xref: /freebsd/sys/kern/vfs_subr.c (revision f35e5d0ef0a10ebda81a076bbd838d12b916dab5)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD$
40  */
41 
42 /*
43  * External virtual filesystem routines
44  */
45 #include "opt_ddb.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/fcntl.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/kthread.h>
53 #include <sys/malloc.h>
54 #include <sys/mount.h>
55 #include <sys/socket.h>
56 #include <sys/vnode.h>
57 #include <sys/stat.h>
58 #include <sys/buf.h>
59 #include <sys/domain.h>
60 #include <sys/dirent.h>
61 #include <sys/vmmeter.h>
62 #include <sys/conf.h>
63 
64 #include <machine/limits.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <vm/vm_prot.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_extern.h>
71 #include <vm/pmap.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_pager.h>
75 #include <vm/vnode_pager.h>
76 #include <vm/vm_zone.h>
77 #include <sys/sysctl.h>
78 
79 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
80 
81 static void	insmntque __P((struct vnode *vp, struct mount *mp));
82 static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
83 static void	vfree __P((struct vnode *));
84 static void	vgonel __P((struct vnode *vp, struct proc *p));
85 static unsigned long	numvnodes;
86 SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
87 
88 enum vtype iftovt_tab[16] = {
89 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
90 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
91 };
92 int vttoif_tab[9] = {
93 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
94 	S_IFSOCK, S_IFIFO, S_IFMT,
95 };
96 
97 static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
98 struct tobefreelist vnode_tobefree_list;	/* vnode free list */
99 
100 static u_long wantfreevnodes = 25;
101 SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
102 static u_long freevnodes = 0;
103 SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
104 
105 static int reassignbufcalls;
106 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
107 static int reassignbufloops;
108 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
109 static int reassignbufsortgood;
110 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
111 static int reassignbufsortbad;
112 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
113 static int reassignbufmethod = 1;
114 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
115 
116 int enable_userblk_io = 1;
117 SYSCTL_INT(_vfs, OID_AUTO, enable_userblk_io, CTLFLAG_RW, &enable_userblk_io, 0, "");
118 
119 #ifdef ENABLE_VFS_IOOPT
120 int vfs_ioopt = 0;
121 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
122 #endif
123 
124 struct mntlist mountlist;	/* mounted filesystem list */
125 struct simplelock mountlist_slock;
126 struct simplelock mntvnode_slock;
127 int	nfs_mount_type = -1;
128 #ifndef NULL_SIMPLELOCKS
129 static struct simplelock mntid_slock;
130 static struct simplelock vnode_free_list_slock;
131 static struct simplelock spechash_slock;
132 #endif
133 struct nfs_public nfs_pub;	/* publicly exported FS */
134 static vm_zone_t vnode_zone;
135 
136 /*
137  * The workitem queue.
138  */
139 #define SYNCER_MAXDELAY		32
140 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
141 time_t syncdelay = 30;		/* max time to delay syncing data */
142 time_t filedelay = 30;		/* time to delay syncing files */
143 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
144 time_t dirdelay = 29;		/* time to delay syncing directories */
145 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
146 time_t metadelay = 28;		/* time to delay syncing metadata */
147 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
148 static int rushjob;			/* number of slots to run ASAP */
149 static int stat_rush_requests;	/* number of times I/O speeded up */
150 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
151 
152 static int syncer_delayno = 0;
153 static long syncer_mask;
154 LIST_HEAD(synclist, vnode);
155 static struct synclist *syncer_workitem_pending;
156 
157 int desiredvnodes;
158 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
159     &desiredvnodes, 0, "Maximum number of vnodes");
160 
161 static void	vfs_free_addrlist __P((struct netexport *nep));
162 static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
163 static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
164 				       struct export_args *argp));
165 
166 /*
167  * Initialize the vnode management data structures.
168  */
169 void
170 vntblinit()
171 {
172 
173 	desiredvnodes = maxproc + cnt.v_page_count / 4;
174 	simple_lock_init(&mntvnode_slock);
175 	simple_lock_init(&mntid_slock);
176 	simple_lock_init(&spechash_slock);
177 	TAILQ_INIT(&vnode_free_list);
178 	TAILQ_INIT(&vnode_tobefree_list);
179 	simple_lock_init(&vnode_free_list_slock);
180 	CIRCLEQ_INIT(&mountlist);
181 	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
182 	/*
183 	 * Initialize the filesystem syncer.
184 	 */
185 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
186 		&syncer_mask);
187 	syncer_maxdelay = syncer_mask + 1;
188 }
189 
190 /*
191  * Mark a mount point as busy. Used to synchronize access and to delay
192  * unmounting. Interlock is not released on failure.
193  */
194 int
195 vfs_busy(mp, flags, interlkp, p)
196 	struct mount *mp;
197 	int flags;
198 	struct simplelock *interlkp;
199 	struct proc *p;
200 {
201 	int lkflags;
202 
203 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
204 		if (flags & LK_NOWAIT)
205 			return (ENOENT);
206 		mp->mnt_kern_flag |= MNTK_MWAIT;
207 		if (interlkp) {
208 			simple_unlock(interlkp);
209 		}
210 		/*
211 		 * Since all busy locks are shared except the exclusive
212 		 * lock granted when unmounting, the only place that a
213 		 * wakeup needs to be done is at the release of the
214 		 * exclusive lock at the end of dounmount.
215 		 */
216 		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
217 		if (interlkp) {
218 			simple_lock(interlkp);
219 		}
220 		return (ENOENT);
221 	}
222 	lkflags = LK_SHARED | LK_NOPAUSE;
223 	if (interlkp)
224 		lkflags |= LK_INTERLOCK;
225 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
226 		panic("vfs_busy: unexpected lock failure");
227 	return (0);
228 }
229 
230 /*
231  * Free a busy filesystem.
232  */
233 void
234 vfs_unbusy(mp, p)
235 	struct mount *mp;
236 	struct proc *p;
237 {
238 
239 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
240 }
241 
242 /*
243  * Lookup a filesystem type, and if found allocate and initialize
244  * a mount structure for it.
245  *
246  * Devname is usually updated by mount(8) after booting.
247  */
248 int
249 vfs_rootmountalloc(fstypename, devname, mpp)
250 	char *fstypename;
251 	char *devname;
252 	struct mount **mpp;
253 {
254 	struct proc *p = curproc;	/* XXX */
255 	struct vfsconf *vfsp;
256 	struct mount *mp;
257 
258 	if (fstypename == NULL)
259 		return (ENODEV);
260 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
261 		if (!strcmp(vfsp->vfc_name, fstypename))
262 			break;
263 	if (vfsp == NULL)
264 		return (ENODEV);
265 	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
266 	bzero((char *)mp, (u_long)sizeof(struct mount));
267 	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
268 	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
269 	LIST_INIT(&mp->mnt_vnodelist);
270 	mp->mnt_vfc = vfsp;
271 	mp->mnt_op = vfsp->vfc_vfsops;
272 	mp->mnt_flag = MNT_RDONLY;
273 	mp->mnt_vnodecovered = NULLVP;
274 	vfsp->vfc_refcount++;
275 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
276 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
277 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
278 	mp->mnt_stat.f_mntonname[0] = '/';
279 	mp->mnt_stat.f_mntonname[1] = 0;
280 	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
281 	*mpp = mp;
282 	return (0);
283 }
284 
285 /*
286  * Find an appropriate filesystem to use for the root. If a filesystem
287  * has not been preselected, walk through the list of known filesystems
288  * trying those that have mountroot routines, and try them until one
289  * works or we have tried them all.
290  */
291 #ifdef notdef	/* XXX JH */
292 int
293 lite2_vfs_mountroot()
294 {
295 	struct vfsconf *vfsp;
296 	extern int (*lite2_mountroot) __P((void));
297 	int error;
298 
299 	if (lite2_mountroot != NULL)
300 		return ((*lite2_mountroot)());
301 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
302 		if (vfsp->vfc_mountroot == NULL)
303 			continue;
304 		if ((error = (*vfsp->vfc_mountroot)()) == 0)
305 			return (0);
306 		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
307 	}
308 	return (ENODEV);
309 }
310 #endif
311 
312 /*
313  * Lookup a mount point by filesystem identifier.
314  */
315 struct mount *
316 vfs_getvfs(fsid)
317 	fsid_t *fsid;
318 {
319 	register struct mount *mp;
320 
321 	simple_lock(&mountlist_slock);
322 	for (mp = mountlist.cqh_first; mp != (void *)&mountlist;
323 	    mp = mp->mnt_list.cqe_next) {
324 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
325 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
326 			simple_unlock(&mountlist_slock);
327 			return (mp);
328 	    }
329 	}
330 	simple_unlock(&mountlist_slock);
331 	return ((struct mount *) 0);
332 }
333 
334 /*
335  * Get a new unique fsid
336  */
337 void
338 vfs_getnewfsid(mp)
339 	struct mount *mp;
340 {
341 	static u_short xxxfs_mntid;
342 
343 	fsid_t tfsid;
344 	int mtype;
345 
346 	simple_lock(&mntid_slock);
347 	mtype = mp->mnt_vfc->vfc_typenum;
348 	mp->mnt_stat.f_fsid.val[0] = makeudev(255, mtype);
349 	mp->mnt_stat.f_fsid.val[1] = mtype;
350 	if (xxxfs_mntid == 0)
351 		++xxxfs_mntid;
352 	tfsid.val[0] = makeudev(255, mtype + (xxxfs_mntid << 16));
353 	tfsid.val[1] = mtype;
354 	if (mountlist.cqh_first != (void *)&mountlist) {
355 		while (vfs_getvfs(&tfsid)) {
356 			xxxfs_mntid++;
357 			tfsid.val[0] = makeudev(255,
358 			    mtype + (xxxfs_mntid << 16));
359 		}
360 	}
361 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
362 	simple_unlock(&mntid_slock);
363 }
364 
365 /*
366  * Knob to control the precision of file timestamps:
367  *
368  *   0 = seconds only; nanoseconds zeroed.
369  *   1 = seconds and nanoseconds, accurate within 1/HZ.
370  *   2 = seconds and nanoseconds, truncated to microseconds.
371  * >=3 = seconds and nanoseconds, maximum precision.
372  */
373 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
374 
375 static int timestamp_precision = TSP_SEC;
376 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
377     &timestamp_precision, 0, "");
378 
379 /*
380  * Get a current timestamp.
