1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 37 */ 38 39 /* 40 * External virtual filesystem routines 41 */ 42 43 #include <sys/cdefs.h> 44 #include "opt_ddb.h" 45 #include "opt_watchdog.h" 46 47 #include <sys/param.h> 48 #include <sys/systm.h> 49 #include <sys/asan.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/capsicum.h> 53 #include <sys/condvar.h> 54 #include <sys/conf.h> 55 #include <sys/counter.h> 56 #include <sys/dirent.h> 57 #include <sys/event.h> 58 #include <sys/eventhandler.h> 59 #include <sys/extattr.h> 60 #include <sys/file.h> 61 #include <sys/fcntl.h> 62 #include <sys/jail.h> 63 #include <sys/kdb.h> 64 #include <sys/kernel.h> 65 #include <sys/kthread.h> 66 #include <sys/ktr.h> 67 #include <sys/limits.h> 68 #include <sys/lockf.h> 69 #include <sys/malloc.h> 70 #include <sys/mount.h> 71 #include <sys/namei.h> 72 #include <sys/pctrie.h> 73 #include <sys/priv.h> 74 #include <sys/reboot.h> 75 #include <sys/refcount.h> 76 #include <sys/rwlock.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smr.h> 80 #include <sys/smp.h> 81 #include <sys/stat.h> 82 #include <sys/sysctl.h> 83 #include <sys/syslog.h> 84 #include <sys/vmmeter.h> 85 #include <sys/vnode.h> 86 #include <sys/watchdog.h> 87 88 #include <machine/stdarg.h> 89 90 #include <security/mac/mac_framework.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_extern.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_kern.h> 99 #include <vm/uma.h> 100 101 #if defined(DEBUG_VFS_LOCKS) && (!defined(INVARIANTS) || !defined(WITNESS)) 102 #error DEBUG_VFS_LOCKS requires INVARIANTS and WITNESS 103 #endif 104 105 #ifdef DDB 106 #include <ddb/ddb.h> 107 #endif 108 109 static void delmntque(struct vnode *vp); 110 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 111 int slpflag, int slptimeo); 112 static void syncer_shutdown(void *arg, int howto); 113 static int vtryrecycle(struct vnode *vp); 114 static void v_init_counters(struct vnode *); 115 static void vn_seqc_init(struct vnode *); 116 static void vn_seqc_write_end_free(struct vnode *vp); 117 static void vgonel(struct vnode *); 118 static bool vhold_recycle_free(struct vnode *); 119 static void vdropl_recycle(struct vnode *vp); 120 static void vdrop_recycle(struct vnode *vp); 121 static void vfs_knllock(void *arg); 122 static void vfs_knlunlock(void *arg); 123 static void vfs_knl_assert_lock(void *arg, int what); 124 static void destroy_vpollinfo(struct vpollinfo *vi); 125 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 126 daddr_t startlbn, daddr_t endlbn); 127 static void vnlru_recalc(void); 128 129 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 130 "vnode configuration and statistics"); 131 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 132 "vnode configuration"); 133 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 134 "vnode statistics"); 135 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 136 "vnode recycling"); 137 138 /* 139 * Number of vnodes in existence. Increased whenever getnewvnode() 140 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode. 141 */ 142 static u_long __exclusive_cache_line numvnodes; 143 144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 145 "Number of vnodes in existence (legacy)"); 146 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0, 147 "Number of vnodes in existence"); 148 149 static counter_u64_t vnodes_created; 150 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 151 "Number of vnodes created by getnewvnode (legacy)"); 152 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created, 153 "Number of vnodes created by getnewvnode"); 154 155 /* 156 * Conversion tables for conversion from vnode types to inode formats 157 * and back. 158 */ 159 __enum_uint8(vtype) iftovt_tab[16] = { 160 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 161 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 162 }; 163 int vttoif_tab[10] = { 164 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 165 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 166 }; 167 168 /* 169 * List of allocates vnodes in the system. 170 */ 171 static TAILQ_HEAD(freelst, vnode) vnode_list; 172 static struct vnode *vnode_list_free_marker; 173 static struct vnode *vnode_list_reclaim_marker; 174 175 /* 176 * "Free" vnode target. Free vnodes are rarely completely free, but are 177 * just ones that are cheap to recycle. Usually they are for files which 178 * have been stat'd but not read; these usually have inode and namecache 179 * data attached to them. This target is the preferred minimum size of a 180 * sub-cache consisting mostly of such files. The system balances the size 181 * of this sub-cache with its complement to try to prevent either from 182 * thrashing while the other is relatively inactive. The targets express 183 * a preference for the best balance. 184 * 185 * "Above" this target there are 2 further targets (watermarks) related 186 * to recyling of free vnodes. In the best-operating case, the cache is 187 * exactly full, the free list has size between vlowat and vhiwat above the 188 * free target, and recycling from it and normal use maintains this state. 189 * Sometimes the free list is below vlowat or even empty, but this state 190 * is even better for immediate use provided the cache is not full. 191 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free 192 * ones) to reach one of these states. The watermarks are currently hard- 193 * coded as 4% and 9% of the available space higher. These and the default 194 * of 25% for wantfreevnodes are too large if the memory size is large. 195 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim 196 * whenever vnlru_proc() becomes active. 197 */ 198 static long wantfreevnodes; 199 static long __exclusive_cache_line freevnodes; 200 static long freevnodes_old; 201 202 static counter_u64_t recycles_count; 203 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 204 "Number of vnodes recycled to meet vnode cache targets (legacy)"); 205 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 206 "Number of vnodes recycled to meet vnode cache targets"); 207 208 static counter_u64_t recycles_free_count; 209 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count, 210 "Number of free vnodes recycled to meet vnode cache targets (legacy)"); 211 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count, 212 "Number of free vnodes recycled to meet vnode cache targets"); 213 214 static counter_u64_t vnode_skipped_requeues; 215 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues, 216 "Number of times LRU requeue was skipped due to lock contention"); 217 218 static u_long deferred_inact; 219 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, 220 &deferred_inact, 0, "Number of times inactive processing was deferred"); 221 222 /* To keep more than one thread at a time from running vfs_getnewfsid */ 223 static struct mtx mntid_mtx; 224 225 /* 226 * Lock for any access to the following: 227 * vnode_list 228 * numvnodes 229 * freevnodes 230 */ 231 static struct mtx __exclusive_cache_line vnode_list_mtx; 232 233 /* Publicly exported FS */ 234 struct nfs_public nfs_pub; 235 236 static uma_zone_t buf_trie_zone; 237 static smr_t buf_trie_smr; 238 239 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 240 static uma_zone_t vnode_zone; 241 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll"); 242 243 __read_frequently smr_t vfs_smr; 244 245 /* 246 * The workitem queue. 247 * 248 * It is useful to delay writes of file data and filesystem metadata 249 * for tens of seconds so that quickly created and deleted files need 250 * not waste disk bandwidth being created and removed. To realize this, 251 * we append vnodes to a "workitem" queue. When running with a soft 252 * updates implementation, most pending metadata dependencies should 253 * not wait for more than a few seconds. Thus, mounted on block devices 254 * are delayed only about a half the time that file data is delayed. 255 * Similarly, directory updates are more critical, so are only delayed 256 * about a third the time that file data is delayed. Thus, there are 257 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 258 * one each second (driven off the filesystem syncer process). The 259 * syncer_delayno variable indicates the next queue that is to be processed. 260 * Items that need to be processed soon are placed in this queue: 261 * 262 * syncer_workitem_pending[syncer_delayno] 263 * 264 * A delay of fifteen seconds is done by placing the request fifteen 265 * entries later in the queue: 266 * 267 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 268 * 269 */ 270 static int syncer_delayno; 271 static long syncer_mask; 272 LIST_HEAD(synclist, bufobj); 273 static struct synclist *syncer_workitem_pending; 274 /* 275 * The sync_mtx protects: 276 * bo->bo_synclist 277 * sync_vnode_count 278 * syncer_delayno 279 * syncer_state 280 * syncer_workitem_pending 281 * syncer_worklist_len 282 * rushjob 283 */ 284 static struct mtx sync_mtx; 285 static struct cv sync_wakeup; 286 287 #define SYNCER_MAXDELAY 32 288 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 289 static int syncdelay = 30; /* max time to delay syncing data */ 290 static int filedelay = 30; /* time to delay syncing files */ 291 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 292 "Time to delay syncing files (in seconds)"); 293 static int dirdelay = 29; /* time to delay syncing directories */ 294 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 295 "Time to delay syncing directories (in seconds)"); 296 static int metadelay = 28; /* time to delay syncing metadata */ 297 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 298 "Time to delay syncing metadata (in seconds)"); 299 static int rushjob; /* number of slots to run ASAP */ 300 static int stat_rush_requests; /* number of times I/O speeded up */ 301 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 302 "Number of times I/O speeded up (rush requests)"); 303 304 #define VDBATCH_SIZE 8 305 struct vdbatch { 306 u_int index; 307 struct mtx lock; 308 struct vnode *tab[VDBATCH_SIZE]; 309 }; 310 DPCPU_DEFINE_STATIC(struct vdbatch, vd); 311 312 static void vdbatch_dequeue(struct vnode *vp); 313 314 /* 315 * When shutting down the syncer, run it at four times normal speed. 316 */ 317 #define SYNCER_SHUTDOWN_SPEEDUP 4 318 static int sync_vnode_count; 319 static int syncer_worklist_len; 320 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 321 syncer_state; 322 323 /* Target for maximum number of vnodes. */ 324 u_long desiredvnodes; 325 static u_long gapvnodes; /* gap between wanted and desired */ 326 static u_long vhiwat; /* enough extras after expansion */ 327 static u_long vlowat; /* minimal extras before expansion */ 328 static bool vstir; /* nonzero to stir non-free vnodes */ 329 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ 330 331 static u_long vnlru_read_freevnodes(void); 332 333 /* 334 * Note that no attempt is made to sanitize these parameters. 335 */ 336 static int 337 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS) 338 { 339 u_long val; 340 int error; 341 342 val = desiredvnodes; 343 error = sysctl_handle_long(oidp, &val, 0, req); 344 if (error != 0 || req->newptr == NULL) 345 return (error); 346 347 if (val == desiredvnodes) 348 return (0); 349 mtx_lock(&vnode_list_mtx); 350 desiredvnodes = val; 351 wantfreevnodes = desiredvnodes / 4; 352 vnlru_recalc(); 353 mtx_unlock(&vnode_list_mtx); 354 /* 355 * XXX There is no protection against multiple threads changing 356 * desiredvnodes at the same time. Locking above only helps vnlru and 357 * getnewvnode. 358 */ 359 vfs_hash_changesize(desiredvnodes); 360 cache_changesize(desiredvnodes); 361 return (0); 362 } 363 364 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 365 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 366 "LU", "Target for maximum number of vnodes (legacy)"); 367 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit, 368 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 369 "LU", "Target for maximum number of vnodes"); 370 371 static int 372 sysctl_freevnodes(SYSCTL_HANDLER_ARGS) 373 { 374 u_long rfreevnodes; 375 376 rfreevnodes = vnlru_read_freevnodes(); 377 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req)); 378 } 379 380 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes, 381 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes, 382 "LU", "Number of \"free\" vnodes (legacy)"); 383 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free, 384 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes, 385 "LU", "Number of \"free\" vnodes"); 386 387 static int 388 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS) 389 { 390 u_long val; 391 int error; 392 393 val = wantfreevnodes; 394 error = sysctl_handle_long(oidp, &val, 0, req); 395 if (error != 0 || req->newptr == NULL) 396 return (error); 397 398 if (val == wantfreevnodes) 399 return (0); 400 mtx_lock(&vnode_list_mtx); 401 wantfreevnodes = val; 402 vnlru_recalc(); 403 mtx_unlock(&vnode_list_mtx); 404 return (0); 405 } 406 407 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes, 408 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 409 "LU", "Target for minimum number of \"free\" vnodes (legacy)"); 410 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree, 411 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 412 "LU", "Target for minimum number of \"free\" vnodes"); 413 414 static int vnlru_nowhere; 415 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS, 416 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 417 418 static int 419 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS) 420 { 421 struct vnode *vp; 422 struct nameidata nd; 423 char *buf; 424 unsigned long ndflags; 425 int error; 426 427 if (req->newptr == NULL) 428 return (EINVAL); 429 if (req->newlen >= PATH_MAX) 430 return (E2BIG); 431 432 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK); 433 error = SYSCTL_IN(req, buf, req->newlen); 434 if (error != 0) 435 goto out; 436 437 buf[req->newlen] = '\0'; 438 439 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1; 440 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf); 441 if ((error = namei(&nd)) != 0) 442 goto out; 443 vp = nd.ni_vp; 444 445 if (VN_IS_DOOMED(vp)) { 446 /* 447 * This vnode is being recycled. Return != 0 to let the caller 448 * know that the sysctl had no effect. Return EAGAIN because a 449 * subsequent call will likely succeed (since namei will create 450 * a new vnode if necessary) 451 */ 452 error = EAGAIN; 453 goto putvnode; 454 } 455 456 counter_u64_add(recycles_count, 1); 457 vgone(vp); 458 putvnode: 459 vput(vp); 460 NDFREE_PNBUF(&nd); 461 out: 462 free(buf, M_TEMP); 463 return (error); 464 } 465 466 static int 467 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS) 468 { 469 struct thread *td = curthread; 470 struct vnode *vp; 471 struct file *fp; 472 int error; 473 int fd; 474 475 if (req->newptr == NULL) 476 return (EBADF); 477 478 error = sysctl_handle_int(oidp, &fd, 0, req); 479 if (error != 0) 480 return (error); 481 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp); 482 if (error != 0) 483 return (error); 484 vp = fp->f_vnode; 485 486 error = vn_lock(vp, LK_EXCLUSIVE); 487 if (error != 0) 488 goto drop; 489 490 counter_u64_add(recycles_count, 1); 491 vgone(vp); 492 VOP_UNLOCK(vp); 493 drop: 494 fdrop(fp, td); 495 return (error); 496 } 497 498 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode, 499 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 500 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname"); 501 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode, 502 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 503 sysctl_ftry_reclaim_vnode, "I", 504 "Try to reclaim a vnode by its file descriptor"); 505 506 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 507 #define vnsz2log 8 508 #ifndef DEBUG_LOCKS 509 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log && 510 sizeof(struct vnode) < 1UL << (vnsz2log + 1), 511 "vnsz2log needs to be updated"); 512 #endif 513 514 /* 515 * Support for the bufobj clean & dirty pctrie. 516 */ 517 static void * 518 buf_trie_alloc(struct pctrie *ptree) 519 { 520 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT)); 521 } 522 523 static void 524 buf_trie_free(struct pctrie *ptree, void *node) 525 { 526 uma_zfree_smr(buf_trie_zone, node); 527 } 528 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free, 529 buf_trie_smr); 530 531 /* 532 * Initialize the vnode management data structures. 533 * 534 * Reevaluate the following cap on the number of vnodes after the physical 535 * memory size exceeds 512GB. In the limit, as the physical memory size 536 * grows, the ratio of the memory size in KB to vnodes approaches 64:1. 537 */ 538 #ifndef MAXVNODES_MAX 539 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */ 540 #endif 541 542 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 543 544 static struct vnode * 545 vn_alloc_marker(struct mount *mp) 546 { 547 struct vnode *vp; 548 549 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 550 vp->v_type = VMARKER; 551 vp->v_mount = mp; 552 553 return (vp); 554 } 555 556 static void 557 vn_free_marker(struct vnode *vp) 558 { 559 560 MPASS(vp->v_type == VMARKER); 561 free(vp, M_VNODE_MARKER); 562 } 563 564 #ifdef KASAN 565 static int 566 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused) 567 { 568 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0); 569 return (0); 570 } 571 572 static void 573 vnode_dtor(void *mem, int size, void *arg __unused) 574 { 575 size_t end1, end2, off1, off2; 576 577 _Static_assert(offsetof(struct vnode, v_vnodelist) < 578 offsetof(struct vnode, v_dbatchcpu), 579 "KASAN marks require updating"); 580 581 off1 = offsetof(struct vnode, v_vnodelist); 582 off2 = offsetof(struct vnode, v_dbatchcpu); 583 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist); 584 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu); 585 586 /* 587 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even 588 * after the vnode has been freed. Try to get some KASAN coverage by 589 * marking everything except those two fields as invalid. Because 590 * KASAN's tracking is not byte-granular, any preceding fields sharing 591 * the same 8-byte aligned word must also be marked valid. 592 */ 593 594 /* Handle the area from the start until v_vnodelist... */ 595 off1 = rounddown2(off1, KASAN_SHADOW_SCALE); 596 kasan_mark(mem, off1, off1, KASAN_UMA_FREED); 597 598 /* ... then the area between v_vnodelist and v_dbatchcpu ... */ 599 off1 = roundup2(end1, KASAN_SHADOW_SCALE); 600 off2 = rounddown2(off2, KASAN_SHADOW_SCALE); 601 if (off2 > off1) 602 kasan_mark((void *)((char *)mem + off1), off2 - off1, 603 off2 - off1, KASAN_UMA_FREED); 604 605 /* ... and finally the area from v_dbatchcpu to the end. */ 606 off2 = roundup2(end2, KASAN_SHADOW_SCALE); 607 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2, 608 KASAN_UMA_FREED); 609 } 610 #endif /* KASAN */ 611 612 /* 613 * Initialize a vnode as it first enters the zone. 614 */ 615 static int 616 vnode_init(void *mem, int size, int flags) 617 { 618 struct vnode *vp; 619 620 vp = mem; 621 bzero(vp, size); 622 /* 623 * Setup locks. 624 */ 625 vp->v_vnlock = &vp->v_lock; 626 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 627 /* 628 * By default, don't allow shared locks unless filesystems opt-in. 629 */ 630 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, 631 LK_NOSHARE | LK_IS_VNODE); 632 /* 633 * Initialize bufobj. 634 */ 635 bufobj_init(&vp->v_bufobj, vp); 636 /* 637 * Initialize namecache. 638 */ 639 cache_vnode_init(vp); 640 /* 641 * Initialize rangelocks. 642 */ 643 rangelock_init(&vp->v_rl); 644 645 vp->v_dbatchcpu = NOCPU; 646 647 vp->v_state = VSTATE_DEAD; 648 649 /* 650 * Check vhold_recycle_free for an explanation. 651 */ 652 vp->v_holdcnt = VHOLD_NO_SMR; 653 vp->v_type = VNON; 654 mtx_lock(&vnode_list_mtx); 655 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist); 656 mtx_unlock(&vnode_list_mtx); 657 return (0); 658 } 659 660 /* 661 * Free a vnode when it is cleared from the zone. 662 */ 663 static void 664 vnode_fini(void *mem, int size) 665 { 666 struct vnode *vp; 667 struct bufobj *bo; 668 669 vp = mem; 670 vdbatch_dequeue(vp); 671 mtx_lock(&vnode_list_mtx); 672 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 673 mtx_unlock(&vnode_list_mtx); 674 rangelock_destroy(&vp->v_rl); 675 lockdestroy(vp->v_vnlock); 676 mtx_destroy(&vp->v_interlock); 677 bo = &vp->v_bufobj; 678 rw_destroy(BO_LOCKPTR(bo)); 679 680 kasan_mark(mem, size, size, 0); 681 } 682 683 /* 684 * Provide the size of NFS nclnode and NFS fh for calculation of the 685 * vnode memory consumption. The size is specified directly to 686 * eliminate dependency on NFS-private header. 687 * 688 * Other filesystems may use bigger or smaller (like UFS and ZFS) 689 * private inode data, but the NFS-based estimation is ample enough. 690 * Still, we care about differences in the size between 64- and 32-bit 691 * platforms. 692 * 693 * Namecache structure size is heuristically 694 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. 695 */ 696 #ifdef _LP64 697 #define NFS_NCLNODE_SZ (528 + 64) 698 #define NC_SZ 148 699 #else 700 #define NFS_NCLNODE_SZ (360 + 32) 701 #define NC_SZ 92 702 #endif 703 704 static void 705 vntblinit(void *dummy __unused) 706 { 707 struct vdbatch *vd; 708 uma_ctor ctor; 709 uma_dtor dtor; 710 int cpu, physvnodes, virtvnodes; 711 712 /* 713 * Desiredvnodes is a function of the physical memory size and the 714 * kernel's heap size. Generally speaking, it scales with the 715 * physical memory size. The ratio of desiredvnodes to the physical 716 * memory size is 1:16 until desiredvnodes exceeds 98,304. 717 * Thereafter, the 718 * marginal ratio of desiredvnodes to the physical memory size is 719 * 1:64. However, desiredvnodes is limited by the kernel's heap 720 * size. The memory required by desiredvnodes vnodes and vm objects 721 * must not exceed 1/10th of the kernel's heap size. 722 */ 723 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 724 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; 725 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + 726 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); 727 desiredvnodes = min(physvnodes, virtvnodes); 728 if (desiredvnodes > MAXVNODES_MAX) { 729 if (bootverbose) 730 printf("Reducing kern.maxvnodes %lu -> %lu\n", 731 desiredvnodes, MAXVNODES_MAX); 732 desiredvnodes = MAXVNODES_MAX; 733 } 734 wantfreevnodes = desiredvnodes / 4; 735 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 736 TAILQ_INIT(&vnode_list); 737 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF); 738 /* 739 * The lock is taken to appease WITNESS. 740 */ 741 mtx_lock(&vnode_list_mtx); 742 vnlru_recalc(); 743 mtx_unlock(&vnode_list_mtx); 744 vnode_list_free_marker = vn_alloc_marker(NULL); 745 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist); 746 vnode_list_reclaim_marker = vn_alloc_marker(NULL); 747 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist); 748 749 #ifdef KASAN 750 ctor = vnode_ctor; 751 dtor = vnode_dtor; 752 #else 753 ctor = NULL; 754 dtor = NULL; 755 #endif 756 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor, 757 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN); 758 uma_zone_set_smr(vnode_zone, vfs_smr); 759 760 /* 761 * Preallocate enough nodes to support one-per buf so that 762 * we can not fail an insert. reassignbuf() callers can not 763 * tolerate the insertion failure. 764 */ 765 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 766 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 767 UMA_ZONE_NOFREE | UMA_ZONE_SMR); 768 buf_trie_smr = uma_zone_get_smr(buf_trie_zone); 769 uma_prealloc(buf_trie_zone, nbuf); 770 771 vnodes_created = counter_u64_alloc(M_WAITOK); 772 recycles_count = counter_u64_alloc(M_WAITOK); 773 recycles_free_count = counter_u64_alloc(M_WAITOK); 774 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK); 775 776 /* 777 * Initialize the filesystem syncer. 778 */ 779 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 780 &syncer_mask); 781 syncer_maxdelay = syncer_mask + 1; 782 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 783 cv_init(&sync_wakeup, "syncer"); 784 785 CPU_FOREACH(cpu) { 786 vd = DPCPU_ID_PTR((cpu), vd); 787 bzero(vd, sizeof(*vd)); 788 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF); 789 } 790 } 791 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 792 793 /* 794 * Mark a mount point as busy. Used to synchronize access and to delay 795 * unmounting. Eventually, mountlist_mtx is not released on failure. 796 * 797 * vfs_busy() is a custom lock, it can block the caller. 798 * vfs_busy() only sleeps if the unmount is active on the mount point. 799 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 800 * vnode belonging to mp. 801 * 802 * Lookup uses vfs_busy() to traverse mount points. 