xref: /freebsd/sys/kern/vfs_subr.c (revision ee41f1b1cf5e3d4f586cb85b46123b416275862c)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39  * $FreeBSD$
40  */
41 
42 /*
43  * External virtual filesystem routines
44  */
45 #include "opt_ddb.h"
46 #include "opt_ffs.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/conf.h>
53 #include <sys/dirent.h>
54 #include <sys/domain.h>
55 #include <sys/eventhandler.h>
56 #include <sys/fcntl.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/ktr.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/mutex.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/reboot.h>
66 #include <sys/socket.h>
67 #include <sys/stat.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/vnode.h>
71 
72 #include <machine/limits.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_extern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_pager.h>
81 #include <vm/vnode_pager.h>
82 #include <vm/vm_zone.h>
83 
84 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
85 
86 static void	addalias __P((struct vnode *vp, dev_t nvp_rdev));
87 static void	insmntque __P((struct vnode *vp, struct mount *mp));
88 static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
89 
90 /*
91  * Number of vnodes in existence.  Increased whenever getnewvnode()
92  * allocates a new vnode, never decreased.
93  */
94 static unsigned long	numvnodes;
95 SYSCTL_LONG(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
96 
97 /*
98  * Conversion tables for conversion from vnode types to inode formats
99  * and back.
100  */
101 enum vtype iftovt_tab[16] = {
102 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
103 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
104 };
105 int vttoif_tab[9] = {
106 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
107 	S_IFSOCK, S_IFIFO, S_IFMT,
108 };
109 
110 /*
111  * List of vnodes that are ready for recycling.
112  */
113 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
114 
115 /*
116  * Minimum number of free vnodes.  If there are fewer than this free vnodes,
117  * getnewvnode() will return a newly allocated vnode.
118  */
119 static u_long wantfreevnodes = 25;
120 SYSCTL_LONG(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
121 /* Number of vnodes in the free list. */
122 static u_long freevnodes = 0;
123 SYSCTL_LONG(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
124 
125 /*
126  * Various variables used for debugging the new implementation of
127  * reassignbuf().
128  * XXX these are probably of (very) limited utility now.
129  */
130 static int reassignbufcalls;
131 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
132 static int reassignbufloops;
133 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
134 static int reassignbufsortgood;
135 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
136 static int reassignbufsortbad;
137 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
138 /* Set to 0 for old insertion-sort based reassignbuf, 1 for modern method. */
139 static int reassignbufmethod = 1;
140 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
141 
142 #ifdef ENABLE_VFS_IOOPT
143 /* See NOTES for a description of this setting. */
144 int vfs_ioopt = 0;
145 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
146 #endif
147 
148 /* List of mounted filesystems. */
149 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist);
150 
151 /* For any iteration/modification of mountlist */
152 struct mtx mountlist_mtx;
153 
154 /* For any iteration/modification of mnt_vnodelist */
155 struct mtx mntvnode_mtx;
156 
157 /*
158  * Cache for the mount type id assigned to NFS.  This is used for
159  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
160  */
161 int	nfs_mount_type = -1;
162 
163 /* To keep more than one thread at a time from running vfs_getnewfsid */
164 static struct mtx mntid_mtx;
165 
166 /* For any iteration/modification of vnode_free_list */
167 static struct mtx vnode_free_list_mtx;
168 
169 /*
170  * For any iteration/modification of dev->si_hlist (linked through
171  * v_specnext)
172  */
173 static struct mtx spechash_mtx;
174 
175 /* Publicly exported FS */
176 struct nfs_public nfs_pub;
177 
178 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
179 static vm_zone_t vnode_zone;
180 
181 /* Set to 1 to print out reclaim of active vnodes */
182 int	prtactive = 0;
183 
184 /*
185  * The workitem queue.
186  *
187  * It is useful to delay writes of file data and filesystem metadata
188  * for tens of seconds so that quickly created and deleted files need
189  * not waste disk bandwidth being created and removed. To realize this,
190  * we append vnodes to a "workitem" queue. When running with a soft
191  * updates implementation, most pending metadata dependencies should
192  * not wait for more than a few seconds. Thus, mounted on block devices
193  * are delayed only about a half the time that file data is delayed.
194  * Similarly, directory updates are more critical, so are only delayed
195  * about a third the time that file data is delayed. Thus, there are
196  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
197  * one each second (driven off the filesystem syncer process). The
198  * syncer_delayno variable indicates the next queue that is to be processed.
199  * Items that need to be processed soon are placed in this queue:
200  *
201  *	syncer_workitem_pending[syncer_delayno]
202  *
203  * A delay of fifteen seconds is done by placing the request fifteen
204  * entries later in the queue:
205  *
206  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
207  *
208  */
209 static int syncer_delayno = 0;
210 static long syncer_mask;
211 LIST_HEAD(synclist, vnode);
212 static struct synclist *syncer_workitem_pending;
213 
214 #define SYNCER_MAXDELAY		32
215 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
216 time_t syncdelay = 30;		/* max time to delay syncing data */
217 time_t filedelay = 30;		/* time to delay syncing files */
218 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
219 time_t dirdelay = 29;		/* time to delay syncing directories */
220 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
221 time_t metadelay = 28;		/* time to delay syncing metadata */
222 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
223 static int rushjob;		/* number of slots to run ASAP */
224 static int stat_rush_requests;	/* number of times I/O speeded up */
225 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
226 
227 /*
228  * Number of vnodes we want to exist at any one time.  This is mostly used
229  * to size hash tables in vnode-related code.  It is normally not used in
230  * getnewvnode(), as wantfreevnodes is normally nonzero.)
231  *
232  * XXX desiredvnodes is historical cruft and should not exist.
233  */
234 int desiredvnodes;
235 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
236     &desiredvnodes, 0, "Maximum number of vnodes");
237 
238 static void	vfs_free_addrlist __P((struct netexport *nep));
239 static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
240 static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
241 				       struct export_args *argp));
242 
243 /*
244  * Initialize the vnode management data structures.
245  */
246 static void
247 vntblinit(void *dummy __unused)
248 {
249 
250 	desiredvnodes = maxproc + cnt.v_page_count / 4;
251 	mtx_init(&mountlist_mtx, "mountlist", MTX_DEF);
252 	mtx_init(&mntvnode_mtx, "mntvnode", MTX_DEF);
253 	mtx_init(&mntid_mtx, "mntid", MTX_DEF);
254 	mtx_init(&spechash_mtx, "spechash", MTX_DEF);
255 	TAILQ_INIT(&vnode_free_list);
256 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", MTX_DEF);
257 	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
258 	/*
259 	 * Initialize the filesystem syncer.
260 	 */
261 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
262 		&syncer_mask);
263 	syncer_maxdelay = syncer_mask + 1;
264 }
265 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
266 
267 
268 /*
269  * Mark a mount point as busy. Used to synchronize access and to delay
270  * unmounting. Interlock is not released on failure.
271  */
272 int
273 vfs_busy(mp, flags, interlkp, p)
274 	struct mount *mp;
275 	int flags;
276 	struct mtx *interlkp;
277 	struct proc *p;
278 {
279 	int lkflags;
280 
281 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
282 		if (flags & LK_NOWAIT)
283 			return (ENOENT);
284 		mp->mnt_kern_flag |= MNTK_MWAIT;
285 		/*
286 		 * Since all busy locks are shared except the exclusive
287 		 * lock granted when unmounting, the only place that a
288 		 * wakeup needs to be done is at the release of the
289 		 * exclusive lock at the end of dounmount.
290 		 */
291 		msleep((caddr_t)mp, interlkp, PVFS, "vfs_busy", 0);
292 		return (ENOENT);
293 	}
294 	lkflags = LK_SHARED | LK_NOPAUSE;
295 	if (interlkp)
296 		lkflags |= LK_INTERLOCK;
297 	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
298 		panic("vfs_busy: unexpected lock failure");
299 	return (0);
300 }
301 
302 /*
303  * Free a busy filesystem.
304  */
305 void
306 vfs_unbusy(mp, p)
307 	struct mount *mp;
308 	struct proc *p;
309 {
310 
311 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
312 }
313 
314 /*
315  * Lookup a filesystem type, and if found allocate and initialize
316  * a mount structure for it.
317  *
318  * Devname is usually updated by mount(8) after booting.
319  */
320 int
321 vfs_rootmountalloc(fstypename, devname, mpp)
322 	char *fstypename;
323 	char *devname;
324 	struct mount **mpp;
325 {
326 	struct proc *p = curproc;	/* XXX */
327 	struct vfsconf *vfsp;
328 	struct mount *mp;
329 
330 	if (fstypename == NULL)
331 		return (ENODEV);
332 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
333 		if (!strcmp(vfsp->vfc_name, fstypename))
334 			break;
335 	if (vfsp == NULL)
336 		return (ENODEV);
337 	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO);
338 	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
339 	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
340 	LIST_INIT(&mp->mnt_vnodelist);
341 	mp->mnt_vfc = vfsp;
342 	mp->mnt_op = vfsp->vfc_vfsops;
343 	mp->mnt_flag = MNT_RDONLY;
344 	mp->mnt_vnodecovered = NULLVP;
345 	vfsp->vfc_refcount++;
346 	mp->mnt_iosize_max = DFLTPHYS;
347 	mp->mnt_stat.f_type = vfsp->vfc_typenum;
348 	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
349 	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
350 	mp->mnt_stat.f_mntonname[0] = '/';
351 	mp->mnt_stat.f_mntonname[1] = 0;
352 	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
353 	*mpp = mp;
354 	return (0);
355 }
356 
357 /*
358  * Find an appropriate filesystem to use for the root. If a filesystem
359  * has not been preselected, walk through the list of known filesystems
360  * trying those that have mountroot routines, and try them until one
361  * works or we have tried them all.
362  */
363 #ifdef notdef	/* XXX JH */
364 int
365 lite2_vfs_mountroot()
366 {
367 	struct vfsconf *vfsp;
368 	extern int (*lite2_mountroot) __P((void));
369 	int error;
370 
371 	if (lite2_mountroot != NULL)
372 		return ((*lite2_mountroot)());
373 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
374 		if (vfsp->vfc_mountroot == NULL)
375 			continue;
376 		if ((error = (*vfsp->vfc_mountroot)()) == 0)
377 			return (0);
378 		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
379 	}
380 	return (ENODEV);
381 }
382 #endif
383 
384 /*
385  * Lookup a mount point by filesystem identifier.
386  */
387 struct mount *
388 vfs_getvfs(fsid)
389 	fsid_t *fsid;
390 {
391 	register struct mount *mp;
392 
393 	mtx_lock(&mountlist_mtx);
394 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
395 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
396 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
397 			mtx_unlock(&mountlist_mtx);
398 			return (mp);
399 	    }
400 	}
401 	mtx_unlock(&mountlist_mtx);
402 	return ((struct mount *) 0);
403 }
404 
405 /*
406  * Get a new unique fsid.  Try to make its val[0] unique, since this value
407  * will be used to create fake device numbers for stat().  Also try (but
408  * not so hard) make its val[0] unique mod 2^16, since some emulators only
409  * support 16-bit device numbers.  We end up with unique val[0]'s for the
410  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
411  *
412  * Keep in mind that several mounts may be running in parallel.  Starting
413  * the search one past where the previous search terminated is both a
414  * micro-optimization and a defense against returning the same fsid to
415  * different mounts.
416  */
417 void
418 vfs_getnewfsid(mp)
419 	struct mount *mp;
420 {
421 	static u_int16_t mntid_base;
422 	fsid_t tfsid;
423 	int mtype;
424 
425 	mtx_lock(&mntid_mtx);
426 	mtype = mp->mnt_vfc->vfc_typenum;
427 	tfsid.val[1] = mtype;
428 	mtype = (mtype & 0xFF) << 24;
429 	for (;;) {
430 		tfsid.val[0] = makeudev(255,
431 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
432 		mntid_base++;
433 		if (vfs_getvfs(&tfsid) == NULL)
434 			break;
435 	}
436 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
437 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
438 	mtx_unlock(&mntid_mtx);
439 }
440 
441 /*
442  * Knob to control the precision of file timestamps:
443  *
444  *   0 = seconds only; nanoseconds zeroed.
