xref: /freebsd/sys/kern/vfs_subr.c (revision f126d349810fdb512c0b01e101342d430b947488)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vdropl_recycle(struct vnode *vp);
117 static void	vdrop_recycle(struct vnode *vp);
118 static void	vfs_knllock(void *arg);
119 static void	vfs_knlunlock(void *arg);
120 static void	vfs_knl_assert_lock(void *arg, int what);
121 static void	destroy_vpollinfo(struct vpollinfo *vi);
122 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
123 		    daddr_t startlbn, daddr_t endlbn);
124 static void	vnlru_recalc(void);
125 
126 /*
127  * Number of vnodes in existence.  Increased whenever getnewvnode()
128  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
129  */
130 static u_long __exclusive_cache_line numvnodes;
131 
132 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
133     "Number of vnodes in existence");
134 
135 static counter_u64_t vnodes_created;
136 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
137     "Number of vnodes created by getnewvnode");
138 
139 /*
140  * Conversion tables for conversion from vnode types to inode formats
141  * and back.
142  */
143 enum vtype iftovt_tab[16] = {
144 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
145 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
146 };
147 int vttoif_tab[10] = {
148 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
149 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
150 };
151 
152 /*
153  * List of allocates vnodes in the system.
154  */
155 static TAILQ_HEAD(freelst, vnode) vnode_list;
156 static struct vnode *vnode_list_free_marker;
157 static struct vnode *vnode_list_reclaim_marker;
158 
159 /*
160  * "Free" vnode target.  Free vnodes are rarely completely free, but are
161  * just ones that are cheap to recycle.  Usually they are for files which
162  * have been stat'd but not read; these usually have inode and namecache
163  * data attached to them.  This target is the preferred minimum size of a
164  * sub-cache consisting mostly of such files. The system balances the size
165  * of this sub-cache with its complement to try to prevent either from
166  * thrashing while the other is relatively inactive.  The targets express
167  * a preference for the best balance.
168  *
169  * "Above" this target there are 2 further targets (watermarks) related
170  * to recyling of free vnodes.  In the best-operating case, the cache is
171  * exactly full, the free list has size between vlowat and vhiwat above the
172  * free target, and recycling from it and normal use maintains this state.
173  * Sometimes the free list is below vlowat or even empty, but this state
174  * is even better for immediate use provided the cache is not full.
175  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
176  * ones) to reach one of these states.  The watermarks are currently hard-
177  * coded as 4% and 9% of the available space higher.  These and the default
178  * of 25% for wantfreevnodes are too large if the memory size is large.
179  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
180  * whenever vnlru_proc() becomes active.
181  */
182 static long wantfreevnodes;
183 static long __exclusive_cache_line freevnodes;
184 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
185     &freevnodes, 0, "Number of \"free\" vnodes");
186 static long freevnodes_old;
187 
188 static counter_u64_t recycles_count;
189 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
190     "Number of vnodes recycled to meet vnode cache targets");
191 
192 static counter_u64_t recycles_free_count;
193 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
194     "Number of free vnodes recycled to meet vnode cache targets");
195 
196 static counter_u64_t deferred_inact;
197 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
198     "Number of times inactive processing was deferred");
199 
200 /* To keep more than one thread at a time from running vfs_getnewfsid */
201 static struct mtx mntid_mtx;
202 
203 /*
204  * Lock for any access to the following:
205  *	vnode_list
206  *	numvnodes
207  *	freevnodes
208  */
209 static struct mtx __exclusive_cache_line vnode_list_mtx;
210 
211 /* Publicly exported FS */
212 struct nfs_public nfs_pub;
213 
214 static uma_zone_t buf_trie_zone;
215 static smr_t buf_trie_smr;
216 
217 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
218 static uma_zone_t vnode_zone;
219 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
220 
221 __read_frequently smr_t vfs_smr;
222 
223 /*
224  * The workitem queue.
225  *
226  * It is useful to delay writes of file data and filesystem metadata
227  * for tens of seconds so that quickly created and deleted files need
228  * not waste disk bandwidth being created and removed. To realize this,
229  * we append vnodes to a "workitem" queue. When running with a soft
230  * updates implementation, most pending metadata dependencies should
231  * not wait for more than a few seconds. Thus, mounted on block devices
232  * are delayed only about a half the time that file data is delayed.
233  * Similarly, directory updates are more critical, so are only delayed
234  * about a third the time that file data is delayed. Thus, there are
235  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
236  * one each second (driven off the filesystem syncer process). The
237  * syncer_delayno variable indicates the next queue that is to be processed.
238  * Items that need to be processed soon are placed in this queue:
239  *
240  *	syncer_workitem_pending[syncer_delayno]
241  *
242  * A delay of fifteen seconds is done by placing the request fifteen
243  * entries later in the queue:
244  *
245  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
246  *
247  */
248 static int syncer_delayno;
249 static long syncer_mask;
250 LIST_HEAD(synclist, bufobj);
251 static struct synclist *syncer_workitem_pending;
252 /*
253  * The sync_mtx protects:
254  *	bo->bo_synclist
255  *	sync_vnode_count
256  *	syncer_delayno
257  *	syncer_state
258  *	syncer_workitem_pending
259  *	syncer_worklist_len
260  *	rushjob
261  */
262 static struct mtx sync_mtx;
263 static struct cv sync_wakeup;
264 
265 #define SYNCER_MAXDELAY		32
266 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
267 static int syncdelay = 30;		/* max time to delay syncing data */
268 static int filedelay = 30;		/* time to delay syncing files */
269 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
270     "Time to delay syncing files (in seconds)");
271 static int dirdelay = 29;		/* time to delay syncing directories */
272 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
273     "Time to delay syncing directories (in seconds)");
274 static int metadelay = 28;		/* time to delay syncing metadata */
275 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
276     "Time to delay syncing metadata (in seconds)");
277 static int rushjob;		/* number of slots to run ASAP */
278 static int stat_rush_requests;	/* number of times I/O speeded up */
279 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
280     "Number of times I/O speeded up (rush requests)");
281 
282 #define	VDBATCH_SIZE 8
283 struct vdbatch {
284 	u_int index;
285 	long freevnodes;
286 	struct mtx lock;
287 	struct vnode *tab[VDBATCH_SIZE];
288 };
289 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
290 
291 static void	vdbatch_dequeue(struct vnode *vp);
292 
293 /*
294  * When shutting down the syncer, run it at four times normal speed.
295  */
296 #define SYNCER_SHUTDOWN_SPEEDUP		4
297 static int sync_vnode_count;
298 static int syncer_worklist_len;
299 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
300     syncer_state;
301 
302 /* Target for maximum number of vnodes. */
303 u_long desiredvnodes;
304 static u_long gapvnodes;		/* gap between wanted and desired */
305 static u_long vhiwat;		/* enough extras after expansion */
306 static u_long vlowat;		/* minimal extras before expansion */
307 static u_long vstir;		/* nonzero to stir non-free vnodes */
308 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
309 
310 static u_long vnlru_read_freevnodes(void);
311 
312 /*
313  * Note that no attempt is made to sanitize these parameters.
314  */
315 static int
316 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
317 {
318 	u_long val;
319 	int error;
320 
321 	val = desiredvnodes;
322 	error = sysctl_handle_long(oidp, &val, 0, req);
323 	if (error != 0 || req->newptr == NULL)
324 		return (error);
325 
326 	if (val == desiredvnodes)
327 		return (0);
328 	mtx_lock(&vnode_list_mtx);
329 	desiredvnodes = val;
330 	wantfreevnodes = desiredvnodes / 4;
331 	vnlru_recalc();
332 	mtx_unlock(&vnode_list_mtx);
333 	/*
334 	 * XXX There is no protection against multiple threads changing
335 	 * desiredvnodes at the same time. Locking above only helps vnlru and
336 	 * getnewvnode.
337 	 */
338 	vfs_hash_changesize(desiredvnodes);
339 	cache_changesize(desiredvnodes);
340 	return (0);
341 }
342 
343 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
344     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
345     "LU", "Target for maximum number of vnodes");
346 
347 static int
348 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = wantfreevnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == wantfreevnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	wantfreevnodes = val;
362 	vnlru_recalc();
363 	mtx_unlock(&vnode_list_mtx);
364 	return (0);
365 }
366 
367 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
369     "LU", "Target for minimum number of \"free\" vnodes");
370 
371 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
372     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
373 static int vnlru_nowhere;
374 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW | CTLFLAG_STATS,
375     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
376 
377 static int
378 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
379 {
380 	struct vnode *vp;
381 	struct nameidata nd;
382 	char *buf;
383 	unsigned long ndflags;
384 	int error;
385 
386 	if (req->newptr == NULL)
387 		return (EINVAL);
388 	if (req->newlen >= PATH_MAX)
389 		return (E2BIG);
390 
391 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
392 	error = SYSCTL_IN(req, buf, req->newlen);
393 	if (error != 0)
394 		goto out;
395 
396 	buf[req->newlen] = '\0';
397 
398 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
399 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
400 	if ((error = namei(&nd)) != 0)
401 		goto out;
402 	vp = nd.ni_vp;
403 
404 	if (VN_IS_DOOMED(vp)) {
405 		/*
406 		 * This vnode is being recycled.  Return != 0 to let the caller
407 		 * know that the sysctl had no effect.  Return EAGAIN because a
408 		 * subsequent call will likely succeed (since namei will create
409 		 * a new vnode if necessary)
410 		 */
411 		error = EAGAIN;
412 		goto putvnode;
413 	}
414 
415 	counter_u64_add(recycles_count, 1);
416 	vgone(vp);
417 putvnode:
418 	vput(vp);
419 	NDFREE_PNBUF(&nd);
420 out:
421 	free(buf, M_TEMP);
422 	return (error);
423 }
424 
425 static int
426 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
427 {
428 	struct thread *td = curthread;
429 	struct vnode *vp;
430 	struct file *fp;
431 	int error;
432 	int fd;
433 
434 	if (req->newptr == NULL)
435 		return (EBADF);
436 
437         error = sysctl_handle_int(oidp, &fd, 0, req);
438         if (error != 0)
439                 return (error);
440 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
441 	if (error != 0)
442 		return (error);
443 	vp = fp->f_vnode;
444 
445 	error = vn_lock(vp, LK_EXCLUSIVE);
446 	if (error != 0)
447 		goto drop;
448 
449 	counter_u64_add(recycles_count, 1);
450 	vgone(vp);
451 	VOP_UNLOCK(vp);
452 drop:
453 	fdrop(fp, td);
454 	return (error);
455 }
456 
457 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
458     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
459     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
460 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
461     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
462     sysctl_ftry_reclaim_vnode, "I",
463     "Try to reclaim a vnode by its file descriptor");
464 
465 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
466 #define vnsz2log 8
467 #ifndef DEBUG_LOCKS
468 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
469     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
470     "vnsz2log needs to be updated");
471 #endif
472 
473 /*
474  * Support for the bufobj clean & dirty pctrie.
475  */
476 static void *
477 buf_trie_alloc(struct pctrie *ptree)
478 {
479 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
480 }
481 
482 static void
483 buf_trie_free(struct pctrie *ptree, void *node)
484 {
485 	uma_zfree_smr(buf_trie_zone, node);
486 }
487 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
488     buf_trie_smr);
489 
490 /*
491  * Initialize the vnode management data structures.
492  *
493  * Reevaluate the following cap on the number of vnodes after the physical
494  * memory size exceeds 512GB.  In the limit, as the physical memory size
495  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
496  */
497 #ifndef	MAXVNODES_MAX
498 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
499 #endif
500 
501 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
502 
503 static struct vnode *
504 vn_alloc_marker(struct mount *mp)
505 {
506 	struct vnode *vp;
507 
508 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
509 	vp->v_type = VMARKER;
510 	vp->v_mount = mp;
511 
512 	return (vp);
513 }
514 
515 static void
516 vn_free_marker(struct vnode *vp)
517 {
518 
519 	MPASS(vp->v_type == VMARKER);
520 	free(vp, M_VNODE_MARKER);
521 }
522 
523 #ifdef KASAN
524 static int
525 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
526 {
527 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
528 	return (0);
529 }
530 
531 static void
532 vnode_dtor(void *mem, int size, void *arg __unused)
533 {
534 	size_t end1, end2, off1, off2;
535 
536 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
537 	    offsetof(struct vnode, v_dbatchcpu),
538 	    "KASAN marks require updating");
539 
540 	off1 = offsetof(struct vnode, v_vnodelist);
541 	off2 = offsetof(struct vnode, v_dbatchcpu);
542 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
543 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
544 
545 	/*
546 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
547 	 * after the vnode has been freed.  Try to get some KASAN coverage by
548 	 * marking everything except those two fields as invalid.  Because
549 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
550 	 * the same 8-byte aligned word must also be marked valid.
551 	 */
552 
553 	/* Handle the area from the start until v_vnodelist... */
554 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
555 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
556 
557 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
558 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
559 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
560 	if (off2 > off1)
561 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
562 		    off2 - off1, KASAN_UMA_FREED);
563 
564 	/* ... and finally the area from v_dbatchcpu to the end. */
565 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
566 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
567 	    KASAN_UMA_FREED);
568 }
569 #endif /* KASAN */
570 
571 /*
572  * Initialize a vnode as it first enters the zone.
573  */
574 static int
575 vnode_init(void *mem, int size, int flags)
576 {
577 	struct vnode *vp;
578 
579 	vp = mem;
580 	bzero(vp, size);
581 	/*
582 	 * Setup locks.
583 	 */
584 	vp->v_vnlock = &vp->v_lock;
585 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
586 	/*
587 	 * By default, don't allow shared locks unless filesystems opt-in.
588 	 */
589 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
590 	    LK_NOSHARE | LK_IS_VNODE);
591 	/*
592 	 * Initialize bufobj.
593 	 */
594 	bufobj_init(&vp->v_bufobj, vp);
595 	/*
596 	 * Initialize namecache.
597 	 */
598 	cache_vnode_init(vp);
599 	/*
600 	 * Initialize rangelocks.
601 	 */
602 	rangelock_init(&vp->v_rl);
603 
604 	vp->v_dbatchcpu = NOCPU;
605 
606 	/*
607 	 * Check vhold_recycle_free for an explanation.
608 	 */
609 	vp->v_holdcnt = VHOLD_NO_SMR;
610 	vp->v_type = VNON;
611 	mtx_lock(&vnode_list_mtx);
612 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
613 	mtx_unlock(&vnode_list_mtx);
614 	return (0);
615 }
616 
617 /*
618  * Free a vnode when it is cleared from the zone.
619  */
620 static void
621 vnode_fini(void *mem, int size)
622 {
623 	struct vnode *vp;
624 	struct bufobj *bo;
625 
626 	vp = mem;
627 	vdbatch_dequeue(vp);
628 	mtx_lock(&vnode_list_mtx);
629 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
630 	mtx_unlock(&vnode_list_mtx);
631 	rangelock_destroy(&vp->v_rl);
632 	lockdestroy(vp->v_vnlock);
633 	mtx_destroy(&vp->v_interlock);
634 	bo = &vp->v_bufobj;
635 	rw_destroy(BO_LOCKPTR(bo));
636 
637 	kasan_mark(mem, size, size, 0);
638 }
639 
640 /*
641  * Provide the size of NFS nclnode and NFS fh for calculation of the
642  * vnode memory consumption.  The size is specified directly to
643  * eliminate dependency on NFS-private header.
644  *
645  * Other filesystems may use bigger or smaller (like UFS and ZFS)
646  * private inode data, but the NFS-based estimation is ample enough.
647  * Still, we care about differences in the size between 64- and 32-bit
648  * platforms.
649  *
650  * Namecache structure size is heuristically
651  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
652  */
653 #ifdef _LP64
654 #define	NFS_NCLNODE_SZ	(528 + 64)
655 #define	NC_SZ		148
656 #else
657 #define	NFS_NCLNODE_SZ	(360 + 32)
658 #define	NC_SZ		92
659 #endif
660 
661 static void
662 vntblinit(void *dummy __unused)
663 {
664 	struct vdbatch *vd;
665 	uma_ctor ctor;
666 	uma_dtor dtor;
667 	int cpu, physvnodes, virtvnodes;
668 
669 	/*
670 	 * Desiredvnodes is a function of the physical memory size and the
671 	 * kernel's heap size.  Generally speaking, it scales with the
672 	 * physical memory size.  The ratio of desiredvnodes to the physical
673 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
674 	 * Thereafter, the
675 	 * marginal ratio of desiredvnodes to the physical memory size is
676 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
677 	 * size.  The memory required by desiredvnodes vnodes and vm objects
678 	 * must not exceed 1/10th of the kernel's heap size.
679 	 */
680 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
681 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
682 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
683 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
684 	desiredvnodes = min(physvnodes, virtvnodes);
685 	if (desiredvnodes > MAXVNODES_MAX) {
686 		if (bootverbose)
687 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
688 			    desiredvnodes, MAXVNODES_MAX);
689 		desiredvnodes = MAXVNODES_MAX;
690 	}
691 	wantfreevnodes = desiredvnodes / 4;
692 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
693 	TAILQ_INIT(&vnode_list);
694 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
695 	/*
696 	 * The lock is taken to appease WITNESS.
697 	 */
698 	mtx_lock(&vnode_list_mtx);
699 	vnlru_recalc();
700 	mtx_unlock(&vnode_list_mtx);
701 	vnode_list_free_marker = vn_alloc_marker(NULL);
702 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
703 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
704 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
705 
706 #ifdef KASAN
707 	ctor = vnode_ctor;
708 	dtor = vnode_dtor;
709 #else
710 	ctor = NULL;
711 	dtor = NULL;
712 #endif
713 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
714 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
715 	uma_zone_set_smr(vnode_zone, vfs_smr);
716 
717 	/*
718 	 * Preallocate enough nodes to support one-per buf so that
719 	 * we can not fail an insert.  reassignbuf() callers can not
720 	 * tolerate the insertion failure.
721 	 */
722 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
723 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
724 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
725 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
726 	uma_prealloc(buf_trie_zone, nbuf);
727 
728 	vnodes_created = counter_u64_alloc(M_WAITOK);
729 	recycles_count = counter_u64_alloc(M_WAITOK);
730 	recycles_free_count = counter_u64_alloc(M_WAITOK);
731 	deferred_inact = counter_u64_alloc(M_WAITOK);
732 
733 	/*
734 	 * Initialize the filesystem syncer.
735 	 */
736 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
737 	    &syncer_mask);
738 	syncer_maxdelay = syncer_mask + 1;
739 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
740 	cv_init(&sync_wakeup, "syncer");
741 
742 	CPU_FOREACH(cpu) {
743 		vd = DPCPU_ID_PTR((cpu), vd);
744 		bzero(vd, sizeof(*vd));
745 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
746 	}
747 }
748 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
749 
750 /*
751  * Mark a mount point as busy. Used to synchronize access and to delay
752  * unmounting. Eventually, mountlist_mtx is not released on failure.
753  *
754  * vfs_busy() is a custom lock, it can block the caller.
755  * vfs_busy() only sleeps if the unmount is active on the mount point.
756  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
757  * vnode belonging to mp.
758  *
759  * Lookup uses vfs_busy() to traverse mount points.
760  * root fs			var fs
761  * / vnode lock		A	/ vnode lock (/var)		D
762  * /var vnode lock	B	/log vnode lock(/var/log)	E
763  * vfs_busy lock	C	vfs_busy lock			F
764  *
765  * Within each file system, the lock order is C->A->B and F->D->E.
766  *
767  * When traversing across mounts, the system follows that lock order:
768  *
769  *        C->A->B
770  *              |
771  *              +->F->D->E
772  *
773  * The lookup() process for namei("/var") illustrates the process:
774  *  1. VOP_LOOKUP() obtains B while A is held
775  *  2. vfs_busy() obtains a shared lock on F while A and B are held
776  *  3. vput() releases lock on B
777  *  4. vput() releases lock on A
778  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
779  *  6. vfs_unbusy() releases shared lock on F
780  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
781  *     Attempt to lock A (instead of vp_crossmp) while D is held would
782  *     violate the global order, causing deadlocks.
783  *
784  * dounmount() locks B while F is drained.  Note that for stacked
785  * filesystems, D and B in the example above may be the same lock,
786  * which introdues potential lock order reversal deadlock between
787  * dounmount() and step 5 above.  These filesystems may avoid the LOR
788  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
789  * remain held until after step 5.
790  */
791 int
792 vfs_busy(struct mount *mp, int flags)
793 {
794 	struct mount_pcpu *mpcpu;
795 
796 	MPASS((flags & ~MBF_MASK) == 0);
797 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
798 
799 	if (vfs_op_thread_enter(mp, mpcpu)) {
800 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
801 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
802 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
803 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
804 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
805 		vfs_op_thread_exit(mp, mpcpu);
806 		if (flags & MBF_MNTLSTLOCK)
807 			mtx_unlock(&mountlist_mtx);
808 		return (0);
809 	}
810 
811 	MNT_ILOCK(mp);
812 	vfs_assert_mount_counters(mp);
813 	MNT_REF(mp);
814 	/*
815 	 * If mount point is currently being unmounted, sleep until the
816 	 * mount point fate is decided.  If thread doing the unmounting fails,
817 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
818 	 * that this mount point has survived the unmount attempt and vfs_busy
819 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
820 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
821 	 * about to be really destroyed.  vfs_busy needs to release its
822 	 * reference on the mount point in this case and return with ENOENT,
823 	 * telling the caller the mount it tried to busy is no longer valid.
824 	 */
825 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
826 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
827 		    ("%s: non-empty upper mount list with pending unmount",
828 		    __func__));
829 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
830 			MNT_REL(mp);
831 			MNT_IUNLOCK(mp);
832 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
833 			    __func__);
834 			return (ENOENT);
835 		}
836 		if (flags & MBF_MNTLSTLOCK)
837 			mtx_unlock(&mountlist_mtx);
838 		mp->mnt_kern_flag |= MNTK_MWAIT;
839 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
840 		if (flags & MBF_MNTLSTLOCK)
841 			mtx_lock(&mountlist_mtx);
842 		MNT_ILOCK(mp);
843 	}
844 	if (flags & MBF_MNTLSTLOCK)
845 		mtx_unlock(&mountlist_mtx);
846 	mp->mnt_lockref++;
847 	MNT_IUNLOCK(mp);
848 	return (0);
849 }
850 
851 /*
852  * Free a busy filesystem.
853  */
854 void
855 vfs_unbusy(struct mount *mp)
856 {
857 	struct mount_pcpu *mpcpu;
858 	int c;
859 
860 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
861 
862 	if (vfs_op_thread_enter(mp, mpcpu)) {
863 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
864 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
865 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
866 		vfs_op_thread_exit(mp, mpcpu);
867 		return;
868 	}
869 
870 	MNT_ILOCK(mp);
871 	vfs_assert_mount_counters(mp);
872 	MNT_REL(mp);
873 	c = --mp->mnt_lockref;
874 	if (mp->mnt_vfs_ops == 0) {
875 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
876 		MNT_IUNLOCK(mp);
877 		return;
878 	}
879 	if (c < 0)
880 		vfs_dump_mount_counters(mp);
881 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
882 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
883 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
884 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
885 		wakeup(&mp->mnt_lockref);
886 	}
887 	MNT_IUNLOCK(mp);
888 }
889 
890 /*
891  * Lookup a mount point by filesystem identifier.
892  */
893 struct mount *
894 vfs_getvfs(fsid_t *fsid)
895 {
896 	struct mount *mp;
897 
898 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
899 	mtx_lock(&mountlist_mtx);
900 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
901 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
902 			vfs_ref(mp);
903 			mtx_unlock(&mountlist_mtx);
904 			return (mp);
905 		}
906 	}
907 	mtx_unlock(&mountlist_mtx);
908 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
909 	return ((struct mount *) 0);
910 }
911 
912 /*
913  * Lookup a mount point by filesystem identifier, busying it before
914  * returning.
915  *
916  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
917  * cache for popular filesystem identifiers.  The cache is lockess, using
918  * the fact that struct mount's are never freed.  In worst case we may
919  * get pointer to unmounted or even different filesystem, so we have to
920  * check what we got, and go slow way if so.
921  */
922 struct mount *
923 vfs_busyfs(fsid_t *fsid)
924 {
925 #define	FSID_CACHE_SIZE	256
926 	typedef struct mount * volatile vmp_t;
927 	static vmp_t cache[FSID_CACHE_SIZE];
928 	struct mount *mp;
929 	int error;
930 	uint32_t hash;
931 
932 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
933 	hash = fsid->val[0] ^ fsid->val[1];
934 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
935 	mp = cache[hash];
936 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
937 		goto slow;
938 	if (vfs_busy(mp, 0) != 0) {
939 		cache[hash] = NULL;
940 		goto slow;
941 	}
942 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
943 		return (mp);
944 	else
945 	    vfs_unbusy(mp);
946 
947 slow:
948 	mtx_lock(&mountlist_mtx);
949 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
950 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
951 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
952 			if (error) {
953 				cache[hash] = NULL;
954 				mtx_unlock(&mountlist_mtx);
955 				return (NULL);
956 			}
957 			cache[hash] = mp;
958 			return (mp);
959 		}
960 	}
961 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
962 	mtx_unlock(&mountlist_mtx);
963 	return ((struct mount *) 0);
964 }
965 
966 /*
967  * Check if a user can access privileged mount options.
968  */
969 int
970 vfs_suser(struct mount *mp, struct thread *td)
971 {
972 	int error;
973 
974 	if (jailed(td->td_ucred)) {
975 		/*
976 		 * If the jail of the calling thread lacks permission for
977 		 * this type of file system, deny immediately.
978 		 */
979 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
980 			return (EPERM);
981 
982 		/*
983 		 * If the file system was mounted outside the jail of the
984 		 * calling thread, deny immediately.
985 		 */
986 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
987 			return (EPERM);
988 	}
989 
990 	/*
991 	 * If file system supports delegated administration, we don't check
992 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
993 	 * by the file system itself.