803 * root fs var fs 804 * / vnode lock A / vnode lock (/var) D 805 * /var vnode lock B /log vnode lock(/var/log) E 806 * vfs_busy lock C vfs_busy lock F 807 * 808 * Within each file system, the lock order is C->A->B and F->D->E. 809 * 810 * When traversing across mounts, the system follows that lock order: 811 * 812 * C->A->B 813 * | 814 * +->F->D->E 815 * 816 * The lookup() process for namei("/var") illustrates the process: 817 * 1. VOP_LOOKUP() obtains B while A is held 818 * 2. vfs_busy() obtains a shared lock on F while A and B are held 819 * 3. vput() releases lock on B 820 * 4. vput() releases lock on A 821 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held 822 * 6. vfs_unbusy() releases shared lock on F 823 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 824 * Attempt to lock A (instead of vp_crossmp) while D is held would 825 * violate the global order, causing deadlocks. 826 * 827 * dounmount() locks B while F is drained. Note that for stacked 828 * filesystems, D and B in the example above may be the same lock, 829 * which introdues potential lock order reversal deadlock between 830 * dounmount() and step 5 above. These filesystems may avoid the LOR 831 * by setting VV_CROSSLOCK on the covered vnode so that lock B will 832 * remain held until after step 5. 833 */ 834 int 835 vfs_busy(struct mount *mp, int flags) 836 { 837 struct mount_pcpu *mpcpu; 838 839 MPASS((flags & ~MBF_MASK) == 0); 840 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 841 842 if (vfs_op_thread_enter(mp, mpcpu)) { 843 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 844 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0); 845 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0); 846 vfs_mp_count_add_pcpu(mpcpu, ref, 1); 847 vfs_mp_count_add_pcpu(mpcpu, lockref, 1); 848 vfs_op_thread_exit(mp, mpcpu); 849 if (flags & MBF_MNTLSTLOCK) 850 mtx_unlock(&mountlist_mtx); 851 return (0); 852 } 853 854 MNT_ILOCK(mp); 855 vfs_assert_mount_counters(mp); 856 MNT_REF(mp); 857 /* 858 * If mount point is currently being unmounted, sleep until the 859 * mount point fate is decided. If thread doing the unmounting fails, 860 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 861 * that this mount point has survived the unmount attempt and vfs_busy 862 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 863 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 864 * about to be really destroyed. vfs_busy needs to release its 865 * reference on the mount point in this case and return with ENOENT, 866 * telling the caller the mount it tried to busy is no longer valid. 867 */ 868 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 869 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers), 870 ("%s: non-empty upper mount list with pending unmount", 871 __func__)); 872 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 873 MNT_REL(mp); 874 MNT_IUNLOCK(mp); 875 CTR1(KTR_VFS, "%s: failed busying before sleeping", 876 __func__); 877 return (ENOENT); 878 } 879 if (flags & MBF_MNTLSTLOCK) 880 mtx_unlock(&mountlist_mtx); 881 mp->mnt_kern_flag |= MNTK_MWAIT; 882 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 883 if (flags & MBF_MNTLSTLOCK) 884 mtx_lock(&mountlist_mtx); 885 MNT_ILOCK(mp); 886 } 887 if (flags & MBF_MNTLSTLOCK) 888 mtx_unlock(&mountlist_mtx); 889 mp->mnt_lockref++; 890 MNT_IUNLOCK(mp); 891 return (0); 892 } 893 894 /* 895 * Free a busy filesystem. 896 */ 897 void 898 vfs_unbusy(struct mount *mp) 899 { 900 struct mount_pcpu *mpcpu; 901 int c; 902 903 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 904 905 if (vfs_op_thread_enter(mp, mpcpu)) { 906 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 907 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1); 908 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 909 vfs_op_thread_exit(mp, mpcpu); 910 return; 911 } 912 913 MNT_ILOCK(mp); 914 vfs_assert_mount_counters(mp); 915 MNT_REL(mp); 916 c = --mp->mnt_lockref; 917 if (mp->mnt_vfs_ops == 0) { 918 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 919 MNT_IUNLOCK(mp); 920 return; 921 } 922 if (c < 0) 923 vfs_dump_mount_counters(mp); 924 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 925 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 926 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 927 mp->mnt_kern_flag &= ~MNTK_DRAINING; 928 wakeup(&mp->mnt_lockref); 929 } 930 MNT_IUNLOCK(mp); 931 } 932 933 /* 934 * Lookup a mount point by filesystem identifier. 935 */ 936 struct mount * 937 vfs_getvfs(fsid_t *fsid) 938 { 939 struct mount *mp; 940 941 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 942 mtx_lock(&mountlist_mtx); 943 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 944 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 945 vfs_ref(mp); 946 mtx_unlock(&mountlist_mtx); 947 return (mp); 948 } 949 } 950 mtx_unlock(&mountlist_mtx); 951 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 952 return ((struct mount *) 0); 953 } 954 955 /* 956 * Lookup a mount point by filesystem identifier, busying it before 957 * returning. 958 * 959 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 960 * cache for popular filesystem identifiers. The cache is lockess, using 961 * the fact that struct mount's are never freed. In worst case we may 962 * get pointer to unmounted or even different filesystem, so we have to 963 * check what we got, and go slow way if so. 964 */ 965 struct mount * 966 vfs_busyfs(fsid_t *fsid) 967 { 968 #define FSID_CACHE_SIZE 256 969 typedef struct mount * volatile vmp_t; 970 static vmp_t cache[FSID_CACHE_SIZE]; 971 struct mount *mp; 972 int error; 973 uint32_t hash; 974 975 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 976 hash = fsid->val[0] ^ fsid->val[1]; 977 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 978 mp = cache[hash]; 979 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0) 980 goto slow; 981 if (vfs_busy(mp, 0) != 0) { 982 cache[hash] = NULL; 983 goto slow; 984 } 985 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) 986 return (mp); 987 else 988 vfs_unbusy(mp); 989 990 slow: 991 mtx_lock(&mountlist_mtx); 992 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 993 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 994 error = vfs_busy(mp, MBF_MNTLSTLOCK); 995 if (error) { 996 cache[hash] = NULL; 997 mtx_unlock(&mountlist_mtx); 998 return (NULL); 999 } 1000 cache[hash] = mp; 1001 return (mp); 1002 } 1003 } 1004 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 1005 mtx_unlock(&mountlist_mtx); 1006 return ((struct mount *) 0); 1007 } 1008 1009 /* 1010 * Check if a user can access privileged mount options. 1011 */ 1012 int 1013 vfs_suser(struct mount *mp, struct thread *td) 1014 { 1015 int error; 1016 1017 if (jailed(td->td_ucred)) { 1018 /* 1019 * If the jail of the calling thread lacks permission for 1020 * this type of file system, deny immediately. 1021 */ 1022 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag)) 1023 return (EPERM); 1024 1025 /* 1026 * If the file system was mounted outside the jail of the 1027 * calling thread, deny immediately. 1028 */ 1029 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 1030 return (EPERM); 1031 } 1032 1033 /* 1034 * If file system supports delegated administration, we don't check 1035 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 1036 * by the file system itself. 1037 * If this is not the user that did original mount, we check for 1038 * the PRIV_VFS_MOUNT_OWNER privilege. 1039 */ 1040 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 1041 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 1042 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 1043 return (error); 1044 } 1045 return (0); 1046 } 1047 1048 /* 1049 * Get a new unique fsid. Try to make its val[0] unique, since this value 1050 * will be used to create fake device numbers for stat(). Also try (but 1051 * not so hard) make its val[0] unique mod 2^16, since some emulators only 1052 * support 16-bit device numbers. We end up with unique val[0]'s for the 1053 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 1054 * 1055 * Keep in mind that several mounts may be running in parallel. Starting 1056 * the search one past where the previous search terminated is both a 1057 * micro-optimization and a defense against returning the same fsid to 1058 * different mounts. 1059 */ 1060 void 1061 vfs_getnewfsid(struct mount *mp) 1062 { 1063 static uint16_t mntid_base; 1064 struct mount *nmp; 1065 fsid_t tfsid; 1066 int mtype; 1067 1068 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 1069 mtx_lock(&mntid_mtx); 1070 mtype = mp->mnt_vfc->vfc_typenum; 1071 tfsid.val[1] = mtype; 1072 mtype = (mtype & 0xFF) << 24; 1073 for (;;) { 1074 tfsid.val[0] = makedev(255, 1075 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 1076 mntid_base++; 1077 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 1078 break; 1079 vfs_rel(nmp); 1080 } 1081 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 1082 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 1083 mtx_unlock(&mntid_mtx); 1084 } 1085 1086 /* 1087 * Knob to control the precision of file timestamps: 1088 * 1089 * 0 = seconds only; nanoseconds zeroed. 1090 * 1 = seconds and nanoseconds, accurate within 1/HZ. 1091 * 2 = seconds and nanoseconds, truncated to microseconds. 1092 * >=3 = seconds and nanoseconds, maximum precision. 1093 */ 1094 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 1095 1096 static int timestamp_precision = TSP_USEC; 1097 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 1098 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 1099 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " 1100 "3+: sec + ns (max. precision))"); 1101 1102 /* 1103 * Get a current timestamp. 1104 */ 1105 void 1106 vfs_timestamp(struct timespec *tsp) 1107 { 1108 struct timeval tv; 1109 1110 switch (timestamp_precision) { 1111 case TSP_SEC: 1112 tsp->tv_sec = time_second; 1113 tsp->tv_nsec = 0; 1114 break; 1115 case TSP_HZ: 1116 getnanotime(tsp); 1117 break; 1118 case TSP_USEC: 1119 microtime(&tv); 1120 TIMEVAL_TO_TIMESPEC(&tv, tsp); 1121 break; 1122 case TSP_NSEC: 1123 default: 1124 nanotime(tsp); 1125 break; 1126 } 1127 } 1128 1129 /* 1130 * Set vnode attributes to VNOVAL 1131 */ 1132 void 1133 vattr_null(struct vattr *vap) 1134 { 1135 1136 vap->va_type = VNON; 1137 vap->va_size = VNOVAL; 1138 vap->va_bytes = VNOVAL; 1139 vap->va_mode = VNOVAL; 1140 vap->va_nlink = VNOVAL; 1141 vap->va_uid = VNOVAL; 1142 vap->va_gid = VNOVAL; 1143 vap->va_fsid = VNOVAL; 1144 vap->va_fileid = VNOVAL; 1145 vap->va_blocksize = VNOVAL; 1146 vap->va_rdev = VNOVAL; 1147 vap->va_atime.tv_sec = VNOVAL; 1148 vap->va_atime.tv_nsec = VNOVAL; 1149 vap->va_mtime.tv_sec = VNOVAL; 1150 vap->va_mtime.tv_nsec = VNOVAL; 1151 vap->va_ctime.tv_sec = VNOVAL; 1152 vap->va_ctime.tv_nsec = VNOVAL; 1153 vap->va_birthtime.tv_sec = VNOVAL; 1154 vap->va_birthtime.tv_nsec = VNOVAL; 1155 vap->va_flags = VNOVAL; 1156 vap->va_gen = VNOVAL; 1157 vap->va_vaflags = 0; 1158 } 1159 1160 /* 1161 * Try to reduce the total number of vnodes. 1162 * 1163 * This routine (and its user) are buggy in at least the following ways: 1164 * - all parameters were picked years ago when RAM sizes were significantly 1165 * smaller 1166 * - it can pick vnodes based on pages used by the vm object, but filesystems 1167 * like ZFS don't use it making the pick broken 1168 * - since ZFS has its own aging policy it gets partially combated by this one 1169 * - a dedicated method should be provided for filesystems to let them decide 1170 * whether the vnode should be recycled 1171 * 1172 * This routine is called when we have too many vnodes. It attempts 1173 * to free <count> vnodes and will potentially free vnodes that still 1174 * have VM backing store (VM backing store is typically the cause 1175 * of a vnode blowout so we want to do this). Therefore, this operation 1176 * is not considered cheap. 1177 * 1178 * A number of conditions may prevent a vnode from being reclaimed. 1179 * the buffer cache may have references on the vnode, a directory 1180 * vnode may still have references due to the namei cache representing 1181 * underlying files, or the vnode may be in active use. It is not 1182 * desirable to reuse such vnodes. These conditions may cause the 1183 * number of vnodes to reach some minimum value regardless of what 1184 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 1185 * 1186 * @param reclaim_nc_src Only reclaim directories with outgoing namecache 1187 * entries if this argument is strue 1188 * @param trigger Only reclaim vnodes with fewer than this many resident 1189 * pages. 1190 * @param target How many vnodes to reclaim. 1191 * @return The number of vnodes that were reclaimed. 1192 */ 1193 static int 1194 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target) 1195 { 1196 struct vnode *vp, *mvp; 1197 struct mount *mp; 1198 struct vm_object *object; 1199 u_long done; 1200 bool retried; 1201 1202 mtx_assert(&vnode_list_mtx, MA_OWNED); 1203 1204 retried = false; 1205 done = 0; 1206 1207 mvp = vnode_list_reclaim_marker; 1208 restart: 1209 vp = mvp; 1210 while (done < target) { 1211 vp = TAILQ_NEXT(vp, v_vnodelist); 1212 if (__predict_false(vp == NULL)) 1213 break; 1214 1215 if (__predict_false(vp->v_type == VMARKER)) 1216 continue; 1217 1218 /* 1219 * If it's been deconstructed already, it's still 1220 * referenced, or it exceeds the trigger, skip it. 1221 * Also skip free vnodes. We are trying to make space 1222 * to expand the free list, not reduce it. 1223 */ 1224 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || 1225 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src))) 1226 goto next_iter; 1227 1228 if (vp->v_type == VBAD || vp->v_type == VNON) 1229 goto next_iter; 1230 1231 object = atomic_load_ptr(&vp->v_object); 1232 if (object == NULL || object->resident_page_count > trigger) { 1233 goto next_iter; 1234 } 1235 1236 /* 1237 * Handle races against vnode allocation. Filesystems lock the 1238 * vnode some time after it gets returned from getnewvnode, 1239 * despite type and hold count being manipulated earlier. 1240 * Resorting to checking v_mount restores guarantees present 1241 * before the global list was reworked to contain all vnodes. 1242 */ 1243 if (!VI_TRYLOCK(vp)) 1244 goto next_iter; 1245 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1246 VI_UNLOCK(vp); 1247 goto next_iter; 1248 } 1249 if (vp->v_mount == NULL) { 1250 VI_UNLOCK(vp); 1251 goto next_iter; 1252 } 1253 vholdl(vp); 1254 VI_UNLOCK(vp); 1255 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1256 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1257 mtx_unlock(&vnode_list_mtx); 1258 1259 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1260 vdrop_recycle(vp); 1261 goto next_iter_unlocked; 1262 } 1263 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) { 1264 vdrop_recycle(vp); 1265 vn_finished_write(mp); 1266 goto next_iter_unlocked; 1267 } 1268 1269 VI_LOCK(vp); 1270 if (vp->v_usecount > 0 || 1271 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 1272 (vp->v_object != NULL && vp->v_object->handle == vp && 1273 vp->v_object->resident_page_count > trigger)) { 1274 VOP_UNLOCK(vp); 1275 vdropl_recycle(vp); 1276 vn_finished_write(mp); 1277 goto next_iter_unlocked; 1278 } 1279 counter_u64_add(recycles_count, 1); 1280 vgonel(vp); 1281 VOP_UNLOCK(vp); 1282 vdropl_recycle(vp); 1283 vn_finished_write(mp); 1284 done++; 1285 next_iter_unlocked: 1286 maybe_yield(); 1287 mtx_lock(&vnode_list_mtx); 1288 goto restart; 1289 next_iter: 1290 MPASS(vp->v_type != VMARKER); 1291 if (!should_yield()) 1292 continue; 1293 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1294 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1295 mtx_unlock(&vnode_list_mtx); 1296 kern_yield(PRI_USER); 1297 mtx_lock(&vnode_list_mtx); 1298 goto restart; 1299 } 1300 if (done == 0 && !retried) { 1301 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1302 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1303 retried = true; 1304 goto restart; 1305 } 1306 return (done); 1307 } 1308 1309 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */ 1310 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free, 1311 0, 1312 "limit on vnode free requests per call to the vnlru_free routine"); 1313 1314 /* 1315 * Attempt to reduce the free list by the requested amount. 1316 */ 1317 static int 1318 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp) 1319 { 1320 struct vnode *vp; 1321 struct mount *mp; 1322 int ocount; 1323 bool retried; 1324 1325 mtx_assert(&vnode_list_mtx, MA_OWNED); 1326 if (count > max_vnlru_free) 1327 count = max_vnlru_free; 1328 if (count == 0) { 1329 mtx_unlock(&vnode_list_mtx); 1330 return (0); 1331 } 1332 ocount = count; 1333 retried = false; 1334 vp = mvp; 1335 for (;;) { 1336 vp = TAILQ_NEXT(vp, v_vnodelist); 1337 if (__predict_false(vp == NULL)) { 1338 /* 1339 * The free vnode marker can be past eligible vnodes: 1340 * 1. if vdbatch_process trylock failed 1341 * 2. if vtryrecycle failed 1342 * 1343 * If so, start the scan from scratch. 1344 */ 1345 if (!retried && vnlru_read_freevnodes() > 0) { 1346 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1347 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1348 vp = mvp; 1349 retried = true; 1350 continue; 1351 } 1352 1353 /* 1354 * Give up 1355 */ 1356 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1357 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist); 1358 mtx_unlock(&vnode_list_mtx); 1359 break; 1360 } 1361 if (__predict_false(vp->v_type == VMARKER)) 1362 continue; 1363 if (vp->v_holdcnt > 0) 1364 continue; 1365 /* 1366 * Don't recycle if our vnode is from different type 1367 * of mount point. Note that mp is type-safe, the 1368 * check does not reach unmapped address even if 1369 * vnode is reclaimed. 1370 */ 1371 if (mnt_op != NULL && (mp = vp->v_mount) != NULL && 1372 mp->mnt_op != mnt_op) { 1373 continue; 1374 } 1375 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1376 continue; 1377 } 1378 if (!vhold_recycle_free(vp)) 1379 continue; 1380 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1381 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1382 mtx_unlock(&vnode_list_mtx); 1383 /* 1384 * FIXME: ignores the return value, meaning it may be nothing 1385 * got recycled but it claims otherwise to the caller. 1386 * 1387 * Originally the value started being ignored in 2005 with 1388 * 114a1006a8204aa156e1f9ad6476cdff89cada7f . 1389 * 1390 * Respecting the value can run into significant stalls if most 1391 * vnodes belong to one file system and it has writes 1392 * suspended. In presence of many threads and millions of 1393 * vnodes they keep contending on the vnode_list_mtx lock only 1394 * to find vnodes they can't recycle. 1395 * 1396 * The solution would be to pre-check if the vnode is likely to 1397 * be recycle-able, but it needs to happen with the 1398 * vnode_list_mtx lock held. This runs into a problem where 1399 * VOP_GETWRITEMOUNT (currently needed to find out about if 1400 * writes are frozen) can take locks which LOR against it. 1401 * 1402 * Check nullfs for one example (null_getwritemount). 1403 */ 1404 vtryrecycle(vp); 1405 count--; 1406 if (count == 0) { 1407 break; 1408 } 1409 mtx_lock(&vnode_list_mtx); 1410 vp = mvp; 1411 } 1412 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1413 return (ocount - count); 1414 } 1415 1416 /* 1417 * XXX: returns without vnode_list_mtx locked! 1418 */ 1419 static int 1420 vnlru_free_locked(int count) 1421 { 1422 int ret; 1423 1424 mtx_assert(&vnode_list_mtx, MA_OWNED); 1425 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker); 1426 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1427 return (ret); 1428 } 1429 1430 void 1431 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp) 1432 { 1433 1434 MPASS(mnt_op != NULL); 1435 MPASS(mvp != NULL); 1436 VNPASS(mvp->v_type == VMARKER, mvp); 1437 mtx_lock(&vnode_list_mtx); 1438 vnlru_free_impl(count, mnt_op, mvp); 1439 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1440 } 1441 1442 struct vnode * 1443 vnlru_alloc_marker(void) 1444 { 1445 struct vnode *mvp; 1446 1447 mvp = vn_alloc_marker(NULL); 1448 mtx_lock(&vnode_list_mtx); 1449 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist); 1450 mtx_unlock(&vnode_list_mtx); 1451 return (mvp); 1452 } 1453 1454 void 1455 vnlru_free_marker(struct vnode *mvp) 1456 { 1457 mtx_lock(&vnode_list_mtx); 1458 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1459 mtx_unlock(&vnode_list_mtx); 1460 vn_free_marker(mvp); 1461 } 1462 1463 static void 1464 vnlru_recalc(void) 1465 { 1466 1467 mtx_assert(&vnode_list_mtx, MA_OWNED); 1468 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); 1469 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ 1470 vlowat = vhiwat / 2; 1471 } 1472 1473 /* 1474 * Attempt to recycle vnodes in a context that is always safe to block. 1475 * Calling vlrurecycle() from the bowels of filesystem code has some 1476 * interesting deadlock problems. 1477 */ 1478 static struct proc *vnlruproc; 1479 static int vnlruproc_sig; 1480 static u_long vnlruproc_kicks; 1481 1482 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0, 1483 "Number of times vnlru got woken up due to vnode shortage"); 1484 1485 /* 1486 * The main freevnodes counter is only updated when a counter local to CPU 1487 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally 1488 * walked to compute a more accurate total. 1489 * 1490 * Note: the actual value at any given moment can still exceed slop, but it 1491 * should not be by significant margin in practice. 1492 */ 1493 #define VNLRU_FREEVNODES_SLOP 126 1494 1495 static void __noinline 1496 vfs_freevnodes_rollup(int8_t *lfreevnodes) 1497 { 1498 1499 atomic_add_long(&freevnodes, *lfreevnodes); 1500 *lfreevnodes = 0; 1501 critical_exit(); 1502 } 1503 1504 static __inline void 1505 vfs_freevnodes_inc(void) 1506 { 1507 int8_t *lfreevnodes; 1508 1509 critical_enter(); 1510 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1511 (*lfreevnodes)++; 1512 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP)) 1513 vfs_freevnodes_rollup(lfreevnodes); 1514 else 1515 critical_exit(); 1516 } 1517 1518 static __inline void 1519 vfs_freevnodes_dec(void) 1520 { 1521 int8_t *lfreevnodes; 1522 1523 critical_enter(); 1524 lfreevnodes = PCPU_PTR(vfs_freevnodes); 1525 (*lfreevnodes)--; 1526 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP)) 1527 vfs_freevnodes_rollup(lfreevnodes); 1528 else 1529 critical_exit(); 1530 } 1531 1532 static u_long 1533 vnlru_read_freevnodes(void) 1534 { 1535 long slop, rfreevnodes, rfreevnodes_old; 1536 int cpu; 1537 1538 rfreevnodes = atomic_load_long(&freevnodes); 1539 rfreevnodes_old = atomic_load_long(&freevnodes_old); 1540 1541 if (rfreevnodes > rfreevnodes_old) 1542 slop = rfreevnodes - rfreevnodes_old; 1543 else 1544 slop = rfreevnodes_old - rfreevnodes; 1545 if (slop < VNLRU_FREEVNODES_SLOP) 1546 return (rfreevnodes >= 0 ? rfreevnodes : 0); 1547 CPU_FOREACH(cpu) { 1548 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes; 1549 } 1550 atomic_store_long(&freevnodes_old, rfreevnodes); 1551 return (freevnodes_old >= 0 ? freevnodes_old : 0); 1552 } 1553 1554 static bool 1555 vnlru_under(u_long rnumvnodes, u_long limit) 1556 { 1557 u_long rfreevnodes, space; 1558 1559 if (__predict_false(rnumvnodes > desiredvnodes)) 1560 return (true); 1561 1562 space = desiredvnodes - rnumvnodes; 1563 if (space < limit) { 1564 rfreevnodes = vnlru_read_freevnodes(); 1565 if (rfreevnodes > wantfreevnodes) 1566 space += rfreevnodes - wantfreevnodes; 1567 } 1568 return (space < limit); 1569 } 1570 1571 static void 1572 vnlru_kick_locked(void) 1573 { 1574 1575 mtx_assert(&vnode_list_mtx, MA_OWNED); 1576 if (vnlruproc_sig == 0) { 1577 vnlruproc_sig = 1; 1578 vnlruproc_kicks++; 1579 wakeup(vnlruproc); 1580 } 1581 } 1582 1583 static void 1584 vnlru_kick_cond(void) 1585 { 1586 1587 if (vnlru_read_freevnodes() > wantfreevnodes) 1588 return; 1589 1590 if (vnlruproc_sig) 1591 return; 1592 mtx_lock(&vnode_list_mtx); 1593 vnlru_kick_locked(); 1594 mtx_unlock(&vnode_list_mtx); 1595 } 1596 1597 static void 1598 vnlru_proc(void) 1599 { 1600 u_long rnumvnodes, rfreevnodes, target; 1601 unsigned long onumvnodes; 1602 int done, force, trigger, usevnodes; 1603 bool reclaim_nc_src, want_reread; 1604 1605 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, 1606 SHUTDOWN_PRI_FIRST); 1607 1608 force = 0; 1609 want_reread = false; 1610 for (;;) { 1611 kproc_suspend_check(vnlruproc); 1612 mtx_lock(&vnode_list_mtx); 1613 rnumvnodes = atomic_load_long(&numvnodes); 1614 1615 if (want_reread) { 1616 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0; 1617 want_reread = false; 1618 } 1619 1620 /* 1621 * If numvnodes is too large (due to desiredvnodes being 1622 * adjusted using its sysctl, or emergency growth), first 1623 * try to reduce it by discarding from the free list. 1624 */ 1625 if (rnumvnodes > desiredvnodes) { 1626 vnlru_free_locked(rnumvnodes - desiredvnodes); 1627 mtx_lock(&vnode_list_mtx); 1628 rnumvnodes = atomic_load_long(&numvnodes); 1629 } 1630 /* 1631 * Sleep if the vnode cache is in a good state. This is 1632 * when it is not over-full and has space for about a 4% 1633 * or 9% expansion (by growing its size or inexcessively 1634 * reducing its free list). Otherwise, try to reclaim 1635 * space for a 10% expansion. 