445  *   1 = seconds and nanoseconds, accurate within 1/HZ.
446  *   2 = seconds and nanoseconds, truncated to microseconds.
447  * >=3 = seconds and nanoseconds, maximum precision.
448  */
449 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
450 
451 static int timestamp_precision = TSP_SEC;
452 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
453     &timestamp_precision, 0, "");
454 
455 /*
456  * Get a current timestamp.
457  */
458 void
459 vfs_timestamp(tsp)
460 	struct timespec *tsp;
461 {
462 	struct timeval tv;
463 
464 	switch (timestamp_precision) {
465 	case TSP_SEC:
466 		tsp->tv_sec = time_second;
467 		tsp->tv_nsec = 0;
468 		break;
469 	case TSP_HZ:
470 		getnanotime(tsp);
471 		break;
472 	case TSP_USEC:
473 		microtime(&tv);
474 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
475 		break;
476 	case TSP_NSEC:
477 	default:
478 		nanotime(tsp);
479 		break;
480 	}
481 }
482 
483 /*
484  * Set vnode attributes to VNOVAL
485  */
486 void
487 vattr_null(vap)
488 	register struct vattr *vap;
489 {
490 
491 	vap->va_type = VNON;
492 	vap->va_size = VNOVAL;
493 	vap->va_bytes = VNOVAL;
494 	vap->va_mode = VNOVAL;
495 	vap->va_nlink = VNOVAL;
496 	vap->va_uid = VNOVAL;
497 	vap->va_gid = VNOVAL;
498 	vap->va_fsid = VNOVAL;
499 	vap->va_fileid = VNOVAL;
500 	vap->va_blocksize = VNOVAL;
501 	vap->va_rdev = VNOVAL;
502 	vap->va_atime.tv_sec = VNOVAL;
503 	vap->va_atime.tv_nsec = VNOVAL;
504 	vap->va_mtime.tv_sec = VNOVAL;
505 	vap->va_mtime.tv_nsec = VNOVAL;
506 	vap->va_ctime.tv_sec = VNOVAL;
507 	vap->va_ctime.tv_nsec = VNOVAL;
508 	vap->va_flags = VNOVAL;
509 	vap->va_gen = VNOVAL;
510 	vap->va_vaflags = 0;
511 }
512 
513 /*
514  * Routines having to do with the management of the vnode table.
515  */
516 
517 /*
518  * Return the next vnode from the free list.
519  */
520 int
521 getnewvnode(tag, mp, vops, vpp)
522 	enum vtagtype tag;
523 	struct mount *mp;
524 	vop_t **vops;
525 	struct vnode **vpp;
526 {
527 	int s, count;
528 	struct proc *p = curproc;	/* XXX */
529 	struct vnode *vp = NULL;
530 	struct mount *vnmp;
531 	vm_object_t object;
532 
533 	/*
534 	 * We take the least recently used vnode from the freelist
535 	 * if we can get it and it has no cached pages, and no
536 	 * namecache entries are relative to it.
537 	 * Otherwise we allocate a new vnode
538 	 */
539 
540 	s = splbio();
541 	mtx_lock(&vnode_free_list_mtx);
542 
543 	if (wantfreevnodes && freevnodes < wantfreevnodes) {
544 		vp = NULL;
545 	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
546 		/*
547 		 * XXX: this is only here to be backwards compatible
548 		 */
549 		vp = NULL;
550 	} else for (count = 0; count < freevnodes; count++) {
551 		vp = TAILQ_FIRST(&vnode_free_list);
552 		if (vp == NULL || vp->v_usecount)
553 			panic("getnewvnode: free vnode isn't");
554 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
555 		/*
556 		 * Don't recycle if active in the namecache or
557 		 * if it still has cached pages or we cannot get
558 		 * its interlock.
559 		 */
560 		if (LIST_FIRST(&vp->v_cache_src) != NULL ||
561 		    (VOP_GETVOBJECT(vp, &object) == 0 &&
562 		     (object->resident_page_count || object->ref_count)) ||
563 		    !mtx_trylock(&vp->v_interlock)) {
564 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
565 			vp = NULL;
566 			continue;
567 		}
568 		/*
569 		 * Skip over it if its filesystem is being suspended.
570 		 */
571 		if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0)
572 			break;
573 		mtx_unlock(&vp->v_interlock);
574 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
575 		vp = NULL;
576 	}
577 	if (vp) {
578 		vp->v_flag |= VDOOMED;
579 		vp->v_flag &= ~VFREE;
580 		freevnodes--;
581 		mtx_unlock(&vnode_free_list_mtx);
582 		cache_purge(vp);
583 		vp->v_lease = NULL;
584 		if (vp->v_type != VBAD) {
585 			vgonel(vp, p);
586 		} else {
587 			mtx_unlock(&vp->v_interlock);
588 		}
589 		vn_finished_write(vnmp);
590 
591 #ifdef INVARIANTS
592 		{
593 			int s;
594 
595 			if (vp->v_data)
596 				panic("cleaned vnode isn't");
597 			s = splbio();
598 			if (vp->v_numoutput)
599 				panic("Clean vnode has pending I/O's");
600 			splx(s);
601 			if (vp->v_writecount != 0)
602 				panic("Non-zero write count");
603 		}
604 #endif
605 		vp->v_flag = 0;
606 		vp->v_lastw = 0;
607 		vp->v_lasta = 0;
608 		vp->v_cstart = 0;
609 		vp->v_clen = 0;
610 		vp->v_socket = 0;
611 	} else {
612 		mtx_unlock(&vnode_free_list_mtx);
613 		vp = (struct vnode *) zalloc(vnode_zone);
614 		bzero((char *) vp, sizeof *vp);
615 		mtx_init(&vp->v_interlock, "vnode interlock", MTX_DEF);
616 		vp->v_dd = vp;
617 		mtx_init(&vp->v_pollinfo.vpi_lock, "vnode pollinfo", MTX_DEF);
618 		cache_purge(vp);
619 		LIST_INIT(&vp->v_cache_src);
620 		TAILQ_INIT(&vp->v_cache_dst);
621 		numvnodes++;
622 	}
623 
624 	TAILQ_INIT(&vp->v_cleanblkhd);
625 	TAILQ_INIT(&vp->v_dirtyblkhd);
626 	vp->v_type = VNON;
627 	vp->v_tag = tag;
628 	vp->v_op = vops;
629 	lockinit(&vp->v_lock, PVFS, "vnlock", 0, LK_NOPAUSE);
630 	insmntque(vp, mp);
631 	*vpp = vp;
632 	vp->v_usecount = 1;
633 	vp->v_data = 0;
634 	splx(s);
635 
636 	vfs_object_create(vp, p, p->p_ucred);
637 	return (0);
638 }
639 
640 /*
641  * Move a vnode from one mount queue to another.
642  */
643 static void
644 insmntque(vp, mp)
645 	register struct vnode *vp;
646 	register struct mount *mp;
647 {
648 
649 	mtx_lock(&mntvnode_mtx);
650 	/*
651 	 * Delete from old mount point vnode list, if on one.
652 	 */
653 	if (vp->v_mount != NULL)
654 		LIST_REMOVE(vp, v_mntvnodes);
655 	/*
656 	 * Insert into list of vnodes for the new mount point, if available.
657 	 */
658 	if ((vp->v_mount = mp) == NULL) {
659 		mtx_unlock(&mntvnode_mtx);
660 		return;
661 	}
662 	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
663 	mtx_unlock(&mntvnode_mtx);
664 }
665 
666 /*
667  * Update outstanding I/O count and do wakeup if requested.
668  */
669 void
670 vwakeup(bp)
671 	register struct buf *bp;
672 {
673 	register struct vnode *vp;
674 
675 	bp->b_flags &= ~B_WRITEINPROG;
676 	if ((vp = bp->b_vp)) {
677 		vp->v_numoutput--;
678 		if (vp->v_numoutput < 0)
679 			panic("vwakeup: neg numoutput");
680 		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
681 			vp->v_flag &= ~VBWAIT;
682 			wakeup((caddr_t) &vp->v_numoutput);
683 		}
684 	}
685 }
686 
687 /*
688  * Flush out and invalidate all buffers associated with a vnode.
689  * Called with the underlying object locked.
690  */
691 int
692 vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
693 	register struct vnode *vp;
694 	int flags;
695 	struct ucred *cred;
696 	struct proc *p;
697 	int slpflag, slptimeo;
698 {
699 	register struct buf *bp;
700 	struct buf *nbp, *blist;
701 	int s, error;
702 	vm_object_t object;
703 
704 	if (flags & V_SAVE) {
705 		s = splbio();
706 		while (vp->v_numoutput) {
707 			vp->v_flag |= VBWAIT;
708 			error = tsleep((caddr_t)&vp->v_numoutput,
709 			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
710 			if (error) {
711 				splx(s);
712 				return (error);
713 			}
714 		}
715 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
716 			splx(s);
717 			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
718 				return (error);
719 			s = splbio();
720 			if (vp->v_numoutput > 0 ||
721 			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
722 				panic("vinvalbuf: dirty bufs");
723 		}
724 		splx(s);
725   	}
726 	s = splbio();
727 	for (;;) {
728 		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
729 		if (!blist)
730 			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
731 		if (!blist)
732 			break;
733 
734 		for (bp = blist; bp; bp = nbp) {
735 			nbp = TAILQ_NEXT(bp, b_vnbufs);
736 			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
737 				error = BUF_TIMELOCK(bp,
738 				    LK_EXCLUSIVE | LK_SLEEPFAIL,
739 				    "vinvalbuf", slpflag, slptimeo);
740 				if (error == ENOLCK)
741 					break;
742 				splx(s);
743 				return (error);
744 			}
745 			/*
746 			 * XXX Since there are no node locks for NFS, I
747 			 * believe there is a slight chance that a delayed
748 			 * write will occur while sleeping just above, so
749 			 * check for it.  Note that vfs_bio_awrite expects
750 			 * buffers to reside on a queue, while VOP_BWRITE and
751 			 * brelse do not.
752 			 */
753 			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
754 				(flags & V_SAVE)) {
755 
756 				if (bp->b_vp == vp) {
757 					if (bp->b_flags & B_CLUSTEROK) {
758 						BUF_UNLOCK(bp);
759 						vfs_bio_awrite(bp);
760 					} else {
761 						bremfree(bp);
762 						bp->b_flags |= B_ASYNC;
763 						BUF_WRITE(bp);
764 					}
765 				} else {
766 					bremfree(bp);
767 					(void) BUF_WRITE(bp);
768 				}
769 				break;
770 			}
771 			bremfree(bp);
772 			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
773 			bp->b_flags &= ~B_ASYNC;
774 			brelse(bp);
775 		}
776 	}
777 
778 	while (vp->v_numoutput > 0) {
779 		vp->v_flag |= VBWAIT;
780 		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
781 	}
782 
783 	splx(s);
784 
785 	/*
786 	 * Destroy the copy in the VM cache, too.
787 	 */
788 	mtx_lock(&vp->v_interlock);
789 	if (VOP_GETVOBJECT(vp, &object) == 0) {
790 		vm_object_page_remove(object, 0, 0,
791 			(flags & V_SAVE) ? TRUE : FALSE);
792 	}
793 	mtx_unlock(&vp->v_interlock);
794 
795 	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
796 		panic("vinvalbuf: flush failed");
797 	return (0);
798 }
799 
800 /*
801  * Truncate a file's buffer and pages to a specified length.  This
802  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
803  * sync activity.
804  */
805 int
806 vtruncbuf(vp, cred, p, length, blksize)
807 	register struct vnode *vp;
808 	struct ucred *cred;
809 	struct proc *p;
810 	off_t length;
811 	int blksize;
812 {
813 	register struct buf *bp;
814 	struct buf *nbp;
815 	int s, anyfreed;
816 	int trunclbn;
817 
818 	/*
819 	 * Round up to the *next* lbn.