381  */
382 void
383 vfs_timestamp(tsp)
384 	struct timespec *tsp;
385 {
386 	struct timeval tv;
387 
388 	switch (timestamp_precision) {
389 	case TSP_SEC:
390 		tsp->tv_sec = time_second;
391 		tsp->tv_nsec = 0;
392 		break;
393 	case TSP_HZ:
394 		getnanotime(tsp);
395 		break;
396 	case TSP_USEC:
397 		microtime(&tv);
398 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
399 		break;
400 	case TSP_NSEC:
401 	default:
402 		nanotime(tsp);
403 		break;
404 	}
405 }
406 
407 /*
408  * Set vnode attributes to VNOVAL
409  */
410 void
411 vattr_null(vap)
412 	register struct vattr *vap;
413 {
414 
415 	vap->va_type = VNON;
416 	vap->va_size = VNOVAL;
417 	vap->va_bytes = VNOVAL;
418 	vap->va_mode = VNOVAL;
419 	vap->va_nlink = VNOVAL;
420 	vap->va_uid = VNOVAL;
421 	vap->va_gid = VNOVAL;
422 	vap->va_fsid = VNOVAL;
423 	vap->va_fileid = VNOVAL;
424 	vap->va_blocksize = VNOVAL;
425 	vap->va_rdev = VNOVAL;
426 	vap->va_atime.tv_sec = VNOVAL;
427 	vap->va_atime.tv_nsec = VNOVAL;
428 	vap->va_mtime.tv_sec = VNOVAL;
429 	vap->va_mtime.tv_nsec = VNOVAL;
430 	vap->va_ctime.tv_sec = VNOVAL;
431 	vap->va_ctime.tv_nsec = VNOVAL;
432 	vap->va_flags = VNOVAL;
433 	vap->va_gen = VNOVAL;
434 	vap->va_vaflags = 0;
435 }
436 
437 /*
438  * Routines having to do with the management of the vnode table.
439  */
440 extern vop_t **dead_vnodeop_p;
441 
442 /*
443  * Return the next vnode from the free list.
444  */
445 int
446 getnewvnode(tag, mp, vops, vpp)
447 	enum vtagtype tag;
448 	struct mount *mp;
449 	vop_t **vops;
450 	struct vnode **vpp;
451 {
452 	int s;
453 	struct proc *p = curproc;	/* XXX */
454 	struct vnode *vp, *tvp, *nvp;
455 	vm_object_t object;
456 	TAILQ_HEAD(freelst, vnode) vnode_tmp_list;
457 
458 	/*
459 	 * We take the least recently used vnode from the freelist
460 	 * if we can get it and it has no cached pages, and no
461 	 * namecache entries are relative to it.
462 	 * Otherwise we allocate a new vnode
463 	 */
464 
465 	s = splbio();
466 	simple_lock(&vnode_free_list_slock);
467 	TAILQ_INIT(&vnode_tmp_list);
468 
469 	for (vp = TAILQ_FIRST(&vnode_tobefree_list); vp; vp = nvp) {
470 		nvp = TAILQ_NEXT(vp, v_freelist);
471 		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
472 		if (vp->v_flag & VAGE) {
473 			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
474 		} else {
475 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
476 		}
477 		vp->v_flag &= ~(VTBFREE|VAGE);
478 		vp->v_flag |= VFREE;
479 		if (vp->v_usecount)
480 			panic("tobe free vnode isn't");
481 		freevnodes++;
482 	}
483 
484 	if (wantfreevnodes && freevnodes < wantfreevnodes) {
485 		vp = NULL;
486 	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
487 		/*
488 		 * XXX: this is only here to be backwards compatible
489 		 */
490 		vp = NULL;
491 	} else {
492 		for (vp = TAILQ_FIRST(&vnode_free_list); vp; vp = nvp) {
493 			nvp = TAILQ_NEXT(vp, v_freelist);
494 			if (!simple_lock_try(&vp->v_interlock))
495 				continue;
496 			if (vp->v_usecount)
497 				panic("free vnode isn't");
498 
499 			object = vp->v_object;
500 			if (object && (object->resident_page_count || object->ref_count)) {
501 				printf("object inconsistant state: RPC: %d, RC: %d\n",
502 					object->resident_page_count, object->ref_count);
503 				/* Don't recycle if it's caching some pages */
504 				TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
505 				TAILQ_INSERT_TAIL(&vnode_tmp_list, vp, v_freelist);
506 				continue;
507 			} else if (LIST_FIRST(&vp->v_cache_src)) {
508 				/* Don't recycle if active in the namecache */
509 				simple_unlock(&vp->v_interlock);
510 				continue;
511 			} else {
512 				break;
513 			}
514 		}
515 	}
516 
517 	for (tvp = TAILQ_FIRST(&vnode_tmp_list); tvp; tvp = nvp) {
518 		nvp = TAILQ_NEXT(tvp, v_freelist);
519 		TAILQ_REMOVE(&vnode_tmp_list, tvp, v_freelist);
520 		TAILQ_INSERT_TAIL(&vnode_free_list, tvp, v_freelist);
521 		simple_unlock(&tvp->v_interlock);
522 	}
523 
524 	if (vp) {
525 		vp->v_flag |= VDOOMED;
526 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
527 		freevnodes--;
528 		simple_unlock(&vnode_free_list_slock);
529 		cache_purge(vp);
530 		vp->v_lease = NULL;
531 		if (vp->v_type != VBAD) {
532 			vgonel(vp, p);
533 		} else {
534 			simple_unlock(&vp->v_interlock);
535 		}
536 
537 #ifdef INVARIANTS
538 		{
539 			int s;
540 
541 			if (vp->v_data)
542 				panic("cleaned vnode isn't");
543 			s = splbio();
544 			if (vp->v_numoutput)
545 				panic("Clean vnode has pending I/O's");
546 			splx(s);
547 		}
548 #endif
549 		vp->v_flag = 0;
550 		vp->v_lastr = 0;
551 		vp->v_lastw = 0;
552 		vp->v_lasta = 0;
553 		vp->v_cstart = 0;
554 		vp->v_clen = 0;
555 		vp->v_socket = 0;
556 		vp->v_writecount = 0;	/* XXX */
557 		vp->v_maxio = 0;
558 	} else {
559 		simple_unlock(&vnode_free_list_slock);
560 		vp = (struct vnode *) zalloc(vnode_zone);
561 		bzero((char *) vp, sizeof *vp);
562 		simple_lock_init(&vp->v_interlock);
563 		vp->v_dd = vp;
564 		cache_purge(vp);
565 		LIST_INIT(&vp->v_cache_src);
566 		TAILQ_INIT(&vp->v_cache_dst);
567 		numvnodes++;
568 	}
569 
570 	TAILQ_INIT(&vp->v_cleanblkhd);
571 	TAILQ_INIT(&vp->v_dirtyblkhd);
572 	vp->v_type = VNON;
573 	vp->v_tag = tag;
574 	vp->v_op = vops;
575 	insmntque(vp, mp);
576 	*vpp = vp;
577 	vp->v_usecount = 1;
578 	vp->v_data = 0;
579 	splx(s);
580 
581 	vfs_object_create(vp, p, p->p_ucred);
582 	return (0);
583 }
584 
585 /*
586  * Move a vnode from one mount queue to another.
587  */
588 static void
589 insmntque(vp, mp)
590 	register struct vnode *vp;
591 	register struct mount *mp;
592 {
593 
594 	simple_lock(&mntvnode_slock);
595 	/*
596 	 * Delete from old mount point vnode list, if on one.
597 	 */
598 	if (vp->v_mount != NULL)
599 		LIST_REMOVE(vp, v_mntvnodes);
600 	/*
601 	 * Insert into list of vnodes for the new mount point, if available.
602 	 */
603 	if ((vp->v_mount = mp) == NULL) {
604 		simple_unlock(&mntvnode_slock);
605 		return;
606 	}
607 	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
608 	simple_unlock(&mntvnode_slock);
609 }
610 
611 /*
612  * Update outstanding I/O count and do wakeup if requested.
613  */
614 void
615 vwakeup(bp)
616 	register struct buf *bp;
617 {
618 	register struct vnode *vp;
619 
620 	bp->b_flags &= ~B_WRITEINPROG;
621 	if ((vp = bp->b_vp)) {
622 		vp->v_numoutput--;
623 		if (vp->v_numoutput < 0)
624 			panic("vwakeup: neg numoutput");
625 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
626 			vp->v_flag &= ~VBWAIT;
627 			wakeup((caddr_t) &vp->v_numoutput);
628 		}
629 	}
630 }
631 
632 /*
633  * Flush out and invalidate all buffers associated with a vnode.
634  * Called with the underlying object locked.
635  */
636 int
637 vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
638 	register struct vnode *vp;
639 	int flags;
640 	struct ucred *cred;
641 	struct proc *p;
642 	int slpflag, slptimeo;
643 {
644 	register struct buf *bp;
645 	struct buf *nbp, *blist;
646 	int s, error;
647 	vm_object_t object;
648 
649 	if (flags & V_SAVE) {
650 		s = splbio();
651 		while (vp->v_numoutput) {
652 			vp->v_flag |= VBWAIT;
653 			error = tsleep((caddr_t)&vp->v_numoutput,
654 			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
655 			if (error) {
656 				splx(s);
657 				return (error);
658 			}
659 		}
660 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
661 			splx(s);
662 			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
663 				return (error);
664 			s = splbio();
665 			if (vp->v_numoutput > 0 ||
666 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
667 				panic("vinvalbuf: dirty bufs");
668 		}
669 		splx(s);
670   	}
671 	s = splbio();
672 	for (;;) {
673 		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
674 		if (!blist)
675 			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
676 		if (!blist)
677 			break;
678 
679 		for (bp = blist; bp; bp = nbp) {
680 			nbp = TAILQ_NEXT(bp, b_vnbufs);
681 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
682 				error = BUF_TIMELOCK(bp,
683 				    LK_EXCLUSIVE | LK_SLEEPFAIL,
684 				    "vinvalbuf", slpflag, slptimeo);
685 				if (error == ENOLCK)
686 					break;
687 				splx(s);
688 				return (error);
689 			}
690 			/*
691 			 * XXX Since there are no node locks for NFS, I
692 			 * believe there is a slight chance that a delayed
693 			 * write will occur while sleeping just above, so
694 			 * check for it.  Note that vfs_bio_awrite expects
695 			 * buffers to reside on a queue, while VOP_BWRITE and
696 			 * brelse do not.
697 			 */
698 			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
699 				(flags & V_SAVE)) {
700 
701 				if (bp->b_vp == vp) {
702 					if (bp->b_flags & B_CLUSTEROK) {
703 						BUF_UNLOCK(bp);
704 						vfs_bio_awrite(bp);
705 					} else {
706 						bremfree(bp);
707 						bp->b_flags |= B_ASYNC;
708 						VOP_BWRITE(bp->b_vp, bp);
709 					}
710 				} else {
711 					bremfree(bp);
712 					(void) VOP_BWRITE(bp->b_vp, bp);
713 				}
714 				break;
715 			}
716 			bremfree(bp);
717 			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
718 			bp->b_flags &= ~B_ASYNC;
719 			brelse(bp);
720 		}
721 	}
722 
723 	while (vp->v_numoutput > 0) {
724 		vp->v_flag |= VBWAIT;
725 		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
726 	}
727 
728 	splx(s);
729 
730 	/*
731 	 * Destroy the copy in the VM cache, too.