1636 */ 1637 if (vstir && force == 0) { 1638 force = 1; 1639 vstir = false; 1640 } 1641 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) { 1642 vnlruproc_sig = 0; 1643 wakeup(&vnlruproc_sig); 1644 msleep(vnlruproc, &vnode_list_mtx, 1645 PVFS|PDROP, "vlruwt", hz); 1646 continue; 1647 } 1648 rfreevnodes = vnlru_read_freevnodes(); 1649 1650 onumvnodes = rnumvnodes; 1651 /* 1652 * Calculate parameters for recycling. These are the same 1653 * throughout the loop to give some semblance of fairness. 1654 * The trigger point is to avoid recycling vnodes with lots 1655 * of resident pages. We aren't trying to free memory; we 1656 * are trying to recycle or at least free vnodes. 1657 */ 1658 if (rnumvnodes <= desiredvnodes) 1659 usevnodes = rnumvnodes - rfreevnodes; 1660 else 1661 usevnodes = rnumvnodes; 1662 if (usevnodes <= 0) 1663 usevnodes = 1; 1664 /* 1665 * The trigger value is chosen to give a conservatively 1666 * large value to ensure that it alone doesn't prevent 1667 * making progress. The value can easily be so large that 1668 * it is effectively infinite in some congested and 1669 * misconfigured cases, and this is necessary. Normally 1670 * it is about 8 to 100 (pages), which is quite large. 1671 */ 1672 trigger = vm_cnt.v_page_count * 2 / usevnodes; 1673 if (force < 2) 1674 trigger = vsmalltrigger; 1675 reclaim_nc_src = force >= 3; 1676 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1); 1677 target = target / 10 + 1; 1678 done = vlrureclaim(reclaim_nc_src, trigger, target); 1679 mtx_unlock(&vnode_list_mtx); 1680 /* 1681 * Total number of vnodes can transiently go slightly above the 1682 * limit (see vn_alloc_hard), no need to call uma_reclaim if 1683 * this happens. 1684 */ 1685 if (onumvnodes + 1000 > desiredvnodes && numvnodes <= desiredvnodes) 1686 uma_reclaim(UMA_RECLAIM_DRAIN); 1687 if (done == 0) { 1688 if (force == 0 || force == 1) { 1689 force = 2; 1690 continue; 1691 } 1692 if (force == 2) { 1693 force = 3; 1694 continue; 1695 } 1696 want_reread = true; 1697 force = 0; 1698 vnlru_nowhere++; 1699 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 1700 } else { 1701 want_reread = true; 1702 kern_yield(PRI_USER); 1703 } 1704 } 1705 } 1706 1707 static struct kproc_desc vnlru_kp = { 1708 "vnlru", 1709 vnlru_proc, 1710 &vnlruproc 1711 }; 1712 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 1713 &vnlru_kp); 1714 1715 /* 1716 * Routines having to do with the management of the vnode table. 1717 */ 1718 1719 /* 1720 * Try to recycle a freed vnode. We abort if anyone picks up a reference 1721 * before we actually vgone(). This function must be called with the vnode 1722 * held to prevent the vnode from being returned to the free list midway 1723 * through vgone(). 1724 */ 1725 static int 1726 vtryrecycle(struct vnode *vp) 1727 { 1728 struct mount *vnmp; 1729 1730 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1731 VNPASS(vp->v_holdcnt > 0, vp); 1732 /* 1733 * This vnode may found and locked via some other list, if so we 1734 * can't recycle it yet. 1735 */ 1736 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1737 CTR2(KTR_VFS, 1738 "%s: impossible to recycle, vp %p lock is already held", 1739 __func__, vp); 1740 vdrop_recycle(vp); 1741 return (EWOULDBLOCK); 1742 } 1743 /* 1744 * Don't recycle if its filesystem is being suspended. 1745 */ 1746 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1747 VOP_UNLOCK(vp); 1748 CTR2(KTR_VFS, 1749 "%s: impossible to recycle, cannot start the write for %p", 1750 __func__, vp); 1751 vdrop_recycle(vp); 1752 return (EBUSY); 1753 } 1754 /* 1755 * If we got this far, we need to acquire the interlock and see if 1756 * anyone picked up this vnode from another list. If not, we will 1757 * mark it with DOOMED via vgonel() so that anyone who does find it 1758 * will skip over it. 1759 */ 1760 VI_LOCK(vp); 1761 if (vp->v_usecount) { 1762 VOP_UNLOCK(vp); 1763 vdropl_recycle(vp); 1764 vn_finished_write(vnmp); 1765 CTR2(KTR_VFS, 1766 "%s: impossible to recycle, %p is already referenced", 1767 __func__, vp); 1768 return (EBUSY); 1769 } 1770 if (!VN_IS_DOOMED(vp)) { 1771 counter_u64_add(recycles_free_count, 1); 1772 vgonel(vp); 1773 } 1774 VOP_UNLOCK(vp); 1775 vdropl_recycle(vp); 1776 vn_finished_write(vnmp); 1777 return (0); 1778 } 1779 1780 /* 1781 * Allocate a new vnode. 1782 * 1783 * The operation never returns an error. Returning an error was disabled 1784 * in r145385 (dated 2005) with the following comment: 1785 * 1786 * XXX Not all VFS_VGET/ffs_vget callers check returns. 1787 * 1788 * Given the age of this commit (almost 15 years at the time of writing this 1789 * comment) restoring the ability to fail requires a significant audit of 1790 * all codepaths. 1791 * 1792 * The routine can try to free a vnode or stall for up to 1 second waiting for 1793 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation. 1794 */ 1795 static u_long vn_alloc_cyclecount; 1796 static u_long vn_alloc_sleeps; 1797 1798 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0, 1799 "Number of times vnode allocation blocked waiting on vnlru"); 1800 1801 static struct vnode * __noinline 1802 vn_alloc_hard(struct mount *mp) 1803 { 1804 u_long rnumvnodes, rfreevnodes; 1805 1806 mtx_lock(&vnode_list_mtx); 1807 rnumvnodes = atomic_load_long(&numvnodes); 1808 if (rnumvnodes + 1 < desiredvnodes) { 1809 vn_alloc_cyclecount = 0; 1810 mtx_unlock(&vnode_list_mtx); 1811 goto alloc; 1812 } 1813 1814 if (vn_alloc_cyclecount != 0) { 1815 rfreevnodes = vnlru_read_freevnodes(); 1816 if (rfreevnodes < wantfreevnodes) { 1817 if (vn_alloc_cyclecount++ >= rfreevnodes) { 1818 vn_alloc_cyclecount = 0; 1819 vstir = true; 1820 } 1821 } else { 1822 vn_alloc_cyclecount = 0; 1823 } 1824 } 1825 1826 /* 1827 * Grow the vnode cache if it will not be above its target max 1828 * after growing. Otherwise, if the free list is nonempty, try 1829 * to reclaim 1 item from it before growing the cache (possibly 1830 * above its target max if the reclamation failed or is delayed). 1831 * Otherwise, wait for some space. In all cases, schedule 1832 * vnlru_proc() if we are getting short of space. The watermarks 1833 * should be chosen so that we never wait or even reclaim from 1834 * the free list to below its target minimum. 1835 */ 1836 if (vnlru_free_locked(1) > 0) 1837 goto alloc; 1838 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1839 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 1840 /* 1841 * Wait for space for a new vnode. 1842 */ 1843 mtx_lock(&vnode_list_mtx); 1844 vnlru_kick_locked(); 1845 vn_alloc_sleeps++; 1846 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz); 1847 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes && 1848 vnlru_read_freevnodes() > 1) 1849 vnlru_free_locked(1); 1850 else 1851 mtx_unlock(&vnode_list_mtx); 1852 } 1853 alloc: 1854 mtx_assert(&vnode_list_mtx, MA_NOTOWNED); 1855 atomic_add_long(&numvnodes, 1); 1856 vnlru_kick_cond(); 1857 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 1858 } 1859 1860 static struct vnode * 1861 vn_alloc(struct mount *mp) 1862 { 1863 u_long rnumvnodes; 1864 1865 if (__predict_false(vn_alloc_cyclecount != 0)) 1866 return (vn_alloc_hard(mp)); 1867 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 1868 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) { 1869 atomic_subtract_long(&numvnodes, 1); 1870 return (vn_alloc_hard(mp)); 1871 } 1872 1873 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 1874 } 1875 1876 static void 1877 vn_free(struct vnode *vp) 1878 { 1879 1880 atomic_subtract_long(&numvnodes, 1); 1881 uma_zfree_smr(vnode_zone, vp); 1882 } 1883 1884 /* 1885 * Return the next vnode from the free list. 1886 */ 1887 int 1888 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 1889 struct vnode **vpp) 1890 { 1891 struct vnode *vp; 1892 struct thread *td; 1893 struct lock_object *lo; 1894 1895 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 1896 1897 KASSERT(vops->registered, 1898 ("%s: not registered vector op %p\n", __func__, vops)); 1899 cache_validate_vop_vector(mp, vops); 1900 1901 td = curthread; 1902 if (td->td_vp_reserved != NULL) { 1903 vp = td->td_vp_reserved; 1904 td->td_vp_reserved = NULL; 1905 } else { 1906 vp = vn_alloc(mp); 1907 } 1908 counter_u64_add(vnodes_created, 1); 1909 1910 vn_set_state(vp, VSTATE_UNINITIALIZED); 1911 1912 /* 1913 * Locks are given the generic name "vnode" when created. 1914 * Follow the historic practice of using the filesystem 1915 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. 1916 * 1917 * Locks live in a witness group keyed on their name. Thus, 1918 * when a lock is renamed, it must also move from the witness 1919 * group of its old name to the witness group of its new name. 1920 * 1921 * The change only needs to be made when the vnode moves 1922 * from one filesystem type to another. We ensure that each 1923 * filesystem use a single static name pointer for its tag so 1924 * that we can compare pointers rather than doing a strcmp(). 1925 */ 1926 lo = &vp->v_vnlock->lock_object; 1927 #ifdef WITNESS 1928 if (lo->lo_name != tag) { 1929 #endif 1930 lo->lo_name = tag; 1931 #ifdef WITNESS 1932 WITNESS_DESTROY(lo); 1933 WITNESS_INIT(lo, tag); 1934 } 1935 #endif 1936 /* 1937 * By default, don't allow shared locks unless filesystems opt-in. 1938 */ 1939 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; 1940 /* 1941 * Finalize various vnode identity bits. 1942 */ 1943 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); 1944 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); 1945 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); 1946 vp->v_type = VNON; 1947 vp->v_op = vops; 1948 vp->v_irflag = 0; 1949 v_init_counters(vp); 1950 vn_seqc_init(vp); 1951 vp->v_bufobj.bo_ops = &buf_ops_bio; 1952 #ifdef DIAGNOSTIC 1953 if (mp == NULL && vops != &dead_vnodeops) 1954 printf("NULL mp in getnewvnode(9), tag %s\n", tag); 1955 #endif 1956 #ifdef MAC 1957 mac_vnode_init(vp); 1958 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1959 mac_vnode_associate_singlelabel(mp, vp); 1960 #endif 1961 if (mp != NULL) { 1962 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; 1963 } 1964 1965 /* 1966 * For the filesystems which do not use vfs_hash_insert(), 1967 * still initialize v_hash to have vfs_hash_index() useful. 1968 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 1969 * its own hashing. 1970 */ 1971 vp->v_hash = (uintptr_t)vp >> vnsz2log; 1972 1973 *vpp = vp; 1974 return (0); 1975 } 1976 1977 void 1978 getnewvnode_reserve(void) 1979 { 1980 struct thread *td; 1981 1982 td = curthread; 1983 MPASS(td->td_vp_reserved == NULL); 1984 td->td_vp_reserved = vn_alloc(NULL); 1985 } 1986 1987 void 1988 getnewvnode_drop_reserve(void) 1989 { 1990 struct thread *td; 1991 1992 td = curthread; 1993 if (td->td_vp_reserved != NULL) { 1994 vn_free(td->td_vp_reserved); 1995 td->td_vp_reserved = NULL; 1996 } 1997 } 1998 1999 static void __noinline 2000 freevnode(struct vnode *vp) 2001 { 2002 struct bufobj *bo; 2003 2004 /* 2005 * The vnode has been marked for destruction, so free it. 2006 * 2007 * The vnode will be returned to the zone where it will 2008 * normally remain until it is needed for another vnode. We 2009 * need to cleanup (or verify that the cleanup has already 2010 * been done) any residual data left from its current use 2011 * so as not to contaminate the freshly allocated vnode. 2012 */ 2013 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 2014 /* 2015 * Paired with vgone. 2016 */ 2017 vn_seqc_write_end_free(vp); 2018 2019 bo = &vp->v_bufobj; 2020 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 2021 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp); 2022 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 2023 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 2024 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 2025 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 2026 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 2027 ("clean blk trie not empty")); 2028 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 2029 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 2030 ("dirty blk trie not empty")); 2031 VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp, 2032 ("Dangling rangelock waiters")); 2033 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp, 2034 ("Leaked inactivation")); 2035 VI_UNLOCK(vp); 2036 cache_assert_no_entries(vp); 2037 2038 #ifdef MAC 2039 mac_vnode_destroy(vp); 2040 #endif 2041 if (vp->v_pollinfo != NULL) { 2042 /* 2043 * Use LK_NOWAIT to shut up witness about the lock. We may get 2044 * here while having another vnode locked when trying to 2045 * satisfy a lookup and needing to recycle. 2046 */ 2047 VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT); 2048 destroy_vpollinfo(vp->v_pollinfo); 2049 VOP_UNLOCK(vp); 2050 vp->v_pollinfo = NULL; 2051 } 2052 vp->v_mountedhere = NULL; 2053 vp->v_unpcb = NULL; 2054 vp->v_rdev = NULL; 2055 vp->v_fifoinfo = NULL; 2056 vp->v_iflag = 0; 2057 vp->v_vflag = 0; 2058 bo->bo_flag = 0; 2059 vn_free(vp); 2060 } 2061 2062 /* 2063 * Delete from old mount point vnode list, if on one. 2064 */ 2065 static void 2066 delmntque(struct vnode *vp) 2067 { 2068 struct mount *mp; 2069 2070 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 2071 2072 mp = vp->v_mount; 2073 MNT_ILOCK(mp); 2074 VI_LOCK(vp); 2075 vp->v_mount = NULL; 2076 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 2077 ("bad mount point vnode list size")); 2078 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2079 mp->mnt_nvnodelistsize--; 2080 MNT_REL(mp); 2081 MNT_IUNLOCK(mp); 2082 /* 2083 * The caller expects the interlock to be still held. 2084 */ 2085 ASSERT_VI_LOCKED(vp, __func__); 2086 } 2087 2088 static int 2089 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr) 2090 { 2091 2092 KASSERT(vp->v_mount == NULL, 2093 ("insmntque: vnode already on per mount vnode list")); 2094 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 2095 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) { 2096 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 2097 } else { 2098 KASSERT(!dtr, 2099 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup", 2100 __func__)); 2101 } 2102 2103 /* 2104 * We acquire the vnode interlock early to ensure that the 2105 * vnode cannot be recycled by another process releasing a 2106 * holdcnt on it before we get it on both the vnode list 2107 * and the active vnode list. The mount mutex protects only 2108 * manipulation of the vnode list and the vnode freelist 2109 * mutex protects only manipulation of the active vnode list. 2110 * Hence the need to hold the vnode interlock throughout. 2111 */ 2112 MNT_ILOCK(mp); 2113 VI_LOCK(vp); 2114 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && 2115 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 2116 mp->mnt_nvnodelistsize == 0)) && 2117 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 2118 VI_UNLOCK(vp); 2119 MNT_IUNLOCK(mp); 2120 if (dtr) { 2121 vp->v_data = NULL; 2122 vp->v_op = &dead_vnodeops; 2123 vgone(vp); 2124 vput(vp); 2125 } 2126 return (EBUSY); 2127 } 2128 vp->v_mount = mp; 2129 MNT_REF(mp); 2130 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 2131 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 2132 ("neg mount point vnode list size")); 2133 mp->mnt_nvnodelistsize++; 2134 VI_UNLOCK(vp); 2135 MNT_IUNLOCK(mp); 2136 return (0); 2137 } 2138 2139 /* 2140 * Insert into list of vnodes for the new mount point, if available. 2141 * insmntque() reclaims the vnode on insertion failure, insmntque1() 2142 * leaves handling of the vnode to the caller. 2143 */ 2144 int 2145 insmntque(struct vnode *vp, struct mount *mp) 2146 { 2147 return (insmntque1_int(vp, mp, true)); 2148 } 2149 2150 int 2151 insmntque1(struct vnode *vp, struct mount *mp) 2152 { 2153 return (insmntque1_int(vp, mp, false)); 2154 } 2155 2156 /* 2157 * Flush out and invalidate all buffers associated with a bufobj 2158 * Called with the underlying object locked. 2159 */ 2160 int 2161 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 2162 { 2163 int error; 2164 2165 BO_LOCK(bo); 2166 if (flags & V_SAVE) { 2167 error = bufobj_wwait(bo, slpflag, slptimeo); 2168 if (error) { 2169 BO_UNLOCK(bo); 2170 return (error); 2171 } 2172 if (bo->bo_dirty.bv_cnt > 0) { 2173 BO_UNLOCK(bo); 2174 do { 2175 error = BO_SYNC(bo, MNT_WAIT); 2176 } while (error == ERELOOKUP); 2177 if (error != 0) 2178 return (error); 2179 BO_LOCK(bo); 2180 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { 2181 BO_UNLOCK(bo); 2182 return (EBUSY); 2183 } 2184 } 2185 } 2186 /* 2187 * If you alter this loop please notice that interlock is dropped and 2188 * reacquired in flushbuflist. Special care is needed to ensure that 2189 * no race conditions occur from this. 2190 */ 2191 do { 2192 error = flushbuflist(&bo->bo_clean, 2193 flags, bo, slpflag, slptimeo); 2194 if (error == 0 && !(flags & V_CLEANONLY)) 2195 error = flushbuflist(&bo->bo_dirty, 2196 flags, bo, slpflag, slptimeo); 2197 if (error != 0 && error != EAGAIN) { 2198 BO_UNLOCK(bo); 2199 return (error); 2200 } 2201 } while (error != 0); 2202 2203 /* 2204 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 2205 * have write I/O in-progress but if there is a VM object then the 2206 * VM object can also have read-I/O in-progress. 2207 */ 2208 do { 2209 bufobj_wwait(bo, 0, 0); 2210 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) { 2211 BO_UNLOCK(bo); 2212 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx"); 2213 BO_LOCK(bo); 2214 } 2215 } while (bo->bo_numoutput > 0); 2216 BO_UNLOCK(bo); 2217 2218 /* 2219 * Destroy the copy in the VM cache, too. 2220 */ 2221 if (bo->bo_object != NULL && 2222 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { 2223 VM_OBJECT_WLOCK(bo->bo_object); 2224 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 2225 OBJPR_CLEANONLY : 0); 2226 VM_OBJECT_WUNLOCK(bo->bo_object); 2227 } 2228 2229 #ifdef INVARIANTS 2230 BO_LOCK(bo); 2231 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | 2232 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || 2233 bo->bo_clean.bv_cnt > 0)) 2234 panic("vinvalbuf: flush failed"); 2235 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && 2236 bo->bo_dirty.bv_cnt > 0) 2237 panic("vinvalbuf: flush dirty failed"); 2238 BO_UNLOCK(bo); 2239 #endif 2240 return (0); 2241 } 2242 2243 /* 2244 * Flush out and invalidate all buffers associated with a vnode. 2245 * Called with the underlying object locked. 2246 */ 2247 int 2248 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 2249 { 2250 2251 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2252 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 2253 if (vp->v_object != NULL && vp->v_object->handle != vp) 2254 return (0); 2255 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 2256 } 2257 2258 /* 2259 * Flush out buffers on the specified list. 2260 * 2261 */ 2262 static int 2263 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 2264 int slptimeo) 2265 { 2266 struct buf *bp, *nbp; 2267 int retval, error; 2268 daddr_t lblkno; 2269 b_xflags_t xflags; 2270 2271 ASSERT_BO_WLOCKED(bo); 2272 2273 retval = 0; 2274 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 2275 /* 2276 * If we are flushing both V_NORMAL and V_ALT buffers then 2277 * do not skip any buffers. If we are flushing only V_NORMAL 2278 * buffers then skip buffers marked as BX_ALTDATA. If we are 2279 * flushing only V_ALT buffers then skip buffers not marked 2280 * as BX_ALTDATA. 2281 */ 2282 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) && 2283 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) || 2284 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) { 2285 continue; 2286 } 2287 if (nbp != NULL) { 2288 lblkno = nbp->b_lblkno; 2289 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 2290 } 2291 retval = EAGAIN; 2292 error = BUF_TIMELOCK(bp, 2293 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 2294 "flushbuf", slpflag, slptimeo); 2295 if (error) { 2296 BO_LOCK(bo); 2297 return (error != ENOLCK ? error : EAGAIN); 2298 } 2299 KASSERT(bp->b_bufobj == bo, 2300 ("bp %p wrong b_bufobj %p should be %p", 2301 bp, bp->b_bufobj, bo)); 2302 /* 2303 * XXX Since there are no node locks for NFS, I 2304 * believe there is a slight chance that a delayed 2305 * write will occur while sleeping just above, so 2306 * check for it. 2307 */ 2308 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 2309 (flags & V_SAVE)) { 2310 bremfree(bp); 2311 bp->b_flags |= B_ASYNC; 2312 bwrite(bp); 2313 BO_LOCK(bo); 2314 return (EAGAIN); /* XXX: why not loop ? */ 2315 } 2316 bremfree(bp); 2317 bp->b_flags |= (B_INVAL | B_RELBUF); 2318 bp->b_flags &= ~B_ASYNC; 2319 brelse(bp); 2320 BO_LOCK(bo); 2321 if (nbp == NULL) 2322 break; 2323 nbp = gbincore(bo, lblkno); 2324 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2325 != xflags) 2326 break; /* nbp invalid */ 2327 } 2328 return (retval); 2329 } 2330 2331 int 2332 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) 2333 { 2334 struct buf *bp; 2335 int error; 2336 daddr_t lblkno; 2337 2338 ASSERT_BO_LOCKED(bo); 2339 2340 for (lblkno = startn;;) { 2341 again: 2342 bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno); 2343 if (bp == NULL || bp->b_lblkno >= endn || 2344 bp->b_lblkno < startn) 2345 break; 2346 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 2347 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); 2348 if (error != 0) { 2349 BO_RLOCK(bo); 2350 if (error == ENOLCK) 2351 goto again; 2352 return (error); 2353 } 2354 KASSERT(bp->b_bufobj == bo, 2355 ("bp %p wrong b_bufobj %p should be %p", 2356 bp, bp->b_bufobj, bo)); 2357 lblkno = bp->b_lblkno + 1; 2358 if ((bp->b_flags & B_MANAGED) == 0) 2359 bremfree(bp); 2360 bp->b_flags |= B_RELBUF; 2361 /* 2362 * In the VMIO case, use the B_NOREUSE flag to hint that the 2363 * pages backing each buffer in the range are unlikely to be 2364 * reused. Dirty buffers will have the hint applied once 2365 * they've been written. 2366 */ 2367 if ((bp->b_flags & B_VMIO) != 0) 2368 bp->b_flags |= B_NOREUSE; 2369 brelse(bp); 2370 BO_RLOCK(bo); 2371 } 2372 return (0); 2373 } 2374 2375 /* 2376 * Truncate a file's buffer and pages to a specified length. This 2377 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 2378 * sync activity. 2379 */ 2380 int 2381 vtruncbuf(struct vnode *vp, off_t length, int blksize) 2382 { 2383 struct buf *bp, *nbp; 2384 struct bufobj *bo; 2385 daddr_t startlbn; 2386 2387 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__, 2388 vp, blksize, (uintmax_t)length); 2389 2390 /* 2391 * Round up to the *next* lbn. 2392 */ 2393 startlbn = howmany(length, blksize); 2394 2395 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 2396 2397 bo = &vp->v_bufobj; 2398 restart_unlocked: 2399 BO_LOCK(bo); 2400 2401 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN) 2402 ; 2403 2404 if (length > 0) { 2405 restartsync: 2406 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2407 if (bp->b_lblkno > 0) 2408 continue; 2409 /* 2410 * Since we hold the vnode lock this should only 2411 * fail if we're racing with the buf daemon. 2412 */ 2413 if (BUF_LOCK(bp, 2414 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2415 BO_LOCKPTR(bo)) == ENOLCK) 2416 goto restart_unlocked; 2417 2418 VNASSERT((bp->b_flags & B_DELWRI), vp, 2419 ("buf(%p) on dirty queue without DELWRI", bp)); 2420 2421 bremfree(bp); 2422 bawrite(bp); 2423 BO_LOCK(bo); 2424 goto restartsync; 2425 } 2426 } 2427 2428 bufobj_wwait(bo, 0, 0); 2429 BO_UNLOCK(bo); 2430 vnode_pager_setsize(vp, length); 2431 2432 return (0); 2433 } 2434 2435 /* 2436 * Invalidate the cached pages of a file's buffer within the range of block 2437 * numbers [startlbn, endlbn). 