820 	 */
821 	trunclbn = (length + blksize - 1) / blksize;
822 
823 	s = splbio();
824 restart:
825 	anyfreed = 1;
826 	for (;anyfreed;) {
827 		anyfreed = 0;
828 		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
829 			nbp = TAILQ_NEXT(bp, b_vnbufs);
830 			if (bp->b_lblkno >= trunclbn) {
831 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
832 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
833 					goto restart;
834 				} else {
835 					bremfree(bp);
836 					bp->b_flags |= (B_INVAL | B_RELBUF);
837 					bp->b_flags &= ~B_ASYNC;
838 					brelse(bp);
839 					anyfreed = 1;
840 				}
841 				if (nbp &&
842 				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
843 				    (nbp->b_vp != vp) ||
844 				    (nbp->b_flags & B_DELWRI))) {
845 					goto restart;
846 				}
847 			}
848 		}
849 
850 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
851 			nbp = TAILQ_NEXT(bp, b_vnbufs);
852 			if (bp->b_lblkno >= trunclbn) {
853 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
854 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
855 					goto restart;
856 				} else {
857 					bremfree(bp);
858 					bp->b_flags |= (B_INVAL | B_RELBUF);
859 					bp->b_flags &= ~B_ASYNC;
860 					brelse(bp);
861 					anyfreed = 1;
862 				}
863 				if (nbp &&
864 				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
865 				    (nbp->b_vp != vp) ||
866 				    (nbp->b_flags & B_DELWRI) == 0)) {
867 					goto restart;
868 				}
869 			}
870 		}
871 	}
872 
873 	if (length > 0) {
874 restartsync:
875 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
876 			nbp = TAILQ_NEXT(bp, b_vnbufs);
877 			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
878 				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
879 					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
880 					goto restart;
881 				} else {
882 					bremfree(bp);
883 					if (bp->b_vp == vp) {
884 						bp->b_flags |= B_ASYNC;
885 					} else {
886 						bp->b_flags &= ~B_ASYNC;
887 					}
888 					BUF_WRITE(bp);
889 				}
890 				goto restartsync;
891 			}
892 
893 		}
894 	}
895 
896 	while (vp->v_numoutput > 0) {
897 		vp->v_flag |= VBWAIT;
898 		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
899 	}
900 
901 	splx(s);
902 
903 	vnode_pager_setsize(vp, length);
904 
905 	return (0);
906 }
907 
908 /*
909  * Associate a buffer with a vnode.
910  */
911 void
912 bgetvp(vp, bp)
913 	register struct vnode *vp;
914 	register struct buf *bp;
915 {
916 	int s;
917 
918 	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
919 
920 	vhold(vp);
921 	bp->b_vp = vp;
922 	bp->b_dev = vn_todev(vp);
923 	/*
924 	 * Insert onto list for new vnode.
925 	 */
926 	s = splbio();
927 	bp->b_xflags |= BX_VNCLEAN;
928 	bp->b_xflags &= ~BX_VNDIRTY;
929 	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
930 	splx(s);
931 }
932 
933 /*
934  * Disassociate a buffer from a vnode.
935  */
936 void
937 brelvp(bp)
938 	register struct buf *bp;
939 {
940 	struct vnode *vp;
941 	struct buflists *listheadp;
942 	int s;
943 
944 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
945 
946 	/*
947 	 * Delete from old vnode list, if on one.
948 	 */
949 	vp = bp->b_vp;
950 	s = splbio();
951 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
952 		if (bp->b_xflags & BX_VNDIRTY)
953 			listheadp = &vp->v_dirtyblkhd;
954 		else
955 			listheadp = &vp->v_cleanblkhd;
956 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
957 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
958 	}
959 	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
960 		vp->v_flag &= ~VONWORKLST;
961 		LIST_REMOVE(vp, v_synclist);
962 	}
963 	splx(s);
964 	bp->b_vp = (struct vnode *) 0;
965 	vdrop(vp);
966 }
967 
968 /*
969  * Add an item to the syncer work queue.
970  */
971 static void
972 vn_syncer_add_to_worklist(struct vnode *vp, int delay)
973 {
974 	int s, slot;
975 
976 	s = splbio();
977 
978 	if (vp->v_flag & VONWORKLST) {
979 		LIST_REMOVE(vp, v_synclist);
980 	}
981 
982 	if (delay > syncer_maxdelay - 2)
983 		delay = syncer_maxdelay - 2;
984 	slot = (syncer_delayno + delay) & syncer_mask;
985 
986 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
987 	vp->v_flag |= VONWORKLST;
988 	splx(s);
989 }
990 
991 struct  proc *updateproc;
992 static void sched_sync __P((void));
993 static struct kproc_desc up_kp = {
994 	"syncer",
995 	sched_sync,
996 	&updateproc
997 };
998 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
999 
1000 /*
1001  * System filesystem synchronizer daemon.
1002  */
1003 void
1004 sched_sync(void)
1005 {
1006 	struct synclist *slp;
1007 	struct vnode *vp;
1008 	struct mount *mp;
1009 	long starttime;
1010 	int s;
1011 	struct proc *p = updateproc;
1012 
1013 	mtx_lock(&Giant);
1014 
1015 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
1016 	    SHUTDOWN_PRI_LAST);
1017 
1018 	for (;;) {
1019 		kthread_suspend_check(p);
1020 
1021 		starttime = time_second;
1022 
1023 		/*
1024 		 * Push files whose dirty time has expired.  Be careful
1025 		 * of interrupt race on slp queue.
1026 		 */
1027 		s = splbio();
1028 		slp = &syncer_workitem_pending[syncer_delayno];
1029 		syncer_delayno += 1;
1030 		if (syncer_delayno == syncer_maxdelay)
1031 			syncer_delayno = 0;
1032 		splx(s);
1033 
1034 		while ((vp = LIST_FIRST(slp)) != NULL) {
1035 			if (VOP_ISLOCKED(vp, NULL) == 0 &&
1036 			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
1037 				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1038 				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1039 				VOP_UNLOCK(vp, 0, p);
1040 				vn_finished_write(mp);
1041 			}
1042 			s = splbio();
1043 			if (LIST_FIRST(slp) == vp) {
1044 				/*
1045 				 * Note: v_tag VT_VFS vps can remain on the
1046 				 * worklist too with no dirty blocks, but
1047 				 * since sync_fsync() moves it to a different
1048 				 * slot we are safe.
1049 				 */
1050 				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1051 				    !vn_isdisk(vp, NULL))
1052 					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1053 				/*
1054 				 * Put us back on the worklist.  The worklist
1055 				 * routine will remove us from our current
1056 				 * position and then add us back in at a later
1057 				 * position.
1058 				 */
1059 				vn_syncer_add_to_worklist(vp, syncdelay);
1060 			}
1061 			splx(s);
1062 		}
1063 
1064 		/*
1065 		 * Do soft update processing.
1066 		 */
1067 #ifdef SOFTUPDATES
1068 		softdep_process_worklist(NULL);
1069 #endif
1070 
1071 		/*
1072 		 * The variable rushjob allows the kernel to speed up the
1073 		 * processing of the filesystem syncer process. A rushjob
1074 		 * value of N tells the filesystem syncer to process the next
1075 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1076 		 * is used by the soft update code to speed up the filesystem
1077 		 * syncer process when the incore state is getting so far
1078 		 * ahead of the disk that the kernel memory pool is being
1079 		 * threatened with exhaustion.
1080 		 */
1081 		if (rushjob > 0) {
1082 			rushjob -= 1;
1083 			continue;
1084 		}
1085 		/*
1086 		 * If it has taken us less than a second to process the
1087 		 * current work, then wait. Otherwise start right over
1088 		 * again. We can still lose time if any single round
1089 		 * takes more than two seconds, but it does not really
1090 		 * matter as we are just trying to generally pace the
1091 		 * filesystem activity.
1092 		 */
1093 		if (time_second == starttime)
1094 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1095 	}
1096 }
1097 
1098 /*
1099  * Request the syncer daemon to speed up its work.
1100  * We never push it to speed up more than half of its
1101  * normal turn time, otherwise it could take over the cpu.
1102  */
1103 int
1104 speedup_syncer()
1105 {
1106 
1107 	mtx_lock_spin(&sched_lock);
1108 	if (updateproc->p_wchan == &lbolt)
1109 		setrunnable(updateproc);
1110 	mtx_unlock_spin(&sched_lock);
1111 	if (rushjob < syncdelay / 2) {
1112 		rushjob += 1;
1113 		stat_rush_requests += 1;
1114 		return (1);
1115 	}
1116 	return(0);
1117 }
1118 
1119 /*
1120  * Associate a p-buffer with a vnode.
1121  *
1122  * Also sets B_PAGING flag to indicate that vnode is not fully associated
1123  * with the buffer.  i.e. the bp has not been linked into the vnode or
1124  * ref-counted.
1125  */
1126 void
1127 pbgetvp(vp, bp)
1128 	register struct vnode *vp;
1129 	register struct buf *bp;
1130 {
1131 
1132 	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1133 
1134 	bp->b_vp = vp;
1135 	bp->b_flags |= B_PAGING;
1136 	bp->b_dev = vn_todev(vp);
1137 }
1138 
1139 /*
1140  * Disassociate a p-buffer from a vnode.
1141  */
1142 void
1143 pbrelvp(bp)
1144 	register struct buf *bp;
1145 {
1146 
1147 	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1148 
1149 	/* XXX REMOVE ME */
1150 	if (TAILQ_NEXT(bp, b_vnbufs) != NULL) {
1151 		panic(
1152 		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1153 		    bp,
1154 		    (int)bp->b_flags
1155 		);
1156 	}
1157 	bp->b_vp = (struct vnode *) 0;
1158 	bp->b_flags &= ~B_PAGING;
1159 }
1160 
1161 /*
1162  * Change the vnode a pager buffer is associated with.
1163  */
1164 void
1165 pbreassignbuf(bp, newvp)
1166 	struct buf *bp;
1167 	struct vnode *newvp;
1168 {
1169 
1170 	KASSERT(bp->b_flags & B_PAGING,
1171 	    ("pbreassignbuf() on non phys bp %p", bp));
1172 	bp->b_vp = newvp;
1173 }
1174 
1175 /*
1176  * Reassign a buffer from one vnode to another.
1177  * Used to assign file specific control information
1178  * (indirect blocks) to the vnode to which they belong.
1179  */
1180 void
1181 reassignbuf(bp, newvp)
1182 	register struct buf *bp;
1183 	register struct vnode *newvp;
1184 {
1185 	struct buflists *listheadp;
1186 	int delay;
1187 	int s;
1188 
1189 	if (newvp == NULL) {
1190 		printf("reassignbuf: NULL");
1191 		return;
1192 	}
1193 	++reassignbufcalls;
1194 
1195 	/*
1196 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1197 	 * is not fully linked in.
1198 	 */
1199 	if (bp->b_flags & B_PAGING)
1200 		panic("cannot reassign paging buffer");
1201 
1202 	s = splbio();
1203 	/*
1204 	 * Delete from old vnode list, if on one.
1205 	 */
1206 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1207 		if (bp->b_xflags & BX_VNDIRTY)
1208 			listheadp = &bp->b_vp->v_dirtyblkhd;
1209 		else
1210 			listheadp = &bp->b_vp->v_cleanblkhd;
1211 		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1212 		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1213 		if (bp->b_vp != newvp) {
1214 			vdrop(bp->b_vp);
1215 			bp->b_vp = NULL;	/* for clarification */
1216 		}
1217 	}
1218 	/*
1219 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1220 	 * of clean buffers.
1221 	 */
1222 	if (bp->b_flags & B_DELWRI) {
1223 		struct buf *tbp;
1224 
1225 		listheadp = &newvp->v_dirtyblkhd;
1226 		if ((newvp->v_flag & VONWORKLST) == 0) {
1227 			switch (newvp->v_type) {
1228 			case VDIR:
1229 				delay = dirdelay;
1230 				break;
1231 			case VCHR:
1232 				if (newvp->v_rdev->si_mountpoint != NULL) {
1233 					delay = metadelay;
1234 					break;
1235 				}
1236 				/* fall through */
1237 			default:
1238 				delay = filedelay;
1239 			}
1240 			vn_syncer_add_to_worklist(newvp, delay);
1241 		}
1242 		bp->b_xflags |= BX_VNDIRTY;
1243 		tbp = TAILQ_FIRST(listheadp);
1244 		if (tbp == NULL ||
1245 		    bp->b_lblkno == 0 ||
1246 		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1247 		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1248 			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1249 			++reassignbufsortgood;
1250 		} else if (bp->b_lblkno < 0) {
1251 			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1252 			++reassignbufsortgood;
1253 		} else if (reassignbufmethod == 1) {
1254 			/*
1255 			 * New sorting algorithm, only handle sequential case,
1256 			 * otherwise append to end (but before metadata)
1257 			 */
1258 			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1259 			    (tbp->b_xflags & BX_VNDIRTY)) {
1260 				/*
1261 				 * Found the best place to insert the buffer
1262 				 */
1263 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1264 				++reassignbufsortgood;
1265 			} else {
1266 				/*
1267 				 * Missed, append to end, but before meta-data.
