xref: /freebsd/sys/kern/vfs_subr.c (revision f18976136625a7d016e97bfd9eabddf640b3e06d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/capsicum.h>
54 #include <sys/condvar.h>
55 #include <sys/conf.h>
56 #include <sys/counter.h>
57 #include <sys/dirent.h>
58 #include <sys/event.h>
59 #include <sys/eventhandler.h>
60 #include <sys/extattr.h>
61 #include <sys/file.h>
62 #include <sys/fcntl.h>
63 #include <sys/jail.h>
64 #include <sys/kdb.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/ktr.h>
68 #include <sys/lockf.h>
69 #include <sys/malloc.h>
70 #include <sys/mount.h>
71 #include <sys/namei.h>
72 #include <sys/pctrie.h>
73 #include <sys/priv.h>
74 #include <sys/reboot.h>
75 #include <sys/refcount.h>
76 #include <sys/rwlock.h>
77 #include <sys/sched.h>
78 #include <sys/sleepqueue.h>
79 #include <sys/smp.h>
80 #include <sys/stat.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vnode.h>
85 #include <sys/watchdog.h>
86 
87 #include <machine/stdarg.h>
88 
89 #include <security/mac/mac_framework.h>
90 
91 #include <vm/vm.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_extern.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_kern.h>
98 #include <vm/uma.h>
99 
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103 
104 static void	delmntque(struct vnode *vp);
105 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 		    int slpflag, int slptimeo);
107 static void	syncer_shutdown(void *arg, int howto);
108 static int	vtryrecycle(struct vnode *vp);
109 static void	v_init_counters(struct vnode *);
110 static void	v_incr_devcount(struct vnode *);
111 static void	v_decr_devcount(struct vnode *);
112 static void	vgonel(struct vnode *);
113 static void	vfs_knllock(void *arg);
114 static void	vfs_knlunlock(void *arg);
115 static void	vfs_knl_assert_locked(void *arg);
116 static void	vfs_knl_assert_unlocked(void *arg);
117 static void	vnlru_return_batches(struct vfsops *mnt_op);
118 static void	destroy_vpollinfo(struct vpollinfo *vi);
119 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
120 		    daddr_t startlbn, daddr_t endlbn);
121 
122 /*
123  * These fences are intended for cases where some synchronization is
124  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
125  * and v_usecount) updates.  Access to v_iflags is generally synchronized
126  * by the interlock, but we have some internal assertions that check vnode
127  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
128  * for now.
129  */
130 #ifdef INVARIANTS
131 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
132 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
133 #else
134 #define	VNODE_REFCOUNT_FENCE_ACQ()
135 #define	VNODE_REFCOUNT_FENCE_REL()
136 #endif
137 
138 /*
139  * Number of vnodes in existence.  Increased whenever getnewvnode()
140  * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
141  */
142 static unsigned long	numvnodes;
143 
144 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
145     "Number of vnodes in existence");
146 
147 static counter_u64_t vnodes_created;
148 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
149     "Number of vnodes created by getnewvnode");
150 
151 static u_long mnt_free_list_batch = 128;
152 SYSCTL_ULONG(_vfs, OID_AUTO, mnt_free_list_batch, CTLFLAG_RW,
153     &mnt_free_list_batch, 0, "Limit of vnodes held on mnt's free list");
154 
155 /*
156  * Conversion tables for conversion from vnode types to inode formats
157  * and back.
158  */
159 enum vtype iftovt_tab[16] = {
160 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
161 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
162 };
163 int vttoif_tab[10] = {
164 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
165 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
166 };
167 
168 /*
169  * List of vnodes that are ready for recycling.
170  */
171 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
172 
173 /*
174  * "Free" vnode target.  Free vnodes are rarely completely free, but are
175  * just ones that are cheap to recycle.  Usually they are for files which
176  * have been stat'd but not read; these usually have inode and namecache
177  * data attached to them.  This target is the preferred minimum size of a
178  * sub-cache consisting mostly of such files. The system balances the size
179  * of this sub-cache with its complement to try to prevent either from
180  * thrashing while the other is relatively inactive.  The targets express
181  * a preference for the best balance.
182  *
183  * "Above" this target there are 2 further targets (watermarks) related
184  * to recyling of free vnodes.  In the best-operating case, the cache is
185  * exactly full, the free list has size between vlowat and vhiwat above the
186  * free target, and recycling from it and normal use maintains this state.
187  * Sometimes the free list is below vlowat or even empty, but this state
188  * is even better for immediate use provided the cache is not full.
189  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
190  * ones) to reach one of these states.  The watermarks are currently hard-
191  * coded as 4% and 9% of the available space higher.  These and the default
192  * of 25% for wantfreevnodes are too large if the memory size is large.
193  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
194  * whenever vnlru_proc() becomes active.
195  */
196 static u_long wantfreevnodes;
197 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
198     &wantfreevnodes, 0, "Target for minimum number of \"free\" vnodes");
199 static u_long freevnodes;
200 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
201     &freevnodes, 0, "Number of \"free\" vnodes");
202 
203 static counter_u64_t recycles_count;
204 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
205     "Number of vnodes recycled to meet vnode cache targets");
206 
207 /*
208  * Various variables used for debugging the new implementation of
209  * reassignbuf().
210  * XXX these are probably of (very) limited utility now.
211  */
212 static int reassignbufcalls;
213 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW | CTLFLAG_STATS,
214     &reassignbufcalls, 0, "Number of calls to reassignbuf");
215 
216 static counter_u64_t free_owe_inact;
217 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact,
218     "Number of times free vnodes kept on active list due to VFS "
219     "owing inactivation");
220 
221 /* To keep more than one thread at a time from running vfs_getnewfsid */
222 static struct mtx mntid_mtx;
223 
224 /*
225  * Lock for any access to the following:
226  *	vnode_free_list
227  *	numvnodes
228  *	freevnodes
229  */
230 static struct mtx vnode_free_list_mtx;
231 
232 /* Publicly exported FS */
233 struct nfs_public nfs_pub;
234 
235 static uma_zone_t buf_trie_zone;
236 
237 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
238 static uma_zone_t vnode_zone;
239 static uma_zone_t vnodepoll_zone;
240 
241 /*
242  * The workitem queue.
243  *
244  * It is useful to delay writes of file data and filesystem metadata
245  * for tens of seconds so that quickly created and deleted files need
246  * not waste disk bandwidth being created and removed. To realize this,
247  * we append vnodes to a "workitem" queue. When running with a soft
248  * updates implementation, most pending metadata dependencies should
249  * not wait for more than a few seconds. Thus, mounted on block devices
250  * are delayed only about a half the time that file data is delayed.
251  * Similarly, directory updates are more critical, so are only delayed
252  * about a third the time that file data is delayed. Thus, there are
253  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
254  * one each second (driven off the filesystem syncer process). The
255  * syncer_delayno variable indicates the next queue that is to be processed.
256  * Items that need to be processed soon are placed in this queue:
257  *
258  *	syncer_workitem_pending[syncer_delayno]
259  *
260  * A delay of fifteen seconds is done by placing the request fifteen
261  * entries later in the queue:
262  *
263  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
264  *
265  */
266 static int syncer_delayno;
267 static long syncer_mask;
268 LIST_HEAD(synclist, bufobj);
269 static struct synclist *syncer_workitem_pending;
270 /*
271  * The sync_mtx protects:
272  *	bo->bo_synclist
273  *	sync_vnode_count
274  *	syncer_delayno
275  *	syncer_state
276  *	syncer_workitem_pending
277  *	syncer_worklist_len
278  *	rushjob
279  */
280 static struct mtx sync_mtx;
281 static struct cv sync_wakeup;
282 
283 #define SYNCER_MAXDELAY		32
284 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
285 static int syncdelay = 30;		/* max time to delay syncing data */
286 static int filedelay = 30;		/* time to delay syncing files */
287 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
288     "Time to delay syncing files (in seconds)");
289 static int dirdelay = 29;		/* time to delay syncing directories */
290 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
291     "Time to delay syncing directories (in seconds)");
292 static int metadelay = 28;		/* time to delay syncing metadata */
293 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
294     "Time to delay syncing metadata (in seconds)");
295 static int rushjob;		/* number of slots to run ASAP */
296 static int stat_rush_requests;	/* number of times I/O speeded up */
297 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
298     "Number of times I/O speeded up (rush requests)");
299 
300 /*
301  * When shutting down the syncer, run it at four times normal speed.
302  */
303 #define SYNCER_SHUTDOWN_SPEEDUP		4
304 static int sync_vnode_count;
305 static int syncer_worklist_len;
306 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
307     syncer_state;
308 
309 /* Target for maximum number of vnodes. */
310 int desiredvnodes;
311 static int gapvnodes;		/* gap between wanted and desired */
312 static int vhiwat;		/* enough extras after expansion */
313 static int vlowat;		/* minimal extras before expansion */
314 static int vstir;		/* nonzero to stir non-free vnodes */
315 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
316 
317 static int
318 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS)
319 {
320 	int error, old_desiredvnodes;
321 
322 	old_desiredvnodes = desiredvnodes;
323 	if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0)
324 		return (error);
325 	if (old_desiredvnodes != desiredvnodes) {
326 		wantfreevnodes = desiredvnodes / 4;
327 		/* XXX locking seems to be incomplete. */
328 		vfs_hash_changesize(desiredvnodes);
329 		cache_changesize(desiredvnodes);
330 	}
331 	return (0);
332 }
333 
334 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
335     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0,
336     sysctl_update_desiredvnodes, "I", "Target for maximum number of vnodes");
337 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
338     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
339 static int vnlru_nowhere;
340 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
341     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
342 
343 static int
344 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
345 {
346 	struct vnode *vp;
347 	struct nameidata nd;
348 	char *buf;
349 	unsigned long ndflags;
350 	int error;
351 
352 	if (req->newptr == NULL)
353 		return (EINVAL);
354 	if (req->newlen >= PATH_MAX)
355 		return (E2BIG);
356 
357 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
358 	error = SYSCTL_IN(req, buf, req->newlen);
359 	if (error != 0)
360 		goto out;
361 
362 	buf[req->newlen] = '\0';
363 
364 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | NOCACHE | SAVENAME;
365 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread);
366 	if ((error = namei(&nd)) != 0)
367 		goto out;
368 	vp = nd.ni_vp;
369 
370 	if ((vp->v_iflag & VI_DOOMED) != 0) {
371 		/*
372 		 * This vnode is being recycled.  Return != 0 to let the caller
373 		 * know that the sysctl had no effect.  Return EAGAIN because a
374 		 * subsequent call will likely succeed (since namei will create
375 		 * a new vnode if necessary)
376 		 */
377 		error = EAGAIN;
378 		goto putvnode;
379 	}
380 
381 	counter_u64_add(recycles_count, 1);
382 	vgone(vp);
383 putvnode:
384 	NDFREE(&nd, 0);
385 out:
386 	free(buf, M_TEMP);
387 	return (error);
388 }
389 
390 static int
391 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
392 {
393 	struct thread *td = curthread;
394 	struct vnode *vp;
395 	struct file *fp;
396 	int error;
397 	int fd;
398 
399 	if (req->newptr == NULL)
400 		return (EBADF);
401 
402         error = sysctl_handle_int(oidp, &fd, 0, req);
403         if (error != 0)
404                 return (error);
405 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
406 	if (error != 0)
407 		return (error);
408 	vp = fp->f_vnode;
409 
410 	error = vn_lock(vp, LK_EXCLUSIVE);
411 	if (error != 0)
412 		goto drop;
413 
414 	counter_u64_add(recycles_count, 1);
415 	vgone(vp);
416 	VOP_UNLOCK(vp, 0);
417 drop:
418 	fdrop(fp, td);
419 	return (error);
420 }
421 
422 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
423     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
424     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
425 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
426     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
427     sysctl_ftry_reclaim_vnode, "I",
428     "Try to reclaim a vnode by its file descriptor");
429 
430 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
431 static int vnsz2log;
432 
433 /*
434  * Support for the bufobj clean & dirty pctrie.
435  */
436 static void *
437 buf_trie_alloc(struct pctrie *ptree)
438 {
439 
440 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
441 }
442 
443 static void
444 buf_trie_free(struct pctrie *ptree, void *node)
445 {
446 
447 	uma_zfree(buf_trie_zone, node);
448 }
449 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
450 
451 /*
452  * Initialize the vnode management data structures.
453  *
454  * Reevaluate the following cap on the number of vnodes after the physical
455  * memory size exceeds 512GB.  In the limit, as the physical memory size
456  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
457  */
458 #ifndef	MAXVNODES_MAX
459 #define	MAXVNODES_MAX	(512 * 1024 * 1024 / 64)	/* 8M */
460 #endif
461 
462 /*
463  * Initialize a vnode as it first enters the zone.
464  */
465 static int
466 vnode_init(void *mem, int size, int flags)
467 {
468 	struct vnode *vp;
469 
470 	vp = mem;
471 	bzero(vp, size);
472 	/*
473 	 * Setup locks.
474 	 */
475 	vp->v_vnlock = &vp->v_lock;
476 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
477 	/*
478 	 * By default, don't allow shared locks unless filesystems opt-in.
479 	 */
480 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
481 	    LK_NOSHARE | LK_IS_VNODE);
482 	/*
483 	 * Initialize bufobj.
484 	 */
485 	bufobj_init(&vp->v_bufobj, vp);
486 	/*
487 	 * Initialize namecache.
488 	 */
489 	LIST_INIT(&vp->v_cache_src);
490 	TAILQ_INIT(&vp->v_cache_dst);
491 	/*
492 	 * Initialize rangelocks.
493 	 */
494 	rangelock_init(&vp->v_rl);
495 	return (0);
496 }
497 
498 /*
499  * Free a vnode when it is cleared from the zone.
500  */
501 static void
502 vnode_fini(void *mem, int size)
503 {
504 	struct vnode *vp;
505 	struct bufobj *bo;
506 
507 	vp = mem;
508 	rangelock_destroy(&vp->v_rl);
509 	lockdestroy(vp->v_vnlock);
510 	mtx_destroy(&vp->v_interlock);
511 	bo = &vp->v_bufobj;
512 	rw_destroy(BO_LOCKPTR(bo));
513 }
514 
515 /*
516  * Provide the size of NFS nclnode and NFS fh for calculation of the
517  * vnode memory consumption.  The size is specified directly to
518  * eliminate dependency on NFS-private header.
519  *
520  * Other filesystems may use bigger or smaller (like UFS and ZFS)
521  * private inode data, but the NFS-based estimation is ample enough.
522  * Still, we care about differences in the size between 64- and 32-bit
523  * platforms.
524  *
525  * Namecache structure size is heuristically
526  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
527  */
528 #ifdef _LP64
529 #define	NFS_NCLNODE_SZ	(528 + 64)
530 #define	NC_SZ		148
531 #else
532 #define	NFS_NCLNODE_SZ	(360 + 32)
533 #define	NC_SZ		92
534 #endif
535 
536 static void
537 vntblinit(void *dummy __unused)
538 {
539 	u_int i;
540 	int physvnodes, virtvnodes;
541 
542 	/*
543 	 * Desiredvnodes is a function of the physical memory size and the
544 	 * kernel's heap size.  Generally speaking, it scales with the
545 	 * physical memory size.  The ratio of desiredvnodes to the physical
546 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
547 	 * Thereafter, the
548 	 * marginal ratio of desiredvnodes to the physical memory size is
549 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
550 	 * size.  The memory required by desiredvnodes vnodes and vm objects
551 	 * must not exceed 1/10th of the kernel's heap size.
552 	 */
553 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
554 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
555 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
556 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
557 	desiredvnodes = min(physvnodes, virtvnodes);
558 	if (desiredvnodes > MAXVNODES_MAX) {
559 		if (bootverbose)
560 			printf("Reducing kern.maxvnodes %d -> %d\n",
561 			    desiredvnodes, MAXVNODES_MAX);
562 		desiredvnodes = MAXVNODES_MAX;
563 	}
564 	wantfreevnodes = desiredvnodes / 4;
565 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
566 	TAILQ_INIT(&vnode_free_list);
567 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
568 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
569 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
570 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
571 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
572 	/*
573 	 * Preallocate enough nodes to support one-per buf so that
574 	 * we can not fail an insert.  reassignbuf() callers can not
575 	 * tolerate the insertion failure.
576 	 */
577 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
578 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
579 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
580 	uma_prealloc(buf_trie_zone, nbuf);
581 
582 	vnodes_created = counter_u64_alloc(M_WAITOK);
583 	recycles_count = counter_u64_alloc(M_WAITOK);
584 	free_owe_inact = counter_u64_alloc(M_WAITOK);
585 
586 	/*
587 	 * Initialize the filesystem syncer.
588 	 */
589 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
590 	    &syncer_mask);
591 	syncer_maxdelay = syncer_mask + 1;
592 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
593 	cv_init(&sync_wakeup, "syncer");
594 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
595 		vnsz2log++;
596 	vnsz2log--;
597 }
598 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
599 
600 
601 /*
602  * Mark a mount point as busy. Used to synchronize access and to delay
603  * unmounting. Eventually, mountlist_mtx is not released on failure.
604  *
605  * vfs_busy() is a custom lock, it can block the caller.
606  * vfs_busy() only sleeps if the unmount is active on the mount point.
607  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
608  * vnode belonging to mp.
609  *
610  * Lookup uses vfs_busy() to traverse mount points.
611  * root fs			var fs
612  * / vnode lock		A	/ vnode lock (/var)		D
613  * /var vnode lock	B	/log vnode lock(/var/log)	E
614  * vfs_busy lock	C	vfs_busy lock			F
615  *
616  * Within each file system, the lock order is C->A->B and F->D->E.
617  *
618  * When traversing across mounts, the system follows that lock order:
619  *
620  *        C->A->B
621  *              |
622  *              +->F->D->E
623  *
624  * The lookup() process for namei("/var") illustrates the process:
625  *  VOP_LOOKUP() obtains B while A is held
626  *  vfs_busy() obtains a shared lock on F while A and B are held
627  *  vput() releases lock on B
628  *  vput() releases lock on A
629  *  VFS_ROOT() obtains lock on D while shared lock on F is held
630  *  vfs_unbusy() releases shared lock on F
631  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
632  *    Attempt to lock A (instead of vp_crossmp) while D is held would
633  *    violate the global order, causing deadlocks.
634  *
635  * dounmount() locks B while F is drained.
636  */
637 int
638 vfs_busy(struct mount *mp, int flags)
639 {
640 
641 	MPASS((flags & ~MBF_MASK) == 0);
642 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
643 
644 	if (vfs_op_thread_enter(mp)) {
645 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
646 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
647 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
648 		vfs_mp_count_add_pcpu(mp, ref, 1);
649 		vfs_mp_count_add_pcpu(mp, lockref, 1);
650 		vfs_op_thread_exit(mp);
651 		if (flags & MBF_MNTLSTLOCK)
652 			mtx_unlock(&mountlist_mtx);
653 		return (0);
654 	}
655 
656 	MNT_ILOCK(mp);
657 	vfs_assert_mount_counters(mp);
658 	MNT_REF(mp);
659 	/*
660 	 * If mount point is currently being unmounted, sleep until the
661 	 * mount point fate is decided.  If thread doing the unmounting fails,
662 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
663 	 * that this mount point has survived the unmount attempt and vfs_busy
664 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
665 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
666 	 * about to be really destroyed.  vfs_busy needs to release its
667 	 * reference on the mount point in this case and return with ENOENT,
668 	 * telling the caller that mount mount it tried to busy is no longer
669 	 * valid.
670 	 */
671 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
672 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
673 			MNT_REL(mp);
674 			MNT_IUNLOCK(mp);
675 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
676 			    __func__);
677 			return (ENOENT);
678 		}
679 		if (flags & MBF_MNTLSTLOCK)
680 			mtx_unlock(&mountlist_mtx);
681 		mp->mnt_kern_flag |= MNTK_MWAIT;
682 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
683 		if (flags & MBF_MNTLSTLOCK)
684 			mtx_lock(&mountlist_mtx);
685 		MNT_ILOCK(mp);
686 	}
687 	if (flags & MBF_MNTLSTLOCK)
688 		mtx_unlock(&mountlist_mtx);
689 	mp->mnt_lockref++;
690 	MNT_IUNLOCK(mp);
691 	return (0);
692 }
693 
694 /*
695  * Free a busy filesystem.
696  */
697 void
698 vfs_unbusy(struct mount *mp)
699 {
700 	int c;
701 
702 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
703 
704 	if (vfs_op_thread_enter(mp)) {
705 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
706 		vfs_mp_count_sub_pcpu(mp, lockref, 1);
707 		vfs_mp_count_sub_pcpu(mp, ref, 1);
708 		vfs_op_thread_exit(mp);
709 		return;
710 	}
711 
712 	MNT_ILOCK(mp);
713 	vfs_assert_mount_counters(mp);
714 	MNT_REL(mp);
715 	c = --mp->mnt_lockref;
716 	if (mp->mnt_vfs_ops == 0) {
717 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
718 		MNT_IUNLOCK(mp);
719 		return;
720 	}
721 	if (c < 0)
722 		vfs_dump_mount_counters(mp);
723 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
724 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
725 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
726 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
727 		wakeup(&mp->mnt_lockref);
728 	}
729 	MNT_IUNLOCK(mp);
730 }
731 
732 /*
733  * Lookup a mount point by filesystem identifier.
734  */
735 struct mount *
736 vfs_getvfs(fsid_t *fsid)
737 {
738 	struct mount *mp;
739 
740 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
741 	mtx_lock(&mountlist_mtx);
742 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
743 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
744 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
745 			vfs_ref(mp);
746 			mtx_unlock(&mountlist_mtx);
747 			return (mp);
748 		}
749 	}
750 	mtx_unlock(&mountlist_mtx);
751 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
752 	return ((struct mount *) 0);
753 }
754 
755 /*
756  * Lookup a mount point by filesystem identifier, busying it before
757  * returning.
758  *
759  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
760  * cache for popular filesystem identifiers.  The cache is lockess, using
761  * the fact that struct mount's are never freed.  In worst case we may
762  * get pointer to unmounted or even different filesystem, so we have to
763  * check what we got, and go slow way if so.
764  */
765 struct mount *
766 vfs_busyfs(fsid_t *fsid)
767 {
768 #define	FSID_CACHE_SIZE	256
769 	typedef struct mount * volatile vmp_t;
770 	static vmp_t cache[FSID_CACHE_SIZE];
771 	struct mount *mp;
772 	int error;
773 	uint32_t hash;
774 
775 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
776 	hash = fsid->val[0] ^ fsid->val[1];
777 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
778 	mp = cache[hash];
779 	if (mp == NULL ||
780 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
781 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
782 		goto slow;
783 	if (vfs_busy(mp, 0) != 0) {
784 		cache[hash] = NULL;
785 		goto slow;
786 	}
787 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
788 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
789 		return (mp);
790 	else
791 	    vfs_unbusy(mp);
792 
793 slow:
794 	mtx_lock(&mountlist_mtx);
795 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
796 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
797 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
798 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
799 			if (error) {
800 				cache[hash] = NULL;
801 				mtx_unlock(&mountlist_mtx);
802 				return (NULL);
803 			}
804 			cache[hash] = mp;
805 			return (mp);
806 		}
807 	}
808 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
809 	mtx_unlock(&mountlist_mtx);
810 	return ((struct mount *) 0);
811 }
812 
813 /*
814  * Check if a user can access privileged mount options.
815  */
816 int
817 vfs_suser(struct mount *mp, struct thread *td)
818 {
819 	int error;
820 
821 	if (jailed(td->td_ucred)) {
822 		/*
823 		 * If the jail of the calling thread lacks permission for
824 		 * this type of file system, deny immediately.