994 	 * If this is not the user that did original mount, we check for
995 	 * the PRIV_VFS_MOUNT_OWNER privilege.
996 	 */
997 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
998 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
999 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1000 			return (error);
1001 	}
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1007  * will be used to create fake device numbers for stat().  Also try (but
1008  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1009  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1010  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1011  *
1012  * Keep in mind that several mounts may be running in parallel.  Starting
1013  * the search one past where the previous search terminated is both a
1014  * micro-optimization and a defense against returning the same fsid to
1015  * different mounts.
1016  */
1017 void
1018 vfs_getnewfsid(struct mount *mp)
1019 {
1020 	static uint16_t mntid_base;
1021 	struct mount *nmp;
1022 	fsid_t tfsid;
1023 	int mtype;
1024 
1025 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1026 	mtx_lock(&mntid_mtx);
1027 	mtype = mp->mnt_vfc->vfc_typenum;
1028 	tfsid.val[1] = mtype;
1029 	mtype = (mtype & 0xFF) << 24;
1030 	for (;;) {
1031 		tfsid.val[0] = makedev(255,
1032 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1033 		mntid_base++;
1034 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1035 			break;
1036 		vfs_rel(nmp);
1037 	}
1038 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1039 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1040 	mtx_unlock(&mntid_mtx);
1041 }
1042 
1043 /*
1044  * Knob to control the precision of file timestamps:
1045  *
1046  *   0 = seconds only; nanoseconds zeroed.
1047  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1048  *   2 = seconds and nanoseconds, truncated to microseconds.
1049  * >=3 = seconds and nanoseconds, maximum precision.
1050  */
1051 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1052 
1053 static int timestamp_precision = TSP_USEC;
1054 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1055     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1056     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1057     "3+: sec + ns (max. precision))");
1058 
1059 /*
1060  * Get a current timestamp.
1061  */
1062 void
1063 vfs_timestamp(struct timespec *tsp)
1064 {
1065 	struct timeval tv;
1066 
1067 	switch (timestamp_precision) {
1068 	case TSP_SEC:
1069 		tsp->tv_sec = time_second;
1070 		tsp->tv_nsec = 0;
1071 		break;
1072 	case TSP_HZ:
1073 		getnanotime(tsp);
1074 		break;
1075 	case TSP_USEC:
1076 		microtime(&tv);
1077 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1078 		break;
1079 	case TSP_NSEC:
1080 	default:
1081 		nanotime(tsp);
1082 		break;
1083 	}
1084 }
1085 
1086 /*
1087  * Set vnode attributes to VNOVAL
1088  */
1089 void
1090 vattr_null(struct vattr *vap)
1091 {
1092 
1093 	vap->va_type = VNON;
1094 	vap->va_size = VNOVAL;
1095 	vap->va_bytes = VNOVAL;
1096 	vap->va_mode = VNOVAL;
1097 	vap->va_nlink = VNOVAL;
1098 	vap->va_uid = VNOVAL;
1099 	vap->va_gid = VNOVAL;
1100 	vap->va_fsid = VNOVAL;
1101 	vap->va_fileid = VNOVAL;
1102 	vap->va_blocksize = VNOVAL;
1103 	vap->va_rdev = VNOVAL;
1104 	vap->va_atime.tv_sec = VNOVAL;
1105 	vap->va_atime.tv_nsec = VNOVAL;
1106 	vap->va_mtime.tv_sec = VNOVAL;
1107 	vap->va_mtime.tv_nsec = VNOVAL;
1108 	vap->va_ctime.tv_sec = VNOVAL;
1109 	vap->va_ctime.tv_nsec = VNOVAL;
1110 	vap->va_birthtime.tv_sec = VNOVAL;
1111 	vap->va_birthtime.tv_nsec = VNOVAL;
1112 	vap->va_flags = VNOVAL;
1113 	vap->va_gen = VNOVAL;
1114 	vap->va_vaflags = 0;
1115 }
1116 
1117 /*
1118  * Try to reduce the total number of vnodes.
1119  *
1120  * This routine (and its user) are buggy in at least the following ways:
1121  * - all parameters were picked years ago when RAM sizes were significantly
1122  *   smaller
1123  * - it can pick vnodes based on pages used by the vm object, but filesystems
1124  *   like ZFS don't use it making the pick broken
1125  * - since ZFS has its own aging policy it gets partially combated by this one
1126  * - a dedicated method should be provided for filesystems to let them decide
1127  *   whether the vnode should be recycled
1128  *
1129  * This routine is called when we have too many vnodes.  It attempts
1130  * to free <count> vnodes and will potentially free vnodes that still
1131  * have VM backing store (VM backing store is typically the cause
1132  * of a vnode blowout so we want to do this).  Therefore, this operation
1133  * is not considered cheap.
1134  *
1135  * A number of conditions may prevent a vnode from being reclaimed.
1136  * the buffer cache may have references on the vnode, a directory
1137  * vnode may still have references due to the namei cache representing
1138  * underlying files, or the vnode may be in active use.   It is not
1139  * desirable to reuse such vnodes.  These conditions may cause the
1140  * number of vnodes to reach some minimum value regardless of what
1141  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1142  *
1143  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1144  * 			 entries if this argument is strue
1145  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1146  *			 pages.
1147  * @param target	 How many vnodes to reclaim.
1148  * @return		 The number of vnodes that were reclaimed.
1149  */
1150 static int
1151 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1152 {
1153 	struct vnode *vp, *mvp;
1154 	struct mount *mp;
1155 	struct vm_object *object;
1156 	u_long done;
1157 	bool retried;
1158 
1159 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1160 
1161 	retried = false;
1162 	done = 0;
1163 
1164 	mvp = vnode_list_reclaim_marker;
1165 restart:
1166 	vp = mvp;
1167 	while (done < target) {
1168 		vp = TAILQ_NEXT(vp, v_vnodelist);
1169 		if (__predict_false(vp == NULL))
1170 			break;
1171 
1172 		if (__predict_false(vp->v_type == VMARKER))
1173 			continue;
1174 
1175 		/*
1176 		 * If it's been deconstructed already, it's still
1177 		 * referenced, or it exceeds the trigger, skip it.
1178 		 * Also skip free vnodes.  We are trying to make space
1179 		 * to expand the free list, not reduce it.
1180 		 */
1181 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1182 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1183 			goto next_iter;
1184 
1185 		if (vp->v_type == VBAD || vp->v_type == VNON)
1186 			goto next_iter;
1187 
1188 		object = atomic_load_ptr(&vp->v_object);
1189 		if (object == NULL || object->resident_page_count > trigger) {
1190 			goto next_iter;
1191 		}
1192 
1193 		/*
1194 		 * Handle races against vnode allocation. Filesystems lock the
1195 		 * vnode some time after it gets returned from getnewvnode,
1196 		 * despite type and hold count being manipulated earlier.
1197 		 * Resorting to checking v_mount restores guarantees present
1198 		 * before the global list was reworked to contain all vnodes.
1199 		 */
1200 		if (!VI_TRYLOCK(vp))
1201 			goto next_iter;
1202 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1203 			VI_UNLOCK(vp);
1204 			goto next_iter;
1205 		}
1206 		if (vp->v_mount == NULL) {
1207 			VI_UNLOCK(vp);
1208 			goto next_iter;
1209 		}
1210 		vholdl(vp);
1211 		VI_UNLOCK(vp);
1212 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1213 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1214 		mtx_unlock(&vnode_list_mtx);
1215 
1216 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1217 			vdrop_recycle(vp);
1218 			goto next_iter_unlocked;
1219 		}
1220 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1221 			vdrop_recycle(vp);
1222 			vn_finished_write(mp);
1223 			goto next_iter_unlocked;
1224 		}
1225 
1226 		VI_LOCK(vp);
1227 		if (vp->v_usecount > 0 ||
1228 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1229 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1230 		    vp->v_object->resident_page_count > trigger)) {
1231 			VOP_UNLOCK(vp);
1232 			vdropl_recycle(vp);
1233 			vn_finished_write(mp);
1234 			goto next_iter_unlocked;
1235 		}
1236 		counter_u64_add(recycles_count, 1);
1237 		vgonel(vp);
1238 		VOP_UNLOCK(vp);
1239 		vdropl_recycle(vp);
1240 		vn_finished_write(mp);
1241 		done++;
1242 next_iter_unlocked:
1243 		if (should_yield())
1244 			kern_yield(PRI_USER);
1245 		mtx_lock(&vnode_list_mtx);
1246 		goto restart;
1247 next_iter:
1248 		MPASS(vp->v_type != VMARKER);
1249 		if (!should_yield())
1250 			continue;
1251 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1252 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1253 		mtx_unlock(&vnode_list_mtx);
1254 		kern_yield(PRI_USER);
1255 		mtx_lock(&vnode_list_mtx);
1256 		goto restart;
1257 	}
1258 	if (done == 0 && !retried) {
1259 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1260 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1261 		retried = true;
1262 		goto restart;
1263 	}
1264 	return (done);
1265 }
1266 
1267 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1268 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1269     0,
1270     "limit on vnode free requests per call to the vnlru_free routine");
1271 
1272 /*
1273  * Attempt to reduce the free list by the requested amount.
1274  */
1275 static int
1276 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1277 {
1278 	struct vnode *vp;
1279 	struct mount *mp;
1280 	int ocount;
1281 
1282 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1283 	if (count > max_vnlru_free)
1284 		count = max_vnlru_free;
1285 	ocount = count;
1286 	vp = mvp;
1287 	for (;;) {
1288 		if (count == 0) {
1289 			break;
1290 		}
1291 		vp = TAILQ_NEXT(vp, v_vnodelist);
1292 		if (__predict_false(vp == NULL)) {
1293 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1294 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1295 			break;
1296 		}
1297 		if (__predict_false(vp->v_type == VMARKER))
1298 			continue;
1299 		if (vp->v_holdcnt > 0)
1300 			continue;
1301 		/*
1302 		 * Don't recycle if our vnode is from different type
1303 		 * of mount point.  Note that mp is type-safe, the
1304 		 * check does not reach unmapped address even if
1305 		 * vnode is reclaimed.
1306 		 */
1307 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1308 		    mp->mnt_op != mnt_op) {
1309 			continue;
1310 		}
1311 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1312 			continue;
1313 		}
1314 		if (!vhold_recycle_free(vp))
1315 			continue;
1316 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1317 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1318 		mtx_unlock(&vnode_list_mtx);
1319 		/*
1320 		 * FIXME: ignores the return value, meaning it may be nothing
1321 		 * got recycled but it claims otherwise to the caller.
1322 		 *
1323 		 * Originally the value started being ignored in 2005 with
1324 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1325 		 *
1326 		 * Respecting the value can run into significant stalls if most
1327 		 * vnodes belong to one file system and it has writes
1328 		 * suspended.  In presence of many threads and millions of
1329 		 * vnodes they keep contending on the vnode_list_mtx lock only
1330 		 * to find vnodes they can't recycle.
1331 		 *
1332 		 * The solution would be to pre-check if the vnode is likely to
1333 		 * be recycle-able, but it needs to happen with the
1334 		 * vnode_list_mtx lock held. This runs into a problem where
1335 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1336 		 * writes are frozen) can take locks which LOR against it.
1337 		 *
1338 		 * Check nullfs for one example (null_getwritemount).
1339 		 */
1340 		vtryrecycle(vp);
1341 		count--;
1342 		mtx_lock(&vnode_list_mtx);
1343 		vp = mvp;
1344 	}
1345 	return (ocount - count);
1346 }
1347 
1348 static int
1349 vnlru_free_locked(int count)
1350 {
1351 
1352 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1353 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1354 }
1355 
1356 void
1357 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1358 {
1359 
1360 	MPASS(mnt_op != NULL);
1361 	MPASS(mvp != NULL);
1362 	VNPASS(mvp->v_type == VMARKER, mvp);
1363 	mtx_lock(&vnode_list_mtx);
1364 	vnlru_free_impl(count, mnt_op, mvp);
1365 	mtx_unlock(&vnode_list_mtx);
1366 }
1367 
1368 struct vnode *
1369 vnlru_alloc_marker(void)
1370 {
1371 	struct vnode *mvp;
1372 
1373 	mvp = vn_alloc_marker(NULL);
1374 	mtx_lock(&vnode_list_mtx);
1375 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1376 	mtx_unlock(&vnode_list_mtx);
1377 	return (mvp);
1378 }
1379 
1380 void
1381 vnlru_free_marker(struct vnode *mvp)
1382 {
1383 	mtx_lock(&vnode_list_mtx);
1384 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1385 	mtx_unlock(&vnode_list_mtx);
1386 	vn_free_marker(mvp);
1387 }
1388 
1389 static void
1390 vnlru_recalc(void)
1391 {
1392 
1393 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1394 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1395 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1396 	vlowat = vhiwat / 2;
1397 }
1398 
1399 /*
1400  * Attempt to recycle vnodes in a context that is always safe to block.
1401  * Calling vlrurecycle() from the bowels of filesystem code has some
1402  * interesting deadlock problems.
1403  */
1404 static struct proc *vnlruproc;
1405 static int vnlruproc_sig;
1406 
1407 /*
1408  * The main freevnodes counter is only updated when threads requeue their vnode
1409  * batches. CPUs are conditionally walked to compute a more accurate total.
1410  *
1411  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1412  * at any given moment can still exceed slop, but it should not be by significant
1413  * margin in practice.
1414  */
1415 #define VNLRU_FREEVNODES_SLOP 128
1416 
1417 static __inline void
1418 vfs_freevnodes_inc(void)
1419 {
1420 	struct vdbatch *vd;
1421 
1422 	critical_enter();
1423 	vd = DPCPU_PTR(vd);
1424 	vd->freevnodes++;
1425 	critical_exit();
1426 }
1427 
1428 static __inline void
1429 vfs_freevnodes_dec(void)
1430 {
1431 	struct vdbatch *vd;
1432 
1433 	critical_enter();
1434 	vd = DPCPU_PTR(vd);
1435 	vd->freevnodes--;
1436 	critical_exit();
1437 }
1438 
1439 static u_long
1440 vnlru_read_freevnodes(void)
1441 {
1442 	struct vdbatch *vd;
1443 	long slop;
1444 	int cpu;
1445 
1446 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1447 	if (freevnodes > freevnodes_old)
1448 		slop = freevnodes - freevnodes_old;
1449 	else
1450 		slop = freevnodes_old - freevnodes;
1451 	if (slop < VNLRU_FREEVNODES_SLOP)
1452 		return (freevnodes >= 0 ? freevnodes : 0);
1453 	freevnodes_old = freevnodes;
1454 	CPU_FOREACH(cpu) {
1455 		vd = DPCPU_ID_PTR((cpu), vd);
1456 		freevnodes_old += vd->freevnodes;
1457 	}
1458 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1459 }
1460 
1461 static bool
1462 vnlru_under(u_long rnumvnodes, u_long limit)
1463 {
1464 	u_long rfreevnodes, space;
1465 
1466 	if (__predict_false(rnumvnodes > desiredvnodes))
1467 		return (true);
1468 
1469 	space = desiredvnodes - rnumvnodes;
1470 	if (space < limit) {
1471 		rfreevnodes = vnlru_read_freevnodes();
1472 		if (rfreevnodes > wantfreevnodes)
1473 			space += rfreevnodes - wantfreevnodes;
1474 	}
1475 	return (space < limit);
1476 }
1477 
1478 static bool
1479 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1480 {
1481 	long rfreevnodes, space;
1482 
1483 	if (__predict_false(rnumvnodes > desiredvnodes))
1484 		return (true);
1485 
1486 	space = desiredvnodes - rnumvnodes;
1487 	if (space < limit) {
1488 		rfreevnodes = atomic_load_long(&freevnodes);
1489 		if (rfreevnodes > wantfreevnodes)
1490 			space += rfreevnodes - wantfreevnodes;
1491 	}
1492 	return (space < limit);
1493 }
1494 
1495 static void
1496 vnlru_kick(void)
1497 {
1498 
1499 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1500 	if (vnlruproc_sig == 0) {
1501 		vnlruproc_sig = 1;
1502 		wakeup(vnlruproc);
1503 	}
1504 }
1505 
1506 static void
1507 vnlru_proc(void)
1508 {
1509 	u_long rnumvnodes, rfreevnodes, target;
1510 	unsigned long onumvnodes;
1511 	int done, force, trigger, usevnodes;
1512 	bool reclaim_nc_src, want_reread;
1513 
1514 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1515 	    SHUTDOWN_PRI_FIRST);
1516 
1517 	force = 0;
1518 	want_reread = false;
1519 	for (;;) {
1520 		kproc_suspend_check(vnlruproc);
1521 		mtx_lock(&vnode_list_mtx);
1522 		rnumvnodes = atomic_load_long(&numvnodes);
1523 
1524 		if (want_reread) {
1525 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1526 			want_reread = false;
1527 		}
1528 
1529 		/*
1530 		 * If numvnodes is too large (due to desiredvnodes being
1531 		 * adjusted using its sysctl, or emergency growth), first
1532 		 * try to reduce it by discarding from the free list.
1533 		 */
1534 		if (rnumvnodes > desiredvnodes) {
1535 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1536 			rnumvnodes = atomic_load_long(&numvnodes);
1537 		}
1538 		/*
1539 		 * Sleep if the vnode cache is in a good state.  This is
1540 		 * when it is not over-full and has space for about a 4%
1541 		 * or 9% expansion (by growing its size or inexcessively
1542 		 * reducing its free list).  Otherwise, try to reclaim
1543 		 * space for a 10% expansion.
1544 		 */
1545 		if (vstir && force == 0) {
1546 			force = 1;
1547 			vstir = 0;
1548 		}
1549 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1550 			vnlruproc_sig = 0;
1551 			wakeup(&vnlruproc_sig);
1552 			msleep(vnlruproc, &vnode_list_mtx,
1553 			    PVFS|PDROP, "vlruwt", hz);
1554 			continue;
1555 		}
1556 		rfreevnodes = vnlru_read_freevnodes();
1557 
1558 		onumvnodes = rnumvnodes;
1559 		/*
1560 		 * Calculate parameters for recycling.  These are the same
1561 		 * throughout the loop to give some semblance of fairness.
1562 		 * The trigger point is to avoid recycling vnodes with lots
1563 		 * of resident pages.  We aren't trying to free memory; we
1564 		 * are trying to recycle or at least free vnodes.
1565 		 */
1566 		if (rnumvnodes <= desiredvnodes)
1567 			usevnodes = rnumvnodes - rfreevnodes;
1568 		else
1569 			usevnodes = rnumvnodes;
1570 		if (usevnodes <= 0)
1571 			usevnodes = 1;
1572 		/*
1573 		 * The trigger value is chosen to give a conservatively
1574 		 * large value to ensure that it alone doesn't prevent
1575 		 * making progress.  The value can easily be so large that
1576 		 * it is effectively infinite in some congested and
1577 		 * misconfigured cases, and this is necessary.  Normally
1578 		 * it is about 8 to 100 (pages), which is quite large.
1579 		 */
1580 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1581 		if (force < 2)
1582 			trigger = vsmalltrigger;
1583 		reclaim_nc_src = force >= 3;
1584 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1585 		target = target / 10 + 1;
1586 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1587 		mtx_unlock(&vnode_list_mtx);
1588 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1589 			uma_reclaim(UMA_RECLAIM_DRAIN);
1590 		if (done == 0) {
1591 			if (force == 0 || force == 1) {
1592 				force = 2;
1593 				continue;
1594 			}
1595 			if (force == 2) {
1596 				force = 3;
1597 				continue;
1598 			}
1599 			want_reread = true;
1600 			force = 0;
1601 			vnlru_nowhere++;
1602 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1603 		} else {
1604 			want_reread = true;
1605 			kern_yield(PRI_USER);
1606 		}
1607 	}
1608 }
1609 
1610 static struct kproc_desc vnlru_kp = {
1611 	"vnlru",
1612 	vnlru_proc,
1613 	&vnlruproc
1614 };
1615 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1616     &vnlru_kp);
1617 
1618 /*
1619  * Routines having to do with the management of the vnode table.
1620  */
1621 
1622 /*
1623  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1624  * before we actually vgone().  This function must be called with the vnode
1625  * held to prevent the vnode from being returned to the free list midway
1626  * through vgone().
1627  */
1628 static int
1629 vtryrecycle(struct vnode *vp)
1630 {
1631 	struct mount *vnmp;
1632 
1633 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1634 	VNASSERT(vp->v_holdcnt, vp,
1635 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1636 	/*
1637 	 * This vnode may found and locked via some other list, if so we
1638 	 * can't recycle it yet.
1639 	 */
1640 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1641 		CTR2(KTR_VFS,
1642 		    "%s: impossible to recycle, vp %p lock is already held",
1643 		    __func__, vp);
1644 		vdrop_recycle(vp);
1645 		return (EWOULDBLOCK);
1646 	}
1647 	/*
1648 	 * Don't recycle if its filesystem is being suspended.
1649 	 */
1650 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1651 		VOP_UNLOCK(vp);
1652 		CTR2(KTR_VFS,
1653 		    "%s: impossible to recycle, cannot start the write for %p",
1654 		    __func__, vp);
1655 		vdrop_recycle(vp);
1656 		return (EBUSY);
1657 	}
1658 	/*
1659 	 * If we got this far, we need to acquire the interlock and see if
1660 	 * anyone picked up this vnode from another list.  If not, we will
1661 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1662 	 * will skip over it.
1663 	 */
1664 	VI_LOCK(vp);
1665 	if (vp->v_usecount) {
1666 		VOP_UNLOCK(vp);
1667 		vdropl_recycle(vp);
1668 		vn_finished_write(vnmp);
1669 		CTR2(KTR_VFS,
1670 		    "%s: impossible to recycle, %p is already referenced",
1671 		    __func__, vp);
1672 		return (EBUSY);
1673 	}
1674 	if (!VN_IS_DOOMED(vp)) {
1675 		counter_u64_add(recycles_free_count, 1);
1676 		vgonel(vp);
1677 	}
1678 	VOP_UNLOCK(vp);
1679 	vdropl_recycle(vp);
1680 	vn_finished_write(vnmp);
1681 	return (0);
1682 }
1683 
1684 /*
1685  * Allocate a new vnode.
1686  *
1687  * The operation never returns an error. Returning an error was disabled
1688  * in r145385 (dated 2005) with the following comment:
1689  *
1690  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1691  *
1692  * Given the age of this commit (almost 15 years at the time of writing this
1693  * comment) restoring the ability to fail requires a significant audit of
1694  * all codepaths.
1695  *
1696  * The routine can try to free a vnode or stall for up to 1 second waiting for
1697  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1698  */
1699 static u_long vn_alloc_cyclecount;
1700 
1701 static struct vnode * __noinline
1702 vn_alloc_hard(struct mount *mp)
1703 {
1704 	u_long rnumvnodes, rfreevnodes;
1705 
1706 	mtx_lock(&vnode_list_mtx);
1707 	rnumvnodes = atomic_load_long(&numvnodes);
1708 	if (rnumvnodes + 1 < desiredvnodes) {
1709 		vn_alloc_cyclecount = 0;
1710 		goto alloc;
1711 	}
1712 	rfreevnodes = vnlru_read_freevnodes();
1713 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1714 		vn_alloc_cyclecount = 0;
1715 		vstir = 1;
1716 	}
1717 	/*
1718 	 * Grow the vnode cache if it will not be above its target max
1719 	 * after growing.  Otherwise, if the free list is nonempty, try
1720 	 * to reclaim 1 item from it before growing the cache (possibly
1721 	 * above its target max if the reclamation failed or is delayed).
1722 	 * Otherwise, wait for some space.  In all cases, schedule
1723 	 * vnlru_proc() if we are getting short of space.  The watermarks
1724 	 * should be chosen so that we never wait or even reclaim from
1725 	 * the free list to below its target minimum.
1726 	 */
1727 	if (vnlru_free_locked(1) > 0)
1728 		goto alloc;
1729 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1730 		/*
1731 		 * Wait for space for a new vnode.
1732 		 */
1733 		vnlru_kick();
1734 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1735 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1736 		    vnlru_read_freevnodes() > 1)
1737 			vnlru_free_locked(1);
1738 	}
1739 alloc:
1740 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1741 	if (vnlru_under(rnumvnodes, vlowat))
1742 		vnlru_kick();
1743 	mtx_unlock(&vnode_list_mtx);
1744 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1745 }
1746 
1747 static struct vnode *
1748 vn_alloc(struct mount *mp)
1749 {
1750 	u_long rnumvnodes;
1751 
1752 	if (__predict_false(vn_alloc_cyclecount != 0))
1753 		return (vn_alloc_hard(mp));
1754 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1755 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1756 		atomic_subtract_long(&numvnodes, 1);
1757 		return (vn_alloc_hard(mp));
1758 	}
1759 
1760 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1761 }
1762 
1763 static void
1764 vn_free(struct vnode *vp)
1765 {
1766 
1767 	atomic_subtract_long(&numvnodes, 1);
1768 	uma_zfree_smr(vnode_zone, vp);
1769 }
1770 
1771 /*
1772  * Return the next vnode from the free list.
1773  */
1774 int
1775 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1776     struct vnode **vpp)
1777 {
1778 	struct vnode *vp;
1779 	struct thread *td;
1780 	struct lock_object *lo;
1781 
1782 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1783 
1784 	KASSERT(vops->registered,
1785 	    ("%s: not registered vector op %p\n", __func__, vops));
1786 
1787 	td = curthread;
1788 	if (td->td_vp_reserved != NULL) {
1789 		vp = td->td_vp_reserved;
1790 		td->td_vp_reserved = NULL;
1791 	} else {
1792 		vp = vn_alloc(mp);
1793 	}
1794 	counter_u64_add(vnodes_created, 1);
1795 	/*
1796 	 * Locks are given the generic name "vnode" when created.
1797 	 * Follow the historic practice of using the filesystem
1798 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1799 	 *
1800 	 * Locks live in a witness group keyed on their name. Thus,
1801 	 * when a lock is renamed, it must also move from the witness
1802 	 * group of its old name to the witness group of its new name.