732 	 */
733 	simple_lock(&vp->v_interlock);
734 	object = vp->v_object;
735 	if (object != NULL) {
736 		vm_object_page_remove(object, 0, 0,
737 			(flags & V_SAVE) ? TRUE : FALSE);
738 	}
739 	simple_unlock(&vp->v_interlock);
740 
741 	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
742 		panic("vinvalbuf: flush failed");
743 	return (0);
744 }
745 
746 /*
747  * Truncate a file's buffer and pages to a specified length.  This
748  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
749  * sync activity.
750  */
751 int
752 vtruncbuf(vp, cred, p, length, blksize)
753 	register struct vnode *vp;
754 	struct ucred *cred;
755 	struct proc *p;
756 	off_t length;
757 	int blksize;
758 {
759 	register struct buf *bp;
760 	struct buf *nbp;
761 	int s, anyfreed;
762 	int trunclbn;
763 
764 	/*
765 	 * Round up to the *next* lbn.
766 	 */
767 	trunclbn = (length + blksize - 1) / blksize;
768 
769 	s = splbio();
770 restart:
771 	anyfreed = 1;
772 	for (;anyfreed;) {
773 		anyfreed = 0;
774 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
775 			nbp = TAILQ_NEXT(bp, b_vnbufs);
776 			if (bp->b_lblkno >= trunclbn) {
777 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
778 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
779 					goto restart;
780 				} else {
781 					bremfree(bp);
782 					bp->b_flags |= (B_INVAL | B_RELBUF);
783 					bp->b_flags &= ~B_ASYNC;
784 					brelse(bp);
785 					anyfreed = 1;
786 				}
787 				if (nbp && (((nbp->b_xflags & B_VNCLEAN) == 0)||
788 					 (nbp->b_vp != vp) ||
789 					 (nbp->b_flags & B_DELWRI))) {
790 					goto restart;
791 				}
792 			}
793 		}
794 
795 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
796 			nbp = TAILQ_NEXT(bp, b_vnbufs);
797 			if (bp->b_lblkno >= trunclbn) {
798 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
799 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
800 					goto restart;
801 				} else {
802 					bremfree(bp);
803 					bp->b_flags |= (B_INVAL | B_RELBUF);
804 					bp->b_flags &= ~B_ASYNC;
805 					brelse(bp);
806 					anyfreed = 1;
807 				}
808 				if (nbp && (((nbp->b_xflags & B_VNDIRTY) == 0)||
809 					 (nbp->b_vp != vp) ||
810 					 (nbp->b_flags & B_DELWRI) == 0)) {
811 					goto restart;
812 				}
813 			}
814 		}
815 	}
816 
817 	if (length > 0) {
818 restartsync:
819 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
820 			nbp = TAILQ_NEXT(bp, b_vnbufs);
821 			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
822 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
823 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
824 					goto restart;
825 				} else {
826 					bremfree(bp);
827 					if (bp->b_vp == vp) {
828 						bp->b_flags |= B_ASYNC;
829 					} else {
830 						bp->b_flags &= ~B_ASYNC;
831 					}
832 					VOP_BWRITE(bp->b_vp, bp);
833 				}
834 				goto restartsync;
835 			}
836 
837 		}
838 	}
839 
840 	while (vp->v_numoutput > 0) {
841 		vp->v_flag |= VBWAIT;
842 		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
843 	}
844 
845 	splx(s);
846 
847 	vnode_pager_setsize(vp, length);
848 
849 	return (0);
850 }
851 
852 /*
853  * Associate a buffer with a vnode.
854  */
855 void
856 bgetvp(vp, bp)
857 	register struct vnode *vp;
858 	register struct buf *bp;
859 {
860 	int s;
861 
862 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
863 
864 	vhold(vp);
865 	bp->b_vp = vp;
866 	bp->b_dev = vn_todev(vp);
867 	/*
868 	 * Insert onto list for new vnode.
869 	 */
870 	s = splbio();
871 	bp->b_xflags |= B_VNCLEAN;
872 	bp->b_xflags &= ~B_VNDIRTY;
873 	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
874 	splx(s);
875 }
876 
877 /*
878  * Disassociate a buffer from a vnode.
879  */
880 void
881 brelvp(bp)
882 	register struct buf *bp;
883 {
884 	struct vnode *vp;
885 	struct buflists *listheadp;
886 	int s;
887 
888 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
889 
890 	/*
891 	 * Delete from old vnode list, if on one.
892 	 */
893 	vp = bp->b_vp;
894 	s = splbio();
895 	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
896 		if (bp->b_xflags & B_VNDIRTY)
897 			listheadp = &vp->v_dirtyblkhd;
898 		else
899 			listheadp = &vp->v_cleanblkhd;
900 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
901 		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
902 	}
903 	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
904 		vp->v_flag &= ~VONWORKLST;
905 		LIST_REMOVE(vp, v_synclist);
906 	}
907 	splx(s);
908 	bp->b_vp = (struct vnode *) 0;
909 	vdrop(vp);
910 }
911 
912 /*
913  * The workitem queue.
914  *
915  * It is useful to delay writes of file data and filesystem metadata
916  * for tens of seconds so that quickly created and deleted files need
917  * not waste disk bandwidth being created and removed. To realize this,
918  * we append vnodes to a "workitem" queue. When running with a soft
919  * updates implementation, most pending metadata dependencies should
920  * not wait for more than a few seconds. Thus, mounted on block devices
921  * are delayed only about a half the time that file data is delayed.
922  * Similarly, directory updates are more critical, so are only delayed
923  * about a third the time that file data is delayed. Thus, there are
924  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
925  * one each second (driven off the filesystem syncer process). The
926  * syncer_delayno variable indicates the next queue that is to be processed.
927  * Items that need to be processed soon are placed in this queue:
928  *
929  *	syncer_workitem_pending[syncer_delayno]
930  *
931  * A delay of fifteen seconds is done by placing the request fifteen
932  * entries later in the queue:
933  *
934  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
935  *
936  */
937 
938 /*
939  * Add an item to the syncer work queue.
940  */
941 static void
942 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
943 {
944 	int s, slot;
945 
946 	s = splbio();
947 
948 	if (vp->v_flag & VONWORKLST) {
949 		LIST_REMOVE(vp, v_synclist);
950 	}
951 
952 	if (delay > syncer_maxdelay - 2)
953 		delay = syncer_maxdelay - 2;
954 	slot = (syncer_delayno + delay) & syncer_mask;
955 
956 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
957 	vp->v_flag |= VONWORKLST;
958 	splx(s);
959 }
960 
961 struct  proc *updateproc;
962 static void sched_sync __P((void));
963 static struct kproc_desc up_kp = {
964 	"syncer",
965 	sched_sync,
966 	&updateproc
967 };
968 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
969 
970 /*
971  * System filesystem synchronizer daemon.
972  */
973 void
974 sched_sync(void)
975 {
976 	struct synclist *slp;
977 	struct vnode *vp;
978 	long starttime;
979 	int s;
980 	struct proc *p = updateproc;
981 
982 	p->p_flag |= P_BUFEXHAUST;
983 
984 	for (;;) {
985 		starttime = time_second;
986 
987 		/*
988 		 * Push files whose dirty time has expired.  Be careful
989 		 * of interrupt race on slp queue.
990 		 */
991 		s = splbio();
992 		slp = &syncer_workitem_pending[syncer_delayno];
993 		syncer_delayno += 1;
994 		if (syncer_delayno == syncer_maxdelay)
995 			syncer_delayno = 0;
996 		splx(s);
997 
998 		while ((vp = LIST_FIRST(slp)) != NULL) {
999 			if (VOP_ISLOCKED(vp) == 0) {
1000 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1001 				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1002 				VOP_UNLOCK(vp, 0, p);
1003 			}
1004 			s = splbio();
1005 			if (LIST_FIRST(slp) == vp) {
1006 				/*
1007 				 * Note: v_tag VT_VFS vps can remain on the
1008 				 * worklist too with no dirty blocks, but
1009 				 * since sync_fsync() moves it to a different
1010 				 * slot we are safe.
1011 				 */
1012 				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1013 				    vp->v_type != VBLK)
1014 					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1015 				/*
1016 				 * Put us back on the worklist.  The worklist
1017 				 * routine will remove us from our current
1018 				 * position and then add us back in at a later
1019 				 * position.
1020 				 */
1021 				vn_syncer_add_to_worklist(vp, syncdelay);
1022 			}
1023 			splx(s);
1024 		}
1025 
1026 		/*
1027 		 * Do soft update processing.
1028 		 */
1029 		if (bioops.io_sync)
1030 			(*bioops.io_sync)(NULL);
1031 
1032 		/*
1033 		 * The variable rushjob allows the kernel to speed up the
1034 		 * processing of the filesystem syncer process. A rushjob
1035 		 * value of N tells the filesystem syncer to process the next
1036 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1037 		 * is used by the soft update code to speed up the filesystem
1038 		 * syncer process when the incore state is getting so far
1039 		 * ahead of the disk that the kernel memory pool is being
1040 		 * threatened with exhaustion.
1041 		 */
1042 		if (rushjob > 0) {
1043 			rushjob -= 1;
1044 			continue;
1045 		}
1046 		/*
1047 		 * If it has taken us less than a second to process the
1048 		 * current work, then wait. Otherwise start right over
1049 		 * again. We can still lose time if any single round
1050 		 * takes more than two seconds, but it does not really
1051 		 * matter as we are just trying to generally pace the
1052 		 * filesystem activity.
1053 		 */
1054 		if (time_second == starttime)
1055 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1056 	}
1057 }
1058 
1059 /*
1060  * Request the syncer daemon to speed up its work.
1061  * We never push it to speed up more than half of its
1062  * normal turn time, otherwise it could take over the cpu.
1063  */
1064 int
1065 speedup_syncer()
1066 {
1067 	int s;
1068 
1069 	s = splhigh();
1070 	if (updateproc->p_wchan == &lbolt)
1071 		setrunnable(updateproc);
1072 	splx(s);
1073 	if (rushjob < syncdelay / 2) {
1074 		rushjob += 1;
1075 		stat_rush_requests += 1;
1076 		return (1);
1077 	}
1078 	return(0);
1079 }
1080 
1081 /*
1082  * Associate a p-buffer with a vnode.
1083  *
1084  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1085  * with the buffer.  i.e. the bp has not been linked into the vnode or
1086  * ref-counted.
1087  */
1088 void
1089 pbgetvp(vp, bp)
1090 	register struct vnode *vp;
1091 	register struct buf *bp;
1092 {
1093 
1094 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1095 
1096 	bp->b_vp = vp;
1097 	bp->b_flags |= B_PAGING;
1098 	bp->b_dev = vn_todev(vp);
1099 }
1100 
1101 /*
1102  * Disassociate a p-buffer from a vnode.