825 		 */
826 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
827 			return (EPERM);
828 
829 		/*
830 		 * If the file system was mounted outside the jail of the
831 		 * calling thread, deny immediately.
832 		 */
833 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
834 			return (EPERM);
835 	}
836 
837 	/*
838 	 * If file system supports delegated administration, we don't check
839 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
840 	 * by the file system itself.
841 	 * If this is not the user that did original mount, we check for
842 	 * the PRIV_VFS_MOUNT_OWNER privilege.
843 	 */
844 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
845 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
846 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
847 			return (error);
848 	}
849 	return (0);
850 }
851 
852 /*
853  * Get a new unique fsid.  Try to make its val[0] unique, since this value
854  * will be used to create fake device numbers for stat().  Also try (but
855  * not so hard) make its val[0] unique mod 2^16, since some emulators only
856  * support 16-bit device numbers.  We end up with unique val[0]'s for the
857  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
858  *
859  * Keep in mind that several mounts may be running in parallel.  Starting
860  * the search one past where the previous search terminated is both a
861  * micro-optimization and a defense against returning the same fsid to
862  * different mounts.
863  */
864 void
865 vfs_getnewfsid(struct mount *mp)
866 {
867 	static uint16_t mntid_base;
868 	struct mount *nmp;
869 	fsid_t tfsid;
870 	int mtype;
871 
872 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
873 	mtx_lock(&mntid_mtx);
874 	mtype = mp->mnt_vfc->vfc_typenum;
875 	tfsid.val[1] = mtype;
876 	mtype = (mtype & 0xFF) << 24;
877 	for (;;) {
878 		tfsid.val[0] = makedev(255,
879 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
880 		mntid_base++;
881 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
882 			break;
883 		vfs_rel(nmp);
884 	}
885 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
886 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
887 	mtx_unlock(&mntid_mtx);
888 }
889 
890 /*
891  * Knob to control the precision of file timestamps:
892  *
893  *   0 = seconds only; nanoseconds zeroed.
894  *   1 = seconds and nanoseconds, accurate within 1/HZ.
895  *   2 = seconds and nanoseconds, truncated to microseconds.
896  * >=3 = seconds and nanoseconds, maximum precision.
897  */
898 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
899 
900 static int timestamp_precision = TSP_USEC;
901 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
902     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
903     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
904     "3+: sec + ns (max. precision))");
905 
906 /*
907  * Get a current timestamp.
908  */
909 void
910 vfs_timestamp(struct timespec *tsp)
911 {
912 	struct timeval tv;
913 
914 	switch (timestamp_precision) {
915 	case TSP_SEC:
916 		tsp->tv_sec = time_second;
917 		tsp->tv_nsec = 0;
918 		break;
919 	case TSP_HZ:
920 		getnanotime(tsp);
921 		break;
922 	case TSP_USEC:
923 		microtime(&tv);
924 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
925 		break;
926 	case TSP_NSEC:
927 	default:
928 		nanotime(tsp);
929 		break;
930 	}
931 }
932 
933 /*
934  * Set vnode attributes to VNOVAL
935  */
936 void
937 vattr_null(struct vattr *vap)
938 {
939 
940 	vap->va_type = VNON;
941 	vap->va_size = VNOVAL;
942 	vap->va_bytes = VNOVAL;
943 	vap->va_mode = VNOVAL;
944 	vap->va_nlink = VNOVAL;
945 	vap->va_uid = VNOVAL;
946 	vap->va_gid = VNOVAL;
947 	vap->va_fsid = VNOVAL;
948 	vap->va_fileid = VNOVAL;
949 	vap->va_blocksize = VNOVAL;
950 	vap->va_rdev = VNOVAL;
951 	vap->va_atime.tv_sec = VNOVAL;
952 	vap->va_atime.tv_nsec = VNOVAL;
953 	vap->va_mtime.tv_sec = VNOVAL;
954 	vap->va_mtime.tv_nsec = VNOVAL;
955 	vap->va_ctime.tv_sec = VNOVAL;
956 	vap->va_ctime.tv_nsec = VNOVAL;
957 	vap->va_birthtime.tv_sec = VNOVAL;
958 	vap->va_birthtime.tv_nsec = VNOVAL;
959 	vap->va_flags = VNOVAL;
960 	vap->va_gen = VNOVAL;
961 	vap->va_vaflags = 0;
962 }
963 
964 /*
965  * This routine is called when we have too many vnodes.  It attempts
966  * to free <count> vnodes and will potentially free vnodes that still
967  * have VM backing store (VM backing store is typically the cause
968  * of a vnode blowout so we want to do this).  Therefore, this operation
969  * is not considered cheap.
970  *
971  * A number of conditions may prevent a vnode from being reclaimed.
972  * the buffer cache may have references on the vnode, a directory
973  * vnode may still have references due to the namei cache representing
974  * underlying files, or the vnode may be in active use.   It is not
975  * desirable to reuse such vnodes.  These conditions may cause the
976  * number of vnodes to reach some minimum value regardless of what
977  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
978  *
979  * @param mp		 Try to reclaim vnodes from this mountpoint
980  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
981  * 			 entries if this argument is strue
982  * @param trigger	 Only reclaim vnodes with fewer than this many resident
983  *			 pages.
984  * @return		 The number of vnodes that were reclaimed.
985  */
986 static int
987 vlrureclaim(struct mount *mp, bool reclaim_nc_src, int trigger)
988 {
989 	struct vnode *vp;
990 	int count, done, target;
991 
992 	done = 0;
993 	vn_start_write(NULL, &mp, V_WAIT);
994 	MNT_ILOCK(mp);
995 	count = mp->mnt_nvnodelistsize;
996 	target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1);
997 	target = target / 10 + 1;
998 	while (count != 0 && done < target) {
999 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
1000 		while (vp != NULL && vp->v_type == VMARKER)
1001 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
1002 		if (vp == NULL)
1003 			break;
1004 		/*
1005 		 * XXX LRU is completely broken for non-free vnodes.  First
1006 		 * by calling here in mountpoint order, then by moving
1007 		 * unselected vnodes to the end here, and most grossly by
1008 		 * removing the vlruvp() function that was supposed to
1009 		 * maintain the order.  (This function was born broken
1010 		 * since syncer problems prevented it doing anything.)  The
1011 		 * order is closer to LRC (C = Created).
1012 		 *
1013 		 * LRU reclaiming of vnodes seems to have last worked in
1014 		 * FreeBSD-3 where LRU wasn't mentioned under any spelling.
1015 		 * Then there was no hold count, and inactive vnodes were
1016 		 * simply put on the free list in LRU order.  The separate
1017 		 * lists also break LRU.  We prefer to reclaim from the
1018 		 * free list for technical reasons.  This tends to thrash
1019 		 * the free list to keep very unrecently used held vnodes.
1020 		 * The problem is mitigated by keeping the free list large.
1021 		 */
1022 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1023 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1024 		--count;
1025 		if (!VI_TRYLOCK(vp))
1026 			goto next_iter;
1027 		/*
1028 		 * If it's been deconstructed already, it's still
1029 		 * referenced, or it exceeds the trigger, skip it.
1030 		 * Also skip free vnodes.  We are trying to make space
1031 		 * to expand the free list, not reduce it.
1032 		 */
1033 		if (vp->v_usecount ||
1034 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1035 		    ((vp->v_iflag & VI_FREE) != 0) ||
1036 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
1037 		    vp->v_object->resident_page_count > trigger)) {
1038 			VI_UNLOCK(vp);
1039 			goto next_iter;
1040 		}
1041 		MNT_IUNLOCK(mp);
1042 		vholdl(vp);
1043 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
1044 			vdrop(vp);
1045 			goto next_iter_mntunlocked;
1046 		}
1047 		VI_LOCK(vp);
1048 		/*
1049 		 * v_usecount may have been bumped after VOP_LOCK() dropped
1050 		 * the vnode interlock and before it was locked again.
1051 		 *
1052 		 * It is not necessary to recheck VI_DOOMED because it can
1053 		 * only be set by another thread that holds both the vnode
1054 		 * lock and vnode interlock.  If another thread has the
1055 		 * vnode lock before we get to VOP_LOCK() and obtains the
1056 		 * vnode interlock after VOP_LOCK() drops the vnode
1057 		 * interlock, the other thread will be unable to drop the
1058 		 * vnode lock before our VOP_LOCK() call fails.
1059 		 */
1060 		if (vp->v_usecount ||
1061 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1062 		    (vp->v_iflag & VI_FREE) != 0 ||
1063 		    (vp->v_object != NULL &&
1064 		    vp->v_object->resident_page_count > trigger)) {
1065 			VOP_UNLOCK(vp, 0);
1066 			vdropl(vp);
1067 			goto next_iter_mntunlocked;
1068 		}
1069 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
1070 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
1071 		counter_u64_add(recycles_count, 1);
1072 		vgonel(vp);
1073 		VOP_UNLOCK(vp, 0);
1074 		vdropl(vp);
1075 		done++;
1076 next_iter_mntunlocked:
1077 		if (!should_yield())
1078 			goto relock_mnt;
1079 		goto yield;
1080 next_iter:
1081 		if (!should_yield())
1082 			continue;
1083 		MNT_IUNLOCK(mp);
1084 yield:
1085 		kern_yield(PRI_USER);
1086 relock_mnt:
1087 		MNT_ILOCK(mp);
1088 	}
1089 	MNT_IUNLOCK(mp);
1090 	vn_finished_write(mp);
1091 	return done;
1092 }
1093 
1094 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1095 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1096     0,
1097     "limit on vnode free requests per call to the vnlru_free routine");
1098 
1099 /*
1100  * Attempt to reduce the free list by the requested amount.
1101  */
1102 static void
1103 vnlru_free_locked(int count, struct vfsops *mnt_op)
1104 {
1105 	struct vnode *vp;
1106 	struct mount *mp;
1107 	bool tried_batches;
1108 
1109 	tried_batches = false;
1110 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1111 	if (count > max_vnlru_free)
1112 		count = max_vnlru_free;
1113 	for (; count > 0; count--) {
1114 		vp = TAILQ_FIRST(&vnode_free_list);
1115 		/*
1116 		 * The list can be modified while the free_list_mtx
1117 		 * has been dropped and vp could be NULL here.
1118 		 */
1119 		if (vp == NULL) {
1120 			if (tried_batches)
1121 				break;
1122 			mtx_unlock(&vnode_free_list_mtx);
1123 			vnlru_return_batches(mnt_op);
1124 			tried_batches = true;
1125 			mtx_lock(&vnode_free_list_mtx);
1126 			continue;
1127 		}
1128 
1129 		VNASSERT(vp->v_op != NULL, vp,
1130 		    ("vnlru_free: vnode already reclaimed."));
1131 		KASSERT((vp->v_iflag & VI_FREE) != 0,
1132 		    ("Removing vnode not on freelist"));
1133 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1134 		    ("Mangling active vnode"));
1135 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
1136 
1137 		/*
1138 		 * Don't recycle if our vnode is from different type
1139 		 * of mount point.  Note that mp is type-safe, the
1140 		 * check does not reach unmapped address even if
1141 		 * vnode is reclaimed.
1142 		 * Don't recycle if we can't get the interlock without
1143 		 * blocking.
1144 		 */
1145 		if ((mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1146 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1147 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
1148 			continue;
1149 		}
1150 		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
1151 		    vp, ("vp inconsistent on freelist"));
1152 
1153 		/*
1154 		 * The clear of VI_FREE prevents activation of the
1155 		 * vnode.  There is no sense in putting the vnode on
1156 		 * the mount point active list, only to remove it
1157 		 * later during recycling.  Inline the relevant part
1158 		 * of vholdl(), to avoid triggering assertions or
1159 		 * activating.
1160 		 */
1161 		freevnodes--;
1162 		vp->v_iflag &= ~VI_FREE;
1163 		VNODE_REFCOUNT_FENCE_REL();
1164 		refcount_acquire(&vp->v_holdcnt);
1165 
1166 		mtx_unlock(&vnode_free_list_mtx);
1167 		VI_UNLOCK(vp);
1168 		vtryrecycle(vp);
1169 		/*
1170 		 * If the recycled succeeded this vdrop will actually free
1171 		 * the vnode.  If not it will simply place it back on
1172 		 * the free list.
1173 		 */
1174 		vdrop(vp);
1175 		mtx_lock(&vnode_free_list_mtx);
1176 	}
1177 }
1178 
1179 void
1180 vnlru_free(int count, struct vfsops *mnt_op)
1181 {
1182 
1183 	mtx_lock(&vnode_free_list_mtx);
1184 	vnlru_free_locked(count, mnt_op);
1185 	mtx_unlock(&vnode_free_list_mtx);
1186 }
1187 
1188 
1189 /* XXX some names and initialization are bad for limits and watermarks. */
1190 static int
1191 vspace(void)
1192 {
1193 	int space;
1194 
1195 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1196 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1197 	vlowat = vhiwat / 2;
1198 	if (numvnodes > desiredvnodes)
1199 		return (0);
1200 	space = desiredvnodes - numvnodes;
1201 	if (freevnodes > wantfreevnodes)
1202 		space += freevnodes - wantfreevnodes;
1203 	return (space);
1204 }
1205 
1206 static void
1207 vnlru_return_batch_locked(struct mount *mp)
1208 {
1209 	struct vnode *vp;
1210 
1211 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
1212 
1213 	if (mp->mnt_tmpfreevnodelistsize == 0)
1214 		return;
1215 
1216 	TAILQ_FOREACH(vp, &mp->mnt_tmpfreevnodelist, v_actfreelist) {
1217 		VNASSERT((vp->v_mflag & VMP_TMPMNTFREELIST) != 0, vp,
1218 		    ("vnode without VMP_TMPMNTFREELIST on mnt_tmpfreevnodelist"));
1219 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
1220 	}
1221 	mtx_lock(&vnode_free_list_mtx);
1222 	TAILQ_CONCAT(&vnode_free_list, &mp->mnt_tmpfreevnodelist, v_actfreelist);
1223 	freevnodes += mp->mnt_tmpfreevnodelistsize;
1224 	mtx_unlock(&vnode_free_list_mtx);
1225 	mp->mnt_tmpfreevnodelistsize = 0;
1226 }
1227 
1228 static void
1229 vnlru_return_batch(struct mount *mp)
1230 {
1231 
1232 	mtx_lock(&mp->mnt_listmtx);
1233 	vnlru_return_batch_locked(mp);
1234 	mtx_unlock(&mp->mnt_listmtx);
1235 }
1236 
1237 static void
1238 vnlru_return_batches(struct vfsops *mnt_op)
1239 {
1240 	struct mount *mp, *nmp;
1241 	bool need_unbusy;
1242 
1243 	mtx_lock(&mountlist_mtx);
1244 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1245 		need_unbusy = false;
1246 		if (mnt_op != NULL && mp->mnt_op != mnt_op)
1247 			goto next;
1248 		if (mp->mnt_tmpfreevnodelistsize == 0)
1249 			goto next;
1250 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) == 0) {
1251 			vnlru_return_batch(mp);
1252 			need_unbusy = true;
1253 			mtx_lock(&mountlist_mtx);
1254 		}
1255 next:
1256 		nmp = TAILQ_NEXT(mp, mnt_list);
1257 		if (need_unbusy)
1258 			vfs_unbusy(mp);
1259 	}
1260 	mtx_unlock(&mountlist_mtx);
1261 }
1262 
1263 /*
1264  * Attempt to recycle vnodes in a context that is always safe to block.
1265  * Calling vlrurecycle() from the bowels of filesystem code has some
1266  * interesting deadlock problems.
1267  */
1268 static struct proc *vnlruproc;
1269 static int vnlruproc_sig;
1270 
1271 static void
1272 vnlru_proc(void)
1273 {
1274 	struct mount *mp, *nmp;
1275 	unsigned long onumvnodes;
1276 	int done, force, trigger, usevnodes;
1277 	bool reclaim_nc_src;
1278 
1279 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1280 	    SHUTDOWN_PRI_FIRST);
1281 
1282 	force = 0;
1283 	for (;;) {
1284 		kproc_suspend_check(vnlruproc);
1285 		mtx_lock(&vnode_free_list_mtx);
1286 		/*
1287 		 * If numvnodes is too large (due to desiredvnodes being
1288 		 * adjusted using its sysctl, or emergency growth), first
1289 		 * try to reduce it by discarding from the free list.
1290 		 */
1291 		if (numvnodes > desiredvnodes)
1292 			vnlru_free_locked(numvnodes - desiredvnodes, NULL);
1293 		/*
1294 		 * Sleep if the vnode cache is in a good state.  This is
1295 		 * when it is not over-full and has space for about a 4%
1296 		 * or 9% expansion (by growing its size or inexcessively
1297 		 * reducing its free list).  Otherwise, try to reclaim
1298 		 * space for a 10% expansion.
1299 		 */
1300 		if (vstir && force == 0) {
1301 			force = 1;
1302 			vstir = 0;
1303 		}
1304 		if (vspace() >= vlowat && force == 0) {
1305 			vnlruproc_sig = 0;
1306 			wakeup(&vnlruproc_sig);
1307 			msleep(vnlruproc, &vnode_free_list_mtx,
1308 			    PVFS|PDROP, "vlruwt", hz);
1309 			continue;
1310 		}
1311 		mtx_unlock(&vnode_free_list_mtx);
1312 		done = 0;
1313 		onumvnodes = numvnodes;
1314 		/*
1315 		 * Calculate parameters for recycling.  These are the same
1316 		 * throughout the loop to give some semblance of fairness.
1317 		 * The trigger point is to avoid recycling vnodes with lots
1318 		 * of resident pages.  We aren't trying to free memory; we
1319 		 * are trying to recycle or at least free vnodes.
1320 		 */
1321 		if (numvnodes <= desiredvnodes)
1322 			usevnodes = numvnodes - freevnodes;
1323 		else
1324 			usevnodes = numvnodes;
1325 		if (usevnodes <= 0)
1326 			usevnodes = 1;
1327 		/*
1328 		 * The trigger value is is chosen to give a conservatively
1329 		 * large value to ensure that it alone doesn't prevent
1330 		 * making progress.  The value can easily be so large that
1331 		 * it is effectively infinite in some congested and
1332 		 * misconfigured cases, and this is necessary.  Normally
1333 		 * it is about 8 to 100 (pages), which is quite large.
1334 		 */
1335 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1336 		if (force < 2)
1337 			trigger = vsmalltrigger;
1338 		reclaim_nc_src = force >= 3;
1339 		mtx_lock(&mountlist_mtx);
1340 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1341 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
1342 				nmp = TAILQ_NEXT(mp, mnt_list);
1343 				continue;
1344 			}
1345 			done += vlrureclaim(mp, reclaim_nc_src, trigger);
1346 			mtx_lock(&mountlist_mtx);
1347 			nmp = TAILQ_NEXT(mp, mnt_list);
1348 			vfs_unbusy(mp);
1349 		}
1350 		mtx_unlock(&mountlist_mtx);
1351 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1352 			uma_reclaim(UMA_RECLAIM_DRAIN);
1353 		if (done == 0) {
1354 			if (force == 0 || force == 1) {
1355 				force = 2;
1356 				continue;
1357 			}
1358 			if (force == 2) {
1359 				force = 3;
1360 				continue;
1361 			}
1362 			force = 0;
1363 			vnlru_nowhere++;
1364 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1365 		} else
1366 			kern_yield(PRI_USER);
1367 		/*
1368 		 * After becoming active to expand above low water, keep
1369 		 * active until above high water.
1370 		 */
1371 		force = vspace() < vhiwat;
1372 	}
1373 }
1374 
1375 static struct kproc_desc vnlru_kp = {
1376 	"vnlru",
1377 	vnlru_proc,
1378 	&vnlruproc
1379 };
1380 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1381     &vnlru_kp);
1382 
1383 /*
1384  * Routines having to do with the management of the vnode table.
1385  */
1386 
1387 /*
1388  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1389  * before we actually vgone().  This function must be called with the vnode
1390  * held to prevent the vnode from being returned to the free list midway
1391  * through vgone().
1392  */
1393 static int
1394 vtryrecycle(struct vnode *vp)
1395 {
1396 	struct mount *vnmp;
1397 
1398 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1399 	VNASSERT(vp->v_holdcnt, vp,
1400 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1401 	/*
1402 	 * This vnode may found and locked via some other list, if so we
1403 	 * can't recycle it yet.
1404 	 */
1405 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1406 		CTR2(KTR_VFS,
1407 		    "%s: impossible to recycle, vp %p lock is already held",
1408 		    __func__, vp);
1409 		return (EWOULDBLOCK);
1410 	}
1411 	/*
1412 	 * Don't recycle if its filesystem is being suspended.
1413 	 */
1414 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1415 		VOP_UNLOCK(vp, 0);
1416 		CTR2(KTR_VFS,
1417 		    "%s: impossible to recycle, cannot start the write for %p",
1418 		    __func__, vp);
1419 		return (EBUSY);
1420 	}
1421 	/*
1422 	 * If we got this far, we need to acquire the interlock and see if
1423 	 * anyone picked up this vnode from another list.  If not, we will
1424 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1425 	 * will skip over it.
1426 	 */
1427 	VI_LOCK(vp);
1428 	if (vp->v_usecount) {
1429 		VOP_UNLOCK(vp, 0);
1430 		VI_UNLOCK(vp);
1431 		vn_finished_write(vnmp);
1432 		CTR2(KTR_VFS,
1433 		    "%s: impossible to recycle, %p is already referenced",
1434 		    __func__, vp);
1435 		return (EBUSY);
1436 	}
1437 	if ((vp->v_iflag & VI_DOOMED) == 0) {
1438 		counter_u64_add(recycles_count, 1);
1439 		vgonel(vp);
1440 	}
1441 	VOP_UNLOCK(vp, 0);
1442 	VI_UNLOCK(vp);
1443 	vn_finished_write(vnmp);
1444 	return (0);
1445 }
1446 
1447 static void
1448 vcheckspace(void)
1449 {
1450 
1451 	if (vspace() < vlowat && vnlruproc_sig == 0) {
1452 		vnlruproc_sig = 1;
1453 		wakeup(vnlruproc);
1454 	}
1455 }
1456 
1457 /*
1458  * Wait if necessary for space for a new vnode.
1459  */
1460 static int
1461 getnewvnode_wait(int suspended)
1462 {
1463 
1464 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1465 	if (numvnodes >= desiredvnodes) {
1466 		if (suspended) {
1467 			/*
1468 			 * The file system is being suspended.  We cannot
1469 			 * risk a deadlock here, so allow allocation of
1470 			 * another vnode even if this would give too many.
1471 			 */
1472 			return (0);
1473 		}
1474 		if (vnlruproc_sig == 0) {
1475 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1476 			wakeup(vnlruproc);
1477 		}
1478 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1479 		    "vlruwk", hz);
1480 	}
1481 	/* Post-adjust like the pre-adjust in getnewvnode(). */
1482 	if (numvnodes + 1 > desiredvnodes && freevnodes > 1)
1483 		vnlru_free_locked(1, NULL);
1484 	return (numvnodes >= desiredvnodes ? ENFILE : 0);
1485 }
1486 
1487 /*
1488  * This hack is fragile, and probably not needed any more now that the
1489  * watermark handling works.