1803 	 *
1804 	 * The change only needs to be made when the vnode moves
1805 	 * from one filesystem type to another. We ensure that each
1806 	 * filesystem use a single static name pointer for its tag so
1807 	 * that we can compare pointers rather than doing a strcmp().
1808 	 */
1809 	lo = &vp->v_vnlock->lock_object;
1810 #ifdef WITNESS
1811 	if (lo->lo_name != tag) {
1812 #endif
1813 		lo->lo_name = tag;
1814 #ifdef WITNESS
1815 		WITNESS_DESTROY(lo);
1816 		WITNESS_INIT(lo, tag);
1817 	}
1818 #endif
1819 	/*
1820 	 * By default, don't allow shared locks unless filesystems opt-in.
1821 	 */
1822 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1823 	/*
1824 	 * Finalize various vnode identity bits.
1825 	 */
1826 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1827 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1828 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1829 	vp->v_type = VNON;
1830 	vp->v_op = vops;
1831 	vp->v_irflag = 0;
1832 	v_init_counters(vp);
1833 	vn_seqc_init(vp);
1834 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1835 #ifdef DIAGNOSTIC
1836 	if (mp == NULL && vops != &dead_vnodeops)
1837 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1838 #endif
1839 #ifdef MAC
1840 	mac_vnode_init(vp);
1841 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1842 		mac_vnode_associate_singlelabel(mp, vp);
1843 #endif
1844 	if (mp != NULL) {
1845 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1846 	}
1847 
1848 	/*
1849 	 * For the filesystems which do not use vfs_hash_insert(),
1850 	 * still initialize v_hash to have vfs_hash_index() useful.
1851 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1852 	 * its own hashing.
1853 	 */
1854 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1855 
1856 	*vpp = vp;
1857 	return (0);
1858 }
1859 
1860 void
1861 getnewvnode_reserve(void)
1862 {
1863 	struct thread *td;
1864 
1865 	td = curthread;
1866 	MPASS(td->td_vp_reserved == NULL);
1867 	td->td_vp_reserved = vn_alloc(NULL);
1868 }
1869 
1870 void
1871 getnewvnode_drop_reserve(void)
1872 {
1873 	struct thread *td;
1874 
1875 	td = curthread;
1876 	if (td->td_vp_reserved != NULL) {
1877 		vn_free(td->td_vp_reserved);
1878 		td->td_vp_reserved = NULL;
1879 	}
1880 }
1881 
1882 static void __noinline
1883 freevnode(struct vnode *vp)
1884 {
1885 	struct bufobj *bo;
1886 
1887 	/*
1888 	 * The vnode has been marked for destruction, so free it.
1889 	 *
1890 	 * The vnode will be returned to the zone where it will
1891 	 * normally remain until it is needed for another vnode. We
1892 	 * need to cleanup (or verify that the cleanup has already
1893 	 * been done) any residual data left from its current use
1894 	 * so as not to contaminate the freshly allocated vnode.
1895 	 */
1896 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1897 	/*
1898 	 * Paired with vgone.
1899 	 */
1900 	vn_seqc_write_end_free(vp);
1901 
1902 	bo = &vp->v_bufobj;
1903 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1904 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1905 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1906 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1907 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1908 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1909 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1910 	    ("clean blk trie not empty"));
1911 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1912 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1913 	    ("dirty blk trie not empty"));
1914 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1915 	    ("Dangling rangelock waiters"));
1916 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1917 	    ("Leaked inactivation"));
1918 	VI_UNLOCK(vp);
1919 	cache_assert_no_entries(vp);
1920 
1921 #ifdef MAC
1922 	mac_vnode_destroy(vp);
1923 #endif
1924 	if (vp->v_pollinfo != NULL) {
1925 		/*
1926 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
1927 		 * here while having another vnode locked when trying to
1928 		 * satisfy a lookup and needing to recycle.
1929 		 */
1930 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
1931 		destroy_vpollinfo(vp->v_pollinfo);
1932 		VOP_UNLOCK(vp);
1933 		vp->v_pollinfo = NULL;
1934 	}
1935 	vp->v_mountedhere = NULL;
1936 	vp->v_unpcb = NULL;
1937 	vp->v_rdev = NULL;
1938 	vp->v_fifoinfo = NULL;
1939 	vp->v_iflag = 0;
1940 	vp->v_vflag = 0;
1941 	bo->bo_flag = 0;
1942 	vn_free(vp);
1943 }
1944 
1945 /*
1946  * Delete from old mount point vnode list, if on one.
1947  */
1948 static void
1949 delmntque(struct vnode *vp)
1950 {
1951 	struct mount *mp;
1952 
1953 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1954 
1955 	mp = vp->v_mount;
1956 	MNT_ILOCK(mp);
1957 	VI_LOCK(vp);
1958 	vp->v_mount = NULL;
1959 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1960 		("bad mount point vnode list size"));
1961 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1962 	mp->mnt_nvnodelistsize--;
1963 	MNT_REL(mp);
1964 	MNT_IUNLOCK(mp);
1965 	/*
1966 	 * The caller expects the interlock to be still held.
1967 	 */
1968 	ASSERT_VI_LOCKED(vp, __func__);
1969 }
1970 
1971 static int
1972 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1973 {
1974 
1975 	KASSERT(vp->v_mount == NULL,
1976 		("insmntque: vnode already on per mount vnode list"));
1977 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1978 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1979 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1980 	} else {
1981 		KASSERT(!dtr,
1982 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
1983 		    __func__));
1984 	}
1985 
1986 	/*
1987 	 * We acquire the vnode interlock early to ensure that the
1988 	 * vnode cannot be recycled by another process releasing a
1989 	 * holdcnt on it before we get it on both the vnode list
1990 	 * and the active vnode list. The mount mutex protects only
1991 	 * manipulation of the vnode list and the vnode freelist
1992 	 * mutex protects only manipulation of the active vnode list.
1993 	 * Hence the need to hold the vnode interlock throughout.
1994 	 */
1995 	MNT_ILOCK(mp);
1996 	VI_LOCK(vp);
1997 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
1998 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1999 	    mp->mnt_nvnodelistsize == 0)) &&
2000 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2001 		VI_UNLOCK(vp);
2002 		MNT_IUNLOCK(mp);
2003 		if (dtr) {
2004 			vp->v_data = NULL;
2005 			vp->v_op = &dead_vnodeops;
2006 			vgone(vp);
2007 			vput(vp);
2008 		}
2009 		return (EBUSY);
2010 	}
2011 	vp->v_mount = mp;
2012 	MNT_REF(mp);
2013 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2014 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2015 		("neg mount point vnode list size"));
2016 	mp->mnt_nvnodelistsize++;
2017 	VI_UNLOCK(vp);
2018 	MNT_IUNLOCK(mp);
2019 	return (0);
2020 }
2021 
2022 /*
2023  * Insert into list of vnodes for the new mount point, if available.
2024  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2025  * leaves handling of the vnode to the caller.
2026  */
2027 int
2028 insmntque(struct vnode *vp, struct mount *mp)
2029 {
2030 	return (insmntque1_int(vp, mp, true));
2031 }
2032 
2033 int
2034 insmntque1(struct vnode *vp, struct mount *mp)
2035 {
2036 	return (insmntque1_int(vp, mp, false));
2037 }
2038 
2039 /*
2040  * Flush out and invalidate all buffers associated with a bufobj
2041  * Called with the underlying object locked.
2042  */
2043 int
2044 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2045 {
2046 	int error;
2047 
2048 	BO_LOCK(bo);
2049 	if (flags & V_SAVE) {
2050 		error = bufobj_wwait(bo, slpflag, slptimeo);
2051 		if (error) {
2052 			BO_UNLOCK(bo);
2053 			return (error);
2054 		}
2055 		if (bo->bo_dirty.bv_cnt > 0) {
2056 			BO_UNLOCK(bo);
2057 			do {
2058 				error = BO_SYNC(bo, MNT_WAIT);
2059 			} while (error == ERELOOKUP);
2060 			if (error != 0)
2061 				return (error);
2062 			BO_LOCK(bo);
2063 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2064 				BO_UNLOCK(bo);
2065 				return (EBUSY);
2066 			}
2067 		}
2068 	}
2069 	/*
2070 	 * If you alter this loop please notice that interlock is dropped and
2071 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2072 	 * no race conditions occur from this.
2073 	 */
2074 	do {
2075 		error = flushbuflist(&bo->bo_clean,
2076 		    flags, bo, slpflag, slptimeo);
2077 		if (error == 0 && !(flags & V_CLEANONLY))
2078 			error = flushbuflist(&bo->bo_dirty,
2079 			    flags, bo, slpflag, slptimeo);
2080 		if (error != 0 && error != EAGAIN) {
2081 			BO_UNLOCK(bo);
2082 			return (error);
2083 		}
2084 	} while (error != 0);
2085 
2086 	/*
2087 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2088 	 * have write I/O in-progress but if there is a VM object then the
2089 	 * VM object can also have read-I/O in-progress.
2090 	 */
2091 	do {
2092 		bufobj_wwait(bo, 0, 0);
2093 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2094 			BO_UNLOCK(bo);
2095 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2096 			BO_LOCK(bo);
2097 		}
2098 	} while (bo->bo_numoutput > 0);
2099 	BO_UNLOCK(bo);
2100 
2101 	/*
2102 	 * Destroy the copy in the VM cache, too.
2103 	 */
2104 	if (bo->bo_object != NULL &&
2105 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2106 		VM_OBJECT_WLOCK(bo->bo_object);
2107 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2108 		    OBJPR_CLEANONLY : 0);
2109 		VM_OBJECT_WUNLOCK(bo->bo_object);
2110 	}
2111 
2112 #ifdef INVARIANTS
2113 	BO_LOCK(bo);
2114 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2115 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2116 	    bo->bo_clean.bv_cnt > 0))
2117 		panic("vinvalbuf: flush failed");
2118 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2119 	    bo->bo_dirty.bv_cnt > 0)
2120 		panic("vinvalbuf: flush dirty failed");
2121 	BO_UNLOCK(bo);
2122 #endif
2123 	return (0);
2124 }
2125 
2126 /*
2127  * Flush out and invalidate all buffers associated with a vnode.
2128  * Called with the underlying object locked.
2129  */
2130 int
2131 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2132 {
2133 
2134 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2135 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2136 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2137 		return (0);
2138 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2139 }
2140 
2141 /*
2142  * Flush out buffers on the specified list.
2143  *
2144  */
2145 static int
2146 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2147     int slptimeo)
2148 {
2149 	struct buf *bp, *nbp;
2150 	int retval, error;
2151 	daddr_t lblkno;
2152 	b_xflags_t xflags;
2153 
2154 	ASSERT_BO_WLOCKED(bo);
2155 
2156 	retval = 0;
2157 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2158 		/*
2159 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2160 		 * do not skip any buffers. If we are flushing only V_NORMAL
2161 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2162 		 * flushing only V_ALT buffers then skip buffers not marked
2163 		 * as BX_ALTDATA.
2164 		 */
2165 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2166 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2167 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2168 			continue;
2169 		}
2170 		if (nbp != NULL) {
2171 			lblkno = nbp->b_lblkno;
2172 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2173 		}
2174 		retval = EAGAIN;
2175 		error = BUF_TIMELOCK(bp,
2176 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2177 		    "flushbuf", slpflag, slptimeo);
2178 		if (error) {
2179 			BO_LOCK(bo);
2180 			return (error != ENOLCK ? error : EAGAIN);
2181 		}
2182 		KASSERT(bp->b_bufobj == bo,
2183 		    ("bp %p wrong b_bufobj %p should be %p",
2184 		    bp, bp->b_bufobj, bo));
2185 		/*
2186 		 * XXX Since there are no node locks for NFS, I
2187 		 * believe there is a slight chance that a delayed
2188 		 * write will occur while sleeping just above, so
2189 		 * check for it.
2190 		 */
2191 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2192 		    (flags & V_SAVE)) {
2193 			bremfree(bp);
2194 			bp->b_flags |= B_ASYNC;
2195 			bwrite(bp);
2196 			BO_LOCK(bo);
2197 			return (EAGAIN);	/* XXX: why not loop ? */
2198 		}
2199 		bremfree(bp);
2200 		bp->b_flags |= (B_INVAL | B_RELBUF);
2201 		bp->b_flags &= ~B_ASYNC;
2202 		brelse(bp);
2203 		BO_LOCK(bo);
2204 		if (nbp == NULL)
2205 			break;
2206 		nbp = gbincore(bo, lblkno);
2207 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2208 		    != xflags)
2209 			break;			/* nbp invalid */
2210 	}
2211 	return (retval);
2212 }
2213 
2214 int
2215 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2216 {
2217 	struct buf *bp;
2218 	int error;
2219 	daddr_t lblkno;
2220 
2221 	ASSERT_BO_LOCKED(bo);
2222 
2223 	for (lblkno = startn;;) {
2224 again:
2225 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2226 		if (bp == NULL || bp->b_lblkno >= endn ||
2227 		    bp->b_lblkno < startn)
2228 			break;
2229 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2230 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2231 		if (error != 0) {
2232 			BO_RLOCK(bo);
2233 			if (error == ENOLCK)
2234 				goto again;
2235 			return (error);
2236 		}
2237 		KASSERT(bp->b_bufobj == bo,
2238 		    ("bp %p wrong b_bufobj %p should be %p",
2239 		    bp, bp->b_bufobj, bo));
2240 		lblkno = bp->b_lblkno + 1;
2241 		if ((bp->b_flags & B_MANAGED) == 0)
2242 			bremfree(bp);
2243 		bp->b_flags |= B_RELBUF;
2244 		/*
2245 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2246 		 * pages backing each buffer in the range are unlikely to be
2247 		 * reused.  Dirty buffers will have the hint applied once
2248 		 * they've been written.
2249 		 */
2250 		if ((bp->b_flags & B_VMIO) != 0)
2251 			bp->b_flags |= B_NOREUSE;
2252 		brelse(bp);
2253 		BO_RLOCK(bo);
2254 	}
2255 	return (0);
2256 }
2257 
2258 /*
2259  * Truncate a file's buffer and pages to a specified length.  This
2260  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2261  * sync activity.
2262  */
2263 int
2264 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2265 {
2266 	struct buf *bp, *nbp;
2267 	struct bufobj *bo;
2268 	daddr_t startlbn;
2269 
2270 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2271 	    vp, blksize, (uintmax_t)length);
2272 
2273 	/*
2274 	 * Round up to the *next* lbn.
2275 	 */
2276 	startlbn = howmany(length, blksize);
2277 
2278 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2279 
2280 	bo = &vp->v_bufobj;
2281 restart_unlocked:
2282 	BO_LOCK(bo);
2283 
2284 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2285 		;
2286 
2287 	if (length > 0) {
2288 restartsync:
2289 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2290 			if (bp->b_lblkno > 0)
2291 				continue;
2292 			/*
2293 			 * Since we hold the vnode lock this should only
2294 			 * fail if we're racing with the buf daemon.
2295 			 */
2296 			if (BUF_LOCK(bp,
2297 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2298 			    BO_LOCKPTR(bo)) == ENOLCK)
2299 				goto restart_unlocked;
2300 
2301 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2302 			    ("buf(%p) on dirty queue without DELWRI", bp));
2303 
2304 			bremfree(bp);
2305 			bawrite(bp);
2306 			BO_LOCK(bo);
2307 			goto restartsync;
2308 		}
2309 	}
2310 
2311 	bufobj_wwait(bo, 0, 0);
2312 	BO_UNLOCK(bo);
2313 	vnode_pager_setsize(vp, length);
2314 
2315 	return (0);
2316 }
2317 
2318 /*
2319  * Invalidate the cached pages of a file's buffer within the range of block
2320  * numbers [startlbn, endlbn).
2321  */
2322 void
2323 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2324     int blksize)
2325 {
2326 	struct bufobj *bo;
2327 	off_t start, end;
2328 
2329 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2330 
2331 	start = blksize * startlbn;
2332 	end = blksize * endlbn;
2333 
2334 	bo = &vp->v_bufobj;
2335 	BO_LOCK(bo);
2336 	MPASS(blksize == bo->bo_bsize);
2337 
2338 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2339 		;
2340 
2341 	BO_UNLOCK(bo);
2342 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2343 }
2344 
2345 static int
2346 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2347     daddr_t startlbn, daddr_t endlbn)
2348 {
2349 	struct buf *bp, *nbp;
2350 	bool anyfreed;
2351 
2352 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2353 	ASSERT_BO_LOCKED(bo);
2354 
2355 	do {
2356 		anyfreed = false;
2357 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2358 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2359 				continue;
2360 			if (BUF_LOCK(bp,
2361 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2362 			    BO_LOCKPTR(bo)) == ENOLCK) {
2363 				BO_LOCK(bo);
2364 				return (EAGAIN);
2365 			}
2366 
2367 			bremfree(bp);
2368 			bp->b_flags |= B_INVAL | B_RELBUF;
2369 			bp->b_flags &= ~B_ASYNC;
2370 			brelse(bp);
2371 			anyfreed = true;
2372 
2373 			BO_LOCK(bo);
2374 			if (nbp != NULL &&
2375 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2376 			    nbp->b_vp != vp ||
2377 			    (nbp->b_flags & B_DELWRI) != 0))
2378 				return (EAGAIN);
2379 		}
2380 
2381 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2382 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2383 				continue;
2384 			if (BUF_LOCK(bp,
2385 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2386 			    BO_LOCKPTR(bo)) == ENOLCK) {
2387 				BO_LOCK(bo);
2388 				return (EAGAIN);
2389 			}
2390 			bremfree(bp);
2391 			bp->b_flags |= B_INVAL | B_RELBUF;
2392 			bp->b_flags &= ~B_ASYNC;
2393 			brelse(bp);
2394 			anyfreed = true;
2395 
2396 			BO_LOCK(bo);
2397 			if (nbp != NULL &&
2398 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2399 			    (nbp->b_vp != vp) ||
2400 			    (nbp->b_flags & B_DELWRI) == 0))
2401 				return (EAGAIN);
2402 		}
2403 	} while (anyfreed);
2404 	return (0);
2405 }
2406 
2407 static void
2408 buf_vlist_remove(struct buf *bp)
2409 {
2410 	struct bufv *bv;
2411 	b_xflags_t flags;
2412 
2413 	flags = bp->b_xflags;
2414 
2415 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2416 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2417 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2418 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2419 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2420 
2421 	if ((flags & BX_VNDIRTY) != 0)
2422 		bv = &bp->b_bufobj->bo_dirty;
2423 	else
2424 		bv = &bp->b_bufobj->bo_clean;
2425 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2426 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2427 	bv->bv_cnt--;
2428 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2429 }
2430 
2431 /*
2432  * Add the buffer to the sorted clean or dirty block list.
2433  *
2434  * NOTE: xflags is passed as a constant, optimizing this inline function!
2435  */
2436 static void
2437 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2438 {
2439 	struct bufv *bv;
2440 	struct buf *n;
2441 	int error;
2442 
2443 	ASSERT_BO_WLOCKED(bo);
2444 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2445 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2446 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2447 	    ("dead bo %p", bo));
2448 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2449 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2450 	bp->b_xflags |= xflags;
2451 	if (xflags & BX_VNDIRTY)
2452 		bv = &bo->bo_dirty;
2453 	else
2454 		bv = &bo->bo_clean;
2455 
2456 	/*
2457 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2458 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2459 	 * than _ge.
2460 	 */
2461 	if (bv->bv_cnt == 0 ||
2462 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2463 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2464 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2465 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2466 	else
2467 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2468 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2469 	if (error)
2470 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2471 	bv->bv_cnt++;
2472 }
2473 
2474 /*
2475  * Look up a buffer using the buffer tries.
2476  */
2477 struct buf *
2478 gbincore(struct bufobj *bo, daddr_t lblkno)
2479 {
2480 	struct buf *bp;
2481 
2482 	ASSERT_BO_LOCKED(bo);
2483 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2484 	if (bp != NULL)
2485 		return (bp);
2486 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2487 }
2488 
2489 /*
2490  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2491  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2492  * stability of the result.  Like other lockless lookups, the found buf may
2493  * already be invalid by the time this function returns.
2494  */
2495 struct buf *
2496 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2497 {
2498 	struct buf *bp;
2499 
2500 	ASSERT_BO_UNLOCKED(bo);
2501 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2502 	if (bp != NULL)
2503 		return (bp);
2504 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2505 }
2506 
2507 /*
2508  * Associate a buffer with a vnode.
2509  */
2510 void
2511 bgetvp(struct vnode *vp, struct buf *bp)
2512 {
2513 	struct bufobj *bo;
2514 
2515 	bo = &vp->v_bufobj;
2516 	ASSERT_BO_WLOCKED(bo);
2517 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2518 
2519 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2520 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2521 	    ("bgetvp: bp already attached! %p", bp));
2522 
2523 	vhold(vp);
2524 	bp->b_vp = vp;
2525 	bp->b_bufobj = bo;
2526 	/*
2527 	 * Insert onto list for new vnode.
2528 	 */
2529 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2530 }
2531 
2532 /*
2533  * Disassociate a buffer from a vnode.
2534  */
2535 void
2536 brelvp(struct buf *bp)
2537 {
2538 	struct bufobj *bo;
2539 	struct vnode *vp;
2540 
2541 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2542 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2543 
2544 	/*
2545 	 * Delete from old vnode list, if on one.
2546 	 */
2547 	vp = bp->b_vp;		/* XXX */
2548 	bo = bp->b_bufobj;
2549 	BO_LOCK(bo);
2550 	buf_vlist_remove(bp);
2551 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2552 		bo->bo_flag &= ~BO_ONWORKLST;
2553 		mtx_lock(&sync_mtx);
2554 		LIST_REMOVE(bo, bo_synclist);
2555 		syncer_worklist_len--;
2556 		mtx_unlock(&sync_mtx);
2557 	}
2558 	bp->b_vp = NULL;
2559 	bp->b_bufobj = NULL;
2560 	BO_UNLOCK(bo);
2561 	vdrop(vp);
2562 }
2563 
2564 /*
2565  * Add an item to the syncer work queue.
2566  */
2567 static void
2568 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2569 {
2570 	int slot;
2571 
2572 	ASSERT_BO_WLOCKED(bo);
2573 
2574 	mtx_lock(&sync_mtx);
2575 	if (bo->bo_flag & BO_ONWORKLST)
2576 		LIST_REMOVE(bo, bo_synclist);
2577 	else {
2578 		bo->bo_flag |= BO_ONWORKLST;
2579 		syncer_worklist_len++;
2580 	}
2581 
2582 	if (delay > syncer_maxdelay - 2)
2583 		delay = syncer_maxdelay - 2;
2584 	slot = (syncer_delayno + delay) & syncer_mask;
2585 
2586 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2587 	mtx_unlock(&sync_mtx);
2588 }
2589 
2590 static int
2591 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2592 {
2593 	int error, len;
2594 
2595 	mtx_lock(&sync_mtx);
2596 	len = syncer_worklist_len - sync_vnode_count;
2597 	mtx_unlock(&sync_mtx);
2598 	error = SYSCTL_OUT(req, &len, sizeof(len));
2599 	return (error);
2600 }
2601 
2602 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2603     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2604     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2605 
2606 static struct proc *updateproc;
2607 static void sched_sync(void);
2608 static struct kproc_desc up_kp = {
2609 	"syncer",
2610 	sched_sync,
2611 	&updateproc
2612 };
2613 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2614 
2615 static int
2616 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2617 {
2618 	struct vnode *vp;
2619 	struct mount *mp;
2620 
2621 	*bo = LIST_FIRST(slp);
2622 	if (*bo == NULL)
2623 		return (0);
2624 	vp = bo2vnode(*bo);
2625 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2626 		return (1);
2627 	/*
2628 	 * We use vhold in case the vnode does not
2629 	 * successfully sync.  vhold prevents the vnode from
2630 	 * going away when we unlock the sync_mtx so that
2631 	 * we can acquire the vnode interlock.
2632 	 */
2633 	vholdl(vp);
2634 	mtx_unlock(&sync_mtx);
2635 	VI_UNLOCK(vp);
2636 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2637 		vdrop(vp);
2638 		mtx_lock(&sync_mtx);
2639 		return (*bo == LIST_FIRST(slp));
2640 	}
2641 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2642 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2643 	VOP_UNLOCK(vp);
2644 	vn_finished_write(mp);
2645 	BO_LOCK(*bo);
2646 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2647 		/*
2648 		 * Put us back on the worklist.  The worklist
2649 		 * routine will remove us from our current
2650 		 * position and then add us back in at a later
2651 		 * position.
2652 		 */
2653 		vn_syncer_add_to_worklist(*bo, syncdelay);
2654 	}
2655 	BO_UNLOCK(*bo);
2656 	vdrop(vp);
2657 	mtx_lock(&sync_mtx);
2658 	return (0);
2659 }
2660 
2661 static int first_printf = 1;
2662 
2663 /*
2664  * System filesystem synchronizer daemon.
2665  */
2666 static void
2667 sched_sync(void)
2668 {
2669 	struct synclist *next, *slp;
2670 	struct bufobj *bo;
2671 	long starttime;
2672 	struct thread *td = curthread;
2673 	int last_work_seen;
2674 	int net_worklist_len;
2675 	int syncer_final_iter;
2676 	int error;
2677 
2678 	last_work_seen = 0;
2679 	syncer_final_iter = 0;
2680 	syncer_state = SYNCER_RUNNING;
2681 	starttime = time_uptime;
2682 	td->td_pflags |= TDP_NORUNNINGBUF;
2683 
2684 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2685 	    SHUTDOWN_PRI_LAST);
2686 
2687 	mtx_lock(&sync_mtx);
2688 	for (;;) {
2689 		if (syncer_state == SYNCER_FINAL_DELAY &&
2690 		    syncer_final_iter == 0) {
2691 			mtx_unlock(&sync_mtx);
2692 			kproc_suspend_check(td->td_proc);
2693 			mtx_lock(&sync_mtx);
2694 		}
2695 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2696 		if (syncer_state != SYNCER_RUNNING &&
2697 		    starttime != time_uptime) {
2698 			if (first_printf) {
2699 				printf("\nSyncing disks, vnodes remaining... ");
2700 				first_printf = 0;
2701 			}
2702 			printf("%d ", net_worklist_len);
2703 		}
2704 		starttime = time_uptime;
2705 
2706 		/*
2707 		 * Push files whose dirty time has expired.  Be careful
2708 		 * of interrupt race on slp queue.
