break;
955 	}
956 	panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind,
957 	    uio->uio_rw);
958 }
959 
960 static int
961 vn_io_fault_touch(char *base, const struct uio *uio)
962 {
963 	int r;
964 
965 	r = fubyte(base);
966 	if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1))
967 		return (EFAULT);
968 	return (0);
969 }
970 
971 static int
972 vn_io_fault_prefault_user(const struct uio *uio)
973 {
974 	char *base;
975 	const struct iovec *iov;
976 	size_t len;
977 	ssize_t resid;
978 	int error, i;
979 
980 	KASSERT(uio->uio_segflg == UIO_USERSPACE,
981 	    ("vn_io_fault_prefault userspace"));
982 
983 	error = i = 0;
984 	iov = uio->uio_iov;
985 	resid = uio->uio_resid;
986 	base = iov->iov_base;
987 	len = iov->iov_len;
988 	while (resid > 0) {
989 		error = vn_io_fault_touch(base, uio);
990 		if (error != 0)
991 			break;
992 		if (len < PAGE_SIZE) {
993 			if (len != 0) {
994 				error = vn_io_fault_touch(base + len - 1, uio);
995 				if (error != 0)
996 					break;
997 				resid -= len;
998 			}
999 			if (++i >= uio->uio_iovcnt)
1000 				break;
1001 			iov = uio->uio_iov + i;
1002 			base = iov->iov_base;
1003 			len = iov->iov_len;
1004 		} else {
1005 			len -= PAGE_SIZE;
1006 			base += PAGE_SIZE;
1007 			resid -= PAGE_SIZE;
1008 		}
1009 	}
1010 	return (error);
1011 }
1012 
1013 /*
1014  * Common code for vn_io_fault(), agnostic to the kind of i/o request.
1015  * Uses vn_io_fault_doio() to make the call to an actual i/o function.
1016  * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request
1017  * into args and call vn_io_fault1() to handle faults during the user
1018  * mode buffer accesses.
1019  */
1020 static int
1021 vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args,
1022     struct thread *td)
1023 {
1024 	vm_page_t ma[io_hold_cnt + 2];
1025 	struct uio *uio_clone, short_uio;
1026 	struct iovec short_iovec[1];
1027 	vm_page_t *prev_td_ma;
1028 	vm_prot_t prot;
1029 	vm_offset_t addr, end;
1030 	size_t len, resid;
1031 	ssize_t adv;
1032 	int error, cnt, save, saveheld, prev_td_ma_cnt;
1033 
1034 	if (vn_io_fault_prefault) {
1035 		error = vn_io_fault_prefault_user(uio);
1036 		if (error != 0)
1037 			return (error); /* Or ignore ? */
1038 	}
1039 
1040 	prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ;
1041 
1042 	/*
1043 	 * The UFS follows IO_UNIT directive and replays back both
1044 	 * uio_offset and uio_resid if an error is encountered during the
1045 	 * operation.  But, since the iovec may be already advanced,
1046 	 * uio is still in an inconsistent state.
1047 	 *
1048 	 * Cache a copy of the original uio, which is advanced to the redo
1049 	 * point using UIO_NOCOPY below.
1050 	 */
1051 	uio_clone = cloneuio(uio);
1052 	resid = uio->uio_resid;
1053 
1054 	short_uio.uio_segflg = UIO_USERSPACE;
1055 	short_uio.uio_rw = uio->uio_rw;
1056 	short_uio.uio_td = uio->uio_td;
1057 
1058 	save = vm_fault_disable_pagefaults();
1059 	error = vn_io_fault_doio(args, uio, td);
1060 	if (error != EFAULT)
1061 		goto out;
1062 
1063 	atomic_add_long(&vn_io_faults_cnt, 1);
1064 	uio_clone->uio_segflg = UIO_NOCOPY;
1065 	uiomove(NULL, resid - uio->uio_resid, uio_clone);
1066 	uio_clone->uio_segflg = uio->uio_segflg;
1067 
1068 	saveheld = curthread_pflags_set(TDP_UIOHELD);
1069 	prev_td_ma = td->td_ma;
1070 	prev_td_ma_cnt = td->td_ma_cnt;
1071 
1072 	while (uio_clone->uio_resid != 0) {
1073 		len = uio_clone->uio_iov->iov_len;
1074 		if (len == 0) {
1075 			KASSERT(uio_clone->uio_iovcnt >= 1,
1076 			    ("iovcnt underflow"));
1077 			uio_clone->uio_iov++;
1078 			uio_clone->uio_iovcnt--;
1079 			continue;
1080 		}
1081 		if (len > io_hold_cnt * PAGE_SIZE)
1082 			len = io_hold_cnt * PAGE_SIZE;
1083 		addr = (uintptr_t)uio_clone->uio_iov->iov_base;
1084 		end = round_page(addr + len);
1085 		if (end < addr) {
1086 			error = EFAULT;
1087 			break;
1088 		}
1089 		cnt = atop(end - trunc_page(addr));
1090 		/*
1091 		 * A perfectly misaligned address and length could cause
1092 		 * both the start and the end of the chunk to use partial
1093 		 * page.  +2 accounts for such a situation.