1490  */
1491 void
1492 getnewvnode_reserve(u_int count)
1493 {
1494 	struct thread *td;
1495 
1496 	/* Pre-adjust like the pre-adjust in getnewvnode(), with any count. */
1497 	/* XXX no longer so quick, but this part is not racy. */
1498 	mtx_lock(&vnode_free_list_mtx);
1499 	if (numvnodes + count > desiredvnodes && freevnodes > wantfreevnodes)
1500 		vnlru_free_locked(ulmin(numvnodes + count - desiredvnodes,
1501 		    freevnodes - wantfreevnodes), NULL);
1502 	mtx_unlock(&vnode_free_list_mtx);
1503 
1504 	td = curthread;
1505 	/* First try to be quick and racy. */
1506 	if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) {
1507 		td->td_vp_reserv += count;
1508 		vcheckspace();	/* XXX no longer so quick, but more racy */
1509 		return;
1510 	} else
1511 		atomic_subtract_long(&numvnodes, count);
1512 
1513 	mtx_lock(&vnode_free_list_mtx);
1514 	while (count > 0) {
1515 		if (getnewvnode_wait(0) == 0) {
1516 			count--;
1517 			td->td_vp_reserv++;
1518 			atomic_add_long(&numvnodes, 1);
1519 		}
1520 	}
1521 	vcheckspace();
1522 	mtx_unlock(&vnode_free_list_mtx);
1523 }
1524 
1525 /*
1526  * This hack is fragile, especially if desiredvnodes or wantvnodes are
1527  * misconfgured or changed significantly.  Reducing desiredvnodes below
1528  * the reserved amount should cause bizarre behaviour like reducing it
1529  * below the number of active vnodes -- the system will try to reduce
1530  * numvnodes to match, but should fail, so the subtraction below should
1531  * not overflow.
1532  */
1533 void
1534 getnewvnode_drop_reserve(void)
1535 {
1536 	struct thread *td;
1537 
1538 	td = curthread;
1539 	atomic_subtract_long(&numvnodes, td->td_vp_reserv);
1540 	td->td_vp_reserv = 0;
1541 }
1542 
1543 /*
1544  * Return the next vnode from the free list.
1545  */
1546 int
1547 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1548     struct vnode **vpp)
1549 {
1550 	struct vnode *vp;
1551 	struct thread *td;
1552 	struct lock_object *lo;
1553 	static int cyclecount;
1554 	int error __unused;
1555 
1556 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1557 	vp = NULL;
1558 	td = curthread;
1559 	if (td->td_vp_reserv > 0) {
1560 		td->td_vp_reserv -= 1;
1561 		goto alloc;
1562 	}
1563 	mtx_lock(&vnode_free_list_mtx);
1564 	if (numvnodes < desiredvnodes)
1565 		cyclecount = 0;
1566 	else if (cyclecount++ >= freevnodes) {
1567 		cyclecount = 0;
1568 		vstir = 1;
1569 	}
1570 	/*
1571 	 * Grow the vnode cache if it will not be above its target max
1572 	 * after growing.  Otherwise, if the free list is nonempty, try
1573 	 * to reclaim 1 item from it before growing the cache (possibly
1574 	 * above its target max if the reclamation failed or is delayed).
1575 	 * Otherwise, wait for some space.  In all cases, schedule
1576 	 * vnlru_proc() if we are getting short of space.  The watermarks
1577 	 * should be chosen so that we never wait or even reclaim from
1578 	 * the free list to below its target minimum.
1579 	 */
1580 	if (numvnodes + 1 <= desiredvnodes)
1581 		;
1582 	else if (freevnodes > 0)
1583 		vnlru_free_locked(1, NULL);
1584 	else {
1585 		error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1586 		    MNTK_SUSPEND));
1587 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1588 		if (error != 0) {
1589 			mtx_unlock(&vnode_free_list_mtx);
1590 			return (error);
1591 		}
1592 #endif
1593 	}
1594 	vcheckspace();
1595 	atomic_add_long(&numvnodes, 1);
1596 	mtx_unlock(&vnode_free_list_mtx);
1597 alloc:
1598 	counter_u64_add(vnodes_created, 1);
1599 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
1600 	/*
1601 	 * Locks are given the generic name "vnode" when created.
1602 	 * Follow the historic practice of using the filesystem
1603 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1604 	 *
1605 	 * Locks live in a witness group keyed on their name. Thus,
1606 	 * when a lock is renamed, it must also move from the witness
1607 	 * group of its old name to the witness group of its new name.
1608 	 *
1609 	 * The change only needs to be made when the vnode moves
1610 	 * from one filesystem type to another. We ensure that each
1611 	 * filesystem use a single static name pointer for its tag so
1612 	 * that we can compare pointers rather than doing a strcmp().
1613 	 */
1614 	lo = &vp->v_vnlock->lock_object;
1615 	if (lo->lo_name != tag) {
1616 		lo->lo_name = tag;
1617 		WITNESS_DESTROY(lo);
1618 		WITNESS_INIT(lo, tag);
1619 	}
1620 	/*
1621 	 * By default, don't allow shared locks unless filesystems opt-in.
1622 	 */
1623 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1624 	/*
1625 	 * Finalize various vnode identity bits.
1626 	 */
1627 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1628 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1629 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1630 	vp->v_type = VNON;
1631 	vp->v_tag = tag;
1632 	vp->v_op = vops;
1633 	v_init_counters(vp);
1634 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1635 #ifdef DIAGNOSTIC
1636 	if (mp == NULL && vops != &dead_vnodeops)
1637 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1638 #endif
1639 #ifdef MAC
1640 	mac_vnode_init(vp);
1641 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1642 		mac_vnode_associate_singlelabel(mp, vp);
1643 #endif
1644 	if (mp != NULL) {
1645 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1646 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1647 			vp->v_vflag |= VV_NOKNOTE;
1648 	}
1649 
1650 	/*
1651 	 * For the filesystems which do not use vfs_hash_insert(),
1652 	 * still initialize v_hash to have vfs_hash_index() useful.
1653 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1654 	 * its own hashing.
1655 	 */
1656 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1657 
1658 	*vpp = vp;
1659 	return (0);
1660 }
1661 
1662 /*
1663  * Delete from old mount point vnode list, if on one.
1664  */
1665 static void
1666 delmntque(struct vnode *vp)
1667 {
1668 	struct mount *mp;
1669 	int active;
1670 
1671 	mp = vp->v_mount;
1672 	if (mp == NULL)
1673 		return;
1674 	MNT_ILOCK(mp);
1675 	VI_LOCK(vp);
1676 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1677 	    ("Active vnode list size %d > Vnode list size %d",
1678 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1679 	active = vp->v_iflag & VI_ACTIVE;
1680 	vp->v_iflag &= ~VI_ACTIVE;
1681 	if (active) {
1682 		mtx_lock(&mp->mnt_listmtx);
1683 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1684 		mp->mnt_activevnodelistsize--;
1685 		mtx_unlock(&mp->mnt_listmtx);
1686 	}
1687 	vp->v_mount = NULL;
1688 	VI_UNLOCK(vp);
1689 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1690 		("bad mount point vnode list size"));
1691 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1692 	mp->mnt_nvnodelistsize--;
1693 	MNT_REL(mp);
1694 	MNT_IUNLOCK(mp);
1695 }
1696 
1697 static void
1698 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1699 {
1700 
1701 	vp->v_data = NULL;
1702 	vp->v_op = &dead_vnodeops;
1703 	vgone(vp);
1704 	vput(vp);
1705 }
1706 
1707 /*
1708  * Insert into list of vnodes for the new mount point, if available.
1709  */
1710 int
1711 insmntque1(struct vnode *vp, struct mount *mp,
1712 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1713 {
1714 
1715 	KASSERT(vp->v_mount == NULL,
1716 		("insmntque: vnode already on per mount vnode list"));
1717 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1718 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1719 
1720 	/*
1721 	 * We acquire the vnode interlock early to ensure that the
1722 	 * vnode cannot be recycled by another process releasing a
1723 	 * holdcnt on it before we get it on both the vnode list
1724 	 * and the active vnode list. The mount mutex protects only
1725 	 * manipulation of the vnode list and the vnode freelist
1726 	 * mutex protects only manipulation of the active vnode list.
1727 	 * Hence the need to hold the vnode interlock throughout.
1728 	 */
1729 	MNT_ILOCK(mp);
1730 	VI_LOCK(vp);
1731 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1732 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1733 	    mp->mnt_nvnodelistsize == 0)) &&
1734 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1735 		VI_UNLOCK(vp);
1736 		MNT_IUNLOCK(mp);
1737 		if (dtr != NULL)
1738 			dtr(vp, dtr_arg);
1739 		return (EBUSY);
1740 	}
1741 	vp->v_mount = mp;
1742 	MNT_REF(mp);
1743 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1744 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1745 		("neg mount point vnode list size"));
1746 	mp->mnt_nvnodelistsize++;
1747 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1748 	    ("Activating already active vnode"));
1749 	vp->v_iflag |= VI_ACTIVE;
1750 	mtx_lock(&mp->mnt_listmtx);
1751 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1752 	mp->mnt_activevnodelistsize++;
1753 	mtx_unlock(&mp->mnt_listmtx);
1754 	VI_UNLOCK(vp);
1755 	MNT_IUNLOCK(mp);
1756 	return (0);
1757 }
1758 
1759 int
1760 insmntque(struct vnode *vp, struct mount *mp)
1761 {
1762 
1763 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1764 }
1765 
1766 /*
1767  * Flush out and invalidate all buffers associated with a bufobj
1768  * Called with the underlying object locked.
1769  */
1770 int
1771 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1772 {
1773 	int error;
1774 
1775 	BO_LOCK(bo);
1776 	if (flags & V_SAVE) {
1777 		error = bufobj_wwait(bo, slpflag, slptimeo);
1778 		if (error) {
1779 			BO_UNLOCK(bo);
1780 			return (error);
1781 		}
1782 		if (bo->bo_dirty.bv_cnt > 0) {
1783 			BO_UNLOCK(bo);
1784 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1785 				return (error);
1786 			/*
1787 			 * XXX We could save a lock/unlock if this was only
1788 			 * enabled under INVARIANTS
1789 			 */
1790 			BO_LOCK(bo);
1791 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1792 				panic("vinvalbuf: dirty bufs");
1793 		}
1794 	}
1795 	/*
1796 	 * If you alter this loop please notice that interlock is dropped and
1797 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1798 	 * no race conditions occur from this.
1799 	 */
1800 	do {
1801 		error = flushbuflist(&bo->bo_clean,
1802 		    flags, bo, slpflag, slptimeo);
1803 		if (error == 0 && !(flags & V_CLEANONLY))
1804 			error = flushbuflist(&bo->bo_dirty,
1805 			    flags, bo, slpflag, slptimeo);
1806 		if (error != 0 && error != EAGAIN) {
1807 			BO_UNLOCK(bo);
1808 			return (error);
1809 		}
1810 	} while (error != 0);
1811 
1812 	/*
1813 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1814 	 * have write I/O in-progress but if there is a VM object then the
1815 	 * VM object can also have read-I/O in-progress.
1816 	 */
1817 	do {
1818 		bufobj_wwait(bo, 0, 0);
1819 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
1820 			BO_UNLOCK(bo);
1821 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
1822 			BO_LOCK(bo);
1823 		}
1824 	} while (bo->bo_numoutput > 0);
1825 	BO_UNLOCK(bo);
1826 
1827 	/*
1828 	 * Destroy the copy in the VM cache, too.
1829 	 */
1830 	if (bo->bo_object != NULL &&
1831 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1832 		VM_OBJECT_WLOCK(bo->bo_object);
1833 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1834 		    OBJPR_CLEANONLY : 0);
1835 		VM_OBJECT_WUNLOCK(bo->bo_object);
1836 	}
1837 
1838 #ifdef INVARIANTS
1839 	BO_LOCK(bo);
1840 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1841 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1842 	    bo->bo_clean.bv_cnt > 0))
1843 		panic("vinvalbuf: flush failed");
1844 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1845 	    bo->bo_dirty.bv_cnt > 0)
1846 		panic("vinvalbuf: flush dirty failed");
1847 	BO_UNLOCK(bo);
1848 #endif
1849 	return (0);
1850 }
1851 
1852 /*
1853  * Flush out and invalidate all buffers associated with a vnode.
1854  * Called with the underlying object locked.
1855  */
1856 int
1857 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1858 {
1859 
1860 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1861 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1862 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1863 		return (0);
1864 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1865 }
1866 
1867 /*
1868  * Flush out buffers on the specified list.
1869  *
1870  */
1871 static int
1872 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1873     int slptimeo)
1874 {
1875 	struct buf *bp, *nbp;
1876 	int retval, error;
1877 	daddr_t lblkno;
1878 	b_xflags_t xflags;
1879 
1880 	ASSERT_BO_WLOCKED(bo);
1881 
1882 	retval = 0;
1883 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1884 		/*
1885 		 * If we are flushing both V_NORMAL and V_ALT buffers then
1886 		 * do not skip any buffers. If we are flushing only V_NORMAL
1887 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
1888 		 * flushing only V_ALT buffers then skip buffers not marked
1889 		 * as BX_ALTDATA.
1890 		 */
1891 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
1892 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
1893 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
1894 			continue;
1895 		}
1896 		if (nbp != NULL) {
1897 			lblkno = nbp->b_lblkno;
1898 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1899 		}
1900 		retval = EAGAIN;
1901 		error = BUF_TIMELOCK(bp,
1902 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1903 		    "flushbuf", slpflag, slptimeo);
1904 		if (error) {
1905 			BO_LOCK(bo);
1906 			return (error != ENOLCK ? error : EAGAIN);
1907 		}
1908 		KASSERT(bp->b_bufobj == bo,
1909 		    ("bp %p wrong b_bufobj %p should be %p",
1910 		    bp, bp->b_bufobj, bo));
1911 		/*
1912 		 * XXX Since there are no node locks for NFS, I
1913 		 * believe there is a slight chance that a delayed
1914 		 * write will occur while sleeping just above, so
1915 		 * check for it.
1916 		 */
1917 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1918 		    (flags & V_SAVE)) {
1919 			bremfree(bp);
1920 			bp->b_flags |= B_ASYNC;
1921 			bwrite(bp);
1922 			BO_LOCK(bo);
1923 			return (EAGAIN);	/* XXX: why not loop ? */
1924 		}
1925 		bremfree(bp);
1926 		bp->b_flags |= (B_INVAL | B_RELBUF);
1927 		bp->b_flags &= ~B_ASYNC;
1928 		brelse(bp);
1929 		BO_LOCK(bo);
1930 		if (nbp == NULL)
1931 			break;
1932 		nbp = gbincore(bo, lblkno);
1933 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1934 		    != xflags)
1935 			break;			/* nbp invalid */
1936 	}
1937 	return (retval);
1938 }
1939 
1940 int
1941 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
1942 {
1943 	struct buf *bp;
1944 	int error;
1945 	daddr_t lblkno;
1946 
1947 	ASSERT_BO_LOCKED(bo);
1948 
1949 	for (lblkno = startn;;) {
1950 again:
1951 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
1952 		if (bp == NULL || bp->b_lblkno >= endn ||
1953 		    bp->b_lblkno < startn)
1954 			break;
1955 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
1956 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
1957 		if (error != 0) {
1958 			BO_RLOCK(bo);
1959 			if (error == ENOLCK)
1960 				goto again;
1961 			return (error);
1962 		}
1963 		KASSERT(bp->b_bufobj == bo,
1964 		    ("bp %p wrong b_bufobj %p should be %p",
1965 		    bp, bp->b_bufobj, bo));
1966 		lblkno = bp->b_lblkno + 1;
1967 		if ((bp->b_flags & B_MANAGED) == 0)
1968 			bremfree(bp);
1969 		bp->b_flags |= B_RELBUF;
1970 		/*
1971 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
1972 		 * pages backing each buffer in the range are unlikely to be
1973 		 * reused.  Dirty buffers will have the hint applied once
1974 		 * they've been written.
1975 		 */
1976 		if ((bp->b_flags & B_VMIO) != 0)
1977 			bp->b_flags |= B_NOREUSE;
1978 		brelse(bp);
1979 		BO_RLOCK(bo);
1980 	}
1981 	return (0);
1982 }
1983 
1984 /*
1985  * Truncate a file's buffer and pages to a specified length.  This
1986  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1987  * sync activity.
1988  */
1989 int
1990 vtruncbuf(struct vnode *vp, off_t length, int blksize)
1991 {
1992 	struct buf *bp, *nbp;
1993 	struct bufobj *bo;
1994 	daddr_t startlbn;
1995 
1996 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
1997 	    vp, blksize, (uintmax_t)length);
1998 
1999 	/*
2000 	 * Round up to the *next* lbn.
2001 	 */
2002 	startlbn = howmany(length, blksize);
2003 
2004 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2005 
2006 	bo = &vp->v_bufobj;
2007 restart_unlocked:
2008 	BO_LOCK(bo);
2009 
2010 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2011 		;
2012 
2013 	if (length > 0) {
2014 restartsync:
2015 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2016 			if (bp->b_lblkno > 0)
2017 				continue;
2018 			/*
2019 			 * Since we hold the vnode lock this should only
2020 			 * fail if we're racing with the buf daemon.
2021 			 */
2022 			if (BUF_LOCK(bp,
2023 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2024 			    BO_LOCKPTR(bo)) == ENOLCK)
2025 				goto restart_unlocked;
2026 
2027 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2028 			    ("buf(%p) on dirty queue without DELWRI", bp));
2029 
2030 			bremfree(bp);
2031 			bawrite(bp);
2032 			BO_LOCK(bo);
2033 			goto restartsync;
2034 		}
2035 	}
2036 
2037 	bufobj_wwait(bo, 0, 0);
2038 	BO_UNLOCK(bo);
2039 	vnode_pager_setsize(vp, length);
2040 
2041 	return (0);
2042 }
2043 
2044 /*
2045  * Invalidate the cached pages of a file's buffer within the range of block
2046  * numbers [startlbn, endlbn).
2047  */
2048 void
2049 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2050     int blksize)
2051 {
2052 	struct bufobj *bo;
2053 	off_t start, end;
2054 
2055 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2056 
2057 	start = blksize * startlbn;
2058 	end = blksize * endlbn;
2059 
2060 	bo = &vp->v_bufobj;
2061 	BO_LOCK(bo);
2062 	MPASS(blksize == bo->bo_bsize);
2063 
2064 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2065 		;
2066 
2067 	BO_UNLOCK(bo);
2068 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2069 }
2070 
2071 static int
2072 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2073     daddr_t startlbn, daddr_t endlbn)
2074 {
2075 	struct buf *bp, *nbp;
2076 	bool anyfreed;
2077 
2078 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2079 	ASSERT_BO_LOCKED(bo);
2080 
2081 	do {
2082 		anyfreed = false;
2083 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2084 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2085 				continue;
2086 			if (BUF_LOCK(bp,
2087 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2088 			    BO_LOCKPTR(bo)) == ENOLCK) {
2089 				BO_LOCK(bo);
2090 				return (EAGAIN);
2091 			}
2092 
2093 			bremfree(bp);
2094 			bp->b_flags |= B_INVAL | B_RELBUF;
2095 			bp->b_flags &= ~B_ASYNC;
2096 			brelse(bp);
2097 			anyfreed = true;
2098 
2099 			BO_LOCK(bo);
2100 			if (nbp != NULL &&
2101 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2102 			    nbp->b_vp != vp ||
2103 			    (nbp->b_flags & B_DELWRI) != 0))
2104 				return (EAGAIN);
2105 		}
2106 
2107 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2108 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2109 				continue;
2110 			if (BUF_LOCK(bp,
2111 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2112 			    BO_LOCKPTR(bo)) == ENOLCK) {
2113 				BO_LOCK(bo);
2114 				return (EAGAIN);
2115 			}
2116 			bremfree(bp);
2117 			bp->b_flags |= B_INVAL | B_RELBUF;
2118 			bp->b_flags &= ~B_ASYNC;
2119 			brelse(bp);
2120 			anyfreed = true;
2121 
2122 			BO_LOCK(bo);
2123 			if (nbp != NULL &&
2124 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2125 			    (nbp->b_vp != vp) ||
2126 			    (nbp->b_flags & B_DELWRI) == 0))
2127 				return (EAGAIN);
2128 		}
2129 	} while (anyfreed);
2130 	return (0);
2131 }
2132 
2133 static void
2134 buf_vlist_remove(struct buf *bp)
2135 {
2136 	struct bufv *bv;
2137 
2138 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2139 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2140 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
2141 	    (BX_VNDIRTY|BX_VNCLEAN),
2142 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
2143 	if (bp->b_xflags & BX_VNDIRTY)
2144 		bv = &bp->b_bufobj->bo_dirty;
2145 	else
2146 		bv = &bp->b_bufobj->bo_clean;
2147 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2148 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2149 	bv->bv_cnt--;
2150 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2151 }
2152 
2153 /*
2154  * Add the buffer to the sorted clean or dirty block list.
2155  *
2156  * NOTE: xflags is passed as a constant, optimizing this inline function!
2157  */
2158 static void
2159 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2160 {
2161 	struct bufv *bv;
2162 	struct buf *n;
2163 	int error;
2164 
2165 	ASSERT_BO_WLOCKED(bo);
2166 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2167 	    ("dead bo %p", bo));
2168 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2169 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2170 	bp->b_xflags |= xflags;
2171 	if (xflags & BX_VNDIRTY)
2172 		bv = &bo->bo_dirty;
2173 	else
2174 		bv = &bo->bo_clean;
2175 
2176 	/*
2177 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2178 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2179 	 * than _ge.
2180 	 */
2181 	if (bv->bv_cnt == 0 ||
2182 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2183 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2184 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2185 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2186 	else
2187 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2188 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2189 	if (error)
2190 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2191 	bv->bv_cnt++;
2192 }
2193 
2194 /*
2195  * Look up a buffer using the buffer tries.
2196  */
2197 struct buf *
2198 gbincore(struct bufobj *bo, daddr_t lblkno)
2199 {
2200 	struct buf *bp;
2201 
2202 	ASSERT_BO_LOCKED(bo);
2203 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2204 	if (bp != NULL)
2205 		return (bp);
2206 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
2207 }
2208 
2209 /*
2210  * Associate a buffer with a vnode.
2211  */
2212 void
2213 bgetvp(struct vnode *vp, struct buf *bp)
2214 {
2215 	struct bufobj *bo;
2216 
2217 	bo = &vp->v_bufobj;
2218 	ASSERT_BO_WLOCKED(bo);
2219 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2220 
2221 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2222 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2223 	    ("bgetvp: bp already attached! %p", bp));
2224 
2225 	vhold(vp);
2226 	bp->b_vp = vp;
2227 	bp->b_bufobj = bo;
2228 	/*
2229 	 * Insert onto list for new vnode.
2230 	 */
2231 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2232 }
2233 
2234 /*
2235  * Disassociate a buffer from a vnode.
2236  */
2237 void
2238 brelvp(struct buf *bp)
2239 {
2240 	struct bufobj *bo;
2241 	struct vnode *vp;
2242 
2243 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2244 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2245 
2246 	/*
2247 	 * Delete from old vnode list, if on one.
2248 	 */
2249 	vp = bp->b_vp;		/* XXX */
2250 	bo = bp->b_bufobj;
2251 	BO_LOCK(bo);
2252 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2253 		buf_vlist_remove(bp);
2254 	else
2255 		panic("brelvp: Buffer %p not on queue.", bp);
2256 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2257 		bo->bo_flag &= ~BO_ONWORKLST;
2258 		mtx_lock(&sync_mtx);
2259 		LIST_REMOVE(bo, bo_synclist);
2260 		syncer_worklist_len--;
2261 		mtx_unlock(&sync_mtx);
2262 	}
2263 	bp->b_vp = NULL;
2264 	bp->b_bufobj = NULL;
2265 	BO_UNLOCK(bo);
2266 	vdrop(vp);
2267 }
2268 
2269 /*
2270  * Add an item to the syncer work queue.