2438 */ 2439 void 2440 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, 2441 int blksize) 2442 { 2443 struct bufobj *bo; 2444 off_t start, end; 2445 2446 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range"); 2447 2448 start = blksize * startlbn; 2449 end = blksize * endlbn; 2450 2451 bo = &vp->v_bufobj; 2452 BO_LOCK(bo); 2453 MPASS(blksize == bo->bo_bsize); 2454 2455 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN) 2456 ; 2457 2458 BO_UNLOCK(bo); 2459 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1)); 2460 } 2461 2462 static int 2463 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 2464 daddr_t startlbn, daddr_t endlbn) 2465 { 2466 struct buf *bp, *nbp; 2467 bool anyfreed; 2468 2469 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked"); 2470 ASSERT_BO_LOCKED(bo); 2471 2472 do { 2473 anyfreed = false; 2474 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 2475 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2476 continue; 2477 if (BUF_LOCK(bp, 2478 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2479 BO_LOCKPTR(bo)) == ENOLCK) { 2480 BO_LOCK(bo); 2481 return (EAGAIN); 2482 } 2483 2484 bremfree(bp); 2485 bp->b_flags |= B_INVAL | B_RELBUF; 2486 bp->b_flags &= ~B_ASYNC; 2487 brelse(bp); 2488 anyfreed = true; 2489 2490 BO_LOCK(bo); 2491 if (nbp != NULL && 2492 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 2493 nbp->b_vp != vp || 2494 (nbp->b_flags & B_DELWRI) != 0)) 2495 return (EAGAIN); 2496 } 2497 2498 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2499 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2500 continue; 2501 if (BUF_LOCK(bp, 2502 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2503 BO_LOCKPTR(bo)) == ENOLCK) { 2504 BO_LOCK(bo); 2505 return (EAGAIN); 2506 } 2507 bremfree(bp); 2508 bp->b_flags |= B_INVAL | B_RELBUF; 2509 bp->b_flags &= ~B_ASYNC; 2510 brelse(bp); 2511 anyfreed = true; 2512 2513 BO_LOCK(bo); 2514 if (nbp != NULL && 2515 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 2516 (nbp->b_vp != vp) || 2517 (nbp->b_flags & B_DELWRI) == 0)) 2518 return (EAGAIN); 2519 } 2520 } while (anyfreed); 2521 return (0); 2522 } 2523 2524 static void 2525 buf_vlist_remove(struct buf *bp) 2526 { 2527 struct bufv *bv; 2528 b_xflags_t flags; 2529 2530 flags = bp->b_xflags; 2531 2532 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2533 ASSERT_BO_WLOCKED(bp->b_bufobj); 2534 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 && 2535 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN), 2536 ("%s: buffer %p has invalid queue state", __func__, bp)); 2537 2538 if ((flags & BX_VNDIRTY) != 0) 2539 bv = &bp->b_bufobj->bo_dirty; 2540 else 2541 bv = &bp->b_bufobj->bo_clean; 2542 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 2543 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 2544 bv->bv_cnt--; 2545 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 2546 } 2547 2548 /* 2549 * Add the buffer to the sorted clean or dirty block list. 2550 * 2551 * NOTE: xflags is passed as a constant, optimizing this inline function! 2552 */ 2553 static void 2554 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2555 { 2556 struct bufv *bv; 2557 struct buf *n; 2558 int error; 2559 2560 ASSERT_BO_WLOCKED(bo); 2561 KASSERT((bo->bo_flag & BO_NOBUFS) == 0, 2562 ("buf_vlist_add: bo %p does not allow bufs", bo)); 2563 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 2564 ("dead bo %p", bo)); 2565 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 2566 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 2567 bp->b_xflags |= xflags; 2568 if (xflags & BX_VNDIRTY) 2569 bv = &bo->bo_dirty; 2570 else 2571 bv = &bo->bo_clean; 2572 2573 /* 2574 * Keep the list ordered. Optimize empty list insertion. Assume 2575 * we tend to grow at the tail so lookup_le should usually be cheaper 2576 * than _ge. 2577 */ 2578 if (bv->bv_cnt == 0 || 2579 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) 2580 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 2581 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) 2582 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 2583 else 2584 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 2585 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); 2586 if (error) 2587 panic("buf_vlist_add: Preallocated nodes insufficient."); 2588 bv->bv_cnt++; 2589 } 2590 2591 /* 2592 * Look up a buffer using the buffer tries. 2593 */ 2594 struct buf * 2595 gbincore(struct bufobj *bo, daddr_t lblkno) 2596 { 2597 struct buf *bp; 2598 2599 ASSERT_BO_LOCKED(bo); 2600 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 2601 if (bp != NULL) 2602 return (bp); 2603 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno)); 2604 } 2605 2606 /* 2607 * Look up a buf using the buffer tries, without the bufobj lock. This relies 2608 * on SMR for safe lookup, and bufs being in a no-free zone to provide type 2609 * stability of the result. Like other lockless lookups, the found buf may 2610 * already be invalid by the time this function returns. 2611 */ 2612 struct buf * 2613 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno) 2614 { 2615 struct buf *bp; 2616 2617 ASSERT_BO_UNLOCKED(bo); 2618 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno); 2619 if (bp != NULL) 2620 return (bp); 2621 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno)); 2622 } 2623 2624 /* 2625 * Associate a buffer with a vnode. 2626 */ 2627 void 2628 bgetvp(struct vnode *vp, struct buf *bp) 2629 { 2630 struct bufobj *bo; 2631 2632 bo = &vp->v_bufobj; 2633 ASSERT_BO_WLOCKED(bo); 2634 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 2635 2636 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 2637 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 2638 ("bgetvp: bp already attached! %p", bp)); 2639 2640 vhold(vp); 2641 bp->b_vp = vp; 2642 bp->b_bufobj = bo; 2643 /* 2644 * Insert onto list for new vnode. 2645 */ 2646 buf_vlist_add(bp, bo, BX_VNCLEAN); 2647 } 2648 2649 /* 2650 * Disassociate a buffer from a vnode. 2651 */ 2652 void 2653 brelvp(struct buf *bp) 2654 { 2655 struct bufobj *bo; 2656 struct vnode *vp; 2657 2658 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2659 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 2660 2661 /* 2662 * Delete from old vnode list, if on one. 2663 */ 2664 vp = bp->b_vp; /* XXX */ 2665 bo = bp->b_bufobj; 2666 BO_LOCK(bo); 2667 buf_vlist_remove(bp); 2668 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2669 bo->bo_flag &= ~BO_ONWORKLST; 2670 mtx_lock(&sync_mtx); 2671 LIST_REMOVE(bo, bo_synclist); 2672 syncer_worklist_len--; 2673 mtx_unlock(&sync_mtx); 2674 } 2675 bp->b_vp = NULL; 2676 bp->b_bufobj = NULL; 2677 BO_UNLOCK(bo); 2678 vdrop(vp); 2679 } 2680 2681 /* 2682 * Add an item to the syncer work queue. 2683 */ 2684 static void 2685 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 2686 { 2687 int slot; 2688 2689 ASSERT_BO_WLOCKED(bo); 2690 2691 mtx_lock(&sync_mtx); 2692 if (bo->bo_flag & BO_ONWORKLST) 2693 LIST_REMOVE(bo, bo_synclist); 2694 else { 2695 bo->bo_flag |= BO_ONWORKLST; 2696 syncer_worklist_len++; 2697 } 2698 2699 if (delay > syncer_maxdelay - 2) 2700 delay = syncer_maxdelay - 2; 2701 slot = (syncer_delayno + delay) & syncer_mask; 2702 2703 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 2704 mtx_unlock(&sync_mtx); 2705 } 2706 2707 static int 2708 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 2709 { 2710 int error, len; 2711 2712 mtx_lock(&sync_mtx); 2713 len = syncer_worklist_len - sync_vnode_count; 2714 mtx_unlock(&sync_mtx); 2715 error = SYSCTL_OUT(req, &len, sizeof(len)); 2716 return (error); 2717 } 2718 2719 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, 2720 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0, 2721 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 2722 2723 static struct proc *updateproc; 2724 static void sched_sync(void); 2725 static struct kproc_desc up_kp = { 2726 "syncer", 2727 sched_sync, 2728 &updateproc 2729 }; 2730 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 2731 2732 static int 2733 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 2734 { 2735 struct vnode *vp; 2736 struct mount *mp; 2737 2738 *bo = LIST_FIRST(slp); 2739 if (*bo == NULL) 2740 return (0); 2741 vp = bo2vnode(*bo); 2742 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 2743 return (1); 2744 /* 2745 * We use vhold in case the vnode does not 2746 * successfully sync. vhold prevents the vnode from 2747 * going away when we unlock the sync_mtx so that 2748 * we can acquire the vnode interlock. 2749 */ 2750 vholdl(vp); 2751 mtx_unlock(&sync_mtx); 2752 VI_UNLOCK(vp); 2753 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2754 vdrop(vp); 2755 mtx_lock(&sync_mtx); 2756 return (*bo == LIST_FIRST(slp)); 2757 } 2758 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 || 2759 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp, 2760 ("suspended mp syncing vp %p", vp)); 2761 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2762 (void) VOP_FSYNC(vp, MNT_LAZY, td); 2763 VOP_UNLOCK(vp); 2764 vn_finished_write(mp); 2765 BO_LOCK(*bo); 2766 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 2767 /* 2768 * Put us back on the worklist. The worklist 2769 * routine will remove us from our current 2770 * position and then add us back in at a later 2771 * position. 2772 */ 2773 vn_syncer_add_to_worklist(*bo, syncdelay); 2774 } 2775 BO_UNLOCK(*bo); 2776 vdrop(vp); 2777 mtx_lock(&sync_mtx); 2778 return (0); 2779 } 2780 2781 static int first_printf = 1; 2782 2783 /* 2784 * System filesystem synchronizer daemon. 2785 */ 2786 static void 2787 sched_sync(void) 2788 { 2789 struct synclist *next, *slp; 2790 struct bufobj *bo; 2791 long starttime; 2792 struct thread *td = curthread; 2793 int last_work_seen; 2794 int net_worklist_len; 2795 int syncer_final_iter; 2796 int error; 2797 2798 last_work_seen = 0; 2799 syncer_final_iter = 0; 2800 syncer_state = SYNCER_RUNNING; 2801 starttime = time_uptime; 2802 td->td_pflags |= TDP_NORUNNINGBUF; 2803 2804 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 2805 SHUTDOWN_PRI_LAST); 2806 2807 mtx_lock(&sync_mtx); 2808 for (;;) { 2809 if (syncer_state == SYNCER_FINAL_DELAY && 2810 syncer_final_iter == 0) { 2811 mtx_unlock(&sync_mtx); 2812 kproc_suspend_check(td->td_proc); 2813 mtx_lock(&sync_mtx); 2814 } 2815 net_worklist_len = syncer_worklist_len - sync_vnode_count; 2816 if (syncer_state != SYNCER_RUNNING && 2817 starttime != time_uptime) { 2818 if (first_printf) { 2819 printf("\nSyncing disks, vnodes remaining... "); 2820 first_printf = 0; 2821 } 2822 printf("%d ", net_worklist_len); 2823 } 2824 starttime = time_uptime; 2825 2826 /* 2827 * Push files whose dirty time has expired. Be careful 2828 * of interrupt race on slp queue. 2829 * 2830 * Skip over empty worklist slots when shutting down. 2831 */ 2832 do { 2833 slp = &syncer_workitem_pending[syncer_delayno]; 2834 syncer_delayno += 1; 2835 if (syncer_delayno == syncer_maxdelay) 2836 syncer_delayno = 0; 2837 next = &syncer_workitem_pending[syncer_delayno]; 2838 /* 2839 * If the worklist has wrapped since the 2840 * it was emptied of all but syncer vnodes, 2841 * switch to the FINAL_DELAY state and run 2842 * for one more second. 2843 */ 2844 if (syncer_state == SYNCER_SHUTTING_DOWN && 2845 net_worklist_len == 0 && 2846 last_work_seen == syncer_delayno) { 2847 syncer_state = SYNCER_FINAL_DELAY; 2848 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 2849 } 2850 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 2851 syncer_worklist_len > 0); 2852 2853 /* 2854 * Keep track of the last time there was anything 2855 * on the worklist other than syncer vnodes. 2856 * Return to the SHUTTING_DOWN state if any 2857 * new work appears. 2858 */ 2859 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 2860 last_work_seen = syncer_delayno; 2861 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 2862 syncer_state = SYNCER_SHUTTING_DOWN; 2863 while (!LIST_EMPTY(slp)) { 2864 error = sync_vnode(slp, &bo, td); 2865 if (error == 1) { 2866 LIST_REMOVE(bo, bo_synclist); 2867 LIST_INSERT_HEAD(next, bo, bo_synclist); 2868 continue; 2869 } 2870 2871 if (first_printf == 0) { 2872 /* 2873 * Drop the sync mutex, because some watchdog 2874 * drivers need to sleep while patting 2875 */ 2876 mtx_unlock(&sync_mtx); 2877 wdog_kern_pat(WD_LASTVAL); 2878 mtx_lock(&sync_mtx); 2879 } 2880 } 2881 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 2882 syncer_final_iter--; 2883 /* 2884 * The variable rushjob allows the kernel to speed up the 2885 * processing of the filesystem syncer process. A rushjob 2886 * value of N tells the filesystem syncer to process the next 2887 * N seconds worth of work on its queue ASAP. Currently rushjob 2888 * is used by the soft update code to speed up the filesystem 2889 * syncer process when the incore state is getting so far 2890 * ahead of the disk that the kernel memory pool is being 2891 * threatened with exhaustion. 2892 */ 2893 if (rushjob > 0) { 2894 rushjob -= 1; 2895 continue; 2896 } 2897 /* 2898 * Just sleep for a short period of time between 2899 * iterations when shutting down to allow some I/O 2900 * to happen. 2901 * 2902 * If it has taken us less than a second to process the 2903 * current work, then wait. Otherwise start right over 2904 * again. We can still lose time if any single round 2905 * takes more than two seconds, but it does not really 2906 * matter as we are just trying to generally pace the 2907 * filesystem activity. 2908 */ 2909 if (syncer_state != SYNCER_RUNNING || 2910 time_uptime == starttime) { 2911 thread_lock(td); 2912 sched_prio(td, PPAUSE); 2913 thread_unlock(td); 2914 } 2915 if (syncer_state != SYNCER_RUNNING) 2916 cv_timedwait(&sync_wakeup, &sync_mtx, 2917 hz / SYNCER_SHUTDOWN_SPEEDUP); 2918 else if (time_uptime == starttime) 2919 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 2920 } 2921 } 2922 2923 /* 2924 * Request the syncer daemon to speed up its work. 2925 * We never push it to speed up more than half of its 2926 * normal turn time, otherwise it could take over the cpu. 2927 */ 2928 int 2929 speedup_syncer(void) 2930 { 2931 int ret = 0; 2932 2933 mtx_lock(&sync_mtx); 2934 if (rushjob < syncdelay / 2) { 2935 rushjob += 1; 2936 stat_rush_requests += 1; 2937 ret = 1; 2938 } 2939 mtx_unlock(&sync_mtx); 2940 cv_broadcast(&sync_wakeup); 2941 return (ret); 2942 } 2943 2944 /* 2945 * Tell the syncer to speed up its work and run though its work 2946 * list several times, then tell it to shut down. 2947 */ 2948 static void 2949 syncer_shutdown(void *arg, int howto) 2950 { 2951 2952 if (howto & RB_NOSYNC) 2953 return; 2954 mtx_lock(&sync_mtx); 2955 syncer_state = SYNCER_SHUTTING_DOWN; 2956 rushjob = 0; 2957 mtx_unlock(&sync_mtx); 2958 cv_broadcast(&sync_wakeup); 2959 kproc_shutdown(arg, howto); 2960 } 2961 2962 void 2963 syncer_suspend(void) 2964 { 2965 2966 syncer_shutdown(updateproc, 0); 2967 } 2968 2969 void 2970 syncer_resume(void) 2971 { 2972 2973 mtx_lock(&sync_mtx); 2974 first_printf = 1; 2975 syncer_state = SYNCER_RUNNING; 2976 mtx_unlock(&sync_mtx); 2977 cv_broadcast(&sync_wakeup); 2978 kproc_resume(updateproc); 2979 } 2980 2981 /* 2982 * Move the buffer between the clean and dirty lists of its vnode. 2983 */ 2984 void 2985 reassignbuf(struct buf *bp) 2986 { 2987 struct vnode *vp; 2988 struct bufobj *bo; 2989 int delay; 2990 #ifdef INVARIANTS 2991 struct bufv *bv; 2992 #endif 2993 2994 vp = bp->b_vp; 2995 bo = bp->b_bufobj; 2996 2997 KASSERT((bp->b_flags & B_PAGING) == 0, 2998 ("%s: cannot reassign paging buffer %p", __func__, bp)); 2999 3000 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 3001 bp, bp->b_vp, bp->b_flags); 3002 3003 BO_LOCK(bo); 3004 buf_vlist_remove(bp); 3005 3006 /* 3007 * If dirty, put on list of dirty buffers; otherwise insert onto list 3008 * of clean buffers. 3009 */ 3010 if (bp->b_flags & B_DELWRI) { 3011 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 3012 switch (vp->v_type) { 3013 case VDIR: 3014 delay = dirdelay; 3015 break; 3016 case VCHR: 3017 delay = metadelay; 3018 break; 3019 default: 3020 delay = filedelay; 3021 } 3022 vn_syncer_add_to_worklist(bo, delay); 3023 } 3024 buf_vlist_add(bp, bo, BX_VNDIRTY); 3025 } else { 3026 buf_vlist_add(bp, bo, BX_VNCLEAN); 3027 3028 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 3029 mtx_lock(&sync_mtx); 3030 LIST_REMOVE(bo, bo_synclist); 3031 syncer_worklist_len--; 3032 mtx_unlock(&sync_mtx); 3033 bo->bo_flag &= ~BO_ONWORKLST; 3034 } 3035 } 3036 #ifdef INVARIANTS 3037 bv = &bo->bo_clean; 3038 bp = TAILQ_FIRST(&bv->bv_hd); 3039 KASSERT(bp == NULL || bp->b_bufobj == bo, 3040 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3041 bp = TAILQ_LAST(&bv->bv_hd, buflists); 3042 KASSERT(bp == NULL || bp->b_bufobj == bo, 3043 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3044 bv = &bo->bo_dirty; 3045 bp = TAILQ_FIRST(&bv->bv_hd); 3046 KASSERT(bp == NULL || bp->b_bufobj == bo, 3047 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3048 bp = TAILQ_LAST(&bv->bv_hd, buflists); 3049 KASSERT(bp == NULL || bp->b_bufobj == bo, 3050 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 3051 #endif 3052 BO_UNLOCK(bo); 3053 } 3054 3055 static void 3056 v_init_counters(struct vnode *vp) 3057 { 3058 3059 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 3060 vp, ("%s called for an initialized vnode", __FUNCTION__)); 3061 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 3062 3063 refcount_init(&vp->v_holdcnt, 1); 3064 refcount_init(&vp->v_usecount, 1); 3065 } 3066 3067 /* 3068 * Grab a particular vnode from the free list, increment its 3069 * reference count and lock it. VIRF_DOOMED is set if the vnode 3070 * is being destroyed. Only callers who specify LK_RETRY will 3071 * see doomed vnodes. If inactive processing was delayed in 3072 * vput try to do it here. 3073 * 3074 * usecount is manipulated using atomics without holding any locks. 3075 * 3076 * holdcnt can be manipulated using atomics without holding any locks, 3077 * except when transitioning 1<->0, in which case the interlock is held. 3078 * 3079 * Consumers which don't guarantee liveness of the vnode can use SMR to 3080 * try to get a reference. Note this operation can fail since the vnode 3081 * may be awaiting getting freed by the time they get to it. 3082 */ 3083 enum vgetstate 3084 vget_prep_smr(struct vnode *vp) 3085 { 3086 enum vgetstate vs; 3087 3088 VFS_SMR_ASSERT_ENTERED(); 3089 3090 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3091 vs = VGET_USECOUNT; 3092 } else { 3093 if (vhold_smr(vp)) 3094 vs = VGET_HOLDCNT; 3095 else 3096 vs = VGET_NONE; 3097 } 3098 return (vs); 3099 } 3100 3101 enum vgetstate 3102 vget_prep(struct vnode *vp) 3103 { 3104 enum vgetstate vs; 3105 3106 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 3107 vs = VGET_USECOUNT; 3108 } else { 3109 vhold(vp); 3110 vs = VGET_HOLDCNT; 3111 } 3112 return (vs); 3113 } 3114 3115 void 3116 vget_abort(struct vnode *vp, enum vgetstate vs) 3117 { 3118 3119 switch (vs) { 3120 case VGET_USECOUNT: 3121 vrele(vp); 3122 break; 3123 case VGET_HOLDCNT: 3124 vdrop(vp); 3125 break; 3126 default: 3127 __assert_unreachable(); 3128 } 3129 } 3130 3131 int 3132 vget(struct vnode *vp, int flags) 3133 { 3134 enum vgetstate vs; 3135 3136 vs = vget_prep(vp); 3137 return (vget_finish(vp, flags, vs)); 3138 } 3139 3140 int 3141 vget_finish(struct vnode *vp, int flags, enum vgetstate vs) 3142 { 3143 int error; 3144 3145 if ((flags & LK_INTERLOCK) != 0) 3146 ASSERT_VI_LOCKED(vp, __func__); 3147 else 3148 ASSERT_VI_UNLOCKED(vp, __func__); 3149 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3150 VNPASS(vp->v_holdcnt > 0, vp); 3151 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3152 3153 error = vn_lock(vp, flags); 3154 if (__predict_false(error != 0)) { 3155 vget_abort(vp, vs); 3156 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 3157 vp); 3158 return (error); 3159 } 3160 3161 vget_finish_ref(vp, vs); 3162 return (0); 3163 } 3164 3165 void 3166 vget_finish_ref(struct vnode *vp, enum vgetstate vs) 3167 { 3168 int old; 3169 3170 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 3171 VNPASS(vp->v_holdcnt > 0, vp); 3172 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 3173 3174 if (vs == VGET_USECOUNT) 3175 return; 3176 3177 /* 3178 * We hold the vnode. If the usecount is 0 it will be utilized to keep 3179 * the vnode around. Otherwise someone else lended their hold count and 3180 * we have to drop ours. 3181 */ 3182 old = atomic_fetchadd_int(&vp->v_usecount, 1); 3183 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); 3184 if (old != 0) { 3185 #ifdef INVARIANTS 3186 old = atomic_fetchadd_int(&vp->v_holdcnt, -1); 3187 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); 3188 #else 3189 refcount_release(&vp->v_holdcnt); 3190 #endif 3191 } 3192 } 3193 3194 void 3195 vref(struct vnode *vp) 3196 { 3197 enum vgetstate vs; 3198 3199 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3200 vs = vget_prep(vp); 3201 vget_finish_ref(vp, vs); 3202 } 3203 3204 void 3205 vrefact(struct vnode *vp) 3206 { 3207 3208 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3209 #ifdef INVARIANTS 3210 int old = atomic_fetchadd_int(&vp->v_usecount, 1); 3211 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); 3212 #else 3213 refcount_acquire(&vp->v_usecount); 3214 #endif 3215 } 3216 3217 void 3218 vlazy(struct vnode *vp) 3219 { 3220 struct mount *mp; 3221 3222 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); 3223 3224 if ((vp->v_mflag & VMP_LAZYLIST) != 0) 3225 return; 3226 /* 3227 * We may get here for inactive routines after the vnode got doomed. 3228 */ 3229 if (VN_IS_DOOMED(vp)) 3230 return; 3231 mp = vp->v_mount; 3232 mtx_lock(&mp->mnt_listmtx); 3233 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 3234 vp->v_mflag |= VMP_LAZYLIST; 3235 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3236 mp->mnt_lazyvnodelistsize++; 3237 } 3238 mtx_unlock(&mp->mnt_listmtx); 3239 } 3240 3241 static void 3242 vunlazy(struct vnode *vp) 3243 { 3244 struct mount *mp; 3245 3246 ASSERT_VI_LOCKED(vp, __func__); 3247 VNPASS(!VN_IS_DOOMED(vp), vp); 3248 3249 mp = vp->v_mount; 3250 mtx_lock(&mp->mnt_listmtx); 3251 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3252 /* 3253 * Don't remove the vnode from the lazy list if another thread 3254 * has increased the hold count. It may have re-enqueued the 3255 * vnode to the lazy list and is now responsible for its 3256 * removal. 3257 */ 3258 if (vp->v_holdcnt == 0) { 3259 vp->v_mflag &= ~VMP_LAZYLIST; 3260 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3261 mp->mnt_lazyvnodelistsize--; 3262 } 3263 mtx_unlock(&mp->mnt_listmtx); 3264 } 3265 3266 /* 3267 * This routine is only meant to be called from vgonel prior to dooming 3268 * the vnode. 3269 */ 3270 static void 3271 vunlazy_gone(struct vnode *vp) 3272 { 3273 struct mount *mp; 3274 3275 ASSERT_VOP_ELOCKED(vp, __func__); 3276 ASSERT_VI_LOCKED(vp, __func__); 3277 VNPASS(!VN_IS_DOOMED(vp), vp); 3278 3279 if (vp->v_mflag & VMP_LAZYLIST) { 3280 mp = vp->v_mount; 3281 mtx_lock(&mp->mnt_listmtx); 3282 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3283 vp->v_mflag &= ~VMP_LAZYLIST; 3284 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3285 mp->mnt_lazyvnodelistsize--; 3286 mtx_unlock(&mp->mnt_listmtx); 3287 } 3288 } 3289 3290 static void 3291 vdefer_inactive(struct vnode *vp) 3292 { 3293 3294 ASSERT_VI_LOCKED(vp, __func__); 3295 VNPASS(vp->v_holdcnt > 0, vp); 3296 if (VN_IS_DOOMED(vp)) { 3297 vdropl(vp); 3298 return; 3299 } 3300 if (vp->v_iflag & VI_DEFINACT) { 3301 VNPASS(vp->v_holdcnt > 1, vp); 3302 vdropl(vp); 3303 return; 3304 } 3305 if (vp->v_usecount > 0) { 3306 vp->v_iflag &= ~VI_OWEINACT; 3307 vdropl(vp); 3308 return; 3309 } 3310 vlazy(vp); 3311 vp->v_iflag |= VI_DEFINACT; 3312 VI_UNLOCK(vp); 3313 atomic_add_long(&deferred_inact, 1); 3314 } 3315 3316 static void 3317 vdefer_inactive_unlocked(struct vnode *vp) 3318 { 3319 3320 VI_LOCK(vp); 3321 if ((vp->v_iflag & VI_OWEINACT) == 0) { 3322 vdropl(vp); 3323 return; 3324 } 3325 vdefer_inactive(vp); 3326 } 3327 3328 enum vput_op { VRELE, VPUT, VUNREF }; 3329 3330 /* 3331 * Handle ->v_usecount transitioning to 0. 3332 * 3333 * By releasing the last usecount we take ownership of the hold count which 3334 * provides liveness of the vnode, meaning we have to vdrop. 3335 * 3336 * For all vnodes we may need to perform inactive processing. It requires an 3337 * exclusive lock on the vnode, while it is legal to call here with only a 3338 * shared lock (or no locks). If locking the vnode in an expected manner fails, 3339 * inactive processing gets deferred to the syncer. 3340 * 3341 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend 3342 * on the lock being held all the way until VOP_INACTIVE. This in particular 3343 * happens with UFS which adds half-constructed vnodes to the hash, where they 3344 * can be found by other code. 3345 */ 3346 static void 3347 vput_final(struct vnode *vp, enum vput_op func) 3348 { 3349 int error; 3350 bool want_unlock; 3351 3352 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3353 VNPASS(vp->v_holdcnt > 0, vp); 3354 3355 VI_LOCK(vp); 3356 3357 /* 3358 * By the time we got here someone else might have transitioned 3359 * the count back to > 0. 3360 */ 3361 if (vp->v_usecount > 0) 3362 goto out; 3363 3364 /* 3365 * If the vnode is doomed vgone already performed inactive processing 3366 * (if needed). 3367 */ 3368 if (VN_IS_DOOMED(vp)) 3369 goto out; 3370 3371 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0)) 3372 goto out; 3373 3374 if (vp->v_iflag & VI_DOINGINACT) 3375 goto out; 3376 3377 /* 3378 * Locking operations here will drop the interlock and possibly the 3379 * vnode lock, opening a window where the vnode can get doomed all the 3380 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to 3381 * perform inactive. 