1094 		 */
1095 		cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map,
1096 		    addr, len, prot, ma, io_hold_cnt + 2);
1097 		if (cnt == -1) {
1098 			error = EFAULT;
1099 			break;
1100 		}
1101 		short_uio.uio_iov = &short_iovec[0];
1102 		short_iovec[0].iov_base = (void *)addr;
1103 		short_uio.uio_iovcnt = 1;
1104 		short_uio.uio_resid = short_iovec[0].iov_len = len;
1105 		short_uio.uio_offset = uio_clone->uio_offset;
1106 		td->td_ma = ma;
1107 		td->td_ma_cnt = cnt;
1108 
1109 		error = vn_io_fault_doio(args, &short_uio, td);
1110 		vm_page_unhold_pages(ma, cnt);
1111 		adv = len - short_uio.uio_resid;
1112 
1113 		uio_clone->uio_iov->iov_base =
1114 		    (char *)uio_clone->uio_iov->iov_base + adv;
1115 		uio_clone->uio_iov->iov_len -= adv;
1116 		uio_clone->uio_resid -= adv;
1117 		uio_clone->uio_offset += adv;
1118 
1119 		uio->uio_resid -= adv;
1120 		uio->uio_offset += adv;
1121 
1122 		if (error != 0 || adv == 0)
1123 			break;
1124 	}
1125 	td->td_ma = prev_td_ma;
1126 	td->td_ma_cnt = prev_td_ma_cnt;
1127 	curthread_pflags_restore(saveheld);
1128 out:
1129 	vm_fault_enable_pagefaults(save);
1130 	free(uio_clone, M_IOV);
1131 	return (error);
1132 }
1133 
1134 static int
1135 vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred,
1136     int flags, struct thread *td)
1137 {
1138 	fo_rdwr_t *doio;
1139 	struct vnode *vp;
1140 	void *rl_cookie;
1141 	struct vn_io_fault_args args;
1142 	int error;
1143 
1144 	doio = uio->uio_rw == UIO_READ ? vn_read : vn_write;
1145 	vp = fp->f_vnode;
1146 	foffset_lock_uio(fp, uio, flags);
1147 	if (do_vn_io_fault(vp, uio)) {
1148 		args.kind = VN_IO_FAULT_FOP;
1149 		args.args.fop_args.fp = fp;
1150 		args.args.fop_args.doio = doio;
1151 		args.cred = active_cred;
1152 		args.flags = flags | FOF_OFFSET;
1153 		if (uio->uio_rw == UIO_READ) {
1154 			rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset,
1155 			    uio->uio_offset + uio->uio_resid);
1156 		} else if ((fp->f_flag & O_APPEND) != 0 ||
1157 		    (flags & FOF_OFFSET) == 0) {
1158 			/* For appenders, punt and lock the whole range. */
1159 			rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1160 		} else {
1161 			rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset,
1162 			    uio->uio_offset + uio->uio_resid);
1163 		}
1164 		error = vn_io_fault1(vp, uio, &args, td);
1165 		vn_rangelock_unlock(vp, rl_cookie);
1166 	} else {
1167 		error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td);
1168 	}
1169 	foffset_unlock_uio(fp, uio, flags);
1170 	return (error);
1171 }
1172 
1173 /*
1174  * Helper function to perform the requested uiomove operation using
1175  * the held pages for io->uio_iov[0].iov_base buffer instead of
1176  * copyin/copyout.  Access to the pages with uiomove_fromphys()
1177  * instead of iov_base prevents page faults that could occur due to
1178  * pmap_collect() invalidating the mapping created by
1179  * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or
1180  * object cleanup revoking the write access from page mappings.
1181  *
1182  * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove()
1183  * instead of plain uiomove().
1184  */
1185 int
1186 vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio)
1187 {
1188 	struct uio transp_uio;
1189 	struct iovec transp_iov[1];
1190 	struct thread *td;
1191 	size_t adv;
1192 	int error, pgadv;
1193 
1194 	td = curthread;
1195 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1196 	    uio->uio_segflg != UIO_USERSPACE)
1197 		return (uiomove(data, xfersize, uio));
1198 
1199 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1200 	transp_iov[0].iov_base = data;
1201 	transp_uio.uio_iov = &transp_iov[0];
1202 	transp_uio.uio_iovcnt = 1;
1203 	if (xfersize > uio->uio_resid)
1204 		xfersize = uio->uio_resid;
1205 	transp_uio.uio_resid = transp_iov[0].iov_len = xfersize;
1206 	transp_uio.uio_offset = 0;
1207 	transp_uio.uio_segflg = UIO_SYSSPACE;
1208 	/*
1209 	 * Since transp_iov points to data, and td_ma page array
1210 	 * corresponds to original uio->uio_iov, we need to invert the
1211 	 * direction of the i/o operation as passed to
1212 	 * uiomove_fromphys().
1213 	 */
1214 	switch (uio->uio_rw) {
1215 	case UIO_WRITE:
1216 		transp_uio.uio_rw = UIO_READ;
1217 		break;
1218 	case UIO_READ:
1219 		transp_uio.uio_rw = UIO_WRITE;
1220 		break;
1221 	}
1222 	transp_uio.uio_td = uio->uio_td;
1223 	error = uiomove_fromphys(td->td_ma,
1224 	    ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK,
1225 	    xfersize, &transp_uio);
1226 	adv = xfersize - transp_uio.uio_resid;
1227 	pgadv =
1228 	    (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) -
1229 	    (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT);
1230 	td->td_ma += pgadv;
1231 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1232 	    pgadv));
1233 	td->td_ma_cnt -= pgadv;
1234 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv;
1235 	uio->uio_iov->iov_len -= adv;
1236 	uio->uio_resid -= adv;
1237 	uio->uio_offset += adv;
1238 	return (error);
1239 }
1240 
1241 int
1242 vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize,
1243     struct uio *uio)
1244 {
1245 	struct thread *td;
1246 	vm_offset_t iov_base;
1247 	int cnt, pgadv;
1248 
1249 	td = curthread;
1250 	if ((td->td_pflags & TDP_UIOHELD) == 0 ||
1251 	    uio->uio_segflg != UIO_USERSPACE)
1252 		return (uiomove_fromphys(ma, offset, xfersize, uio));
1253 
1254 	KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt));
1255 	cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize;
1256 	iov_base = (vm_offset_t)uio->uio_iov->iov_base;
1257 	switch (uio->uio_rw) {
1258 	case UIO_WRITE:
1259 		pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma,
1260 		    offset, cnt);
1261 		break;
1262 	case UIO_READ:
1263 		pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK,
1264 		    cnt);
1265 		break;
1266 	}
1267 	pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT);
1268 	td->td_ma += pgadv;
1269 	KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt,
1270 	    pgadv));
1271 	td->td_ma_cnt -= pgadv;
1272 	uio->uio_iov->iov_base = (char *)(iov_base + cnt);
1273 	uio->uio_iov->iov_len -= cnt;
1274 	uio->uio_resid -= cnt;
1275 	uio->uio_offset += cnt;
1276 	return (0);
1277 }
1278 
1279 
1280 /*
1281  * File table truncate routine.
1282  */
1283 static int
1284 vn_truncate(struct file *fp, off_t length, struct ucred *active_cred,
1285     struct thread *td)
1286 {
1287 	struct vattr vattr;
1288 	struct mount *mp;
1289 	struct vnode *vp;
1290 	void *rl_cookie;
1291 	int error;
1292 
1293 	vp = fp->f_vnode;
1294 
1295 	/*
1296 	 * Lock the whole range for truncation.  Otherwise split i/o
1297 	 * might happen partly before and partly after the truncation.