1103  */
1104 void
1105 pbrelvp(bp)
1106 	register struct buf *bp;
1107 {
1108 
1109 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1110 
1111 #if !defined(MAX_PERF)
1112 	/* XXX REMOVE ME */
1113 	if (bp->b_vnbufs.tqe_next != NULL) {
1114 		panic(
1115 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1116 		    bp,
1117 		    (int)bp->b_flags
1118 		);
1119 	}
1120 #endif
1121 	bp->b_vp = (struct vnode *) 0;
1122 	bp->b_flags &= ~B_PAGING;
1123 }
1124 
1125 void
1126 pbreassignbuf(bp, newvp)
1127 	struct buf *bp;
1128 	struct vnode *newvp;
1129 {
1130 #if !defined(MAX_PERF)
1131 	if ((bp->b_flags & B_PAGING) == 0) {
1132 		panic(
1133 		    "pbreassignbuf() on non phys bp %p",
1134 		    bp
1135 		);
1136 	}
1137 #endif
1138 	bp->b_vp = newvp;
1139 }
1140 
1141 /*
1142  * Reassign a buffer from one vnode to another.
1143  * Used to assign file specific control information
1144  * (indirect blocks) to the vnode to which they belong.
1145  */
1146 void
1147 reassignbuf(bp, newvp)
1148 	register struct buf *bp;
1149 	register struct vnode *newvp;
1150 {
1151 	struct buflists *listheadp;
1152 	int delay;
1153 	int s;
1154 
1155 	if (newvp == NULL) {
1156 		printf("reassignbuf: NULL");
1157 		return;
1158 	}
1159 	++reassignbufcalls;
1160 
1161 #if !defined(MAX_PERF)
1162 	/*
1163 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1164 	 * is not fully linked in.
1165 	 */
1166 	if (bp->b_flags & B_PAGING)
1167 		panic("cannot reassign paging buffer");
1168 #endif
1169 
1170 	s = splbio();
1171 	/*
1172 	 * Delete from old vnode list, if on one.
1173 	 */
1174 	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
1175 		if (bp->b_xflags & B_VNDIRTY)
1176 			listheadp = &bp->b_vp->v_dirtyblkhd;
1177 		else
1178 			listheadp = &bp->b_vp->v_cleanblkhd;
1179 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1180 		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
1181 		if (bp->b_vp != newvp) {
1182 			vdrop(bp->b_vp);
1183 			bp->b_vp = NULL;	/* for clarification */
1184 		}
1185 	}
1186 	/*
1187 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1188 	 * of clean buffers.
1189 	 */
1190 	if (bp->b_flags & B_DELWRI) {
1191 		struct buf *tbp;
1192 
1193 		listheadp = &newvp->v_dirtyblkhd;
1194 		if ((newvp->v_flag & VONWORKLST) == 0) {
1195 			switch (newvp->v_type) {
1196 			case VDIR:
1197 				delay = dirdelay;
1198 				break;
1199 			case VBLK:
1200 				if (newvp->v_specmountpoint != NULL) {
1201 					delay = metadelay;
1202 					break;
1203 				}
1204 				/* fall through */
1205 			default:
1206 				delay = filedelay;
1207 			}
1208 			vn_syncer_add_to_worklist(newvp, delay);
1209 		}
1210 		bp->b_xflags |= B_VNDIRTY;
1211 		tbp = TAILQ_FIRST(listheadp);
1212 		if (tbp == NULL ||
1213 		    bp->b_lblkno == 0 ||
1214 		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1215 			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1216 			++reassignbufsortgood;
1217 		} else if (bp->b_lblkno < 0) {
1218 			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1219 			++reassignbufsortgood;
1220 		} else if (reassignbufmethod == 1) {
1221 			/*
1222 			 * New sorting algorithm, only handle sequential case,
1223 			 * otherwise guess.
1224 			 */
1225 			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1226 			    (tbp->b_xflags & B_VNDIRTY)) {
1227 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1228 				++reassignbufsortgood;
1229 			} else {
1230 				TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1231 				++reassignbufsortbad;
1232 			}
1233 		} else {
1234 			/*
1235 			 * Old sorting algorithm, scan queue and insert
1236 			 */
1237 			struct buf *ttbp;
1238 			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1239 			    (ttbp->b_lblkno < bp->b_lblkno)) {
1240 				++reassignbufloops;
1241 				tbp = ttbp;
1242 			}
1243 			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1244 		}
1245 	} else {
1246 		bp->b_xflags |= B_VNCLEAN;
1247 		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1248 		if ((newvp->v_flag & VONWORKLST) &&
1249 		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1250 			newvp->v_flag &= ~VONWORKLST;
1251 			LIST_REMOVE(newvp, v_synclist);
1252 		}
1253 	}
1254 	if (bp->b_vp != newvp) {
1255 		bp->b_vp = newvp;
1256 		vhold(bp->b_vp);
1257 	}
1258 	splx(s);
1259 }
1260 
1261 /*
1262  * Create a vnode for a block device.
1263  * Used for mounting the root file system.
1264  */
1265 int
1266 bdevvp(dev, vpp)
1267 	dev_t dev;
1268 	struct vnode **vpp;
1269 {
1270 	register struct vnode *vp;
1271 	struct vnode *nvp;
1272 	int error;
1273 
1274 	if (dev == NODEV) {
1275 		*vpp = NULLVP;
1276 		return (ENXIO);
1277 	}
1278 	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1279 	if (error) {
1280 		*vpp = NULLVP;
1281 		return (error);
1282 	}
1283 	vp = nvp;
1284 	vp->v_type = VBLK;
1285 	addalias(vp, dev);
1286 	*vpp = vp;
1287 	return (0);
1288 }
1289 
1290 /*
1291  * Add vnode to the alias list hung off the dev_t.
1292  *
1293  * The reason for this gunk is that multiple vnodes can reference
1294  * the same physical device, so checking vp->v_usecount to see
1295  * how many users there are is inadequate; the v_usecount for
1296  * the vnodes need to be accumulated.  vcount() does that.
1297  */
1298 void
1299 addaliasu(nvp, nvp_rdev)
1300 	struct vnode *nvp;
1301 	udev_t nvp_rdev;
1302 {
1303 
1304 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1305 		panic("addaliasu on non-special vnode");
1306 
1307 	nvp->v_rdev = udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0);
1308 	simple_lock(&spechash_slock);
1309 	SLIST_INSERT_HEAD(&nvp->v_rdev->si_hlist, nvp, v_specnext);
1310 	simple_unlock(&spechash_slock);
1311 }
1312 
1313 void
1314 addalias(nvp, dev)
1315 	struct vnode *nvp;
1316 	dev_t dev;
1317 {
1318 
1319 	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1320 		panic("addalias on non-special vnode");
1321 
1322 	nvp->v_rdev = dev;
1323 	simple_lock(&spechash_slock);
1324 	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1325 	simple_unlock(&spechash_slock);
1326 }
1327 
1328 /*
1329  * Grab a particular vnode from the free list, increment its
1330  * reference count and lock it. The vnode lock bit is set if the
1331  * vnode is being eliminated in vgone. The process is awakened
1332  * when the transition is completed, and an error returned to
1333  * indicate that the vnode is no longer usable (possibly having
1334  * been changed to a new file system type).
1335  */
1336 int
1337 vget(vp, flags, p)
1338 	register struct vnode *vp;
1339 	int flags;
1340 	struct proc *p;
1341 {
1342 	int error;
1343 
1344 	/*
1345 	 * If the vnode is in the process of being cleaned out for
1346 	 * another use, we wait for the cleaning to finish and then
1347 	 * return failure. Cleaning is determined by checking that
1348 	 * the VXLOCK flag is set.
1349 	 */
1350 	if ((flags & LK_INTERLOCK) == 0) {
1351 		simple_lock(&vp->v_interlock);
1352 	}
1353 	if (vp->v_flag & VXLOCK) {
1354 		vp->v_flag |= VXWANT;
1355 		simple_unlock(&vp->v_interlock);
1356 		tsleep((caddr_t)vp, PINOD, "vget", 0);
1357 		return (ENOENT);
1358 	}
1359 
1360 	vp->v_usecount++;
1361 
1362 	if (VSHOULDBUSY(vp))
1363 		vbusy(vp);
1364 	if (flags & LK_TYPE_MASK) {
1365 		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1366 			/*
1367 			 * must expand vrele here because we do not want
1368 			 * to call VOP_INACTIVE if the reference count
1369 			 * drops back to zero since it was never really
1370 			 * active. We must remove it from the free list
1371 			 * before sleeping so that multiple processes do
1372 			 * not try to recycle it.
1373 			 */
1374 			simple_lock(&vp->v_interlock);
1375 			vp->v_usecount--;
1376 			if (VSHOULDFREE(vp))
1377 				vfree(vp);
1378 			simple_unlock(&vp->v_interlock);
1379 		}
1380 		return (error);
1381 	}
1382 	simple_unlock(&vp->v_interlock);
1383 	return (0);
1384 }
1385 
1386 void
1387 vref(struct vnode *vp)
1388 {
1389 	simple_lock(&vp->v_interlock);
1390 	vp->v_usecount++;
1391 	simple_unlock(&vp->v_interlock);
1392 }
1393 
1394 /*
1395  * Vnode put/release.
1396  * If count drops to zero, call inactive routine and return to freelist.
1397  */
1398 void
1399 vrele(vp)
1400 	struct vnode *vp;
1401 {
1402 	struct proc *p = curproc;	/* XXX */
1403 
1404 	KASSERT(vp != NULL, ("vrele: null vp"));
1405 
1406 	simple_lock(&vp->v_interlock);
1407 
1408 	if (vp->v_usecount > 1) {
1409 
1410 		vp->v_usecount--;
1411 		simple_unlock(&vp->v_interlock);
1412 
1413 		return;
1414 	}
1415 
1416 	if (vp->v_usecount == 1) {
1417 
1418 		vp->v_usecount--;
1419 		if (VSHOULDFREE(vp))
1420 			vfree(vp);
1421 	/*
1422 	 * If we are doing a vput, the node is already locked, and we must
1423 	 * call VOP_INACTIVE with the node locked.  So, in the case of
1424 	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1425 	 */
1426 		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1427 			VOP_INACTIVE(vp, p);
1428 		}
1429 
1430 	} else {
1431 #ifdef DIAGNOSTIC
1432 		vprint("vrele: negative ref count", vp);
1433 		simple_unlock(&vp->v_interlock);
1434 #endif
1435 		panic("vrele: negative ref cnt");
1436 	}
1437 }
1438 
1439 void
1440 vput(vp)
1441 	struct vnode *vp;
1442 {
1443 	struct proc *p = curproc;	/* XXX */
1444 
1445 	KASSERT(vp != NULL, ("vput: null vp"));
1446 
1447 	simple_lock(&vp->v_interlock);
1448 
1449 	if (vp->v_usecount > 1) {
1450 
1451 		vp->v_usecount--;
1452 		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1453 		return;
1454 
1455 	}
1456 
1457 	if (vp->v_usecount == 1) {
1458 
1459 		vp->v_usecount--;
1460 		if (VSHOULDFREE(vp))
1461 			vfree(vp);
1462 	/*
1463 	 * If we are doing a vput, the node is already locked, and we must
1464 	 * call VOP_INACTIVE with the node locked.  So, in the case of
1465 	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1466 	 */
1467 		simple_unlock(&vp->v_interlock);
1468 		VOP_INACTIVE(vp, p);
1469 
1470 	} else {
1471 #ifdef DIAGNOSTIC
1472 		vprint("vput: negative ref count", vp);
1473 #endif
1474 		panic("vput: negative ref cnt");
1475 	}
1476 }
1477 
1478 /*
1479  * Somebody doesn't want the vnode recycled.
