xref: /freebsd/sys/kern/vfs_subr.c (revision eb3f9a7aece9473d678adddcf6aefe6c1eec0ac4)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/asan.h>
52 #include <sys/bio.h>
53 #include <sys/buf.h>
54 #include <sys/capsicum.h>
55 #include <sys/condvar.h>
56 #include <sys/conf.h>
57 #include <sys/counter.h>
58 #include <sys/dirent.h>
59 #include <sys/event.h>
60 #include <sys/eventhandler.h>
61 #include <sys/extattr.h>
62 #include <sys/file.h>
63 #include <sys/fcntl.h>
64 #include <sys/jail.h>
65 #include <sys/kdb.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/ktr.h>
69 #include <sys/lockf.h>
70 #include <sys/malloc.h>
71 #include <sys/mount.h>
72 #include <sys/namei.h>
73 #include <sys/pctrie.h>
74 #include <sys/priv.h>
75 #include <sys/reboot.h>
76 #include <sys/refcount.h>
77 #include <sys/rwlock.h>
78 #include <sys/sched.h>
79 #include <sys/sleepqueue.h>
80 #include <sys/smr.h>
81 #include <sys/smp.h>
82 #include <sys/stat.h>
83 #include <sys/sysctl.h>
84 #include <sys/syslog.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 #include <sys/watchdog.h>
88 
89 #include <machine/stdarg.h>
90 
91 #include <security/mac/mac_framework.h>
92 
93 #include <vm/vm.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_extern.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_page.h>
99 #include <vm/vm_kern.h>
100 #include <vm/uma.h>
101 
102 #ifdef DDB
103 #include <ddb/ddb.h>
104 #endif
105 
106 static void	delmntque(struct vnode *vp);
107 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
108 		    int slpflag, int slptimeo);
109 static void	syncer_shutdown(void *arg, int howto);
110 static int	vtryrecycle(struct vnode *vp);
111 static void	v_init_counters(struct vnode *);
112 static void	vn_seqc_init(struct vnode *);
113 static void	vn_seqc_write_end_free(struct vnode *vp);
114 static void	vgonel(struct vnode *);
115 static bool	vhold_recycle_free(struct vnode *);
116 static void	vdropl_recycle(struct vnode *vp);
117 static void	vdrop_recycle(struct vnode *vp);
118 static void	vfs_knllock(void *arg);
119 static void	vfs_knlunlock(void *arg);
120 static void	vfs_knl_assert_lock(void *arg, int what);
121 static void	destroy_vpollinfo(struct vpollinfo *vi);
122 static int	v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
123 		    daddr_t startlbn, daddr_t endlbn);
124 static void	vnlru_recalc(void);
125 
126 /*
127  * Number of vnodes in existence.  Increased whenever getnewvnode()
128  * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
129  */
130 static u_long __exclusive_cache_line numvnodes;
131 
132 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
133     "Number of vnodes in existence");
134 
135 static counter_u64_t vnodes_created;
136 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
137     "Number of vnodes created by getnewvnode");
138 
139 /*
140  * Conversion tables for conversion from vnode types to inode formats
141  * and back.
142  */
143 enum vtype iftovt_tab[16] = {
144 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
145 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
146 };
147 int vttoif_tab[10] = {
148 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
149 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
150 };
151 
152 /*
153  * List of allocates vnodes in the system.
154  */
155 static TAILQ_HEAD(freelst, vnode) vnode_list;
156 static struct vnode *vnode_list_free_marker;
157 static struct vnode *vnode_list_reclaim_marker;
158 
159 /*
160  * "Free" vnode target.  Free vnodes are rarely completely free, but are
161  * just ones that are cheap to recycle.  Usually they are for files which
162  * have been stat'd but not read; these usually have inode and namecache
163  * data attached to them.  This target is the preferred minimum size of a
164  * sub-cache consisting mostly of such files. The system balances the size
165  * of this sub-cache with its complement to try to prevent either from
166  * thrashing while the other is relatively inactive.  The targets express
167  * a preference for the best balance.
168  *
169  * "Above" this target there are 2 further targets (watermarks) related
170  * to recyling of free vnodes.  In the best-operating case, the cache is
171  * exactly full, the free list has size between vlowat and vhiwat above the
172  * free target, and recycling from it and normal use maintains this state.
173  * Sometimes the free list is below vlowat or even empty, but this state
174  * is even better for immediate use provided the cache is not full.
175  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
176  * ones) to reach one of these states.  The watermarks are currently hard-
177  * coded as 4% and 9% of the available space higher.  These and the default
178  * of 25% for wantfreevnodes are too large if the memory size is large.
179  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
180  * whenever vnlru_proc() becomes active.