1298 	 */
1299 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
1300 	error = vn_start_write(vp, &mp, V_WAIT | PCATCH);
1301 	if (error)
1302 		goto out1;
1303 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1304 	if (vp->v_type == VDIR) {
1305 		error = EISDIR;
1306 		goto out;
1307 	}
1308 #ifdef MAC
1309 	error = mac_vnode_check_write(active_cred, fp->f_cred, vp);
1310 	if (error)
1311 		goto out;
1312 #endif
1313 	error = vn_writechk(vp);
1314 	if (error == 0) {
1315 		VATTR_NULL(&vattr);
1316 		vattr.va_size = length;
1317 		if ((fp->f_flag & O_FSYNC) != 0)
1318 			vattr.va_vaflags |= VA_SYNC;
1319 		error = VOP_SETATTR(vp, &vattr, fp->f_cred);
1320 	}
1321 out:
1322 	VOP_UNLOCK(vp, 0);
1323 	vn_finished_write(mp);
1324 out1:
1325 	vn_rangelock_unlock(vp, rl_cookie);
1326 	return (error);
1327 }
1328 
1329 /*
1330  * File table vnode stat routine.
1331  */
1332 static int
1333 vn_statfile(fp, sb, active_cred, td)
1334 	struct file *fp;
1335 	struct stat *sb;
1336 	struct ucred *active_cred;
1337 	struct thread *td;
1338 {
1339 	struct vnode *vp = fp->f_vnode;
1340 	int error;
1341 
1342 	vn_lock(vp, LK_SHARED | LK_RETRY);
1343 	error = vn_stat(vp, sb, active_cred, fp->f_cred, td);
1344 	VOP_UNLOCK(vp, 0);
1345 
1346 	return (error);
1347 }
1348 
1349 /*
1350  * Stat a vnode; implementation for the stat syscall
1351  */
1352 int
1353 vn_stat(vp, sb, active_cred, file_cred, td)
1354 	struct vnode *vp;
1355 	register struct stat *sb;
1356 	struct ucred *active_cred;
1357 	struct ucred *file_cred;
1358 	struct thread *td;
1359 {
1360 	struct vattr vattr;
1361 	register struct vattr *vap;
1362 	int error;
1363 	u_short mode;
1364 
1365 #ifdef MAC
1366 	error = mac_vnode_check_stat(active_cred, file_cred, vp);
1367 	if (error)
1368 		return (error);
1369 #endif
1370 
1371 	vap = &vattr;
1372 
1373 	/*
1374 	 * Initialize defaults for new and unusual fields, so that file
1375 	 * systems which don't support these fields don't need to know
1376 	 * about them.
1377 	 */
1378 	vap->va_birthtime.tv_sec = -1;
1379 	vap->va_birthtime.tv_nsec = 0;
1380 	vap->va_fsid = VNOVAL;
1381 	vap->va_rdev = NODEV;
1382 
1383 	error = VOP_GETATTR(vp, vap, active_cred);
1384 	if (error)
1385 		return (error);
1386 
1387 	/*
1388 	 * Zero the spare stat fields
1389 	 */
1390 	bzero(sb, sizeof *sb);
1391 
1392 	/*
1393 	 * Copy from vattr table
1394 	 */
1395 	if (vap->va_fsid != VNOVAL)
1396 		sb->st_dev = vap->va_fsid;
1397 	else
1398 		sb->st_dev = vp->v_mount->mnt_stat.f_fsid.val[0];
1399 	sb->st_ino = vap->va_fileid;
1400 	mode = vap->va_mode;
1401 	switch (vap->va_type) {
1402 	case VREG:
1403 		mode |= S_IFREG;
1404 		break;
1405 	case VDIR:
1406 		mode |= S_IFDIR;
1407 		break;
1408 	case VBLK:
1409 		mode |= S_IFBLK;
1410 		break;
1411 	case VCHR:
1412 		mode |= S_IFCHR;
1413 		break;
1414 	case VLNK:
1415 		mode |= S_IFLNK;
1416 		break;
1417 	case VSOCK:
1418 		mode |= S_IFSOCK;
1419 		break;
1420 	case VFIFO:
1421 		mode |= S_IFIFO;
1422 		break;
1423 	default:
1424 		return (EBADF);
1425 	}
1426 	sb->st_mode = mode;
1427 	sb->st_nlink = vap->va_nlink;
1428 	sb->st_uid = vap->va_uid;
1429 	sb->st_gid = vap->va_gid;
1430 	sb->st_rdev = vap->va_rdev;
1431 	if (vap->va_size > OFF_MAX)
1432 		return (EOVERFLOW);
1433 	sb->st_size = vap->va_size;
1434 	sb->st_atim = vap->va_atime;
1435 	sb->st_mtim = vap->va_mtime;
1436 	sb->st_ctim = vap->va_ctime;
1437 	sb->st_birthtim = vap->va_birthtime;
1438 
1439         /*
1440 	 * According to www.opengroup.org, the meaning of st_blksize is
1441 	 *   "a filesystem-specific preferred I/O block size for this
1442 	 *    object.  In some filesystem types, this may vary from file
1443 	 *    to file"
1444 	 * Use miminum/default of PAGE_SIZE (e.g. for VCHR).
1445 	 */
1446 
1447 	sb->st_blksize = max(PAGE_SIZE, vap->va_blocksize);
1448 
1449 	sb->st_flags = vap->va_flags;
1450 	if (priv_check(td, PRIV_VFS_GENERATION))
1451 		sb->st_gen = 0;
1452 	else
1453 		sb->st_gen = vap->va_gen;
1454 
1455 	sb->st_blocks = vap->va_bytes / S_BLKSIZE;
1456 	return (0);
1457 }
1458 
1459 /*
1460  * File table vnode ioctl routine.
1461  */
1462 static int
1463 vn_ioctl(fp, com, data, active_cred, td)
1464 	struct file *fp;
1465 	u_long com;
1466 	void *data;
1467 	struct ucred *active_cred;
1468 	struct thread *td;
1469 {
1470 	struct vattr vattr;
1471 	struct vnode *vp;
1472 	int error;
1473 
1474 	vp = fp->f_vnode;
1475 	switch (vp->v_type) {
1476 	case VDIR:
1477 	case VREG:
1478 		switch (com) {
1479 		case FIONREAD:
1480 			vn_lock(vp, LK_SHARED | LK_RETRY);
1481 			error = VOP_GETATTR(vp, &vattr, active_cred);
1482 			VOP_UNLOCK(vp, 0);
1483 			if (error == 0)
1484 				*(int *)data = vattr.va_size - fp->f_offset;
1485 			return (error);
1486 		case FIONBIO:
1487 		case FIOASYNC:
1488 			return (0);
1489 		default:
1490 			return (VOP_IOCTL(vp, com, data, fp->f_flag,
1491 			    active_cred, td));
1492 		}
1493 	default:
1494 		return (ENOTTY);
1495 	}
1496 }
1497 
1498 /*
1499  * File table vnode poll routine.