1480  */
1481 void
1482 vhold(vp)
1483 	register struct vnode *vp;
1484 {
1485 	int s;
1486 
1487   	s = splbio();
1488 	vp->v_holdcnt++;
1489 	if (VSHOULDBUSY(vp))
1490 		vbusy(vp);
1491 	splx(s);
1492 }
1493 
1494 /*
1495  * One less who cares about this vnode.
1496  */
1497 void
1498 vdrop(vp)
1499 	register struct vnode *vp;
1500 {
1501 	int s;
1502 
1503 	s = splbio();
1504 	if (vp->v_holdcnt <= 0)
1505 		panic("vdrop: holdcnt");
1506 	vp->v_holdcnt--;
1507 	if (VSHOULDFREE(vp))
1508 		vfree(vp);
1509 	splx(s);
1510 }
1511 
1512 /*
1513  * Remove any vnodes in the vnode table belonging to mount point mp.
1514  *
1515  * If MNT_NOFORCE is specified, there should not be any active ones,
1516  * return error if any are found (nb: this is a user error, not a
1517  * system error). If MNT_FORCE is specified, detach any active vnodes
1518  * that are found.
1519  */
1520 #ifdef DIAGNOSTIC
1521 static int busyprt = 0;		/* print out busy vnodes */
1522 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1523 #endif
1524 
1525 int
1526 vflush(mp, skipvp, flags)
1527 	struct mount *mp;
1528 	struct vnode *skipvp;
1529 	int flags;
1530 {
1531 	struct proc *p = curproc;	/* XXX */
1532 	struct vnode *vp, *nvp;
1533 	int busy = 0;
1534 
1535 	simple_lock(&mntvnode_slock);
1536 loop:
1537 	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
1538 		/*
1539 		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1540 		 * Start over if it has (it won't be on the list anymore).
1541 		 */
1542 		if (vp->v_mount != mp)
1543 			goto loop;
1544 		nvp = vp->v_mntvnodes.le_next;
1545 		/*
1546 		 * Skip over a selected vnode.
1547 		 */
1548 		if (vp == skipvp)
1549 			continue;
1550 
1551 		simple_lock(&vp->v_interlock);
1552 		/*
1553 		 * Skip over a vnodes marked VSYSTEM.
1554 		 */
1555 		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1556 			simple_unlock(&vp->v_interlock);
1557 			continue;
1558 		}
1559 		/*
1560 		 * If WRITECLOSE is set, only flush out regular file vnodes
1561 		 * open for writing.
1562 		 */
1563 		if ((flags & WRITECLOSE) &&
1564 		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1565 			simple_unlock(&vp->v_interlock);
1566 			continue;
1567 		}
1568 
1569 		/*
1570 		 * With v_usecount == 0, all we need to do is clear out the
1571 		 * vnode data structures and we are done.
1572 		 */
1573 		if (vp->v_usecount == 0) {
1574 			simple_unlock(&mntvnode_slock);
1575 			vgonel(vp, p);
1576 			simple_lock(&mntvnode_slock);
1577 			continue;
1578 		}
1579 
1580 		/*
1581 		 * If FORCECLOSE is set, forcibly close the vnode. For block
1582 		 * or character devices, revert to an anonymous device. For
1583 		 * all other files, just kill them.
1584 		 */
1585 		if (flags & FORCECLOSE) {
1586 			simple_unlock(&mntvnode_slock);
1587 			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1588 				vgonel(vp, p);
1589 			} else {
1590 				vclean(vp, 0, p);
1591 				vp->v_op = spec_vnodeop_p;
1592 				insmntque(vp, (struct mount *) 0);
1593 			}
1594 			simple_lock(&mntvnode_slock);
1595 			continue;
1596 		}
1597 #ifdef DIAGNOSTIC
1598 		if (busyprt)
1599 			vprint("vflush: busy vnode", vp);
1600 #endif
1601 		simple_unlock(&vp->v_interlock);
1602 		busy++;
1603 	}
1604 	simple_unlock(&mntvnode_slock);
1605 	if (busy)
1606 		return (EBUSY);
1607 	return (0);
1608 }
1609 
1610 /*
1611  * Disassociate the underlying file system from a vnode.
1612  */
1613 static void
1614 vclean(vp, flags, p)
1615 	struct vnode *vp;
1616 	int flags;
1617 	struct proc *p;
1618 {
1619 	int active;
1620 	vm_object_t obj;
1621 
1622 	/*
1623 	 * Check to see if the vnode is in use. If so we have to reference it
1624 	 * before we clean it out so that its count cannot fall to zero and
1625 	 * generate a race against ourselves to recycle it.
1626 	 */
1627 	if ((active = vp->v_usecount))
1628 		vp->v_usecount++;
1629 
1630 	/*
1631 	 * Prevent the vnode from being recycled or brought into use while we
1632 	 * clean it out.
1633 	 */
1634 	if (vp->v_flag & VXLOCK)
1635 		panic("vclean: deadlock");
1636 	vp->v_flag |= VXLOCK;
1637 	/*
1638 	 * Even if the count is zero, the VOP_INACTIVE routine may still
1639 	 * have the object locked while it cleans it out. The VOP_LOCK
1640 	 * ensures that the VOP_INACTIVE routine is done with its work.
1641 	 * For active vnodes, it ensures that no other activity can
1642 	 * occur while the underlying object is being cleaned out.
1643 	 */
1644 	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1645 
1646 	/*
1647 	 * Clean out any buffers associated with the vnode.
1648 	 */
1649 	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1650 	if ((obj = vp->v_object) != NULL) {
1651 		if (obj->ref_count == 0) {
1652 			/*
1653 			 * This is a normal way of shutting down the object/vnode
1654 			 * association.
1655 			 */
1656 			vm_object_terminate(obj);
1657 		} else {
1658 			/*
1659 			 * Woe to the process that tries to page now :-).
1660 			 */
1661 			vm_pager_deallocate(obj);
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * If purging an active vnode, it must be closed and
1667 	 * deactivated before being reclaimed. Note that the
1668 	 * VOP_INACTIVE will unlock the vnode.
1669 	 */
1670 	if (active) {
1671 		if (flags & DOCLOSE)
1672 			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1673 		VOP_INACTIVE(vp, p);
1674 	} else {
1675 		/*
1676 		 * Any other processes trying to obtain this lock must first
1677 		 * wait for VXLOCK to clear, then call the new lock operation.
1678 		 */
1679 		VOP_UNLOCK(vp, 0, p);
1680 	}
1681 	/*
1682 	 * Reclaim the vnode.
1683 	 */
1684 	if (VOP_RECLAIM(vp, p))
1685 		panic("vclean: cannot reclaim");
1686 
1687 	if (active)
1688 		vrele(vp);
1689 
1690 	cache_purge(vp);
1691 	if (vp->v_vnlock) {
1692 		FREE(vp->v_vnlock, M_VNODE);
1693 		vp->v_vnlock = NULL;
1694 	}
1695 
1696 	if (VSHOULDFREE(vp))
1697 		vfree(vp);
1698 
1699 	/*
1700 	 * Done with purge, notify sleepers of the grim news.
1701 	 */
1702 	vp->v_op = dead_vnodeop_p;
1703 	vn_pollgone(vp);
1704 	vp->v_tag = VT_NON;
1705 	vp->v_flag &= ~VXLOCK;
1706 	if (vp->v_flag & VXWANT) {
1707 		vp->v_flag &= ~VXWANT;
1708 		wakeup((caddr_t) vp);
1709 	}
1710 }
1711 
1712 /*
1713  * Eliminate all activity associated with the requested vnode
1714  * and with all vnodes aliased to the requested vnode.
1715  */
1716 int
1717 vop_revoke(ap)
1718 	struct vop_revoke_args /* {
1719 		struct vnode *a_vp;
1720 		int a_flags;
1721 	} */ *ap;
1722 {
1723 	struct vnode *vp, *vq;
1724 	dev_t dev;
1725 
1726 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1727 
1728 	vp = ap->a_vp;
1729 	/*
1730 	 * If a vgone (or vclean) is already in progress,
1731 	 * wait until it is done and return.
1732 	 */
1733 	if (vp->v_flag & VXLOCK) {
1734 		vp->v_flag |= VXWANT;
1735 		simple_unlock(&vp->v_interlock);
1736 		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1737 		return (0);
1738 	}
1739 	dev = vp->v_rdev;
1740 	for (;;) {
1741 		simple_lock(&spechash_slock);
1742 		vq = SLIST_FIRST(&dev->si_hlist);
1743 		simple_unlock(&spechash_slock);
1744 		if (!vq)
1745 			break;
1746 		vgone(vq);
1747 	}
1748 	return (0);
1749 }
1750 
1751 /*
1752  * Recycle an unused vnode to the front of the free list.
1753  * Release the passed interlock if the vnode will be recycled.
1754  */
1755 int
1756 vrecycle(vp, inter_lkp, p)
1757 	struct vnode *vp;
1758 	struct simplelock *inter_lkp;
1759 	struct proc *p;
1760 {
1761 
1762 	simple_lock(&vp->v_interlock);
1763 	if (vp->v_usecount == 0) {
1764 		if (inter_lkp) {
1765 			simple_unlock(inter_lkp);
1766 		}
1767 		vgonel(vp, p);
1768 		return (1);
1769 	}
1770 	simple_unlock(&vp->v_interlock);
1771 	return (0);
1772 }
1773 
1774 /*
1775  * Eliminate all activity associated with a vnode
1776  * in preparation for reuse.
1777  */
1778 void
1779 vgone(vp)
1780 	register struct vnode *vp;
1781 {
1782 	struct proc *p = curproc;	/* XXX */
1783 
1784 	simple_lock(&vp->v_interlock);
1785 	vgonel(vp, p);
1786 }
1787 
1788 /*
1789  * vgone, with the vp interlock held.
1790  */
1791 static void
1792 vgonel(vp, p)
1793 	struct vnode *vp;
1794 	struct proc *p;
1795 {
1796 	int s;
1797 
1798 	/*
1799 	 * If a vgone (or vclean) is already in progress,
1800 	 * wait until it is done and return.
1801 	 */
1802 	if (vp->v_flag & VXLOCK) {
1803 		vp->v_flag |= VXWANT;
1804 		simple_unlock(&vp->v_interlock);
1805 		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1806 		return;
1807 	}
1808 
1809 	/*
1810 	 * Clean out the filesystem specific data.
1811 	 */
1812 	vclean(vp, DOCLOSE, p);
1813 	simple_lock(&vp->v_interlock);
1814 
1815 	/*
1816 	 * Delete from old mount point vnode list, if on one.