1268 				 * We know that the head buffer in the list is
1269 				 * not meta-data due to prior conditionals.
1270 				 *
1271 				 * Indirect effects:  NFS second stage write
1272 				 * tends to wind up here, giving maximum
1273 				 * distance between the unstable write and the
1274 				 * commit rpc.
1275 				 */
1276 				tbp = TAILQ_LAST(listheadp, buflists);
1277 				while (tbp && tbp->b_lblkno < 0)
1278 					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1279 				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1280 				++reassignbufsortbad;
1281 			}
1282 		} else {
1283 			/*
1284 			 * Old sorting algorithm, scan queue and insert
1285 			 */
1286 			struct buf *ttbp;
1287 			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1288 			    (ttbp->b_lblkno < bp->b_lblkno)) {
1289 				++reassignbufloops;
1290 				tbp = ttbp;
1291 			}
1292 			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1293 		}
1294 	} else {
1295 		bp->b_xflags |= BX_VNCLEAN;
1296 		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1297 		if ((newvp->v_flag & VONWORKLST) &&
1298 		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1299 			newvp->v_flag &= ~VONWORKLST;
1300 			LIST_REMOVE(newvp, v_synclist);
1301 		}
1302 	}
1303 	if (bp->b_vp != newvp) {
1304 		bp->b_vp = newvp;
1305 		vhold(bp->b_vp);
1306 	}
1307 	splx(s);
1308 }
1309 
1310 /*
1311  * Create a vnode for a device.
1312  * Used for mounting the root file system.
1313  */
1314 int
1315 bdevvp(dev, vpp)
1316 	dev_t dev;
1317 	struct vnode **vpp;
1318 {
1319 	register struct vnode *vp;
1320 	struct vnode *nvp;
1321 	int error;
1322 
1323 	if (dev == NODEV) {
1324 		*vpp = NULLVP;
1325 		return (ENXIO);
1326 	}
1327 	if (vfinddev(dev, VCHR, vpp))
1328 		return (0);
1329 	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1330 	if (error) {
1331 		*vpp = NULLVP;
1332 		return (error);
1333 	}
1334 	vp = nvp;
1335 	vp->v_type = VCHR;
1336 	addalias(vp, dev);
1337 	*vpp = vp;
1338 	return (0);
1339 }
1340 
1341 /*
1342  * Add vnode to the alias list hung off the dev_t.
1343  *
1344  * The reason for this gunk is that multiple vnodes can reference
1345  * the same physical device, so checking vp->v_usecount to see
1346  * how many users there are is inadequate; the v_usecount for
1347  * the vnodes need to be accumulated.  vcount() does that.
1348  */
1349 struct vnode *
1350 addaliasu(nvp, nvp_rdev)
1351 	struct vnode *nvp;
1352 	udev_t nvp_rdev;
1353 {
1354 	struct vnode *ovp;
1355 	vop_t **ops;
1356 	dev_t dev;
1357 
1358 	if (nvp->v_type == VBLK)
1359 		return (nvp);
1360 	if (nvp->v_type != VCHR)
1361 		panic("addaliasu on non-special vnode");
1362 	dev = udev2dev(nvp_rdev, 0);
1363 	/*
1364 	 * Check to see if we have a bdevvp vnode with no associated
1365 	 * filesystem. If so, we want to associate the filesystem of
1366 	 * the new newly instigated vnode with the bdevvp vnode and
1367 	 * discard the newly created vnode rather than leaving the
1368 	 * bdevvp vnode lying around with no associated filesystem.
1369 	 */
1370 	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1371 		addalias(nvp, dev);
1372 		return (nvp);
1373 	}
1374 	/*
1375 	 * Discard unneeded vnode, but save its node specific data.
1376 	 * Note that if there is a lock, it is carried over in the
1377 	 * node specific data to the replacement vnode.
1378 	 */
1379 	vref(ovp);
1380 	ovp->v_data = nvp->v_data;
1381 	ovp->v_tag = nvp->v_tag;
1382 	nvp->v_data = NULL;
1383 	lockinit(&ovp->v_lock, PVFS, nvp->v_lock.lk_wmesg,
1384 	    nvp->v_lock.lk_timo, nvp->v_lock.lk_flags & LK_EXTFLG_MASK);
1385 	if (nvp->v_vnlock)
1386 		ovp->v_vnlock = &ovp->v_lock;
1387 	ops = ovp->v_op;
1388 	ovp->v_op = nvp->v_op;
1389 	if (VOP_ISLOCKED(nvp, curproc)) {
1390 		VOP_UNLOCK(nvp, 0, curproc);
1391 		vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curproc);
1392 	}
1393 	nvp->v_op = ops;
1394 	insmntque(ovp, nvp->v_mount);
1395 	vrele(nvp);
1396 	vgone(nvp);
1397 	return (ovp);
1398 }
1399 
1400 /* This is a local helper function that do the same as addaliasu, but for a
1401  * dev_t instead of an udev_t. */
1402 static void
1403 addalias(nvp, dev)
1404 	struct vnode *nvp;
1405 	dev_t dev;
1406 {
1407 
1408 	KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode"));
1409 	nvp->v_rdev = dev;
1410 	mtx_lock(&spechash_mtx);
1411 	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1412 	mtx_unlock(&spechash_mtx);
1413 }
1414 
1415 /*
1416  * Grab a particular vnode from the free list, increment its
1417  * reference count and lock it. The vnode lock bit is set if the
1418  * vnode is being eliminated in vgone. The process is awakened
1419  * when the transition is completed, and an error returned to
1420  * indicate that the vnode is no longer usable (possibly having
1421  * been changed to a new file system type).
1422  */
1423 int
1424 vget(vp, flags, p)
1425 	register struct vnode *vp;
1426 	int flags;
1427 	struct proc *p;
1428 {
1429 	int error;
1430 
1431 	/*
1432 	 * If the vnode is in the process of being cleaned out for
1433 	 * another use, we wait for the cleaning to finish and then
1434 	 * return failure. Cleaning is determined by checking that
1435 	 * the VXLOCK flag is set.
1436 	 */
1437 	if ((flags & LK_INTERLOCK) == 0)
1438 		mtx_lock(&vp->v_interlock);
1439 	if (vp->v_flag & VXLOCK) {
1440 		if (vp->v_vxproc == curproc) {
1441 			printf("VXLOCK interlock avoided\n");
1442 		} else {
1443 			vp->v_flag |= VXWANT;
1444 			msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
1445 			    "vget", 0);
1446 			return (ENOENT);
1447 		}
1448 	}
1449 
1450 	vp->v_usecount++;
1451 
1452 	if (VSHOULDBUSY(vp))
1453 		vbusy(vp);
1454 	if (flags & LK_TYPE_MASK) {
1455 		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1456 			/*
1457 			 * must expand vrele here because we do not want
1458 			 * to call VOP_INACTIVE if the reference count
1459 			 * drops back to zero since it was never really
1460 			 * active. We must remove it from the free list
1461 			 * before sleeping so that multiple processes do
1462 			 * not try to recycle it.
1463 			 */
1464 			mtx_lock(&vp->v_interlock);
1465 			vp->v_usecount--;
1466 			if (VSHOULDFREE(vp))
1467 				vfree(vp);
1468 			mtx_unlock(&vp->v_interlock);
1469 		}
1470 		return (error);
1471 	}
1472 	mtx_unlock(&vp->v_interlock);
1473 	return (0);
1474 }
1475 
1476 /*
1477  * Increase the reference count of a vnode.
1478  */
1479 void
1480 vref(struct vnode *vp)
1481 {
1482 	mtx_lock(&vp->v_interlock);
1483 	vp->v_usecount++;
1484 	mtx_unlock(&vp->v_interlock);
1485 }
1486 
1487 /*
1488  * Vnode put/release.
1489  * If count drops to zero, call inactive routine and return to freelist.
1490  */
1491 void
1492 vrele(vp)
1493 	struct vnode *vp;
1494 {
1495 	struct proc *p = curproc;	/* XXX */
1496 
1497 	KASSERT(vp != NULL, ("vrele: null vp"));
1498 
1499 	mtx_lock(&vp->v_interlock);
1500 
1501 	KASSERT(vp->v_writecount < vp->v_usecount, ("vrele: missed vn_close"));
1502 
1503 	if (vp->v_usecount > 1) {
1504 
1505 		vp->v_usecount--;
1506 		mtx_unlock(&vp->v_interlock);
1507 
1508 		return;
1509 	}
1510 
1511 	if (vp->v_usecount == 1) {
1512 
1513 		vp->v_usecount--;
1514 		if (VSHOULDFREE(vp))
1515 			vfree(vp);
1516 	/*
1517 	 * If we are doing a vput, the node is already locked, and we must
1518 	 * call VOP_INACTIVE with the node locked.  So, in the case of
1519 	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1520 	 */
1521 		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1522 			VOP_INACTIVE(vp, p);
1523 		}
1524 
1525 	} else {
1526 #ifdef DIAGNOSTIC
1527 		vprint("vrele: negative ref count", vp);
1528 		mtx_unlock(&vp->v_interlock);
1529 #endif
1530 		panic("vrele: negative ref cnt");
1531 	}
1532 }
1533 
1534 /*
1535  * Release an already locked vnode.  This give the same effects as
1536  * unlock+vrele(), but takes less time and avoids releasing and
1537  * re-aquiring the lock (as vrele() aquires the lock internally.)
1538  */
1539 void
1540 vput(vp)
1541 	struct vnode *vp;
1542 {
1543 	struct proc *p = curproc;	/* XXX */
1544 
1545 	KASSERT(vp != NULL, ("vput: null vp"));
1546 	mtx_lock(&vp->v_interlock);
1547 	KASSERT(vp->v_writecount < vp->v_usecount, ("vput: missed vn_close"));
1548 
1549 	if (vp->v_usecount > 1) {
1550 
1551 		vp->v_usecount--;
1552 		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1553 		return;
1554 
1555 	}
1556 
1557 	if (vp->v_usecount == 1) {
1558 
1559 		vp->v_usecount--;
1560 		if (VSHOULDFREE(vp))
1561 			vfree(vp);
1562 	/*
1563 	 * If we are doing a vput, the node is already locked, and we must
1564 	 * call VOP_INACTIVE with the node locked.  So, in the case of
1565 	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1566 	 */
1567 		mtx_unlock(&vp->v_interlock);
1568 		VOP_INACTIVE(vp, p);
1569 
1570 	} else {
1571 #ifdef DIAGNOSTIC
1572 		vprint("vput: negative ref count", vp);
1573 #endif
1574 		panic("vput: negative ref cnt");
1575 	}
1576 }
1577 
1578 /*
1579  * Somebody doesn't want the vnode recycled.
1580  */
1581 void
1582 vhold(vp)
1583 	register struct vnode *vp;
1584 {
1585 	int s;
1586 
1587   	s = splbio();
1588 	vp->v_holdcnt++;
1589 	if (VSHOULDBUSY(vp))
1590 		vbusy(vp);
1591 	splx(s);
1592 }
1593 
1594 /*
1595  * Note that there is one less who cares about this vnode.  vdrop() is the
1596  * opposite of vhold().
1597  */
1598 void
1599 vdrop(vp)
1600 	register struct vnode *vp;
1601 {
1602 	int s;
1603 
1604 	s = splbio();
1605 	if (vp->v_holdcnt <= 0)
1606 		panic("vdrop: holdcnt");
1607 	vp->v_holdcnt--;
1608 	if (VSHOULDFREE(vp))
1609 		vfree(vp);
1610 	splx(s);
1611 }
1612 
1613 /*
1614  * Remove any vnodes in the vnode table belonging to mount point mp.