1500  */
1501 static int
1502 vn_poll(fp, events, active_cred, td)
1503 	struct file *fp;
1504 	int events;
1505 	struct ucred *active_cred;
1506 	struct thread *td;
1507 {
1508 	struct vnode *vp;
1509 	int error;
1510 
1511 	vp = fp->f_vnode;
1512 #ifdef MAC
1513 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1514 	error = mac_vnode_check_poll(active_cred, fp->f_cred, vp);
1515 	VOP_UNLOCK(vp, 0);
1516 	if (!error)
1517 #endif
1518 
1519 	error = VOP_POLL(vp, events, fp->f_cred, td);
1520 	return (error);
1521 }
1522 
1523 /*
1524  * Acquire the requested lock and then check for validity.  LK_RETRY
1525  * permits vn_lock to return doomed vnodes.
1526  */
1527 int
1528 _vn_lock(struct vnode *vp, int flags, char *file, int line)
1529 {
1530 	int error;
1531 
1532 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
1533 	    ("vn_lock called with no locktype."));
1534 	do {
1535 #ifdef DEBUG_VFS_LOCKS
1536 		KASSERT(vp->v_holdcnt != 0,
1537 		    ("vn_lock %p: zero hold count", vp));
1538 #endif
1539 		error = VOP_LOCK1(vp, flags, file, line);
1540 		flags &= ~LK_INTERLOCK;	/* Interlock is always dropped. */
1541 		KASSERT((flags & LK_RETRY) == 0 || error == 0,
1542 		    ("LK_RETRY set with incompatible flags (0x%x) or an error occurred (%d)",
1543 		    flags, error));
1544 		/*
1545 		 * Callers specify LK_RETRY if they wish to get dead vnodes.
1546 		 * If RETRY is not set, we return ENOENT instead.
1547 		 */
1548 		if (error == 0 && vp->v_iflag & VI_DOOMED &&
1549 		    (flags & LK_RETRY) == 0) {
1550 			VOP_UNLOCK(vp, 0);
1551 			error = ENOENT;
1552 			break;
1553 		}
1554 	} while (flags & LK_RETRY && error != 0);
1555 	return (error);
1556 }
1557 
1558 /*
1559  * File table vnode close routine.
1560  */
1561 static int
1562 vn_closefile(fp, td)
1563 	struct file *fp;
1564 	struct thread *td;
1565 {
1566 	struct vnode *vp;
1567 	struct flock lf;
1568 	int error;
1569 
1570 	vp = fp->f_vnode;
1571 	fp->f_ops = &badfileops;
1572 
1573 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK)
1574 		vref(vp);
1575 
1576 	error = vn_close(vp, fp->f_flag, fp->f_cred, td);
1577 
1578 	if (fp->f_type == DTYPE_VNODE && fp->f_flag & FHASLOCK) {
1579 		lf.l_whence = SEEK_SET;
1580 		lf.l_start = 0;
1581 		lf.l_len = 0;
1582 		lf.l_type = F_UNLCK;
1583 		(void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK);
1584 		vrele(vp);
1585 	}
1586 	return (error);
1587 }
1588 
1589 static bool
1590 vn_suspendable(struct mount *mp)
1591 {
1592 
1593 	return (mp->mnt_op->vfs_susp_clean != NULL);
1594 }
1595 
1596 /*
1597  * Preparing to start a filesystem write operation. If the operation is
1598  * permitted, then we bump the count of operations in progress and
1599  * proceed. If a suspend request is in progress, we wait until the
1600  * suspension is over, and then proceed.
1601  */
1602 static int
1603 vn_start_write_locked(struct mount *mp, int flags)
1604 {
1605 	int error, mflags;
1606 
1607 	mtx_assert(MNT_MTX(mp), MA_OWNED);
1608 	error = 0;
1609 
1610 	/*
1611 	 * Check on status of suspension.
1612 	 */
1613 	if ((curthread->td_pflags & TDP_IGNSUSP) == 0 ||
1614 	    mp->mnt_susp_owner != curthread) {
1615 		mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ?
1616 		    (flags & PCATCH) : 0) | (PUSER - 1);
1617 		while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1618 			if (flags & V_NOWAIT) {
1619 				error = EWOULDBLOCK;
1620 				goto unlock;
1621 			}
1622 			error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags,
1623 			    "suspfs", 0);
1624 			if (error)
1625 				goto unlock;
1626 		}
1627 	}
1628 	if (flags & V_XSLEEP)
1629 		goto unlock;
1630 	mp->mnt_writeopcount++;
1631 unlock:
1632 	if (error != 0 || (flags & V_XSLEEP) != 0)
1633 		MNT_REL(mp);
1634 	MNT_IUNLOCK(mp);
1635 	return (error);
1636 }
1637 
1638 int
1639 vn_start_write(struct vnode *vp, struct mount **mpp, int flags)
1640 {
1641 	struct mount *mp;
1642 	int error;
1643 
1644 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1645 	    ("V_MNTREF requires mp"));
1646 
1647 	error = 0;
1648 	/*
1649 	 * If a vnode is provided, get and return the mount point that
1650 	 * to which it will write.
1651 	 */
1652 	if (vp != NULL) {
1653 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1654 			*mpp = NULL;
1655 			if (error != EOPNOTSUPP)
1656 				return (error);
1657 			return (0);
1658 		}
1659 	}
1660 	if ((mp = *mpp) == NULL)
1661 		return (0);
1662 
1663 	if (!vn_suspendable(mp)) {
1664 		if (vp != NULL || (flags & V_MNTREF) != 0)
1665 			vfs_rel(mp);
1666 		return (0);
1667 	}
1668 
1669 	/*
1670 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1671 	 * a vfs_ref().
1672 	 * As long as a vnode is not provided we need to acquire a
1673 	 * refcount for the provided mountpoint too, in order to
1674 	 * emulate a vfs_ref().
1675 	 */
1676 	MNT_ILOCK(mp);
1677 	if (vp == NULL && (flags & V_MNTREF) == 0)
1678 		MNT_REF(mp);
1679 
1680 	return (vn_start_write_locked(mp, flags));
1681 }
1682 
1683 /*
1684  * Secondary suspension. Used by operations such as vop_inactive
1685  * routines that are needed by the higher level functions. These
1686  * are allowed to proceed until all the higher level functions have
1687  * completed (indicated by mnt_writeopcount dropping to zero). At that
1688  * time, these operations are halted until the suspension is over.