2271  */
2272 static void
2273 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2274 {
2275 	int slot;
2276 
2277 	ASSERT_BO_WLOCKED(bo);
2278 
2279 	mtx_lock(&sync_mtx);
2280 	if (bo->bo_flag & BO_ONWORKLST)
2281 		LIST_REMOVE(bo, bo_synclist);
2282 	else {
2283 		bo->bo_flag |= BO_ONWORKLST;
2284 		syncer_worklist_len++;
2285 	}
2286 
2287 	if (delay > syncer_maxdelay - 2)
2288 		delay = syncer_maxdelay - 2;
2289 	slot = (syncer_delayno + delay) & syncer_mask;
2290 
2291 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2292 	mtx_unlock(&sync_mtx);
2293 }
2294 
2295 static int
2296 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2297 {
2298 	int error, len;
2299 
2300 	mtx_lock(&sync_mtx);
2301 	len = syncer_worklist_len - sync_vnode_count;
2302 	mtx_unlock(&sync_mtx);
2303 	error = SYSCTL_OUT(req, &len, sizeof(len));
2304 	return (error);
2305 }
2306 
2307 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
2308     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2309 
2310 static struct proc *updateproc;
2311 static void sched_sync(void);
2312 static struct kproc_desc up_kp = {
2313 	"syncer",
2314 	sched_sync,
2315 	&updateproc
2316 };
2317 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2318 
2319 static int
2320 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2321 {
2322 	struct vnode *vp;
2323 	struct mount *mp;
2324 
2325 	*bo = LIST_FIRST(slp);
2326 	if (*bo == NULL)
2327 		return (0);
2328 	vp = bo2vnode(*bo);
2329 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2330 		return (1);
2331 	/*
2332 	 * We use vhold in case the vnode does not
2333 	 * successfully sync.  vhold prevents the vnode from
2334 	 * going away when we unlock the sync_mtx so that
2335 	 * we can acquire the vnode interlock.
2336 	 */
2337 	vholdl(vp);
2338 	mtx_unlock(&sync_mtx);
2339 	VI_UNLOCK(vp);
2340 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2341 		vdrop(vp);
2342 		mtx_lock(&sync_mtx);
2343 		return (*bo == LIST_FIRST(slp));
2344 	}
2345 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2346 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2347 	VOP_UNLOCK(vp, 0);
2348 	vn_finished_write(mp);
2349 	BO_LOCK(*bo);
2350 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2351 		/*
2352 		 * Put us back on the worklist.  The worklist
2353 		 * routine will remove us from our current
2354 		 * position and then add us back in at a later
2355 		 * position.
2356 		 */
2357 		vn_syncer_add_to_worklist(*bo, syncdelay);
2358 	}
2359 	BO_UNLOCK(*bo);
2360 	vdrop(vp);
2361 	mtx_lock(&sync_mtx);
2362 	return (0);
2363 }
2364 
2365 static int first_printf = 1;
2366 
2367 /*
2368  * System filesystem synchronizer daemon.
2369  */
2370 static void
2371 sched_sync(void)
2372 {
2373 	struct synclist *next, *slp;
2374 	struct bufobj *bo;
2375 	long starttime;
2376 	struct thread *td = curthread;
2377 	int last_work_seen;
2378 	int net_worklist_len;
2379 	int syncer_final_iter;
2380 	int error;
2381 
2382 	last_work_seen = 0;
2383 	syncer_final_iter = 0;
2384 	syncer_state = SYNCER_RUNNING;
2385 	starttime = time_uptime;
2386 	td->td_pflags |= TDP_NORUNNINGBUF;
2387 
2388 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2389 	    SHUTDOWN_PRI_LAST);
2390 
2391 	mtx_lock(&sync_mtx);
2392 	for (;;) {
2393 		if (syncer_state == SYNCER_FINAL_DELAY &&
2394 		    syncer_final_iter == 0) {
2395 			mtx_unlock(&sync_mtx);
2396 			kproc_suspend_check(td->td_proc);
2397 			mtx_lock(&sync_mtx);
2398 		}
2399 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2400 		if (syncer_state != SYNCER_RUNNING &&
2401 		    starttime != time_uptime) {
2402 			if (first_printf) {
2403 				printf("\nSyncing disks, vnodes remaining... ");
2404 				first_printf = 0;
2405 			}
2406 			printf("%d ", net_worklist_len);
2407 		}
2408 		starttime = time_uptime;
2409 
2410 		/*
2411 		 * Push files whose dirty time has expired.  Be careful
2412 		 * of interrupt race on slp queue.
2413 		 *
2414 		 * Skip over empty worklist slots when shutting down.
2415 		 */
2416 		do {
2417 			slp = &syncer_workitem_pending[syncer_delayno];
2418 			syncer_delayno += 1;
2419 			if (syncer_delayno == syncer_maxdelay)
2420 				syncer_delayno = 0;
2421 			next = &syncer_workitem_pending[syncer_delayno];
2422 			/*
2423 			 * If the worklist has wrapped since the
2424 			 * it was emptied of all but syncer vnodes,
2425 			 * switch to the FINAL_DELAY state and run
2426 			 * for one more second.
2427 			 */
2428 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2429 			    net_worklist_len == 0 &&
2430 			    last_work_seen == syncer_delayno) {
2431 				syncer_state = SYNCER_FINAL_DELAY;
2432 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2433 			}
2434 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2435 		    syncer_worklist_len > 0);
2436 
2437 		/*
2438 		 * Keep track of the last time there was anything
2439 		 * on the worklist other than syncer vnodes.
2440 		 * Return to the SHUTTING_DOWN state if any
2441 		 * new work appears.
2442 		 */
2443 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2444 			last_work_seen = syncer_delayno;
2445 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2446 			syncer_state = SYNCER_SHUTTING_DOWN;
2447 		while (!LIST_EMPTY(slp)) {
2448 			error = sync_vnode(slp, &bo, td);
2449 			if (error == 1) {
2450 				LIST_REMOVE(bo, bo_synclist);
2451 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2452 				continue;
2453 			}
2454 
2455 			if (first_printf == 0) {
2456 				/*
2457 				 * Drop the sync mutex, because some watchdog
2458 				 * drivers need to sleep while patting
2459 				 */
2460 				mtx_unlock(&sync_mtx);
2461 				wdog_kern_pat(WD_LASTVAL);
2462 				mtx_lock(&sync_mtx);
2463 			}
2464 
2465 		}
2466 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2467 			syncer_final_iter--;
2468 		/*
2469 		 * The variable rushjob allows the kernel to speed up the
2470 		 * processing of the filesystem syncer process. A rushjob
2471 		 * value of N tells the filesystem syncer to process the next
2472 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2473 		 * is used by the soft update code to speed up the filesystem
2474 		 * syncer process when the incore state is getting so far
2475 		 * ahead of the disk that the kernel memory pool is being
2476 		 * threatened with exhaustion.
2477 		 */
2478 		if (rushjob > 0) {
2479 			rushjob -= 1;
2480 			continue;
2481 		}
2482 		/*
2483 		 * Just sleep for a short period of time between
2484 		 * iterations when shutting down to allow some I/O
2485 		 * to happen.
2486 		 *
2487 		 * If it has taken us less than a second to process the
2488 		 * current work, then wait. Otherwise start right over
2489 		 * again. We can still lose time if any single round
2490 		 * takes more than two seconds, but it does not really
2491 		 * matter as we are just trying to generally pace the
2492 		 * filesystem activity.
2493 		 */
2494 		if (syncer_state != SYNCER_RUNNING ||
2495 		    time_uptime == starttime) {
2496 			thread_lock(td);
2497 			sched_prio(td, PPAUSE);
2498 			thread_unlock(td);
2499 		}
2500 		if (syncer_state != SYNCER_RUNNING)
2501 			cv_timedwait(&sync_wakeup, &sync_mtx,
2502 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2503 		else if (time_uptime == starttime)
2504 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2505 	}
2506 }
2507 
2508 /*
2509  * Request the syncer daemon to speed up its work.
2510  * We never push it to speed up more than half of its
2511  * normal turn time, otherwise it could take over the cpu.
2512  */
2513 int
2514 speedup_syncer(void)
2515 {
2516 	int ret = 0;
2517 
2518 	mtx_lock(&sync_mtx);
2519 	if (rushjob < syncdelay / 2) {
2520 		rushjob += 1;
2521 		stat_rush_requests += 1;
2522 		ret = 1;
2523 	}
2524 	mtx_unlock(&sync_mtx);
2525 	cv_broadcast(&sync_wakeup);
2526 	return (ret);
2527 }
2528 
2529 /*
2530  * Tell the syncer to speed up its work and run though its work
2531  * list several times, then tell it to shut down.
2532  */
2533 static void
2534 syncer_shutdown(void *arg, int howto)
2535 {
2536 
2537 	if (howto & RB_NOSYNC)
2538 		return;
2539 	mtx_lock(&sync_mtx);
2540 	syncer_state = SYNCER_SHUTTING_DOWN;
2541 	rushjob = 0;
2542 	mtx_unlock(&sync_mtx);
2543 	cv_broadcast(&sync_wakeup);
2544 	kproc_shutdown(arg, howto);
2545 }
2546 
2547 void
2548 syncer_suspend(void)
2549 {
2550 
2551 	syncer_shutdown(updateproc, 0);
2552 }
2553 
2554 void
2555 syncer_resume(void)
2556 {
2557 
2558 	mtx_lock(&sync_mtx);
2559 	first_printf = 1;
2560 	syncer_state = SYNCER_RUNNING;
2561 	mtx_unlock(&sync_mtx);
2562 	cv_broadcast(&sync_wakeup);
2563 	kproc_resume(updateproc);
2564 }
2565 
2566 /*
2567  * Reassign a buffer from one vnode to another.
2568  * Used to assign file specific control information
2569  * (indirect blocks) to the vnode to which they belong.
2570  */
2571 void
2572 reassignbuf(struct buf *bp)
2573 {
2574 	struct vnode *vp;
2575 	struct bufobj *bo;
2576 	int delay;
2577 #ifdef INVARIANTS
2578 	struct bufv *bv;
2579 #endif
2580 
2581 	vp = bp->b_vp;
2582 	bo = bp->b_bufobj;
2583 	++reassignbufcalls;
2584 
2585 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2586 	    bp, bp->b_vp, bp->b_flags);
2587 	/*
2588 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2589 	 * is not fully linked in.
2590 	 */
2591 	if (bp->b_flags & B_PAGING)
2592 		panic("cannot reassign paging buffer");
2593 
2594 	/*
2595 	 * Delete from old vnode list, if on one.
2596 	 */
2597 	BO_LOCK(bo);
2598 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2599 		buf_vlist_remove(bp);
2600 	else
2601 		panic("reassignbuf: Buffer %p not on queue.", bp);
2602 	/*
2603 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2604 	 * of clean buffers.
2605 	 */
2606 	if (bp->b_flags & B_DELWRI) {
2607 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2608 			switch (vp->v_type) {
2609 			case VDIR:
2610 				delay = dirdelay;
2611 				break;
2612 			case VCHR:
2613 				delay = metadelay;
2614 				break;
2615 			default:
2616 				delay = filedelay;
2617 			}
2618 			vn_syncer_add_to_worklist(bo, delay);
2619 		}
2620 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2621 	} else {
2622 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2623 
2624 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2625 			mtx_lock(&sync_mtx);
2626 			LIST_REMOVE(bo, bo_synclist);
2627 			syncer_worklist_len--;
2628 			mtx_unlock(&sync_mtx);
2629 			bo->bo_flag &= ~BO_ONWORKLST;
2630 		}
2631 	}
2632 #ifdef INVARIANTS
2633 	bv = &bo->bo_clean;
2634 	bp = TAILQ_FIRST(&bv->bv_hd);
2635 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2636 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2637 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2638 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2639 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2640 	bv = &bo->bo_dirty;
2641 	bp = TAILQ_FIRST(&bv->bv_hd);
2642 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2643 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2644 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2645 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2646 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2647 #endif
2648 	BO_UNLOCK(bo);
2649 }
2650 
2651 static void
2652 v_init_counters(struct vnode *vp)
2653 {
2654 
2655 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2656 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2657 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2658 
2659 	refcount_init(&vp->v_holdcnt, 1);
2660 	refcount_init(&vp->v_usecount, 1);
2661 }
2662 
2663 /*
2664  * Increment si_usecount of the associated device, if any.
2665  */
2666 static void
2667 v_incr_devcount(struct vnode *vp)
2668 {
2669 
2670 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2671 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2672 		dev_lock();
2673 		vp->v_rdev->si_usecount++;
2674 		dev_unlock();
2675 	}
2676 }
2677 
2678 /*
2679  * Decrement si_usecount of the associated device, if any.
2680  */
2681 static void
2682 v_decr_devcount(struct vnode *vp)
2683 {
2684 
2685 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2686 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2687 		dev_lock();
2688 		vp->v_rdev->si_usecount--;
2689 		dev_unlock();
2690 	}
2691 }
2692 
2693 /*
2694  * Grab a particular vnode from the free list, increment its
2695  * reference count and lock it.  VI_DOOMED is set if the vnode
2696  * is being destroyed.  Only callers who specify LK_RETRY will
2697  * see doomed vnodes.  If inactive processing was delayed in
2698  * vput try to do it here.
2699  *
2700  * Both holdcnt and usecount can be manipulated using atomics without holding
2701  * any locks except in these cases which require the vnode interlock:
2702  * holdcnt: 1->0 and 0->1
2703  * usecount: 0->1
2704  *
2705  * usecount is permitted to transition 1->0 without the interlock because
2706  * vnode is kept live by holdcnt.
2707  */
2708 static enum vgetstate
2709 _vget_prep(struct vnode *vp, bool interlock)
2710 {
2711 	enum vgetstate vs;
2712 
2713 	if (__predict_true(vp->v_type != VCHR)) {
2714 		if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2715 			vs = VGET_USECOUNT;
2716 		} else {
2717 			_vhold(vp, interlock);
2718 			vs = VGET_HOLDCNT;
2719 		}
2720 	} else {
2721 		if (!interlock)
2722 			VI_LOCK(vp);
2723 		if (vp->v_usecount == 0) {
2724 			vholdl(vp);
2725 			vs = VGET_HOLDCNT;
2726 		} else {
2727 			v_incr_devcount(vp);
2728 			refcount_acquire(&vp->v_usecount);
2729 			vs = VGET_USECOUNT;
2730 		}
2731 		if (!interlock)
2732 			VI_UNLOCK(vp);
2733 	}
2734 	return (vs);
2735 }
2736 
2737 enum vgetstate
2738 vget_prep(struct vnode *vp)
2739 {
2740 
2741 	return (_vget_prep(vp, false));
2742 }
2743 
2744 int
2745 vget(struct vnode *vp, int flags, struct thread *td)
2746 {
2747 	enum vgetstate vs;
2748 
2749 	MPASS(td == curthread);
2750 
2751 	vs = _vget_prep(vp, (flags & LK_INTERLOCK) != 0);
2752 	return (vget_finish(vp, flags, vs));
2753 }
2754 
2755 int
2756 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
2757 {
2758 	int error, oweinact;
2759 
2760 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2761 	    ("%s: invalid lock operation", __func__));
2762 
2763 	if ((flags & LK_INTERLOCK) != 0)
2764 		ASSERT_VI_LOCKED(vp, __func__);
2765 	else
2766 		ASSERT_VI_UNLOCKED(vp, __func__);
2767 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
2768 	if (vs == VGET_USECOUNT) {
2769 		VNASSERT(vp->v_usecount > 0, vp,
2770 		    ("%s: vnode without usecount when VGET_USECOUNT was passed",
2771 		    __func__));
2772 	}
2773 
2774 	if ((error = vn_lock(vp, flags)) != 0) {
2775 		if (vs == VGET_USECOUNT)
2776 			vrele(vp);
2777 		else
2778 			vdrop(vp);
2779 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2780 		    vp);
2781 		return (error);
2782 	}
2783 
2784 	if (vs == VGET_USECOUNT) {
2785 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2786 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2787 		return (0);
2788 	}
2789 
2790 	/*
2791 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
2792 	 * the vnode around. Otherwise someone else lended their hold count and
2793 	 * we have to drop ours.
2794 	 */
2795 	if (vp->v_type != VCHR &&
2796 	    refcount_acquire_if_not_zero(&vp->v_usecount)) {
2797 #ifdef INVARIANTS
2798 		int old = atomic_fetchadd_int(&vp->v_holdcnt, -1) - 1;
2799 		VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
2800 #else
2801 		refcount_release(&vp->v_holdcnt);
2802 #endif
2803 		VNODE_REFCOUNT_FENCE_ACQ();
2804 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2805 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2806 		return (0);
2807 	}
2808 
2809 	/*
2810 	 * We don't guarantee that any particular close will
2811 	 * trigger inactive processing so just make a best effort
2812 	 * here at preventing a reference to a removed file.  If
2813 	 * we don't succeed no harm is done.
2814 	 *
2815 	 * Upgrade our holdcnt to a usecount.
2816 	 */
2817 	VI_LOCK(vp);
2818 	/*
2819 	 * See the previous section. By the time we get here we may find
2820 	 * ourselves in the same spot.
2821 	 */
2822 	if (vp->v_type != VCHR) {
2823 		if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2824 #ifdef INVARIANTS
2825 			int old = atomic_fetchadd_int(&vp->v_holdcnt, -1) - 1;
2826 			VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
2827 #else
2828 			refcount_release(&vp->v_holdcnt);
2829 #endif
2830 			VNODE_REFCOUNT_FENCE_ACQ();
2831 			VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2832 			    ("%s: vnode with usecount and VI_OWEINACT set",
2833 			    __func__));
2834 			VI_UNLOCK(vp);
2835 			return (0);
2836 		}
2837 	} else {
2838 		if (vp->v_usecount > 0)
2839 			refcount_release(&vp->v_holdcnt);
2840 	}
2841 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
2842 		oweinact = 0;
2843 	} else {
2844 		oweinact = 1;
2845 		vp->v_iflag &= ~VI_OWEINACT;
2846 		VNODE_REFCOUNT_FENCE_REL();
2847 	}
2848 	v_incr_devcount(vp);
2849 	refcount_acquire(&vp->v_usecount);
2850 	if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2851 	    (flags & LK_NOWAIT) == 0)
2852 		vinactive(vp, curthread);
2853 	VI_UNLOCK(vp);
2854 	return (0);
2855 }
2856 
2857 /*
2858  * Increase the reference (use) and hold count of a vnode.
2859  * This will also remove the vnode from the free list if it is presently free.
2860  */
2861 void
2862 vref(struct vnode *vp)
2863 {
2864 
2865 	ASSERT_VI_UNLOCKED(vp, __func__);
2866 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2867 	if (vp->v_type != VCHR &&
2868 	    refcount_acquire_if_not_zero(&vp->v_usecount)) {
2869 		VNODE_REFCOUNT_FENCE_ACQ();
2870 		VNASSERT(vp->v_holdcnt > 0, vp,
2871 		    ("%s: active vnode not held", __func__));
2872 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2873 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2874 		return;
2875 	}
2876 	VI_LOCK(vp);
2877 	vrefl(vp);
2878 	VI_UNLOCK(vp);
2879 }
2880 
2881 void
2882 vrefl(struct vnode *vp)
2883 {
2884 
2885 	ASSERT_VI_LOCKED(vp, __func__);
2886 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2887 	if (vp->v_type != VCHR &&
2888 	    refcount_acquire_if_not_zero(&vp->v_usecount)) {
2889 		VNODE_REFCOUNT_FENCE_ACQ();
2890 		VNASSERT(vp->v_holdcnt > 0, vp,
2891 		    ("%s: active vnode not held", __func__));
2892 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2893 		    ("%s: vnode with usecount and VI_OWEINACT set", __func__));
2894 		return;
2895 	}
2896 	if (vp->v_usecount == 0)
2897 		vholdl(vp);
2898 	if ((vp->v_iflag & VI_OWEINACT) != 0) {
2899 		vp->v_iflag &= ~VI_OWEINACT;
2900 		VNODE_REFCOUNT_FENCE_REL();
2901 	}
2902 	v_incr_devcount(vp);
2903 	refcount_acquire(&vp->v_usecount);
2904 }
2905 
2906 void
2907 vrefact(struct vnode *vp)
2908 {
2909 
2910 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2911 	if (__predict_false(vp->v_type == VCHR)) {
2912 		VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp,
2913 		    ("%s: wrong ref counts", __func__));
2914 		vref(vp);
2915 		return;
2916 	}
2917 #ifdef INVARIANTS
2918 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
2919 	VNASSERT(old > 0, vp, ("%s: wrong use count", __func__));
2920 #else
2921 	refcount_acquire(&vp->v_usecount);
2922 #endif
2923 }
2924 
2925 /*
2926  * Return reference count of a vnode.
2927  *
2928  * The results of this call are only guaranteed when some mechanism is used to
2929  * stop other processes from gaining references to the vnode.  This may be the
2930  * case if the caller holds the only reference.  This is also useful when stale
2931  * data is acceptable as race conditions may be accounted for by some other
2932  * means.
2933  */
2934 int
2935 vrefcnt(struct vnode *vp)
2936 {
2937 
2938 	return (vp->v_usecount);
2939 }
2940 
2941 #define	VPUTX_VRELE	1
2942 #define	VPUTX_VPUT	2
2943 #define	VPUTX_VUNREF	3
2944 
2945 /*
2946  * Decrement the use and hold counts for a vnode.
2947  *
2948  * See an explanation near vget() as to why atomic operation is safe.
2949  */
2950 static void
2951 vputx(struct vnode *vp, int func)
2952 {
2953 	int error;
2954 
2955 	KASSERT(vp != NULL, ("vputx: null vp"));
2956 	if (func == VPUTX_VUNREF)
2957 		ASSERT_VOP_LOCKED(vp, "vunref");
2958 	else if (func == VPUTX_VPUT)
2959 		ASSERT_VOP_LOCKED(vp, "vput");
2960 	else
2961 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2962 	ASSERT_VI_UNLOCKED(vp, __func__);
2963 	VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp,
2964 	    ("%s: wrong ref counts", __func__));
2965 
2966 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2967 
2968 	/*
2969 	 * It is an invariant that all VOP_* calls operate on a held vnode.
2970 	 * We may be only having an implicit hold stemming from our usecount,
2971 	 * which we are about to release. If we unlock the vnode afterwards we
2972 	 * open a time window where someone else dropped the last usecount and
2973 	 * proceeded to free the vnode before our unlock finished. For this
2974 	 * reason we unlock the vnode early. This is a little bit wasteful as
2975 	 * it may be the vnode is exclusively locked and inactive processing is
2976 	 * needed, in which case we are adding work.
2977 	 */
2978 	if (func == VPUTX_VPUT)
2979 		VOP_UNLOCK(vp, 0);
2980 
2981 	/*
2982 	 * We want to hold the vnode until the inactive finishes to
2983 	 * prevent vgone() races.  We drop the use count here and the
2984 	 * hold count below when we're done.
2985 	 */
2986 	if (vp->v_type != VCHR) {
2987 		/*
2988 		 * If we release the last usecount we take ownership of the hold
2989 		 * count which provides liveness of the vnode, in which case we
2990 		 * have to vdrop.
2991 		 */
2992 		if (!refcount_release(&vp->v_usecount))
2993 			return;
2994 		VI_LOCK(vp);
2995 		/*
2996 		 * By the time we got here someone else might have transitioned
2997 		 * the count back to > 0.
2998 		 */
2999 		if (vp->v_usecount > 0) {
3000 			vdropl(vp);
3001 			return;
3002 		}
3003 	} else {
3004 		VI_LOCK(vp);
3005 		v_decr_devcount(vp);
3006 		if (!refcount_release(&vp->v_usecount)) {
3007 			VI_UNLOCK(vp);
3008 			return;
3009 		}
3010 	}
3011 	if (vp->v_iflag & VI_DOINGINACT) {
3012 		vdropl(vp);
3013 		return;
3014 	}
3015 
3016 	error = 0;
3017 
3018 	if (vp->v_usecount != 0) {
3019 		vn_printf(vp, "vputx: usecount not zero for vnode ");
3020 		panic("vputx: usecount not zero");
3021 	}
3022 
3023 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
3024 
3025 	/*
3026 	 * Check if the fs wants to perform inactive processing. Note we
3027 	 * may be only holding the interlock, in which case it is possible
3028 	 * someone else called vgone on the vnode and ->v_data is now NULL.