2709 		 *
2710 		 * Skip over empty worklist slots when shutting down.
2711 		 */
2712 		do {
2713 			slp = &syncer_workitem_pending[syncer_delayno];
2714 			syncer_delayno += 1;
2715 			if (syncer_delayno == syncer_maxdelay)
2716 				syncer_delayno = 0;
2717 			next = &syncer_workitem_pending[syncer_delayno];
2718 			/*
2719 			 * If the worklist has wrapped since the
2720 			 * it was emptied of all but syncer vnodes,
2721 			 * switch to the FINAL_DELAY state and run
2722 			 * for one more second.
2723 			 */
2724 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2725 			    net_worklist_len == 0 &&
2726 			    last_work_seen == syncer_delayno) {
2727 				syncer_state = SYNCER_FINAL_DELAY;
2728 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2729 			}
2730 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2731 		    syncer_worklist_len > 0);
2732 
2733 		/*
2734 		 * Keep track of the last time there was anything
2735 		 * on the worklist other than syncer vnodes.
2736 		 * Return to the SHUTTING_DOWN state if any
2737 		 * new work appears.
2738 		 */
2739 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2740 			last_work_seen = syncer_delayno;
2741 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2742 			syncer_state = SYNCER_SHUTTING_DOWN;
2743 		while (!LIST_EMPTY(slp)) {
2744 			error = sync_vnode(slp, &bo, td);
2745 			if (error == 1) {
2746 				LIST_REMOVE(bo, bo_synclist);
2747 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2748 				continue;
2749 			}
2750 
2751 			if (first_printf == 0) {
2752 				/*
2753 				 * Drop the sync mutex, because some watchdog
2754 				 * drivers need to sleep while patting
2755 				 */
2756 				mtx_unlock(&sync_mtx);
2757 				wdog_kern_pat(WD_LASTVAL);
2758 				mtx_lock(&sync_mtx);
2759 			}
2760 		}
2761 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2762 			syncer_final_iter--;
2763 		/*
2764 		 * The variable rushjob allows the kernel to speed up the
2765 		 * processing of the filesystem syncer process. A rushjob
2766 		 * value of N tells the filesystem syncer to process the next
2767 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2768 		 * is used by the soft update code to speed up the filesystem
2769 		 * syncer process when the incore state is getting so far
2770 		 * ahead of the disk that the kernel memory pool is being
2771 		 * threatened with exhaustion.
2772 		 */
2773 		if (rushjob > 0) {
2774 			rushjob -= 1;
2775 			continue;
2776 		}
2777 		/*
2778 		 * Just sleep for a short period of time between
2779 		 * iterations when shutting down to allow some I/O
2780 		 * to happen.
2781 		 *
2782 		 * If it has taken us less than a second to process the
2783 		 * current work, then wait. Otherwise start right over
2784 		 * again. We can still lose time if any single round
2785 		 * takes more than two seconds, but it does not really
2786 		 * matter as we are just trying to generally pace the
2787 		 * filesystem activity.
2788 		 */
2789 		if (syncer_state != SYNCER_RUNNING ||
2790 		    time_uptime == starttime) {
2791 			thread_lock(td);
2792 			sched_prio(td, PPAUSE);
2793 			thread_unlock(td);
2794 		}
2795 		if (syncer_state != SYNCER_RUNNING)
2796 			cv_timedwait(&sync_wakeup, &sync_mtx,
2797 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2798 		else if (time_uptime == starttime)
2799 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2800 	}
2801 }
2802 
2803 /*
2804  * Request the syncer daemon to speed up its work.
2805  * We never push it to speed up more than half of its
2806  * normal turn time, otherwise it could take over the cpu.
2807  */
2808 int
2809 speedup_syncer(void)
2810 {
2811 	int ret = 0;
2812 
2813 	mtx_lock(&sync_mtx);
2814 	if (rushjob < syncdelay / 2) {
2815 		rushjob += 1;
2816 		stat_rush_requests += 1;
2817 		ret = 1;
2818 	}
2819 	mtx_unlock(&sync_mtx);
2820 	cv_broadcast(&sync_wakeup);
2821 	return (ret);
2822 }
2823 
2824 /*
2825  * Tell the syncer to speed up its work and run though its work
2826  * list several times, then tell it to shut down.
2827  */
2828 static void
2829 syncer_shutdown(void *arg, int howto)
2830 {
2831 
2832 	if (howto & RB_NOSYNC)
2833 		return;
2834 	mtx_lock(&sync_mtx);
2835 	syncer_state = SYNCER_SHUTTING_DOWN;
2836 	rushjob = 0;
2837 	mtx_unlock(&sync_mtx);
2838 	cv_broadcast(&sync_wakeup);
2839 	kproc_shutdown(arg, howto);
2840 }
2841 
2842 void
2843 syncer_suspend(void)
2844 {
2845 
2846 	syncer_shutdown(updateproc, 0);
2847 }
2848 
2849 void
2850 syncer_resume(void)
2851 {
2852 
2853 	mtx_lock(&sync_mtx);
2854 	first_printf = 1;
2855 	syncer_state = SYNCER_RUNNING;
2856 	mtx_unlock(&sync_mtx);
2857 	cv_broadcast(&sync_wakeup);
2858 	kproc_resume(updateproc);
2859 }
2860 
2861 /*
2862  * Move the buffer between the clean and dirty lists of its vnode.
2863  */
2864 void
2865 reassignbuf(struct buf *bp)
2866 {
2867 	struct vnode *vp;
2868 	struct bufobj *bo;
2869 	int delay;
2870 #ifdef INVARIANTS
2871 	struct bufv *bv;
2872 #endif
2873 
2874 	vp = bp->b_vp;
2875 	bo = bp->b_bufobj;
2876 
2877 	KASSERT((bp->b_flags & B_PAGING) == 0,
2878 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2879 
2880 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2881 	    bp, bp->b_vp, bp->b_flags);
2882 
2883 	BO_LOCK(bo);
2884 	buf_vlist_remove(bp);
2885 
2886 	/*
2887 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2888 	 * of clean buffers.
2889 	 */
2890 	if (bp->b_flags & B_DELWRI) {
2891 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2892 			switch (vp->v_type) {
2893 			case VDIR:
2894 				delay = dirdelay;
2895 				break;
2896 			case VCHR:
2897 				delay = metadelay;
2898 				break;
2899 			default:
2900 				delay = filedelay;
2901 			}
2902 			vn_syncer_add_to_worklist(bo, delay);
2903 		}
2904 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2905 	} else {
2906 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2907 
2908 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2909 			mtx_lock(&sync_mtx);
2910 			LIST_REMOVE(bo, bo_synclist);
2911 			syncer_worklist_len--;
2912 			mtx_unlock(&sync_mtx);
2913 			bo->bo_flag &= ~BO_ONWORKLST;
2914 		}
2915 	}
2916 #ifdef INVARIANTS
2917 	bv = &bo->bo_clean;
2918 	bp = TAILQ_FIRST(&bv->bv_hd);
2919 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2920 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2921 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2922 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2923 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2924 	bv = &bo->bo_dirty;
2925 	bp = TAILQ_FIRST(&bv->bv_hd);
2926 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2927 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2928 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2929 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2930 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2931 #endif
2932 	BO_UNLOCK(bo);
2933 }
2934 
2935 static void
2936 v_init_counters(struct vnode *vp)
2937 {
2938 
2939 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2940 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2941 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2942 
2943 	refcount_init(&vp->v_holdcnt, 1);
2944 	refcount_init(&vp->v_usecount, 1);
2945 }
2946 
2947 /*
2948  * Grab a particular vnode from the free list, increment its
2949  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2950  * is being destroyed.  Only callers who specify LK_RETRY will
2951  * see doomed vnodes.  If inactive processing was delayed in
2952  * vput try to do it here.
2953  *
2954  * usecount is manipulated using atomics without holding any locks.
2955  *
2956  * holdcnt can be manipulated using atomics without holding any locks,
2957  * except when transitioning 1<->0, in which case the interlock is held.
2958  *
2959  * Consumers which don't guarantee liveness of the vnode can use SMR to
2960  * try to get a reference. Note this operation can fail since the vnode
2961  * may be awaiting getting freed by the time they get to it.
2962  */
2963 enum vgetstate
2964 vget_prep_smr(struct vnode *vp)
2965 {
2966 	enum vgetstate vs;
2967 
2968 	VFS_SMR_ASSERT_ENTERED();
2969 
2970 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2971 		vs = VGET_USECOUNT;
2972 	} else {
2973 		if (vhold_smr(vp))
2974 			vs = VGET_HOLDCNT;
2975 		else
2976 			vs = VGET_NONE;
2977 	}
2978 	return (vs);
2979 }
2980 
2981 enum vgetstate
2982 vget_prep(struct vnode *vp)
2983 {
2984 	enum vgetstate vs;
2985 
2986 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2987 		vs = VGET_USECOUNT;
2988 	} else {
2989 		vhold(vp);
2990 		vs = VGET_HOLDCNT;
2991 	}
2992 	return (vs);
2993 }
2994 
2995 void
2996 vget_abort(struct vnode *vp, enum vgetstate vs)
2997 {
2998 
2999 	switch (vs) {
3000 	case VGET_USECOUNT:
3001 		vrele(vp);
3002 		break;
3003 	case VGET_HOLDCNT:
3004 		vdrop(vp);
3005 		break;
3006 	default:
3007 		__assert_unreachable();
3008 	}
3009 }
3010 
3011 int
3012 vget(struct vnode *vp, int flags)
3013 {
3014 	enum vgetstate vs;
3015 
3016 	vs = vget_prep(vp);
3017 	return (vget_finish(vp, flags, vs));
3018 }
3019 
3020 int
3021 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3022 {
3023 	int error;
3024 
3025 	if ((flags & LK_INTERLOCK) != 0)
3026 		ASSERT_VI_LOCKED(vp, __func__);
3027 	else
3028 		ASSERT_VI_UNLOCKED(vp, __func__);
3029 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3030 	VNPASS(vp->v_holdcnt > 0, vp);
3031 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3032 
3033 	error = vn_lock(vp, flags);
3034 	if (__predict_false(error != 0)) {
3035 		vget_abort(vp, vs);
3036 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3037 		    vp);
3038 		return (error);
3039 	}
3040 
3041 	vget_finish_ref(vp, vs);
3042 	return (0);
3043 }
3044 
3045 void
3046 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3047 {
3048 	int old;
3049 
3050 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3051 	VNPASS(vp->v_holdcnt > 0, vp);
3052 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3053 
3054 	if (vs == VGET_USECOUNT)
3055 		return;
3056 
3057 	/*
3058 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3059 	 * the vnode around. Otherwise someone else lended their hold count and
3060 	 * we have to drop ours.
3061 	 */
3062 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3063 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3064 	if (old != 0) {
3065 #ifdef INVARIANTS
3066 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3067 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3068 #else
3069 		refcount_release(&vp->v_holdcnt);
3070 #endif
3071 	}
3072 }
3073 
3074 void
3075 vref(struct vnode *vp)
3076 {
3077 	enum vgetstate vs;
3078 
3079 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3080 	vs = vget_prep(vp);
3081 	vget_finish_ref(vp, vs);
3082 }
3083 
3084 void
3085 vrefact(struct vnode *vp)
3086 {
3087 
3088 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3089 #ifdef INVARIANTS
3090 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3091 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3092 #else
3093 	refcount_acquire(&vp->v_usecount);
3094 #endif
3095 }
3096 
3097 void
3098 vlazy(struct vnode *vp)
3099 {
3100 	struct mount *mp;
3101 
3102 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3103 
3104 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3105 		return;
3106 	/*
3107 	 * We may get here for inactive routines after the vnode got doomed.
3108 	 */
3109 	if (VN_IS_DOOMED(vp))
3110 		return;
3111 	mp = vp->v_mount;
3112 	mtx_lock(&mp->mnt_listmtx);
3113 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3114 		vp->v_mflag |= VMP_LAZYLIST;
3115 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3116 		mp->mnt_lazyvnodelistsize++;
3117 	}
3118 	mtx_unlock(&mp->mnt_listmtx);
3119 }
3120 
3121 static void
3122 vunlazy(struct vnode *vp)
3123 {
3124 	struct mount *mp;
3125 
3126 	ASSERT_VI_LOCKED(vp, __func__);
3127 	VNPASS(!VN_IS_DOOMED(vp), vp);
3128 
3129 	mp = vp->v_mount;
3130 	mtx_lock(&mp->mnt_listmtx);
3131 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3132 	/*
3133 	 * Don't remove the vnode from the lazy list if another thread
3134 	 * has increased the hold count. It may have re-enqueued the
3135 	 * vnode to the lazy list and is now responsible for its
3136 	 * removal.
3137 	 */
3138 	if (vp->v_holdcnt == 0) {
3139 		vp->v_mflag &= ~VMP_LAZYLIST;
3140 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3141 		mp->mnt_lazyvnodelistsize--;
3142 	}
3143 	mtx_unlock(&mp->mnt_listmtx);
3144 }
3145 
3146 /*
3147  * This routine is only meant to be called from vgonel prior to dooming
3148  * the vnode.
3149  */
3150 static void
3151 vunlazy_gone(struct vnode *vp)
3152 {
3153 	struct mount *mp;
3154 
3155 	ASSERT_VOP_ELOCKED(vp, __func__);
3156 	ASSERT_VI_LOCKED(vp, __func__);
3157 	VNPASS(!VN_IS_DOOMED(vp), vp);
3158 
3159 	if (vp->v_mflag & VMP_LAZYLIST) {
3160 		mp = vp->v_mount;
3161 		mtx_lock(&mp->mnt_listmtx);
3162 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3163 		vp->v_mflag &= ~VMP_LAZYLIST;
3164 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3165 		mp->mnt_lazyvnodelistsize--;
3166 		mtx_unlock(&mp->mnt_listmtx);
3167 	}
3168 }
3169 
3170 static void
3171 vdefer_inactive(struct vnode *vp)
3172 {
3173 
3174 	ASSERT_VI_LOCKED(vp, __func__);
3175 	VNASSERT(vp->v_holdcnt > 0, vp,
3176 	    ("%s: vnode without hold count", __func__));
3177 	if (VN_IS_DOOMED(vp)) {
3178 		vdropl(vp);
3179 		return;
3180 	}
3181 	if (vp->v_iflag & VI_DEFINACT) {
3182 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3183 		vdropl(vp);
3184 		return;
3185 	}
3186 	if (vp->v_usecount > 0) {
3187 		vp->v_iflag &= ~VI_OWEINACT;
3188 		vdropl(vp);
3189 		return;
3190 	}
3191 	vlazy(vp);
3192 	vp->v_iflag |= VI_DEFINACT;
3193 	VI_UNLOCK(vp);
3194 	counter_u64_add(deferred_inact, 1);
3195 }
3196 
3197 static void
3198 vdefer_inactive_unlocked(struct vnode *vp)
3199 {
3200 
3201 	VI_LOCK(vp);
3202 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3203 		vdropl(vp);
3204 		return;
3205 	}
3206 	vdefer_inactive(vp);
3207 }
3208 
3209 enum vput_op { VRELE, VPUT, VUNREF };
3210 
3211 /*
3212  * Handle ->v_usecount transitioning to 0.
3213  *
3214  * By releasing the last usecount we take ownership of the hold count which
3215  * provides liveness of the vnode, meaning we have to vdrop.
3216  *
3217  * For all vnodes we may need to perform inactive processing. It requires an
3218  * exclusive lock on the vnode, while it is legal to call here with only a
3219  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3220  * inactive processing gets deferred to the syncer.
3221  *
3222  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3223  * on the lock being held all the way until VOP_INACTIVE. This in particular
3224  * happens with UFS which adds half-constructed vnodes to the hash, where they
3225  * can be found by other code.
3226  */
3227 static void
3228 vput_final(struct vnode *vp, enum vput_op func)
3229 {
3230 	int error;
3231 	bool want_unlock;
3232 
3233 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3234 	VNPASS(vp->v_holdcnt > 0, vp);
3235 
3236 	VI_LOCK(vp);
3237 
3238 	/*
3239 	 * By the time we got here someone else might have transitioned
3240 	 * the count back to > 0.
3241 	 */
3242 	if (vp->v_usecount > 0)
3243 		goto out;
3244 
3245 	/*
3246 	 * If the vnode is doomed vgone already performed inactive processing
3247 	 * (if needed).
3248 	 */
3249 	if (VN_IS_DOOMED(vp))
3250 		goto out;
3251 
3252 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3253 		goto out;
3254 
3255 	if (vp->v_iflag & VI_DOINGINACT)
3256 		goto out;
3257 
3258 	/*
3259 	 * Locking operations here will drop the interlock and possibly the
3260 	 * vnode lock, opening a window where the vnode can get doomed all the
3261 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3262 	 * perform inactive.
3263 	 */
3264 	vp->v_iflag |= VI_OWEINACT;
3265 	want_unlock = false;
3266 	error = 0;
3267 	switch (func) {
3268 	case VRELE:
3269 		switch (VOP_ISLOCKED(vp)) {
3270 		case LK_EXCLUSIVE:
3271 			break;
3272 		case LK_EXCLOTHER:
3273 		case 0:
3274 			want_unlock = true;
3275 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3276 			VI_LOCK(vp);
3277 			break;
3278 		default:
3279 			/*
3280 			 * The lock has at least one sharer, but we have no way
3281 			 * to conclude whether this is us. Play it safe and
3282 			 * defer processing.
3283 			 */
3284 			error = EAGAIN;
3285 			break;
3286 		}
3287 		break;
3288 	case VPUT:
3289 		want_unlock = true;
3290 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3291 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3292 			    LK_NOWAIT);
3293 			VI_LOCK(vp);
3294 		}
3295 		break;
3296 	case VUNREF:
3297 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3298 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3299 			VI_LOCK(vp);
3300 		}
3301 		break;
3302 	}
3303 	if (error == 0) {
3304 		if (func == VUNREF) {
3305 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3306 			    ("recursive vunref"));
3307 			vp->v_vflag |= VV_UNREF;
3308 		}
3309 		for (;;) {
3310 			error = vinactive(vp);
3311 			if (want_unlock)
3312 				VOP_UNLOCK(vp);
3313 			if (error != ERELOOKUP || !want_unlock)
3314 				break;
3315 			VOP_LOCK(vp, LK_EXCLUSIVE);
3316 		}
3317 		if (func == VUNREF)
3318 			vp->v_vflag &= ~VV_UNREF;
3319 		vdropl(vp);
3320 	} else {
3321 		vdefer_inactive(vp);
3322 	}
3323 	return;
3324 out:
3325 	if (func == VPUT)
3326 		VOP_UNLOCK(vp);
3327 	vdropl(vp);
3328 }
3329 
3330 /*
3331  * Decrement ->v_usecount for a vnode.
3332  *
3333  * Releasing the last use count requires additional processing, see vput_final
3334  * above for details.
3335  *
3336  * Comment above each variant denotes lock state on entry and exit.
3337  */
3338 
3339 /*
3340  * in: any
3341  * out: same as passed in
3342  */
3343 void
3344 vrele(struct vnode *vp)
3345 {
3346 
3347 	ASSERT_VI_UNLOCKED(vp, __func__);
3348 	if (!refcount_release(&vp->v_usecount))
3349 		return;
3350 	vput_final(vp, VRELE);
3351 }
3352 
3353 /*
3354  * in: locked
3355  * out: unlocked
3356  */
3357 void
3358 vput(struct vnode *vp)
3359 {
3360 
3361 	ASSERT_VOP_LOCKED(vp, __func__);
3362 	ASSERT_VI_UNLOCKED(vp, __func__);
3363 	if (!refcount_release(&vp->v_usecount)) {
3364 		VOP_UNLOCK(vp);
3365 		return;
3366 	}
3367 	vput_final(vp, VPUT);
3368 }
3369 
3370 /*
3371  * in: locked
3372  * out: locked
3373  */
3374 void
3375 vunref(struct vnode *vp)
3376 {
3377 
3378 	ASSERT_VOP_LOCKED(vp, __func__);
3379 	ASSERT_VI_UNLOCKED(vp, __func__);
3380 	if (!refcount_release(&vp->v_usecount))
3381 		return;
3382 	vput_final(vp, VUNREF);
3383 }
3384 
3385 void
3386 vhold(struct vnode *vp)
3387 {
3388 	int old;
3389 
3390 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3391 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3392 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3393 	    ("%s: wrong hold count %d", __func__, old));
3394 	if (old == 0)
3395 		vfs_freevnodes_dec();
3396 }
3397 
3398 void
3399 vholdnz(struct vnode *vp)
3400 {
3401 
3402 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3403 #ifdef INVARIANTS
3404 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3405 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3406 	    ("%s: wrong hold count %d", __func__, old));
3407 #else
3408 	atomic_add_int(&vp->v_holdcnt, 1);
3409 #endif
3410 }
3411 
3412 /*
3413  * Grab a hold count unless the vnode is freed.
3414  *
3415  * Only use this routine if vfs smr is the only protection you have against
3416  * freeing the vnode.
3417  *
3418  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3419  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3420  * the thread which managed to set the flag.
3421  *
3422  * It may be tempting to replace the loop with:
3423  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3424  * if (count & VHOLD_NO_SMR) {
3425  *     backpedal and error out;
3426  * }
3427  *
3428  * However, while this is more performant, it hinders debugging by eliminating
3429  * the previously mentioned invariant.
3430  */
3431 bool
3432 vhold_smr(struct vnode *vp)
3433 {
3434 	int count;
3435 
3436 	VFS_SMR_ASSERT_ENTERED();
3437 
3438 	count = atomic_load_int(&vp->v_holdcnt);
3439 	for (;;) {
3440 		if (count & VHOLD_NO_SMR) {
3441 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3442 			    ("non-zero hold count with flags %d\n", count));
3443 			return (false);
3444 		}
3445 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3446 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3447 			if (count == 0)
3448 				vfs_freevnodes_dec();
3449 			return (true);
3450 		}
3451 	}
3452 }
3453 
3454 /*
3455  * Hold a free vnode for recycling.
3456  *
3457  * Note: vnode_init references this comment.
3458  *
3459  * Attempts to recycle only need the global vnode list lock and have no use for
3460  * SMR.
3461  *
3462  * However, vnodes get inserted into the global list before they get fully
3463  * initialized and stay there until UMA decides to free the memory. This in
3464  * particular means the target can be found before it becomes usable and after
3465  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3466  * VHOLD_NO_SMR.
3467  *
3468  * Note: the vnode may gain more references after we transition the count 0->1.
3469  */
3470 static bool
3471 vhold_recycle_free(struct vnode *vp)
3472 {
3473 	int count;
3474 
3475 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3476 
3477 	count = atomic_load_int(&vp->v_holdcnt);
3478 	for (;;) {
3479 		if (count & VHOLD_NO_SMR) {
3480 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3481 			    ("non-zero hold count with flags %d\n", count));
3482 			return (false);
3483 		}
3484 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3485 		if (count > 0) {
3486 			return (false);
3487 		}
3488 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3489 			vfs_freevnodes_dec();
3490 			return (true);
3491 		}
3492 	}
3493 }
3494 
3495 static void __noinline
3496 vdbatch_process(struct vdbatch *vd)
3497 {
3498 	struct vnode *vp;
3499 	int i;
3500 
3501 	mtx_assert(&vd->lock, MA_OWNED);
3502 	MPASS(curthread->td_pinned > 0);
3503 	MPASS(vd->index == VDBATCH_SIZE);
3504 
3505 	mtx_lock(&vnode_list_mtx);
3506 	critical_enter();
3507 	freevnodes += vd->freevnodes;
3508 	for (i = 0; i < VDBATCH_SIZE; i++) {
3509 		vp = vd->tab[i];
3510 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3511 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3512 		MPASS(vp->v_dbatchcpu != NOCPU);
3513 		vp->v_dbatchcpu = NOCPU;
3514 	}
3515 	mtx_unlock(&vnode_list_mtx);
3516 	vd->freevnodes = 0;
3517 	bzero(vd->tab, sizeof(vd->tab));
3518 	vd->index = 0;
3519 	critical_exit();
3520 }
3521 
3522 static void
3523 vdbatch_enqueue(struct vnode *vp)
3524 {
3525 	struct vdbatch *vd;
3526 
3527 	ASSERT_VI_LOCKED(vp, __func__);
3528 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3529 	    ("%s: deferring requeue of a doomed vnode", __func__));
3530 
3531 	if (vp->v_dbatchcpu != NOCPU) {
3532 		VI_UNLOCK(vp);
3533 		return;
3534 	}
3535 
3536 	sched_pin();
3537 	vd = DPCPU_PTR(vd);
3538 	mtx_lock(&vd->lock);
3539 	MPASS(vd->index < VDBATCH_SIZE);
3540 	MPASS(vd->tab[vd->index] == NULL);
3541 	/*
3542 	 * A hack: we depend on being pinned so that we know what to put in
3543 	 * ->v_dbatchcpu.
3544 	 */
3545 	vp->v_dbatchcpu = curcpu;
3546 	vd->tab[vd->index] = vp;
3547 	vd->index++;
3548 	VI_UNLOCK(vp);
3549 	if (vd->index == VDBATCH_SIZE)
3550 		vdbatch_process(vd);
3551 	mtx_unlock(&vd->lock);
3552 	sched_unpin();
3553 }
3554 
3555 /*
3556  * This routine must only be called for vnodes which are about to be
3557  * deallocated. Supporting dequeue for arbitrary vndoes would require
3558  * validating that the locked batch matches.