1689  */
1690 int
1691 vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags)
1692 {
1693 	struct mount *mp;
1694 	int error;
1695 
1696 	KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL),
1697 	    ("V_MNTREF requires mp"));
1698 
1699  retry:
1700 	if (vp != NULL) {
1701 		if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) {
1702 			*mpp = NULL;
1703 			if (error != EOPNOTSUPP)
1704 				return (error);
1705 			return (0);
1706 		}
1707 	}
1708 	/*
1709 	 * If we are not suspended or have not yet reached suspended
1710 	 * mode, then let the operation proceed.
1711 	 */
1712 	if ((mp = *mpp) == NULL)
1713 		return (0);
1714 
1715 	if (!vn_suspendable(mp)) {
1716 		if (vp != NULL || (flags & V_MNTREF) != 0)
1717 			vfs_rel(mp);
1718 		return (0);
1719 	}
1720 
1721 	/*
1722 	 * VOP_GETWRITEMOUNT() returns with the mp refcount held through
1723 	 * a vfs_ref().
1724 	 * As long as a vnode is not provided we need to acquire a
1725 	 * refcount for the provided mountpoint too, in order to
1726 	 * emulate a vfs_ref().
1727 	 */
1728 	MNT_ILOCK(mp);
1729 	if (vp == NULL && (flags & V_MNTREF) == 0)
1730 		MNT_REF(mp);
1731 	if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) {
1732 		mp->mnt_secondary_writes++;
1733 		mp->mnt_secondary_accwrites++;
1734 		MNT_IUNLOCK(mp);
1735 		return (0);
1736 	}
1737 	if (flags & V_NOWAIT) {
1738 		MNT_REL(mp);
1739 		MNT_IUNLOCK(mp);
1740 		return (EWOULDBLOCK);
1741 	}
1742 	/*
1743 	 * Wait for the suspension to finish.
1744 	 */
1745 	error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP |
1746 	    ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0),
1747 	    "suspfs", 0);
1748 	vfs_rel(mp);
1749 	if (error == 0)
1750 		goto retry;
1751 	return (error);
1752 }
1753 
1754 /*
1755  * Filesystem write operation has completed. If we are suspending and this
1756  * operation is the last one, notify the suspender that the suspension is
1757  * now in effect.
1758  */
1759 void
1760 vn_finished_write(mp)
1761 	struct mount *mp;
1762 {
1763 	if (mp == NULL || !vn_suspendable(mp))
1764 		return;
1765 	MNT_ILOCK(mp);
1766 	MNT_REL(mp);
1767 	mp->mnt_writeopcount--;
1768 	if (mp->mnt_writeopcount < 0)
1769 		panic("vn_finished_write: neg cnt");
1770 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1771 	    mp->mnt_writeopcount <= 0)
1772 		wakeup(&mp->mnt_writeopcount);
1773 	MNT_IUNLOCK(mp);
1774 }
1775 
1776 
1777 /*
1778  * Filesystem secondary write operation has completed. If we are
1779  * suspending and this operation is the last one, notify the suspender
1780  * that the suspension is now in effect.
1781  */
1782 void
1783 vn_finished_secondary_write(mp)
1784 	struct mount *mp;
1785 {
1786 	if (mp == NULL || !vn_suspendable(mp))
1787 		return;
1788 	MNT_ILOCK(mp);
1789 	MNT_REL(mp);
1790 	mp->mnt_secondary_writes--;
1791 	if (mp->mnt_secondary_writes < 0)
1792 		panic("vn_finished_secondary_write: neg cnt");
1793 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 &&
1794 	    mp->mnt_secondary_writes <= 0)
1795 		wakeup(&mp->mnt_secondary_writes);
1796 	MNT_IUNLOCK(mp);
1797 }
1798 
1799 
1800 
1801 /*
1802  * Request a filesystem to suspend write operations.
1803  */
1804 int
1805 vfs_write_suspend(struct mount *mp, int flags)
1806 {
1807 	int error;
1808 
1809 	MPASS(vn_suspendable(mp));
1810 
1811 	MNT_ILOCK(mp);
1812 	if (mp->mnt_susp_owner == curthread) {
1813 		MNT_IUNLOCK(mp);
1814 		return (EALREADY);
1815 	}
1816 	while (mp->mnt_kern_flag & MNTK_SUSPEND)
1817 		msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0);
1818 
1819 	/*
1820 	 * Unmount holds a write reference on the mount point.  If we
1821 	 * own busy reference and drain for writers, we deadlock with
1822 	 * the reference draining in the unmount path.  Callers of
1823 	 * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if
1824 	 * vfs_busy() reference is owned and caller is not in the
1825 	 * unmount context.
1826 	 */
1827 	if ((flags & VS_SKIP_UNMOUNT) != 0 &&
1828 	    (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) {
1829 		MNT_IUNLOCK(mp);
1830 		return (EBUSY);
1831 	}
1832 
1833 	mp->mnt_kern_flag |= MNTK_SUSPEND;
1834 	mp->mnt_susp_owner = curthread;
1835 	if (mp->mnt_writeopcount > 0)
1836 		(void) msleep(&mp->mnt_writeopcount,
1837 		    MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0);
1838 	else
1839 		MNT_IUNLOCK(mp);
1840 	if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0)
1841 		vfs_write_resume(mp, 0);
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Request a filesystem to resume write operations.
1847  */
1848 void
1849 vfs_write_resume(struct mount *mp, int flags)
1850 {
1851 
1852 	MPASS(vn_suspendable(mp));
1853 
1854 	MNT_ILOCK(mp);
1855 	if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) {
1856 		KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner"));
1857 		mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 |
1858 				       MNTK_SUSPENDED);
1859 		mp->mnt_susp_owner = NULL;
1860 		wakeup(&mp->mnt_writeopcount);
1861 		wakeup(&mp->mnt_flag);
1862 		curthread->td_pflags &= ~TDP_IGNSUSP;
1863 		if ((flags & VR_START_WRITE) != 0) {
1864 			MNT_REF(mp);
1865 			mp->mnt_writeopcount++;
1866 		}
1867 		MNT_IUNLOCK(mp);
1868 		if ((flags & VR_NO_SUSPCLR) == 0)
1869 			VFS_SUSP_CLEAN(mp);
1870 	} else if ((flags & VR_START_WRITE) != 0) {
1871 		MNT_REF(mp);
1872 		vn_start_write_locked(mp, 0);
1873 	} else {
1874 		MNT_IUNLOCK(mp);
1875 	}
1876 }
1877 
1878 /*
1879  * Helper loop around vfs_write_suspend() for filesystem unmount VFS
1880  * methods.