1817 	 */
1818 	if (vp->v_mount != NULL)
1819 		insmntque(vp, (struct mount *)0);
1820 	/*
1821 	 * If special device, remove it from special device alias list
1822 	 * if it is on one.
1823 	 */
1824 	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1825 		simple_lock(&spechash_slock);
1826 		SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
1827 		freedev(vp->v_rdev);
1828 		simple_unlock(&spechash_slock);
1829 		vp->v_rdev = NULL;
1830 	}
1831 
1832 	/*
1833 	 * If it is on the freelist and not already at the head,
1834 	 * move it to the head of the list. The test of the back
1835 	 * pointer and the reference count of zero is because
1836 	 * it will be removed from the free list by getnewvnode,
1837 	 * but will not have its reference count incremented until
1838 	 * after calling vgone. If the reference count were
1839 	 * incremented first, vgone would (incorrectly) try to
1840 	 * close the previous instance of the underlying object.
1841 	 */
1842 	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1843 		s = splbio();
1844 		simple_lock(&vnode_free_list_slock);
1845 		if (vp->v_flag & VFREE) {
1846 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1847 		} else if (vp->v_flag & VTBFREE) {
1848 			TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
1849 			vp->v_flag &= ~VTBFREE;
1850 			freevnodes++;
1851 		} else
1852 			freevnodes++;
1853 		vp->v_flag |= VFREE;
1854 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1855 		simple_unlock(&vnode_free_list_slock);
1856 		splx(s);
1857 	}
1858 
1859 	vp->v_type = VBAD;
1860 	simple_unlock(&vp->v_interlock);
1861 }
1862 
1863 /*
1864  * Lookup a vnode by device number.
1865  */
1866 int
1867 vfinddev(dev, type, vpp)
1868 	dev_t dev;
1869 	enum vtype type;
1870 	struct vnode **vpp;
1871 {
1872 	struct vnode *vp;
1873 
1874 	simple_lock(&spechash_slock);
1875 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1876 		if (type == vp->v_type) {
1877 			*vpp = vp;
1878 			simple_unlock(&spechash_slock);
1879 			return (1);
1880 		}
1881 	}
1882 	simple_unlock(&spechash_slock);
1883 	return (0);
1884 }
1885 
1886 /*
1887  * Calculate the total number of references to a special device.
1888  */
1889 int
1890 vcount(vp)
1891 	struct vnode *vp;
1892 {
1893 	struct vnode *vq;
1894 	int count;
1895 
1896 	count = 0;
1897 	simple_lock(&spechash_slock);
1898 	SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
1899 		count += vq->v_usecount;
1900 	simple_unlock(&spechash_slock);
1901 	return (count);
1902 }
1903 
1904 /*
1905  * Print out a description of a vnode.
1906  */
1907 static char *typename[] =
1908 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1909 
1910 void
1911 vprint(label, vp)
1912 	char *label;
1913 	struct vnode *vp;
1914 {
1915 	char buf[96];
1916 
1917 	if (label != NULL)
1918 		printf("%s: %p: ", label, (void *)vp);
1919 	else
1920 		printf("%p: ", (void *)vp);
1921 	printf("type %s, usecount %d, writecount %d, refcount %d,",
1922 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1923 	    vp->v_holdcnt);
1924 	buf[0] = '\0';
1925 	if (vp->v_flag & VROOT)
1926 		strcat(buf, "|VROOT");
1927 	if (vp->v_flag & VTEXT)
1928 		strcat(buf, "|VTEXT");
1929 	if (vp->v_flag & VSYSTEM)
1930 		strcat(buf, "|VSYSTEM");
1931 	if (vp->v_flag & VXLOCK)
1932 		strcat(buf, "|VXLOCK");
1933 	if (vp->v_flag & VXWANT)
1934 		strcat(buf, "|VXWANT");
1935 	if (vp->v_flag & VBWAIT)
1936 		strcat(buf, "|VBWAIT");
1937 	if (vp->v_flag & VDOOMED)
1938 		strcat(buf, "|VDOOMED");
1939 	if (vp->v_flag & VFREE)
1940 		strcat(buf, "|VFREE");
1941 	if (vp->v_flag & VOBJBUF)
1942 		strcat(buf, "|VOBJBUF");
1943 	if (buf[0] != '\0')
1944 		printf(" flags (%s)", &buf[1]);
1945 	if (vp->v_data == NULL) {
1946 		printf("\n");
1947 	} else {
1948 		printf("\n\t");
1949 		VOP_PRINT(vp);
1950 	}
1951 }
1952 
1953 #ifdef DDB
1954 #include <ddb/ddb.h>
1955 /*
1956  * List all of the locked vnodes in the system.
1957  * Called when debugging the kernel.
1958  */
1959 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1960 {
1961 	struct proc *p = curproc;	/* XXX */
1962 	struct mount *mp, *nmp;
1963 	struct vnode *vp;
1964 
1965 	printf("Locked vnodes\n");
1966 	simple_lock(&mountlist_slock);
1967 	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
1968 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
1969 			nmp = mp->mnt_list.cqe_next;
1970 			continue;
1971 		}
1972 		for (vp = mp->mnt_vnodelist.lh_first;
1973 		     vp != NULL;
1974 		     vp = vp->v_mntvnodes.le_next) {
1975 			if (VOP_ISLOCKED(vp))
1976 				vprint((char *)0, vp);
1977 		}
1978 		simple_lock(&mountlist_slock);
1979 		nmp = mp->mnt_list.cqe_next;
1980 		vfs_unbusy(mp, p);
1981 	}
1982 	simple_unlock(&mountlist_slock);
1983 }
1984 #endif
1985 
1986 /*
1987  * Top level filesystem related information gathering.
1988  */
1989 static int	sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS);
1990 
1991 static int
1992 vfs_sysctl SYSCTL_HANDLER_ARGS
1993 {
1994 	int *name = (int *)arg1 - 1;	/* XXX */
1995 	u_int namelen = arg2 + 1;	/* XXX */
1996 	struct vfsconf *vfsp;
1997 
1998 #if 1 || defined(COMPAT_PRELITE2)
1999 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2000 	if (namelen == 1)
2001 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2002 #endif
2003 
2004 #ifdef notyet
2005 	/* all sysctl names at this level are at least name and field */
2006 	if (namelen < 2)
2007 		return (ENOTDIR);		/* overloaded */
2008 	if (name[0] != VFS_GENERIC) {
2009 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2010 			if (vfsp->vfc_typenum == name[0])
2011 				break;
2012 		if (vfsp == NULL)
2013 			return (EOPNOTSUPP);
2014 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2015 		    oldp, oldlenp, newp, newlen, p));
2016 	}
2017 #endif
2018 	switch (name[1]) {
2019 	case VFS_MAXTYPENUM:
2020 		if (namelen != 2)
2021 			return (ENOTDIR);
2022 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2023 	case VFS_CONF:
2024 		if (namelen != 3)
2025 			return (ENOTDIR);	/* overloaded */
2026 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2027 			if (vfsp->vfc_typenum == name[2])
2028 				break;
2029 		if (vfsp == NULL)
2030 			return (EOPNOTSUPP);
2031 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2032 	}
2033 	return (EOPNOTSUPP);
2034 }
2035 
2036 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2037 	"Generic filesystem");
2038 
2039 #if 1 || defined(COMPAT_PRELITE2)
2040 
2041 static int
2042 sysctl_ovfs_conf SYSCTL_HANDLER_ARGS
2043 {
2044 	int error;
2045 	struct vfsconf *vfsp;
2046 	struct ovfsconf ovfs;
2047 
2048 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2049 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2050 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2051 		ovfs.vfc_index = vfsp->vfc_typenum;
2052 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2053 		ovfs.vfc_flags = vfsp->vfc_flags;
2054 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2055 		if (error)
2056 			return error;
2057 	}
2058 	return 0;
2059 }
2060 
2061 #endif /* 1 || COMPAT_PRELITE2 */
2062 
2063 #if 0
2064 #define KINFO_VNODESLOP	10
2065 /*
2066  * Dump vnode list (via sysctl).
2067  * Copyout address of vnode followed by vnode.
2068  */
2069 /* ARGSUSED */
2070 static int
2071 sysctl_vnode SYSCTL_HANDLER_ARGS
2072 {
2073 	struct proc *p = curproc;	/* XXX */
2074 	struct mount *mp, *nmp;
2075 	struct vnode *nvp, *vp;
2076 	int error;
2077 
2078 #define VPTRSZ	sizeof (struct vnode *)
2079 #define VNODESZ	sizeof (struct vnode)
2080 
2081 	req->lock = 0;
2082 	if (!req->oldptr) /* Make an estimate */
2083 		return (SYSCTL_OUT(req, 0,
2084 			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2085 
2086 	simple_lock(&mountlist_slock);
2087 	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
2088 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2089 			nmp = mp->mnt_list.cqe_next;
2090 			continue;
2091 		}
2092 again:
2093 		simple_lock(&mntvnode_slock);
2094 		for (vp = mp->mnt_vnodelist.lh_first;
2095 		     vp != NULL;
2096 		     vp = nvp) {
2097 			/*
2098 			 * Check that the vp is still associated with
2099 			 * this filesystem.  RACE: could have been
2100 			 * recycled onto the same filesystem.
2101 			 */
2102 			if (vp->v_mount != mp) {
2103 				simple_unlock(&mntvnode_slock);
2104 				goto again;
2105 			}
2106 			nvp = vp->v_mntvnodes.le_next;
2107 			simple_unlock(&mntvnode_slock);
2108 			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2109 			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2110 				return (error);
2111 			simple_lock(&mntvnode_slock);
2112 		}
2113 		simple_unlock(&mntvnode_slock);
2114 		simple_lock(&mountlist_slock);
2115 		nmp = mp->mnt_list.cqe_next;
2116 		vfs_unbusy(mp, p);
2117 	}
2118 	simple_unlock(&mountlist_slock);
2119 
2120 	return (0);
2121 }
2122 #endif
2123 
2124 /*
2125  * XXX
2126  * Exporting the vnode list on large systems causes them to crash.
2127  * Exporting the vnode list on medium systems causes sysctl to coredump.
2128  */
2129 #if 0
2130 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2131 	0, 0, sysctl_vnode, "S,vnode", "");
2132 #endif
2133 
2134 /*
2135  * Check to see if a filesystem is mounted on a block device.
2136  */
2137 int
2138 vfs_mountedon(vp)
2139 	struct vnode *vp;
2140 {
2141 
2142 	if (vp->v_specmountpoint != NULL)
2143 		return (EBUSY);
2144 	return (0);
2145 }
2146 
2147 /*
2148  * Unmount all filesystems. The list is traversed in reverse order
2149  * of mounting to avoid dependencies.
2150  */
2151 void
2152 vfs_unmountall()
2153 {
2154 	struct mount *mp, *nmp;
2155 	struct proc *p;
2156 	int error;
2157 
2158 	if (curproc != NULL)
2159 		p = curproc;
2160 	else
2161 		p = initproc;	/* XXX XXX should this be proc0? */
2162 	/*
2163 	 * Since this only runs when rebooting, it is not interlocked.