3382 */ 3383 vp->v_iflag |= VI_OWEINACT; 3384 want_unlock = false; 3385 error = 0; 3386 switch (func) { 3387 case VRELE: 3388 switch (VOP_ISLOCKED(vp)) { 3389 case LK_EXCLUSIVE: 3390 break; 3391 case LK_EXCLOTHER: 3392 case 0: 3393 want_unlock = true; 3394 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 3395 VI_LOCK(vp); 3396 break; 3397 default: 3398 /* 3399 * The lock has at least one sharer, but we have no way 3400 * to conclude whether this is us. Play it safe and 3401 * defer processing. 3402 */ 3403 error = EAGAIN; 3404 break; 3405 } 3406 break; 3407 case VPUT: 3408 want_unlock = true; 3409 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3410 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 3411 LK_NOWAIT); 3412 VI_LOCK(vp); 3413 } 3414 break; 3415 case VUNREF: 3416 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3417 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 3418 VI_LOCK(vp); 3419 } 3420 break; 3421 } 3422 if (error == 0) { 3423 if (func == VUNREF) { 3424 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp, 3425 ("recursive vunref")); 3426 vp->v_vflag |= VV_UNREF; 3427 } 3428 for (;;) { 3429 error = vinactive(vp); 3430 if (want_unlock) 3431 VOP_UNLOCK(vp); 3432 if (error != ERELOOKUP || !want_unlock) 3433 break; 3434 VOP_LOCK(vp, LK_EXCLUSIVE); 3435 } 3436 if (func == VUNREF) 3437 vp->v_vflag &= ~VV_UNREF; 3438 vdropl(vp); 3439 } else { 3440 vdefer_inactive(vp); 3441 } 3442 return; 3443 out: 3444 if (func == VPUT) 3445 VOP_UNLOCK(vp); 3446 vdropl(vp); 3447 } 3448 3449 /* 3450 * Decrement ->v_usecount for a vnode. 3451 * 3452 * Releasing the last use count requires additional processing, see vput_final 3453 * above for details. 3454 * 3455 * Comment above each variant denotes lock state on entry and exit. 3456 */ 3457 3458 /* 3459 * in: any 3460 * out: same as passed in 3461 */ 3462 void 3463 vrele(struct vnode *vp) 3464 { 3465 3466 ASSERT_VI_UNLOCKED(vp, __func__); 3467 if (!refcount_release(&vp->v_usecount)) 3468 return; 3469 vput_final(vp, VRELE); 3470 } 3471 3472 /* 3473 * in: locked 3474 * out: unlocked 3475 */ 3476 void 3477 vput(struct vnode *vp) 3478 { 3479 3480 ASSERT_VOP_LOCKED(vp, __func__); 3481 ASSERT_VI_UNLOCKED(vp, __func__); 3482 if (!refcount_release(&vp->v_usecount)) { 3483 VOP_UNLOCK(vp); 3484 return; 3485 } 3486 vput_final(vp, VPUT); 3487 } 3488 3489 /* 3490 * in: locked 3491 * out: locked 3492 */ 3493 void 3494 vunref(struct vnode *vp) 3495 { 3496 3497 ASSERT_VOP_LOCKED(vp, __func__); 3498 ASSERT_VI_UNLOCKED(vp, __func__); 3499 if (!refcount_release(&vp->v_usecount)) 3500 return; 3501 vput_final(vp, VUNREF); 3502 } 3503 3504 void 3505 vhold(struct vnode *vp) 3506 { 3507 int old; 3508 3509 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3510 old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3511 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3512 ("%s: wrong hold count %d", __func__, old)); 3513 if (old == 0) 3514 vfs_freevnodes_dec(); 3515 } 3516 3517 void 3518 vholdnz(struct vnode *vp) 3519 { 3520 3521 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3522 #ifdef INVARIANTS 3523 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3524 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3525 ("%s: wrong hold count %d", __func__, old)); 3526 #else 3527 atomic_add_int(&vp->v_holdcnt, 1); 3528 #endif 3529 } 3530 3531 /* 3532 * Grab a hold count unless the vnode is freed. 3533 * 3534 * Only use this routine if vfs smr is the only protection you have against 3535 * freeing the vnode. 3536 * 3537 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag 3538 * is not set. After the flag is set the vnode becomes immutable to anyone but 3539 * the thread which managed to set the flag. 3540 * 3541 * It may be tempting to replace the loop with: 3542 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3543 * if (count & VHOLD_NO_SMR) { 3544 * backpedal and error out; 3545 * } 3546 * 3547 * However, while this is more performant, it hinders debugging by eliminating 3548 * the previously mentioned invariant. 3549 */ 3550 bool 3551 vhold_smr(struct vnode *vp) 3552 { 3553 int count; 3554 3555 VFS_SMR_ASSERT_ENTERED(); 3556 3557 count = atomic_load_int(&vp->v_holdcnt); 3558 for (;;) { 3559 if (count & VHOLD_NO_SMR) { 3560 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3561 ("non-zero hold count with flags %d\n", count)); 3562 return (false); 3563 } 3564 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3565 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3566 if (count == 0) 3567 vfs_freevnodes_dec(); 3568 return (true); 3569 } 3570 } 3571 } 3572 3573 /* 3574 * Hold a free vnode for recycling. 3575 * 3576 * Note: vnode_init references this comment. 3577 * 3578 * Attempts to recycle only need the global vnode list lock and have no use for 3579 * SMR. 3580 * 3581 * However, vnodes get inserted into the global list before they get fully 3582 * initialized and stay there until UMA decides to free the memory. This in 3583 * particular means the target can be found before it becomes usable and after 3584 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to 3585 * VHOLD_NO_SMR. 3586 * 3587 * Note: the vnode may gain more references after we transition the count 0->1. 3588 */ 3589 static bool 3590 vhold_recycle_free(struct vnode *vp) 3591 { 3592 int count; 3593 3594 mtx_assert(&vnode_list_mtx, MA_OWNED); 3595 3596 count = atomic_load_int(&vp->v_holdcnt); 3597 for (;;) { 3598 if (count & VHOLD_NO_SMR) { 3599 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3600 ("non-zero hold count with flags %d\n", count)); 3601 return (false); 3602 } 3603 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3604 if (count > 0) { 3605 return (false); 3606 } 3607 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3608 vfs_freevnodes_dec(); 3609 return (true); 3610 } 3611 } 3612 } 3613 3614 static void __noinline 3615 vdbatch_process(struct vdbatch *vd) 3616 { 3617 struct vnode *vp; 3618 int i; 3619 3620 mtx_assert(&vd->lock, MA_OWNED); 3621 MPASS(curthread->td_pinned > 0); 3622 MPASS(vd->index == VDBATCH_SIZE); 3623 3624 /* 3625 * Attempt to requeue the passed batch, but give up easily. 3626 * 3627 * Despite batching the mechanism is prone to transient *significant* 3628 * lock contention, where vnode_list_mtx becomes the primary bottleneck 3629 * if multiple CPUs get here (one real-world example is highly parallel 3630 * do-nothing make , which will stat *tons* of vnodes). Since it is 3631 * quasi-LRU (read: not that great even if fully honoured) just dodge 3632 * the problem. Parties which don't like it are welcome to implement 3633 * something better. 3634 */ 3635 critical_enter(); 3636 if (mtx_trylock(&vnode_list_mtx)) { 3637 for (i = 0; i < VDBATCH_SIZE; i++) { 3638 vp = vd->tab[i]; 3639 vd->tab[i] = NULL; 3640 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 3641 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist); 3642 MPASS(vp->v_dbatchcpu != NOCPU); 3643 vp->v_dbatchcpu = NOCPU; 3644 } 3645 mtx_unlock(&vnode_list_mtx); 3646 } else { 3647 counter_u64_add(vnode_skipped_requeues, 1); 3648 3649 for (i = 0; i < VDBATCH_SIZE; i++) { 3650 vp = vd->tab[i]; 3651 vd->tab[i] = NULL; 3652 MPASS(vp->v_dbatchcpu != NOCPU); 3653 vp->v_dbatchcpu = NOCPU; 3654 } 3655 } 3656 vd->index = 0; 3657 critical_exit(); 3658 } 3659 3660 static void 3661 vdbatch_enqueue(struct vnode *vp) 3662 { 3663 struct vdbatch *vd; 3664 3665 ASSERT_VI_LOCKED(vp, __func__); 3666 VNPASS(!VN_IS_DOOMED(vp), vp); 3667 3668 if (vp->v_dbatchcpu != NOCPU) { 3669 VI_UNLOCK(vp); 3670 return; 3671 } 3672 3673 sched_pin(); 3674 vd = DPCPU_PTR(vd); 3675 mtx_lock(&vd->lock); 3676 MPASS(vd->index < VDBATCH_SIZE); 3677 MPASS(vd->tab[vd->index] == NULL); 3678 /* 3679 * A hack: we depend on being pinned so that we know what to put in 3680 * ->v_dbatchcpu. 3681 */ 3682 vp->v_dbatchcpu = curcpu; 3683 vd->tab[vd->index] = vp; 3684 vd->index++; 3685 VI_UNLOCK(vp); 3686 if (vd->index == VDBATCH_SIZE) 3687 vdbatch_process(vd); 3688 mtx_unlock(&vd->lock); 3689 sched_unpin(); 3690 } 3691 3692 /* 3693 * This routine must only be called for vnodes which are about to be 3694 * deallocated. Supporting dequeue for arbitrary vndoes would require 3695 * validating that the locked batch matches. 3696 */ 3697 static void 3698 vdbatch_dequeue(struct vnode *vp) 3699 { 3700 struct vdbatch *vd; 3701 int i; 3702 short cpu; 3703 3704 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp); 3705 3706 cpu = vp->v_dbatchcpu; 3707 if (cpu == NOCPU) 3708 return; 3709 3710 vd = DPCPU_ID_PTR(cpu, vd); 3711 mtx_lock(&vd->lock); 3712 for (i = 0; i < vd->index; i++) { 3713 if (vd->tab[i] != vp) 3714 continue; 3715 vp->v_dbatchcpu = NOCPU; 3716 vd->index--; 3717 vd->tab[i] = vd->tab[vd->index]; 3718 vd->tab[vd->index] = NULL; 3719 break; 3720 } 3721 mtx_unlock(&vd->lock); 3722 /* 3723 * Either we dequeued the vnode above or the target CPU beat us to it. 3724 */ 3725 MPASS(vp->v_dbatchcpu == NOCPU); 3726 } 3727 3728 /* 3729 * Drop the hold count of the vnode. If this is the last reference to 3730 * the vnode we place it on the free list unless it has been vgone'd 3731 * (marked VIRF_DOOMED) in which case we will free it. 3732 * 3733 * Because the vnode vm object keeps a hold reference on the vnode if 3734 * there is at least one resident non-cached page, the vnode cannot 3735 * leave the active list without the page cleanup done. 3736 */ 3737 static void __noinline 3738 vdropl_final(struct vnode *vp) 3739 { 3740 3741 ASSERT_VI_LOCKED(vp, __func__); 3742 VNPASS(VN_IS_DOOMED(vp), vp); 3743 /* 3744 * Set the VHOLD_NO_SMR flag. 3745 * 3746 * We may be racing against vhold_smr. If they win we can just pretend 3747 * we never got this far, they will vdrop later. 3748 */ 3749 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) { 3750 vfs_freevnodes_inc(); 3751 VI_UNLOCK(vp); 3752 /* 3753 * We lost the aforementioned race. Any subsequent access is 3754 * invalid as they might have managed to vdropl on their own. 3755 */ 3756 return; 3757 } 3758 /* 3759 * Don't bump freevnodes as this one is going away. 3760 */ 3761 freevnode(vp); 3762 } 3763 3764 void 3765 vdrop(struct vnode *vp) 3766 { 3767 3768 ASSERT_VI_UNLOCKED(vp, __func__); 3769 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3770 if (refcount_release_if_not_last(&vp->v_holdcnt)) 3771 return; 3772 VI_LOCK(vp); 3773 vdropl(vp); 3774 } 3775 3776 static void __always_inline 3777 vdropl_impl(struct vnode *vp, bool enqueue) 3778 { 3779 3780 ASSERT_VI_LOCKED(vp, __func__); 3781 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3782 if (!refcount_release(&vp->v_holdcnt)) { 3783 VI_UNLOCK(vp); 3784 return; 3785 } 3786 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp); 3787 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 3788 if (VN_IS_DOOMED(vp)) { 3789 vdropl_final(vp); 3790 return; 3791 } 3792 3793 vfs_freevnodes_inc(); 3794 if (vp->v_mflag & VMP_LAZYLIST) { 3795 vunlazy(vp); 3796 } 3797 3798 if (!enqueue) { 3799 VI_UNLOCK(vp); 3800 return; 3801 } 3802 3803 /* 3804 * Also unlocks the interlock. We can't assert on it as we 3805 * released our hold and by now the vnode might have been 3806 * freed. 3807 */ 3808 vdbatch_enqueue(vp); 3809 } 3810 3811 void 3812 vdropl(struct vnode *vp) 3813 { 3814 3815 vdropl_impl(vp, true); 3816 } 3817 3818 /* 3819 * vdrop a vnode when recycling 3820 * 3821 * This is a special case routine only to be used when recycling, differs from 3822 * regular vdrop by not requeieing the vnode on LRU. 3823 * 3824 * Consider a case where vtryrecycle continuously fails with all vnodes (due to 3825 * e.g., frozen writes on the filesystem), filling the batch and causing it to 3826 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a 3827 * loop which can last for as long as writes are frozen. 3828 */ 3829 static void 3830 vdropl_recycle(struct vnode *vp) 3831 { 3832 3833 vdropl_impl(vp, false); 3834 } 3835 3836 static void 3837 vdrop_recycle(struct vnode *vp) 3838 { 3839 3840 VI_LOCK(vp); 3841 vdropl_recycle(vp); 3842 } 3843 3844 /* 3845 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 3846 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 3847 */ 3848 static int 3849 vinactivef(struct vnode *vp) 3850 { 3851 struct vm_object *obj; 3852 int error; 3853 3854 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3855 ASSERT_VI_LOCKED(vp, "vinactive"); 3856 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp); 3857 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3858 vp->v_iflag |= VI_DOINGINACT; 3859 vp->v_iflag &= ~VI_OWEINACT; 3860 VI_UNLOCK(vp); 3861 /* 3862 * Before moving off the active list, we must be sure that any 3863 * modified pages are converted into the vnode's dirty 3864 * buffers, since these will no longer be checked once the 3865 * vnode is on the inactive list. 3866 * 3867 * The write-out of the dirty pages is asynchronous. At the 3868 * point that VOP_INACTIVE() is called, there could still be 3869 * pending I/O and dirty pages in the object. 3870 */ 3871 if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 3872 vm_object_mightbedirty(obj)) { 3873 VM_OBJECT_WLOCK(obj); 3874 vm_object_page_clean(obj, 0, 0, 0); 3875 VM_OBJECT_WUNLOCK(obj); 3876 } 3877 error = VOP_INACTIVE(vp); 3878 VI_LOCK(vp); 3879 VNPASS(vp->v_iflag & VI_DOINGINACT, vp); 3880 vp->v_iflag &= ~VI_DOINGINACT; 3881 return (error); 3882 } 3883 3884 int 3885 vinactive(struct vnode *vp) 3886 { 3887 3888 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3889 ASSERT_VI_LOCKED(vp, "vinactive"); 3890 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3891 3892 if ((vp->v_iflag & VI_OWEINACT) == 0) 3893 return (0); 3894 if (vp->v_iflag & VI_DOINGINACT) 3895 return (0); 3896 if (vp->v_usecount > 0) { 3897 vp->v_iflag &= ~VI_OWEINACT; 3898 return (0); 3899 } 3900 return (vinactivef(vp)); 3901 } 3902 3903 /* 3904 * Remove any vnodes in the vnode table belonging to mount point mp. 3905 * 3906 * If FORCECLOSE is not specified, there should not be any active ones, 3907 * return error if any are found (nb: this is a user error, not a 3908 * system error). If FORCECLOSE is specified, detach any active vnodes 3909 * that are found. 3910 * 3911 * If WRITECLOSE is set, only flush out regular file vnodes open for 3912 * writing. 3913 * 3914 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 3915 * 3916 * `rootrefs' specifies the base reference count for the root vnode 3917 * of this filesystem. The root vnode is considered busy if its 3918 * v_usecount exceeds this value. On a successful return, vflush(, td) 3919 * will call vrele() on the root vnode exactly rootrefs times. 3920 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 3921 * be zero. 3922 */ 3923 #ifdef DIAGNOSTIC 3924 static int busyprt = 0; /* print out busy vnodes */ 3925 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 3926 #endif 3927 3928 int 3929 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 3930 { 3931 struct vnode *vp, *mvp, *rootvp = NULL; 3932 struct vattr vattr; 3933 int busy = 0, error; 3934 3935 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 3936 rootrefs, flags); 3937 if (rootrefs > 0) { 3938 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 3939 ("vflush: bad args")); 3940 /* 3941 * Get the filesystem root vnode. We can vput() it 3942 * immediately, since with rootrefs > 0, it won't go away. 3943 */ 3944 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 3945 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 3946 __func__, error); 3947 return (error); 3948 } 3949 vput(rootvp); 3950 } 3951 loop: 3952 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 3953 vholdl(vp); 3954 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 3955 if (error) { 3956 vdrop(vp); 3957 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3958 goto loop; 3959 } 3960 /* 3961 * Skip over a vnodes marked VV_SYSTEM. 3962 */ 3963 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 3964 VOP_UNLOCK(vp); 3965 vdrop(vp); 3966 continue; 3967 } 3968 /* 3969 * If WRITECLOSE is set, flush out unlinked but still open 3970 * files (even if open only for reading) and regular file 3971 * vnodes open for writing. 3972 */ 3973 if (flags & WRITECLOSE) { 3974 if (vp->v_object != NULL) { 3975 VM_OBJECT_WLOCK(vp->v_object); 3976 vm_object_page_clean(vp->v_object, 0, 0, 0); 3977 VM_OBJECT_WUNLOCK(vp->v_object); 3978 } 3979 do { 3980 error = VOP_FSYNC(vp, MNT_WAIT, td); 3981 } while (error == ERELOOKUP); 3982 if (error != 0) { 3983 VOP_UNLOCK(vp); 3984 vdrop(vp); 3985 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3986 return (error); 3987 } 3988 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 3989 VI_LOCK(vp); 3990 3991 if ((vp->v_type == VNON || 3992 (error == 0 && vattr.va_nlink > 0)) && 3993 (vp->v_writecount <= 0 || vp->v_type != VREG)) { 3994 VOP_UNLOCK(vp); 3995 vdropl(vp); 3996 continue; 3997 } 3998 } else 3999 VI_LOCK(vp); 4000 /* 4001 * With v_usecount == 0, all we need to do is clear out the 4002 * vnode data structures and we are done. 4003 * 4004 * If FORCECLOSE is set, forcibly close the vnode. 4005 */ 4006 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 4007 vgonel(vp); 4008 } else { 4009 busy++; 4010 #ifdef DIAGNOSTIC 4011 if (busyprt) 4012 vn_printf(vp, "vflush: busy vnode "); 4013 #endif 4014 } 4015 VOP_UNLOCK(vp); 4016 vdropl(vp); 4017 } 4018 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 4019 /* 4020 * If just the root vnode is busy, and if its refcount 4021 * is equal to `rootrefs', then go ahead and kill it. 4022 */ 4023 VI_LOCK(rootvp); 4024 KASSERT(busy > 0, ("vflush: not busy")); 4025 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 4026 ("vflush: usecount %d < rootrefs %d", 4027 rootvp->v_usecount, rootrefs)); 4028 if (busy == 1 && rootvp->v_usecount == rootrefs) { 4029 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 4030 vgone(rootvp); 4031 VOP_UNLOCK(rootvp); 4032 busy = 0; 4033 } else 4034 VI_UNLOCK(rootvp); 4035 } 4036 if (busy) { 4037 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 4038 busy); 4039 return (EBUSY); 4040 } 4041 for (; rootrefs > 0; rootrefs--) 4042 vrele(rootvp); 4043 return (0); 4044 } 4045 4046 /* 4047 * Recycle an unused vnode to the front of the free list. 4048 */ 4049 int 4050 vrecycle(struct vnode *vp) 4051 { 4052 int recycled; 4053 4054 VI_LOCK(vp); 4055 recycled = vrecyclel(vp); 4056 VI_UNLOCK(vp); 4057 return (recycled); 4058 } 4059 4060 /* 4061 * vrecycle, with the vp interlock held. 4062 */ 4063 int 4064 vrecyclel(struct vnode *vp) 4065 { 4066 int recycled; 4067 4068 ASSERT_VOP_ELOCKED(vp, __func__); 4069 ASSERT_VI_LOCKED(vp, __func__); 4070 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4071 recycled = 0; 4072 if (vp->v_usecount == 0) { 4073 recycled = 1; 4074 vgonel(vp); 4075 } 4076 return (recycled); 4077 } 4078 4079 /* 4080 * Eliminate all activity associated with a vnode 4081 * in preparation for reuse. 4082 */ 4083 void 4084 vgone(struct vnode *vp) 4085 { 4086 VI_LOCK(vp); 4087 vgonel(vp); 4088 VI_UNLOCK(vp); 4089 } 4090 4091 /* 4092 * Notify upper mounts about reclaimed or unlinked vnode. 4093 */ 4094 void 4095 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event) 4096 { 4097 struct mount *mp; 4098 struct mount_upper_node *ump; 4099 4100 mp = atomic_load_ptr(&vp->v_mount); 4101 if (mp == NULL) 4102 return; 4103 if (TAILQ_EMPTY(&mp->mnt_notify)) 4104 return; 4105 4106 MNT_ILOCK(mp); 4107 mp->mnt_upper_pending++; 4108 KASSERT(mp->mnt_upper_pending > 0, 4109 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending)); 4110 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) { 4111 MNT_IUNLOCK(mp); 4112 switch (event) { 4113 case VFS_NOTIFY_UPPER_RECLAIM: 4114 VFS_RECLAIM_LOWERVP(ump->mp, vp); 4115 break; 4116 case VFS_NOTIFY_UPPER_UNLINK: 4117 VFS_UNLINK_LOWERVP(ump->mp, vp); 4118 break; 4119 } 4120 MNT_ILOCK(mp); 4121 } 4122 mp->mnt_upper_pending--; 4123 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 && 4124 mp->mnt_upper_pending == 0) { 4125 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER; 4126 wakeup(&mp->mnt_uppers); 4127 } 4128 MNT_IUNLOCK(mp); 4129 } 4130 4131 /* 4132 * vgone, with the vp interlock held. 4133 */ 4134 static void 4135 vgonel(struct vnode *vp) 4136 { 4137 struct thread *td; 4138 struct mount *mp; 4139 vm_object_t object; 4140 bool active, doinginact, oweinact; 4141 4142 ASSERT_VOP_ELOCKED(vp, "vgonel"); 4143 ASSERT_VI_LOCKED(vp, "vgonel"); 4144 VNASSERT(vp->v_holdcnt, vp, 4145 ("vgonel: vp %p has no reference.", vp)); 4146 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 4147 td = curthread; 4148 4149 /* 4150 * Don't vgonel if we're already doomed. 4151 */ 4152 if (VN_IS_DOOMED(vp)) { 4153 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \ 4154 vn_get_state(vp) == VSTATE_DEAD, vp); 4155 return; 4156 } 4157 /* 4158 * Paired with freevnode. 4159 */ 4160 vn_seqc_write_begin_locked(vp); 4161 vunlazy_gone(vp); 4162 vn_irflag_set_locked(vp, VIRF_DOOMED); 4163 vn_set_state(vp, VSTATE_DESTROYING); 4164 4165 /* 4166 * Check to see if the vnode is in use. If so, we have to 4167 * call VOP_CLOSE() and VOP_INACTIVE(). 4168 * 4169 * It could be that VOP_INACTIVE() requested reclamation, in 4170 * which case we should avoid recursion, so check 4171 * VI_DOINGINACT. This is not precise but good enough. 4172 */ 4173 active = vp->v_usecount > 0; 4174 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4175 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0; 4176 4177 /* 4178 * If we need to do inactive VI_OWEINACT will be set. 4179 */ 4180 if (vp->v_iflag & VI_DEFINACT) { 4181 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 4182 vp->v_iflag &= ~VI_DEFINACT; 4183 vdropl(vp); 4184 } else { 4185 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count")); 4186 VI_UNLOCK(vp); 4187 } 4188 cache_purge_vgone(vp); 4189 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 4190 4191 /* 4192 * If purging an active vnode, it must be closed and 4193 * deactivated before being reclaimed. 4194 */ 4195 if (active) 4196 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 4197 if (!doinginact) { 4198 do { 4199 if (oweinact || active) { 4200 VI_LOCK(vp); 4201 vinactivef(vp); 4202 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 4203 VI_UNLOCK(vp); 4204 } 4205 } while (oweinact); 4206 } 4207 if (vp->v_type == VSOCK) 4208 vfs_unp_reclaim(vp); 4209 4210 /* 4211 * Clean out any buffers associated with the vnode. 4212 * If the flush fails, just toss the buffers. 4213 */ 4214 mp = NULL; 4215 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 4216 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 4217 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 4218 while (vinvalbuf(vp, 0, 0, 0) != 0) 4219 ; 4220 } 4221 4222 BO_LOCK(&vp->v_bufobj); 4223 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 4224 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 4225 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 4226 vp->v_bufobj.bo_clean.bv_cnt == 0, 4227 ("vp %p bufobj not invalidated", vp)); 4228 4229 /* 4230 * For VMIO bufobj, BO_DEAD is set later, or in 4231 * vm_object_terminate() after the object's page queue is 4232 * flushed. 4233 */ 4234 object = vp->v_bufobj.bo_object; 4235 if (object == NULL) 4236 vp->v_bufobj.bo_flag |= BO_DEAD; 4237 BO_UNLOCK(&vp->v_bufobj); 4238 4239 /* 4240 * Handle the VM part. Tmpfs handles v_object on its own (the 4241 * OBJT_VNODE check). Nullfs or other bypassing filesystems 4242 * should not touch the object borrowed from the lower vnode 4243 * (the handle check). 4244 */ 4245 if (object != NULL && object->type == OBJT_VNODE && 4246 object->handle == vp) 4247 vnode_destroy_vobject(vp); 4248 4249 /* 4250 * Reclaim the vnode. 4251 */ 4252 if (VOP_RECLAIM(vp)) 4253 panic("vgone: cannot reclaim"); 4254 if (mp != NULL) 4255 vn_finished_secondary_write(mp); 4256 VNASSERT(vp->v_object == NULL, vp, 4257 ("vop_reclaim left v_object vp=%p", vp)); 4258 /* 4259 * Clear the advisory locks and wake up waiting threads. 4260 */ 4261 if (vp->v_lockf != NULL) { 4262 (void)VOP_ADVLOCKPURGE(vp); 4263 vp->v_lockf = NULL; 4264 } 4265 /* 4266 * Delete from old mount point vnode list. 4267 */ 4268 if (vp->v_mount == NULL) { 4269 VI_LOCK(vp); 4270 } else { 4271 delmntque(vp); 4272 ASSERT_VI_LOCKED(vp, "vgonel 2"); 4273 } 4274 /* 4275 * Done with purge, reset to the standard lock and invalidate 4276 * the vnode. 4277 */ 4278 vp->v_vnlock = &vp->v_lock; 4279 vp->v_op = &dead_vnodeops; 4280 vp->v_type = VBAD; 4281 vn_set_state(vp, VSTATE_DEAD); 4282 } 4283 4284 /* 4285 * Print out a description of a vnode. 4286 */ 4287 static const char *const vtypename[] = { 4288 [VNON] = "VNON", 4289 [VREG] = "VREG", 4290 [VDIR] = "VDIR", 4291 [VBLK] = "VBLK", 4292 [VCHR] = "VCHR", 4293 [VLNK] = "VLNK", 4294 [VSOCK] = "VSOCK", 4295 [VFIFO] = "VFIFO", 4296 [VBAD] = "VBAD", 4297 [VMARKER] = "VMARKER", 4298 }; 4299 _Static_assert(nitems(vtypename) == VLASTTYPE + 1, 4300 "vnode type name not added to vtypename"); 4301 4302 static const char *const vstatename[] = { 4303 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED", 4304 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED", 4305 [VSTATE_DESTROYING] = "VSTATE_DESTROYING", 4306 [VSTATE_DEAD] = "VSTATE_DEAD", 4307 }; 4308 _Static_assert(nitems(vstatename) == VLASTSTATE + 1, 4309 "vnode state name not added to vstatename"); 4310 4311 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0, 4312 "new hold count flag not added to vn_printf"); 4313 4314 void 4315 vn_printf(struct vnode *vp, const char *fmt, ...) 