1881  */
1882 int
1883 vfs_write_suspend_umnt(struct mount *mp)
1884 {
1885 	int error;
1886 
1887 	MPASS(vn_suspendable(mp));
1888 	KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0,
1889 	    ("vfs_write_suspend_umnt: recursed"));
1890 
1891 	/* dounmount() already called vn_start_write(). */
1892 	for (;;) {
1893 		vn_finished_write(mp);
1894 		error = vfs_write_suspend(mp, 0);
1895 		if (error != 0) {
1896 			vn_start_write(NULL, &mp, V_WAIT);
1897 			return (error);
1898 		}
1899 		MNT_ILOCK(mp);
1900 		if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0)
1901 			break;
1902 		MNT_IUNLOCK(mp);
1903 		vn_start_write(NULL, &mp, V_WAIT);
1904 	}
1905 	mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2);
1906 	wakeup(&mp->mnt_flag);
1907 	MNT_IUNLOCK(mp);
1908 	curthread->td_pflags |= TDP_IGNSUSP;
1909 	return (0);
1910 }
1911 
1912 /*
1913  * Implement kqueues for files by translating it to vnode operation.
1914  */
1915 static int
1916 vn_kqfilter(struct file *fp, struct knote *kn)
1917 {
1918 
1919 	return (VOP_KQFILTER(fp->f_vnode, kn));
1920 }
1921 
1922 /*
1923  * Simplified in-kernel wrapper calls for extended attribute access.
1924  * Both calls pass in a NULL credential, authorizing as "kernel" access.
1925  * Set IO_NODELOCKED in ioflg if the vnode is already locked.
1926  */
1927 int
1928 vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace,
1929     const char *attrname, int *buflen, char *buf, struct thread *td)
1930 {
1931 	struct uio	auio;
1932 	struct iovec	iov;
1933 	int	error;
1934 
1935 	iov.iov_len = *buflen;
1936 	iov.iov_base = buf;
1937 
1938 	auio.uio_iov = &iov;
1939 	auio.uio_iovcnt = 1;
1940 	auio.uio_rw = UIO_READ;
1941 	auio.uio_segflg = UIO_SYSSPACE;
1942 	auio.uio_td = td;
1943 	auio.uio_offset = 0;
1944 	auio.uio_resid = *buflen;
1945 
1946 	if ((ioflg & IO_NODELOCKED) == 0)
1947 		vn_lock(vp, LK_SHARED | LK_RETRY);
1948 
1949 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1950 
1951 	/* authorize attribute retrieval as kernel */
1952 	error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL,
1953 	    td);
1954 
1955 	if ((ioflg & IO_NODELOCKED) == 0)
1956 		VOP_UNLOCK(vp, 0);
1957 
1958 	if (error == 0) {
1959 		*buflen = *buflen - auio.uio_resid;
1960 	}
1961 
1962 	return (error);
1963 }
1964 
1965 /*
1966  * XXX failure mode if partially written?
1967  */
1968 int
1969 vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace,
1970     const char *attrname, int buflen, char *buf, struct thread *td)
1971 {
1972 	struct uio	auio;
1973 	struct iovec	iov;
1974 	struct mount	*mp;
1975 	int	error;
1976 
1977 	iov.iov_len = buflen;
1978 	iov.iov_base = buf;
1979 
1980 	auio.uio_iov = &iov;
1981 	auio.uio_iovcnt = 1;
1982 	auio.uio_rw = UIO_WRITE;
1983 	auio.uio_segflg = UIO_SYSSPACE;
1984 	auio.uio_td = td;
1985 	auio.uio_offset = 0;
1986 	auio.uio_resid = buflen;
1987 
1988 	if ((ioflg & IO_NODELOCKED) == 0) {
1989 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
1990 			return (error);
1991 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1992 	}
1993 
1994 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
1995 
1996 	/* authorize attribute setting as kernel */
1997 	error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td);
1998 
1999 	if ((ioflg & IO_NODELOCKED) == 0) {
2000 		vn_finished_write(mp);
2001 		VOP_UNLOCK(vp, 0);
2002 	}
2003 
2004 	return (error);
2005 }
2006 
2007 int
2008 vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace,
2009     const char *attrname, struct thread *td)
2010 {
2011 	struct mount	*mp;
2012 	int	error;
2013 
2014 	if ((ioflg & IO_NODELOCKED) == 0) {
2015 		if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0)
2016 			return (error);
2017 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2018 	}
2019 
2020 	ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held");
2021 
2022 	/* authorize attribute removal as kernel */
2023 	error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td);
2024 	if (error == EOPNOTSUPP)
2025 		error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL,
2026 		    NULL, td);
2027 
2028 	if ((ioflg & IO_NODELOCKED) == 0) {
2029 		vn_finished_write(mp);
2030 		VOP_UNLOCK(vp, 0);
2031 	}
2032 
2033 	return (error);
2034 }
2035 
2036 static int
2037 vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags,
2038     struct vnode **rvp)
2039 {
2040 
2041 	return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp));
2042 }
2043 
2044 int
2045 vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp)
2046 {
2047 
2048 	return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino,
2049 	    lkflags, rvp));
2050 }
2051 
2052 int
2053 vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg,
2054     int lkflags, struct vnode **rvp)
2055 {
2056 	struct mount *mp;
2057 	int ltype, error;
2058 
2059 	ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get");
2060 	mp = vp->v_mount;
2061 	ltype = VOP_ISLOCKED(vp);
2062 	KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED,
2063 	    ("vn_vget_ino: vp not locked"));
2064 	error = vfs_busy(mp, MBF_NOWAIT);
2065 	if (error != 0) {
2066 		vfs_ref(mp);
2067 		VOP_UNLOCK(vp, 0);
2068 		error = vfs_busy(mp, 0);
2069 		vn_lock(vp, ltype | LK_RETRY);
2070 		vfs_rel(mp);
2071 		if (error != 0)
2072 			return (ENOENT);
2073 		if (vp->v_iflag & VI_DOOMED) {
2074 			vfs_unbusy(mp);
2075 			return (ENOENT);
2076 		}
2077 	}
2078 	VOP_UNLOCK(vp, 0);
2079 	error = alloc(mp, alloc_arg, lkflags, rvp);
2080 	vfs_unbusy(mp);
2081 	if (*rvp != vp)
2082 		vn_lock(vp, ltype | LK_RETRY);