1615  *
1616  * If MNT_NOFORCE is specified, there should not be any active ones,
1617  * return error if any are found (nb: this is a user error, not a
1618  * system error). If MNT_FORCE is specified, detach any active vnodes
1619  * that are found.
1620  */
1621 #ifdef DIAGNOSTIC
1622 static int busyprt = 0;		/* print out busy vnodes */
1623 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1624 #endif
1625 
1626 int
1627 vflush(mp, skipvp, flags)
1628 	struct mount *mp;
1629 	struct vnode *skipvp;
1630 	int flags;
1631 {
1632 	struct proc *p = curproc;	/* XXX */
1633 	struct vnode *vp, *nvp;
1634 	int busy = 0;
1635 
1636 	mtx_lock(&mntvnode_mtx);
1637 loop:
1638 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1639 		/*
1640 		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1641 		 * Start over if it has (it won't be on the list anymore).
1642 		 */
1643 		if (vp->v_mount != mp)
1644 			goto loop;
1645 		nvp = LIST_NEXT(vp, v_mntvnodes);
1646 		/*
1647 		 * Skip over a selected vnode.
1648 		 */
1649 		if (vp == skipvp)
1650 			continue;
1651 
1652 		mtx_lock(&vp->v_interlock);
1653 		/*
1654 		 * Skip over a vnodes marked VSYSTEM.
1655 		 */
1656 		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1657 			mtx_unlock(&vp->v_interlock);
1658 			continue;
1659 		}
1660 		/*
1661 		 * If WRITECLOSE is set, only flush out regular file vnodes
1662 		 * open for writing.
1663 		 */
1664 		if ((flags & WRITECLOSE) &&
1665 		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1666 			mtx_unlock(&vp->v_interlock);
1667 			continue;
1668 		}
1669 
1670 		/*
1671 		 * With v_usecount == 0, all we need to do is clear out the
1672 		 * vnode data structures and we are done.
1673 		 */
1674 		if (vp->v_usecount == 0) {
1675 			mtx_unlock(&mntvnode_mtx);
1676 			vgonel(vp, p);
1677 			mtx_lock(&mntvnode_mtx);
1678 			continue;
1679 		}
1680 
1681 		/*
1682 		 * If FORCECLOSE is set, forcibly close the vnode. For block
1683 		 * or character devices, revert to an anonymous device. For
1684 		 * all other files, just kill them.
1685 		 */
1686 		if (flags & FORCECLOSE) {
1687 			mtx_unlock(&mntvnode_mtx);
1688 			if (vp->v_type != VCHR) {
1689 				vgonel(vp, p);
1690 			} else {
1691 				vclean(vp, 0, p);
1692 				vp->v_op = spec_vnodeop_p;
1693 				insmntque(vp, (struct mount *) 0);
1694 			}
1695 			mtx_lock(&mntvnode_mtx);
1696 			continue;
1697 		}
1698 #ifdef DIAGNOSTIC
1699 		if (busyprt)
1700 			vprint("vflush: busy vnode", vp);
1701 #endif
1702 		mtx_unlock(&vp->v_interlock);
1703 		busy++;
1704 	}
1705 	mtx_unlock(&mntvnode_mtx);
1706 	if (busy)
1707 		return (EBUSY);
1708 	return (0);
1709 }
1710 
1711 /*
1712  * Disassociate the underlying file system from a vnode.
1713  */
1714 static void
1715 vclean(vp, flags, p)
1716 	struct vnode *vp;
1717 	int flags;
1718 	struct proc *p;
1719 {
1720 	int active;
1721 
1722 	/*
1723 	 * Check to see if the vnode is in use. If so we have to reference it
1724 	 * before we clean it out so that its count cannot fall to zero and
1725 	 * generate a race against ourselves to recycle it.
1726 	 */
1727 	if ((active = vp->v_usecount))
1728 		vp->v_usecount++;
1729 
1730 	/*
1731 	 * Prevent the vnode from being recycled or brought into use while we
1732 	 * clean it out.
1733 	 */
1734 	if (vp->v_flag & VXLOCK)
1735 		panic("vclean: deadlock");
1736 	vp->v_flag |= VXLOCK;
1737 	vp->v_vxproc = curproc;
1738 	/*
1739 	 * Even if the count is zero, the VOP_INACTIVE routine may still
1740 	 * have the object locked while it cleans it out. The VOP_LOCK
1741 	 * ensures that the VOP_INACTIVE routine is done with its work.
1742 	 * For active vnodes, it ensures that no other activity can
1743 	 * occur while the underlying object is being cleaned out.
1744 	 */
1745 	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1746 
1747 	/*
1748 	 * Clean out any buffers associated with the vnode.
1749 	 * If the flush fails, just toss the buffers.
1750 	 */
1751 	if (flags & DOCLOSE) {
1752 		if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
1753 			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
1754 		if (vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0) != 0)
1755 			vinvalbuf(vp, 0, NOCRED, p, 0, 0);
1756 	}
1757 
1758 	VOP_DESTROYVOBJECT(vp);
1759 
1760 	/*
1761 	 * If purging an active vnode, it must be closed and
1762 	 * deactivated before being reclaimed. Note that the
1763 	 * VOP_INACTIVE will unlock the vnode.
1764 	 */
1765 	if (active) {
1766 		if (flags & DOCLOSE)
1767 			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1768 		VOP_INACTIVE(vp, p);
1769 	} else {
1770 		/*
1771 		 * Any other processes trying to obtain this lock must first
1772 		 * wait for VXLOCK to clear, then call the new lock operation.
1773 		 */
1774 		VOP_UNLOCK(vp, 0, p);
1775 	}
1776 	/*
1777 	 * Reclaim the vnode.
1778 	 */
1779 	if (VOP_RECLAIM(vp, p))
1780 		panic("vclean: cannot reclaim");
1781 
1782 	if (active) {
1783 		/*
1784 		 * Inline copy of vrele() since VOP_INACTIVE
1785 		 * has already been called.
1786 		 */
1787 		mtx_lock(&vp->v_interlock);
1788 		if (--vp->v_usecount <= 0) {
1789 #ifdef DIAGNOSTIC
1790 			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1791 				vprint("vclean: bad ref count", vp);
1792 				panic("vclean: ref cnt");
1793 			}
1794 #endif
1795 			vfree(vp);
1796 		}
1797 		mtx_unlock(&vp->v_interlock);
1798 	}
1799 
1800 	cache_purge(vp);
1801 	vp->v_vnlock = NULL;
1802 	lockdestroy(&vp->v_lock);
1803 
1804 	if (VSHOULDFREE(vp))
1805 		vfree(vp);
1806 
1807 	/*
1808 	 * Done with purge, notify sleepers of the grim news.
1809 	 */
1810 	vp->v_op = dead_vnodeop_p;
1811 	vn_pollgone(vp);
1812 	vp->v_tag = VT_NON;
1813 	vp->v_flag &= ~VXLOCK;
1814 	vp->v_vxproc = NULL;
1815 	if (vp->v_flag & VXWANT) {
1816 		vp->v_flag &= ~VXWANT;
1817 		wakeup((caddr_t) vp);
1818 	}
1819 }
1820 
1821 /*
1822  * Eliminate all activity associated with the requested vnode
1823  * and with all vnodes aliased to the requested vnode.
1824  */
1825 int
1826 vop_revoke(ap)
1827 	struct vop_revoke_args /* {
1828 		struct vnode *a_vp;
1829 		int a_flags;
1830 	} */ *ap;
1831 {
1832 	struct vnode *vp, *vq;
1833 	dev_t dev;
1834 
1835 	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1836 
1837 	vp = ap->a_vp;
1838 	/*
1839 	 * If a vgone (or vclean) is already in progress,
1840 	 * wait until it is done and return.
1841 	 */
1842 	if (vp->v_flag & VXLOCK) {
1843 		vp->v_flag |= VXWANT;
1844 		msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
1845 		    "vop_revokeall", 0);
1846 		return (0);
1847 	}
1848 	dev = vp->v_rdev;
1849 	for (;;) {
1850 		mtx_lock(&spechash_mtx);
1851 		vq = SLIST_FIRST(&dev->si_hlist);
1852 		mtx_unlock(&spechash_mtx);
1853 		if (!vq)
1854 			break;
1855 		vgone(vq);
1856 	}
1857 	return (0);
1858 }
1859 
1860 /*
1861  * Recycle an unused vnode to the front of the free list.
1862  * Release the passed interlock if the vnode will be recycled.
1863  */
1864 int
1865 vrecycle(vp, inter_lkp, p)
1866 	struct vnode *vp;
1867 	struct mtx *inter_lkp;
1868 	struct proc *p;
1869 {
1870 
1871 	mtx_lock(&vp->v_interlock);
1872 	if (vp->v_usecount == 0) {
1873 		if (inter_lkp) {
1874 			mtx_unlock(inter_lkp);
1875 		}
1876 		vgonel(vp, p);
1877 		return (1);
1878 	}
1879 	mtx_unlock(&vp->v_interlock);
1880 	return (0);
1881 }
1882 
1883 /*
1884  * Eliminate all activity associated with a vnode
1885  * in preparation for reuse.
1886  */
1887 void
1888 vgone(vp)
1889 	register struct vnode *vp;
1890 {
1891 	struct proc *p = curproc;	/* XXX */
1892 
1893 	mtx_lock(&vp->v_interlock);
1894 	vgonel(vp, p);
1895 }
1896 
1897 /*
1898  * vgone, with the vp interlock held.
1899  */
1900 void
1901 vgonel(vp, p)
1902 	struct vnode *vp;
1903 	struct proc *p;
1904 {
1905 	int s;
1906 
1907 	/*
1908 	 * If a vgone (or vclean) is already in progress,
1909 	 * wait until it is done and return.
1910 	 */
1911 	if (vp->v_flag & VXLOCK) {
1912 		vp->v_flag |= VXWANT;
1913 		msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP,
1914 		    "vgone", 0);
1915 		return;
1916 	}
1917 
1918 	/*
1919 	 * Clean out the filesystem specific data.
1920 	 */
1921 	vclean(vp, DOCLOSE, p);
1922 	mtx_lock(&vp->v_interlock);
1923 
1924 	/*
1925 	 * Delete from old mount point vnode list, if on one.
1926 	 */
1927 	if (vp->v_mount != NULL)
1928 		insmntque(vp, (struct mount *)0);
1929 	/*
1930 	 * If special device, remove it from special device alias list
1931 	 * if it is on one.
1932 	 */
1933 	if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) {
1934 		mtx_lock(&spechash_mtx);
1935 		SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext);
1936 		freedev(vp->v_rdev);
1937 		mtx_unlock(&spechash_mtx);
1938 		vp->v_rdev = NULL;
1939 	}
1940 
1941 	/*
1942 	 * If it is on the freelist and not already at the head,
1943 	 * move it to the head of the list. The test of the
1944 	 * VDOOMED flag and the reference count of zero is because
1945 	 * it will be removed from the free list by getnewvnode,
1946 	 * but will not have its reference count incremented until
1947 	 * after calling vgone. If the reference count were
1948 	 * incremented first, vgone would (incorrectly) try to
1949 	 * close the previous instance of the underlying object.
1950 	 */
1951 	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1952 		s = splbio();
1953 		mtx_lock(&vnode_free_list_mtx);
1954 		if (vp->v_flag & VFREE)
1955 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1956 		else
1957 			freevnodes++;
1958 		vp->v_flag |= VFREE;
1959 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1960 		mtx_unlock(&vnode_free_list_mtx);
1961 		splx(s);
1962 	}
1963 
1964 	vp->v_type = VBAD;
1965 	mtx_unlock(&vp->v_interlock);
1966 }
1967 
1968 /*
1969  * Lookup a vnode by device number.
1970  */
1971 int
1972 vfinddev(dev, type, vpp)
1973 	dev_t dev;
1974 	enum vtype type;
1975 	struct vnode **vpp;
1976 {
1977 	struct vnode *vp;
1978 
1979 	mtx_lock(&spechash_mtx);
1980 	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1981 		if (type == vp->v_type) {
1982 			*vpp = vp;
1983 			mtx_unlock(&spechash_mtx);
1984 			return (1);
1985 		}
1986 	}
1987 	mtx_unlock(&spechash_mtx);
1988 	return (0);
1989 }
1990 
1991 /*
1992  * Calculate the total number of references to a special device.