2164 	 */
2165 	for (mp = mountlist.cqh_last; mp != (void *)&mountlist; mp = nmp) {
2166 		nmp = mp->mnt_list.cqe_prev;
2167 		error = dounmount(mp, MNT_FORCE, p);
2168 		if (error) {
2169 			printf("unmount of %s failed (",
2170 			    mp->mnt_stat.f_mntonname);
2171 			if (error == EBUSY)
2172 				printf("BUSY)\n");
2173 			else
2174 				printf("%d)\n", error);
2175 		}
2176 	}
2177 }
2178 
2179 /*
2180  * Build hash lists of net addresses and hang them off the mount point.
2181  * Called by ufs_mount() to set up the lists of export addresses.
2182  */
2183 static int
2184 vfs_hang_addrlist(mp, nep, argp)
2185 	struct mount *mp;
2186 	struct netexport *nep;
2187 	struct export_args *argp;
2188 {
2189 	register struct netcred *np;
2190 	register struct radix_node_head *rnh;
2191 	register int i;
2192 	struct radix_node *rn;
2193 	struct sockaddr *saddr, *smask = 0;
2194 	struct domain *dom;
2195 	int error;
2196 
2197 	if (argp->ex_addrlen == 0) {
2198 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2199 			return (EPERM);
2200 		np = &nep->ne_defexported;
2201 		np->netc_exflags = argp->ex_flags;
2202 		np->netc_anon = argp->ex_anon;
2203 		np->netc_anon.cr_ref = 1;
2204 		mp->mnt_flag |= MNT_DEFEXPORTED;
2205 		return (0);
2206 	}
2207 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2208 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2209 	bzero((caddr_t) np, i);
2210 	saddr = (struct sockaddr *) (np + 1);
2211 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2212 		goto out;
2213 	if (saddr->sa_len > argp->ex_addrlen)
2214 		saddr->sa_len = argp->ex_addrlen;
2215 	if (argp->ex_masklen) {
2216 		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2217 		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2218 		if (error)
2219 			goto out;
2220 		if (smask->sa_len > argp->ex_masklen)
2221 			smask->sa_len = argp->ex_masklen;
2222 	}
2223 	i = saddr->sa_family;
2224 	if ((rnh = nep->ne_rtable[i]) == 0) {
2225 		/*
2226 		 * Seems silly to initialize every AF when most are not used,
2227 		 * do so on demand here
2228 		 */
2229 		for (dom = domains; dom; dom = dom->dom_next)
2230 			if (dom->dom_family == i && dom->dom_rtattach) {
2231 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2232 				    dom->dom_rtoffset);
2233 				break;
2234 			}
2235 		if ((rnh = nep->ne_rtable[i]) == 0) {
2236 			error = ENOBUFS;
2237 			goto out;
2238 		}
2239 	}
2240 	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2241 	    np->netc_rnodes);
2242 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2243 		error = EPERM;
2244 		goto out;
2245 	}
2246 	np->netc_exflags = argp->ex_flags;
2247 	np->netc_anon = argp->ex_anon;
2248 	np->netc_anon.cr_ref = 1;
2249 	return (0);
2250 out:
2251 	free(np, M_NETADDR);
2252 	return (error);
2253 }
2254 
2255 /* ARGSUSED */
2256 static int
2257 vfs_free_netcred(rn, w)
2258 	struct radix_node *rn;
2259 	void *w;
2260 {
2261 	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2262 
2263 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2264 	free((caddr_t) rn, M_NETADDR);
2265 	return (0);
2266 }
2267 
2268 /*
2269  * Free the net address hash lists that are hanging off the mount points.
2270  */
2271 static void
2272 vfs_free_addrlist(nep)
2273 	struct netexport *nep;
2274 {
2275 	register int i;
2276 	register struct radix_node_head *rnh;
2277 
2278 	for (i = 0; i <= AF_MAX; i++)
2279 		if ((rnh = nep->ne_rtable[i])) {
2280 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2281 			    (caddr_t) rnh);
2282 			free((caddr_t) rnh, M_RTABLE);
2283 			nep->ne_rtable[i] = 0;
2284 		}
2285 }
2286 
2287 int
2288 vfs_export(mp, nep, argp)
2289 	struct mount *mp;
2290 	struct netexport *nep;
2291 	struct export_args *argp;
2292 {
2293 	int error;
2294 
2295 	if (argp->ex_flags & MNT_DELEXPORT) {
2296 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2297 			vfs_setpublicfs(NULL, NULL, NULL);
2298 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2299 		}
2300 		vfs_free_addrlist(nep);
2301 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2302 	}
2303 	if (argp->ex_flags & MNT_EXPORTED) {
2304 		if (argp->ex_flags & MNT_EXPUBLIC) {
2305 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2306 				return (error);
2307 			mp->mnt_flag |= MNT_EXPUBLIC;
2308 		}
2309 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2310 			return (error);
2311 		mp->mnt_flag |= MNT_EXPORTED;
2312 	}
2313 	return (0);
2314 }
2315 
2316 
2317 /*
2318  * Set the publicly exported filesystem (WebNFS). Currently, only
2319  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2320  */
2321 int
2322 vfs_setpublicfs(mp, nep, argp)
2323 	struct mount *mp;
2324 	struct netexport *nep;
2325 	struct export_args *argp;
2326 {
2327 	int error;
2328 	struct vnode *rvp;
2329 	char *cp;
2330 
2331 	/*
2332 	 * mp == NULL -> invalidate the current info, the FS is
2333 	 * no longer exported. May be called from either vfs_export
2334 	 * or unmount, so check if it hasn't already been done.
2335 	 */
2336 	if (mp == NULL) {
2337 		if (nfs_pub.np_valid) {
2338 			nfs_pub.np_valid = 0;
2339 			if (nfs_pub.np_index != NULL) {
2340 				FREE(nfs_pub.np_index, M_TEMP);
2341 				nfs_pub.np_index = NULL;
2342 			}
2343 		}
2344 		return (0);
2345 	}
2346 
2347 	/*
2348 	 * Only one allowed at a time.
2349 	 */
2350 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2351 		return (EBUSY);
2352 
2353 	/*
2354 	 * Get real filehandle for root of exported FS.
2355 	 */
2356 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2357 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2358 
2359 	if ((error = VFS_ROOT(mp, &rvp)))
2360 		return (error);
2361 
2362 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2363 		return (error);
2364 
2365 	vput(rvp);
2366 
2367 	/*
2368 	 * If an indexfile was specified, pull it in.
2369 	 */
2370 	if (argp->ex_indexfile != NULL) {
2371 		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2372 		    M_WAITOK);
2373 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2374 		    MAXNAMLEN, (size_t *)0);
2375 		if (!error) {
2376 			/*
2377 			 * Check for illegal filenames.
2378 			 */
2379 			for (cp = nfs_pub.np_index; *cp; cp++) {
2380 				if (*cp == '/') {
2381 					error = EINVAL;
2382 					break;
2383 				}
2384 			}
2385 		}
2386 		if (error) {
2387 			FREE(nfs_pub.np_index, M_TEMP);
2388 			return (error);
2389 		}
2390 	}
2391 
2392 	nfs_pub.np_mount = mp;
2393 	nfs_pub.np_valid = 1;
2394 	return (0);
2395 }
2396 
2397 struct netcred *
2398 vfs_export_lookup(mp, nep, nam)
2399 	register struct mount *mp;
2400 	struct netexport *nep;
2401 	struct sockaddr *nam;
2402 {
2403 	register struct netcred *np;
2404 	register struct radix_node_head *rnh;
2405 	struct sockaddr *saddr;
2406 
2407 	np = NULL;
2408 	if (mp->mnt_flag & MNT_EXPORTED) {
2409 		/*
2410 		 * Lookup in the export list first.
2411 		 */
2412 		if (nam != NULL) {
2413 			saddr = nam;
2414 			rnh = nep->ne_rtable[saddr->sa_family];
2415 			if (rnh != NULL) {
2416 				np = (struct netcred *)
2417 					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2418 							      rnh);
2419 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2420 					np = NULL;
2421 			}
2422 		}
2423 		/*
2424 		 * If no address match, use the default if it exists.
2425 		 */
2426 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2427 			np = &nep->ne_defexported;
2428 	}
2429 	return (np);
2430 }
2431 
2432 /*
2433  * perform msync on all vnodes under a mount point
2434  * the mount point must be locked.
2435  */
2436 void
2437 vfs_msync(struct mount *mp, int flags) {
2438 	struct vnode *vp, *nvp;
2439 	struct vm_object *obj;
2440 	int anyio, tries;
2441 
2442 	tries = 5;
2443 loop:
2444 	anyio = 0;
2445 	for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = nvp) {
2446 
2447 		nvp = vp->v_mntvnodes.le_next;
2448 
2449 		if (vp->v_mount != mp) {
2450 			goto loop;
2451 		}
2452 
2453 		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2454 			continue;
2455 
2456 		if (flags != MNT_WAIT) {
2457 			obj = vp->v_object;
2458 			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2459 				continue;
2460 			if (VOP_ISLOCKED(vp))
2461 				continue;
2462 		}
2463 
2464 		simple_lock(&vp->v_interlock);
2465 		if (vp->v_object &&
2466 		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2467 			if (!vget(vp,
2468 				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2469 				if (vp->v_object) {
2470 					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : 0);
2471 					anyio = 1;
2472 				}
2473 				vput(vp);
2474 			}
2475 		} else {
2476 			simple_unlock(&vp->v_interlock);
2477 		}
2478 	}
2479 	if (anyio && (--tries > 0))
2480 		goto loop;
2481 }
2482 
2483 /*
2484  * Create the VM object needed for VMIO and mmap support.  This
2485  * is done for all VREG files in the system.  Some filesystems might
2486  * afford the additional metadata buffering capability of the
2487  * VMIO code by making the device node be VMIO mode also.
2488  *
2489  * vp must be locked when vfs_object_create is called.
2490  */
2491 int
2492 vfs_object_create(vp, p, cred)
2493 	struct vnode *vp;
2494 	struct proc *p;
2495 	struct ucred *cred;
2496 {
2497 	struct vattr vat;
2498 	vm_object_t object;
2499 	int error = 0;
2500 
2501 	if (vp->v_type != VBLK && vn_canvmio(vp) == FALSE)
2502 		return 0;
2503 
2504 retry:
2505 	if ((object = vp->v_object) == NULL) {
2506 		if (vp->v_type == VREG || vp->v_type == VDIR) {
2507 			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2508 				goto retn;
2509 			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2510 		} else if (devsw(vp->v_rdev) != NULL) {
2511 			/*
2512 			 * This simply allocates the biggest object possible
2513 			 * for a VBLK vnode.  This should be fixed, but doesn't
2514 			 * cause any problems (yet).