2083 	if (vp->v_iflag & VI_DOOMED) {
2084 		if (error == 0) {
2085 			if (*rvp == vp)
2086 				vunref(vp);
2087 			else
2088 				vput(*rvp);
2089 		}
2090 		error = ENOENT;
2091 	}
2092 	return (error);
2093 }
2094 
2095 int
2096 vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio,
2097     struct thread *td)
2098 {
2099 
2100 	if (vp->v_type != VREG || td == NULL)
2101 		return (0);
2102 	if ((uoff_t)uio->uio_offset + uio->uio_resid >
2103 	    lim_cur(td, RLIMIT_FSIZE)) {
2104 		PROC_LOCK(td->td_proc);
2105 		kern_psignal(td->td_proc, SIGXFSZ);
2106 		PROC_UNLOCK(td->td_proc);
2107 		return (EFBIG);
2108 	}
2109 	return (0);
2110 }
2111 
2112 int
2113 vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
2114     struct thread *td)
2115 {
2116 	struct vnode *vp;
2117 
2118 	vp = fp->f_vnode;
2119 #ifdef AUDIT
2120 	vn_lock(vp, LK_SHARED | LK_RETRY);
2121 	AUDIT_ARG_VNODE1(vp);
2122 	VOP_UNLOCK(vp, 0);
2123 #endif
2124 	return (setfmode(td, active_cred, vp, mode));
2125 }
2126 
2127 int
2128 vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
2129     struct thread *td)
2130 {
2131 	struct vnode *vp;
2132 
2133 	vp = fp->f_vnode;
2134 #ifdef AUDIT
2135 	vn_lock(vp, LK_SHARED | LK_RETRY);
2136 	AUDIT_ARG_VNODE1(vp);
2137 	VOP_UNLOCK(vp, 0);
2138 #endif
2139 	return (setfown(td, active_cred, vp, uid, gid));
2140 }
2141 
2142 void
2143 vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end)
2144 {
2145 	vm_object_t object;
2146 
2147 	if ((object = vp->v_object) == NULL)
2148 		return;
2149 	VM_OBJECT_WLOCK(object);
2150 	vm_object_page_remove(object, start, end, 0);
2151 	VM_OBJECT_WUNLOCK(object);
2152 }
2153 
2154 int
2155 vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred)
2156 {
2157 	struct vattr va;
2158 	daddr_t bn, bnp;
2159 	uint64_t bsize;
2160 	off_t noff;
2161 	int error;
2162 
2163 	KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA,
2164 	    ("Wrong command %lu", cmd));
2165 
2166 	if (vn_lock(vp, LK_SHARED) != 0)
2167 		return (EBADF);
2168 	if (vp->v_type != VREG) {
2169 		error = ENOTTY;
2170 		goto unlock;
2171 	}
2172 	error = VOP_GETATTR(vp, &va, cred);
2173 	if (error != 0)
2174 		goto unlock;
2175 	noff = *off;
2176 	if (noff >= va.va_size) {
2177 		error = ENXIO;
2178 		goto unlock;
2179 	}
2180 	bsize = vp->v_mount->mnt_stat.f_iosize;
2181 	for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize) {
2182 		error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL);
2183 		if (error == EOPNOTSUPP) {
2184 			error = ENOTTY;
2185 			goto unlock;
2186 		}
2187 		if ((bnp == -1 && cmd == FIOSEEKHOLE) ||
2188 		    (bnp != -1 && cmd == FIOSEEKDATA)) {
2189 			noff = bn * bsize;
2190 			if (noff < *off)
2191 				noff = *off;
2192 			goto unlock;
2193 		}
2194 	}
2195 	if (noff > va.va_size)
2196 		noff = va.va_size;
2197 	/* noff == va.va_size. There is an implicit hole at the end of file. */
2198 	if (cmd == FIOSEEKDATA)
2199 		error = ENXIO;
2200 unlock:
2201 	VOP_UNLOCK(vp, 0);
2202 	if (error == 0)
2203 		*off = noff;
2204 	return (error);
2205 }
2206 
2207 int
2208 vn_seek(struct file *fp, off_t offset, int whence, struct thread *td)
2209 {
2210 	struct ucred *cred;
2211 	struct vnode *vp;
2212 	struct vattr vattr;
2213 	off_t foffset, size;
2214 	int error, noneg;
2215 
2216 	cred = td->td_ucred;
2217 	vp = fp->f_vnode;
2218 	foffset = foffset_lock(fp, 0);
2219 	noneg = (vp->v_type != VCHR);
2220 	error = 0;
2221 	switch (whence) {
2222 	case L_INCR:
2223 		if (noneg &&
2224 		    (foffset < 0 ||
2225 		    (offset > 0 && foffset > OFF_MAX - offset))) {
2226 			error = EOVERFLOW;
2227 			break;
2228 		}
2229 		offset += foffset;
2230 		break;
2231 	case L_XTND:
2232 		vn_lock(vp, LK_SHARED | LK_RETRY);
2233 		error = VOP_GETATTR(vp, &vattr, cred);
2234 		VOP_UNLOCK(vp, 0);
2235 		if (error)
2236 			break;
2237 
2238 		/*
2239 		 * If the file references a disk device, then fetch
2240 		 * the media size and use that to determine the ending
2241 		 * offset.
2242 		 */
2243 		if (vattr.va_size == 0 && vp->v_type == VCHR &&
2244 		    fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0)
2245 			vattr.va_size = size;
2246 		if (noneg &&
2247 		    (vattr.va_size > OFF_MAX ||
2248 		    (offset > 0 && vattr.va_size > OFF_MAX - offset))) {
2249 			error = EOVERFLOW;
2250 			break;
2251 		}
2252 		offset += vattr.va_size;
2253 		break;
2254 	case L_SET:
2255 		break;
2256 	case SEEK_DATA:
2257 		error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td);
2258 		break;
2259 	case SEEK_HOLE:
2260 		error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td);
2261 		break;
2262 	default:
2263 		error = EINVAL;
2264 	}
2265 	if (error == 0 && noneg && offset < 0)
2266 		error = EINVAL;
2267 	if (error != 0)
2268 		goto drop;
2269 	VFS_KNOTE_UNLOCKED(vp, 0);
2270 	td->td_uretoff.tdu_off = offset;
2271 drop:
2272 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
2273 	return (error);
2274 }
2275 
2276 int
2277 vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred,
2278     struct thread *td)
2279 {
2280 	int error;
2281 
2282 	/*
2283 	 * Grant permission if the caller is the owner of the file, or
2284 	 * the super-user, or has ACL_WRITE_ATTRIBUTES permission on
2285 	 * on the file.  If the time pointer is null, then write
2286 	 * permission on the file is also sufficient.
2287 	 *
2288 	 * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes:
2289 	 * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES
2290 	 * will be allowed to set the times [..] to the current
2291 	 * server time.