4316 { 4317 va_list ap; 4318 char buf[256], buf2[16]; 4319 u_long flags; 4320 u_int holdcnt; 4321 short irflag; 4322 4323 va_start(ap, fmt); 4324 vprintf(fmt, ap); 4325 va_end(ap); 4326 printf("%p: ", (void *)vp); 4327 printf("type %s state %s op %p\n", vtypename[vp->v_type], 4328 vstatename[vp->v_state], vp->v_op); 4329 holdcnt = atomic_load_int(&vp->v_holdcnt); 4330 printf(" usecount %d, writecount %d, refcount %d seqc users %d", 4331 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS, 4332 vp->v_seqc_users); 4333 switch (vp->v_type) { 4334 case VDIR: 4335 printf(" mountedhere %p\n", vp->v_mountedhere); 4336 break; 4337 case VCHR: 4338 printf(" rdev %p\n", vp->v_rdev); 4339 break; 4340 case VSOCK: 4341 printf(" socket %p\n", vp->v_unpcb); 4342 break; 4343 case VFIFO: 4344 printf(" fifoinfo %p\n", vp->v_fifoinfo); 4345 break; 4346 default: 4347 printf("\n"); 4348 break; 4349 } 4350 buf[0] = '\0'; 4351 buf[1] = '\0'; 4352 if (holdcnt & VHOLD_NO_SMR) 4353 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf)); 4354 printf(" hold count flags (%s)\n", buf + 1); 4355 4356 buf[0] = '\0'; 4357 buf[1] = '\0'; 4358 irflag = vn_irflag_read(vp); 4359 if (irflag & VIRF_DOOMED) 4360 strlcat(buf, "|VIRF_DOOMED", sizeof(buf)); 4361 if (irflag & VIRF_PGREAD) 4362 strlcat(buf, "|VIRF_PGREAD", sizeof(buf)); 4363 if (irflag & VIRF_MOUNTPOINT) 4364 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf)); 4365 if (irflag & VIRF_TEXT_REF) 4366 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf)); 4367 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF); 4368 if (flags != 0) { 4369 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags); 4370 strlcat(buf, buf2, sizeof(buf)); 4371 } 4372 if (vp->v_vflag & VV_ROOT) 4373 strlcat(buf, "|VV_ROOT", sizeof(buf)); 4374 if (vp->v_vflag & VV_ISTTY) 4375 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 4376 if (vp->v_vflag & VV_NOSYNC) 4377 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 4378 if (vp->v_vflag & VV_ETERNALDEV) 4379 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 4380 if (vp->v_vflag & VV_CACHEDLABEL) 4381 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 4382 if (vp->v_vflag & VV_VMSIZEVNLOCK) 4383 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf)); 4384 if (vp->v_vflag & VV_COPYONWRITE) 4385 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 4386 if (vp->v_vflag & VV_SYSTEM) 4387 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 4388 if (vp->v_vflag & VV_PROCDEP) 4389 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 4390 if (vp->v_vflag & VV_DELETED) 4391 strlcat(buf, "|VV_DELETED", sizeof(buf)); 4392 if (vp->v_vflag & VV_MD) 4393 strlcat(buf, "|VV_MD", sizeof(buf)); 4394 if (vp->v_vflag & VV_FORCEINSMQ) 4395 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 4396 if (vp->v_vflag & VV_READLINK) 4397 strlcat(buf, "|VV_READLINK", sizeof(buf)); 4398 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 4399 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM | 4400 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK); 4401 if (flags != 0) { 4402 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 4403 strlcat(buf, buf2, sizeof(buf)); 4404 } 4405 if (vp->v_iflag & VI_MOUNT) 4406 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 4407 if (vp->v_iflag & VI_DOINGINACT) 4408 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 4409 if (vp->v_iflag & VI_OWEINACT) 4410 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 4411 if (vp->v_iflag & VI_DEFINACT) 4412 strlcat(buf, "|VI_DEFINACT", sizeof(buf)); 4413 if (vp->v_iflag & VI_FOPENING) 4414 strlcat(buf, "|VI_FOPENING", sizeof(buf)); 4415 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT | 4416 VI_OWEINACT | VI_DEFINACT | VI_FOPENING); 4417 if (flags != 0) { 4418 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 4419 strlcat(buf, buf2, sizeof(buf)); 4420 } 4421 if (vp->v_mflag & VMP_LAZYLIST) 4422 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf)); 4423 flags = vp->v_mflag & ~(VMP_LAZYLIST); 4424 if (flags != 0) { 4425 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags); 4426 strlcat(buf, buf2, sizeof(buf)); 4427 } 4428 printf(" flags (%s)", buf + 1); 4429 if (mtx_owned(VI_MTX(vp))) 4430 printf(" VI_LOCKed"); 4431 printf("\n"); 4432 if (vp->v_object != NULL) 4433 printf(" v_object %p ref %d pages %d " 4434 "cleanbuf %d dirtybuf %d\n", 4435 vp->v_object, vp->v_object->ref_count, 4436 vp->v_object->resident_page_count, 4437 vp->v_bufobj.bo_clean.bv_cnt, 4438 vp->v_bufobj.bo_dirty.bv_cnt); 4439 printf(" "); 4440 lockmgr_printinfo(vp->v_vnlock); 4441 if (vp->v_data != NULL) 4442 VOP_PRINT(vp); 4443 } 4444 4445 #ifdef DDB 4446 /* 4447 * List all of the locked vnodes in the system. 4448 * Called when debugging the kernel. 4449 */ 4450 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE) 4451 { 4452 struct mount *mp; 4453 struct vnode *vp; 4454 4455 /* 4456 * Note: because this is DDB, we can't obey the locking semantics 4457 * for these structures, which means we could catch an inconsistent 4458 * state and dereference a nasty pointer. Not much to be done 4459 * about that. 4460 */ 4461 db_printf("Locked vnodes\n"); 4462 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4463 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4464 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 4465 vn_printf(vp, "vnode "); 4466 } 4467 } 4468 } 4469 4470 /* 4471 * Show details about the given vnode. 4472 */ 4473 DB_SHOW_COMMAND(vnode, db_show_vnode) 4474 { 4475 struct vnode *vp; 4476 4477 if (!have_addr) 4478 return; 4479 vp = (struct vnode *)addr; 4480 vn_printf(vp, "vnode "); 4481 } 4482 4483 /* 4484 * Show details about the given mount point. 4485 */ 4486 DB_SHOW_COMMAND(mount, db_show_mount) 4487 { 4488 struct mount *mp; 4489 struct vfsopt *opt; 4490 struct statfs *sp; 4491 struct vnode *vp; 4492 char buf[512]; 4493 uint64_t mflags; 4494 u_int flags; 4495 4496 if (!have_addr) { 4497 /* No address given, print short info about all mount points. */ 4498 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4499 db_printf("%p %s on %s (%s)\n", mp, 4500 mp->mnt_stat.f_mntfromname, 4501 mp->mnt_stat.f_mntonname, 4502 mp->mnt_stat.f_fstypename); 4503 if (db_pager_quit) 4504 break; 4505 } 4506 db_printf("\nMore info: show mount <addr>\n"); 4507 return; 4508 } 4509 4510 mp = (struct mount *)addr; 4511 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 4512 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 4513 4514 buf[0] = '\0'; 4515 mflags = mp->mnt_flag; 4516 #define MNT_FLAG(flag) do { \ 4517 if (mflags & (flag)) { \ 4518 if (buf[0] != '\0') \ 4519 strlcat(buf, ", ", sizeof(buf)); \ 4520 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 4521 mflags &= ~(flag); \ 4522 } \ 4523 } while (0) 4524 MNT_FLAG(MNT_RDONLY); 4525 MNT_FLAG(MNT_SYNCHRONOUS); 4526 MNT_FLAG(MNT_NOEXEC); 4527 MNT_FLAG(MNT_NOSUID); 4528 MNT_FLAG(MNT_NFS4ACLS); 4529 MNT_FLAG(MNT_UNION); 4530 MNT_FLAG(MNT_ASYNC); 4531 MNT_FLAG(MNT_SUIDDIR); 4532 MNT_FLAG(MNT_SOFTDEP); 4533 MNT_FLAG(MNT_NOSYMFOLLOW); 4534 MNT_FLAG(MNT_GJOURNAL); 4535 MNT_FLAG(MNT_MULTILABEL); 4536 MNT_FLAG(MNT_ACLS); 4537 MNT_FLAG(MNT_NOATIME); 4538 MNT_FLAG(MNT_NOCLUSTERR); 4539 MNT_FLAG(MNT_NOCLUSTERW); 4540 MNT_FLAG(MNT_SUJ); 4541 MNT_FLAG(MNT_EXRDONLY); 4542 MNT_FLAG(MNT_EXPORTED); 4543 MNT_FLAG(MNT_DEFEXPORTED); 4544 MNT_FLAG(MNT_EXPORTANON); 4545 MNT_FLAG(MNT_EXKERB); 4546 MNT_FLAG(MNT_EXPUBLIC); 4547 MNT_FLAG(MNT_LOCAL); 4548 MNT_FLAG(MNT_QUOTA); 4549 MNT_FLAG(MNT_ROOTFS); 4550 MNT_FLAG(MNT_USER); 4551 MNT_FLAG(MNT_IGNORE); 4552 MNT_FLAG(MNT_UPDATE); 4553 MNT_FLAG(MNT_DELEXPORT); 4554 MNT_FLAG(MNT_RELOAD); 4555 MNT_FLAG(MNT_FORCE); 4556 MNT_FLAG(MNT_SNAPSHOT); 4557 MNT_FLAG(MNT_BYFSID); 4558 #undef MNT_FLAG 4559 if (mflags != 0) { 4560 if (buf[0] != '\0') 4561 strlcat(buf, ", ", sizeof(buf)); 4562 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4563 "0x%016jx", mflags); 4564 } 4565 db_printf(" mnt_flag = %s\n", buf); 4566 4567 buf[0] = '\0'; 4568 flags = mp->mnt_kern_flag; 4569 #define MNT_KERN_FLAG(flag) do { \ 4570 if (flags & (flag)) { \ 4571 if (buf[0] != '\0') \ 4572 strlcat(buf, ", ", sizeof(buf)); \ 4573 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 4574 flags &= ~(flag); \ 4575 } \ 4576 } while (0) 4577 MNT_KERN_FLAG(MNTK_UNMOUNTF); 4578 MNT_KERN_FLAG(MNTK_ASYNC); 4579 MNT_KERN_FLAG(MNTK_SOFTDEP); 4580 MNT_KERN_FLAG(MNTK_NOMSYNC); 4581 MNT_KERN_FLAG(MNTK_DRAINING); 4582 MNT_KERN_FLAG(MNTK_REFEXPIRE); 4583 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 4584 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 4585 MNT_KERN_FLAG(MNTK_NO_IOPF); 4586 MNT_KERN_FLAG(MNTK_RECURSE); 4587 MNT_KERN_FLAG(MNTK_UPPER_WAITER); 4588 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE); 4589 MNT_KERN_FLAG(MNTK_USES_BCACHE); 4590 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG); 4591 MNT_KERN_FLAG(MNTK_FPLOOKUP); 4592 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER); 4593 MNT_KERN_FLAG(MNTK_NOASYNC); 4594 MNT_KERN_FLAG(MNTK_UNMOUNT); 4595 MNT_KERN_FLAG(MNTK_MWAIT); 4596 MNT_KERN_FLAG(MNTK_SUSPEND); 4597 MNT_KERN_FLAG(MNTK_SUSPEND2); 4598 MNT_KERN_FLAG(MNTK_SUSPENDED); 4599 MNT_KERN_FLAG(MNTK_NULL_NOCACHE); 4600 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 4601 #undef MNT_KERN_FLAG 4602 if (flags != 0) { 4603 if (buf[0] != '\0') 4604 strlcat(buf, ", ", sizeof(buf)); 4605 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4606 "0x%08x", flags); 4607 } 4608 db_printf(" mnt_kern_flag = %s\n", buf); 4609 4610 db_printf(" mnt_opt = "); 4611 opt = TAILQ_FIRST(mp->mnt_opt); 4612 if (opt != NULL) { 4613 db_printf("%s", opt->name); 4614 opt = TAILQ_NEXT(opt, link); 4615 while (opt != NULL) { 4616 db_printf(", %s", opt->name); 4617 opt = TAILQ_NEXT(opt, link); 4618 } 4619 } 4620 db_printf("\n"); 4621 4622 sp = &mp->mnt_stat; 4623 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 4624 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 4625 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 4626 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 4627 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 4628 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 4629 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 4630 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 4631 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 4632 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 4633 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 4634 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 4635 4636 db_printf(" mnt_cred = { uid=%u ruid=%u", 4637 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 4638 if (jailed(mp->mnt_cred)) 4639 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 4640 db_printf(" }\n"); 4641 db_printf(" mnt_ref = %d (with %d in the struct)\n", 4642 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref); 4643 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 4644 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 4645 db_printf(" mnt_lazyvnodelistsize = %d\n", 4646 mp->mnt_lazyvnodelistsize); 4647 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n", 4648 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount); 4649 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 4650 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 4651 db_printf(" mnt_lockref = %d (with %d in the struct)\n", 4652 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref); 4653 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 4654 db_printf(" mnt_secondary_accwrites = %d\n", 4655 mp->mnt_secondary_accwrites); 4656 db_printf(" mnt_gjprovider = %s\n", 4657 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 4658 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops); 4659 4660 db_printf("\n\nList of active vnodes\n"); 4661 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4662 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) { 4663 vn_printf(vp, "vnode "); 4664 if (db_pager_quit) 4665 break; 4666 } 4667 } 4668 db_printf("\n\nList of inactive vnodes\n"); 4669 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4670 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) { 4671 vn_printf(vp, "vnode "); 4672 if (db_pager_quit) 4673 break; 4674 } 4675 } 4676 } 4677 #endif /* DDB */ 4678 4679 /* 4680 * Fill in a struct xvfsconf based on a struct vfsconf. 4681 */ 4682 static int 4683 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 4684 { 4685 struct xvfsconf xvfsp; 4686 4687 bzero(&xvfsp, sizeof(xvfsp)); 4688 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4689 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4690 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4691 xvfsp.vfc_flags = vfsp->vfc_flags; 4692 /* 4693 * These are unused in userland, we keep them 4694 * to not break binary compatibility. 4695 */ 4696 xvfsp.vfc_vfsops = NULL; 4697 xvfsp.vfc_next = NULL; 4698 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4699 } 4700 4701 #ifdef COMPAT_FREEBSD32 4702 struct xvfsconf32 { 4703 uint32_t vfc_vfsops; 4704 char vfc_name[MFSNAMELEN]; 4705 int32_t vfc_typenum; 4706 int32_t vfc_refcount; 4707 int32_t vfc_flags; 4708 uint32_t vfc_next; 4709 }; 4710 4711 static int 4712 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 4713 { 4714 struct xvfsconf32 xvfsp; 4715 4716 bzero(&xvfsp, sizeof(xvfsp)); 4717 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4718 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4719 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4720 xvfsp.vfc_flags = vfsp->vfc_flags; 4721 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4722 } 4723 #endif 4724 4725 /* 4726 * Top level filesystem related information gathering. 4727 */ 4728 static int 4729 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 4730 { 4731 struct vfsconf *vfsp; 4732 int error; 4733 4734 error = 0; 4735 vfsconf_slock(); 4736 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4737 #ifdef COMPAT_FREEBSD32 4738 if (req->flags & SCTL_MASK32) 4739 error = vfsconf2x32(req, vfsp); 4740 else 4741 #endif 4742 error = vfsconf2x(req, vfsp); 4743 if (error) 4744 break; 4745 } 4746 vfsconf_sunlock(); 4747 return (error); 4748 } 4749 4750 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 4751 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 4752 "S,xvfsconf", "List of all configured filesystems"); 4753 4754 #ifndef BURN_BRIDGES 4755 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 4756 4757 static int 4758 vfs_sysctl(SYSCTL_HANDLER_ARGS) 4759 { 4760 int *name = (int *)arg1 - 1; /* XXX */ 4761 u_int namelen = arg2 + 1; /* XXX */ 4762 struct vfsconf *vfsp; 4763 4764 log(LOG_WARNING, "userland calling deprecated sysctl, " 4765 "please rebuild world\n"); 4766 4767 #if 1 || defined(COMPAT_PRELITE2) 4768 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 4769 if (namelen == 1) 4770 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 4771 #endif 4772 4773 switch (name[1]) { 4774 case VFS_MAXTYPENUM: 4775 if (namelen != 2) 4776 return (ENOTDIR); 4777 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 4778 case VFS_CONF: 4779 if (namelen != 3) 4780 return (ENOTDIR); /* overloaded */ 4781 vfsconf_slock(); 4782 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4783 if (vfsp->vfc_typenum == name[2]) 4784 break; 4785 } 4786 vfsconf_sunlock(); 4787 if (vfsp == NULL) 4788 return (EOPNOTSUPP); 4789 #ifdef COMPAT_FREEBSD32 4790 if (req->flags & SCTL_MASK32) 4791 return (vfsconf2x32(req, vfsp)); 4792 else 4793 #endif 4794 return (vfsconf2x(req, vfsp)); 4795 } 4796 return (EOPNOTSUPP); 4797 } 4798 4799 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 4800 CTLFLAG_MPSAFE, vfs_sysctl, 4801 "Generic filesystem"); 4802 4803 #if 1 || defined(COMPAT_PRELITE2) 4804 4805 static int 4806 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 4807 { 4808 int error; 4809 struct vfsconf *vfsp; 4810 struct ovfsconf ovfs; 4811 4812 vfsconf_slock(); 4813 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4814 bzero(&ovfs, sizeof(ovfs)); 4815 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 4816 strcpy(ovfs.vfc_name, vfsp->vfc_name); 4817 ovfs.vfc_index = vfsp->vfc_typenum; 4818 ovfs.vfc_refcount = vfsp->vfc_refcount; 4819 ovfs.vfc_flags = vfsp->vfc_flags; 4820 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 4821 if (error != 0) { 4822 vfsconf_sunlock(); 4823 return (error); 4824 } 4825 } 4826 vfsconf_sunlock(); 4827 return (0); 4828 } 4829 4830 #endif /* 1 || COMPAT_PRELITE2 */ 4831 #endif /* !BURN_BRIDGES */ 4832 4833 static void 4834 unmount_or_warn(struct mount *mp) 4835 { 4836 int error; 4837 4838 error = dounmount(mp, MNT_FORCE, curthread); 4839 if (error != 0) { 4840 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 4841 if (error == EBUSY) 4842 printf("BUSY)\n"); 4843 else 4844 printf("%d)\n", error); 4845 } 4846 } 4847 4848 /* 4849 * Unmount all filesystems. The list is traversed in reverse order 4850 * of mounting to avoid dependencies. 4851 */ 4852 void 4853 vfs_unmountall(void) 4854 { 4855 struct mount *mp, *tmp; 4856 4857 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 4858 4859 /* 4860 * Since this only runs when rebooting, it is not interlocked. 4861 */ 4862 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 4863 vfs_ref(mp); 4864 4865 /* 4866 * Forcibly unmounting "/dev" before "/" would prevent clean 4867 * unmount of the latter. 4868 */ 4869 if (mp == rootdevmp) 4870 continue; 4871 4872 unmount_or_warn(mp); 4873 } 4874 4875 if (rootdevmp != NULL) 4876 unmount_or_warn(rootdevmp); 4877 } 4878 4879 static void 4880 vfs_deferred_inactive(struct vnode *vp, int lkflags) 4881 { 4882 4883 ASSERT_VI_LOCKED(vp, __func__); 4884 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp); 4885 if ((vp->v_iflag & VI_OWEINACT) == 0) { 4886 vdropl(vp); 4887 return; 4888 } 4889 if (vn_lock(vp, lkflags) == 0) { 4890 VI_LOCK(vp); 4891 vinactive(vp); 4892 VOP_UNLOCK(vp); 4893 vdropl(vp); 4894 return; 4895 } 4896 vdefer_inactive_unlocked(vp); 4897 } 4898 4899 static int 4900 vfs_periodic_inactive_filter(struct vnode *vp, void *arg) 4901 { 4902 4903 return (vp->v_iflag & VI_DEFINACT); 4904 } 4905 4906 static void __noinline 4907 vfs_periodic_inactive(struct mount *mp, int flags) 4908 { 4909 struct vnode *vp, *mvp; 4910 int lkflags; 4911 4912 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 4913 if (flags != MNT_WAIT) 4914 lkflags |= LK_NOWAIT; 4915 4916 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) { 4917 if ((vp->v_iflag & VI_DEFINACT) == 0) { 4918 VI_UNLOCK(vp); 4919 continue; 4920 } 4921 vp->v_iflag &= ~VI_DEFINACT; 4922 vfs_deferred_inactive(vp, lkflags); 4923 } 4924 } 4925 4926 static inline bool 4927 vfs_want_msync(struct vnode *vp) 4928 { 4929 struct vm_object *obj; 4930 4931 /* 4932 * This test may be performed without any locks held. 4933 * We rely on vm_object's type stability. 4934 */ 4935 if (vp->v_vflag & VV_NOSYNC) 4936 return (false); 4937 obj = vp->v_object; 4938 return (obj != NULL && vm_object_mightbedirty(obj)); 4939 } 4940 4941 static int 4942 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused) 4943 { 4944 4945 if (vp->v_vflag & VV_NOSYNC) 4946 return (false); 4947 if (vp->v_iflag & VI_DEFINACT) 4948 return (true); 4949 return (vfs_want_msync(vp)); 4950 } 4951 4952 static void __noinline 4953 vfs_periodic_msync_inactive(struct mount *mp, int flags) 4954 { 4955 struct vnode *vp, *mvp; 4956 struct vm_object *obj; 4957 int lkflags, objflags; 4958 bool seen_defer; 4959 4960 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 4961 if (flags != MNT_WAIT) { 4962 lkflags |= LK_NOWAIT; 4963 objflags = OBJPC_NOSYNC; 4964 } else { 4965 objflags = OBJPC_SYNC; 4966 } 4967 4968 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) { 4969 seen_defer = false; 4970 if (vp->v_iflag & VI_DEFINACT) { 4971 vp->v_iflag &= ~VI_DEFINACT; 4972 seen_defer = true; 4973 } 4974 if (!vfs_want_msync(vp)) { 4975 if (seen_defer) 4976 vfs_deferred_inactive(vp, lkflags); 4977 else 4978 VI_UNLOCK(vp); 4979 continue; 4980 } 4981 if (vget(vp, lkflags) == 0) { 4982 obj = vp->v_object; 4983 if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) { 4984 VM_OBJECT_WLOCK(obj); 4985 vm_object_page_clean(obj, 0, 0, objflags); 4986 VM_OBJECT_WUNLOCK(obj); 4987 } 4988 vput(vp); 4989 if (seen_defer) 4990 vdrop(vp); 4991 } else { 4992 if (seen_defer) 4993 vdefer_inactive_unlocked(vp); 4994 } 4995 } 4996 } 4997 4998 void 4999 vfs_periodic(struct mount *mp, int flags) 5000 { 5001 5002 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 5003 5004 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0) 5005 vfs_periodic_inactive(mp, flags); 5006 else 5007 vfs_periodic_msync_inactive(mp, flags); 5008 } 5009 5010 static void 5011 destroy_vpollinfo_free(struct vpollinfo *vi) 5012 { 5013 5014 knlist_destroy(&vi->vpi_selinfo.si_note); 5015 mtx_destroy(&vi->vpi_lock); 5016 free(vi, M_VNODEPOLL); 5017 } 5018 5019 static void 5020 destroy_vpollinfo(struct vpollinfo *vi) 5021 { 5022 5023 knlist_clear(&vi->vpi_selinfo.si_note, 1); 5024 seldrain(&vi->vpi_selinfo); 5025 destroy_vpollinfo_free(vi); 5026 } 5027 5028 /* 5029 * Initialize per-vnode helper structure to hold poll-related state. 5030 */ 5031 void 5032 v_addpollinfo(struct vnode *vp) 5033 { 5034 struct vpollinfo *vi; 5035 5036 if (vp->v_pollinfo != NULL) 5037 return; 5038 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO); 5039 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 5040 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 5041 vfs_knlunlock, vfs_knl_assert_lock); 5042 VI_LOCK(vp); 5043 if (vp->v_pollinfo != NULL) { 5044 VI_UNLOCK(vp); 5045 destroy_vpollinfo_free(vi); 5046 return; 5047 } 5048 vp->v_pollinfo = vi; 5049 VI_UNLOCK(vp); 5050 } 5051 5052 /* 5053 * Record a process's interest in events which might happen to 5054 * a vnode. Because poll uses the historic select-style interface 5055 * internally, this routine serves as both the ``check for any 5056 * pending events'' and the ``record my interest in future events'' 5057 * functions. (These are done together, while the lock is held, 5058 * to avoid race conditions.) 5059 */ 5060 int 5061 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 5062 { 5063 5064 v_addpollinfo(vp); 5065 mtx_lock(&vp->v_pollinfo->vpi_lock); 5066 if (vp->v_pollinfo->vpi_revents & events) { 5067 /* 5068 * This leaves events we are not interested 5069 * in available for the other process which 5070 * which presumably had requested them 5071 * (otherwise they would never have been 5072 * recorded). 5073 */ 5074 events &= vp->v_pollinfo->vpi_revents; 5075 vp->v_pollinfo->vpi_revents &= ~events; 5076 5077 mtx_unlock(&vp->v_pollinfo->vpi_lock); 5078 return (events); 5079 } 5080 vp->v_pollinfo->vpi_events |= events; 5081 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 5082 mtx_unlock(&vp->v_pollinfo->vpi_lock); 5083 return (0); 5084 } 5085 5086 /* 5087 * Routine to create and manage a filesystem syncer vnode. 5088 */ 5089 #define sync_close ((int (*)(struct vop_close_args *))nullop) 5090 static int sync_fsync(struct vop_fsync_args *); 5091 static int sync_inactive(struct vop_inactive_args *); 5092 static int sync_reclaim(struct vop_reclaim_args *); 5093 5094 static struct vop_vector sync_vnodeops = { 5095 .vop_bypass = VOP_EOPNOTSUPP, 5096 .vop_close = sync_close, 5097 .vop_fsync = sync_fsync, 5098 .vop_getwritemount = vop_stdgetwritemount, 5099 .vop_inactive = sync_inactive, 5100 .vop_need_inactive = vop_stdneed_inactive, 5101 .vop_reclaim = sync_reclaim, 5102 .vop_lock1 = vop_stdlock, 5103 .vop_unlock = vop_stdunlock, 5104 .vop_islocked = vop_stdislocked, 5105 .vop_fplookup_vexec = VOP_EAGAIN, 5106 .vop_fplookup_symlink = VOP_EAGAIN, 5107 }; 5108 VFS_VOP_VECTOR_REGISTER(sync_vnodeops); 5109 5110 /* 5111 * Create a new filesystem syncer vnode for the specified mount point. 