3029 	 * Since vgone performs inactive on its own there is nothing to do
3030 	 * here but to drop our hold count.
3031 	 */
3032 	if (__predict_false(vp->v_iflag & VI_DOOMED) ||
3033 	    VOP_NEED_INACTIVE(vp) == 0) {
3034 		vdropl(vp);
3035 		return;
3036 	}
3037 
3038 	/*
3039 	 * We must call VOP_INACTIVE with the node locked. Mark
3040 	 * as VI_DOINGINACT to avoid recursion.
3041 	 */
3042 	vp->v_iflag |= VI_OWEINACT;
3043 	switch (func) {
3044 	case VPUTX_VRELE:
3045 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3046 		VI_LOCK(vp);
3047 		break;
3048 	case VPUTX_VPUT:
3049 		error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT);
3050 		VI_LOCK(vp);
3051 		break;
3052 	case VPUTX_VUNREF:
3053 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3054 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3055 			VI_LOCK(vp);
3056 		}
3057 		break;
3058 	}
3059 	VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp,
3060 	    ("vnode with usecount and VI_OWEINACT set"));
3061 	if (error == 0) {
3062 		if (vp->v_iflag & VI_OWEINACT)
3063 			vinactive(vp, curthread);
3064 		if (func != VPUTX_VUNREF)
3065 			VOP_UNLOCK(vp, 0);
3066 	}
3067 	vdropl(vp);
3068 }
3069 
3070 /*
3071  * Vnode put/release.
3072  * If count drops to zero, call inactive routine and return to freelist.
3073  */
3074 void
3075 vrele(struct vnode *vp)
3076 {
3077 
3078 	vputx(vp, VPUTX_VRELE);
3079 }
3080 
3081 /*
3082  * Release an already locked vnode.  This give the same effects as
3083  * unlock+vrele(), but takes less time and avoids releasing and
3084  * re-aquiring the lock (as vrele() acquires the lock internally.)
3085  */
3086 void
3087 vput(struct vnode *vp)
3088 {
3089 
3090 	vputx(vp, VPUTX_VPUT);
3091 }
3092 
3093 /*
3094  * Release an exclusively locked vnode. Do not unlock the vnode lock.
3095  */
3096 void
3097 vunref(struct vnode *vp)
3098 {
3099 
3100 	vputx(vp, VPUTX_VUNREF);
3101 }
3102 
3103 /*
3104  * Increase the hold count and activate if this is the first reference.
3105  */
3106 void
3107 _vhold(struct vnode *vp, bool locked)
3108 {
3109 	struct mount *mp;
3110 
3111 	if (locked)
3112 		ASSERT_VI_LOCKED(vp, __func__);
3113 	else
3114 		ASSERT_VI_UNLOCKED(vp, __func__);
3115 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3116 	if (!locked) {
3117 		if (refcount_acquire_if_not_zero(&vp->v_holdcnt)) {
3118 			VNODE_REFCOUNT_FENCE_ACQ();
3119 			VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3120 			    ("_vhold: vnode with holdcnt is free"));
3121 			return;
3122 		}
3123 		VI_LOCK(vp);
3124 	}
3125 	if ((vp->v_iflag & VI_FREE) == 0) {
3126 		refcount_acquire(&vp->v_holdcnt);
3127 		if (!locked)
3128 			VI_UNLOCK(vp);
3129 		return;
3130 	}
3131 	VNASSERT(vp->v_holdcnt == 0, vp,
3132 	    ("%s: wrong hold count", __func__));
3133 	VNASSERT(vp->v_op != NULL, vp,
3134 	    ("%s: vnode already reclaimed.", __func__));
3135 	/*
3136 	 * Remove a vnode from the free list, mark it as in use,
3137 	 * and put it on the active list.
3138 	 */
3139 	VNASSERT(vp->v_mount != NULL, vp,
3140 	    ("_vhold: vnode not on per mount vnode list"));
3141 	mp = vp->v_mount;
3142 	mtx_lock(&mp->mnt_listmtx);
3143 	if ((vp->v_mflag & VMP_TMPMNTFREELIST) != 0) {
3144 		TAILQ_REMOVE(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
3145 		mp->mnt_tmpfreevnodelistsize--;
3146 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
3147 	} else {
3148 		mtx_lock(&vnode_free_list_mtx);
3149 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
3150 		freevnodes--;
3151 		mtx_unlock(&vnode_free_list_mtx);
3152 	}
3153 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
3154 	    ("Activating already active vnode"));
3155 	vp->v_iflag &= ~VI_FREE;
3156 	vp->v_iflag |= VI_ACTIVE;
3157 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
3158 	mp->mnt_activevnodelistsize++;
3159 	mtx_unlock(&mp->mnt_listmtx);
3160 	refcount_acquire(&vp->v_holdcnt);
3161 	if (!locked)
3162 		VI_UNLOCK(vp);
3163 }
3164 
3165 void
3166 vholdnz(struct vnode *vp)
3167 {
3168 
3169 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3170 #ifdef INVARIANTS
3171 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3172 	VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
3173 #else
3174 	atomic_add_int(&vp->v_holdcnt, 1);
3175 #endif
3176 }
3177 
3178 /*
3179  * Drop the hold count of the vnode.  If this is the last reference to
3180  * the vnode we place it on the free list unless it has been vgone'd
3181  * (marked VI_DOOMED) in which case we will free it.
3182  *
3183  * Because the vnode vm object keeps a hold reference on the vnode if
3184  * there is at least one resident non-cached page, the vnode cannot
3185  * leave the active list without the page cleanup done.
3186  */
3187 void
3188 _vdrop(struct vnode *vp, bool locked)
3189 {
3190 	struct bufobj *bo;
3191 	struct mount *mp;
3192 	int active;
3193 
3194 	if (locked)
3195 		ASSERT_VI_LOCKED(vp, __func__);
3196 	else
3197 		ASSERT_VI_UNLOCKED(vp, __func__);
3198 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3199 	if (__predict_false((int)vp->v_holdcnt <= 0)) {
3200 		vn_printf(vp, "vdrop: holdcnt %d", vp->v_holdcnt);
3201 		panic("vdrop: wrong holdcnt");
3202 	}
3203 	if (!locked) {
3204 		if (refcount_release_if_not_last(&vp->v_holdcnt))
3205 			return;
3206 		VI_LOCK(vp);
3207 	}
3208 	if (refcount_release(&vp->v_holdcnt) == 0) {
3209 		VI_UNLOCK(vp);
3210 		return;
3211 	}
3212 	if ((vp->v_iflag & VI_DOOMED) == 0) {
3213 		/*
3214 		 * Mark a vnode as free: remove it from its active list
3215 		 * and put it up for recycling on the freelist.
3216 		 */
3217 		VNASSERT(vp->v_op != NULL, vp,
3218 		    ("vdropl: vnode already reclaimed."));
3219 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3220 		    ("vnode already free"));
3221 		VNASSERT(vp->v_holdcnt == 0, vp,
3222 		    ("vdropl: freeing when we shouldn't"));
3223 		active = vp->v_iflag & VI_ACTIVE;
3224 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
3225 			vp->v_iflag &= ~VI_ACTIVE;
3226 			mp = vp->v_mount;
3227 			if (mp != NULL) {
3228 				mtx_lock(&mp->mnt_listmtx);
3229 				if (active) {
3230 					TAILQ_REMOVE(&mp->mnt_activevnodelist,
3231 					    vp, v_actfreelist);
3232 					mp->mnt_activevnodelistsize--;
3233 				}
3234 				TAILQ_INSERT_TAIL(&mp->mnt_tmpfreevnodelist,
3235 				    vp, v_actfreelist);
3236 				mp->mnt_tmpfreevnodelistsize++;
3237 				vp->v_iflag |= VI_FREE;
3238 				vp->v_mflag |= VMP_TMPMNTFREELIST;
3239 				VI_UNLOCK(vp);
3240 				if (mp->mnt_tmpfreevnodelistsize >=
3241 				    mnt_free_list_batch)
3242 					vnlru_return_batch_locked(mp);
3243 				mtx_unlock(&mp->mnt_listmtx);
3244 			} else {
3245 				VNASSERT(active == 0, vp,
3246 				    ("vdropl: active vnode not on per mount "
3247 				    "vnode list"));
3248 				mtx_lock(&vnode_free_list_mtx);
3249 				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
3250 				    v_actfreelist);
3251 				freevnodes++;
3252 				vp->v_iflag |= VI_FREE;
3253 				VI_UNLOCK(vp);
3254 				mtx_unlock(&vnode_free_list_mtx);
3255 			}
3256 		} else {
3257 			VI_UNLOCK(vp);
3258 			counter_u64_add(free_owe_inact, 1);
3259 		}
3260 		return;
3261 	}
3262 	/*
3263 	 * The vnode has been marked for destruction, so free it.
3264 	 *
3265 	 * The vnode will be returned to the zone where it will
3266 	 * normally remain until it is needed for another vnode. We
3267 	 * need to cleanup (or verify that the cleanup has already
3268 	 * been done) any residual data left from its current use
3269 	 * so as not to contaminate the freshly allocated vnode.
3270 	 */
3271 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
3272 	atomic_subtract_long(&numvnodes, 1);
3273 	bo = &vp->v_bufobj;
3274 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
3275 	    ("cleaned vnode still on the free list."));
3276 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
3277 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
3278 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
3279 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
3280 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
3281 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
3282 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
3283 	    ("clean blk trie not empty"));
3284 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
3285 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
3286 	    ("dirty blk trie not empty"));
3287 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
3288 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
3289 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
3290 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
3291 	    ("Dangling rangelock waiters"));
3292 	VI_UNLOCK(vp);
3293 #ifdef MAC
3294 	mac_vnode_destroy(vp);
3295 #endif
3296 	if (vp->v_pollinfo != NULL) {
3297 		destroy_vpollinfo(vp->v_pollinfo);
3298 		vp->v_pollinfo = NULL;
3299 	}
3300 #ifdef INVARIANTS
3301 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
3302 	vp->v_op = NULL;
3303 #endif
3304 	vp->v_mountedhere = NULL;
3305 	vp->v_unpcb = NULL;
3306 	vp->v_rdev = NULL;
3307 	vp->v_fifoinfo = NULL;
3308 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
3309 	vp->v_iflag = 0;
3310 	vp->v_vflag = 0;
3311 	bo->bo_flag = 0;
3312 	uma_zfree(vnode_zone, vp);
3313 }
3314 
3315 /*
3316  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3317  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3318  * OWEINACT tracks whether a vnode missed a call to inactive due to a
3319  * failed lock upgrade.
3320  */
3321 void
3322 vinactive(struct vnode *vp, struct thread *td)
3323 {
3324 	struct vm_object *obj;
3325 
3326 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3327 	ASSERT_VI_LOCKED(vp, "vinactive");
3328 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3329 	    ("vinactive: recursed on VI_DOINGINACT"));
3330 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3331 	vp->v_iflag |= VI_DOINGINACT;
3332 	vp->v_iflag &= ~VI_OWEINACT;
3333 	VI_UNLOCK(vp);
3334 	/*
3335 	 * Before moving off the active list, we must be sure that any
3336 	 * modified pages are converted into the vnode's dirty
3337 	 * buffers, since these will no longer be checked once the
3338 	 * vnode is on the inactive list.
3339 	 *
3340 	 * The write-out of the dirty pages is asynchronous.  At the
3341 	 * point that VOP_INACTIVE() is called, there could still be
3342 	 * pending I/O and dirty pages in the object.
3343 	 */
3344 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3345 	    (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
3346 		VM_OBJECT_WLOCK(obj);
3347 		vm_object_page_clean(obj, 0, 0, 0);
3348 		VM_OBJECT_WUNLOCK(obj);
3349 	}
3350 	VOP_INACTIVE(vp, td);
3351 	VI_LOCK(vp);
3352 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3353 	    ("vinactive: lost VI_DOINGINACT"));
3354 	vp->v_iflag &= ~VI_DOINGINACT;
3355 }
3356 
3357 /*
3358  * Remove any vnodes in the vnode table belonging to mount point mp.
3359  *
3360  * If FORCECLOSE is not specified, there should not be any active ones,
3361  * return error if any are found (nb: this is a user error, not a
3362  * system error). If FORCECLOSE is specified, detach any active vnodes
3363  * that are found.
3364  *
3365  * If WRITECLOSE is set, only flush out regular file vnodes open for
3366  * writing.
3367  *
3368  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3369  *
3370  * `rootrefs' specifies the base reference count for the root vnode
3371  * of this filesystem. The root vnode is considered busy if its
3372  * v_usecount exceeds this value. On a successful return, vflush(, td)
3373  * will call vrele() on the root vnode exactly rootrefs times.
3374  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3375  * be zero.
3376  */
3377 #ifdef DIAGNOSTIC
3378 static int busyprt = 0;		/* print out busy vnodes */
3379 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3380 #endif
3381 
3382 int
3383 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3384 {
3385 	struct vnode *vp, *mvp, *rootvp = NULL;
3386 	struct vattr vattr;
3387 	int busy = 0, error;
3388 
3389 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3390 	    rootrefs, flags);
3391 	if (rootrefs > 0) {
3392 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3393 		    ("vflush: bad args"));
3394 		/*
3395 		 * Get the filesystem root vnode. We can vput() it
3396 		 * immediately, since with rootrefs > 0, it won't go away.
3397 		 */
3398 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3399 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3400 			    __func__, error);
3401 			return (error);
3402 		}
3403 		vput(rootvp);
3404 	}
3405 loop:
3406 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3407 		vholdl(vp);
3408 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3409 		if (error) {
3410 			vdrop(vp);
3411 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3412 			goto loop;
3413 		}
3414 		/*
3415 		 * Skip over a vnodes marked VV_SYSTEM.
3416 		 */
3417 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3418 			VOP_UNLOCK(vp, 0);
3419 			vdrop(vp);
3420 			continue;
3421 		}
3422 		/*
3423 		 * If WRITECLOSE is set, flush out unlinked but still open
3424 		 * files (even if open only for reading) and regular file
3425 		 * vnodes open for writing.
3426 		 */
3427 		if (flags & WRITECLOSE) {
3428 			if (vp->v_object != NULL) {
3429 				VM_OBJECT_WLOCK(vp->v_object);
3430 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3431 				VM_OBJECT_WUNLOCK(vp->v_object);
3432 			}
3433 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3434 			if (error != 0) {
3435 				VOP_UNLOCK(vp, 0);
3436 				vdrop(vp);
3437 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3438 				return (error);
3439 			}
3440 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3441 			VI_LOCK(vp);
3442 
3443 			if ((vp->v_type == VNON ||
3444 			    (error == 0 && vattr.va_nlink > 0)) &&
3445 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3446 				VOP_UNLOCK(vp, 0);
3447 				vdropl(vp);
3448 				continue;
3449 			}
3450 		} else
3451 			VI_LOCK(vp);
3452 		/*
3453 		 * With v_usecount == 0, all we need to do is clear out the
3454 		 * vnode data structures and we are done.
3455 		 *
3456 		 * If FORCECLOSE is set, forcibly close the vnode.
3457 		 */
3458 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3459 			vgonel(vp);
3460 		} else {
3461 			busy++;
3462 #ifdef DIAGNOSTIC
3463 			if (busyprt)
3464 				vn_printf(vp, "vflush: busy vnode ");
3465 #endif
3466 		}
3467 		VOP_UNLOCK(vp, 0);
3468 		vdropl(vp);
3469 	}
3470 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3471 		/*
3472 		 * If just the root vnode is busy, and if its refcount
3473 		 * is equal to `rootrefs', then go ahead and kill it.
3474 		 */
3475 		VI_LOCK(rootvp);
3476 		KASSERT(busy > 0, ("vflush: not busy"));
3477 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3478 		    ("vflush: usecount %d < rootrefs %d",
3479 		     rootvp->v_usecount, rootrefs));
3480 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3481 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3482 			vgone(rootvp);
3483 			VOP_UNLOCK(rootvp, 0);
3484 			busy = 0;
3485 		} else
3486 			VI_UNLOCK(rootvp);
3487 	}
3488 	if (busy) {
3489 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3490 		    busy);
3491 		return (EBUSY);
3492 	}
3493 	for (; rootrefs > 0; rootrefs--)
3494 		vrele(rootvp);
3495 	return (0);
3496 }
3497 
3498 /*
3499  * Recycle an unused vnode to the front of the free list.
3500  */
3501 int
3502 vrecycle(struct vnode *vp)
3503 {
3504 	int recycled;
3505 
3506 	VI_LOCK(vp);
3507 	recycled = vrecyclel(vp);
3508 	VI_UNLOCK(vp);
3509 	return (recycled);
3510 }
3511 
3512 /*
3513  * vrecycle, with the vp interlock held.
3514  */
3515 int
3516 vrecyclel(struct vnode *vp)
3517 {
3518 	int recycled;
3519 
3520 	ASSERT_VOP_ELOCKED(vp, __func__);
3521 	ASSERT_VI_LOCKED(vp, __func__);
3522 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3523 	recycled = 0;
3524 	if (vp->v_usecount == 0) {
3525 		recycled = 1;
3526 		vgonel(vp);
3527 	}
3528 	return (recycled);
3529 }
3530 
3531 /*
3532  * Eliminate all activity associated with a vnode
3533  * in preparation for reuse.
3534  */
3535 void
3536 vgone(struct vnode *vp)
3537 {
3538 	VI_LOCK(vp);
3539 	vgonel(vp);
3540 	VI_UNLOCK(vp);
3541 }
3542 
3543 static void
3544 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3545     struct vnode *lowervp __unused)
3546 {
3547 }
3548 
3549 /*
3550  * Notify upper mounts about reclaimed or unlinked vnode.
3551  */
3552 void
3553 vfs_notify_upper(struct vnode *vp, int event)
3554 {
3555 	static struct vfsops vgonel_vfsops = {
3556 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3557 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3558 	};
3559 	struct mount *mp, *ump, *mmp;
3560 
3561 	mp = vp->v_mount;
3562 	if (mp == NULL)
3563 		return;
3564 
3565 	MNT_ILOCK(mp);
3566 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3567 		goto unlock;
3568 	MNT_IUNLOCK(mp);
3569 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3570 	mmp->mnt_op = &vgonel_vfsops;
3571 	mmp->mnt_kern_flag |= MNTK_MARKER;
3572 	MNT_ILOCK(mp);
3573 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3574 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3575 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3576 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3577 			continue;
3578 		}
3579 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3580 		MNT_IUNLOCK(mp);
3581 		switch (event) {
3582 		case VFS_NOTIFY_UPPER_RECLAIM:
3583 			VFS_RECLAIM_LOWERVP(ump, vp);
3584 			break;
3585 		case VFS_NOTIFY_UPPER_UNLINK:
3586 			VFS_UNLINK_LOWERVP(ump, vp);
3587 			break;
3588 		default:
3589 			KASSERT(0, ("invalid event %d", event));
3590 			break;
3591 		}
3592 		MNT_ILOCK(mp);
3593 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3594 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3595 	}
3596 	free(mmp, M_TEMP);
3597 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3598 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3599 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3600 		wakeup(&mp->mnt_uppers);
3601 	}
3602 unlock:
3603 	MNT_IUNLOCK(mp);
3604 }
3605 
3606 /*
3607  * vgone, with the vp interlock held.
3608  */
3609 static void
3610 vgonel(struct vnode *vp)
3611 {
3612 	struct thread *td;
3613 	struct mount *mp;
3614 	vm_object_t object;
3615 	bool active, oweinact;
3616 
3617 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3618 	ASSERT_VI_LOCKED(vp, "vgonel");
3619 	VNASSERT(vp->v_holdcnt, vp,
3620 	    ("vgonel: vp %p has no reference.", vp));
3621 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3622 	td = curthread;
3623 
3624 	/*
3625 	 * Don't vgonel if we're already doomed.
3626 	 */
3627 	if (vp->v_iflag & VI_DOOMED)
3628 		return;
3629 	vp->v_iflag |= VI_DOOMED;
3630 
3631 	/*
3632 	 * Check to see if the vnode is in use.  If so, we have to call
3633 	 * VOP_CLOSE() and VOP_INACTIVE().
3634 	 */
3635 	active = vp->v_usecount > 0;
3636 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
3637 	VI_UNLOCK(vp);
3638 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3639 
3640 	/*
3641 	 * If purging an active vnode, it must be closed and
3642 	 * deactivated before being reclaimed.
3643 	 */
3644 	if (active)
3645 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3646 	if (oweinact || active) {
3647 		VI_LOCK(vp);
3648 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
3649 			vinactive(vp, td);
3650 		VI_UNLOCK(vp);
3651 	}
3652 	if (vp->v_type == VSOCK)
3653 		vfs_unp_reclaim(vp);
3654 
3655 	/*
3656 	 * Clean out any buffers associated with the vnode.
3657 	 * If the flush fails, just toss the buffers.
3658 	 */
3659 	mp = NULL;
3660 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3661 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3662 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3663 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3664 			;
3665 	}
3666 
3667 	BO_LOCK(&vp->v_bufobj);
3668 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3669 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3670 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3671 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3672 	    ("vp %p bufobj not invalidated", vp));
3673 
3674 	/*
3675 	 * For VMIO bufobj, BO_DEAD is set later, or in
3676 	 * vm_object_terminate() after the object's page queue is
3677 	 * flushed.
3678 	 */
3679 	object = vp->v_bufobj.bo_object;
3680 	if (object == NULL)
3681 		vp->v_bufobj.bo_flag |= BO_DEAD;
3682 	BO_UNLOCK(&vp->v_bufobj);
3683 
3684 	/*
3685 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
3686 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
3687 	 * should not touch the object borrowed from the lower vnode
3688 	 * (the handle check).
3689 	 */
3690 	if (object != NULL && object->type == OBJT_VNODE &&
3691 	    object->handle == vp)
3692 		vnode_destroy_vobject(vp);
3693 
3694 	/*
3695 	 * Reclaim the vnode.
3696 	 */
3697 	if (VOP_RECLAIM(vp, td))
3698 		panic("vgone: cannot reclaim");
3699 	if (mp != NULL)
3700 		vn_finished_secondary_write(mp);
3701 	VNASSERT(vp->v_object == NULL, vp,
3702 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
3703 	/*
3704 	 * Clear the advisory locks and wake up waiting threads.
3705 	 */
3706 	(void)VOP_ADVLOCKPURGE(vp);
3707 	vp->v_lockf = NULL;
3708 	/*
3709 	 * Delete from old mount point vnode list.
3710 	 */
3711 	delmntque(vp);
3712 	cache_purge(vp);
3713 	/*
3714 	 * Done with purge, reset to the standard lock and invalidate
3715 	 * the vnode.
3716 	 */
3717 	VI_LOCK(vp);
3718 	vp->v_vnlock = &vp->v_lock;
3719 	vp->v_op = &dead_vnodeops;
3720 	vp->v_tag = "none";
3721 	vp->v_type = VBAD;
3722 }
3723 
3724 /*
3725  * Calculate the total number of references to a special device.