3559  */
3560 static void
3561 vdbatch_dequeue(struct vnode *vp)
3562 {
3563 	struct vdbatch *vd;
3564 	int i;
3565 	short cpu;
3566 
3567 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3568 	    ("%s: called for a used vnode\n", __func__));
3569 
3570 	cpu = vp->v_dbatchcpu;
3571 	if (cpu == NOCPU)
3572 		return;
3573 
3574 	vd = DPCPU_ID_PTR(cpu, vd);
3575 	mtx_lock(&vd->lock);
3576 	for (i = 0; i < vd->index; i++) {
3577 		if (vd->tab[i] != vp)
3578 			continue;
3579 		vp->v_dbatchcpu = NOCPU;
3580 		vd->index--;
3581 		vd->tab[i] = vd->tab[vd->index];
3582 		vd->tab[vd->index] = NULL;
3583 		break;
3584 	}
3585 	mtx_unlock(&vd->lock);
3586 	/*
3587 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3588 	 */
3589 	MPASS(vp->v_dbatchcpu == NOCPU);
3590 }
3591 
3592 /*
3593  * Drop the hold count of the vnode.  If this is the last reference to
3594  * the vnode we place it on the free list unless it has been vgone'd
3595  * (marked VIRF_DOOMED) in which case we will free it.
3596  *
3597  * Because the vnode vm object keeps a hold reference on the vnode if
3598  * there is at least one resident non-cached page, the vnode cannot
3599  * leave the active list without the page cleanup done.
3600  */
3601 static void __noinline
3602 vdropl_final(struct vnode *vp)
3603 {
3604 
3605 	ASSERT_VI_LOCKED(vp, __func__);
3606 	VNPASS(VN_IS_DOOMED(vp), vp);
3607 	/*
3608 	 * Set the VHOLD_NO_SMR flag.
3609 	 *
3610 	 * We may be racing against vhold_smr. If they win we can just pretend
3611 	 * we never got this far, they will vdrop later.
3612 	 */
3613 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3614 		vfs_freevnodes_inc();
3615 		VI_UNLOCK(vp);
3616 		/*
3617 		 * We lost the aforementioned race. Any subsequent access is
3618 		 * invalid as they might have managed to vdropl on their own.
3619 		 */
3620 		return;
3621 	}
3622 	/*
3623 	 * Don't bump freevnodes as this one is going away.
3624 	 */
3625 	freevnode(vp);
3626 }
3627 
3628 void
3629 vdrop(struct vnode *vp)
3630 {
3631 
3632 	ASSERT_VI_UNLOCKED(vp, __func__);
3633 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3634 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3635 		return;
3636 	VI_LOCK(vp);
3637 	vdropl(vp);
3638 }
3639 
3640 static void __always_inline
3641 vdropl_impl(struct vnode *vp, bool enqueue)
3642 {
3643 
3644 	ASSERT_VI_LOCKED(vp, __func__);
3645 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3646 	if (!refcount_release(&vp->v_holdcnt)) {
3647 		VI_UNLOCK(vp);
3648 		return;
3649 	}
3650 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3651 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3652 	if (VN_IS_DOOMED(vp)) {
3653 		vdropl_final(vp);
3654 		return;
3655 	}
3656 
3657 	vfs_freevnodes_inc();
3658 	if (vp->v_mflag & VMP_LAZYLIST) {
3659 		vunlazy(vp);
3660 	}
3661 
3662 	if (!enqueue) {
3663 		VI_UNLOCK(vp);
3664 		return;
3665 	}
3666 
3667 	/*
3668 	 * Also unlocks the interlock. We can't assert on it as we
3669 	 * released our hold and by now the vnode might have been
3670 	 * freed.
3671 	 */
3672 	vdbatch_enqueue(vp);
3673 }
3674 
3675 void
3676 vdropl(struct vnode *vp)
3677 {
3678 
3679 	vdropl_impl(vp, true);
3680 }
3681 
3682 /*
3683  * vdrop a vnode when recycling
3684  *
3685  * This is a special case routine only to be used when recycling, differs from
3686  * regular vdrop by not requeieing the vnode on LRU.
3687  *
3688  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3689  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3690  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3691  * loop which can last for as long as writes are frozen.
3692  */
3693 static void
3694 vdropl_recycle(struct vnode *vp)
3695 {
3696 
3697 	vdropl_impl(vp, false);
3698 }
3699 
3700 static void
3701 vdrop_recycle(struct vnode *vp)
3702 {
3703 
3704 	VI_LOCK(vp);
3705 	vdropl_recycle(vp);
3706 }
3707 
3708 /*
3709  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3710  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3711  */
3712 static int
3713 vinactivef(struct vnode *vp)
3714 {
3715 	struct vm_object *obj;
3716 	int error;
3717 
3718 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3719 	ASSERT_VI_LOCKED(vp, "vinactive");
3720 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3721 	    ("vinactive: recursed on VI_DOINGINACT"));
3722 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3723 	vp->v_iflag |= VI_DOINGINACT;
3724 	vp->v_iflag &= ~VI_OWEINACT;
3725 	VI_UNLOCK(vp);
3726 	/*
3727 	 * Before moving off the active list, we must be sure that any
3728 	 * modified pages are converted into the vnode's dirty
3729 	 * buffers, since these will no longer be checked once the
3730 	 * vnode is on the inactive list.
3731 	 *
3732 	 * The write-out of the dirty pages is asynchronous.  At the
3733 	 * point that VOP_INACTIVE() is called, there could still be
3734 	 * pending I/O and dirty pages in the object.
3735 	 */
3736 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3737 	    vm_object_mightbedirty(obj)) {
3738 		VM_OBJECT_WLOCK(obj);
3739 		vm_object_page_clean(obj, 0, 0, 0);
3740 		VM_OBJECT_WUNLOCK(obj);
3741 	}
3742 	error = VOP_INACTIVE(vp);
3743 	VI_LOCK(vp);
3744 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3745 	    ("vinactive: lost VI_DOINGINACT"));
3746 	vp->v_iflag &= ~VI_DOINGINACT;
3747 	return (error);
3748 }
3749 
3750 int
3751 vinactive(struct vnode *vp)
3752 {
3753 
3754 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3755 	ASSERT_VI_LOCKED(vp, "vinactive");
3756 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3757 
3758 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3759 		return (0);
3760 	if (vp->v_iflag & VI_DOINGINACT)
3761 		return (0);
3762 	if (vp->v_usecount > 0) {
3763 		vp->v_iflag &= ~VI_OWEINACT;
3764 		return (0);
3765 	}
3766 	return (vinactivef(vp));
3767 }
3768 
3769 /*
3770  * Remove any vnodes in the vnode table belonging to mount point mp.
3771  *
3772  * If FORCECLOSE is not specified, there should not be any active ones,
3773  * return error if any are found (nb: this is a user error, not a
3774  * system error). If FORCECLOSE is specified, detach any active vnodes
3775  * that are found.
3776  *
3777  * If WRITECLOSE is set, only flush out regular file vnodes open for
3778  * writing.
3779  *
3780  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3781  *
3782  * `rootrefs' specifies the base reference count for the root vnode
3783  * of this filesystem. The root vnode is considered busy if its
3784  * v_usecount exceeds this value. On a successful return, vflush(, td)
3785  * will call vrele() on the root vnode exactly rootrefs times.
3786  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3787  * be zero.
3788  */
3789 #ifdef DIAGNOSTIC
3790 static int busyprt = 0;		/* print out busy vnodes */
3791 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3792 #endif
3793 
3794 int
3795 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3796 {
3797 	struct vnode *vp, *mvp, *rootvp = NULL;
3798 	struct vattr vattr;
3799 	int busy = 0, error;
3800 
3801 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3802 	    rootrefs, flags);
3803 	if (rootrefs > 0) {
3804 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3805 		    ("vflush: bad args"));
3806 		/*
3807 		 * Get the filesystem root vnode. We can vput() it
3808 		 * immediately, since with rootrefs > 0, it won't go away.
3809 		 */
3810 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3811 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3812 			    __func__, error);
3813 			return (error);
3814 		}
3815 		vput(rootvp);
3816 	}
3817 loop:
3818 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3819 		vholdl(vp);
3820 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3821 		if (error) {
3822 			vdrop(vp);
3823 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3824 			goto loop;
3825 		}
3826 		/*
3827 		 * Skip over a vnodes marked VV_SYSTEM.
3828 		 */
3829 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3830 			VOP_UNLOCK(vp);
3831 			vdrop(vp);
3832 			continue;
3833 		}
3834 		/*
3835 		 * If WRITECLOSE is set, flush out unlinked but still open
3836 		 * files (even if open only for reading) and regular file
3837 		 * vnodes open for writing.
3838 		 */
3839 		if (flags & WRITECLOSE) {
3840 			if (vp->v_object != NULL) {
3841 				VM_OBJECT_WLOCK(vp->v_object);
3842 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3843 				VM_OBJECT_WUNLOCK(vp->v_object);
3844 			}
3845 			do {
3846 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3847 			} while (error == ERELOOKUP);
3848 			if (error != 0) {
3849 				VOP_UNLOCK(vp);
3850 				vdrop(vp);
3851 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3852 				return (error);
3853 			}
3854 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3855 			VI_LOCK(vp);
3856 
3857 			if ((vp->v_type == VNON ||
3858 			    (error == 0 && vattr.va_nlink > 0)) &&
3859 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3860 				VOP_UNLOCK(vp);
3861 				vdropl(vp);
3862 				continue;
3863 			}
3864 		} else
3865 			VI_LOCK(vp);
3866 		/*
3867 		 * With v_usecount == 0, all we need to do is clear out the
3868 		 * vnode data structures and we are done.
3869 		 *
3870 		 * If FORCECLOSE is set, forcibly close the vnode.
3871 		 */
3872 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3873 			vgonel(vp);
3874 		} else {
3875 			busy++;
3876 #ifdef DIAGNOSTIC
3877 			if (busyprt)
3878 				vn_printf(vp, "vflush: busy vnode ");
3879 #endif
3880 		}
3881 		VOP_UNLOCK(vp);
3882 		vdropl(vp);
3883 	}
3884 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3885 		/*
3886 		 * If just the root vnode is busy, and if its refcount
3887 		 * is equal to `rootrefs', then go ahead and kill it.
3888 		 */
3889 		VI_LOCK(rootvp);
3890 		KASSERT(busy > 0, ("vflush: not busy"));
3891 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3892 		    ("vflush: usecount %d < rootrefs %d",
3893 		     rootvp->v_usecount, rootrefs));
3894 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3895 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3896 			vgone(rootvp);
3897 			VOP_UNLOCK(rootvp);
3898 			busy = 0;
3899 		} else
3900 			VI_UNLOCK(rootvp);
3901 	}
3902 	if (busy) {
3903 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3904 		    busy);
3905 		return (EBUSY);
3906 	}
3907 	for (; rootrefs > 0; rootrefs--)
3908 		vrele(rootvp);
3909 	return (0);
3910 }
3911 
3912 /*
3913  * Recycle an unused vnode to the front of the free list.
3914  */
3915 int
3916 vrecycle(struct vnode *vp)
3917 {
3918 	int recycled;
3919 
3920 	VI_LOCK(vp);
3921 	recycled = vrecyclel(vp);
3922 	VI_UNLOCK(vp);
3923 	return (recycled);
3924 }
3925 
3926 /*
3927  * vrecycle, with the vp interlock held.
3928  */
3929 int
3930 vrecyclel(struct vnode *vp)
3931 {
3932 	int recycled;
3933 
3934 	ASSERT_VOP_ELOCKED(vp, __func__);
3935 	ASSERT_VI_LOCKED(vp, __func__);
3936 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3937 	recycled = 0;
3938 	if (vp->v_usecount == 0) {
3939 		recycled = 1;
3940 		vgonel(vp);
3941 	}
3942 	return (recycled);
3943 }
3944 
3945 /*
3946  * Eliminate all activity associated with a vnode
3947  * in preparation for reuse.
3948  */
3949 void
3950 vgone(struct vnode *vp)
3951 {
3952 	VI_LOCK(vp);
3953 	vgonel(vp);
3954 	VI_UNLOCK(vp);
3955 }
3956 
3957 /*
3958  * Notify upper mounts about reclaimed or unlinked vnode.
3959  */
3960 void
3961 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3962 {
3963 	struct mount *mp;
3964 	struct mount_upper_node *ump;
3965 
3966 	mp = atomic_load_ptr(&vp->v_mount);
3967 	if (mp == NULL)
3968 		return;
3969 	if (TAILQ_EMPTY(&mp->mnt_notify))
3970 		return;
3971 
3972 	MNT_ILOCK(mp);
3973 	mp->mnt_upper_pending++;
3974 	KASSERT(mp->mnt_upper_pending > 0,
3975 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3976 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3977 		MNT_IUNLOCK(mp);
3978 		switch (event) {
3979 		case VFS_NOTIFY_UPPER_RECLAIM:
3980 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
3981 			break;
3982 		case VFS_NOTIFY_UPPER_UNLINK:
3983 			VFS_UNLINK_LOWERVP(ump->mp, vp);
3984 			break;
3985 		}
3986 		MNT_ILOCK(mp);
3987 	}
3988 	mp->mnt_upper_pending--;
3989 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
3990 	    mp->mnt_upper_pending == 0) {
3991 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
3992 		wakeup(&mp->mnt_uppers);
3993 	}
3994 	MNT_IUNLOCK(mp);
3995 }
3996 
3997 /*
3998  * vgone, with the vp interlock held.
3999  */
4000 static void
4001 vgonel(struct vnode *vp)
4002 {
4003 	struct thread *td;
4004 	struct mount *mp;
4005 	vm_object_t object;
4006 	bool active, doinginact, oweinact;
4007 
4008 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4009 	ASSERT_VI_LOCKED(vp, "vgonel");
4010 	VNASSERT(vp->v_holdcnt, vp,
4011 	    ("vgonel: vp %p has no reference.", vp));
4012 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4013 	td = curthread;
4014 
4015 	/*
4016 	 * Don't vgonel if we're already doomed.
4017 	 */
4018 	if (VN_IS_DOOMED(vp))
4019 		return;
4020 	/*
4021 	 * Paired with freevnode.
4022 	 */
4023 	vn_seqc_write_begin_locked(vp);
4024 	vunlazy_gone(vp);
4025 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4026 
4027 	/*
4028 	 * Check to see if the vnode is in use.  If so, we have to
4029 	 * call VOP_CLOSE() and VOP_INACTIVE().
4030 	 *
4031 	 * It could be that VOP_INACTIVE() requested reclamation, in
4032 	 * which case we should avoid recursion, so check
4033 	 * VI_DOINGINACT.  This is not precise but good enough.
4034 	 */
4035 	active = vp->v_usecount > 0;
4036 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4037 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4038 
4039 	/*
4040 	 * If we need to do inactive VI_OWEINACT will be set.
4041 	 */
4042 	if (vp->v_iflag & VI_DEFINACT) {
4043 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4044 		vp->v_iflag &= ~VI_DEFINACT;
4045 		vdropl(vp);
4046 	} else {
4047 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4048 		VI_UNLOCK(vp);
4049 	}
4050 	cache_purge_vgone(vp);
4051 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4052 
4053 	/*
4054 	 * If purging an active vnode, it must be closed and
4055 	 * deactivated before being reclaimed.
4056 	 */
4057 	if (active)
4058 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4059 	if (!doinginact) {
4060 		do {
4061 			if (oweinact || active) {
4062 				VI_LOCK(vp);
4063 				vinactivef(vp);
4064 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4065 				VI_UNLOCK(vp);
4066 			}
4067 		} while (oweinact);
4068 	}
4069 	if (vp->v_type == VSOCK)
4070 		vfs_unp_reclaim(vp);
4071 
4072 	/*
4073 	 * Clean out any buffers associated with the vnode.
4074 	 * If the flush fails, just toss the buffers.
4075 	 */
4076 	mp = NULL;
4077 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4078 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4079 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4080 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4081 			;
4082 	}
4083 
4084 	BO_LOCK(&vp->v_bufobj);
4085 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4086 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4087 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4088 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4089 	    ("vp %p bufobj not invalidated", vp));
4090 
4091 	/*
4092 	 * For VMIO bufobj, BO_DEAD is set later, or in
4093 	 * vm_object_terminate() after the object's page queue is
4094 	 * flushed.
4095 	 */
4096 	object = vp->v_bufobj.bo_object;
4097 	if (object == NULL)
4098 		vp->v_bufobj.bo_flag |= BO_DEAD;
4099 	BO_UNLOCK(&vp->v_bufobj);
4100 
4101 	/*
4102 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4103 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4104 	 * should not touch the object borrowed from the lower vnode
4105 	 * (the handle check).
4106 	 */
4107 	if (object != NULL && object->type == OBJT_VNODE &&
4108 	    object->handle == vp)
4109 		vnode_destroy_vobject(vp);
4110 
4111 	/*
4112 	 * Reclaim the vnode.
4113 	 */
4114 	if (VOP_RECLAIM(vp))
4115 		panic("vgone: cannot reclaim");
4116 	if (mp != NULL)
4117 		vn_finished_secondary_write(mp);
4118 	VNASSERT(vp->v_object == NULL, vp,
4119 	    ("vop_reclaim left v_object vp=%p", vp));
4120 	/*
4121 	 * Clear the advisory locks and wake up waiting threads.
4122 	 */
4123 	if (vp->v_lockf != NULL) {
4124 		(void)VOP_ADVLOCKPURGE(vp);
4125 		vp->v_lockf = NULL;
4126 	}
4127 	/*
4128 	 * Delete from old mount point vnode list.
4129 	 */
4130 	if (vp->v_mount == NULL) {
4131 		VI_LOCK(vp);
4132 	} else {
4133 		delmntque(vp);
4134 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4135 	}
4136 	/*
4137 	 * Done with purge, reset to the standard lock and invalidate
4138 	 * the vnode.
4139 	 */
4140 	vp->v_vnlock = &vp->v_lock;
4141 	vp->v_op = &dead_vnodeops;
4142 	vp->v_type = VBAD;
4143 }
4144 
4145 /*
4146  * Print out a description of a vnode.
4147  */
4148 static const char * const typename[] =
4149 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
4150  "VMARKER"};
4151 
4152 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4153     "new hold count flag not added to vn_printf");
4154 
4155 void
4156 vn_printf(struct vnode *vp, const char *fmt, ...)
4157 {
4158 	va_list ap;
4159 	char buf[256], buf2[16];
4160 	u_long flags;
4161 	u_int holdcnt;
4162 	short irflag;
4163 
4164 	va_start(ap, fmt);
4165 	vprintf(fmt, ap);
4166 	va_end(ap);
4167 	printf("%p: ", (void *)vp);
4168 	printf("type %s\n", typename[vp->v_type]);
4169 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4170 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4171 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4172 	    vp->v_seqc_users);
4173 	switch (vp->v_type) {
4174 	case VDIR:
4175 		printf(" mountedhere %p\n", vp->v_mountedhere);
4176 		break;
4177 	case VCHR:
4178 		printf(" rdev %p\n", vp->v_rdev);
4179 		break;
4180 	case VSOCK:
4181 		printf(" socket %p\n", vp->v_unpcb);
4182 		break;
4183 	case VFIFO:
4184 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4185 		break;
4186 	default:
4187 		printf("\n");
4188 		break;
4189 	}
4190 	buf[0] = '\0';
4191 	buf[1] = '\0';
4192 	if (holdcnt & VHOLD_NO_SMR)
4193 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4194 	printf("    hold count flags (%s)\n", buf + 1);
4195 
4196 	buf[0] = '\0';
4197 	buf[1] = '\0';
4198 	irflag = vn_irflag_read(vp);
4199 	if (irflag & VIRF_DOOMED)
4200 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4201 	if (irflag & VIRF_PGREAD)
4202 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4203 	if (irflag & VIRF_MOUNTPOINT)
4204 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4205 	if (irflag & VIRF_TEXT_REF)
4206 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4207 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4208 	if (flags != 0) {
4209 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4210 		strlcat(buf, buf2, sizeof(buf));
4211 	}
4212 	if (vp->v_vflag & VV_ROOT)
4213 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4214 	if (vp->v_vflag & VV_ISTTY)
4215 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4216 	if (vp->v_vflag & VV_NOSYNC)
4217 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4218 	if (vp->v_vflag & VV_ETERNALDEV)
4219 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4220 	if (vp->v_vflag & VV_CACHEDLABEL)
4221 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4222 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4223 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4224 	if (vp->v_vflag & VV_COPYONWRITE)
4225 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4226 	if (vp->v_vflag & VV_SYSTEM)
4227 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4228 	if (vp->v_vflag & VV_PROCDEP)
4229 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4230 	if (vp->v_vflag & VV_DELETED)
4231 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4232 	if (vp->v_vflag & VV_MD)
4233 		strlcat(buf, "|VV_MD", sizeof(buf));
4234 	if (vp->v_vflag & VV_FORCEINSMQ)
4235 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4236 	if (vp->v_vflag & VV_READLINK)
4237 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4238 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4239 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4240 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4241 	if (flags != 0) {
4242 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4243 		strlcat(buf, buf2, sizeof(buf));
4244 	}
4245 	if (vp->v_iflag & VI_MOUNT)
4246 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4247 	if (vp->v_iflag & VI_DOINGINACT)
4248 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4249 	if (vp->v_iflag & VI_OWEINACT)
4250 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4251 	if (vp->v_iflag & VI_DEFINACT)
4252 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4253 	if (vp->v_iflag & VI_FOPENING)
4254 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4255 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4256 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4257 	if (flags != 0) {
4258 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4259 		strlcat(buf, buf2, sizeof(buf));
4260 	}
4261 	if (vp->v_mflag & VMP_LAZYLIST)
4262 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4263 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4264 	if (flags != 0) {
4265 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4266 		strlcat(buf, buf2, sizeof(buf));
4267 	}
4268 	printf("    flags (%s)", buf + 1);
4269 	if (mtx_owned(VI_MTX(vp)))
4270 		printf(" VI_LOCKed");
4271 	printf("\n");
4272 	if (vp->v_object != NULL)
4273 		printf("    v_object %p ref %d pages %d "
4274 		    "cleanbuf %d dirtybuf %d\n",
4275 		    vp->v_object, vp->v_object->ref_count,
4276 		    vp->v_object->resident_page_count,
4277 		    vp->v_bufobj.bo_clean.bv_cnt,
4278 		    vp->v_bufobj.bo_dirty.bv_cnt);
4279 	printf("    ");
4280 	lockmgr_printinfo(vp->v_vnlock);
4281 	if (vp->v_data != NULL)
4282 		VOP_PRINT(vp);
4283 }
4284 
4285 #ifdef DDB
4286 /*
4287  * List all of the locked vnodes in the system.
4288  * Called when debugging the kernel.
4289  */
4290 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4291 {
4292 	struct mount *mp;
4293 	struct vnode *vp;
4294 
4295 	/*
4296 	 * Note: because this is DDB, we can't obey the locking semantics
4297 	 * for these structures, which means we could catch an inconsistent
4298 	 * state and dereference a nasty pointer.  Not much to be done
4299 	 * about that.
4300 	 */
4301 	db_printf("Locked vnodes\n");
4302 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4303 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4304 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4305 				vn_printf(vp, "vnode ");
4306 		}
4307 	}
4308 }
4309 
4310 /*
4311  * Show details about the given vnode.
4312  */
4313 DB_SHOW_COMMAND(vnode, db_show_vnode)
4314 {
4315 	struct vnode *vp;
4316 
4317 	if (!have_addr)
4318 		return;
4319 	vp = (struct vnode *)addr;
4320 	vn_printf(vp, "vnode ");
4321 }
4322 
4323 /*
4324  * Show details about the given mount point.