1993  */
1994 int
1995 vcount(vp)
1996 	struct vnode *vp;
1997 {
1998 	struct vnode *vq;
1999 	int count;
2000 
2001 	count = 0;
2002 	mtx_lock(&spechash_mtx);
2003 	SLIST_FOREACH(vq, &vp->v_rdev->si_hlist, v_specnext)
2004 		count += vq->v_usecount;
2005 	mtx_unlock(&spechash_mtx);
2006 	return (count);
2007 }
2008 
2009 /*
2010  * Same as above, but using the dev_t as argument
2011  */
2012 int
2013 count_dev(dev)
2014 	dev_t dev;
2015 {
2016 	struct vnode *vp;
2017 
2018 	vp = SLIST_FIRST(&dev->si_hlist);
2019 	if (vp == NULL)
2020 		return (0);
2021 	return(vcount(vp));
2022 }
2023 
2024 /*
2025  * Print out a description of a vnode.
2026  */
2027 static char *typename[] =
2028 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2029 
2030 void
2031 vprint(label, vp)
2032 	char *label;
2033 	struct vnode *vp;
2034 {
2035 	char buf[96];
2036 
2037 	if (label != NULL)
2038 		printf("%s: %p: ", label, (void *)vp);
2039 	else
2040 		printf("%p: ", (void *)vp);
2041 	printf("type %s, usecount %d, writecount %d, refcount %d,",
2042 	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
2043 	    vp->v_holdcnt);
2044 	buf[0] = '\0';
2045 	if (vp->v_flag & VROOT)
2046 		strcat(buf, "|VROOT");
2047 	if (vp->v_flag & VTEXT)
2048 		strcat(buf, "|VTEXT");
2049 	if (vp->v_flag & VSYSTEM)
2050 		strcat(buf, "|VSYSTEM");
2051 	if (vp->v_flag & VXLOCK)
2052 		strcat(buf, "|VXLOCK");
2053 	if (vp->v_flag & VXWANT)
2054 		strcat(buf, "|VXWANT");
2055 	if (vp->v_flag & VBWAIT)
2056 		strcat(buf, "|VBWAIT");
2057 	if (vp->v_flag & VDOOMED)
2058 		strcat(buf, "|VDOOMED");
2059 	if (vp->v_flag & VFREE)
2060 		strcat(buf, "|VFREE");
2061 	if (vp->v_flag & VOBJBUF)
2062 		strcat(buf, "|VOBJBUF");
2063 	if (buf[0] != '\0')
2064 		printf(" flags (%s)", &buf[1]);
2065 	if (vp->v_data == NULL) {
2066 		printf("\n");
2067 	} else {
2068 		printf("\n\t");
2069 		VOP_PRINT(vp);
2070 	}
2071 }
2072 
2073 #ifdef DDB
2074 #include <ddb/ddb.h>
2075 /*
2076  * List all of the locked vnodes in the system.
2077  * Called when debugging the kernel.
2078  */
2079 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2080 {
2081 	struct proc *p = curproc;	/* XXX */
2082 	struct mount *mp, *nmp;
2083 	struct vnode *vp;
2084 
2085 	printf("Locked vnodes\n");
2086 	mtx_lock(&mountlist_mtx);
2087 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2088 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, p)) {
2089 			nmp = TAILQ_NEXT(mp, mnt_list);
2090 			continue;
2091 		}
2092 		LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2093 			if (VOP_ISLOCKED(vp, NULL))
2094 				vprint((char *)0, vp);
2095 		}
2096 		mtx_lock(&mountlist_mtx);
2097 		nmp = TAILQ_NEXT(mp, mnt_list);
2098 		vfs_unbusy(mp, p);
2099 	}
2100 	mtx_unlock(&mountlist_mtx);
2101 }
2102 #endif
2103 
2104 /*
2105  * Top level filesystem related information gathering.
2106  */
2107 static int	sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2108 
2109 static int
2110 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2111 {
2112 	int *name = (int *)arg1 - 1;	/* XXX */
2113 	u_int namelen = arg2 + 1;	/* XXX */
2114 	struct vfsconf *vfsp;
2115 
2116 #if 1 || defined(COMPAT_PRELITE2)
2117 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2118 	if (namelen == 1)
2119 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2120 #endif
2121 
2122 	/* XXX the below code does not compile; vfs_sysctl does not exist. */
2123 #ifdef notyet
2124 	/* all sysctl names at this level are at least name and field */
2125 	if (namelen < 2)
2126 		return (ENOTDIR);		/* overloaded */
2127 	if (name[0] != VFS_GENERIC) {
2128 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2129 			if (vfsp->vfc_typenum == name[0])
2130 				break;
2131 		if (vfsp == NULL)
2132 			return (EOPNOTSUPP);
2133 		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2134 		    oldp, oldlenp, newp, newlen, p));
2135 	}
2136 #endif
2137 	switch (name[1]) {
2138 	case VFS_MAXTYPENUM:
2139 		if (namelen != 2)
2140 			return (ENOTDIR);
2141 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2142 	case VFS_CONF:
2143 		if (namelen != 3)
2144 			return (ENOTDIR);	/* overloaded */
2145 		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2146 			if (vfsp->vfc_typenum == name[2])
2147 				break;
2148 		if (vfsp == NULL)
2149 			return (EOPNOTSUPP);
2150 		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2151 	}
2152 	return (EOPNOTSUPP);
2153 }
2154 
2155 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2156 	"Generic filesystem");
2157 
2158 #if 1 || defined(COMPAT_PRELITE2)
2159 
2160 static int
2161 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2162 {
2163 	int error;
2164 	struct vfsconf *vfsp;
2165 	struct ovfsconf ovfs;
2166 
2167 	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2168 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2169 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2170 		ovfs.vfc_index = vfsp->vfc_typenum;
2171 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2172 		ovfs.vfc_flags = vfsp->vfc_flags;
2173 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2174 		if (error)
2175 			return error;
2176 	}
2177 	return 0;
2178 }
2179 
2180 #endif /* 1 || COMPAT_PRELITE2 */
2181 
2182 #if COMPILING_LINT
2183 #define KINFO_VNODESLOP	10
2184 /*
2185  * Dump vnode list (via sysctl).
2186  * Copyout address of vnode followed by vnode.
2187  */
2188 /* ARGSUSED */
2189 static int
2190 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2191 {
2192 	struct proc *p = curproc;	/* XXX */
2193 	struct mount *mp, *nmp;
2194 	struct vnode *nvp, *vp;
2195 	int error;
2196 
2197 #define VPTRSZ	sizeof (struct vnode *)
2198 #define VNODESZ	sizeof (struct vnode)
2199 
2200 	req->lock = 0;
2201 	if (!req->oldptr) /* Make an estimate */
2202 		return (SYSCTL_OUT(req, 0,
2203 			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2204 
2205 	mtx_lock(&mountlist_mtx);
2206 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2207 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, p)) {
2208 			nmp = TAILQ_NEXT(mp, mnt_list);
2209 			continue;
2210 		}
2211 again:
2212 		mtx_lock(&mntvnode_mtx);
2213 		for (vp = LIST_FIRST(&mp->mnt_vnodelist);
2214 		     vp != NULL;
2215 		     vp = nvp) {
2216 			/*
2217 			 * Check that the vp is still associated with
2218 			 * this filesystem.  RACE: could have been
2219 			 * recycled onto the same filesystem.
2220 			 */
2221 			if (vp->v_mount != mp) {
2222 				mtx_unlock(&mntvnode_mtx);
2223 				goto again;
2224 			}
2225 			nvp = LIST_NEXT(vp, v_mntvnodes);
2226 			mtx_unlock(&mntvnode_mtx);
2227 			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2228 			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2229 				return (error);
2230 			mtx_lock(&mntvnode_mtx);
2231 		}
2232 		mtx_unlock(&mntvnode_mtx);
2233 		mtx_lock(&mountlist_mtx);
2234 		nmp = TAILQ_NEXT(mp, mnt_list);
2235 		vfs_unbusy(mp, p);
2236 	}
2237 	mtx_unlock(&mountlist_mtx);
2238 
2239 	return (0);
2240 }
2241 
2242 /*
2243  * XXX
2244  * Exporting the vnode list on large systems causes them to crash.
2245  * Exporting the vnode list on medium systems causes sysctl to coredump.
2246  */
2247 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2248 	0, 0, sysctl_vnode, "S,vnode", "");
2249 #endif
2250 
2251 /*
2252  * Check to see if a filesystem is mounted on a block device.
2253  */
2254 int
2255 vfs_mountedon(vp)
2256 	struct vnode *vp;
2257 {
2258 
2259 	if (vp->v_rdev->si_mountpoint != NULL)
2260 		return (EBUSY);
2261 	return (0);
2262 }
2263 
2264 /*
2265  * Unmount all filesystems. The list is traversed in reverse order
2266  * of mounting to avoid dependencies.
2267  */
2268 void
2269 vfs_unmountall()
2270 {
2271 	struct mount *mp;
2272 	struct proc *p;
2273 	int error;
2274 
2275 	if (curproc != NULL)
2276 		p = curproc;
2277 	else
2278 		p = initproc;	/* XXX XXX should this be proc0? */
2279 	/*
2280 	 * Since this only runs when rebooting, it is not interlocked.
2281 	 */
2282 	while(!TAILQ_EMPTY(&mountlist)) {
2283 		mp = TAILQ_LAST(&mountlist, mntlist);
2284 		error = dounmount(mp, MNT_FORCE, p);
2285 		if (error) {
2286 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2287 			printf("unmount of %s failed (",
2288 			    mp->mnt_stat.f_mntonname);
2289 			if (error == EBUSY)
2290 				printf("BUSY)\n");
2291 			else
2292 				printf("%d)\n", error);
2293 		} else {
2294 			/* The unmount has removed mp from the mountlist */
2295 		}
2296 	}
2297 }
2298 
2299 /*
2300  * Build hash lists of net addresses and hang them off the mount point.
2301  * Called by ufs_mount() to set up the lists of export addresses.
2302  */
2303 static int
2304 vfs_hang_addrlist(mp, nep, argp)
2305 	struct mount *mp;
2306 	struct netexport *nep;
2307 	struct export_args *argp;
2308 {
2309 	register struct netcred *np;
2310 	register struct radix_node_head *rnh;
2311 	register int i;
2312 	struct radix_node *rn;
2313 	struct sockaddr *saddr, *smask = 0;
2314 	struct domain *dom;
2315 	int error;
2316 
2317 	if (argp->ex_addrlen == 0) {
2318 		if (mp->mnt_flag & MNT_DEFEXPORTED)
2319 			return (EPERM);
2320 		np = &nep->ne_defexported;
2321 		np->netc_exflags = argp->ex_flags;
2322 		np->netc_anon = argp->ex_anon;
2323 		np->netc_anon.cr_ref = 1;
2324 		mp->mnt_flag |= MNT_DEFEXPORTED;
2325 		return (0);
2326 	}
2327 	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2328 	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK | M_ZERO);
2329 	saddr = (struct sockaddr *) (np + 1);
2330 	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2331 		goto out;
2332 	if (saddr->sa_len > argp->ex_addrlen)
2333 		saddr->sa_len = argp->ex_addrlen;
2334 	if (argp->ex_masklen) {
2335 		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2336 		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2337 		if (error)
2338 			goto out;
2339 		if (smask->sa_len > argp->ex_masklen)
2340 			smask->sa_len = argp->ex_masklen;
2341 	}
2342 	i = saddr->sa_family;
2343 	if ((rnh = nep->ne_rtable[i]) == 0) {
2344 		/*
2345 		 * Seems silly to initialize every AF when most are not used,
2346 		 * do so on demand here
2347 		 */
2348 		for (dom = domains; dom; dom = dom->dom_next)
2349 			if (dom->dom_family == i && dom->dom_rtattach) {
2350 				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2351 				    dom->dom_rtoffset);
2352 				break;
2353 			}
2354 		if ((rnh = nep->ne_rtable[i]) == 0) {
2355 			error = ENOBUFS;
2356 			goto out;
2357 		}
2358 	}
2359 	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2360 	    np->netc_rnodes);
2361 	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2362 		error = EPERM;
2363 		goto out;
2364 	}
2365 	np->netc_exflags = argp->ex_flags;
2366 	np->netc_anon = argp->ex_anon;
2367 	np->netc_anon.cr_ref = 1;
2368 	return (0);
2369 out:
2370 	free(np, M_NETADDR);
2371 	return (error);
2372 }
2373 
2374 /* Helper for vfs_free_addrlist. */
2375 /* ARGSUSED */
2376 static int
2377 vfs_free_netcred(rn, w)
2378 	struct radix_node *rn;
2379 	void *w;
2380 {
2381 	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2382 
2383 	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2384 	free((caddr_t) rn, M_NETADDR);
2385 	return (0);
2386 }
2387 
2388 /*
2389  * Free the net address hash lists that are hanging off the mount points.