3726  */
3727 int
3728 vcount(struct vnode *vp)
3729 {
3730 	int count;
3731 
3732 	dev_lock();
3733 	count = vp->v_rdev->si_usecount;
3734 	dev_unlock();
3735 	return (count);
3736 }
3737 
3738 /*
3739  * Same as above, but using the struct cdev *as argument
3740  */
3741 int
3742 count_dev(struct cdev *dev)
3743 {
3744 	int count;
3745 
3746 	dev_lock();
3747 	count = dev->si_usecount;
3748 	dev_unlock();
3749 	return(count);
3750 }
3751 
3752 /*
3753  * Print out a description of a vnode.
3754  */
3755 static char *typename[] =
3756 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3757  "VMARKER"};
3758 
3759 void
3760 vn_printf(struct vnode *vp, const char *fmt, ...)
3761 {
3762 	va_list ap;
3763 	char buf[256], buf2[16];
3764 	u_long flags;
3765 
3766 	va_start(ap, fmt);
3767 	vprintf(fmt, ap);
3768 	va_end(ap);
3769 	printf("%p: ", (void *)vp);
3770 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
3771 	printf("    usecount %d, writecount %d, refcount %d",
3772 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
3773 	switch (vp->v_type) {
3774 	case VDIR:
3775 		printf(" mountedhere %p\n", vp->v_mountedhere);
3776 		break;
3777 	case VCHR:
3778 		printf(" rdev %p\n", vp->v_rdev);
3779 		break;
3780 	case VSOCK:
3781 		printf(" socket %p\n", vp->v_unpcb);
3782 		break;
3783 	case VFIFO:
3784 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
3785 		break;
3786 	default:
3787 		printf("\n");
3788 		break;
3789 	}
3790 	buf[0] = '\0';
3791 	buf[1] = '\0';
3792 	if (vp->v_vflag & VV_ROOT)
3793 		strlcat(buf, "|VV_ROOT", sizeof(buf));
3794 	if (vp->v_vflag & VV_ISTTY)
3795 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3796 	if (vp->v_vflag & VV_NOSYNC)
3797 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3798 	if (vp->v_vflag & VV_ETERNALDEV)
3799 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3800 	if (vp->v_vflag & VV_CACHEDLABEL)
3801 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3802 	if (vp->v_vflag & VV_COPYONWRITE)
3803 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3804 	if (vp->v_vflag & VV_SYSTEM)
3805 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3806 	if (vp->v_vflag & VV_PROCDEP)
3807 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3808 	if (vp->v_vflag & VV_NOKNOTE)
3809 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3810 	if (vp->v_vflag & VV_DELETED)
3811 		strlcat(buf, "|VV_DELETED", sizeof(buf));
3812 	if (vp->v_vflag & VV_MD)
3813 		strlcat(buf, "|VV_MD", sizeof(buf));
3814 	if (vp->v_vflag & VV_FORCEINSMQ)
3815 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3816 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3817 	    VV_CACHEDLABEL | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3818 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3819 	if (flags != 0) {
3820 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3821 		strlcat(buf, buf2, sizeof(buf));
3822 	}
3823 	if (vp->v_iflag & VI_MOUNT)
3824 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3825 	if (vp->v_iflag & VI_DOOMED)
3826 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
3827 	if (vp->v_iflag & VI_FREE)
3828 		strlcat(buf, "|VI_FREE", sizeof(buf));
3829 	if (vp->v_iflag & VI_ACTIVE)
3830 		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3831 	if (vp->v_iflag & VI_DOINGINACT)
3832 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3833 	if (vp->v_iflag & VI_OWEINACT)
3834 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3835 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOOMED | VI_FREE |
3836 	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT);
3837 	if (flags != 0) {
3838 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3839 		strlcat(buf, buf2, sizeof(buf));
3840 	}
3841 	printf("    flags (%s)\n", buf + 1);
3842 	if (mtx_owned(VI_MTX(vp)))
3843 		printf(" VI_LOCKed");
3844 	if (vp->v_object != NULL)
3845 		printf("    v_object %p ref %d pages %d "
3846 		    "cleanbuf %d dirtybuf %d\n",
3847 		    vp->v_object, vp->v_object->ref_count,
3848 		    vp->v_object->resident_page_count,
3849 		    vp->v_bufobj.bo_clean.bv_cnt,
3850 		    vp->v_bufobj.bo_dirty.bv_cnt);
3851 	printf("    ");
3852 	lockmgr_printinfo(vp->v_vnlock);
3853 	if (vp->v_data != NULL)
3854 		VOP_PRINT(vp);
3855 }
3856 
3857 #ifdef DDB
3858 /*
3859  * List all of the locked vnodes in the system.
3860  * Called when debugging the kernel.
3861  */
3862 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3863 {
3864 	struct mount *mp;
3865 	struct vnode *vp;
3866 
3867 	/*
3868 	 * Note: because this is DDB, we can't obey the locking semantics
3869 	 * for these structures, which means we could catch an inconsistent
3870 	 * state and dereference a nasty pointer.  Not much to be done
3871 	 * about that.
3872 	 */
3873 	db_printf("Locked vnodes\n");
3874 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3875 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3876 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3877 				vn_printf(vp, "vnode ");
3878 		}
3879 	}
3880 }
3881 
3882 /*
3883  * Show details about the given vnode.
3884  */
3885 DB_SHOW_COMMAND(vnode, db_show_vnode)
3886 {
3887 	struct vnode *vp;
3888 
3889 	if (!have_addr)
3890 		return;
3891 	vp = (struct vnode *)addr;
3892 	vn_printf(vp, "vnode ");
3893 }
3894 
3895 /*
3896  * Show details about the given mount point.
3897  */
3898 DB_SHOW_COMMAND(mount, db_show_mount)
3899 {
3900 	struct mount *mp;
3901 	struct vfsopt *opt;
3902 	struct statfs *sp;
3903 	struct vnode *vp;
3904 	char buf[512];
3905 	uint64_t mflags;
3906 	u_int flags;
3907 
3908 	if (!have_addr) {
3909 		/* No address given, print short info about all mount points. */
3910 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3911 			db_printf("%p %s on %s (%s)\n", mp,
3912 			    mp->mnt_stat.f_mntfromname,
3913 			    mp->mnt_stat.f_mntonname,
3914 			    mp->mnt_stat.f_fstypename);
3915 			if (db_pager_quit)
3916 				break;
3917 		}
3918 		db_printf("\nMore info: show mount <addr>\n");
3919 		return;
3920 	}
3921 
3922 	mp = (struct mount *)addr;
3923 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3924 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3925 
3926 	buf[0] = '\0';
3927 	mflags = mp->mnt_flag;
3928 #define	MNT_FLAG(flag)	do {						\
3929 	if (mflags & (flag)) {						\
3930 		if (buf[0] != '\0')					\
3931 			strlcat(buf, ", ", sizeof(buf));		\
3932 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3933 		mflags &= ~(flag);					\
3934 	}								\
3935 } while (0)
3936 	MNT_FLAG(MNT_RDONLY);
3937 	MNT_FLAG(MNT_SYNCHRONOUS);
3938 	MNT_FLAG(MNT_NOEXEC);
3939 	MNT_FLAG(MNT_NOSUID);
3940 	MNT_FLAG(MNT_NFS4ACLS);
3941 	MNT_FLAG(MNT_UNION);
3942 	MNT_FLAG(MNT_ASYNC);
3943 	MNT_FLAG(MNT_SUIDDIR);
3944 	MNT_FLAG(MNT_SOFTDEP);
3945 	MNT_FLAG(MNT_NOSYMFOLLOW);
3946 	MNT_FLAG(MNT_GJOURNAL);
3947 	MNT_FLAG(MNT_MULTILABEL);
3948 	MNT_FLAG(MNT_ACLS);
3949 	MNT_FLAG(MNT_NOATIME);
3950 	MNT_FLAG(MNT_NOCLUSTERR);
3951 	MNT_FLAG(MNT_NOCLUSTERW);
3952 	MNT_FLAG(MNT_SUJ);
3953 	MNT_FLAG(MNT_EXRDONLY);
3954 	MNT_FLAG(MNT_EXPORTED);
3955 	MNT_FLAG(MNT_DEFEXPORTED);
3956 	MNT_FLAG(MNT_EXPORTANON);
3957 	MNT_FLAG(MNT_EXKERB);
3958 	MNT_FLAG(MNT_EXPUBLIC);
3959 	MNT_FLAG(MNT_LOCAL);
3960 	MNT_FLAG(MNT_QUOTA);
3961 	MNT_FLAG(MNT_ROOTFS);
3962 	MNT_FLAG(MNT_USER);
3963 	MNT_FLAG(MNT_IGNORE);
3964 	MNT_FLAG(MNT_UPDATE);
3965 	MNT_FLAG(MNT_DELEXPORT);
3966 	MNT_FLAG(MNT_RELOAD);
3967 	MNT_FLAG(MNT_FORCE);
3968 	MNT_FLAG(MNT_SNAPSHOT);
3969 	MNT_FLAG(MNT_BYFSID);
3970 #undef MNT_FLAG
3971 	if (mflags != 0) {
3972 		if (buf[0] != '\0')
3973 			strlcat(buf, ", ", sizeof(buf));
3974 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3975 		    "0x%016jx", mflags);
3976 	}
3977 	db_printf("    mnt_flag = %s\n", buf);
3978 
3979 	buf[0] = '\0';
3980 	flags = mp->mnt_kern_flag;
3981 #define	MNT_KERN_FLAG(flag)	do {					\
3982 	if (flags & (flag)) {						\
3983 		if (buf[0] != '\0')					\
3984 			strlcat(buf, ", ", sizeof(buf));		\
3985 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3986 		flags &= ~(flag);					\
3987 	}								\
3988 } while (0)
3989 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3990 	MNT_KERN_FLAG(MNTK_ASYNC);
3991 	MNT_KERN_FLAG(MNTK_SOFTDEP);
3992 	MNT_KERN_FLAG(MNTK_DRAINING);
3993 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3994 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3995 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3996 	MNT_KERN_FLAG(MNTK_NO_IOPF);
3997 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3998 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3999 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
4000 	MNT_KERN_FLAG(MNTK_MARKER);
4001 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4002 	MNT_KERN_FLAG(MNTK_NOASYNC);
4003 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4004 	MNT_KERN_FLAG(MNTK_MWAIT);
4005 	MNT_KERN_FLAG(MNTK_SUSPEND);
4006 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4007 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4008 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4009 	MNT_KERN_FLAG(MNTK_NOKNOTE);
4010 #undef MNT_KERN_FLAG
4011 	if (flags != 0) {
4012 		if (buf[0] != '\0')
4013 			strlcat(buf, ", ", sizeof(buf));
4014 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4015 		    "0x%08x", flags);
4016 	}
4017 	db_printf("    mnt_kern_flag = %s\n", buf);
4018 
4019 	db_printf("    mnt_opt = ");
4020 	opt = TAILQ_FIRST(mp->mnt_opt);
4021 	if (opt != NULL) {
4022 		db_printf("%s", opt->name);
4023 		opt = TAILQ_NEXT(opt, link);
4024 		while (opt != NULL) {
4025 			db_printf(", %s", opt->name);
4026 			opt = TAILQ_NEXT(opt, link);
4027 		}
4028 	}
4029 	db_printf("\n");
4030 
4031 	sp = &mp->mnt_stat;
4032 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4033 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4034 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4035 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4036 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4037 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4038 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4039 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4040 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4041 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4042 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4043 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4044 
4045 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4046 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4047 	if (jailed(mp->mnt_cred))
4048 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4049 	db_printf(" }\n");
4050 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4051 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4052 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4053 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4054 	db_printf("    mnt_activevnodelistsize = %d\n",
4055 	    mp->mnt_activevnodelistsize);
4056 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4057 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4058 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
4059 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4060 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4061 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4062 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4063 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4064 	db_printf("    mnt_secondary_accwrites = %d\n",
4065 	    mp->mnt_secondary_accwrites);
4066 	db_printf("    mnt_gjprovider = %s\n",
4067 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4068 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4069 
4070 	db_printf("\n\nList of active vnodes\n");
4071 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
4072 		if (vp->v_type != VMARKER) {
4073 			vn_printf(vp, "vnode ");
4074 			if (db_pager_quit)
4075 				break;
4076 		}
4077 	}
4078 	db_printf("\n\nList of inactive vnodes\n");
4079 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4080 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
4081 			vn_printf(vp, "vnode ");
4082 			if (db_pager_quit)
4083 				break;
4084 		}
4085 	}
4086 }
4087 #endif	/* DDB */
4088 
4089 /*
4090  * Fill in a struct xvfsconf based on a struct vfsconf.
4091  */
4092 static int
4093 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4094 {
4095 	struct xvfsconf xvfsp;
4096 
4097 	bzero(&xvfsp, sizeof(xvfsp));
4098 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4099 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4100 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4101 	xvfsp.vfc_flags = vfsp->vfc_flags;
4102 	/*
4103 	 * These are unused in userland, we keep them
4104 	 * to not break binary compatibility.
4105 	 */
4106 	xvfsp.vfc_vfsops = NULL;
4107 	xvfsp.vfc_next = NULL;
4108 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4109 }
4110 
4111 #ifdef COMPAT_FREEBSD32
4112 struct xvfsconf32 {
4113 	uint32_t	vfc_vfsops;
4114 	char		vfc_name[MFSNAMELEN];
4115 	int32_t		vfc_typenum;
4116 	int32_t		vfc_refcount;
4117 	int32_t		vfc_flags;
4118 	uint32_t	vfc_next;
4119 };
4120 
4121 static int
4122 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4123 {
4124 	struct xvfsconf32 xvfsp;
4125 
4126 	bzero(&xvfsp, sizeof(xvfsp));
4127 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4128 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4129 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4130 	xvfsp.vfc_flags = vfsp->vfc_flags;
4131 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4132 }
4133 #endif
4134 
4135 /*
4136  * Top level filesystem related information gathering.
4137  */
4138 static int
4139 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4140 {
4141 	struct vfsconf *vfsp;
4142 	int error;
4143 
4144 	error = 0;
4145 	vfsconf_slock();
4146 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4147 #ifdef COMPAT_FREEBSD32
4148 		if (req->flags & SCTL_MASK32)
4149 			error = vfsconf2x32(req, vfsp);
4150 		else
4151 #endif
4152 			error = vfsconf2x(req, vfsp);
4153 		if (error)
4154 			break;
4155 	}
4156 	vfsconf_sunlock();
4157 	return (error);
4158 }
4159 
4160 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4161     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4162     "S,xvfsconf", "List of all configured filesystems");
4163 
4164 #ifndef BURN_BRIDGES
4165 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4166 
4167 static int
4168 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4169 {
4170 	int *name = (int *)arg1 - 1;	/* XXX */
4171 	u_int namelen = arg2 + 1;	/* XXX */
4172 	struct vfsconf *vfsp;
4173 
4174 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4175 	    "please rebuild world\n");
4176 
4177 #if 1 || defined(COMPAT_PRELITE2)
4178 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4179 	if (namelen == 1)
4180 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4181 #endif
4182 
4183 	switch (name[1]) {
4184 	case VFS_MAXTYPENUM:
4185 		if (namelen != 2)
4186 			return (ENOTDIR);
4187 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4188 	case VFS_CONF:
4189 		if (namelen != 3)
4190 			return (ENOTDIR);	/* overloaded */
4191 		vfsconf_slock();
4192 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4193 			if (vfsp->vfc_typenum == name[2])
4194 				break;
4195 		}
4196 		vfsconf_sunlock();
4197 		if (vfsp == NULL)
4198 			return (EOPNOTSUPP);
4199 #ifdef COMPAT_FREEBSD32
4200 		if (req->flags & SCTL_MASK32)
4201 			return (vfsconf2x32(req, vfsp));
4202 		else
4203 #endif
4204 			return (vfsconf2x(req, vfsp));
4205 	}
4206 	return (EOPNOTSUPP);
4207 }
4208 
4209 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4210     CTLFLAG_MPSAFE, vfs_sysctl,
4211     "Generic filesystem");
4212 
4213 #if 1 || defined(COMPAT_PRELITE2)
4214 
4215 static int
4216 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4217 {
4218 	int error;
4219 	struct vfsconf *vfsp;
4220 	struct ovfsconf ovfs;
4221 
4222 	vfsconf_slock();
4223 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4224 		bzero(&ovfs, sizeof(ovfs));
4225 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4226 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4227 		ovfs.vfc_index = vfsp->vfc_typenum;
4228 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4229 		ovfs.vfc_flags = vfsp->vfc_flags;
4230 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4231 		if (error != 0) {
4232 			vfsconf_sunlock();
4233 			return (error);
4234 		}
4235 	}
4236 	vfsconf_sunlock();
4237 	return (0);
4238 }
4239 
4240 #endif /* 1 || COMPAT_PRELITE2 */
4241 #endif /* !BURN_BRIDGES */
4242 
4243 #define KINFO_VNODESLOP		10
4244 #ifdef notyet
4245 /*
4246  * Dump vnode list (via sysctl).
4247  */
4248 /* ARGSUSED */
4249 static int
4250 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4251 {
4252 	struct xvnode *xvn;
4253 	struct mount *mp;
4254 	struct vnode *vp;
4255 	int error, len, n;
4256 
4257 	/*
4258 	 * Stale numvnodes access is not fatal here.
4259 	 */
4260 	req->lock = 0;
4261 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4262 	if (!req->oldptr)
4263 		/* Make an estimate */
4264 		return (SYSCTL_OUT(req, 0, len));
4265 
4266 	error = sysctl_wire_old_buffer(req, 0);
4267 	if (error != 0)
4268 		return (error);
4269 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4270 	n = 0;
4271 	mtx_lock(&mountlist_mtx);
4272 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4273 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4274 			continue;
4275 		MNT_ILOCK(mp);
4276 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4277 			if (n == len)
4278 				break;
4279 			vref(vp);
4280 			xvn[n].xv_size = sizeof *xvn;
4281 			xvn[n].xv_vnode = vp;
4282 			xvn[n].xv_id = 0;	/* XXX compat */
4283 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4284 			XV_COPY(usecount);
4285 			XV_COPY(writecount);
4286 			XV_COPY(holdcnt);
4287 			XV_COPY(mount);
4288 			XV_COPY(numoutput);
4289 			XV_COPY(type);
4290 #undef XV_COPY
4291 			xvn[n].xv_flag = vp->v_vflag;
4292 
4293 			switch (vp->v_type) {
4294 			case VREG:
4295 			case VDIR:
4296 			case VLNK:
4297 				break;
4298 			case VBLK:
4299 			case VCHR:
4300 				if (vp->v_rdev == NULL) {
4301 					vrele(vp);
4302 					continue;
4303 				}
4304 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4305 				break;
4306 			case VSOCK:
4307 				xvn[n].xv_socket = vp->v_socket;
4308 				break;
4309 			case VFIFO:
4310 				xvn[n].xv_fifo = vp->v_fifoinfo;
4311 				break;
4312 			case VNON:
4313 			case VBAD:
4314 			default:
4315 				/* shouldn't happen? */
4316 				vrele(vp);
4317 				continue;
4318 			}
4319 			vrele(vp);
4320 			++n;
4321 		}
4322 		MNT_IUNLOCK(mp);
4323 		mtx_lock(&mountlist_mtx);
4324 		vfs_unbusy(mp);
4325 		if (n == len)
4326 			break;
4327 	}
4328 	mtx_unlock(&mountlist_mtx);
4329 
4330 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4331 	free(xvn, M_TEMP);
4332 	return (error);
4333 }
4334 
4335 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4336     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4337     "");
4338 #endif
4339 
4340 static void
4341 unmount_or_warn(struct mount *mp)
4342 {
4343 	int error;
4344 
4345 	error = dounmount(mp, MNT_FORCE, curthread);
4346 	if (error != 0) {
4347 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4348 		if (error == EBUSY)
4349 			printf("BUSY)\n");
4350 		else
4351 			printf("%d)\n", error);
4352 	}
4353 }
4354 
4355 /*
4356  * Unmount all filesystems. The list is traversed in reverse order
4357  * of mounting to avoid dependencies.
4358  */
4359 void
4360 vfs_unmountall(void)
4361 {
4362 	struct mount *mp, *tmp;
4363 
4364 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4365 
4366 	/*
4367 	 * Since this only runs when rebooting, it is not interlocked.
4368 	 */
4369 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4370 		vfs_ref(mp);
4371 
4372 		/*
4373 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4374 		 * unmount of the latter.
4375 		 */
4376 		if (mp == rootdevmp)
4377 			continue;
4378 
4379 		unmount_or_warn(mp);
4380 	}
4381 
4382 	if (rootdevmp != NULL)
4383 		unmount_or_warn(rootdevmp);
4384 }
4385 
4386 /*
4387  * perform msync on all vnodes under a mount point
4388  * the mount point must be locked.
4389  */
4390 void
4391 vfs_msync(struct mount *mp, int flags)
4392 {
4393 	struct vnode *vp, *mvp;
4394 	struct vm_object *obj;
4395 
4396 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4397 
4398 	vnlru_return_batch(mp);
4399 
4400 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
4401 		obj = vp->v_object;
4402 		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
4403 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
4404 			if (!vget(vp,
4405 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
4406 			    curthread)) {
4407 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
4408 					vput(vp);
4409 					continue;
4410 				}
4411 
4412 				obj = vp->v_object;
4413 				if (obj != NULL) {
4414 					VM_OBJECT_WLOCK(obj);
4415 					vm_object_page_clean(obj, 0, 0,
4416 					    flags == MNT_WAIT ?
4417 					    OBJPC_SYNC : OBJPC_NOSYNC);
4418 					VM_OBJECT_WUNLOCK(obj);
4419 				}
4420 				vput(vp);
4421 			}
4422 		} else
4423 			VI_UNLOCK(vp);
4424 	}
4425 }
4426 
4427 static void
4428 destroy_vpollinfo_free(struct vpollinfo *vi)
4429 {
4430 
4431 	knlist_destroy(&vi->vpi_selinfo.si_note);
4432 	mtx_destroy(&vi->vpi_lock);
4433 	uma_zfree(vnodepoll_zone, vi);
4434 }
4435 
4436 static void
4437 destroy_vpollinfo(struct vpollinfo *vi)
4438 {
4439 
4440 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4441 	seldrain(&vi->vpi_selinfo);
4442 	destroy_vpollinfo_free(vi);
4443 }
4444 
4445 /*
4446  * Initialize per-vnode helper structure to hold poll-related state.
4447  */
4448 void
4449 v_addpollinfo(struct vnode *vp)
4450 {
4451 	struct vpollinfo *vi;
4452 
4453 	if (vp->v_pollinfo != NULL)
4454 		return;
4455 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
4456 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4457 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4458 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
4459 	VI_LOCK(vp);
4460 	if (vp->v_pollinfo != NULL) {
4461 		VI_UNLOCK(vp);
4462 		destroy_vpollinfo_free(vi);
4463 		return;
4464 	}
4465 	vp->v_pollinfo = vi;
4466 	VI_UNLOCK(vp);
4467 }
4468 
4469 /*
4470  * Record a process's interest in events which might happen to
4471  * a vnode.  Because poll uses the historic select-style interface
4472  * internally, this routine serves as both the ``check for any
4473  * pending events'' and the ``record my interest in future events''
4474  * functions.  (These are done together, while the lock is held,
4475  * to avoid race conditions.)
4476  */
4477 int
4478 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4479 {
4480 
4481 	v_addpollinfo(vp);
4482 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4483 	if (vp->v_pollinfo->vpi_revents & events) {
4484 		/*
4485 		 * This leaves events we are not interested
4486 		 * in available for the other process which
4487 		 * which presumably had requested them
4488 		 * (otherwise they would never have been
4489 		 * recorded).
4490 		 */
4491 		events &= vp->v_pollinfo->vpi_revents;
4492 		vp->v_pollinfo->vpi_revents &= ~events;
4493 
4494 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4495 		return (events);
4496 	}
4497 	vp->v_pollinfo->vpi_events |= events;
4498 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4499 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4500 	return (0);
4501 }
4502 
4503 /*
4504  * Routine to create and manage a filesystem syncer vnode.