4325  */
4326 DB_SHOW_COMMAND(mount, db_show_mount)
4327 {
4328 	struct mount *mp;
4329 	struct vfsopt *opt;
4330 	struct statfs *sp;
4331 	struct vnode *vp;
4332 	char buf[512];
4333 	uint64_t mflags;
4334 	u_int flags;
4335 
4336 	if (!have_addr) {
4337 		/* No address given, print short info about all mount points. */
4338 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4339 			db_printf("%p %s on %s (%s)\n", mp,
4340 			    mp->mnt_stat.f_mntfromname,
4341 			    mp->mnt_stat.f_mntonname,
4342 			    mp->mnt_stat.f_fstypename);
4343 			if (db_pager_quit)
4344 				break;
4345 		}
4346 		db_printf("\nMore info: show mount <addr>\n");
4347 		return;
4348 	}
4349 
4350 	mp = (struct mount *)addr;
4351 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4352 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4353 
4354 	buf[0] = '\0';
4355 	mflags = mp->mnt_flag;
4356 #define	MNT_FLAG(flag)	do {						\
4357 	if (mflags & (flag)) {						\
4358 		if (buf[0] != '\0')					\
4359 			strlcat(buf, ", ", sizeof(buf));		\
4360 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4361 		mflags &= ~(flag);					\
4362 	}								\
4363 } while (0)
4364 	MNT_FLAG(MNT_RDONLY);
4365 	MNT_FLAG(MNT_SYNCHRONOUS);
4366 	MNT_FLAG(MNT_NOEXEC);
4367 	MNT_FLAG(MNT_NOSUID);
4368 	MNT_FLAG(MNT_NFS4ACLS);
4369 	MNT_FLAG(MNT_UNION);
4370 	MNT_FLAG(MNT_ASYNC);
4371 	MNT_FLAG(MNT_SUIDDIR);
4372 	MNT_FLAG(MNT_SOFTDEP);
4373 	MNT_FLAG(MNT_NOSYMFOLLOW);
4374 	MNT_FLAG(MNT_GJOURNAL);
4375 	MNT_FLAG(MNT_MULTILABEL);
4376 	MNT_FLAG(MNT_ACLS);
4377 	MNT_FLAG(MNT_NOATIME);
4378 	MNT_FLAG(MNT_NOCLUSTERR);
4379 	MNT_FLAG(MNT_NOCLUSTERW);
4380 	MNT_FLAG(MNT_SUJ);
4381 	MNT_FLAG(MNT_EXRDONLY);
4382 	MNT_FLAG(MNT_EXPORTED);
4383 	MNT_FLAG(MNT_DEFEXPORTED);
4384 	MNT_FLAG(MNT_EXPORTANON);
4385 	MNT_FLAG(MNT_EXKERB);
4386 	MNT_FLAG(MNT_EXPUBLIC);
4387 	MNT_FLAG(MNT_LOCAL);
4388 	MNT_FLAG(MNT_QUOTA);
4389 	MNT_FLAG(MNT_ROOTFS);
4390 	MNT_FLAG(MNT_USER);
4391 	MNT_FLAG(MNT_IGNORE);
4392 	MNT_FLAG(MNT_UPDATE);
4393 	MNT_FLAG(MNT_DELEXPORT);
4394 	MNT_FLAG(MNT_RELOAD);
4395 	MNT_FLAG(MNT_FORCE);
4396 	MNT_FLAG(MNT_SNAPSHOT);
4397 	MNT_FLAG(MNT_BYFSID);
4398 #undef MNT_FLAG
4399 	if (mflags != 0) {
4400 		if (buf[0] != '\0')
4401 			strlcat(buf, ", ", sizeof(buf));
4402 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4403 		    "0x%016jx", mflags);
4404 	}
4405 	db_printf("    mnt_flag = %s\n", buf);
4406 
4407 	buf[0] = '\0';
4408 	flags = mp->mnt_kern_flag;
4409 #define	MNT_KERN_FLAG(flag)	do {					\
4410 	if (flags & (flag)) {						\
4411 		if (buf[0] != '\0')					\
4412 			strlcat(buf, ", ", sizeof(buf));		\
4413 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4414 		flags &= ~(flag);					\
4415 	}								\
4416 } while (0)
4417 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4418 	MNT_KERN_FLAG(MNTK_ASYNC);
4419 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4420 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4421 	MNT_KERN_FLAG(MNTK_DRAINING);
4422 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4423 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4424 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4425 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4426 	MNT_KERN_FLAG(MNTK_RECURSE);
4427 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4428 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4429 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4430 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4431 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4432 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4433 	MNT_KERN_FLAG(MNTK_NOASYNC);
4434 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4435 	MNT_KERN_FLAG(MNTK_MWAIT);
4436 	MNT_KERN_FLAG(MNTK_SUSPEND);
4437 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4438 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4439 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4440 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4441 #undef MNT_KERN_FLAG
4442 	if (flags != 0) {
4443 		if (buf[0] != '\0')
4444 			strlcat(buf, ", ", sizeof(buf));
4445 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4446 		    "0x%08x", flags);
4447 	}
4448 	db_printf("    mnt_kern_flag = %s\n", buf);
4449 
4450 	db_printf("    mnt_opt = ");
4451 	opt = TAILQ_FIRST(mp->mnt_opt);
4452 	if (opt != NULL) {
4453 		db_printf("%s", opt->name);
4454 		opt = TAILQ_NEXT(opt, link);
4455 		while (opt != NULL) {
4456 			db_printf(", %s", opt->name);
4457 			opt = TAILQ_NEXT(opt, link);
4458 		}
4459 	}
4460 	db_printf("\n");
4461 
4462 	sp = &mp->mnt_stat;
4463 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4464 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4465 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4466 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4467 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4468 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4469 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4470 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4471 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4472 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4473 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4474 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4475 
4476 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4477 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4478 	if (jailed(mp->mnt_cred))
4479 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4480 	db_printf(" }\n");
4481 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4482 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4483 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4484 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4485 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4486 	    mp->mnt_lazyvnodelistsize);
4487 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4488 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4489 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4490 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4491 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4492 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4493 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4494 	db_printf("    mnt_secondary_accwrites = %d\n",
4495 	    mp->mnt_secondary_accwrites);
4496 	db_printf("    mnt_gjprovider = %s\n",
4497 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4498 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4499 
4500 	db_printf("\n\nList of active vnodes\n");
4501 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4502 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4503 			vn_printf(vp, "vnode ");
4504 			if (db_pager_quit)
4505 				break;
4506 		}
4507 	}
4508 	db_printf("\n\nList of inactive vnodes\n");
4509 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4510 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4511 			vn_printf(vp, "vnode ");
4512 			if (db_pager_quit)
4513 				break;
4514 		}
4515 	}
4516 }
4517 #endif	/* DDB */
4518 
4519 /*
4520  * Fill in a struct xvfsconf based on a struct vfsconf.
4521  */
4522 static int
4523 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4524 {
4525 	struct xvfsconf xvfsp;
4526 
4527 	bzero(&xvfsp, sizeof(xvfsp));
4528 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4529 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4530 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4531 	xvfsp.vfc_flags = vfsp->vfc_flags;
4532 	/*
4533 	 * These are unused in userland, we keep them
4534 	 * to not break binary compatibility.
4535 	 */
4536 	xvfsp.vfc_vfsops = NULL;
4537 	xvfsp.vfc_next = NULL;
4538 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4539 }
4540 
4541 #ifdef COMPAT_FREEBSD32
4542 struct xvfsconf32 {
4543 	uint32_t	vfc_vfsops;
4544 	char		vfc_name[MFSNAMELEN];
4545 	int32_t		vfc_typenum;
4546 	int32_t		vfc_refcount;
4547 	int32_t		vfc_flags;
4548 	uint32_t	vfc_next;
4549 };
4550 
4551 static int
4552 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4553 {
4554 	struct xvfsconf32 xvfsp;
4555 
4556 	bzero(&xvfsp, sizeof(xvfsp));
4557 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4558 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4559 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4560 	xvfsp.vfc_flags = vfsp->vfc_flags;
4561 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4562 }
4563 #endif
4564 
4565 /*
4566  * Top level filesystem related information gathering.
4567  */
4568 static int
4569 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4570 {
4571 	struct vfsconf *vfsp;
4572 	int error;
4573 
4574 	error = 0;
4575 	vfsconf_slock();
4576 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4577 #ifdef COMPAT_FREEBSD32
4578 		if (req->flags & SCTL_MASK32)
4579 			error = vfsconf2x32(req, vfsp);
4580 		else
4581 #endif
4582 			error = vfsconf2x(req, vfsp);
4583 		if (error)
4584 			break;
4585 	}
4586 	vfsconf_sunlock();
4587 	return (error);
4588 }
4589 
4590 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4591     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4592     "S,xvfsconf", "List of all configured filesystems");
4593 
4594 #ifndef BURN_BRIDGES
4595 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4596 
4597 static int
4598 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4599 {
4600 	int *name = (int *)arg1 - 1;	/* XXX */
4601 	u_int namelen = arg2 + 1;	/* XXX */
4602 	struct vfsconf *vfsp;
4603 
4604 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4605 	    "please rebuild world\n");
4606 
4607 #if 1 || defined(COMPAT_PRELITE2)
4608 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4609 	if (namelen == 1)
4610 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4611 #endif
4612 
4613 	switch (name[1]) {
4614 	case VFS_MAXTYPENUM:
4615 		if (namelen != 2)
4616 			return (ENOTDIR);
4617 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4618 	case VFS_CONF:
4619 		if (namelen != 3)
4620 			return (ENOTDIR);	/* overloaded */
4621 		vfsconf_slock();
4622 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4623 			if (vfsp->vfc_typenum == name[2])
4624 				break;
4625 		}
4626 		vfsconf_sunlock();
4627 		if (vfsp == NULL)
4628 			return (EOPNOTSUPP);
4629 #ifdef COMPAT_FREEBSD32
4630 		if (req->flags & SCTL_MASK32)
4631 			return (vfsconf2x32(req, vfsp));
4632 		else
4633 #endif
4634 			return (vfsconf2x(req, vfsp));
4635 	}
4636 	return (EOPNOTSUPP);
4637 }
4638 
4639 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4640     CTLFLAG_MPSAFE, vfs_sysctl,
4641     "Generic filesystem");
4642 
4643 #if 1 || defined(COMPAT_PRELITE2)
4644 
4645 static int
4646 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4647 {
4648 	int error;
4649 	struct vfsconf *vfsp;
4650 	struct ovfsconf ovfs;
4651 
4652 	vfsconf_slock();
4653 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4654 		bzero(&ovfs, sizeof(ovfs));
4655 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4656 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4657 		ovfs.vfc_index = vfsp->vfc_typenum;
4658 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4659 		ovfs.vfc_flags = vfsp->vfc_flags;
4660 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4661 		if (error != 0) {
4662 			vfsconf_sunlock();
4663 			return (error);
4664 		}
4665 	}
4666 	vfsconf_sunlock();
4667 	return (0);
4668 }
4669 
4670 #endif /* 1 || COMPAT_PRELITE2 */
4671 #endif /* !BURN_BRIDGES */
4672 
4673 #define KINFO_VNODESLOP		10
4674 #ifdef notyet
4675 /*
4676  * Dump vnode list (via sysctl).
4677  */
4678 /* ARGSUSED */
4679 static int
4680 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4681 {
4682 	struct xvnode *xvn;
4683 	struct mount *mp;
4684 	struct vnode *vp;
4685 	int error, len, n;
4686 
4687 	/*
4688 	 * Stale numvnodes access is not fatal here.
4689 	 */
4690 	req->lock = 0;
4691 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4692 	if (!req->oldptr)
4693 		/* Make an estimate */
4694 		return (SYSCTL_OUT(req, 0, len));
4695 
4696 	error = sysctl_wire_old_buffer(req, 0);
4697 	if (error != 0)
4698 		return (error);
4699 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4700 	n = 0;
4701 	mtx_lock(&mountlist_mtx);
4702 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4703 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4704 			continue;
4705 		MNT_ILOCK(mp);
4706 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4707 			if (n == len)
4708 				break;
4709 			vref(vp);
4710 			xvn[n].xv_size = sizeof *xvn;
4711 			xvn[n].xv_vnode = vp;
4712 			xvn[n].xv_id = 0;	/* XXX compat */
4713 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4714 			XV_COPY(usecount);
4715 			XV_COPY(writecount);
4716 			XV_COPY(holdcnt);
4717 			XV_COPY(mount);
4718 			XV_COPY(numoutput);
4719 			XV_COPY(type);
4720 #undef XV_COPY
4721 			xvn[n].xv_flag = vp->v_vflag;
4722 
4723 			switch (vp->v_type) {
4724 			case VREG:
4725 			case VDIR:
4726 			case VLNK:
4727 				break;
4728 			case VBLK:
4729 			case VCHR:
4730 				if (vp->v_rdev == NULL) {
4731 					vrele(vp);
4732 					continue;
4733 				}
4734 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4735 				break;
4736 			case VSOCK:
4737 				xvn[n].xv_socket = vp->v_socket;
4738 				break;
4739 			case VFIFO:
4740 				xvn[n].xv_fifo = vp->v_fifoinfo;
4741 				break;
4742 			case VNON:
4743 			case VBAD:
4744 			default:
4745 				/* shouldn't happen? */
4746 				vrele(vp);
4747 				continue;
4748 			}
4749 			vrele(vp);
4750 			++n;
4751 		}
4752 		MNT_IUNLOCK(mp);
4753 		mtx_lock(&mountlist_mtx);
4754 		vfs_unbusy(mp);
4755 		if (n == len)
4756 			break;
4757 	}
4758 	mtx_unlock(&mountlist_mtx);
4759 
4760 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4761 	free(xvn, M_TEMP);
4762 	return (error);
4763 }
4764 
4765 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4766     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4767     "");
4768 #endif
4769 
4770 static void
4771 unmount_or_warn(struct mount *mp)
4772 {
4773 	int error;
4774 
4775 	error = dounmount(mp, MNT_FORCE, curthread);
4776 	if (error != 0) {
4777 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4778 		if (error == EBUSY)
4779 			printf("BUSY)\n");
4780 		else
4781 			printf("%d)\n", error);
4782 	}
4783 }
4784 
4785 /*
4786  * Unmount all filesystems. The list is traversed in reverse order
4787  * of mounting to avoid dependencies.
4788  */
4789 void
4790 vfs_unmountall(void)
4791 {
4792 	struct mount *mp, *tmp;
4793 
4794 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4795 
4796 	/*
4797 	 * Since this only runs when rebooting, it is not interlocked.
4798 	 */
4799 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4800 		vfs_ref(mp);
4801 
4802 		/*
4803 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4804 		 * unmount of the latter.
4805 		 */
4806 		if (mp == rootdevmp)
4807 			continue;
4808 
4809 		unmount_or_warn(mp);
4810 	}
4811 
4812 	if (rootdevmp != NULL)
4813 		unmount_or_warn(rootdevmp);
4814 }
4815 
4816 static void
4817 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4818 {
4819 
4820 	ASSERT_VI_LOCKED(vp, __func__);
4821 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4822 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4823 		vdropl(vp);
4824 		return;
4825 	}
4826 	if (vn_lock(vp, lkflags) == 0) {
4827 		VI_LOCK(vp);
4828 		vinactive(vp);
4829 		VOP_UNLOCK(vp);
4830 		vdropl(vp);
4831 		return;
4832 	}
4833 	vdefer_inactive_unlocked(vp);
4834 }
4835 
4836 static int
4837 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4838 {
4839 
4840 	return (vp->v_iflag & VI_DEFINACT);
4841 }
4842 
4843 static void __noinline
4844 vfs_periodic_inactive(struct mount *mp, int flags)
4845 {
4846 	struct vnode *vp, *mvp;
4847 	int lkflags;
4848 
4849 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4850 	if (flags != MNT_WAIT)
4851 		lkflags |= LK_NOWAIT;
4852 
4853 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4854 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4855 			VI_UNLOCK(vp);
4856 			continue;
4857 		}
4858 		vp->v_iflag &= ~VI_DEFINACT;
4859 		vfs_deferred_inactive(vp, lkflags);
4860 	}
4861 }
4862 
4863 static inline bool
4864 vfs_want_msync(struct vnode *vp)
4865 {
4866 	struct vm_object *obj;
4867 
4868 	/*
4869 	 * This test may be performed without any locks held.
4870 	 * We rely on vm_object's type stability.
4871 	 */
4872 	if (vp->v_vflag & VV_NOSYNC)
4873 		return (false);
4874 	obj = vp->v_object;
4875 	return (obj != NULL && vm_object_mightbedirty(obj));
4876 }
4877 
4878 static int
4879 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4880 {
4881 
4882 	if (vp->v_vflag & VV_NOSYNC)
4883 		return (false);
4884 	if (vp->v_iflag & VI_DEFINACT)
4885 		return (true);
4886 	return (vfs_want_msync(vp));
4887 }
4888 
4889 static void __noinline
4890 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4891 {
4892 	struct vnode *vp, *mvp;
4893 	struct vm_object *obj;
4894 	int lkflags, objflags;
4895 	bool seen_defer;
4896 
4897 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4898 	if (flags != MNT_WAIT) {
4899 		lkflags |= LK_NOWAIT;
4900 		objflags = OBJPC_NOSYNC;
4901 	} else {
4902 		objflags = OBJPC_SYNC;
4903 	}
4904 
4905 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4906 		seen_defer = false;
4907 		if (vp->v_iflag & VI_DEFINACT) {
4908 			vp->v_iflag &= ~VI_DEFINACT;
4909 			seen_defer = true;
4910 		}
4911 		if (!vfs_want_msync(vp)) {
4912 			if (seen_defer)
4913 				vfs_deferred_inactive(vp, lkflags);
4914 			else
4915 				VI_UNLOCK(vp);
4916 			continue;
4917 		}
4918 		if (vget(vp, lkflags) == 0) {
4919 			obj = vp->v_object;
4920 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4921 				VM_OBJECT_WLOCK(obj);
4922 				vm_object_page_clean(obj, 0, 0, objflags);
4923 				VM_OBJECT_WUNLOCK(obj);
4924 			}
4925 			vput(vp);
4926 			if (seen_defer)
4927 				vdrop(vp);
4928 		} else {
4929 			if (seen_defer)
4930 				vdefer_inactive_unlocked(vp);
4931 		}
4932 	}
4933 }
4934 
4935 void
4936 vfs_periodic(struct mount *mp, int flags)
4937 {
4938 
4939 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4940 
4941 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4942 		vfs_periodic_inactive(mp, flags);
4943 	else
4944 		vfs_periodic_msync_inactive(mp, flags);
4945 }
4946 
4947 static void
4948 destroy_vpollinfo_free(struct vpollinfo *vi)
4949 {
4950 
4951 	knlist_destroy(&vi->vpi_selinfo.si_note);
4952 	mtx_destroy(&vi->vpi_lock);
4953 	free(vi, M_VNODEPOLL);
4954 }
4955 
4956 static void
4957 destroy_vpollinfo(struct vpollinfo *vi)
4958 {
4959 
4960 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4961 	seldrain(&vi->vpi_selinfo);
4962 	destroy_vpollinfo_free(vi);
4963 }
4964 
4965 /*
4966  * Initialize per-vnode helper structure to hold poll-related state.
4967  */
4968 void
4969 v_addpollinfo(struct vnode *vp)
4970 {
4971 	struct vpollinfo *vi;
4972 
4973 	if (vp->v_pollinfo != NULL)
4974 		return;
4975 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
4976 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4977 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4978 	    vfs_knlunlock, vfs_knl_assert_lock);
4979 	VI_LOCK(vp);
4980 	if (vp->v_pollinfo != NULL) {
4981 		VI_UNLOCK(vp);
4982 		destroy_vpollinfo_free(vi);
4983 		return;
4984 	}
4985 	vp->v_pollinfo = vi;
4986 	VI_UNLOCK(vp);
4987 }
4988 
4989 /*
4990  * Record a process's interest in events which might happen to
4991  * a vnode.  Because poll uses the historic select-style interface
4992  * internally, this routine serves as both the ``check for any
4993  * pending events'' and the ``record my interest in future events''
4994  * functions.  (These are done together, while the lock is held,
4995  * to avoid race conditions.)
4996  */
4997 int
4998 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4999 {
5000 
5001 	v_addpollinfo(vp);
5002 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5003 	if (vp->v_pollinfo->vpi_revents & events) {
5004 		/*
5005 		 * This leaves events we are not interested
5006 		 * in available for the other process which
5007 		 * which presumably had requested them
5008 		 * (otherwise they would never have been
5009 		 * recorded).
5010 		 */
5011 		events &= vp->v_pollinfo->vpi_revents;
5012 		vp->v_pollinfo->vpi_revents &= ~events;
5013 
5014 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5015 		return (events);
5016 	}
5017 	vp->v_pollinfo->vpi_events |= events;
5018 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5019 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5020 	return (0);
5021 }
5022 
5023 /*
5024  * Routine to create and manage a filesystem syncer vnode.
5025  */
5026 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5027 static int	sync_fsync(struct  vop_fsync_args *);
5028 static int	sync_inactive(struct  vop_inactive_args *);
5029 static int	sync_reclaim(struct  vop_reclaim_args *);
5030 
5031 static struct vop_vector sync_vnodeops = {
5032 	.vop_bypass =	VOP_EOPNOTSUPP,
5033 	.vop_close =	sync_close,		/* close */
5034 	.vop_fsync =	sync_fsync,		/* fsync */
5035 	.vop_inactive =	sync_inactive,	/* inactive */
5036 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5037 	.vop_reclaim =	sync_reclaim,	/* reclaim */
5038 	.vop_lock1 =	vop_stdlock,	/* lock */
5039 	.vop_unlock =	vop_stdunlock,	/* unlock */
5040 	.vop_islocked =	vop_stdislocked,	/* islocked */
5041 };
5042 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5043 
5044 /*
5045  * Create a new filesystem syncer vnode for the specified mount point.
5046  */
5047 void
5048 vfs_allocate_syncvnode(struct mount *mp)
5049 {
5050 	struct vnode *vp;
5051 	struct bufobj *bo;
5052 	static long start, incr, next;
5053 	int error;
5054 
5055 	/* Allocate a new vnode */
5056 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5057 	if (error != 0)
5058 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5059 	vp->v_type = VNON;
5060 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5061 	vp->v_vflag |= VV_FORCEINSMQ;
5062 	error = insmntque1(vp, mp);
5063 	if (error != 0)
5064 		panic("vfs_allocate_syncvnode: insmntque() failed");
5065 	vp->v_vflag &= ~VV_FORCEINSMQ;
5066 	VOP_UNLOCK(vp);
5067 	/*
5068 	 * Place the vnode onto the syncer worklist. We attempt to
5069 	 * scatter them about on the list so that they will go off
5070 	 * at evenly distributed times even if all the filesystems
5071 	 * are mounted at once.
5072 	 */
5073 	next += incr;
5074 	if (next == 0 || next > syncer_maxdelay) {
5075 		start /= 2;
5076 		incr /= 2;
5077 		if (start == 0) {
5078 			start = syncer_maxdelay / 2;
5079 			incr = syncer_maxdelay;
5080 		}
5081 		next = start;
5082 	}
5083 	bo = &vp->v_bufobj;
5084 	BO_LOCK(bo);
5085 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5086 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5087 	mtx_lock(&sync_mtx);
5088 	sync_vnode_count++;
5089 	if (mp->mnt_syncer == NULL) {
5090 		mp->mnt_syncer = vp;
5091 		vp = NULL;
5092 	}
5093 	mtx_unlock(&sync_mtx);
5094 	BO_UNLOCK(bo);
5095 	if (vp != NULL) {
5096 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5097 		vgone(vp);
5098 		vput(vp);
5099 	}
5100 }
5101 
5102 void
5103 vfs_deallocate_syncvnode(struct mount *mp)
5104 {
5105 	struct vnode *vp;
5106 
5107 	mtx_lock(&sync_mtx);
5108 	vp = mp->mnt_syncer;
5109 	if (vp != NULL)
5110 		mp->mnt_syncer = NULL;
5111 	mtx_unlock(&sync_mtx);
5112 	if (vp != NULL)
5113 		vrele(vp);
5114 }
5115 
5116 /*
5117  * Do a lazy sync of the filesystem.
5118  */
5119 static int
5120 sync_fsync(struct vop_fsync_args *ap)
5121 {
5122 	struct vnode *syncvp = ap->a_vp;
5123 	struct mount *mp = syncvp->v_mount;
5124 	int error, save;
5125 	struct bufobj *bo;
5126 
5127 	/*
5128 	 * We only need to do something if this is a lazy evaluation.
5129 	 */
5130 	if (ap->a_waitfor != MNT_LAZY)
5131 		return (0);
5132 
5133 	/*
5134 	 * Move ourselves to the back of the sync list.
5135 	 */
5136 	bo = &syncvp->v_bufobj;
5137 	BO_LOCK(bo);
5138 	vn_syncer_add_to_worklist(bo, syncdelay);
5139 	BO_UNLOCK(bo);
5140 
5141 	/*
5142 	 * Walk the list of vnodes pushing all that are dirty and
5143 	 * not already on the sync list.
5144 	 */
5145 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5146 		return (0);
5147 	VOP_UNLOCK(syncvp);
5148 	save = curthread_pflags_set(TDP_SYNCIO);
5149 	/*
5150 	 * The filesystem at hand may be idle with free vnodes stored in the
5151 	 * batch.  Return them instead of letting them stay there indefinitely.
5152 	 */
5153 	vfs_periodic(mp, MNT_NOWAIT);
5154 	error = VFS_SYNC(mp, MNT_LAZY);
5155 	curthread_pflags_restore(save);
5156 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5157 	vfs_unbusy(mp);
5158 	return (error);
5159 }
5160 
5161 /*
5162  * The syncer vnode is no referenced.
5163  */
5164 static int
5165 sync_inactive(struct vop_inactive_args *ap)
5166 {
5167 
5168 	vgone(ap->a_vp);
5169 	return (0);
5170 }
5171 
5172 /*
5173  * The syncer vnode is no longer needed and is being decommissioned.
5174  *
5175  * Modifications to the worklist must be protected by sync_mtx.
5176  */
5177 static int
5178 sync_reclaim(struct vop_reclaim_args *ap)
5179 {
5180 	struct vnode *vp = ap->a_vp;
5181 	struct bufobj *bo;
5182 
5183 	bo = &vp->v_bufobj;
5184 	BO_LOCK(bo);
5185 	mtx_lock(&sync_mtx);
5186 	if (vp->v_mount->mnt_syncer == vp)
5187 		vp->v_mount->mnt_syncer = NULL;
5188 	if (bo->bo_flag & BO_ONWORKLST) {
5189 		LIST_REMOVE(bo, bo_synclist);
5190 		syncer_worklist_len--;
5191 		sync_vnode_count--;
5192 		bo->bo_flag &= ~BO_ONWORKLST;
5193 	}
5194 	mtx_unlock(&sync_mtx);
5195 	BO_UNLOCK(bo);
5196 
5197 	return (0);
5198 }
5199 
5200 int
5201 vn_need_pageq_flush(struct vnode *vp)
5202 {
5203 	struct vm_object *obj;
5204 
5205 	obj = vp->v_object;
5206 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5207 	    vm_object_mightbedirty(obj));
5208 }
5209 
5210 /*
5211  * Check if vnode represents a disk device
5212  */
5213 bool
5214 vn_isdisk_error(struct vnode *vp, int *errp)
5215 {
5216 	int error;
5217 
5218 	if (vp->v_type != VCHR) {
5219 		error = ENOTBLK;
5220 		goto out;
5221 	}
5222 	error = 0;
5223 	dev_lock();
5224 	if (vp->v_rdev == NULL)
5225 		error = ENXIO;
5226 	else if (vp->v_rdev->si_devsw == NULL)
5227 		error = ENXIO;
5228 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5229 		error = ENOTBLK;
5230 	dev_unlock();
5231 out:
5232 	*errp = error;
5233 	return (error == 0);
5234 }
5235 
5236 bool
5237 vn_isdisk(struct vnode *vp)
5238 {
5239 	int error;
5240 
5241 	return (vn_isdisk_error(vp, &error));
5242 }
5243 
5244 /*
5245  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5246  * the comment above cache_fplookup for details.