5112 */ 5113 void 5114 vfs_allocate_syncvnode(struct mount *mp) 5115 { 5116 struct vnode *vp; 5117 struct bufobj *bo; 5118 static long start, incr, next; 5119 int error; 5120 5121 /* Allocate a new vnode */ 5122 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 5123 if (error != 0) 5124 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 5125 vp->v_type = VNON; 5126 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5127 vp->v_vflag |= VV_FORCEINSMQ; 5128 error = insmntque1(vp, mp); 5129 if (error != 0) 5130 panic("vfs_allocate_syncvnode: insmntque() failed"); 5131 vp->v_vflag &= ~VV_FORCEINSMQ; 5132 vn_set_state(vp, VSTATE_CONSTRUCTED); 5133 VOP_UNLOCK(vp); 5134 /* 5135 * Place the vnode onto the syncer worklist. We attempt to 5136 * scatter them about on the list so that they will go off 5137 * at evenly distributed times even if all the filesystems 5138 * are mounted at once. 5139 */ 5140 next += incr; 5141 if (next == 0 || next > syncer_maxdelay) { 5142 start /= 2; 5143 incr /= 2; 5144 if (start == 0) { 5145 start = syncer_maxdelay / 2; 5146 incr = syncer_maxdelay; 5147 } 5148 next = start; 5149 } 5150 bo = &vp->v_bufobj; 5151 BO_LOCK(bo); 5152 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 5153 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 5154 mtx_lock(&sync_mtx); 5155 sync_vnode_count++; 5156 if (mp->mnt_syncer == NULL) { 5157 mp->mnt_syncer = vp; 5158 vp = NULL; 5159 } 5160 mtx_unlock(&sync_mtx); 5161 BO_UNLOCK(bo); 5162 if (vp != NULL) { 5163 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 5164 vgone(vp); 5165 vput(vp); 5166 } 5167 } 5168 5169 void 5170 vfs_deallocate_syncvnode(struct mount *mp) 5171 { 5172 struct vnode *vp; 5173 5174 mtx_lock(&sync_mtx); 5175 vp = mp->mnt_syncer; 5176 if (vp != NULL) 5177 mp->mnt_syncer = NULL; 5178 mtx_unlock(&sync_mtx); 5179 if (vp != NULL) 5180 vrele(vp); 5181 } 5182 5183 /* 5184 * Do a lazy sync of the filesystem. 5185 */ 5186 static int 5187 sync_fsync(struct vop_fsync_args *ap) 5188 { 5189 struct vnode *syncvp = ap->a_vp; 5190 struct mount *mp = syncvp->v_mount; 5191 int error, save; 5192 struct bufobj *bo; 5193 5194 /* 5195 * We only need to do something if this is a lazy evaluation. 5196 */ 5197 if (ap->a_waitfor != MNT_LAZY) 5198 return (0); 5199 5200 /* 5201 * Move ourselves to the back of the sync list. 5202 */ 5203 bo = &syncvp->v_bufobj; 5204 BO_LOCK(bo); 5205 vn_syncer_add_to_worklist(bo, syncdelay); 5206 BO_UNLOCK(bo); 5207 5208 /* 5209 * Walk the list of vnodes pushing all that are dirty and 5210 * not already on the sync list. 5211 */ 5212 if (vfs_busy(mp, MBF_NOWAIT) != 0) 5213 return (0); 5214 VOP_UNLOCK(syncvp); 5215 save = curthread_pflags_set(TDP_SYNCIO); 5216 /* 5217 * The filesystem at hand may be idle with free vnodes stored in the 5218 * batch. Return them instead of letting them stay there indefinitely. 5219 */ 5220 vfs_periodic(mp, MNT_NOWAIT); 5221 error = VFS_SYNC(mp, MNT_LAZY); 5222 curthread_pflags_restore(save); 5223 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY); 5224 vfs_unbusy(mp); 5225 return (error); 5226 } 5227 5228 /* 5229 * The syncer vnode is no referenced. 5230 */ 5231 static int 5232 sync_inactive(struct vop_inactive_args *ap) 5233 { 5234 5235 vgone(ap->a_vp); 5236 return (0); 5237 } 5238 5239 /* 5240 * The syncer vnode is no longer needed and is being decommissioned. 5241 * 5242 * Modifications to the worklist must be protected by sync_mtx. 5243 */ 5244 static int 5245 sync_reclaim(struct vop_reclaim_args *ap) 5246 { 5247 struct vnode *vp = ap->a_vp; 5248 struct bufobj *bo; 5249 5250 bo = &vp->v_bufobj; 5251 BO_LOCK(bo); 5252 mtx_lock(&sync_mtx); 5253 if (vp->v_mount->mnt_syncer == vp) 5254 vp->v_mount->mnt_syncer = NULL; 5255 if (bo->bo_flag & BO_ONWORKLST) { 5256 LIST_REMOVE(bo, bo_synclist); 5257 syncer_worklist_len--; 5258 sync_vnode_count--; 5259 bo->bo_flag &= ~BO_ONWORKLST; 5260 } 5261 mtx_unlock(&sync_mtx); 5262 BO_UNLOCK(bo); 5263 5264 return (0); 5265 } 5266 5267 int 5268 vn_need_pageq_flush(struct vnode *vp) 5269 { 5270 struct vm_object *obj; 5271 5272 obj = vp->v_object; 5273 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 5274 vm_object_mightbedirty(obj)); 5275 } 5276 5277 /* 5278 * Check if vnode represents a disk device 5279 */ 5280 bool 5281 vn_isdisk_error(struct vnode *vp, int *errp) 5282 { 5283 int error; 5284 5285 if (vp->v_type != VCHR) { 5286 error = ENOTBLK; 5287 goto out; 5288 } 5289 error = 0; 5290 dev_lock(); 5291 if (vp->v_rdev == NULL) 5292 error = ENXIO; 5293 else if (vp->v_rdev->si_devsw == NULL) 5294 error = ENXIO; 5295 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 5296 error = ENOTBLK; 5297 dev_unlock(); 5298 out: 5299 *errp = error; 5300 return (error == 0); 5301 } 5302 5303 bool 5304 vn_isdisk(struct vnode *vp) 5305 { 5306 int error; 5307 5308 return (vn_isdisk_error(vp, &error)); 5309 } 5310 5311 /* 5312 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see 5313 * the comment above cache_fplookup for details. 5314 */ 5315 int 5316 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred) 5317 { 5318 int error; 5319 5320 VFS_SMR_ASSERT_ENTERED(); 5321 5322 /* Check the owner. */ 5323 if (cred->cr_uid == file_uid) { 5324 if (file_mode & S_IXUSR) 5325 return (0); 5326 goto out_error; 5327 } 5328 5329 /* Otherwise, check the groups (first match) */ 5330 if (groupmember(file_gid, cred)) { 5331 if (file_mode & S_IXGRP) 5332 return (0); 5333 goto out_error; 5334 } 5335 5336 /* Otherwise, check everyone else. */ 5337 if (file_mode & S_IXOTH) 5338 return (0); 5339 out_error: 5340 /* 5341 * Permission check failed, but it is possible denial will get overwritten 5342 * (e.g., when root is traversing through a 700 directory owned by someone 5343 * else). 5344 * 5345 * vaccess() calls priv_check_cred which in turn can descent into MAC 5346 * modules overriding this result. It's quite unclear what semantics 5347 * are allowed for them to operate, thus for safety we don't call them 5348 * from within the SMR section. This also means if any such modules 5349 * are present, we have to let the regular lookup decide. 5350 */ 5351 error = priv_check_cred_vfs_lookup_nomac(cred); 5352 switch (error) { 5353 case 0: 5354 return (0); 5355 case EAGAIN: 5356 /* 5357 * MAC modules present. 5358 */ 5359 return (EAGAIN); 5360 case EPERM: 5361 return (EACCES); 5362 default: 5363 return (error); 5364 } 5365 } 5366 5367 /* 5368 * Common filesystem object access control check routine. Accepts a 5369 * vnode's type, "mode", uid and gid, requested access mode, and credentials. 5370 * Returns 0 on success, or an errno on failure. 5371 */ 5372 int 5373 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 5374 accmode_t accmode, struct ucred *cred) 5375 { 5376 accmode_t dac_granted; 5377 accmode_t priv_granted; 5378 5379 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 5380 ("invalid bit in accmode")); 5381 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 5382 ("VAPPEND without VWRITE")); 5383 5384 /* 5385 * Look for a normal, non-privileged way to access the file/directory 5386 * as requested. If it exists, go with that. 5387 */ 5388 5389 dac_granted = 0; 5390 5391 /* Check the owner. */ 5392 if (cred->cr_uid == file_uid) { 5393 dac_granted |= VADMIN; 5394 if (file_mode & S_IXUSR) 5395 dac_granted |= VEXEC; 5396 if (file_mode & S_IRUSR) 5397 dac_granted |= VREAD; 5398 if (file_mode & S_IWUSR) 5399 dac_granted |= (VWRITE | VAPPEND); 5400 5401 if ((accmode & dac_granted) == accmode) 5402 return (0); 5403 5404 goto privcheck; 5405 } 5406 5407 /* Otherwise, check the groups (first match) */ 5408 if (groupmember(file_gid, cred)) { 5409 if (file_mode & S_IXGRP) 5410 dac_granted |= VEXEC; 5411 if (file_mode & S_IRGRP) 5412 dac_granted |= VREAD; 5413 if (file_mode & S_IWGRP) 5414 dac_granted |= (VWRITE | VAPPEND); 5415 5416 if ((accmode & dac_granted) == accmode) 5417 return (0); 5418 5419 goto privcheck; 5420 } 5421 5422 /* Otherwise, check everyone else. */ 5423 if (file_mode & S_IXOTH) 5424 dac_granted |= VEXEC; 5425 if (file_mode & S_IROTH) 5426 dac_granted |= VREAD; 5427 if (file_mode & S_IWOTH) 5428 dac_granted |= (VWRITE | VAPPEND); 5429 if ((accmode & dac_granted) == accmode) 5430 return (0); 5431 5432 privcheck: 5433 /* 5434 * Build a privilege mask to determine if the set of privileges 5435 * satisfies the requirements when combined with the granted mask 5436 * from above. For each privilege, if the privilege is required, 5437 * bitwise or the request type onto the priv_granted mask. 5438 */ 5439 priv_granted = 0; 5440 5441 if (type == VDIR) { 5442 /* 5443 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 5444 * requests, instead of PRIV_VFS_EXEC. 5445 */ 5446 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5447 !priv_check_cred(cred, PRIV_VFS_LOOKUP)) 5448 priv_granted |= VEXEC; 5449 } else { 5450 /* 5451 * Ensure that at least one execute bit is on. Otherwise, 5452 * a privileged user will always succeed, and we don't want 5453 * this to happen unless the file really is executable. 5454 */ 5455 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5456 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 5457 !priv_check_cred(cred, PRIV_VFS_EXEC)) 5458 priv_granted |= VEXEC; 5459 } 5460 5461 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 5462 !priv_check_cred(cred, PRIV_VFS_READ)) 5463 priv_granted |= VREAD; 5464 5465 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 5466 !priv_check_cred(cred, PRIV_VFS_WRITE)) 5467 priv_granted |= (VWRITE | VAPPEND); 5468 5469 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 5470 !priv_check_cred(cred, PRIV_VFS_ADMIN)) 5471 priv_granted |= VADMIN; 5472 5473 if ((accmode & (priv_granted | dac_granted)) == accmode) { 5474 return (0); 5475 } 5476 5477 return ((accmode & VADMIN) ? EPERM : EACCES); 5478 } 5479 5480 /* 5481 * Credential check based on process requesting service, and per-attribute 5482 * permissions. 5483 */ 5484 int 5485 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 5486 struct thread *td, accmode_t accmode) 5487 { 5488 5489 /* 5490 * Kernel-invoked always succeeds. 5491 */ 5492 if (cred == NOCRED) 5493 return (0); 5494 5495 /* 5496 * Do not allow privileged processes in jail to directly manipulate 5497 * system attributes. 5498 */ 5499 switch (attrnamespace) { 5500 case EXTATTR_NAMESPACE_SYSTEM: 5501 /* Potentially should be: return (EPERM); */ 5502 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM)); 5503 case EXTATTR_NAMESPACE_USER: 5504 return (VOP_ACCESS(vp, accmode, cred, td)); 5505 default: 5506 return (EPERM); 5507 } 5508 } 5509 5510 #ifdef DEBUG_VFS_LOCKS 5511 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 5512 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 5513 "Drop into debugger on lock violation"); 5514 5515 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 5516 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 5517 0, "Check for interlock across VOPs"); 5518 5519 int vfs_badlock_print = 1; /* Print lock violations. */ 5520 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 5521 0, "Print lock violations"); 5522 5523 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ 5524 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 5525 0, "Print vnode details on lock violations"); 5526 5527 #ifdef KDB 5528 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 5529 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 5530 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 5531 #endif 5532 5533 static void 5534 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 5535 { 5536 5537 #ifdef KDB 5538 if (vfs_badlock_backtrace) 5539 kdb_backtrace(); 5540 #endif 5541 if (vfs_badlock_vnode) 5542 vn_printf(vp, "vnode "); 5543 if (vfs_badlock_print) 5544 printf("%s: %p %s\n", str, (void *)vp, msg); 5545 if (vfs_badlock_ddb) 5546 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5547 } 5548 5549 void 5550 assert_vi_locked(struct vnode *vp, const char *str) 5551 { 5552 5553 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 5554 vfs_badlock("interlock is not locked but should be", str, vp); 5555 } 5556 5557 void 5558 assert_vi_unlocked(struct vnode *vp, const char *str) 5559 { 5560 5561 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 5562 vfs_badlock("interlock is locked but should not be", str, vp); 5563 } 5564 5565 void 5566 assert_vop_locked(struct vnode *vp, const char *str) 5567 { 5568 if (KERNEL_PANICKED() || vp == NULL) 5569 return; 5570 5571 #ifdef WITNESS 5572 if ((vp->v_irflag & VIRF_CROSSMP) == 0 && 5573 witness_is_owned(&vp->v_vnlock->lock_object) == -1) 5574 #else 5575 int locked = VOP_ISLOCKED(vp); 5576 if (locked == 0 || locked == LK_EXCLOTHER) 5577 #endif 5578 vfs_badlock("is not locked but should be", str, vp); 5579 } 5580 5581 void 5582 assert_vop_unlocked(struct vnode *vp, const char *str) 5583 { 5584 if (KERNEL_PANICKED() || vp == NULL) 5585 return; 5586 5587 #ifdef WITNESS 5588 if ((vp->v_irflag & VIRF_CROSSMP) == 0 && 5589 witness_is_owned(&vp->v_vnlock->lock_object) == 1) 5590 #else 5591 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 5592 #endif 5593 vfs_badlock("is locked but should not be", str, vp); 5594 } 5595 5596 void 5597 assert_vop_elocked(struct vnode *vp, const char *str) 5598 { 5599 if (KERNEL_PANICKED() || vp == NULL) 5600 return; 5601 5602 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 5603 vfs_badlock("is not exclusive locked but should be", str, vp); 5604 } 5605 #endif /* DEBUG_VFS_LOCKS */ 5606 5607 void 5608 vop_rename_fail(struct vop_rename_args *ap) 5609 { 5610 5611 if (ap->a_tvp != NULL) 5612 vput(ap->a_tvp); 5613 if (ap->a_tdvp == ap->a_tvp) 5614 vrele(ap->a_tdvp); 5615 else 5616 vput(ap->a_tdvp); 5617 vrele(ap->a_fdvp); 5618 vrele(ap->a_fvp); 5619 } 5620 5621 void 5622 vop_rename_pre(void *ap) 5623 { 5624 struct vop_rename_args *a = ap; 5625 5626 #ifdef DEBUG_VFS_LOCKS 5627 if (a->a_tvp) 5628 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 5629 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 5630 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 5631 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 5632 5633 /* Check the source (from). */ 5634 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 5635 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 5636 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 5637 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 5638 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 5639 5640 /* Check the target. */ 5641 if (a->a_tvp) 5642 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 5643 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 5644 #endif 5645 /* 5646 * It may be tempting to add vn_seqc_write_begin/end calls here and 5647 * in vop_rename_post but that's not going to work out since some 5648 * filesystems relookup vnodes mid-rename. This is probably a bug. 5649 * 5650 * For now filesystems are expected to do the relevant calls after they 5651 * decide what vnodes to operate on. 5652 */ 5653 if (a->a_tdvp != a->a_fdvp) 5654 vhold(a->a_fdvp); 5655 if (a->a_tvp != a->a_fvp) 5656 vhold(a->a_fvp); 5657 vhold(a->a_tdvp); 5658 if (a->a_tvp) 5659 vhold(a->a_tvp); 5660 } 5661 5662 #ifdef DEBUG_VFS_LOCKS 5663 void 5664 vop_fplookup_vexec_debugpre(void *ap __unused) 5665 { 5666 5667 VFS_SMR_ASSERT_ENTERED(); 5668 } 5669 5670 void 5671 vop_fplookup_vexec_debugpost(void *ap, int rc) 5672 { 5673 struct vop_fplookup_vexec_args *a; 5674 struct vnode *vp; 5675 5676 a = ap; 5677 vp = a->a_vp; 5678 5679 VFS_SMR_ASSERT_ENTERED(); 5680 if (rc == EOPNOTSUPP) 5681 VNPASS(VN_IS_DOOMED(vp), vp); 5682 } 5683 5684 void 5685 vop_fplookup_symlink_debugpre(void *ap __unused) 5686 { 5687 5688 VFS_SMR_ASSERT_ENTERED(); 5689 } 5690 5691 void 5692 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused) 5693 { 5694 5695 VFS_SMR_ASSERT_ENTERED(); 5696 } 5697 5698 static void 5699 vop_fsync_debugprepost(struct vnode *vp, const char *name) 5700 { 5701 if (vp->v_type == VCHR) 5702 ; 5703 else if (MNT_EXTENDED_SHARED(vp->v_mount)) 5704 ASSERT_VOP_LOCKED(vp, name); 5705 else 5706 ASSERT_VOP_ELOCKED(vp, name); 5707 } 5708 5709 void 5710 vop_fsync_debugpre(void *a) 5711 { 5712 struct vop_fsync_args *ap; 5713 5714 ap = a; 5715 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5716 } 5717 5718 void 5719 vop_fsync_debugpost(void *a, int rc __unused) 5720 { 5721 struct vop_fsync_args *ap; 5722 5723 ap = a; 5724 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5725 } 5726 5727 void 5728 vop_fdatasync_debugpre(void *a) 5729 { 5730 struct vop_fdatasync_args *ap; 5731 5732 ap = a; 5733 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5734 } 5735 5736 void 5737 vop_fdatasync_debugpost(void *a, int rc __unused) 5738 { 5739 struct vop_fdatasync_args *ap; 5740 5741 ap = a; 5742 vop_fsync_debugprepost(ap->a_vp, "fsync"); 5743 } 5744 5745 void 5746 vop_strategy_debugpre(void *ap) 5747 { 5748 struct vop_strategy_args *a; 5749 struct buf *bp; 5750 5751 a = ap; 5752 bp = a->a_bp; 5753 5754 /* 5755 * Cluster ops lock their component buffers but not the IO container. 5756 */ 5757 if ((bp->b_flags & B_CLUSTER) != 0) 5758 return; 5759 5760 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) { 5761 if (vfs_badlock_print) 5762 printf( 5763 "VOP_STRATEGY: bp is not locked but should be\n"); 5764 if (vfs_badlock_ddb) 5765 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5766 } 5767 } 5768 5769 void 5770 vop_lock_debugpre(void *ap) 5771 { 5772 struct vop_lock1_args *a = ap; 5773 5774 if ((a->a_flags & LK_INTERLOCK) == 0) 5775 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5776 else 5777 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 5778 } 5779 5780 void 5781 vop_lock_debugpost(void *ap, int rc) 5782 { 5783 struct vop_lock1_args *a = ap; 5784 5785 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5786 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 5787 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 5788 } 5789 5790 void 5791 vop_unlock_debugpre(void *ap) 5792 { 5793 struct vop_unlock_args *a = ap; 5794 struct vnode *vp = a->a_vp; 5795 5796 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp); 5797 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK"); 5798 } 5799 5800 void 5801 vop_need_inactive_debugpre(void *ap) 5802 { 5803 struct vop_need_inactive_args *a = ap; 5804 5805 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 5806 } 5807 5808 void 5809 vop_need_inactive_debugpost(void *ap, int rc) 5810 { 5811 struct vop_need_inactive_args *a = ap; 5812 5813 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 5814 } 5815 #endif 5816 5817 void 5818 vop_create_pre(void *ap) 5819 { 5820 struct vop_create_args *a; 5821 struct vnode *dvp; 5822 5823 a = ap; 5824 dvp = a->a_dvp; 5825 vn_seqc_write_begin(dvp); 5826 } 5827 5828 void 5829 vop_create_post(void *ap, int rc) 5830 { 5831 struct vop_create_args *a; 5832 struct vnode *dvp; 5833 5834 a = ap; 5835 dvp = a->a_dvp; 5836 vn_seqc_write_end(dvp); 5837 if (!rc) 5838 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5839 } 5840 5841 void 5842 vop_whiteout_pre(void *ap) 5843 { 5844 struct vop_whiteout_args *a; 5845 struct vnode *dvp; 5846 5847 a = ap; 5848 dvp = a->a_dvp; 5849 vn_seqc_write_begin(dvp); 5850 } 5851 5852 void 5853 vop_whiteout_post(void *ap, int rc) 5854 { 5855 struct vop_whiteout_args *a; 5856 struct vnode *dvp; 5857 5858 a = ap; 5859 dvp = a->a_dvp; 5860 vn_seqc_write_end(dvp); 5861 } 5862 5863 void 5864 vop_deleteextattr_pre(void *ap) 5865 { 5866 struct vop_deleteextattr_args *a; 5867 struct vnode *vp; 5868 5869 a = ap; 5870 vp = a->a_vp; 5871 vn_seqc_write_begin(vp); 5872 } 5873 5874 void 5875 vop_deleteextattr_post(void *ap, int rc) 5876 { 5877 struct vop_deleteextattr_args *a; 5878 struct vnode *vp; 5879 5880 a = ap; 5881 vp = a->a_vp; 5882 vn_seqc_write_end(vp); 5883 if (!rc) 5884 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 5885 } 5886 5887 void 5888 vop_link_pre(void *ap) 5889 { 5890 struct vop_link_args *a; 5891 struct vnode *vp, *tdvp; 5892 5893 a = ap; 5894 vp = a->a_vp; 5895 tdvp = a->a_tdvp; 5896 vn_seqc_write_begin(vp); 5897 vn_seqc_write_begin(tdvp); 5898 } 5899 5900 void 5901 vop_link_post(void *ap, int rc) 5902 { 5903 struct vop_link_args *a; 5904 struct vnode *vp, *tdvp; 5905 5906 a = ap; 5907 vp = a->a_vp; 5908 tdvp = a->a_tdvp; 5909 vn_seqc_write_end(vp); 5910 vn_seqc_write_end(tdvp); 5911 if (!rc) { 5912 VFS_KNOTE_LOCKED(vp, NOTE_LINK); 5913 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE); 5914 } 5915 } 5916 5917 void 5918 vop_mkdir_pre(void *ap) 5919 { 5920 struct vop_mkdir_args *a; 5921 struct vnode *dvp; 5922 5923 a = ap; 5924 dvp = a->a_dvp; 5925 vn_seqc_write_begin(dvp); 5926 } 5927 5928 void 5929 vop_mkdir_post(void *ap, int rc) 5930 { 5931 struct vop_mkdir_args *a; 5932 struct vnode *dvp; 5933 5934 a = ap; 5935 dvp = a->a_dvp; 5936 vn_seqc_write_end(dvp); 5937 if (!rc) 5938 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 5939 } 5940 5941 #ifdef DEBUG_VFS_LOCKS 5942 void 5943 vop_mkdir_debugpost(void *ap, int rc) 5944 { 5945 struct vop_mkdir_args *a; 5946 5947 a = ap; 5948 if (!rc) 5949 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp); 5950 } 5951 #endif 5952 5953 void 5954 vop_mknod_pre(void *ap) 5955 { 5956 struct vop_mknod_args *a; 5957 struct vnode *dvp; 5958 5959 a = ap; 5960 dvp = a->a_dvp; 5961 vn_seqc_write_begin(dvp); 5962 } 5963 5964 void 5965 vop_mknod_post(void *ap, int rc) 5966 { 5967 struct vop_mknod_args *a; 5968 struct vnode *dvp; 5969 5970 a = ap; 5971 dvp = a->a_dvp; 5972 vn_seqc_write_end(dvp); 5973 if (!rc) 5974 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5975 } 5976 5977 void 5978 vop_reclaim_post(void *ap, int rc) 5979 { 5980 struct vop_reclaim_args *a; 5981 struct vnode *vp; 5982 5983 a = ap; 5984 vp = a->a_vp; 5985 ASSERT_VOP_IN_SEQC(vp); 5986 if (!rc) 5987 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE); 5988 } 5989 5990 void 5991 vop_remove_pre(void *ap) 5992 { 5993 struct vop_remove_args *a; 5994 struct vnode *dvp, *vp; 5995 5996 a = ap; 5997 dvp = a->a_dvp; 5998 vp = a->a_vp; 5999 vn_seqc_write_begin(dvp); 6000 vn_seqc_write_begin(vp); 6001 } 6002 6003 void 6004 vop_remove_post(void *ap, int rc) 6005 { 6006 struct vop_remove_args *a; 6007 struct vnode *dvp, *vp; 6008 6009 a = ap; 6010 dvp = a->a_dvp; 6011 vp = a->a_vp; 6012 vn_seqc_write_end(dvp); 6013 vn_seqc_write_end(vp); 6014 if (!rc) { 6015 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6016 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 6017 } 6018 } 6019 6020 void 6021 vop_rename_post(void *ap, int rc) 6022 { 6023 struct vop_rename_args *a = ap; 6024 long hint; 6025 6026 if (!rc) { 6027 hint = NOTE_WRITE; 6028 if (a->a_fdvp == a->a_tdvp) { 6029 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) 6030 hint |= NOTE_LINK; 6031 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 6032 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 6033 } else { 6034 hint |= NOTE_EXTEND; 6035 if (a->a_fvp->v_type == VDIR) 6036 hint |= NOTE_LINK; 6037 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 6038 6039 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && 6040 a->a_tvp->v_type == VDIR) 6041 hint &= ~NOTE_LINK; 6042 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 6043 } 6044 6045 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 6046 if (a->a_tvp) 6047 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 6048 } 6049 if (a->a_tdvp != a->a_fdvp) 6050 vdrop(a->a_fdvp); 6051 if (a->a_tvp != a->a_fvp) 6052 vdrop(a->a_fvp); 6053 vdrop(a->a_tdvp); 6054 if (a->a_tvp) 6055 vdrop(a->a_tvp); 6056 } 6057 6058 void 6059 vop_rmdir_pre(void *ap) 6060 { 6061 struct vop_rmdir_args *a; 6062 struct vnode *dvp, *vp; 6063 6064 a = ap; 6065 dvp = a->a_dvp; 6066 vp = a->a_vp; 6067 vn_seqc_write_begin(dvp); 6068 vn_seqc_write_begin(vp); 6069 } 6070 6071 void 6072 vop_rmdir_post(void *ap, int rc) 6073 { 6074 struct vop_rmdir_args *a; 6075 struct vnode *dvp, *vp; 6076 6077 a = ap; 6078 dvp = a->a_dvp; 6079 vp = a->a_vp; 6080 vn_seqc_write_end(dvp); 6081 vn_seqc_write_end(vp); 6082 if (!rc) { 6083 vp->v_vflag |= VV_UNLINKED; 6084 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 6085 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 6086 } 6087 } 6088 6089 void 6090 vop_setattr_pre(void *ap) 6091 { 6092 struct vop_setattr_args *a; 6093 struct vnode *vp; 6094 6095 a = ap; 6096 vp = a->a_vp; 6097 vn_seqc_write_begin(vp); 6098 } 6099 6100 void 6101 vop_setattr_post(void *ap, int rc) 6102 { 6103 struct vop_setattr_args *a; 6104 struct vnode *vp; 6105 6106 a = ap; 6107 vp = a->a_vp; 6108 vn_seqc_write_end(vp); 6109 if (!rc) 6110 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6111 } 6112 6113 void 6114 vop_setacl_pre(void *ap) 6115 { 6116 struct vop_setacl_args *a; 6117 struct vnode *vp; 6118 6119 a = ap; 6120 vp = a->a_vp; 6121 vn_seqc_write_begin(vp); 6122 } 6123 6124 void 6125 vop_setacl_post(void *ap, int rc __unused) 6126 { 6127 struct vop_setacl_args *a; 6128 struct vnode *vp; 6129 6130 a = ap; 6131 vp = a->a_vp; 6132 vn_seqc_write_end(vp); 6133 } 6134 6135 void 6136 vop_setextattr_pre(void *ap) 6137 { 6138 struct vop_setextattr_args *a; 6139 struct vnode *vp; 6140 6141 a = ap; 6142 vp = a->a_vp; 6143 vn_seqc_write_begin(vp); 6144 } 6145 6146 void 6147 vop_setextattr_post(void *ap, int rc) 6148 { 6149 struct vop_setextattr_args *a; 6150 struct vnode *vp; 6151 6152 a = ap; 6153 vp = a->a_vp; 6154 vn_seqc_write_end(vp); 6155 if (!rc) 6156 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 6157 } 6158 6159 void 6160 vop_symlink_pre(void *ap) 6161 { 6162 struct vop_symlink_args *a; 6163 struct vnode *dvp; 6164 6165 a = ap; 6166 dvp = a->a_dvp; 6167 vn_seqc_write_begin(dvp); 6168 } 6169 6170 void 6171 vop_symlink_post(void *ap, int rc) 6172 { 6173 struct vop_symlink_args *a; 6174 struct vnode *dvp; 6175 6176 a = ap; 6177 dvp = a->a_dvp; 6178 vn_seqc_write_end(dvp); 6179 if (!rc) 6180 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 6181 } 6182 6183 void 6184 vop_open_post(void *ap, int rc) 6185 { 6186 struct vop_open_args *a = ap; 6187 6188 if (!rc) 6189 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); 6190 } 6191 6192 void 6193 vop_close_post(void *ap, int rc) 6194 { 6195 struct vop_close_args *a = ap; 6196 6197 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ 6198 !VN_IS_DOOMED(a->a_vp))) { 6199 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? 