4505  */
4506 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4507 static int	sync_fsync(struct  vop_fsync_args *);
4508 static int	sync_inactive(struct  vop_inactive_args *);
4509 static int	sync_reclaim(struct  vop_reclaim_args *);
4510 
4511 static struct vop_vector sync_vnodeops = {
4512 	.vop_bypass =	VOP_EOPNOTSUPP,
4513 	.vop_close =	sync_close,		/* close */
4514 	.vop_fsync =	sync_fsync,		/* fsync */
4515 	.vop_inactive =	sync_inactive,	/* inactive */
4516 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
4517 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4518 	.vop_lock1 =	vop_stdlock,	/* lock */
4519 	.vop_unlock =	vop_stdunlock,	/* unlock */
4520 	.vop_islocked =	vop_stdislocked,	/* islocked */
4521 };
4522 
4523 /*
4524  * Create a new filesystem syncer vnode for the specified mount point.
4525  */
4526 void
4527 vfs_allocate_syncvnode(struct mount *mp)
4528 {
4529 	struct vnode *vp;
4530 	struct bufobj *bo;
4531 	static long start, incr, next;
4532 	int error;
4533 
4534 	/* Allocate a new vnode */
4535 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4536 	if (error != 0)
4537 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4538 	vp->v_type = VNON;
4539 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4540 	vp->v_vflag |= VV_FORCEINSMQ;
4541 	error = insmntque(vp, mp);
4542 	if (error != 0)
4543 		panic("vfs_allocate_syncvnode: insmntque() failed");
4544 	vp->v_vflag &= ~VV_FORCEINSMQ;
4545 	VOP_UNLOCK(vp, 0);
4546 	/*
4547 	 * Place the vnode onto the syncer worklist. We attempt to
4548 	 * scatter them about on the list so that they will go off
4549 	 * at evenly distributed times even if all the filesystems
4550 	 * are mounted at once.
4551 	 */
4552 	next += incr;
4553 	if (next == 0 || next > syncer_maxdelay) {
4554 		start /= 2;
4555 		incr /= 2;
4556 		if (start == 0) {
4557 			start = syncer_maxdelay / 2;
4558 			incr = syncer_maxdelay;
4559 		}
4560 		next = start;
4561 	}
4562 	bo = &vp->v_bufobj;
4563 	BO_LOCK(bo);
4564 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4565 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4566 	mtx_lock(&sync_mtx);
4567 	sync_vnode_count++;
4568 	if (mp->mnt_syncer == NULL) {
4569 		mp->mnt_syncer = vp;
4570 		vp = NULL;
4571 	}
4572 	mtx_unlock(&sync_mtx);
4573 	BO_UNLOCK(bo);
4574 	if (vp != NULL) {
4575 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4576 		vgone(vp);
4577 		vput(vp);
4578 	}
4579 }
4580 
4581 void
4582 vfs_deallocate_syncvnode(struct mount *mp)
4583 {
4584 	struct vnode *vp;
4585 
4586 	mtx_lock(&sync_mtx);
4587 	vp = mp->mnt_syncer;
4588 	if (vp != NULL)
4589 		mp->mnt_syncer = NULL;
4590 	mtx_unlock(&sync_mtx);
4591 	if (vp != NULL)
4592 		vrele(vp);
4593 }
4594 
4595 /*
4596  * Do a lazy sync of the filesystem.
4597  */
4598 static int
4599 sync_fsync(struct vop_fsync_args *ap)
4600 {
4601 	struct vnode *syncvp = ap->a_vp;
4602 	struct mount *mp = syncvp->v_mount;
4603 	int error, save;
4604 	struct bufobj *bo;
4605 
4606 	/*
4607 	 * We only need to do something if this is a lazy evaluation.
4608 	 */
4609 	if (ap->a_waitfor != MNT_LAZY)
4610 		return (0);
4611 
4612 	/*
4613 	 * Move ourselves to the back of the sync list.
4614 	 */
4615 	bo = &syncvp->v_bufobj;
4616 	BO_LOCK(bo);
4617 	vn_syncer_add_to_worklist(bo, syncdelay);
4618 	BO_UNLOCK(bo);
4619 
4620 	/*
4621 	 * Walk the list of vnodes pushing all that are dirty and
4622 	 * not already on the sync list.
4623 	 */
4624 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4625 		return (0);
4626 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4627 		vfs_unbusy(mp);
4628 		return (0);
4629 	}
4630 	save = curthread_pflags_set(TDP_SYNCIO);
4631 	vfs_msync(mp, MNT_NOWAIT);
4632 	error = VFS_SYNC(mp, MNT_LAZY);
4633 	curthread_pflags_restore(save);
4634 	vn_finished_write(mp);
4635 	vfs_unbusy(mp);
4636 	return (error);
4637 }
4638 
4639 /*
4640  * The syncer vnode is no referenced.
4641  */
4642 static int
4643 sync_inactive(struct vop_inactive_args *ap)
4644 {
4645 
4646 	vgone(ap->a_vp);
4647 	return (0);
4648 }
4649 
4650 /*
4651  * The syncer vnode is no longer needed and is being decommissioned.
4652  *
4653  * Modifications to the worklist must be protected by sync_mtx.
4654  */
4655 static int
4656 sync_reclaim(struct vop_reclaim_args *ap)
4657 {
4658 	struct vnode *vp = ap->a_vp;
4659 	struct bufobj *bo;
4660 
4661 	bo = &vp->v_bufobj;
4662 	BO_LOCK(bo);
4663 	mtx_lock(&sync_mtx);
4664 	if (vp->v_mount->mnt_syncer == vp)
4665 		vp->v_mount->mnt_syncer = NULL;
4666 	if (bo->bo_flag & BO_ONWORKLST) {
4667 		LIST_REMOVE(bo, bo_synclist);
4668 		syncer_worklist_len--;
4669 		sync_vnode_count--;
4670 		bo->bo_flag &= ~BO_ONWORKLST;
4671 	}
4672 	mtx_unlock(&sync_mtx);
4673 	BO_UNLOCK(bo);
4674 
4675 	return (0);
4676 }
4677 
4678 int
4679 vn_need_pageq_flush(struct vnode *vp)
4680 {
4681 	struct vm_object *obj;
4682 	int need;
4683 
4684 	MPASS(mtx_owned(VI_MTX(vp)));
4685 	need = 0;
4686 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
4687 	    (obj->flags & OBJ_MIGHTBEDIRTY) != 0)
4688 		need = 1;
4689 	return (need);
4690 }
4691 
4692 /*
4693  * Check if vnode represents a disk device
4694  */
4695 int
4696 vn_isdisk(struct vnode *vp, int *errp)
4697 {
4698 	int error;
4699 
4700 	if (vp->v_type != VCHR) {
4701 		error = ENOTBLK;
4702 		goto out;
4703 	}
4704 	error = 0;
4705 	dev_lock();
4706 	if (vp->v_rdev == NULL)
4707 		error = ENXIO;
4708 	else if (vp->v_rdev->si_devsw == NULL)
4709 		error = ENXIO;
4710 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
4711 		error = ENOTBLK;
4712 	dev_unlock();
4713 out:
4714 	if (errp != NULL)
4715 		*errp = error;
4716 	return (error == 0);
4717 }
4718 
4719 /*
4720  * Common filesystem object access control check routine.  Accepts a
4721  * vnode's type, "mode", uid and gid, requested access mode, credentials,
4722  * and optional call-by-reference privused argument allowing vaccess()
4723  * to indicate to the caller whether privilege was used to satisfy the
4724  * request (obsoleted).  Returns 0 on success, or an errno on failure.
4725  */
4726 int
4727 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
4728     accmode_t accmode, struct ucred *cred, int *privused)
4729 {
4730 	accmode_t dac_granted;
4731 	accmode_t priv_granted;
4732 
4733 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
4734 	    ("invalid bit in accmode"));
4735 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
4736 	    ("VAPPEND without VWRITE"));
4737 
4738 	/*
4739 	 * Look for a normal, non-privileged way to access the file/directory
4740 	 * as requested.  If it exists, go with that.
4741 	 */
4742 
4743 	if (privused != NULL)
4744 		*privused = 0;
4745 
4746 	dac_granted = 0;
4747 
4748 	/* Check the owner. */
4749 	if (cred->cr_uid == file_uid) {
4750 		dac_granted |= VADMIN;
4751 		if (file_mode & S_IXUSR)
4752 			dac_granted |= VEXEC;
4753 		if (file_mode & S_IRUSR)
4754 			dac_granted |= VREAD;
4755 		if (file_mode & S_IWUSR)
4756 			dac_granted |= (VWRITE | VAPPEND);
4757 
4758 		if ((accmode & dac_granted) == accmode)
4759 			return (0);
4760 
4761 		goto privcheck;
4762 	}
4763 
4764 	/* Otherwise, check the groups (first match) */
4765 	if (groupmember(file_gid, cred)) {
4766 		if (file_mode & S_IXGRP)
4767 			dac_granted |= VEXEC;
4768 		if (file_mode & S_IRGRP)
4769 			dac_granted |= VREAD;
4770 		if (file_mode & S_IWGRP)
4771 			dac_granted |= (VWRITE | VAPPEND);
4772 
4773 		if ((accmode & dac_granted) == accmode)
4774 			return (0);
4775 
4776 		goto privcheck;
4777 	}
4778 
4779 	/* Otherwise, check everyone else. */
4780 	if (file_mode & S_IXOTH)
4781 		dac_granted |= VEXEC;
4782 	if (file_mode & S_IROTH)
4783 		dac_granted |= VREAD;
4784 	if (file_mode & S_IWOTH)
4785 		dac_granted |= (VWRITE | VAPPEND);
4786 	if ((accmode & dac_granted) == accmode)
4787 		return (0);
4788 
4789 privcheck:
4790 	/*
4791 	 * Build a privilege mask to determine if the set of privileges
4792 	 * satisfies the requirements when combined with the granted mask
4793 	 * from above.  For each privilege, if the privilege is required,
4794 	 * bitwise or the request type onto the priv_granted mask.
4795 	 */
4796 	priv_granted = 0;
4797 
4798 	if (type == VDIR) {
4799 		/*
4800 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4801 		 * requests, instead of PRIV_VFS_EXEC.
4802 		 */
4803 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4804 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
4805 			priv_granted |= VEXEC;
4806 	} else {
4807 		/*
4808 		 * Ensure that at least one execute bit is on. Otherwise,
4809 		 * a privileged user will always succeed, and we don't want
4810 		 * this to happen unless the file really is executable.
4811 		 */
4812 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4813 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4814 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
4815 			priv_granted |= VEXEC;
4816 	}
4817 
4818 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4819 	    !priv_check_cred(cred, PRIV_VFS_READ))
4820 		priv_granted |= VREAD;
4821 
4822 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4823 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
4824 		priv_granted |= (VWRITE | VAPPEND);
4825 
4826 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4827 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
4828 		priv_granted |= VADMIN;
4829 
4830 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4831 		/* XXX audit: privilege used */
4832 		if (privused != NULL)
4833 			*privused = 1;
4834 		return (0);
4835 	}
4836 
4837 	return ((accmode & VADMIN) ? EPERM : EACCES);
4838 }
4839 
4840 /*
4841  * Credential check based on process requesting service, and per-attribute
4842  * permissions.
4843  */
4844 int
4845 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4846     struct thread *td, accmode_t accmode)
4847 {
4848 
4849 	/*
4850 	 * Kernel-invoked always succeeds.
4851 	 */
4852 	if (cred == NOCRED)
4853 		return (0);
4854 
4855 	/*
4856 	 * Do not allow privileged processes in jail to directly manipulate
4857 	 * system attributes.
4858 	 */
4859 	switch (attrnamespace) {
4860 	case EXTATTR_NAMESPACE_SYSTEM:
4861 		/* Potentially should be: return (EPERM); */
4862 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
4863 	case EXTATTR_NAMESPACE_USER:
4864 		return (VOP_ACCESS(vp, accmode, cred, td));
4865 	default:
4866 		return (EPERM);
4867 	}
4868 }
4869 
4870 #ifdef DEBUG_VFS_LOCKS
4871 /*
4872  * This only exists to suppress warnings from unlocked specfs accesses.  It is
4873  * no longer ok to have an unlocked VFS.
4874  */
4875 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
4876 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
4877 
4878 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
4879 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
4880     "Drop into debugger on lock violation");
4881 
4882 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
4883 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
4884     0, "Check for interlock across VOPs");
4885 
4886 int vfs_badlock_print = 1;	/* Print lock violations. */
4887 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
4888     0, "Print lock violations");
4889 
4890 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
4891 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
4892     0, "Print vnode details on lock violations");
4893 
4894 #ifdef KDB
4895 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
4896 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
4897     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
4898 #endif
4899 
4900 static void
4901 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
4902 {
4903 
4904 #ifdef KDB
4905 	if (vfs_badlock_backtrace)
4906 		kdb_backtrace();
4907 #endif
4908 	if (vfs_badlock_vnode)
4909 		vn_printf(vp, "vnode ");
4910 	if (vfs_badlock_print)
4911 		printf("%s: %p %s\n", str, (void *)vp, msg);
4912 	if (vfs_badlock_ddb)
4913 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4914 }
4915 
4916 void
4917 assert_vi_locked(struct vnode *vp, const char *str)
4918 {
4919 
4920 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
4921 		vfs_badlock("interlock is not locked but should be", str, vp);
4922 }
4923 
4924 void
4925 assert_vi_unlocked(struct vnode *vp, const char *str)
4926 {
4927 
4928 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
4929 		vfs_badlock("interlock is locked but should not be", str, vp);
4930 }
4931 
4932 void
4933 assert_vop_locked(struct vnode *vp, const char *str)
4934 {
4935 	int locked;
4936 
4937 	if (!IGNORE_LOCK(vp)) {
4938 		locked = VOP_ISLOCKED(vp);
4939 		if (locked == 0 || locked == LK_EXCLOTHER)
4940 			vfs_badlock("is not locked but should be", str, vp);
4941 	}
4942 }
4943 
4944 void
4945 assert_vop_unlocked(struct vnode *vp, const char *str)
4946 {
4947 
4948 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4949 		vfs_badlock("is locked but should not be", str, vp);
4950 }
4951 
4952 void
4953 assert_vop_elocked(struct vnode *vp, const char *str)
4954 {
4955 
4956 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4957 		vfs_badlock("is not exclusive locked but should be", str, vp);
4958 }
4959 #endif /* DEBUG_VFS_LOCKS */
4960 
4961 void
4962 vop_rename_fail(struct vop_rename_args *ap)
4963 {
4964 
4965 	if (ap->a_tvp != NULL)
4966 		vput(ap->a_tvp);
4967 	if (ap->a_tdvp == ap->a_tvp)
4968 		vrele(ap->a_tdvp);
4969 	else
4970 		vput(ap->a_tdvp);
4971 	vrele(ap->a_fdvp);
4972 	vrele(ap->a_fvp);
4973 }
4974 
4975 void
4976 vop_rename_pre(void *ap)
4977 {
4978 	struct vop_rename_args *a = ap;
4979 
4980 #ifdef DEBUG_VFS_LOCKS
4981 	if (a->a_tvp)
4982 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4983 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4984 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4985 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4986 
4987 	/* Check the source (from). */
4988 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4989 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4990 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4991 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4992 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4993 
4994 	/* Check the target. */
4995 	if (a->a_tvp)
4996 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4997 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4998 #endif
4999 	if (a->a_tdvp != a->a_fdvp)
5000 		vhold(a->a_fdvp);
5001 	if (a->a_tvp != a->a_fvp)
5002 		vhold(a->a_fvp);
5003 	vhold(a->a_tdvp);
5004 	if (a->a_tvp)
5005 		vhold(a->a_tvp);
5006 }
5007 
5008 #ifdef DEBUG_VFS_LOCKS
5009 void
5010 vop_strategy_pre(void *ap)
5011 {
5012 	struct vop_strategy_args *a;
5013 	struct buf *bp;
5014 
5015 	a = ap;
5016 	bp = a->a_bp;
5017 
5018 	/*
5019 	 * Cluster ops lock their component buffers but not the IO container.
5020 	 */
5021 	if ((bp->b_flags & B_CLUSTER) != 0)
5022 		return;
5023 
5024 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
5025 		if (vfs_badlock_print)
5026 			printf(
5027 			    "VOP_STRATEGY: bp is not locked but should be\n");
5028 		if (vfs_badlock_ddb)
5029 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5030 	}
5031 }
5032 
5033 void
5034 vop_lock_pre(void *ap)
5035 {
5036 	struct vop_lock1_args *a = ap;
5037 
5038 	if ((a->a_flags & LK_INTERLOCK) == 0)
5039 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5040 	else
5041 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5042 }
5043 
5044 void
5045 vop_lock_post(void *ap, int rc)
5046 {
5047 	struct vop_lock1_args *a = ap;
5048 
5049 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5050 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5051 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5052 }
5053 
5054 void
5055 vop_unlock_pre(void *ap)
5056 {
5057 	struct vop_unlock_args *a = ap;
5058 
5059 	if (a->a_flags & LK_INTERLOCK)
5060 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
5061 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5062 }
5063 
5064 void
5065 vop_unlock_post(void *ap, int rc)
5066 {
5067 	struct vop_unlock_args *a = ap;
5068 
5069 	if (a->a_flags & LK_INTERLOCK)
5070 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
5071 }
5072 
5073 void
5074 vop_need_inactive_pre(void *ap)
5075 {
5076 	struct vop_need_inactive_args *a = ap;
5077 
5078 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5079 }
5080 
5081 void
5082 vop_need_inactive_post(void *ap, int rc)
5083 {
5084 	struct vop_need_inactive_args *a = ap;
5085 
5086 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5087 }
5088 #endif
5089 
5090 void
5091 vop_create_post(void *ap, int rc)
5092 {
5093 	struct vop_create_args *a = ap;
5094 
5095 	if (!rc)
5096 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5097 }
5098 
5099 void
5100 vop_deleteextattr_post(void *ap, int rc)
5101 {
5102 	struct vop_deleteextattr_args *a = ap;
5103 
5104 	if (!rc)
5105 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5106 }
5107 
5108 void
5109 vop_link_post(void *ap, int rc)
5110 {
5111 	struct vop_link_args *a = ap;
5112 
5113 	if (!rc) {
5114 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
5115 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
5116 	}
5117 }
5118 
5119 void
5120 vop_mkdir_post(void *ap, int rc)
5121 {
5122 	struct vop_mkdir_args *a = ap;
5123 
5124 	if (!rc)
5125 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5126 }
5127 
5128 void
5129 vop_mknod_post(void *ap, int rc)
5130 {
5131 	struct vop_mknod_args *a = ap;
5132 
5133 	if (!rc)
5134 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5135 }
5136 
5137 void
5138 vop_reclaim_post(void *ap, int rc)
5139 {
5140 	struct vop_reclaim_args *a = ap;
5141 
5142 	if (!rc)
5143 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
5144 }
5145 
5146 void
5147 vop_remove_post(void *ap, int rc)
5148 {
5149 	struct vop_remove_args *a = ap;
5150 
5151 	if (!rc) {
5152 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5153 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5154 	}
5155 }
5156 
5157 void
5158 vop_rename_post(void *ap, int rc)
5159 {
5160 	struct vop_rename_args *a = ap;
5161 	long hint;
5162 
5163 	if (!rc) {
5164 		hint = NOTE_WRITE;
5165 		if (a->a_fdvp == a->a_tdvp) {
5166 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5167 				hint |= NOTE_LINK;
5168 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5169 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5170 		} else {
5171 			hint |= NOTE_EXTEND;
5172 			if (a->a_fvp->v_type == VDIR)
5173 				hint |= NOTE_LINK;
5174 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5175 
5176 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5177 			    a->a_tvp->v_type == VDIR)
5178 				hint &= ~NOTE_LINK;
5179 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5180 		}
5181 
5182 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5183 		if (a->a_tvp)
5184 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5185 	}
5186 	if (a->a_tdvp != a->a_fdvp)
5187 		vdrop(a->a_fdvp);
5188 	if (a->a_tvp != a->a_fvp)
5189 		vdrop(a->a_fvp);
5190 	vdrop(a->a_tdvp);
5191 	if (a->a_tvp)
5192 		vdrop(a->a_tvp);
5193 }
5194 
5195 void
5196 vop_rmdir_post(void *ap, int rc)
5197 {
5198 	struct vop_rmdir_args *a = ap;
5199 
5200 	if (!rc) {
5201 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
5202 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
5203 	}
5204 }
5205 
5206 void
5207 vop_setattr_post(void *ap, int rc)
5208 {
5209 	struct vop_setattr_args *a = ap;
5210 
5211 	if (!rc)
5212 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5213 }
5214 
5215 void
5216 vop_setextattr_post(void *ap, int rc)
5217 {
5218 	struct vop_setextattr_args *a = ap;
5219 
5220 	if (!rc)
5221 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5222 }
5223 
5224 void
5225 vop_symlink_post(void *ap, int rc)
5226 {
5227 	struct vop_symlink_args *a = ap;
5228 
5229 	if (!rc)
5230 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
5231 }
5232 
5233 void
5234 vop_open_post(void *ap, int rc)
5235 {
5236 	struct vop_open_args *a = ap;
5237 
5238 	if (!rc)
5239 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
5240 }
5241 
5242 void
5243 vop_close_post(void *ap, int rc)
5244 {
5245 	struct vop_close_args *a = ap;
5246 
5247 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
5248 	    (a->a_vp->v_iflag & VI_DOOMED) == 0)) {
5249 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
5250 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
5251 	}
5252 }
5253 
5254 void
5255 vop_read_post(void *ap, int rc)
5256 {
5257 	struct vop_read_args *a = ap;
5258 
5259 	if (!rc)
5260 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5261 }
5262 
5263 void
5264 vop_readdir_post(void *ap, int rc)
5265 {
5266 	struct vop_readdir_args *a = ap;
5267 
5268 	if (!rc)
5269 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
5270 }
5271 
5272 static struct knlist fs_knlist;
5273 
5274 static void
5275 vfs_event_init(void *arg)
5276 {
5277 	knlist_init_mtx(&fs_knlist, NULL);
5278 }
5279 /* XXX - correct order? */
5280 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
5281 
5282 void
5283 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
5284 {
5285 
5286 	KNOTE_UNLOCKED(&fs_knlist, event);
5287 }
5288 
5289 static int	filt_fsattach(struct knote *kn);
5290 static void	filt_fsdetach(struct knote *kn);
5291 static int	filt_fsevent(struct knote *kn, long hint);
5292 
5293 struct filterops fs_filtops = {
5294 	.f_isfd = 0,
5295 	.f_attach = filt_fsattach,
5296 	.f_detach = filt_fsdetach,
5297 	.f_event = filt_fsevent
5298 };
5299 
5300 static int
5301 filt_fsattach(struct knote *kn)
5302 {
5303 
5304 	kn->kn_flags |= EV_CLEAR;
5305 	knlist_add(&fs_knlist, kn, 0);
5306 	return (0);
5307 }
5308 
5309 static void
5310 filt_fsdetach(struct knote *kn)
5311 {
5312 
5313 	knlist_remove(&fs_knlist, kn, 0);
5314 }
5315 
5316 static int
5317 filt_fsevent(struct knote *kn, long hint)
5318 {
5319 
5320 	kn->kn_fflags |= hint;
5321 	return (kn->kn_fflags != 0);
5322 }
5323 
5324 static int
5325 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
5326 {
5327 	struct vfsidctl vc;
5328 	int error;
5329 	struct mount *mp;
5330 
5331 	error = SYSCTL_IN(req, &vc, sizeof(vc));
5332 	if (error)
5333 		return (error);
5334 	if (vc.vc_vers != VFS_CTL_VERS1)
5335 		return (EINVAL);
5336 	mp = vfs_getvfs(&vc.vc_fsid);
5337 	if (mp == NULL)
5338 		return (ENOENT);
5339 	/* ensure that a specific sysctl goes to the right filesystem. */
5340 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
5341 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
5342 		vfs_rel(mp);
5343 		return (EINVAL);
5344 	}
5345 	VCTLTOREQ(&vc, req);
5346 	error = VFS_SYSCTL(mp, vc.vc_op, req);
5347 	vfs_rel(mp);
5348 	return (error);
5349 }
5350 
5351 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
5352     NULL, 0, sysctl_vfs_ctl, "",
5353     "Sysctl by fsid");
5354 
5355 /*
5356  * Function to initialize a va_filerev field sensibly.