5247  */
5248 int
5249 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5250 {
5251 	int error;
5252 
5253 	VFS_SMR_ASSERT_ENTERED();
5254 
5255 	/* Check the owner. */
5256 	if (cred->cr_uid == file_uid) {
5257 		if (file_mode & S_IXUSR)
5258 			return (0);
5259 		goto out_error;
5260 	}
5261 
5262 	/* Otherwise, check the groups (first match) */
5263 	if (groupmember(file_gid, cred)) {
5264 		if (file_mode & S_IXGRP)
5265 			return (0);
5266 		goto out_error;
5267 	}
5268 
5269 	/* Otherwise, check everyone else. */
5270 	if (file_mode & S_IXOTH)
5271 		return (0);
5272 out_error:
5273 	/*
5274 	 * Permission check failed, but it is possible denial will get overwritten
5275 	 * (e.g., when root is traversing through a 700 directory owned by someone
5276 	 * else).
5277 	 *
5278 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5279 	 * modules overriding this result. It's quite unclear what semantics
5280 	 * are allowed for them to operate, thus for safety we don't call them
5281 	 * from within the SMR section. This also means if any such modules
5282 	 * are present, we have to let the regular lookup decide.
5283 	 */
5284 	error = priv_check_cred_vfs_lookup_nomac(cred);
5285 	switch (error) {
5286 	case 0:
5287 		return (0);
5288 	case EAGAIN:
5289 		/*
5290 		 * MAC modules present.
5291 		 */
5292 		return (EAGAIN);
5293 	case EPERM:
5294 		return (EACCES);
5295 	default:
5296 		return (error);
5297 	}
5298 }
5299 
5300 /*
5301  * Common filesystem object access control check routine.  Accepts a
5302  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5303  * Returns 0 on success, or an errno on failure.
5304  */
5305 int
5306 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5307     accmode_t accmode, struct ucred *cred)
5308 {
5309 	accmode_t dac_granted;
5310 	accmode_t priv_granted;
5311 
5312 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5313 	    ("invalid bit in accmode"));
5314 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5315 	    ("VAPPEND without VWRITE"));
5316 
5317 	/*
5318 	 * Look for a normal, non-privileged way to access the file/directory
5319 	 * as requested.  If it exists, go with that.
5320 	 */
5321 
5322 	dac_granted = 0;
5323 
5324 	/* Check the owner. */
5325 	if (cred->cr_uid == file_uid) {
5326 		dac_granted |= VADMIN;
5327 		if (file_mode & S_IXUSR)
5328 			dac_granted |= VEXEC;
5329 		if (file_mode & S_IRUSR)
5330 			dac_granted |= VREAD;
5331 		if (file_mode & S_IWUSR)
5332 			dac_granted |= (VWRITE | VAPPEND);
5333 
5334 		if ((accmode & dac_granted) == accmode)
5335 			return (0);
5336 
5337 		goto privcheck;
5338 	}
5339 
5340 	/* Otherwise, check the groups (first match) */
5341 	if (groupmember(file_gid, cred)) {
5342 		if (file_mode & S_IXGRP)
5343 			dac_granted |= VEXEC;
5344 		if (file_mode & S_IRGRP)
5345 			dac_granted |= VREAD;
5346 		if (file_mode & S_IWGRP)
5347 			dac_granted |= (VWRITE | VAPPEND);
5348 
5349 		if ((accmode & dac_granted) == accmode)
5350 			return (0);
5351 
5352 		goto privcheck;
5353 	}
5354 
5355 	/* Otherwise, check everyone else. */
5356 	if (file_mode & S_IXOTH)
5357 		dac_granted |= VEXEC;
5358 	if (file_mode & S_IROTH)
5359 		dac_granted |= VREAD;
5360 	if (file_mode & S_IWOTH)
5361 		dac_granted |= (VWRITE | VAPPEND);
5362 	if ((accmode & dac_granted) == accmode)
5363 		return (0);
5364 
5365 privcheck:
5366 	/*
5367 	 * Build a privilege mask to determine if the set of privileges
5368 	 * satisfies the requirements when combined with the granted mask
5369 	 * from above.  For each privilege, if the privilege is required,
5370 	 * bitwise or the request type onto the priv_granted mask.
5371 	 */
5372 	priv_granted = 0;
5373 
5374 	if (type == VDIR) {
5375 		/*
5376 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5377 		 * requests, instead of PRIV_VFS_EXEC.
5378 		 */
5379 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5380 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5381 			priv_granted |= VEXEC;
5382 	} else {
5383 		/*
5384 		 * Ensure that at least one execute bit is on. Otherwise,
5385 		 * a privileged user will always succeed, and we don't want
5386 		 * this to happen unless the file really is executable.
5387 		 */
5388 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5389 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5390 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5391 			priv_granted |= VEXEC;
5392 	}
5393 
5394 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5395 	    !priv_check_cred(cred, PRIV_VFS_READ))
5396 		priv_granted |= VREAD;
5397 
5398 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5399 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5400 		priv_granted |= (VWRITE | VAPPEND);
5401 
5402 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5403 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5404 		priv_granted |= VADMIN;
5405 
5406 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5407 		return (0);
5408 	}
5409 
5410 	return ((accmode & VADMIN) ? EPERM : EACCES);
5411 }
5412 
5413 /*
5414  * Credential check based on process requesting service, and per-attribute
5415  * permissions.
5416  */
5417 int
5418 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5419     struct thread *td, accmode_t accmode)
5420 {
5421 
5422 	/*
5423 	 * Kernel-invoked always succeeds.
5424 	 */
5425 	if (cred == NOCRED)
5426 		return (0);
5427 
5428 	/*
5429 	 * Do not allow privileged processes in jail to directly manipulate
5430 	 * system attributes.
5431 	 */
5432 	switch (attrnamespace) {
5433 	case EXTATTR_NAMESPACE_SYSTEM:
5434 		/* Potentially should be: return (EPERM); */
5435 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5436 	case EXTATTR_NAMESPACE_USER:
5437 		return (VOP_ACCESS(vp, accmode, cred, td));
5438 	default:
5439 		return (EPERM);
5440 	}
5441 }
5442 
5443 #ifdef DEBUG_VFS_LOCKS
5444 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5445 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5446     "Drop into debugger on lock violation");
5447 
5448 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5449 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5450     0, "Check for interlock across VOPs");
5451 
5452 int vfs_badlock_print = 1;	/* Print lock violations. */
5453 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5454     0, "Print lock violations");
5455 
5456 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5457 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5458     0, "Print vnode details on lock violations");
5459 
5460 #ifdef KDB
5461 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5462 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5463     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5464 #endif
5465 
5466 static void
5467 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5468 {
5469 
5470 #ifdef KDB
5471 	if (vfs_badlock_backtrace)
5472 		kdb_backtrace();
5473 #endif
5474 	if (vfs_badlock_vnode)
5475 		vn_printf(vp, "vnode ");
5476 	if (vfs_badlock_print)
5477 		printf("%s: %p %s\n", str, (void *)vp, msg);
5478 	if (vfs_badlock_ddb)
5479 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5480 }
5481 
5482 void
5483 assert_vi_locked(struct vnode *vp, const char *str)
5484 {
5485 
5486 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5487 		vfs_badlock("interlock is not locked but should be", str, vp);
5488 }
5489 
5490 void
5491 assert_vi_unlocked(struct vnode *vp, const char *str)
5492 {
5493 
5494 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5495 		vfs_badlock("interlock is locked but should not be", str, vp);
5496 }
5497 
5498 void
5499 assert_vop_locked(struct vnode *vp, const char *str)
5500 {
5501 	int locked;
5502 
5503 	if (KERNEL_PANICKED() || vp == NULL)
5504 		return;
5505 
5506 	locked = VOP_ISLOCKED(vp);
5507 	if (locked == 0 || locked == LK_EXCLOTHER)
5508 		vfs_badlock("is not locked but should be", str, vp);
5509 }
5510 
5511 void
5512 assert_vop_unlocked(struct vnode *vp, const char *str)
5513 {
5514 	if (KERNEL_PANICKED() || vp == NULL)
5515 		return;
5516 
5517 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5518 		vfs_badlock("is locked but should not be", str, vp);
5519 }
5520 
5521 void
5522 assert_vop_elocked(struct vnode *vp, const char *str)
5523 {
5524 	if (KERNEL_PANICKED() || vp == NULL)
5525 		return;
5526 
5527 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5528 		vfs_badlock("is not exclusive locked but should be", str, vp);
5529 }
5530 #endif /* DEBUG_VFS_LOCKS */
5531 
5532 void
5533 vop_rename_fail(struct vop_rename_args *ap)
5534 {
5535 
5536 	if (ap->a_tvp != NULL)
5537 		vput(ap->a_tvp);
5538 	if (ap->a_tdvp == ap->a_tvp)
5539 		vrele(ap->a_tdvp);
5540 	else
5541 		vput(ap->a_tdvp);
5542 	vrele(ap->a_fdvp);
5543 	vrele(ap->a_fvp);
5544 }
5545 
5546 void
5547 vop_rename_pre(void *ap)
5548 {
5549 	struct vop_rename_args *a = ap;
5550 
5551 #ifdef DEBUG_VFS_LOCKS
5552 	if (a->a_tvp)
5553 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5554 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5555 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5556 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5557 
5558 	/* Check the source (from). */
5559 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5560 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5561 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5562 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5563 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5564 
5565 	/* Check the target. */
5566 	if (a->a_tvp)
5567 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5568 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5569 #endif
5570 	/*
5571 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5572 	 * in vop_rename_post but that's not going to work out since some
5573 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5574 	 *
5575 	 * For now filesystems are expected to do the relevant calls after they
5576 	 * decide what vnodes to operate on.
5577 	 */
5578 	if (a->a_tdvp != a->a_fdvp)
5579 		vhold(a->a_fdvp);
5580 	if (a->a_tvp != a->a_fvp)
5581 		vhold(a->a_fvp);
5582 	vhold(a->a_tdvp);
5583 	if (a->a_tvp)
5584 		vhold(a->a_tvp);
5585 }
5586 
5587 #ifdef DEBUG_VFS_LOCKS
5588 void
5589 vop_fplookup_vexec_debugpre(void *ap __unused)
5590 {
5591 
5592 	VFS_SMR_ASSERT_ENTERED();
5593 }
5594 
5595 void
5596 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5597 {
5598 
5599 	VFS_SMR_ASSERT_ENTERED();
5600 }
5601 
5602 void
5603 vop_fplookup_symlink_debugpre(void *ap __unused)
5604 {
5605 
5606 	VFS_SMR_ASSERT_ENTERED();
5607 }
5608 
5609 void
5610 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5611 {
5612 
5613 	VFS_SMR_ASSERT_ENTERED();
5614 }
5615 
5616 static void
5617 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5618 {
5619 	if (vp->v_type == VCHR)
5620 		;
5621 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5622 		ASSERT_VOP_LOCKED(vp, name);
5623 	else
5624 		ASSERT_VOP_ELOCKED(vp, name);
5625 }
5626 
5627 void
5628 vop_fsync_debugpre(void *a)
5629 {
5630 	struct vop_fsync_args *ap;
5631 
5632 	ap = a;
5633 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5634 }
5635 
5636 void
5637 vop_fsync_debugpost(void *a, int rc __unused)
5638 {
5639 	struct vop_fsync_args *ap;
5640 
5641 	ap = a;
5642 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5643 }
5644 
5645 void
5646 vop_fdatasync_debugpre(void *a)
5647 {
5648 	struct vop_fdatasync_args *ap;
5649 
5650 	ap = a;
5651 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5652 }
5653 
5654 void
5655 vop_fdatasync_debugpost(void *a, int rc __unused)
5656 {
5657 	struct vop_fdatasync_args *ap;
5658 
5659 	ap = a;
5660 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5661 }
5662 
5663 void
5664 vop_strategy_debugpre(void *ap)
5665 {
5666 	struct vop_strategy_args *a;
5667 	struct buf *bp;
5668 
5669 	a = ap;
5670 	bp = a->a_bp;
5671 
5672 	/*
5673 	 * Cluster ops lock their component buffers but not the IO container.
5674 	 */
5675 	if ((bp->b_flags & B_CLUSTER) != 0)
5676 		return;
5677 
5678 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5679 		if (vfs_badlock_print)
5680 			printf(
5681 			    "VOP_STRATEGY: bp is not locked but should be\n");
5682 		if (vfs_badlock_ddb)
5683 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5684 	}
5685 }
5686 
5687 void
5688 vop_lock_debugpre(void *ap)
5689 {
5690 	struct vop_lock1_args *a = ap;
5691 
5692 	if ((a->a_flags & LK_INTERLOCK) == 0)
5693 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5694 	else
5695 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5696 }
5697 
5698 void
5699 vop_lock_debugpost(void *ap, int rc)
5700 {
5701 	struct vop_lock1_args *a = ap;
5702 
5703 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5704 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5705 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5706 }
5707 
5708 void
5709 vop_unlock_debugpre(void *ap)
5710 {
5711 	struct vop_unlock_args *a = ap;
5712 
5713 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
5714 }
5715 
5716 void
5717 vop_need_inactive_debugpre(void *ap)
5718 {
5719 	struct vop_need_inactive_args *a = ap;
5720 
5721 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5722 }
5723 
5724 void
5725 vop_need_inactive_debugpost(void *ap, int rc)
5726 {
5727 	struct vop_need_inactive_args *a = ap;
5728 
5729 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5730 }
5731 #endif
5732 
5733 void
5734 vop_create_pre(void *ap)
5735 {
5736 	struct vop_create_args *a;
5737 	struct vnode *dvp;
5738 
5739 	a = ap;
5740 	dvp = a->a_dvp;
5741 	vn_seqc_write_begin(dvp);
5742 }
5743 
5744 void
5745 vop_create_post(void *ap, int rc)
5746 {
5747 	struct vop_create_args *a;
5748 	struct vnode *dvp;
5749 
5750 	a = ap;
5751 	dvp = a->a_dvp;
5752 	vn_seqc_write_end(dvp);
5753 	if (!rc)
5754 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5755 }
5756 
5757 void
5758 vop_whiteout_pre(void *ap)
5759 {
5760 	struct vop_whiteout_args *a;
5761 	struct vnode *dvp;
5762 
5763 	a = ap;
5764 	dvp = a->a_dvp;
5765 	vn_seqc_write_begin(dvp);
5766 }
5767 
5768 void
5769 vop_whiteout_post(void *ap, int rc)
5770 {
5771 	struct vop_whiteout_args *a;
5772 	struct vnode *dvp;
5773 
5774 	a = ap;
5775 	dvp = a->a_dvp;
5776 	vn_seqc_write_end(dvp);
5777 }
5778 
5779 void
5780 vop_deleteextattr_pre(void *ap)
5781 {
5782 	struct vop_deleteextattr_args *a;
5783 	struct vnode *vp;
5784 
5785 	a = ap;
5786 	vp = a->a_vp;
5787 	vn_seqc_write_begin(vp);
5788 }
5789 
5790 void
5791 vop_deleteextattr_post(void *ap, int rc)
5792 {
5793 	struct vop_deleteextattr_args *a;
5794 	struct vnode *vp;
5795 
5796 	a = ap;
5797 	vp = a->a_vp;
5798 	vn_seqc_write_end(vp);
5799 	if (!rc)
5800 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5801 }
5802 
5803 void
5804 vop_link_pre(void *ap)
5805 {
5806 	struct vop_link_args *a;
5807 	struct vnode *vp, *tdvp;
5808 
5809 	a = ap;
5810 	vp = a->a_vp;
5811 	tdvp = a->a_tdvp;
5812 	vn_seqc_write_begin(vp);
5813 	vn_seqc_write_begin(tdvp);
5814 }
5815 
5816 void
5817 vop_link_post(void *ap, int rc)
5818 {
5819 	struct vop_link_args *a;
5820 	struct vnode *vp, *tdvp;
5821 
5822 	a = ap;
5823 	vp = a->a_vp;
5824 	tdvp = a->a_tdvp;
5825 	vn_seqc_write_end(vp);
5826 	vn_seqc_write_end(tdvp);
5827 	if (!rc) {
5828 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5829 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5830 	}
5831 }
5832 
5833 void
5834 vop_mkdir_pre(void *ap)
5835 {
5836 	struct vop_mkdir_args *a;
5837 	struct vnode *dvp;
5838 
5839 	a = ap;
5840 	dvp = a->a_dvp;
5841 	vn_seqc_write_begin(dvp);
5842 }
5843 
5844 void
5845 vop_mkdir_post(void *ap, int rc)
5846 {
5847 	struct vop_mkdir_args *a;
5848 	struct vnode *dvp;
5849 
5850 	a = ap;
5851 	dvp = a->a_dvp;
5852 	vn_seqc_write_end(dvp);
5853 	if (!rc)
5854 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5855 }
5856 
5857 #ifdef DEBUG_VFS_LOCKS
5858 void
5859 vop_mkdir_debugpost(void *ap, int rc)
5860 {
5861 	struct vop_mkdir_args *a;
5862 
5863 	a = ap;
5864 	if (!rc)
5865 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5866 }
5867 #endif
5868 
5869 void
5870 vop_mknod_pre(void *ap)
5871 {
5872 	struct vop_mknod_args *a;
5873 	struct vnode *dvp;
5874 
5875 	a = ap;
5876 	dvp = a->a_dvp;
5877 	vn_seqc_write_begin(dvp);
5878 }
5879 
5880 void
5881 vop_mknod_post(void *ap, int rc)
5882 {
5883 	struct vop_mknod_args *a;
5884 	struct vnode *dvp;
5885 
5886 	a = ap;
5887 	dvp = a->a_dvp;
5888 	vn_seqc_write_end(dvp);
5889 	if (!rc)
5890 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5891 }
5892 
5893 void
5894 vop_reclaim_post(void *ap, int rc)
5895 {
5896 	struct vop_reclaim_args *a;
5897 	struct vnode *vp;
5898 
5899 	a = ap;
5900 	vp = a->a_vp;
5901 	ASSERT_VOP_IN_SEQC(vp);
5902 	if (!rc)
5903 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5904 }
5905 
5906 void
5907 vop_remove_pre(void *ap)
5908 {
5909 	struct vop_remove_args *a;
5910 	struct vnode *dvp, *vp;
5911 
5912 	a = ap;
5913 	dvp = a->a_dvp;
5914 	vp = a->a_vp;
5915 	vn_seqc_write_begin(dvp);
5916 	vn_seqc_write_begin(vp);
5917 }
5918 
5919 void
5920 vop_remove_post(void *ap, int rc)
5921 {
5922 	struct vop_remove_args *a;
5923 	struct vnode *dvp, *vp;
5924 
5925 	a = ap;
5926 	dvp = a->a_dvp;
5927 	vp = a->a_vp;
5928 	vn_seqc_write_end(dvp);
5929 	vn_seqc_write_end(vp);
5930 	if (!rc) {
5931 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5932 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5933 	}
5934 }
5935 
5936 void
5937 vop_rename_post(void *ap, int rc)
5938 {
5939 	struct vop_rename_args *a = ap;
5940 	long hint;
5941 
5942 	if (!rc) {
5943 		hint = NOTE_WRITE;
5944 		if (a->a_fdvp == a->a_tdvp) {
5945 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5946 				hint |= NOTE_LINK;
5947 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5948 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5949 		} else {
5950 			hint |= NOTE_EXTEND;
5951 			if (a->a_fvp->v_type == VDIR)
5952 				hint |= NOTE_LINK;
5953 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5954 
5955 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5956 			    a->a_tvp->v_type == VDIR)
5957 				hint &= ~NOTE_LINK;
5958 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5959 		}
5960 
5961 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5962 		if (a->a_tvp)
5963 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5964 	}
5965 	if (a->a_tdvp != a->a_fdvp)
5966 		vdrop(a->a_fdvp);
5967 	if (a->a_tvp != a->a_fvp)
5968 		vdrop(a->a_fvp);
5969 	vdrop(a->a_tdvp);
5970 	if (a->a_tvp)
5971 		vdrop(a->a_tvp);
5972 }
5973 
5974 void
5975 vop_rmdir_pre(void *ap)
5976 {
5977 	struct vop_rmdir_args *a;
5978 	struct vnode *dvp, *vp;
5979 
5980 	a = ap;
5981 	dvp = a->a_dvp;
5982 	vp = a->a_vp;
5983 	vn_seqc_write_begin(dvp);
5984 	vn_seqc_write_begin(vp);
5985 }
5986 
5987 void
5988 vop_rmdir_post(void *ap, int rc)
5989 {
5990 	struct vop_rmdir_args *a;
5991 	struct vnode *dvp, *vp;
5992 
5993 	a = ap;
5994 	dvp = a->a_dvp;
5995 	vp = a->a_vp;
5996 	vn_seqc_write_end(dvp);
5997 	vn_seqc_write_end(vp);
5998 	if (!rc) {
5999 		vp->v_vflag |= VV_UNLINKED;
6000 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6001 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6002 	}
6003 }
6004 
6005 void
6006 vop_setattr_pre(void *ap)
6007 {
6008 	struct vop_setattr_args *a;
6009 	struct vnode *vp;
6010 
6011 	a = ap;
6012 	vp = a->a_vp;
6013 	vn_seqc_write_begin(vp);
6014 }
6015 
6016 void
6017 vop_setattr_post(void *ap, int rc)
6018 {
6019 	struct vop_setattr_args *a;
6020 	struct vnode *vp;
6021 
6022 	a = ap;
6023 	vp = a->a_vp;
6024 	vn_seqc_write_end(vp);
6025 	if (!rc)
6026 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6027 }
6028 
6029 void
6030 vop_setacl_pre(void *ap)
6031 {
6032 	struct vop_setacl_args *a;
6033 	struct vnode *vp;
6034 
6035 	a = ap;
6036 	vp = a->a_vp;
6037 	vn_seqc_write_begin(vp);
6038 }
6039 
6040 void
6041 vop_setacl_post(void *ap, int rc __unused)
6042 {
6043 	struct vop_setacl_args *a;
6044 	struct vnode *vp;
6045 
6046 	a = ap;
6047 	vp = a->a_vp;
6048 	vn_seqc_write_end(vp);
6049 }
6050 
6051 void
6052 vop_setextattr_pre(void *ap)
6053 {
6054 	struct vop_setextattr_args *a;
6055 	struct vnode *vp;
6056 
6057 	a = ap;
6058 	vp = a->a_vp;
6059 	vn_seqc_write_begin(vp);
6060 }
6061 
6062 void
6063 vop_setextattr_post(void *ap, int rc)
6064 {
6065 	struct vop_setextattr_args *a;
6066 	struct vnode *vp;
6067 
6068 	a = ap;
6069 	vp = a->a_vp;
6070 	vn_seqc_write_end(vp);
6071 	if (!rc)
6072 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6073 }
6074 
6075 void
6076 vop_symlink_pre(void *ap)
6077 {
6078 	struct vop_symlink_args *a;
6079 	struct vnode *dvp;
6080 
6081 	a = ap;
6082 	dvp = a->a_dvp;
6083 	vn_seqc_write_begin(dvp);
6084 }
6085 
6086 void
6087 vop_symlink_post(void *ap, int rc)
6088 {
6089 	struct vop_symlink_args *a;
6090 	struct vnode *dvp;
6091 
6092 	a = ap;
6093 	dvp = a->a_dvp;
6094 	vn_seqc_write_end(dvp);
6095 	if (!rc)
6096 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6097 }
6098 
6099 void
6100 vop_open_post(void *ap, int rc)
6101 {
6102 	struct vop_open_args *a = ap;
6103 
6104 	if (!rc)
6105 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6106 }
6107 
6108 void
6109 vop_close_post(void *ap, int rc)
6110 {
6111 	struct vop_close_args *a = ap;
6112 
6113 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6114 	    !VN_IS_DOOMED(a->a_vp))) {
6115 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6116 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6117 	}
6118 }
6119 
6120 void
6121 vop_read_post(void *ap, int rc)
6122 {
6123 	struct vop_read_args *a = ap;
6124 
6125 	if (!rc)
6126 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6127 }
6128 
6129 void
6130 vop_read_pgcache_post(void *ap, int rc)
6131 {
6132 	struct vop_read_pgcache_args *a = ap;
6133 
6134 	if (!rc)
6135 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6136 }
6137 
6138 void
6139 vop_readdir_post(void *ap, int rc)
6140 {
6141 	struct vop_readdir_args *a = ap;
6142 
6143 	if (!rc)
6144 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6145 }
6146 
6147 static struct knlist fs_knlist;
6148 
6149 static void
6150 vfs_event_init(void *arg)
6151 {
6152 	knlist_init_mtx(&fs_knlist, NULL);
6153 }
6154 /* XXX - correct order? */
6155 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6156 
6157 void
6158 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6159 {
6160 
6161 	KNOTE_UNLOCKED(&fs_knlist, event);
6162 }
6163 
6164 static int	filt_fsattach(struct knote *kn);
6165 static void	filt_fsdetach(struct knote *kn);
6166 static int	filt_fsevent(struct knote *kn, long hint);
6167 
6168 struct filterops fs_filtops = {
6169 	.f_isfd = 0,
6170 	.f_attach = filt_fsattach,
6171 	.f_detach = filt_fsdetach,
6172 	.f_event = filt_fsevent
6173 };
6174 
6175 static int
6176 filt_fsattach(struct knote *kn)
6177 {
6178 
6179 	kn->kn_flags |= EV_CLEAR;
6180 	knlist_add(&fs_knlist, kn, 0);
6181 	return (0);
6182 }
6183 
6184 static void
6185 filt_fsdetach(struct knote *kn)
6186 {
6187 
6188 	knlist_remove(&fs_knlist, kn, 0);
6189 }
6190 
6191 static int
6192 filt_fsevent(struct knote *kn, long hint)
6193 {
6194 
6195 	kn->kn_fflags |= kn->kn_sfflags & hint;
6196 
6197 	return (kn->kn_fflags != 0);
6198 }
6199 
6200 static int
6201 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6202 {
6203 	struct vfsidctl vc;
6204 	int error;
6205 	struct mount *mp;
6206 
6207 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6208 	if (error)
6209 		return (error);
6210 	if (vc.vc_vers != VFS_CTL_VERS1)
6211 		return (EINVAL);
6212 	mp = vfs_getvfs(&vc.vc_fsid);
6213 	if (mp == NULL)
6214 		return (ENOENT);
6215 	/* ensure that a specific sysctl goes to the right filesystem. */
6216 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6217 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6218 		vfs_rel(mp);
6219 		return (EINVAL);
6220 	}
6221 	VCTLTOREQ(&vc, req);
6222 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6223 	vfs_rel(mp);
6224 	return (error);
6225 }
6226 
6227 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6228     NULL, 0, sysctl_vfs_ctl, "",
6229     "Sysctl by fsid");
6230 
6231 /*
6232  * Function to initialize a va_filerev field sensibly.