2292 	 */
2293 	error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td);
2294 	if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0)
2295 		error = VOP_ACCESS(vp, VWRITE, cred, td);
2296 	return (error);
2297 }
2298 
2299 int
2300 vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
2301 {
2302 	struct vnode *vp;
2303 	int error;
2304 
2305 	if (fp->f_type == DTYPE_FIFO)
2306 		kif->kf_type = KF_TYPE_FIFO;
2307 	else
2308 		kif->kf_type = KF_TYPE_VNODE;
2309 	vp = fp->f_vnode;
2310 	vref(vp);
2311 	FILEDESC_SUNLOCK(fdp);
2312 	error = vn_fill_kinfo_vnode(vp, kif);
2313 	vrele(vp);
2314 	FILEDESC_SLOCK(fdp);
2315 	return (error);
2316 }
2317 
2318 static inline void
2319 vn_fill_junk(struct kinfo_file *kif)
2320 {
2321 	size_t len, olen;
2322 
2323 	/*
2324 	 * Simulate vn_fullpath returning changing values for a given
2325 	 * vp during e.g. coredump.
2326 	 */
2327 	len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1;
2328 	olen = strlen(kif->kf_path);
2329 	if (len < olen)
2330 		strcpy(&kif->kf_path[len - 1], "$");
2331 	else
2332 		for (; olen < len; olen++)
2333 			strcpy(&kif->kf_path[olen], "A");
2334 }
2335 
2336 int
2337 vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif)
2338 {
2339 	struct vattr va;
2340 	char *fullpath, *freepath;
2341 	int error;
2342 
2343 	kif->kf_vnode_type = vntype_to_kinfo(vp->v_type);
2344 	freepath = NULL;
2345 	fullpath = "-";
2346 	error = vn_fullpath(curthread, vp, &fullpath, &freepath);
2347 	if (error == 0) {
2348 		strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path));
2349 	}
2350 	if (freepath != NULL)
2351 		free(freepath, M_TEMP);
2352 
2353 	KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path,
2354 		vn_fill_junk(kif);
2355 	);
2356 
2357 	/*
2358 	 * Retrieve vnode attributes.
2359 	 */
2360 	va.va_fsid = VNOVAL;
2361 	va.va_rdev = NODEV;
2362 	vn_lock(vp, LK_SHARED | LK_RETRY);
2363 	error = VOP_GETATTR(vp, &va, curthread->td_ucred);
2364 	VOP_UNLOCK(vp, 0);
2365 	if (error != 0)
2366 		return (error);
2367 	if (va.va_fsid != VNOVAL)
2368 		kif->kf_un.kf_file.kf_file_fsid = va.va_fsid;
2369 	else
2370 		kif->kf_un.kf_file.kf_file_fsid =
2371 		    vp->v_mount->mnt_stat.f_fsid.val[0];
2372 	kif->kf_un.kf_file.kf_file_fileid = va.va_fileid;
2373 	kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode);
2374 	kif->kf_un.kf_file.kf_file_size = va.va_size;
2375 	kif->kf_un.kf_file.kf_file_rdev = va.va_rdev;
2376 	return (0);
2377 }
2378 
2379 int
2380 vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size,
2381     vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff,
2382     struct thread *td)
2383 {
2384 #ifdef HWPMC_HOOKS
2385 	struct pmckern_map_in pkm;
2386 #endif
2387 	struct mount *mp;
2388 	struct vnode *vp;
2389 	vm_object_t object;
2390 	vm_prot_t maxprot;
2391 	boolean_t writecounted;
2392 	int error;
2393 
2394 #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \
2395     defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4)
2396 	/*
2397 	 * POSIX shared-memory objects are defined to have
2398 	 * kernel persistence, and are not defined to support
2399 	 * read(2)/write(2) -- or even open(2).  Thus, we can
2400 	 * use MAP_ASYNC to trade on-disk coherence for speed.
2401 	 * The shm_open(3) library routine turns on the FPOSIXSHM
2402 	 * flag to request this behavior.
2403 	 */
2404 	if ((fp->f_flag & FPOSIXSHM) != 0)
2405 		flags |= MAP_NOSYNC;
2406 #endif
2407 	vp = fp->f_vnode;
2408 
2409 	/*
2410 	 * Ensure that file and memory protections are
2411 	 * compatible.  Note that we only worry about
2412 	 * writability if mapping is shared; in this case,
2413 	 * current and max prot are dictated by the open file.
2414 	 * XXX use the vnode instead?  Problem is: what
2415 	 * credentials do we use for determination? What if
2416 	 * proc does a setuid?
2417 	 */
2418 	mp = vp->v_mount;
2419 	if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0)
2420 		maxprot = VM_PROT_NONE;
2421 	else
2422 		maxprot = VM_PROT_EXECUTE;
2423 	if ((fp->f_flag & FREAD) != 0)
2424 		maxprot |= VM_PROT_READ;
2425 	else if ((prot & VM_PROT_READ) != 0)
2426 		return (EACCES);
2427 
2428 	/*
2429 	 * If we are sharing potential changes via MAP_SHARED and we
2430 	 * are trying to get write permission although we opened it
2431 	 * without asking for it, bail out.
2432 	 */
2433 	if ((flags & MAP_SHARED) != 0) {
2434 		if ((fp->f_flag & FWRITE) != 0)
2435 			maxprot |= VM_PROT_WRITE;
2436 		else if ((prot & VM_PROT_WRITE) != 0)
2437 			return (EACCES);
2438 	} else {
2439 		maxprot |= VM_PROT_WRITE;
2440 		cap_maxprot |= VM_PROT_WRITE;
2441 	}
2442 	maxprot &= cap_maxprot;
2443 
2444 	writecounted = FALSE;
2445 	error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp,
2446 	    &foff, &object, &writecounted);
2447 	if (error != 0)
2448 		return (error);
2449 	error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object,
2450 	    foff, writecounted, td);
2451 	if (error != 0) {
2452 		/*
2453 		 * If this mapping was accounted for in the vnode's
2454 		 * writecount, then undo that now.
2455 		 */
2456 		if (writecounted)
2457 			vnode_pager_release_writecount(object, 0, size);
2458 		vm_object_deallocate(object);
2459 	}
2460 #ifdef HWPMC_HOOKS
2461 	/* Inform hwpmc(4) if an executable is being mapped. */
2462 	if (error == 0 && (prot & VM_PROT_EXECUTE) != 0) {
2463 		pkm.pm_file = vp;
2464 		pkm.pm_address = (uintptr_t) *addr;
2465 		PMC_CALL_HOOK(td, PMC_FN_MMAP, (void *) &pkm);
2466 	}
2467 #endif
2468 	return (error);
2469 }
2470