2390  */
2391 static void
2392 vfs_free_addrlist(nep)
2393 	struct netexport *nep;
2394 {
2395 	register int i;
2396 	register struct radix_node_head *rnh;
2397 
2398 	for (i = 0; i <= AF_MAX; i++)
2399 		if ((rnh = nep->ne_rtable[i])) {
2400 			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2401 			    (caddr_t) rnh);
2402 			free((caddr_t) rnh, M_RTABLE);
2403 			nep->ne_rtable[i] = 0;
2404 		}
2405 }
2406 
2407 /*
2408  * High level function to manipulate export options on a mount point
2409  * and the passed in netexport.
2410  * Struct export_args *argp is the variable used to twiddle options,
2411  * the structure is described in sys/mount.h
2412  */
2413 int
2414 vfs_export(mp, nep, argp)
2415 	struct mount *mp;
2416 	struct netexport *nep;
2417 	struct export_args *argp;
2418 {
2419 	int error;
2420 
2421 	if (argp->ex_flags & MNT_DELEXPORT) {
2422 		if (mp->mnt_flag & MNT_EXPUBLIC) {
2423 			vfs_setpublicfs(NULL, NULL, NULL);
2424 			mp->mnt_flag &= ~MNT_EXPUBLIC;
2425 		}
2426 		vfs_free_addrlist(nep);
2427 		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2428 	}
2429 	if (argp->ex_flags & MNT_EXPORTED) {
2430 		if (argp->ex_flags & MNT_EXPUBLIC) {
2431 			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2432 				return (error);
2433 			mp->mnt_flag |= MNT_EXPUBLIC;
2434 		}
2435 		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2436 			return (error);
2437 		mp->mnt_flag |= MNT_EXPORTED;
2438 	}
2439 	return (0);
2440 }
2441 
2442 /*
2443  * Set the publicly exported filesystem (WebNFS). Currently, only
2444  * one public filesystem is possible in the spec (RFC 2054 and 2055)
2445  */
2446 int
2447 vfs_setpublicfs(mp, nep, argp)
2448 	struct mount *mp;
2449 	struct netexport *nep;
2450 	struct export_args *argp;
2451 {
2452 	int error;
2453 	struct vnode *rvp;
2454 	char *cp;
2455 
2456 	/*
2457 	 * mp == NULL -> invalidate the current info, the FS is
2458 	 * no longer exported. May be called from either vfs_export
2459 	 * or unmount, so check if it hasn't already been done.
2460 	 */
2461 	if (mp == NULL) {
2462 		if (nfs_pub.np_valid) {
2463 			nfs_pub.np_valid = 0;
2464 			if (nfs_pub.np_index != NULL) {
2465 				FREE(nfs_pub.np_index, M_TEMP);
2466 				nfs_pub.np_index = NULL;
2467 			}
2468 		}
2469 		return (0);
2470 	}
2471 
2472 	/*
2473 	 * Only one allowed at a time.
2474 	 */
2475 	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2476 		return (EBUSY);
2477 
2478 	/*
2479 	 * Get real filehandle for root of exported FS.
2480 	 */
2481 	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2482 	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2483 
2484 	if ((error = VFS_ROOT(mp, &rvp)))
2485 		return (error);
2486 
2487 	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2488 		return (error);
2489 
2490 	vput(rvp);
2491 
2492 	/*
2493 	 * If an indexfile was specified, pull it in.
2494 	 */
2495 	if (argp->ex_indexfile != NULL) {
2496 		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2497 		    M_WAITOK);
2498 		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2499 		    MAXNAMLEN, (size_t *)0);
2500 		if (!error) {
2501 			/*
2502 			 * Check for illegal filenames.
2503 			 */
2504 			for (cp = nfs_pub.np_index; *cp; cp++) {
2505 				if (*cp == '/') {
2506 					error = EINVAL;
2507 					break;
2508 				}
2509 			}
2510 		}
2511 		if (error) {
2512 			FREE(nfs_pub.np_index, M_TEMP);
2513 			return (error);
2514 		}
2515 	}
2516 
2517 	nfs_pub.np_mount = mp;
2518 	nfs_pub.np_valid = 1;
2519 	return (0);
2520 }
2521 
2522 /*
2523  * Used by the filesystems to determine if a given network address
2524  * (passed in 'nam') is present in thier exports list, returns a pointer
2525  * to struct netcred so that the filesystem can examine it for
2526  * access rights (read/write/etc).
2527  */
2528 struct netcred *
2529 vfs_export_lookup(mp, nep, nam)
2530 	register struct mount *mp;
2531 	struct netexport *nep;
2532 	struct sockaddr *nam;
2533 {
2534 	register struct netcred *np;
2535 	register struct radix_node_head *rnh;
2536 	struct sockaddr *saddr;
2537 
2538 	np = NULL;
2539 	if (mp->mnt_flag & MNT_EXPORTED) {
2540 		/*
2541 		 * Lookup in the export list first.
2542 		 */
2543 		if (nam != NULL) {
2544 			saddr = nam;
2545 			rnh = nep->ne_rtable[saddr->sa_family];
2546 			if (rnh != NULL) {
2547 				np = (struct netcred *)
2548 					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2549 							      rnh);
2550 				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2551 					np = NULL;
2552 			}
2553 		}
2554 		/*
2555 		 * If no address match, use the default if it exists.
2556 		 */
2557 		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2558 			np = &nep->ne_defexported;
2559 	}
2560 	return (np);
2561 }
2562 
2563 /*
2564  * perform msync on all vnodes under a mount point
2565  * the mount point must be locked.
2566  */
2567 void
2568 vfs_msync(struct mount *mp, int flags) {
2569 	struct vnode *vp, *nvp;
2570 	struct vm_object *obj;
2571 	int anyio, tries;
2572 
2573 	tries = 5;
2574 loop:
2575 	anyio = 0;
2576 	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
2577 
2578 		nvp = LIST_NEXT(vp, v_mntvnodes);
2579 
2580 		if (vp->v_mount != mp) {
2581 			goto loop;
2582 		}
2583 
2584 		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2585 			continue;
2586 
2587 		if (flags != MNT_WAIT) {
2588 			if (VOP_GETVOBJECT(vp, &obj) != 0 ||
2589 			    (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2590 				continue;
2591 			if (VOP_ISLOCKED(vp, NULL))
2592 				continue;
2593 		}
2594 
2595 		mtx_lock(&vp->v_interlock);
2596 		if (VOP_GETVOBJECT(vp, &obj) == 0 &&
2597 		    (obj->flags & OBJ_MIGHTBEDIRTY)) {
2598 			if (!vget(vp,
2599 				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2600 				if (VOP_GETVOBJECT(vp, &obj) == 0) {
2601 					vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2602 					anyio = 1;
2603 				}
2604 				vput(vp);
2605 			}
2606 		} else {
2607 			mtx_unlock(&vp->v_interlock);
2608 		}
2609 	}
2610 	if (anyio && (--tries > 0))
2611 		goto loop;
2612 }
2613 
2614 /*
2615  * Create the VM object needed for VMIO and mmap support.  This
2616  * is done for all VREG files in the system.  Some filesystems might
2617  * afford the additional metadata buffering capability of the
2618  * VMIO code by making the device node be VMIO mode also.
2619  *
2620  * vp must be locked when vfs_object_create is called.
2621  */
2622 int
2623 vfs_object_create(vp, p, cred)
2624 	struct vnode *vp;
2625 	struct proc *p;
2626 	struct ucred *cred;
2627 {
2628 	return (VOP_CREATEVOBJECT(vp, cred, p));
2629 }
2630 
2631 /*
2632  * Mark a vnode as free, putting it up for recycling.
2633  */
2634 void
2635 vfree(vp)
2636 	struct vnode *vp;
2637 {
2638 	int s;
2639 
2640 	s = splbio();
2641 	mtx_lock(&vnode_free_list_mtx);
2642 	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2643 	if (vp->v_flag & VAGE) {
2644 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2645 	} else {
2646 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2647 	}
2648 	freevnodes++;
2649 	mtx_unlock(&vnode_free_list_mtx);
2650 	vp->v_flag &= ~VAGE;
2651 	vp->v_flag |= VFREE;
2652 	splx(s);
2653 }
2654 
2655 /*
2656  * Opposite of vfree() - mark a vnode as in use.
2657  */
2658 void
2659 vbusy(vp)
2660 	struct vnode *vp;
2661 {
2662 	int s;
2663 
2664 	s = splbio();
2665 	mtx_lock(&vnode_free_list_mtx);
2666 	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2667 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2668 	freevnodes--;
2669 	mtx_unlock(&vnode_free_list_mtx);
2670 	vp->v_flag &= ~(VFREE|VAGE);
2671 	splx(s);
2672 }
2673 
2674 /*
2675  * Record a process's interest in events which might happen to
2676  * a vnode.  Because poll uses the historic select-style interface
2677  * internally, this routine serves as both the ``check for any
2678  * pending events'' and the ``record my interest in future events''
2679  * functions.  (These are done together, while the lock is held,
2680  * to avoid race conditions.)
2681  */
2682 int
2683 vn_pollrecord(vp, p, events)
2684 	struct vnode *vp;
2685 	struct proc *p;
2686 	short events;
2687 {
2688 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2689 	if (vp->v_pollinfo.vpi_revents & events) {
2690 		/*
2691 		 * This leaves events we are not interested
2692 		 * in available for the other process which
2693 		 * which presumably had requested them
2694 		 * (otherwise they would never have been
2695 		 * recorded).
2696 		 */
2697 		events &= vp->v_pollinfo.vpi_revents;
2698 		vp->v_pollinfo.vpi_revents &= ~events;
2699 
2700 		mtx_unlock(&vp->v_pollinfo.vpi_lock);
2701 		return events;
2702 	}
2703 	vp->v_pollinfo.vpi_events |= events;
2704 	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2705 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2706 	return 0;
2707 }
2708 
2709 /*
2710  * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2711  * it is possible for us to miss an event due to race conditions, but
2712  * that condition is expected to be rare, so for the moment it is the
2713  * preferred interface.
2714  */
2715 void
2716 vn_pollevent(vp, events)
2717 	struct vnode *vp;
2718 	short events;
2719 {
2720 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2721 	if (vp->v_pollinfo.vpi_events & events) {
2722 		/*
2723 		 * We clear vpi_events so that we don't
2724 		 * call selwakeup() twice if two events are
2725 		 * posted before the polling process(es) is
2726 		 * awakened.  This also ensures that we take at
2727 		 * most one selwakeup() if the polling process
2728 		 * is no longer interested.  However, it does
2729 		 * mean that only one event can be noticed at
2730 		 * a time.  (Perhaps we should only clear those
2731 		 * event bits which we note?) XXX
2732 		 */
2733 		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2734 		vp->v_pollinfo.vpi_revents |= events;
2735 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2736 	}
2737 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2738 }
2739 
2740 /*
2741  * Wake up anyone polling on vp because it is being revoked.
2742  * This depends on dead_poll() returning POLLHUP for correct
2743  * behavior.