5357  * XXX: Wouldn't a random number make a lot more sense ??
5358  */
5359 u_quad_t
5360 init_va_filerev(void)
5361 {
5362 	struct bintime bt;
5363 
5364 	getbinuptime(&bt);
5365 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
5366 }
5367 
5368 static int	filt_vfsread(struct knote *kn, long hint);
5369 static int	filt_vfswrite(struct knote *kn, long hint);
5370 static int	filt_vfsvnode(struct knote *kn, long hint);
5371 static void	filt_vfsdetach(struct knote *kn);
5372 static struct filterops vfsread_filtops = {
5373 	.f_isfd = 1,
5374 	.f_detach = filt_vfsdetach,
5375 	.f_event = filt_vfsread
5376 };
5377 static struct filterops vfswrite_filtops = {
5378 	.f_isfd = 1,
5379 	.f_detach = filt_vfsdetach,
5380 	.f_event = filt_vfswrite
5381 };
5382 static struct filterops vfsvnode_filtops = {
5383 	.f_isfd = 1,
5384 	.f_detach = filt_vfsdetach,
5385 	.f_event = filt_vfsvnode
5386 };
5387 
5388 static void
5389 vfs_knllock(void *arg)
5390 {
5391 	struct vnode *vp = arg;
5392 
5393 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5394 }
5395 
5396 static void
5397 vfs_knlunlock(void *arg)
5398 {
5399 	struct vnode *vp = arg;
5400 
5401 	VOP_UNLOCK(vp, 0);
5402 }
5403 
5404 static void
5405 vfs_knl_assert_locked(void *arg)
5406 {
5407 #ifdef DEBUG_VFS_LOCKS
5408 	struct vnode *vp = arg;
5409 
5410 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
5411 #endif
5412 }
5413 
5414 static void
5415 vfs_knl_assert_unlocked(void *arg)
5416 {
5417 #ifdef DEBUG_VFS_LOCKS
5418 	struct vnode *vp = arg;
5419 
5420 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
5421 #endif
5422 }
5423 
5424 int
5425 vfs_kqfilter(struct vop_kqfilter_args *ap)
5426 {
5427 	struct vnode *vp = ap->a_vp;
5428 	struct knote *kn = ap->a_kn;
5429 	struct knlist *knl;
5430 
5431 	switch (kn->kn_filter) {
5432 	case EVFILT_READ:
5433 		kn->kn_fop = &vfsread_filtops;
5434 		break;
5435 	case EVFILT_WRITE:
5436 		kn->kn_fop = &vfswrite_filtops;
5437 		break;
5438 	case EVFILT_VNODE:
5439 		kn->kn_fop = &vfsvnode_filtops;
5440 		break;
5441 	default:
5442 		return (EINVAL);
5443 	}
5444 
5445 	kn->kn_hook = (caddr_t)vp;
5446 
5447 	v_addpollinfo(vp);
5448 	if (vp->v_pollinfo == NULL)
5449 		return (ENOMEM);
5450 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
5451 	vhold(vp);
5452 	knlist_add(knl, kn, 0);
5453 
5454 	return (0);
5455 }
5456 
5457 /*
5458  * Detach knote from vnode
5459  */
5460 static void
5461 filt_vfsdetach(struct knote *kn)
5462 {
5463 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5464 
5465 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
5466 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
5467 	vdrop(vp);
5468 }
5469 
5470 /*ARGSUSED*/
5471 static int
5472 filt_vfsread(struct knote *kn, long hint)
5473 {
5474 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5475 	struct vattr va;
5476 	int res;
5477 
5478 	/*
5479 	 * filesystem is gone, so set the EOF flag and schedule
5480 	 * the knote for deletion.
5481 	 */
5482 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5483 		VI_LOCK(vp);
5484 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5485 		VI_UNLOCK(vp);
5486 		return (1);
5487 	}
5488 
5489 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
5490 		return (0);
5491 
5492 	VI_LOCK(vp);
5493 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
5494 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
5495 	VI_UNLOCK(vp);
5496 	return (res);
5497 }
5498 
5499 /*ARGSUSED*/
5500 static int
5501 filt_vfswrite(struct knote *kn, long hint)
5502 {
5503 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5504 
5505 	VI_LOCK(vp);
5506 
5507 	/*
5508 	 * filesystem is gone, so set the EOF flag and schedule
5509 	 * the knote for deletion.
5510 	 */
5511 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
5512 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5513 
5514 	kn->kn_data = 0;
5515 	VI_UNLOCK(vp);
5516 	return (1);
5517 }
5518 
5519 static int
5520 filt_vfsvnode(struct knote *kn, long hint)
5521 {
5522 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5523 	int res;
5524 
5525 	VI_LOCK(vp);
5526 	if (kn->kn_sfflags & hint)
5527 		kn->kn_fflags |= hint;
5528 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5529 		kn->kn_flags |= EV_EOF;
5530 		VI_UNLOCK(vp);
5531 		return (1);
5532 	}
5533 	res = (kn->kn_fflags != 0);
5534 	VI_UNLOCK(vp);
5535 	return (res);
5536 }
5537 
5538 /*
5539  * Returns whether the directory is empty or not.
5540  * If it is empty, the return value is 0; otherwise
5541  * the return value is an error value (which may
5542  * be ENOTEMPTY).
5543  */
5544 int
5545 vfs_emptydir(struct vnode *vp)
5546 {
5547 	struct uio uio;
5548 	struct iovec iov;
5549 	struct dirent *dirent, *dp, *endp;
5550 	int error, eof;
5551 
5552 	error = 0;
5553 	eof = 0;
5554 
5555 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
5556 
5557 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
5558 	iov.iov_base = dirent;
5559 	iov.iov_len = sizeof(struct dirent);
5560 
5561 	uio.uio_iov = &iov;
5562 	uio.uio_iovcnt = 1;
5563 	uio.uio_offset = 0;
5564 	uio.uio_resid = sizeof(struct dirent);
5565 	uio.uio_segflg = UIO_SYSSPACE;
5566 	uio.uio_rw = UIO_READ;
5567 	uio.uio_td = curthread;
5568 
5569 	while (eof == 0 && error == 0) {
5570 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
5571 		    NULL, NULL);
5572 		if (error != 0)
5573 			break;
5574 		endp = (void *)((uint8_t *)dirent +
5575 		    sizeof(struct dirent) - uio.uio_resid);
5576 		for (dp = dirent; dp < endp;
5577 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
5578 			if (dp->d_type == DT_WHT)
5579 				continue;
5580 			if (dp->d_namlen == 0)
5581 				continue;
5582 			if (dp->d_type != DT_DIR &&
5583 			    dp->d_type != DT_UNKNOWN) {
5584 				error = ENOTEMPTY;
5585 				break;
5586 			}
5587 			if (dp->d_namlen > 2) {
5588 				error = ENOTEMPTY;
5589 				break;
5590 			}
5591 			if (dp->d_namlen == 1 &&
5592 			    dp->d_name[0] != '.') {
5593 				error = ENOTEMPTY;
5594 				break;
5595 			}
5596 			if (dp->d_namlen == 2 &&
5597 			    dp->d_name[1] != '.') {
5598 				error = ENOTEMPTY;
5599 				break;
5600 			}
5601 			uio.uio_resid = sizeof(struct dirent);
5602 		}
5603 	}
5604 	free(dirent, M_TEMP);
5605 	return (error);
5606 }
5607 
5608 int
5609 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
5610 {
5611 	int error;
5612 
5613 	if (dp->d_reclen > ap->a_uio->uio_resid)
5614 		return (ENAMETOOLONG);
5615 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
5616 	if (error) {
5617 		if (ap->a_ncookies != NULL) {
5618 			if (ap->a_cookies != NULL)
5619 				free(ap->a_cookies, M_TEMP);
5620 			ap->a_cookies = NULL;
5621 			*ap->a_ncookies = 0;
5622 		}
5623 		return (error);
5624 	}
5625 	if (ap->a_ncookies == NULL)
5626 		return (0);
5627 
5628 	KASSERT(ap->a_cookies,
5629 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
5630 
5631 	*ap->a_cookies = realloc(*ap->a_cookies,
5632 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
5633 	(*ap->a_cookies)[*ap->a_ncookies] = off;
5634 	*ap->a_ncookies += 1;
5635 	return (0);
5636 }
5637 
5638 /*
5639  * Mark for update the access time of the file if the filesystem
5640  * supports VOP_MARKATIME.  This functionality is used by execve and
5641  * mmap, so we want to avoid the I/O implied by directly setting
5642  * va_atime for the sake of efficiency.
5643  */
5644 void
5645 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
5646 {
5647 	struct mount *mp;
5648 
5649 	mp = vp->v_mount;
5650 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
5651 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
5652 		(void)VOP_MARKATIME(vp);
5653 }
5654 
5655 /*
5656  * The purpose of this routine is to remove granularity from accmode_t,
5657  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
5658  * VADMIN and VAPPEND.
5659  *
5660  * If it returns 0, the caller is supposed to continue with the usual
5661  * access checks using 'accmode' as modified by this routine.  If it
5662  * returns nonzero value, the caller is supposed to return that value
5663  * as errno.
5664  *
5665  * Note that after this routine runs, accmode may be zero.
5666  */
5667 int
5668 vfs_unixify_accmode(accmode_t *accmode)
5669 {
5670 	/*
5671 	 * There is no way to specify explicit "deny" rule using
5672 	 * file mode or POSIX.1e ACLs.
5673 	 */
5674 	if (*accmode & VEXPLICIT_DENY) {
5675 		*accmode = 0;
5676 		return (0);
5677 	}
5678 
5679 	/*
5680 	 * None of these can be translated into usual access bits.
5681 	 * Also, the common case for NFSv4 ACLs is to not contain
5682 	 * either of these bits. Caller should check for VWRITE
5683 	 * on the containing directory instead.
5684 	 */
5685 	if (*accmode & (VDELETE_CHILD | VDELETE))
5686 		return (EPERM);
5687 
5688 	if (*accmode & VADMIN_PERMS) {
5689 		*accmode &= ~VADMIN_PERMS;
5690 		*accmode |= VADMIN;
5691 	}
5692 
5693 	/*
5694 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
5695 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
5696 	 */
5697 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
5698 
5699 	return (0);
5700 }
5701 
5702 /*
5703  * Clear out a doomed vnode (if any) and replace it with a new one as long
5704  * as the fs is not being unmounted. Return the root vnode to the caller.
5705  */
5706 static int __noinline
5707 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
5708 {
5709 	struct vnode *vp;
5710 	int error;
5711 
5712 restart:
5713 	if (mp->mnt_rootvnode != NULL) {
5714 		MNT_ILOCK(mp);
5715 		vp = mp->mnt_rootvnode;
5716 		if (vp != NULL) {
5717 			if ((vp->v_iflag & VI_DOOMED) == 0) {
5718 				vrefact(vp);
5719 				MNT_IUNLOCK(mp);
5720 				error = vn_lock(vp, flags);
5721 				if (error == 0) {
5722 					*vpp = vp;
5723 					return (0);
5724 				}
5725 				vrele(vp);
5726 				goto restart;
5727 			}
5728 			/*
5729 			 * Clear the old one.
5730 			 */
5731 			mp->mnt_rootvnode = NULL;
5732 		}
5733 		MNT_IUNLOCK(mp);
5734 		if (vp != NULL) {
5735 			/*
5736 			 * Paired with a fence in vfs_op_thread_exit().
5737 			 */
5738 			atomic_thread_fence_acq();
5739 			vfs_op_barrier_wait(mp);
5740 			vrele(vp);
5741 		}
5742 	}
5743 	error = VFS_CACHEDROOT(mp, flags, vpp);
5744 	if (error != 0)
5745 		return (error);
5746 	if (mp->mnt_vfs_ops == 0) {
5747 		MNT_ILOCK(mp);
5748 		if (mp->mnt_vfs_ops != 0) {
5749 			MNT_IUNLOCK(mp);
5750 			return (0);
5751 		}
5752 		if (mp->mnt_rootvnode == NULL) {
5753 			vrefact(*vpp);
5754 			mp->mnt_rootvnode = *vpp;
5755 		} else {
5756 			if (mp->mnt_rootvnode != *vpp) {
5757 				if ((mp->mnt_rootvnode->v_iflag & VI_DOOMED) == 0) {
5758 					panic("%s: mismatch between vnode returned "
5759 					    " by VFS_CACHEDROOT and the one cached "
5760 					    " (%p != %p)",
5761 					    __func__, *vpp, mp->mnt_rootvnode);
5762 				}
5763 			}
5764 		}
5765 		MNT_IUNLOCK(mp);
5766 	}
5767 	return (0);
5768 }
5769 
5770 int
5771 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
5772 {
5773 	struct vnode *vp;
5774 	int error;
5775 
5776 	if (!vfs_op_thread_enter(mp))
5777 		return (vfs_cache_root_fallback(mp, flags, vpp));
5778 	vp = (struct vnode *)atomic_load_ptr(&mp->mnt_rootvnode);
5779 	if (vp == NULL || (vp->v_iflag & VI_DOOMED)) {
5780 		vfs_op_thread_exit(mp);
5781 		return (vfs_cache_root_fallback(mp, flags, vpp));
5782 	}
5783 	vrefact(vp);
5784 	vfs_op_thread_exit(mp);
5785 	error = vn_lock(vp, flags);
5786 	if (error != 0) {
5787 		vrele(vp);
5788 		return (vfs_cache_root_fallback(mp, flags, vpp));
5789 	}
5790 	*vpp = vp;
5791 	return (0);
5792 }
5793 
5794 struct vnode *
5795 vfs_cache_root_clear(struct mount *mp)
5796 {
5797 	struct vnode *vp;
5798 
5799 	/*
5800 	 * ops > 0 guarantees there is nobody who can see this vnode
5801 	 */
5802 	MPASS(mp->mnt_vfs_ops > 0);
5803 	vp = mp->mnt_rootvnode;
5804 	mp->mnt_rootvnode = NULL;
5805 	return (vp);
5806 }
5807 
5808 void
5809 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
5810 {
5811 
5812 	MPASS(mp->mnt_vfs_ops > 0);
5813 	vrefact(vp);
5814 	mp->mnt_rootvnode = vp;
5815 }
5816 
5817 /*
5818  * These are helper functions for filesystems to traverse all
5819  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
5820  *
5821  * This interface replaces MNT_VNODE_FOREACH.
5822  */
5823 
5824 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
5825 
5826 struct vnode *
5827 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
5828 {
5829 	struct vnode *vp;
5830 
5831 	if (should_yield())
5832 		kern_yield(PRI_USER);
5833 	MNT_ILOCK(mp);
5834 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5835 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
5836 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
5837 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5838 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5839 			continue;
5840 		VI_LOCK(vp);
5841 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5842 			VI_UNLOCK(vp);
5843 			continue;
5844 		}
5845 		break;
5846 	}
5847 	if (vp == NULL) {
5848 		__mnt_vnode_markerfree_all(mvp, mp);
5849 		/* MNT_IUNLOCK(mp); -- done in above function */
5850 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
5851 		return (NULL);
5852 	}
5853 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5854 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5855 	MNT_IUNLOCK(mp);
5856 	return (vp);
5857 }
5858 
5859 struct vnode *
5860 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
5861 {
5862 	struct vnode *vp;
5863 
5864 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5865 	MNT_ILOCK(mp);
5866 	MNT_REF(mp);
5867 	(*mvp)->v_mount = mp;
5868 	(*mvp)->v_type = VMARKER;
5869 
5870 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
5871 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5872 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5873 			continue;
5874 		VI_LOCK(vp);
5875 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5876 			VI_UNLOCK(vp);
5877 			continue;
5878 		}
5879 		break;
5880 	}
5881 	if (vp == NULL) {
5882 		MNT_REL(mp);
5883 		MNT_IUNLOCK(mp);
5884 		free(*mvp, M_VNODE_MARKER);
5885 		*mvp = NULL;
5886 		return (NULL);
5887 	}
5888 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5889 	MNT_IUNLOCK(mp);
5890 	return (vp);
5891 }
5892 
5893 void
5894 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
5895 {
5896 
5897 	if (*mvp == NULL) {
5898 		MNT_IUNLOCK(mp);
5899 		return;
5900 	}
5901 
5902 	mtx_assert(MNT_MTX(mp), MA_OWNED);
5903 
5904 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5905 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5906 	MNT_REL(mp);
5907 	MNT_IUNLOCK(mp);
5908 	free(*mvp, M_VNODE_MARKER);
5909 	*mvp = NULL;
5910 }
5911 
5912 /*
5913  * These are helper functions for filesystems to traverse their
5914  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
5915  */
5916 static void
5917 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5918 {
5919 
5920 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5921 
5922 	MNT_ILOCK(mp);
5923 	MNT_REL(mp);
5924 	MNT_IUNLOCK(mp);
5925 	free(*mvp, M_VNODE_MARKER);
5926 	*mvp = NULL;
5927 }
5928 
5929 /*
5930  * Relock the mp mount vnode list lock with the vp vnode interlock in the
5931  * conventional lock order during mnt_vnode_next_active iteration.
5932  *
5933  * On entry, the mount vnode list lock is held and the vnode interlock is not.
5934  * The list lock is dropped and reacquired.  On success, both locks are held.
5935  * On failure, the mount vnode list lock is held but the vnode interlock is
5936  * not, and the procedure may have yielded.
5937  */
5938 static bool
5939 mnt_vnode_next_active_relock(struct vnode *mvp, struct mount *mp,
5940     struct vnode *vp)
5941 {
5942 	const struct vnode *tmp;
5943 	bool held, ret;
5944 
5945 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
5946 	    TAILQ_NEXT(mvp, v_actfreelist) != NULL, mvp,
5947 	    ("%s: bad marker", __func__));
5948 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
5949 	    ("%s: inappropriate vnode", __func__));
5950 	ASSERT_VI_UNLOCKED(vp, __func__);
5951 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5952 
5953 	ret = false;
5954 
5955 	TAILQ_REMOVE(&mp->mnt_activevnodelist, mvp, v_actfreelist);
5956 	TAILQ_INSERT_BEFORE(vp, mvp, v_actfreelist);
5957 
5958 	/*
5959 	 * Use a hold to prevent vp from disappearing while the mount vnode
5960 	 * list lock is dropped and reacquired.  Normally a hold would be
5961 	 * acquired with vhold(), but that might try to acquire the vnode
5962 	 * interlock, which would be a LOR with the mount vnode list lock.
5963 	 */
5964 	held = refcount_acquire_if_not_zero(&vp->v_holdcnt);
5965 	mtx_unlock(&mp->mnt_listmtx);
5966 	if (!held)
5967 		goto abort;
5968 	VI_LOCK(vp);
5969 	if (!refcount_release_if_not_last(&vp->v_holdcnt)) {
5970 		vdropl(vp);
5971 		goto abort;
5972 	}
5973 	mtx_lock(&mp->mnt_listmtx);
5974 
5975 	/*
5976 	 * Determine whether the vnode is still the next one after the marker,
5977 	 * excepting any other markers.  If the vnode has not been doomed by
5978 	 * vgone() then the hold should have ensured that it remained on the
5979 	 * active list.  If it has been doomed but is still on the active list,
5980 	 * don't abort, but rather skip over it (avoid spinning on doomed
5981 	 * vnodes).
5982 	 */
5983 	tmp = mvp;
5984 	do {
5985 		tmp = TAILQ_NEXT(tmp, v_actfreelist);
5986 	} while (tmp != NULL && tmp->v_type == VMARKER);
5987 	if (tmp != vp) {
5988 		mtx_unlock(&mp->mnt_listmtx);
5989 		VI_UNLOCK(vp);
5990 		goto abort;
5991 	}
5992 
5993 	ret = true;
5994 	goto out;
5995 abort:
5996 	maybe_yield();
5997 	mtx_lock(&mp->mnt_listmtx);
5998 out:
5999 	if (ret)
6000 		ASSERT_VI_LOCKED(vp, __func__);
6001 	else
6002 		ASSERT_VI_UNLOCKED(vp, __func__);
6003 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6004 	return (ret);
6005 }
6006 
6007 static struct vnode *
6008 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
6009 {
6010 	struct vnode *vp, *nvp;
6011 
6012 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6013 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6014 restart:
6015 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
6016 	while (vp != NULL) {
6017 		if (vp->v_type == VMARKER) {
6018 			vp = TAILQ_NEXT(vp, v_actfreelist);
6019 			continue;
6020 		}
6021 		/*
6022 		 * Try-lock because this is the wrong lock order.  If that does
6023 		 * not succeed, drop the mount vnode list lock and try to
6024 		 * reacquire it and the vnode interlock in the right order.
6025 		 */
6026 		if (!VI_TRYLOCK(vp) &&
6027 		    !mnt_vnode_next_active_relock(*mvp, mp, vp))
6028 			goto restart;
6029 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6030 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6031 		    ("alien vnode on the active list %p %p", vp, mp));
6032 		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
6033 			break;
6034 		nvp = TAILQ_NEXT(vp, v_actfreelist);
6035 		VI_UNLOCK(vp);
6036 		vp = nvp;
6037 	}
6038 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
6039 
6040 	/* Check if we are done */
6041 	if (vp == NULL) {
6042 		mtx_unlock(&mp->mnt_listmtx);
6043 		mnt_vnode_markerfree_active(mvp, mp);
6044 		return (NULL);
6045 	}
6046 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
6047 	mtx_unlock(&mp->mnt_listmtx);
6048 	ASSERT_VI_LOCKED(vp, "active iter");
6049 	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
6050 	return (vp);
6051 }
6052 
6053 struct vnode *
6054 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
6055 {
6056 
6057 	if (should_yield())
6058 		kern_yield(PRI_USER);
6059 	mtx_lock(&mp->mnt_listmtx);
6060 	return (mnt_vnode_next_active(mvp, mp));
6061 }
6062 
6063 struct vnode *
6064 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
6065 {
6066 	struct vnode *vp;
6067 
6068 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
6069 	MNT_ILOCK(mp);
6070 	MNT_REF(mp);
6071 	MNT_IUNLOCK(mp);
6072 	(*mvp)->v_type = VMARKER;
6073 	(*mvp)->v_mount = mp;
6074 
6075 	mtx_lock(&mp->mnt_listmtx);
6076 	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
6077 	if (vp == NULL) {
6078 		mtx_unlock(&mp->mnt_listmtx);
6079 		mnt_vnode_markerfree_active(mvp, mp);
6080 		return (NULL);
6081 	}
6082 	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
6083 	return (mnt_vnode_next_active(mvp, mp));
6084 }
6085 
6086 void
6087 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
6088 {
6089 
6090 	if (*mvp == NULL)
6091 		return;
6092 
6093 	mtx_lock(&mp->mnt_listmtx);
6094 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
6095 	mtx_unlock(&mp->mnt_listmtx);
6096 	mnt_vnode_markerfree_active(mvp, mp);
6097 }
6098