6200 NOTE_CLOSE_WRITE : NOTE_CLOSE); 6201 } 6202 } 6203 6204 void 6205 vop_read_post(void *ap, int rc) 6206 { 6207 struct vop_read_args *a = ap; 6208 6209 if (!rc) 6210 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6211 } 6212 6213 void 6214 vop_read_pgcache_post(void *ap, int rc) 6215 { 6216 struct vop_read_pgcache_args *a = ap; 6217 6218 if (!rc) 6219 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ); 6220 } 6221 6222 void 6223 vop_readdir_post(void *ap, int rc) 6224 { 6225 struct vop_readdir_args *a = ap; 6226 6227 if (!rc) 6228 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 6229 } 6230 6231 static struct knlist fs_knlist; 6232 6233 static void 6234 vfs_event_init(void *arg) 6235 { 6236 knlist_init_mtx(&fs_knlist, NULL); 6237 } 6238 /* XXX - correct order? */ 6239 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 6240 6241 void 6242 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 6243 { 6244 6245 KNOTE_UNLOCKED(&fs_knlist, event); 6246 } 6247 6248 static int filt_fsattach(struct knote *kn); 6249 static void filt_fsdetach(struct knote *kn); 6250 static int filt_fsevent(struct knote *kn, long hint); 6251 6252 struct filterops fs_filtops = { 6253 .f_isfd = 0, 6254 .f_attach = filt_fsattach, 6255 .f_detach = filt_fsdetach, 6256 .f_event = filt_fsevent 6257 }; 6258 6259 static int 6260 filt_fsattach(struct knote *kn) 6261 { 6262 6263 kn->kn_flags |= EV_CLEAR; 6264 knlist_add(&fs_knlist, kn, 0); 6265 return (0); 6266 } 6267 6268 static void 6269 filt_fsdetach(struct knote *kn) 6270 { 6271 6272 knlist_remove(&fs_knlist, kn, 0); 6273 } 6274 6275 static int 6276 filt_fsevent(struct knote *kn, long hint) 6277 { 6278 6279 kn->kn_fflags |= kn->kn_sfflags & hint; 6280 6281 return (kn->kn_fflags != 0); 6282 } 6283 6284 static int 6285 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 6286 { 6287 struct vfsidctl vc; 6288 int error; 6289 struct mount *mp; 6290 6291 error = SYSCTL_IN(req, &vc, sizeof(vc)); 6292 if (error) 6293 return (error); 6294 if (vc.vc_vers != VFS_CTL_VERS1) 6295 return (EINVAL); 6296 mp = vfs_getvfs(&vc.vc_fsid); 6297 if (mp == NULL) 6298 return (ENOENT); 6299 /* ensure that a specific sysctl goes to the right filesystem. */ 6300 if (strcmp(vc.vc_fstypename, "*") != 0 && 6301 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 6302 vfs_rel(mp); 6303 return (EINVAL); 6304 } 6305 VCTLTOREQ(&vc, req); 6306 error = VFS_SYSCTL(mp, vc.vc_op, req); 6307 vfs_rel(mp); 6308 return (error); 6309 } 6310 6311 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR, 6312 NULL, 0, sysctl_vfs_ctl, "", 6313 "Sysctl by fsid"); 6314 6315 /* 6316 * Function to initialize a va_filerev field sensibly. 6317 * XXX: Wouldn't a random number make a lot more sense ?? 6318 */ 6319 u_quad_t 6320 init_va_filerev(void) 6321 { 6322 struct bintime bt; 6323 6324 getbinuptime(&bt); 6325 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 6326 } 6327 6328 static int filt_vfsread(struct knote *kn, long hint); 6329 static int filt_vfswrite(struct knote *kn, long hint); 6330 static int filt_vfsvnode(struct knote *kn, long hint); 6331 static void filt_vfsdetach(struct knote *kn); 6332 static struct filterops vfsread_filtops = { 6333 .f_isfd = 1, 6334 .f_detach = filt_vfsdetach, 6335 .f_event = filt_vfsread 6336 }; 6337 static struct filterops vfswrite_filtops = { 6338 .f_isfd = 1, 6339 .f_detach = filt_vfsdetach, 6340 .f_event = filt_vfswrite 6341 }; 6342 static struct filterops vfsvnode_filtops = { 6343 .f_isfd = 1, 6344 .f_detach = filt_vfsdetach, 6345 .f_event = filt_vfsvnode 6346 }; 6347 6348 static void 6349 vfs_knllock(void *arg) 6350 { 6351 struct vnode *vp = arg; 6352 6353 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 6354 } 6355 6356 static void 6357 vfs_knlunlock(void *arg) 6358 { 6359 struct vnode *vp = arg; 6360 6361 VOP_UNLOCK(vp); 6362 } 6363 6364 static void 6365 vfs_knl_assert_lock(void *arg, int what) 6366 { 6367 #ifdef DEBUG_VFS_LOCKS 6368 struct vnode *vp = arg; 6369 6370 if (what == LA_LOCKED) 6371 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 6372 else 6373 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 6374 #endif 6375 } 6376 6377 int 6378 vfs_kqfilter(struct vop_kqfilter_args *ap) 6379 { 6380 struct vnode *vp = ap->a_vp; 6381 struct knote *kn = ap->a_kn; 6382 struct knlist *knl; 6383 6384 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ && 6385 kn->kn_filter != EVFILT_WRITE), 6386 ("READ/WRITE filter on a FIFO leaked through")); 6387 switch (kn->kn_filter) { 6388 case EVFILT_READ: 6389 kn->kn_fop = &vfsread_filtops; 6390 break; 6391 case EVFILT_WRITE: 6392 kn->kn_fop = &vfswrite_filtops; 6393 break; 6394 case EVFILT_VNODE: 6395 kn->kn_fop = &vfsvnode_filtops; 6396 break; 6397 default: 6398 return (EINVAL); 6399 } 6400 6401 kn->kn_hook = (caddr_t)vp; 6402 6403 v_addpollinfo(vp); 6404 if (vp->v_pollinfo == NULL) 6405 return (ENOMEM); 6406 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 6407 vhold(vp); 6408 knlist_add(knl, kn, 0); 6409 6410 return (0); 6411 } 6412 6413 /* 6414 * Detach knote from vnode 6415 */ 6416 static void 6417 filt_vfsdetach(struct knote *kn) 6418 { 6419 struct vnode *vp = (struct vnode *)kn->kn_hook; 6420 6421 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 6422 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 6423 vdrop(vp); 6424 } 6425 6426 /*ARGSUSED*/ 6427 static int 6428 filt_vfsread(struct knote *kn, long hint) 6429 { 6430 struct vnode *vp = (struct vnode *)kn->kn_hook; 6431 off_t size; 6432 int res; 6433 6434 /* 6435 * filesystem is gone, so set the EOF flag and schedule 6436 * the knote for deletion. 6437 */ 6438 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6439 VI_LOCK(vp); 6440 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6441 VI_UNLOCK(vp); 6442 return (1); 6443 } 6444 6445 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0) 6446 return (0); 6447 6448 VI_LOCK(vp); 6449 kn->kn_data = size - kn->kn_fp->f_offset; 6450 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 6451 VI_UNLOCK(vp); 6452 return (res); 6453 } 6454 6455 /*ARGSUSED*/ 6456 static int 6457 filt_vfswrite(struct knote *kn, long hint) 6458 { 6459 struct vnode *vp = (struct vnode *)kn->kn_hook; 6460 6461 VI_LOCK(vp); 6462 6463 /* 6464 * filesystem is gone, so set the EOF flag and schedule 6465 * the knote for deletion. 6466 */ 6467 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 6468 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6469 6470 kn->kn_data = 0; 6471 VI_UNLOCK(vp); 6472 return (1); 6473 } 6474 6475 static int 6476 filt_vfsvnode(struct knote *kn, long hint) 6477 { 6478 struct vnode *vp = (struct vnode *)kn->kn_hook; 6479 int res; 6480 6481 VI_LOCK(vp); 6482 if (kn->kn_sfflags & hint) 6483 kn->kn_fflags |= hint; 6484 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6485 kn->kn_flags |= EV_EOF; 6486 VI_UNLOCK(vp); 6487 return (1); 6488 } 6489 res = (kn->kn_fflags != 0); 6490 VI_UNLOCK(vp); 6491 return (res); 6492 } 6493 6494 int 6495 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 6496 { 6497 int error; 6498 6499 if (dp->d_reclen > ap->a_uio->uio_resid) 6500 return (ENAMETOOLONG); 6501 error = uiomove(dp, dp->d_reclen, ap->a_uio); 6502 if (error) { 6503 if (ap->a_ncookies != NULL) { 6504 if (ap->a_cookies != NULL) 6505 free(ap->a_cookies, M_TEMP); 6506 ap->a_cookies = NULL; 6507 *ap->a_ncookies = 0; 6508 } 6509 return (error); 6510 } 6511 if (ap->a_ncookies == NULL) 6512 return (0); 6513 6514 KASSERT(ap->a_cookies, 6515 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 6516 6517 *ap->a_cookies = realloc(*ap->a_cookies, 6518 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO); 6519 (*ap->a_cookies)[*ap->a_ncookies] = off; 6520 *ap->a_ncookies += 1; 6521 return (0); 6522 } 6523 6524 /* 6525 * The purpose of this routine is to remove granularity from accmode_t, 6526 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 6527 * VADMIN and VAPPEND. 6528 * 6529 * If it returns 0, the caller is supposed to continue with the usual 6530 * access checks using 'accmode' as modified by this routine. If it 6531 * returns nonzero value, the caller is supposed to return that value 6532 * as errno. 6533 * 6534 * Note that after this routine runs, accmode may be zero. 6535 */ 6536 int 6537 vfs_unixify_accmode(accmode_t *accmode) 6538 { 6539 /* 6540 * There is no way to specify explicit "deny" rule using 6541 * file mode or POSIX.1e ACLs. 6542 */ 6543 if (*accmode & VEXPLICIT_DENY) { 6544 *accmode = 0; 6545 return (0); 6546 } 6547 6548 /* 6549 * None of these can be translated into usual access bits. 6550 * Also, the common case for NFSv4 ACLs is to not contain 6551 * either of these bits. Caller should check for VWRITE 6552 * on the containing directory instead. 6553 */ 6554 if (*accmode & (VDELETE_CHILD | VDELETE)) 6555 return (EPERM); 6556 6557 if (*accmode & VADMIN_PERMS) { 6558 *accmode &= ~VADMIN_PERMS; 6559 *accmode |= VADMIN; 6560 } 6561 6562 /* 6563 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 6564 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 6565 */ 6566 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 6567 6568 return (0); 6569 } 6570 6571 /* 6572 * Clear out a doomed vnode (if any) and replace it with a new one as long 6573 * as the fs is not being unmounted. Return the root vnode to the caller. 6574 */ 6575 static int __noinline 6576 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp) 6577 { 6578 struct vnode *vp; 6579 int error; 6580 6581 restart: 6582 if (mp->mnt_rootvnode != NULL) { 6583 MNT_ILOCK(mp); 6584 vp = mp->mnt_rootvnode; 6585 if (vp != NULL) { 6586 if (!VN_IS_DOOMED(vp)) { 6587 vrefact(vp); 6588 MNT_IUNLOCK(mp); 6589 error = vn_lock(vp, flags); 6590 if (error == 0) { 6591 *vpp = vp; 6592 return (0); 6593 } 6594 vrele(vp); 6595 goto restart; 6596 } 6597 /* 6598 * Clear the old one. 6599 */ 6600 mp->mnt_rootvnode = NULL; 6601 } 6602 MNT_IUNLOCK(mp); 6603 if (vp != NULL) { 6604 vfs_op_barrier_wait(mp); 6605 vrele(vp); 6606 } 6607 } 6608 error = VFS_CACHEDROOT(mp, flags, vpp); 6609 if (error != 0) 6610 return (error); 6611 if (mp->mnt_vfs_ops == 0) { 6612 MNT_ILOCK(mp); 6613 if (mp->mnt_vfs_ops != 0) { 6614 MNT_IUNLOCK(mp); 6615 return (0); 6616 } 6617 if (mp->mnt_rootvnode == NULL) { 6618 vrefact(*vpp); 6619 mp->mnt_rootvnode = *vpp; 6620 } else { 6621 if (mp->mnt_rootvnode != *vpp) { 6622 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) { 6623 panic("%s: mismatch between vnode returned " 6624 " by VFS_CACHEDROOT and the one cached " 6625 " (%p != %p)", 6626 __func__, *vpp, mp->mnt_rootvnode); 6627 } 6628 } 6629 } 6630 MNT_IUNLOCK(mp); 6631 } 6632 return (0); 6633 } 6634 6635 int 6636 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp) 6637 { 6638 struct mount_pcpu *mpcpu; 6639 struct vnode *vp; 6640 int error; 6641 6642 if (!vfs_op_thread_enter(mp, mpcpu)) 6643 return (vfs_cache_root_fallback(mp, flags, vpp)); 6644 vp = atomic_load_ptr(&mp->mnt_rootvnode); 6645 if (vp == NULL || VN_IS_DOOMED(vp)) { 6646 vfs_op_thread_exit(mp, mpcpu); 6647 return (vfs_cache_root_fallback(mp, flags, vpp)); 6648 } 6649 vrefact(vp); 6650 vfs_op_thread_exit(mp, mpcpu); 6651 error = vn_lock(vp, flags); 6652 if (error != 0) { 6653 vrele(vp); 6654 return (vfs_cache_root_fallback(mp, flags, vpp)); 6655 } 6656 *vpp = vp; 6657 return (0); 6658 } 6659 6660 struct vnode * 6661 vfs_cache_root_clear(struct mount *mp) 6662 { 6663 struct vnode *vp; 6664 6665 /* 6666 * ops > 0 guarantees there is nobody who can see this vnode 6667 */ 6668 MPASS(mp->mnt_vfs_ops > 0); 6669 vp = mp->mnt_rootvnode; 6670 if (vp != NULL) 6671 vn_seqc_write_begin(vp); 6672 mp->mnt_rootvnode = NULL; 6673 return (vp); 6674 } 6675 6676 void 6677 vfs_cache_root_set(struct mount *mp, struct vnode *vp) 6678 { 6679 6680 MPASS(mp->mnt_vfs_ops > 0); 6681 vrefact(vp); 6682 mp->mnt_rootvnode = vp; 6683 } 6684 6685 /* 6686 * These are helper functions for filesystems to traverse all 6687 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 6688 * 6689 * This interface replaces MNT_VNODE_FOREACH. 6690 */ 6691 6692 struct vnode * 6693 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 6694 { 6695 struct vnode *vp; 6696 6697 maybe_yield(); 6698 MNT_ILOCK(mp); 6699 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6700 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; 6701 vp = TAILQ_NEXT(vp, v_nmntvnodes)) { 6702 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6703 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6704 continue; 6705 VI_LOCK(vp); 6706 if (VN_IS_DOOMED(vp)) { 6707 VI_UNLOCK(vp); 6708 continue; 6709 } 6710 break; 6711 } 6712 if (vp == NULL) { 6713 __mnt_vnode_markerfree_all(mvp, mp); 6714 /* MNT_IUNLOCK(mp); -- done in above function */ 6715 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 6716 return (NULL); 6717 } 6718 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6719 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6720 MNT_IUNLOCK(mp); 6721 return (vp); 6722 } 6723 6724 struct vnode * 6725 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 6726 { 6727 struct vnode *vp; 6728 6729 *mvp = vn_alloc_marker(mp); 6730 MNT_ILOCK(mp); 6731 MNT_REF(mp); 6732 6733 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 6734 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6735 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6736 continue; 6737 VI_LOCK(vp); 6738 if (VN_IS_DOOMED(vp)) { 6739 VI_UNLOCK(vp); 6740 continue; 6741 } 6742 break; 6743 } 6744 if (vp == NULL) { 6745 MNT_REL(mp); 6746 MNT_IUNLOCK(mp); 6747 vn_free_marker(*mvp); 6748 *mvp = NULL; 6749 return (NULL); 6750 } 6751 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6752 MNT_IUNLOCK(mp); 6753 return (vp); 6754 } 6755 6756 void 6757 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 6758 { 6759 6760 if (*mvp == NULL) { 6761 MNT_IUNLOCK(mp); 6762 return; 6763 } 6764 6765 mtx_assert(MNT_MTX(mp), MA_OWNED); 6766 6767 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6768 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6769 MNT_REL(mp); 6770 MNT_IUNLOCK(mp); 6771 vn_free_marker(*mvp); 6772 *mvp = NULL; 6773 } 6774 6775 /* 6776 * These are helper functions for filesystems to traverse their 6777 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h 6778 */ 6779 static void 6780 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 6781 { 6782 6783 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6784 6785 MNT_ILOCK(mp); 6786 MNT_REL(mp); 6787 MNT_IUNLOCK(mp); 6788 vn_free_marker(*mvp); 6789 *mvp = NULL; 6790 } 6791 6792 /* 6793 * Relock the mp mount vnode list lock with the vp vnode interlock in the 6794 * conventional lock order during mnt_vnode_next_lazy iteration. 6795 * 6796 * On entry, the mount vnode list lock is held and the vnode interlock is not. 6797 * The list lock is dropped and reacquired. On success, both locks are held. 6798 * On failure, the mount vnode list lock is held but the vnode interlock is 6799 * not, and the procedure may have yielded. 6800 */ 6801 static bool 6802 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, 6803 struct vnode *vp) 6804 { 6805 6806 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && 6807 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp, 6808 ("%s: bad marker", __func__)); 6809 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, 6810 ("%s: inappropriate vnode", __func__)); 6811 ASSERT_VI_UNLOCKED(vp, __func__); 6812 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 6813 6814 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist); 6815 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist); 6816 6817 /* 6818 * Note we may be racing against vdrop which transitioned the hold 6819 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine, 6820 * if we are the only user after we get the interlock we will just 6821 * vdrop. 6822 */ 6823 vhold(vp); 6824 mtx_unlock(&mp->mnt_listmtx); 6825 VI_LOCK(vp); 6826 if (VN_IS_DOOMED(vp)) { 6827 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 6828 goto out_lost; 6829 } 6830 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 6831 /* 6832 * There is nothing to do if we are the last user. 6833 */ 6834 if (!refcount_release_if_not_last(&vp->v_holdcnt)) 6835 goto out_lost; 6836 mtx_lock(&mp->mnt_listmtx); 6837 return (true); 6838 out_lost: 6839 vdropl(vp); 6840 maybe_yield(); 6841 mtx_lock(&mp->mnt_listmtx); 6842 return (false); 6843 } 6844 6845 static struct vnode * 6846 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6847 void *cbarg) 6848 { 6849 struct vnode *vp; 6850 6851 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 6852 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6853 restart: 6854 vp = TAILQ_NEXT(*mvp, v_lazylist); 6855 while (vp != NULL) { 6856 if (vp->v_type == VMARKER) { 6857 vp = TAILQ_NEXT(vp, v_lazylist); 6858 continue; 6859 } 6860 /* 6861 * See if we want to process the vnode. Note we may encounter a 6862 * long string of vnodes we don't care about and hog the list 6863 * as a result. Check for it and requeue the marker. 6864 */ 6865 VNPASS(!VN_IS_DOOMED(vp), vp); 6866 if (!cb(vp, cbarg)) { 6867 if (!should_yield()) { 6868 vp = TAILQ_NEXT(vp, v_lazylist); 6869 continue; 6870 } 6871 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, 6872 v_lazylist); 6873 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, 6874 v_lazylist); 6875 mtx_unlock(&mp->mnt_listmtx); 6876 kern_yield(PRI_USER); 6877 mtx_lock(&mp->mnt_listmtx); 6878 goto restart; 6879 } 6880 /* 6881 * Try-lock because this is the wrong lock order. 6882 */ 6883 if (!VI_TRYLOCK(vp) && 6884 !mnt_vnode_next_lazy_relock(*mvp, mp, vp)) 6885 goto restart; 6886 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 6887 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 6888 ("alien vnode on the lazy list %p %p", vp, mp)); 6889 VNPASS(vp->v_mount == mp, vp); 6890 VNPASS(!VN_IS_DOOMED(vp), vp); 6891 break; 6892 } 6893 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 6894 6895 /* Check if we are done */ 6896 if (vp == NULL) { 6897 mtx_unlock(&mp->mnt_listmtx); 6898 mnt_vnode_markerfree_lazy(mvp, mp); 6899 return (NULL); 6900 } 6901 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); 6902 mtx_unlock(&mp->mnt_listmtx); 6903 ASSERT_VI_LOCKED(vp, "lazy iter"); 6904 return (vp); 6905 } 6906 6907 struct vnode * 6908 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6909 void *cbarg) 6910 { 6911 6912 maybe_yield(); 6913 mtx_lock(&mp->mnt_listmtx); 6914 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 6915 } 6916 6917 struct vnode * 6918 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6919 void *cbarg) 6920 { 6921 struct vnode *vp; 6922 6923 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist)) 6924 return (NULL); 6925 6926 *mvp = vn_alloc_marker(mp); 6927 MNT_ILOCK(mp); 6928 MNT_REF(mp); 6929 MNT_IUNLOCK(mp); 6930 6931 mtx_lock(&mp->mnt_listmtx); 6932 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist); 6933 if (vp == NULL) { 6934 mtx_unlock(&mp->mnt_listmtx); 6935 mnt_vnode_markerfree_lazy(mvp, mp); 6936 return (NULL); 6937 } 6938 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist); 6939 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 6940 } 6941 6942 void 6943 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 6944 { 6945 6946 if (*mvp == NULL) 6947 return; 6948 6949 mtx_lock(&mp->mnt_listmtx); 6950 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 6951 mtx_unlock(&mp->mnt_listmtx); 6952 mnt_vnode_markerfree_lazy(mvp, mp); 6953 } 6954 6955 int 6956 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp) 6957 { 6958 6959 if ((cnp->cn_flags & NOEXECCHECK) != 0) { 6960 cnp->cn_flags &= ~NOEXECCHECK; 6961 return (0); 6962 } 6963 6964 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread)); 6965 } 6966 6967 /* 6968 * Do not use this variant unless you have means other than the hold count 6969 * to prevent the vnode from getting freed. 6970 */ 6971 void 6972 vn_seqc_write_begin_locked(struct vnode *vp) 6973 { 6974 6975 ASSERT_VI_LOCKED(vp, __func__); 6976 VNPASS(vp->v_holdcnt > 0, vp); 6977 VNPASS(vp->v_seqc_users >= 0, vp); 6978 vp->v_seqc_users++; 6979 if (vp->v_seqc_users == 1) 6980 seqc_sleepable_write_begin(&vp->v_seqc); 6981 } 6982 6983 void 6984 vn_seqc_write_begin(struct vnode *vp) 6985 { 6986 6987 VI_LOCK(vp); 6988 vn_seqc_write_begin_locked(vp); 6989 VI_UNLOCK(vp); 6990 } 6991 6992 void 6993 vn_seqc_write_end_locked(struct vnode *vp) 6994 { 6995 6996 ASSERT_VI_LOCKED(vp, __func__); 6997 VNPASS(vp->v_seqc_users > 0, vp); 6998 vp->v_seqc_users--; 6999 if (vp->v_seqc_users == 0) 7000 seqc_sleepable_write_end(&vp->v_seqc); 7001 } 7002 7003 void 7004 vn_seqc_write_end(struct vnode *vp) 7005 { 7006 7007 VI_LOCK(vp); 7008 vn_seqc_write_end_locked(vp); 7009 VI_UNLOCK(vp); 7010 } 7011 7012 /* 7013 * Special case handling for allocating and freeing vnodes. 7014 * 7015 * The counter remains unchanged on free so that a doomed vnode will 7016 * keep testing as in modify as long as it is accessible with SMR. 7017 */ 7018 static void 7019 vn_seqc_init(struct vnode *vp) 7020 { 7021 7022 vp->v_seqc = 0; 7023 vp->v_seqc_users = 0; 7024 } 7025 7026 static void 7027 vn_seqc_write_end_free(struct vnode *vp) 7028 { 7029 7030 VNPASS(seqc_in_modify(vp->v_seqc), vp); 7031 VNPASS(vp->v_seqc_users == 1, vp); 7032 } 7033 7034 void 7035 vn_irflag_set_locked(struct vnode *vp, short toset) 7036 { 7037 short flags; 7038 7039 ASSERT_VI_LOCKED(vp, __func__); 7040 flags = vn_irflag_read(vp); 7041 VNASSERT((flags & toset) == 0, vp, 7042 ("%s: some of the passed flags already set (have %d, passed %d)\n", 7043 __func__, flags, toset)); 7044 atomic_store_short(&vp->v_irflag, flags | toset); 7045 } 7046 7047 void 7048 vn_irflag_set(struct vnode *vp, short toset) 7049 { 7050 7051 VI_LOCK(vp); 7052 vn_irflag_set_locked(vp, toset); 7053 VI_UNLOCK(vp); 7054 } 7055 7056 void 7057 vn_irflag_set_cond_locked(struct vnode *vp, short toset) 7058 { 7059 short flags; 7060 7061 ASSERT_VI_LOCKED(vp, __func__); 7062 flags = vn_irflag_read(vp); 7063 atomic_store_short(&vp->v_irflag, flags | toset); 7064 } 7065 7066 void 7067 vn_irflag_set_cond(struct vnode *vp, short toset) 7068 { 7069 7070 VI_LOCK(vp); 7071 vn_irflag_set_cond_locked(vp, toset); 7072 VI_UNLOCK(vp); 7073 } 7074 7075 void 7076 vn_irflag_unset_locked(struct vnode *vp, short tounset) 7077 { 7078 short flags; 7079 7080 ASSERT_VI_LOCKED(vp, __func__); 7081 flags = vn_irflag_read(vp); 7082 VNASSERT((flags & tounset) == tounset, vp, 7083 ("%s: some of the passed flags not set (have %d, passed %d)\n", 7084 __func__, flags, tounset)); 7085 atomic_store_short(&vp->v_irflag, flags & ~tounset); 7086 } 7087 7088 void 7089 vn_irflag_unset(struct vnode *vp, short tounset) 7090 { 7091 7092 VI_LOCK(vp); 7093 vn_irflag_unset_locked(vp, tounset); 7094 VI_UNLOCK(vp); 7095 } 7096 7097 int 7098 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred) 7099 { 7100 struct vattr vattr; 7101 int error; 7102 7103 ASSERT_VOP_LOCKED(vp, __func__); 7104 error = VOP_GETATTR(vp, &vattr, cred); 7105 if (__predict_true(error == 0)) { 7106 if (vattr.va_size <= OFF_MAX) 7107 *size = vattr.va_size; 7108 else 7109 error = EFBIG; 7110 } 7111 return (error); 7112 } 7113 7114 int 7115 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred) 7116 { 7117 int error; 7118 7119 VOP_LOCK(vp, LK_SHARED); 7120 error = vn_getsize_locked(vp, size, cred); 7121 VOP_UNLOCK(vp); 7122 return (error); 7123 } 7124 7125 #ifdef INVARIANTS 7126 void 7127 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state) 7128 { 7129 7130 switch (vp->v_state) { 7131 case VSTATE_UNINITIALIZED: 7132 switch (state) { 7133 case VSTATE_CONSTRUCTED: 7134 case VSTATE_DESTROYING: 7135 return; 7136 default: 7137 break; 7138 } 7139 break; 7140 case VSTATE_CONSTRUCTED: 7141 ASSERT_VOP_ELOCKED(vp, __func__); 7142 switch (state) { 7143 case VSTATE_DESTROYING: 7144 return; 7145 default: 7146 break; 7147 } 7148 break; 7149 case VSTATE_DESTROYING: 7150 ASSERT_VOP_ELOCKED(vp, __func__); 7151 switch (state) { 7152 case VSTATE_DEAD: 7153 return; 7154 default: 7155 break; 7156 } 7157 break; 7158 case VSTATE_DEAD: 7159 switch (state) { 7160 case VSTATE_UNINITIALIZED: 7161 return; 7162 default: 7163 break; 7164 } 7165 break; 7166 } 7167 7168 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state); 7169 panic("invalid state transition %d -> %d\n", vp->v_state, state); 7170 } 7171 #endif 7172