2744  */
2745 void
2746 vn_pollgone(vp)
2747 	struct vnode *vp;
2748 {
2749 	mtx_lock(&vp->v_pollinfo.vpi_lock);
2750 	if (vp->v_pollinfo.vpi_events) {
2751 		vp->v_pollinfo.vpi_events = 0;
2752 		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2753 	}
2754 	mtx_unlock(&vp->v_pollinfo.vpi_lock);
2755 }
2756 
2757 
2758 
2759 /*
2760  * Routine to create and manage a filesystem syncer vnode.
2761  */
2762 #define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2763 static int	sync_fsync __P((struct  vop_fsync_args *));
2764 static int	sync_inactive __P((struct  vop_inactive_args *));
2765 static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2766 #define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2767 #define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2768 static int	sync_print __P((struct vop_print_args *));
2769 #define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2770 
2771 static vop_t **sync_vnodeop_p;
2772 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2773 	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2774 	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2775 	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2776 	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2777 	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2778 	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2779 	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2780 	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2781 	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2782 	{ NULL, NULL }
2783 };
2784 static struct vnodeopv_desc sync_vnodeop_opv_desc =
2785 	{ &sync_vnodeop_p, sync_vnodeop_entries };
2786 
2787 VNODEOP_SET(sync_vnodeop_opv_desc);
2788 
2789 /*
2790  * Create a new filesystem syncer vnode for the specified mount point.
2791  */
2792 int
2793 vfs_allocate_syncvnode(mp)
2794 	struct mount *mp;
2795 {
2796 	struct vnode *vp;
2797 	static long start, incr, next;
2798 	int error;
2799 
2800 	/* Allocate a new vnode */
2801 	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2802 		mp->mnt_syncer = NULL;
2803 		return (error);
2804 	}
2805 	vp->v_type = VNON;
2806 	/*
2807 	 * Place the vnode onto the syncer worklist. We attempt to
2808 	 * scatter them about on the list so that they will go off
2809 	 * at evenly distributed times even if all the filesystems
2810 	 * are mounted at once.
2811 	 */
2812 	next += incr;
2813 	if (next == 0 || next > syncer_maxdelay) {
2814 		start /= 2;
2815 		incr /= 2;
2816 		if (start == 0) {
2817 			start = syncer_maxdelay / 2;
2818 			incr = syncer_maxdelay;
2819 		}
2820 		next = start;
2821 	}
2822 	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2823 	mp->mnt_syncer = vp;
2824 	return (0);
2825 }
2826 
2827 /*
2828  * Do a lazy sync of the filesystem.
2829  */
2830 static int
2831 sync_fsync(ap)
2832 	struct vop_fsync_args /* {
2833 		struct vnode *a_vp;
2834 		struct ucred *a_cred;
2835 		int a_waitfor;
2836 		struct proc *a_p;
2837 	} */ *ap;
2838 {
2839 	struct vnode *syncvp = ap->a_vp;
2840 	struct mount *mp = syncvp->v_mount;
2841 	struct proc *p = ap->a_p;
2842 	int asyncflag;
2843 
2844 	/*
2845 	 * We only need to do something if this is a lazy evaluation.
2846 	 */
2847 	if (ap->a_waitfor != MNT_LAZY)
2848 		return (0);
2849 
2850 	/*
2851 	 * Move ourselves to the back of the sync list.
2852 	 */
2853 	vn_syncer_add_to_worklist(syncvp, syncdelay);
2854 
2855 	/*
2856 	 * Walk the list of vnodes pushing all that are dirty and
2857 	 * not already on the sync list.
2858 	 */
2859 	mtx_lock(&mountlist_mtx);
2860 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, p) != 0) {
2861 		mtx_unlock(&mountlist_mtx);
2862 		return (0);
2863 	}
2864 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
2865 		vfs_unbusy(mp, p);
2866 		return (0);
2867 	}
2868 	asyncflag = mp->mnt_flag & MNT_ASYNC;
2869 	mp->mnt_flag &= ~MNT_ASYNC;
2870 	vfs_msync(mp, MNT_NOWAIT);
2871 	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2872 	if (asyncflag)
2873 		mp->mnt_flag |= MNT_ASYNC;
2874 	vn_finished_write(mp);
2875 	vfs_unbusy(mp, p);
2876 	return (0);
2877 }
2878 
2879 /*
2880  * The syncer vnode is no referenced.
2881  */
2882 static int
2883 sync_inactive(ap)
2884 	struct vop_inactive_args /* {
2885 		struct vnode *a_vp;
2886 		struct proc *a_p;
2887 	} */ *ap;
2888 {
2889 
2890 	vgone(ap->a_vp);
2891 	return (0);
2892 }
2893 
2894 /*
2895  * The syncer vnode is no longer needed and is being decommissioned.
2896  *
2897  * Modifications to the worklist must be protected at splbio().
2898  */
2899 static int
2900 sync_reclaim(ap)
2901 	struct vop_reclaim_args /* {
2902 		struct vnode *a_vp;
2903 	} */ *ap;
2904 {
2905 	struct vnode *vp = ap->a_vp;
2906 	int s;
2907 
2908 	s = splbio();
2909 	vp->v_mount->mnt_syncer = NULL;
2910 	if (vp->v_flag & VONWORKLST) {
2911 		LIST_REMOVE(vp, v_synclist);
2912 		vp->v_flag &= ~VONWORKLST;
2913 	}
2914 	splx(s);
2915 
2916 	return (0);
2917 }
2918 
2919 /*
2920  * Print out a syncer vnode.
2921  */
2922 static int
2923 sync_print(ap)
2924 	struct vop_print_args /* {
2925 		struct vnode *a_vp;
2926 	} */ *ap;
2927 {
2928 	struct vnode *vp = ap->a_vp;
2929 
2930 	printf("syncer vnode");
2931 	if (vp->v_vnlock != NULL)
2932 		lockmgr_printinfo(vp->v_vnlock);
2933 	printf("\n");
2934 	return (0);
2935 }
2936 
2937 /*
2938  * extract the dev_t from a VCHR
2939  */
2940 dev_t
2941 vn_todev(vp)
2942 	struct vnode *vp;
2943 {
2944 	if (vp->v_type != VCHR)
2945 		return (NODEV);
2946 	return (vp->v_rdev);
2947 }
2948 
2949 /*
2950  * Check if vnode represents a disk device
2951  */
2952 int
2953 vn_isdisk(vp, errp)
2954 	struct vnode *vp;
2955 	int *errp;
2956 {
2957 	struct cdevsw *cdevsw;
2958 
2959 	if (vp->v_type != VCHR) {
2960 		if (errp != NULL)
2961 			*errp = ENOTBLK;
2962 		return (0);
2963 	}
2964 	if (vp->v_rdev == NULL) {
2965 		if (errp != NULL)
2966 			*errp = ENXIO;
2967 		return (0);
2968 	}
2969 	cdevsw = devsw(vp->v_rdev);
2970 	if (cdevsw == NULL) {
2971 		if (errp != NULL)
2972 			*errp = ENXIO;
2973 		return (0);
2974 	}
2975 	if (!(cdevsw->d_flags & D_DISK)) {
2976 		if (errp != NULL)
2977 			*errp = ENOTBLK;
2978 		return (0);
2979 	}
2980 	if (errp != NULL)
2981 		*errp = 0;
2982 	return (1);
2983 }
2984 
2985 /*
2986  * Free data allocated by namei(); see namei(9) for details.
2987  */
2988 void
2989 NDFREE(ndp, flags)
2990      struct nameidata *ndp;
2991      const uint flags;
2992 {
2993 	if (!(flags & NDF_NO_FREE_PNBUF) &&
2994 	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2995 		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2996 		ndp->ni_cnd.cn_flags &= ~HASBUF;
2997 	}
2998 	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2999 	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
3000 	    ndp->ni_dvp != ndp->ni_vp)
3001 		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
3002 	if (!(flags & NDF_NO_DVP_RELE) &&
3003 	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
3004 		vrele(ndp->ni_dvp);
3005 		ndp->ni_dvp = NULL;
3006 	}
3007 	if (!(flags & NDF_NO_VP_UNLOCK) &&
3008 	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
3009 		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
3010 	if (!(flags & NDF_NO_VP_RELE) &&
3011 	    ndp->ni_vp) {
3012 		vrele(ndp->ni_vp);
3013 		ndp->ni_vp = NULL;
3014 	}
3015 	if (!(flags & NDF_NO_STARTDIR_RELE) &&
3016 	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
3017 		vrele(ndp->ni_startdir);
3018 		ndp->ni_startdir = NULL;
3019 	}
3020 }
3021 
3022 /*
3023  * Common file system object access control check routine.  Accepts a
3024  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3025  * and optional call-by-reference privused argument allowing vaccess()
3026  * to indicate to the caller whether privilege was used to satisfy the
3027  * request.  Returns 0 on success, or an errno on failure.
3028  */
3029 int
3030 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3031 	enum vtype type;
3032 	mode_t file_mode;
3033 	uid_t file_uid;
3034 	gid_t file_gid;
3035 	mode_t acc_mode;
3036 	struct ucred *cred;
3037 	int *privused;
3038 {
3039 	mode_t dac_granted;
3040 #ifdef CAPABILITIES
3041 	mode_t cap_granted;
3042 #endif
3043 
3044 	/*
3045 	 * Look for a normal, non-privileged way to access the file/directory
3046 	 * as requested.  If it exists, go with that.
3047 	 */
3048 
3049 	if (privused != NULL)
3050 		*privused = 0;
3051 
3052 	dac_granted = 0;
3053 
3054 	/* Check the owner. */
3055 	if (cred->cr_uid == file_uid) {
3056 		dac_granted |= VADMIN;
3057 		if (file_mode & S_IXUSR)
3058 			dac_granted |= VEXEC;
3059 		if (file_mode & S_IRUSR)
3060 			dac_granted |= VREAD;
3061 		if (file_mode & S_IWUSR)
3062 			dac_granted |= VWRITE;
3063 
3064 		if ((acc_mode & dac_granted) == acc_mode)
3065 			return (0);
3066 
3067 		goto privcheck;
3068 	}
3069 
3070 	/* Otherwise, check the groups (first match) */
3071 	if (groupmember(file_gid, cred)) {
3072 		if (file_mode & S_IXGRP)
3073 			dac_granted |= VEXEC;
3074 		if (file_mode & S_IRGRP)
3075 			dac_granted |= VREAD;
3076 		if (file_mode & S_IWGRP)
3077 			dac_granted |= VWRITE;
3078 
3079 		if ((acc_mode & dac_granted) == acc_mode)
3080 			return (0);
3081 
3082 		goto privcheck;
3083 	}
3084 
3085 	/* Otherwise, check everyone else. */
3086 	if (file_mode & S_IXOTH)
3087 		dac_granted |= VEXEC;
3088 	if (file_mode & S_IROTH)
3089 		dac_granted |= VREAD;
3090 	if (file_mode & S_IWOTH)
3091 		dac_granted |= VWRITE;
3092 	if ((acc_mode & dac_granted) == acc_mode)
3093 		return (0);
3094 
3095 privcheck:
3096 	if (!suser_xxx(cred, NULL, PRISON_ROOT)) {
3097 		/* XXX audit: privilege used */
3098 		if (privused != NULL)
3099 			*privused = 1;
3100 		return (0);
3101 	}
3102 
3103 #ifdef CAPABILITIES
3104 	/*
3105 	 * Build a capability mask to determine if the set of capabilities
3106 	 * satisfies the requirements when combined with the granted mask
3107 	 * from above.
3108 	 * For each capability, if the capability is required, bitwise
3109 	 * or the request type onto the cap_granted mask.
3110 	 */
3111 	cap_granted = 0;
3112 	if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3113 	    !cap_check_xxx(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT))
3114 	    cap_granted |= VEXEC;
3115 
3116 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3117 	    !cap_check_xxx(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT))
3118 		cap_granted |= VREAD;
3119 
3120 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3121 	    !cap_check_xxx(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT))
3122 		cap_granted |= VWRITE;
3123 
3124 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3125 	    !cap_check_xxx(cred, NULL, CAP_FOWNER, PRISON_ROOT))
3126 		cap_granted |= VADMIN;
3127 
3128 	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3129 		/* XXX audit: privilege used */
3130 		if (privused != NULL)
3131 			*privused = 1;
3132 		return (0);
3133 	}
3134 #endif
3135 
3136 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3137 }
3138