2515 			 */
2516 			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2517 		} else {
2518 			goto retn;
2519 		}
2520 		/*
2521 		 * Dereference the reference we just created.  This assumes
2522 		 * that the object is associated with the vp.
2523 		 */
2524 		object->ref_count--;
2525 		vp->v_usecount--;
2526 	} else {
2527 		if (object->flags & OBJ_DEAD) {
2528 			VOP_UNLOCK(vp, 0, p);
2529 			tsleep(object, PVM, "vodead", 0);
2530 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2531 			goto retry;
2532 		}
2533 	}
2534 
2535 	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2536 	vp->v_flag |= VOBJBUF;
2537 
2538 retn:
2539 	return error;
2540 }
2541 
2542 static void
2543 vfree(vp)
2544 	struct vnode *vp;
2545 {
2546 	int s;
2547 
2548 	s = splbio();
2549 	simple_lock(&vnode_free_list_slock);
2550 	if (vp->v_flag & VTBFREE) {
2551 		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2552 		vp->v_flag &= ~VTBFREE;
2553 	}
2554 	if (vp->v_flag & VAGE) {
2555 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2556 	} else {
2557 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2558 	}
2559 	freevnodes++;
2560 	simple_unlock(&vnode_free_list_slock);
2561 	vp->v_flag &= ~VAGE;
2562 	vp->v_flag |= VFREE;
2563 	splx(s);
2564 }
2565 
2566 void
2567 vbusy(vp)
2568 	struct vnode *vp;
2569 {
2570 	int s;
2571 
2572 	s = splbio();
2573 	simple_lock(&vnode_free_list_slock);
2574 	if (vp->v_flag & VTBFREE) {
2575 		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2576 		vp->v_flag &= ~VTBFREE;
2577 	} else {
2578 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2579 		freevnodes--;
2580 	}
2581 	simple_unlock(&vnode_free_list_slock);
2582 	vp->v_flag &= ~(VFREE|VAGE);
2583 	splx(s);
2584 }
2585 
2586 /*
2587  * Record a process's interest in events which might happen to
2588  * a vnode.  Because poll uses the historic select-style interface
2589  * internally, this routine serves as both the ``check for any
2590  * pending events'' and the ``record my interest in future events''
2591  * functions.  (These are done together, while the lock is held,
2592  * to avoid race conditions.)
2593  */
2594 int
2595 vn_pollrecord(vp, p, events)
2596 	struct vnode *vp;
2597 	struct proc *p;
2598 	short events;
2599 {
2600 	simple_lock(&vp->v_pollinfo.vpi_lock);
2601 	if (vp->v_pollinfo.vpi_revents & events) {
2602 		/*
2603 		 * This leaves events we are not interested
2604 		 * in available for the other process which
2605 		 * which presumably had requested them
2606 		 * (otherwise they would never have been
2607 		 * recorded).
2608 		 */
2609 		events &= vp->v_pollinfo.vpi_revents;
2610 		vp->v_pollinfo.vpi_revents &= ~events;
2611 
2612 		simple_unlock(&vp->v_pollinfo.vpi_lock);
2613 		return events;
2614 	}
2615 	vp->v_pollinfo.vpi_events |= events;
2616 	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2617 	simple_unlock(&vp->v_pollinfo.vpi_lock);
2618 	return 0;
2619 }
2620 
2621 /*
2622  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2623  * it is possible for us to miss an event due to race conditions, but
2624  * that condition is expected to be rare, so for the moment it is the
2625  * preferred interface.
2626  */
2627 void
2628 vn_pollevent(vp, events)
2629 	struct vnode *vp;
2630 	short events;
2631 {
2632 	simple_lock(&vp->v_pollinfo.vpi_lock);
2633 	if (vp->v_pollinfo.vpi_events & events) {
2634 		/*
2635 		 * We clear vpi_events so that we don't
2636 		 * call selwakeup() twice if two events are
2637 		 * posted before the polling process(es) is
2638 		 * awakened.  This also ensures that we take at
2639 		 * most one selwakeup() if the polling process
2640 		 * is no longer interested.  However, it does
2641 		 * mean that only one event can be noticed at
2642 		 * a time.  (Perhaps we should only clear those
2643 		 * event bits which we note?) XXX
2644 		 */
2645 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2646 		vp->v_pollinfo.vpi_revents |= events;
2647 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2648 	}
2649 	simple_unlock(&vp->v_pollinfo.vpi_lock);
2650 }
2651 
2652 /*
2653  * Wake up anyone polling on vp because it is being revoked.
2654  * This depends on dead_poll() returning POLLHUP for correct
2655  * behavior.
2656  */
2657 void
2658 vn_pollgone(vp)
2659 	struct vnode *vp;
2660 {
2661 	simple_lock(&vp->v_pollinfo.vpi_lock);
2662 	if (vp->v_pollinfo.vpi_events) {
2663 		vp->v_pollinfo.vpi_events = 0;
2664 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2665 	}
2666 	simple_unlock(&vp->v_pollinfo.vpi_lock);
2667 }
2668 
2669 
2670 
2671 /*
2672  * Routine to create and manage a filesystem syncer vnode.
2673  */
2674 #define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2675 static int	sync_fsync __P((struct  vop_fsync_args *));
2676 static int	sync_inactive __P((struct  vop_inactive_args *));
2677 static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2678 #define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2679 #define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2680 static int	sync_print __P((struct vop_print_args *));
2681 #define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2682 
2683 static vop_t **sync_vnodeop_p;
2684 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2685 	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2686 	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2687 	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2688 	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2689 	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2690 	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2691 	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2692 	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2693 	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2694 	{ NULL, NULL }
2695 };
2696 static struct vnodeopv_desc sync_vnodeop_opv_desc =
2697 	{ &sync_vnodeop_p, sync_vnodeop_entries };
2698 
2699 VNODEOP_SET(sync_vnodeop_opv_desc);
2700 
2701 /*
2702  * Create a new filesystem syncer vnode for the specified mount point.
2703  */
2704 int
2705 vfs_allocate_syncvnode(mp)
2706 	struct mount *mp;
2707 {
2708 	struct vnode *vp;
2709 	static long start, incr, next;
2710 	int error;
2711 
2712 	/* Allocate a new vnode */
2713 	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2714 		mp->mnt_syncer = NULL;
2715 		return (error);
2716 	}
2717 	vp->v_type = VNON;
2718 	/*
2719 	 * Place the vnode onto the syncer worklist. We attempt to
2720 	 * scatter them about on the list so that they will go off
2721 	 * at evenly distributed times even if all the filesystems
2722 	 * are mounted at once.
2723 	 */
2724 	next += incr;
2725 	if (next == 0 || next > syncer_maxdelay) {
2726 		start /= 2;
2727 		incr /= 2;
2728 		if (start == 0) {
2729 			start = syncer_maxdelay / 2;
2730 			incr = syncer_maxdelay;
2731 		}
2732 		next = start;
2733 	}
2734 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2735 	mp->mnt_syncer = vp;
2736 	return (0);
2737 }
2738 
2739 /*
2740  * Do a lazy sync of the filesystem.
2741  */
2742 static int
2743 sync_fsync(ap)
2744 	struct vop_fsync_args /* {
2745 		struct vnode *a_vp;
2746 		struct ucred *a_cred;
2747 		int a_waitfor;
2748 		struct proc *a_p;
2749 	} */ *ap;
2750 {
2751 	struct vnode *syncvp = ap->a_vp;
2752 	struct mount *mp = syncvp->v_mount;
2753 	struct proc *p = ap->a_p;
2754 	int asyncflag;
2755 
2756 	/*
2757 	 * We only need to do something if this is a lazy evaluation.
2758 	 */
2759 	if (ap->a_waitfor != MNT_LAZY)
2760 		return (0);
2761 
2762 	/*
2763 	 * Move ourselves to the back of the sync list.
2764 	 */
2765 	vn_syncer_add_to_worklist(syncvp, syncdelay);
2766 
2767 	/*
2768 	 * Walk the list of vnodes pushing all that are dirty and
2769 	 * not already on the sync list.
2770 	 */
2771 	simple_lock(&mountlist_slock);
2772 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2773 		simple_unlock(&mountlist_slock);
2774 		return (0);
2775 	}
2776 	asyncflag = mp->mnt_flag & MNT_ASYNC;
2777 	mp->mnt_flag &= ~MNT_ASYNC;
2778 	vfs_msync(mp, MNT_NOWAIT);
2779 	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2780 	if (asyncflag)
2781 		mp->mnt_flag |= MNT_ASYNC;
2782 	vfs_unbusy(mp, p);
2783 	return (0);
2784 }
2785 
2786 /*
2787  * The syncer vnode is no referenced.
2788  */
2789 static int
2790 sync_inactive(ap)
2791 	struct vop_inactive_args /* {
2792 		struct vnode *a_vp;
2793 		struct proc *a_p;
2794 	} */ *ap;
2795 {
2796 
2797 	vgone(ap->a_vp);
2798 	return (0);
2799 }
2800 
2801 /*
2802  * The syncer vnode is no longer needed and is being decommissioned.
2803  *
2804  * Modifications to the worklist must be protected at splbio().
2805  */
2806 static int
2807 sync_reclaim(ap)
2808 	struct vop_reclaim_args /* {
2809 		struct vnode *a_vp;
2810 	} */ *ap;
2811 {
2812 	struct vnode *vp = ap->a_vp;
2813 	int s;
2814 
2815 	s = splbio();
2816 	vp->v_mount->mnt_syncer = NULL;
2817 	if (vp->v_flag & VONWORKLST) {
2818 		LIST_REMOVE(vp, v_synclist);
2819 		vp->v_flag &= ~VONWORKLST;
2820 	}
2821 	splx(s);
2822 
2823 	return (0);
2824 }
2825 
2826 /*
2827  * Print out a syncer vnode.
2828  */
2829 static int
2830 sync_print(ap)
2831 	struct vop_print_args /* {
2832 		struct vnode *a_vp;
2833 	} */ *ap;
2834 {
2835 	struct vnode *vp = ap->a_vp;
2836 
2837 	printf("syncer vnode");
2838 	if (vp->v_vnlock != NULL)
2839 		lockmgr_printinfo(vp->v_vnlock);
2840 	printf("\n");
2841 	return (0);
2842 }
2843 
2844 /*
2845  * extract the dev_t from a VBLK or VCHR
2846  */
2847 dev_t
2848 vn_todev(vp)
2849 	struct vnode *vp;
2850 {
2851 	if (vp->v_type != VBLK && vp->v_type != VCHR)
2852 		return (NODEV);
2853 	return (vp->v_rdev);
2854 }
2855 
2856 /*
2857  * Check if vnode represents a disk device
2858  */
2859 int
2860 vn_isdisk(vp)
2861 	struct vnode *vp;
2862 {
2863 	if (vp->v_type != VBLK)
2864 		return (0);
2865 	if (!devsw(vp->v_rdev))
2866 		return (0);
2867 	if (!(devsw(vp->v_rdev)->d_flags & D_DISK))
2868 		return (0);
2869 	return (1);
2870 }
2871 
2872