6233  * XXX: Wouldn't a random number make a lot more sense ??
6234  */
6235 u_quad_t
6236 init_va_filerev(void)
6237 {
6238 	struct bintime bt;
6239 
6240 	getbinuptime(&bt);
6241 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6242 }
6243 
6244 static int	filt_vfsread(struct knote *kn, long hint);
6245 static int	filt_vfswrite(struct knote *kn, long hint);
6246 static int	filt_vfsvnode(struct knote *kn, long hint);
6247 static void	filt_vfsdetach(struct knote *kn);
6248 static struct filterops vfsread_filtops = {
6249 	.f_isfd = 1,
6250 	.f_detach = filt_vfsdetach,
6251 	.f_event = filt_vfsread
6252 };
6253 static struct filterops vfswrite_filtops = {
6254 	.f_isfd = 1,
6255 	.f_detach = filt_vfsdetach,
6256 	.f_event = filt_vfswrite
6257 };
6258 static struct filterops vfsvnode_filtops = {
6259 	.f_isfd = 1,
6260 	.f_detach = filt_vfsdetach,
6261 	.f_event = filt_vfsvnode
6262 };
6263 
6264 static void
6265 vfs_knllock(void *arg)
6266 {
6267 	struct vnode *vp = arg;
6268 
6269 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6270 }
6271 
6272 static void
6273 vfs_knlunlock(void *arg)
6274 {
6275 	struct vnode *vp = arg;
6276 
6277 	VOP_UNLOCK(vp);
6278 }
6279 
6280 static void
6281 vfs_knl_assert_lock(void *arg, int what)
6282 {
6283 #ifdef DEBUG_VFS_LOCKS
6284 	struct vnode *vp = arg;
6285 
6286 	if (what == LA_LOCKED)
6287 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6288 	else
6289 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6290 #endif
6291 }
6292 
6293 int
6294 vfs_kqfilter(struct vop_kqfilter_args *ap)
6295 {
6296 	struct vnode *vp = ap->a_vp;
6297 	struct knote *kn = ap->a_kn;
6298 	struct knlist *knl;
6299 
6300 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6301 	    kn->kn_filter != EVFILT_WRITE),
6302 	    ("READ/WRITE filter on a FIFO leaked through"));
6303 	switch (kn->kn_filter) {
6304 	case EVFILT_READ:
6305 		kn->kn_fop = &vfsread_filtops;
6306 		break;
6307 	case EVFILT_WRITE:
6308 		kn->kn_fop = &vfswrite_filtops;
6309 		break;
6310 	case EVFILT_VNODE:
6311 		kn->kn_fop = &vfsvnode_filtops;
6312 		break;
6313 	default:
6314 		return (EINVAL);
6315 	}
6316 
6317 	kn->kn_hook = (caddr_t)vp;
6318 
6319 	v_addpollinfo(vp);
6320 	if (vp->v_pollinfo == NULL)
6321 		return (ENOMEM);
6322 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6323 	vhold(vp);
6324 	knlist_add(knl, kn, 0);
6325 
6326 	return (0);
6327 }
6328 
6329 /*
6330  * Detach knote from vnode
6331  */
6332 static void
6333 filt_vfsdetach(struct knote *kn)
6334 {
6335 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6336 
6337 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6338 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6339 	vdrop(vp);
6340 }
6341 
6342 /*ARGSUSED*/
6343 static int
6344 filt_vfsread(struct knote *kn, long hint)
6345 {
6346 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6347 	struct vattr va;
6348 	int res;
6349 
6350 	/*
6351 	 * filesystem is gone, so set the EOF flag and schedule
6352 	 * the knote for deletion.
6353 	 */
6354 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6355 		VI_LOCK(vp);
6356 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6357 		VI_UNLOCK(vp);
6358 		return (1);
6359 	}
6360 
6361 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
6362 		return (0);
6363 
6364 	VI_LOCK(vp);
6365 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
6366 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6367 	VI_UNLOCK(vp);
6368 	return (res);
6369 }
6370 
6371 /*ARGSUSED*/
6372 static int
6373 filt_vfswrite(struct knote *kn, long hint)
6374 {
6375 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6376 
6377 	VI_LOCK(vp);
6378 
6379 	/*
6380 	 * filesystem is gone, so set the EOF flag and schedule
6381 	 * the knote for deletion.
6382 	 */
6383 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6384 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6385 
6386 	kn->kn_data = 0;
6387 	VI_UNLOCK(vp);
6388 	return (1);
6389 }
6390 
6391 static int
6392 filt_vfsvnode(struct knote *kn, long hint)
6393 {
6394 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6395 	int res;
6396 
6397 	VI_LOCK(vp);
6398 	if (kn->kn_sfflags & hint)
6399 		kn->kn_fflags |= hint;
6400 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6401 		kn->kn_flags |= EV_EOF;
6402 		VI_UNLOCK(vp);
6403 		return (1);
6404 	}
6405 	res = (kn->kn_fflags != 0);
6406 	VI_UNLOCK(vp);
6407 	return (res);
6408 }
6409 
6410 /*
6411  * Returns whether the directory is empty or not.
6412  * If it is empty, the return value is 0; otherwise
6413  * the return value is an error value (which may
6414  * be ENOTEMPTY).
6415  */
6416 int
6417 vfs_emptydir(struct vnode *vp)
6418 {
6419 	struct uio uio;
6420 	struct iovec iov;
6421 	struct dirent *dirent, *dp, *endp;
6422 	int error, eof;
6423 
6424 	error = 0;
6425 	eof = 0;
6426 
6427 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6428 	VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6429 
6430 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6431 	iov.iov_base = dirent;
6432 	iov.iov_len = sizeof(struct dirent);
6433 
6434 	uio.uio_iov = &iov;
6435 	uio.uio_iovcnt = 1;
6436 	uio.uio_offset = 0;
6437 	uio.uio_resid = sizeof(struct dirent);
6438 	uio.uio_segflg = UIO_SYSSPACE;
6439 	uio.uio_rw = UIO_READ;
6440 	uio.uio_td = curthread;
6441 
6442 	while (eof == 0 && error == 0) {
6443 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6444 		    NULL, NULL);
6445 		if (error != 0)
6446 			break;
6447 		endp = (void *)((uint8_t *)dirent +
6448 		    sizeof(struct dirent) - uio.uio_resid);
6449 		for (dp = dirent; dp < endp;
6450 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6451 			if (dp->d_type == DT_WHT)
6452 				continue;
6453 			if (dp->d_namlen == 0)
6454 				continue;
6455 			if (dp->d_type != DT_DIR &&
6456 			    dp->d_type != DT_UNKNOWN) {
6457 				error = ENOTEMPTY;
6458 				break;
6459 			}
6460 			if (dp->d_namlen > 2) {
6461 				error = ENOTEMPTY;
6462 				break;
6463 			}
6464 			if (dp->d_namlen == 1 &&
6465 			    dp->d_name[0] != '.') {
6466 				error = ENOTEMPTY;
6467 				break;
6468 			}
6469 			if (dp->d_namlen == 2 &&
6470 			    dp->d_name[1] != '.') {
6471 				error = ENOTEMPTY;
6472 				break;
6473 			}
6474 			uio.uio_resid = sizeof(struct dirent);
6475 		}
6476 	}
6477 	free(dirent, M_TEMP);
6478 	return (error);
6479 }
6480 
6481 int
6482 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6483 {
6484 	int error;
6485 
6486 	if (dp->d_reclen > ap->a_uio->uio_resid)
6487 		return (ENAMETOOLONG);
6488 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6489 	if (error) {
6490 		if (ap->a_ncookies != NULL) {
6491 			if (ap->a_cookies != NULL)
6492 				free(ap->a_cookies, M_TEMP);
6493 			ap->a_cookies = NULL;
6494 			*ap->a_ncookies = 0;
6495 		}
6496 		return (error);
6497 	}
6498 	if (ap->a_ncookies == NULL)
6499 		return (0);
6500 
6501 	KASSERT(ap->a_cookies,
6502 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6503 
6504 	*ap->a_cookies = realloc(*ap->a_cookies,
6505 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6506 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6507 	*ap->a_ncookies += 1;
6508 	return (0);
6509 }
6510 
6511 /*
6512  * The purpose of this routine is to remove granularity from accmode_t,
6513  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6514  * VADMIN and VAPPEND.
6515  *
6516  * If it returns 0, the caller is supposed to continue with the usual
6517  * access checks using 'accmode' as modified by this routine.  If it
6518  * returns nonzero value, the caller is supposed to return that value
6519  * as errno.
6520  *
6521  * Note that after this routine runs, accmode may be zero.
6522  */
6523 int
6524 vfs_unixify_accmode(accmode_t *accmode)
6525 {
6526 	/*
6527 	 * There is no way to specify explicit "deny" rule using
6528 	 * file mode or POSIX.1e ACLs.
6529 	 */
6530 	if (*accmode & VEXPLICIT_DENY) {
6531 		*accmode = 0;
6532 		return (0);
6533 	}
6534 
6535 	/*
6536 	 * None of these can be translated into usual access bits.
6537 	 * Also, the common case for NFSv4 ACLs is to not contain
6538 	 * either of these bits. Caller should check for VWRITE
6539 	 * on the containing directory instead.
6540 	 */
6541 	if (*accmode & (VDELETE_CHILD | VDELETE))
6542 		return (EPERM);
6543 
6544 	if (*accmode & VADMIN_PERMS) {
6545 		*accmode &= ~VADMIN_PERMS;
6546 		*accmode |= VADMIN;
6547 	}
6548 
6549 	/*
6550 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6551 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6552 	 */
6553 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6554 
6555 	return (0);
6556 }
6557 
6558 /*
6559  * Clear out a doomed vnode (if any) and replace it with a new one as long
6560  * as the fs is not being unmounted. Return the root vnode to the caller.
6561  */
6562 static int __noinline
6563 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6564 {
6565 	struct vnode *vp;
6566 	int error;
6567 
6568 restart:
6569 	if (mp->mnt_rootvnode != NULL) {
6570 		MNT_ILOCK(mp);
6571 		vp = mp->mnt_rootvnode;
6572 		if (vp != NULL) {
6573 			if (!VN_IS_DOOMED(vp)) {
6574 				vrefact(vp);
6575 				MNT_IUNLOCK(mp);
6576 				error = vn_lock(vp, flags);
6577 				if (error == 0) {
6578 					*vpp = vp;
6579 					return (0);
6580 				}
6581 				vrele(vp);
6582 				goto restart;
6583 			}
6584 			/*
6585 			 * Clear the old one.
6586 			 */
6587 			mp->mnt_rootvnode = NULL;
6588 		}
6589 		MNT_IUNLOCK(mp);
6590 		if (vp != NULL) {
6591 			vfs_op_barrier_wait(mp);
6592 			vrele(vp);
6593 		}
6594 	}
6595 	error = VFS_CACHEDROOT(mp, flags, vpp);
6596 	if (error != 0)
6597 		return (error);
6598 	if (mp->mnt_vfs_ops == 0) {
6599 		MNT_ILOCK(mp);
6600 		if (mp->mnt_vfs_ops != 0) {
6601 			MNT_IUNLOCK(mp);
6602 			return (0);
6603 		}
6604 		if (mp->mnt_rootvnode == NULL) {
6605 			vrefact(*vpp);
6606 			mp->mnt_rootvnode = *vpp;
6607 		} else {
6608 			if (mp->mnt_rootvnode != *vpp) {
6609 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6610 					panic("%s: mismatch between vnode returned "
6611 					    " by VFS_CACHEDROOT and the one cached "
6612 					    " (%p != %p)",
6613 					    __func__, *vpp, mp->mnt_rootvnode);
6614 				}
6615 			}
6616 		}
6617 		MNT_IUNLOCK(mp);
6618 	}
6619 	return (0);
6620 }
6621 
6622 int
6623 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6624 {
6625 	struct mount_pcpu *mpcpu;
6626 	struct vnode *vp;
6627 	int error;
6628 
6629 	if (!vfs_op_thread_enter(mp, mpcpu))
6630 		return (vfs_cache_root_fallback(mp, flags, vpp));
6631 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6632 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6633 		vfs_op_thread_exit(mp, mpcpu);
6634 		return (vfs_cache_root_fallback(mp, flags, vpp));
6635 	}
6636 	vrefact(vp);
6637 	vfs_op_thread_exit(mp, mpcpu);
6638 	error = vn_lock(vp, flags);
6639 	if (error != 0) {
6640 		vrele(vp);
6641 		return (vfs_cache_root_fallback(mp, flags, vpp));
6642 	}
6643 	*vpp = vp;
6644 	return (0);
6645 }
6646 
6647 struct vnode *
6648 vfs_cache_root_clear(struct mount *mp)
6649 {
6650 	struct vnode *vp;
6651 
6652 	/*
6653 	 * ops > 0 guarantees there is nobody who can see this vnode
6654 	 */
6655 	MPASS(mp->mnt_vfs_ops > 0);
6656 	vp = mp->mnt_rootvnode;
6657 	if (vp != NULL)
6658 		vn_seqc_write_begin(vp);
6659 	mp->mnt_rootvnode = NULL;
6660 	return (vp);
6661 }
6662 
6663 void
6664 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6665 {
6666 
6667 	MPASS(mp->mnt_vfs_ops > 0);
6668 	vrefact(vp);
6669 	mp->mnt_rootvnode = vp;
6670 }
6671 
6672 /*
6673  * These are helper functions for filesystems to traverse all
6674  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6675  *
6676  * This interface replaces MNT_VNODE_FOREACH.
6677  */
6678 
6679 struct vnode *
6680 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6681 {
6682 	struct vnode *vp;
6683 
6684 	if (should_yield())
6685 		kern_yield(PRI_USER);
6686 	MNT_ILOCK(mp);
6687 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6688 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6689 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6690 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6691 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6692 			continue;
6693 		VI_LOCK(vp);
6694 		if (VN_IS_DOOMED(vp)) {
6695 			VI_UNLOCK(vp);
6696 			continue;
6697 		}
6698 		break;
6699 	}
6700 	if (vp == NULL) {
6701 		__mnt_vnode_markerfree_all(mvp, mp);
6702 		/* MNT_IUNLOCK(mp); -- done in above function */
6703 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6704 		return (NULL);
6705 	}
6706 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6707 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6708 	MNT_IUNLOCK(mp);
6709 	return (vp);
6710 }
6711 
6712 struct vnode *
6713 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6714 {
6715 	struct vnode *vp;
6716 
6717 	*mvp = vn_alloc_marker(mp);
6718 	MNT_ILOCK(mp);
6719 	MNT_REF(mp);
6720 
6721 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6722 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6723 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6724 			continue;
6725 		VI_LOCK(vp);
6726 		if (VN_IS_DOOMED(vp)) {
6727 			VI_UNLOCK(vp);
6728 			continue;
6729 		}
6730 		break;
6731 	}
6732 	if (vp == NULL) {
6733 		MNT_REL(mp);
6734 		MNT_IUNLOCK(mp);
6735 		vn_free_marker(*mvp);
6736 		*mvp = NULL;
6737 		return (NULL);
6738 	}
6739 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6740 	MNT_IUNLOCK(mp);
6741 	return (vp);
6742 }
6743 
6744 void
6745 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6746 {
6747 
6748 	if (*mvp == NULL) {
6749 		MNT_IUNLOCK(mp);
6750 		return;
6751 	}
6752 
6753 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6754 
6755 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6756 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6757 	MNT_REL(mp);
6758 	MNT_IUNLOCK(mp);
6759 	vn_free_marker(*mvp);
6760 	*mvp = NULL;
6761 }
6762 
6763 /*
6764  * These are helper functions for filesystems to traverse their
6765  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6766  */
6767 static void
6768 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6769 {
6770 
6771 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6772 
6773 	MNT_ILOCK(mp);
6774 	MNT_REL(mp);
6775 	MNT_IUNLOCK(mp);
6776 	vn_free_marker(*mvp);
6777 	*mvp = NULL;
6778 }
6779 
6780 /*
6781  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6782  * conventional lock order during mnt_vnode_next_lazy iteration.
6783  *
6784  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6785  * The list lock is dropped and reacquired.  On success, both locks are held.
6786  * On failure, the mount vnode list lock is held but the vnode interlock is
6787  * not, and the procedure may have yielded.
6788  */
6789 static bool
6790 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6791     struct vnode *vp)
6792 {
6793 
6794 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6795 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6796 	    ("%s: bad marker", __func__));
6797 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6798 	    ("%s: inappropriate vnode", __func__));
6799 	ASSERT_VI_UNLOCKED(vp, __func__);
6800 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6801 
6802 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6803 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6804 
6805 	/*
6806 	 * Note we may be racing against vdrop which transitioned the hold
6807 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6808 	 * if we are the only user after we get the interlock we will just
6809 	 * vdrop.
6810 	 */
6811 	vhold(vp);
6812 	mtx_unlock(&mp->mnt_listmtx);
6813 	VI_LOCK(vp);
6814 	if (VN_IS_DOOMED(vp)) {
6815 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6816 		goto out_lost;
6817 	}
6818 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6819 	/*
6820 	 * There is nothing to do if we are the last user.
6821 	 */
6822 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6823 		goto out_lost;
6824 	mtx_lock(&mp->mnt_listmtx);
6825 	return (true);
6826 out_lost:
6827 	vdropl(vp);
6828 	maybe_yield();
6829 	mtx_lock(&mp->mnt_listmtx);
6830 	return (false);
6831 }
6832 
6833 static struct vnode *
6834 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6835     void *cbarg)
6836 {
6837 	struct vnode *vp;
6838 
6839 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6840 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6841 restart:
6842 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6843 	while (vp != NULL) {
6844 		if (vp->v_type == VMARKER) {
6845 			vp = TAILQ_NEXT(vp, v_lazylist);
6846 			continue;
6847 		}
6848 		/*
6849 		 * See if we want to process the vnode. Note we may encounter a
6850 		 * long string of vnodes we don't care about and hog the list
6851 		 * as a result. Check for it and requeue the marker.
6852 		 */
6853 		VNPASS(!VN_IS_DOOMED(vp), vp);
6854 		if (!cb(vp, cbarg)) {
6855 			if (!should_yield()) {
6856 				vp = TAILQ_NEXT(vp, v_lazylist);
6857 				continue;
6858 			}
6859 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6860 			    v_lazylist);
6861 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6862 			    v_lazylist);
6863 			mtx_unlock(&mp->mnt_listmtx);
6864 			kern_yield(PRI_USER);
6865 			mtx_lock(&mp->mnt_listmtx);
6866 			goto restart;
6867 		}
6868 		/*
6869 		 * Try-lock because this is the wrong lock order.
6870 		 */
6871 		if (!VI_TRYLOCK(vp) &&
6872 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6873 			goto restart;
6874 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6875 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6876 		    ("alien vnode on the lazy list %p %p", vp, mp));
6877 		VNPASS(vp->v_mount == mp, vp);
6878 		VNPASS(!VN_IS_DOOMED(vp), vp);
6879 		break;
6880 	}
6881 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6882 
6883 	/* Check if we are done */
6884 	if (vp == NULL) {
6885 		mtx_unlock(&mp->mnt_listmtx);
6886 		mnt_vnode_markerfree_lazy(mvp, mp);
6887 		return (NULL);
6888 	}
6889 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6890 	mtx_unlock(&mp->mnt_listmtx);
6891 	ASSERT_VI_LOCKED(vp, "lazy iter");
6892 	return (vp);
6893 }
6894 
6895 struct vnode *
6896 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6897     void *cbarg)
6898 {
6899 
6900 	if (should_yield())
6901 		kern_yield(PRI_USER);
6902 	mtx_lock(&mp->mnt_listmtx);
6903 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6904 }
6905 
6906 struct vnode *
6907 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6908     void *cbarg)
6909 {
6910 	struct vnode *vp;
6911 
6912 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6913 		return (NULL);
6914 
6915 	*mvp = vn_alloc_marker(mp);
6916 	MNT_ILOCK(mp);
6917 	MNT_REF(mp);
6918 	MNT_IUNLOCK(mp);
6919 
6920 	mtx_lock(&mp->mnt_listmtx);
6921 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6922 	if (vp == NULL) {
6923 		mtx_unlock(&mp->mnt_listmtx);
6924 		mnt_vnode_markerfree_lazy(mvp, mp);
6925 		return (NULL);
6926 	}
6927 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6928 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6929 }
6930 
6931 void
6932 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6933 {
6934 
6935 	if (*mvp == NULL)
6936 		return;
6937 
6938 	mtx_lock(&mp->mnt_listmtx);
6939 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6940 	mtx_unlock(&mp->mnt_listmtx);
6941 	mnt_vnode_markerfree_lazy(mvp, mp);
6942 }
6943 
6944 int
6945 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6946 {
6947 
6948 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6949 		cnp->cn_flags &= ~NOEXECCHECK;
6950 		return (0);
6951 	}
6952 
6953 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6954 }
6955 
6956 /*
6957  * Do not use this variant unless you have means other than the hold count
6958  * to prevent the vnode from getting freed.
6959  */
6960 void
6961 vn_seqc_write_begin_locked(struct vnode *vp)
6962 {
6963 
6964 	ASSERT_VI_LOCKED(vp, __func__);
6965 	VNPASS(vp->v_holdcnt > 0, vp);
6966 	VNPASS(vp->v_seqc_users >= 0, vp);
6967 	vp->v_seqc_users++;
6968 	if (vp->v_seqc_users == 1)
6969 		seqc_sleepable_write_begin(&vp->v_seqc);
6970 }
6971 
6972 void
6973 vn_seqc_write_begin(struct vnode *vp)
6974 {
6975 
6976 	VI_LOCK(vp);
6977 	vn_seqc_write_begin_locked(vp);
6978 	VI_UNLOCK(vp);
6979 }
6980 
6981 void
6982 vn_seqc_write_end_locked(struct vnode *vp)
6983 {
6984 
6985 	ASSERT_VI_LOCKED(vp, __func__);
6986 	VNPASS(vp->v_seqc_users > 0, vp);
6987 	vp->v_seqc_users--;
6988 	if (vp->v_seqc_users == 0)
6989 		seqc_sleepable_write_end(&vp->v_seqc);
6990 }
6991 
6992 void
6993 vn_seqc_write_end(struct vnode *vp)
6994 {
6995 
6996 	VI_LOCK(vp);
6997 	vn_seqc_write_end_locked(vp);
6998 	VI_UNLOCK(vp);
6999 }
7000 
7001 /*
7002  * Special case handling for allocating and freeing vnodes.
7003  *
7004  * The counter remains unchanged on free so that a doomed vnode will
7005  * keep testing as in modify as long as it is accessible with SMR.
7006  */
7007 static void
7008 vn_seqc_init(struct vnode *vp)
7009 {
7010 
7011 	vp->v_seqc = 0;
7012 	vp->v_seqc_users = 0;
7013 }
7014 
7015 static void
7016 vn_seqc_write_end_free(struct vnode *vp)
7017 {
7018 
7019 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7020 	VNPASS(vp->v_seqc_users == 1, vp);
7021 }
7022 
7023 void
7024 vn_irflag_set_locked(struct vnode *vp, short toset)
7025 {
7026 	short flags;
7027 
7028 	ASSERT_VI_LOCKED(vp, __func__);
7029 	flags = vn_irflag_read(vp);
7030 	VNASSERT((flags & toset) == 0, vp,
7031 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7032 	    __func__, flags, toset));
7033 	atomic_store_short(&vp->v_irflag, flags | toset);
7034 }
7035 
7036 void
7037 vn_irflag_set(struct vnode *vp, short toset)
7038 {
7039 
7040 	VI_LOCK(vp);
7041 	vn_irflag_set_locked(vp, toset);
7042 	VI_UNLOCK(vp);
7043 }
7044 
7045 void
7046 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7047 {
7048 	short flags;
7049 
7050 	ASSERT_VI_LOCKED(vp, __func__);
7051 	flags = vn_irflag_read(vp);
7052 	atomic_store_short(&vp->v_irflag, flags | toset);
7053 }
7054 
7055 void
7056 vn_irflag_set_cond(struct vnode *vp, short toset)
7057 {
7058 
7059 	VI_LOCK(vp);
7060 	vn_irflag_set_cond_locked(vp, toset);
7061 	VI_UNLOCK(vp);
7062 }
7063 
7064 void
7065 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7066 {
7067 	short flags;
7068 
7069 	ASSERT_VI_LOCKED(vp, __func__);
7070 	flags = vn_irflag_read(vp);
7071 	VNASSERT((flags & tounset) == tounset, vp,
7072 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7073 	    __func__, flags, tounset));
7074 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7075 }
7076 
7077 void
7078 vn_irflag_unset(struct vnode *vp, short tounset)
7079 {
7080 
7081 	VI_LOCK(vp);
7082 	vn_irflag_unset_locked(vp, tounset);
7083 	VI_UNLOCK(vp);
7084 }
7085