181  */
182 static long wantfreevnodes;
183 static long __exclusive_cache_line freevnodes;
184 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
185     &freevnodes, 0, "Number of \"free\" vnodes");
186 static long freevnodes_old;
187 
188 static counter_u64_t recycles_count;
189 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
190     "Number of vnodes recycled to meet vnode cache targets");
191 
192 static counter_u64_t recycles_free_count;
193 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count,
194     "Number of free vnodes recycled to meet vnode cache targets");
195 
196 static counter_u64_t deferred_inact;
197 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact,
198     "Number of times inactive processing was deferred");
199 
200 /* To keep more than one thread at a time from running vfs_getnewfsid */
201 static struct mtx mntid_mtx;
202 
203 /*
204  * Lock for any access to the following:
205  *	vnode_list
206  *	numvnodes
207  *	freevnodes
208  */
209 static struct mtx __exclusive_cache_line vnode_list_mtx;
210 
211 /* Publicly exported FS */
212 struct nfs_public nfs_pub;
213 
214 static uma_zone_t buf_trie_zone;
215 static smr_t buf_trie_smr;
216 
217 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
218 static uma_zone_t vnode_zone;
219 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
220 
221 __read_frequently smr_t vfs_smr;
222 
223 /*
224  * The workitem queue.
225  *
226  * It is useful to delay writes of file data and filesystem metadata
227  * for tens of seconds so that quickly created and deleted files need
228  * not waste disk bandwidth being created and removed. To realize this,
229  * we append vnodes to a "workitem" queue. When running with a soft
230  * updates implementation, most pending metadata dependencies should
231  * not wait for more than a few seconds. Thus, mounted on block devices
232  * are delayed only about a half the time that file data is delayed.
233  * Similarly, directory updates are more critical, so are only delayed
234  * about a third the time that file data is delayed. Thus, there are
235  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
236  * one each second (driven off the filesystem syncer process). The
237  * syncer_delayno variable indicates the next queue that is to be processed.
238  * Items that need to be processed soon are placed in this queue:
239  *
240  *	syncer_workitem_pending[syncer_delayno]
241  *
242  * A delay of fifteen seconds is done by placing the request fifteen
243  * entries later in the queue:
244  *
245  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
246  *
247  */
248 static int syncer_delayno;
249 static long syncer_mask;
250 LIST_HEAD(synclist, bufobj);
251 static struct synclist *syncer_workitem_pending;
252 /*
253  * The sync_mtx protects:
254  *	bo->bo_synclist
255  *	sync_vnode_count
256  *	syncer_delayno
257  *	syncer_state
258  *	syncer_workitem_pending
259  *	syncer_worklist_len
260  *	rushjob
261  */
262 static struct mtx sync_mtx;
263 static struct cv sync_wakeup;
264 
265 #define SYNCER_MAXDELAY		32
266 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
267 static int syncdelay = 30;		/* max time to delay syncing data */
268 static int filedelay = 30;		/* time to delay syncing files */
269 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
270     "Time to delay syncing files (in seconds)");
271 static int dirdelay = 29;		/* time to delay syncing directories */
272 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
273     "Time to delay syncing directories (in seconds)");
274 static int metadelay = 28;		/* time to delay syncing metadata */
275 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
276     "Time to delay syncing metadata (in seconds)");
277 static int rushjob;		/* number of slots to run ASAP */
278 static int stat_rush_requests;	/* number of times I/O speeded up */
279 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
280     "Number of times I/O speeded up (rush requests)");
281 
282 #define	VDBATCH_SIZE 8
283 struct vdbatch {
284 	u_int index;
285 	long freevnodes;
286 	struct mtx lock;
287 	struct vnode *tab[VDBATCH_SIZE];
288 };
289 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
290 
291 static void	vdbatch_dequeue(struct vnode *vp);
292 
293 /*
294  * When shutting down the syncer, run it at four times normal speed.
295  */
296 #define SYNCER_SHUTDOWN_SPEEDUP		4
297 static int sync_vnode_count;
298 static int syncer_worklist_len;
299 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
300     syncer_state;
301 
302 /* Target for maximum number of vnodes. */
303 u_long desiredvnodes;
304 static u_long gapvnodes;		/* gap between wanted and desired */
305 static u_long vhiwat;		/* enough extras after expansion */
306 static u_long vlowat;		/* minimal extras before expansion */
307 static u_long vstir;		/* nonzero to stir non-free vnodes */
308 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
309 
310 static u_long vnlru_read_freevnodes(void);
311 
312 /*
313  * Note that no attempt is made to sanitize these parameters.
314  */
315 static int
316 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
317 {
318 	u_long val;
319 	int error;
320 
321 	val = desiredvnodes;
322 	error = sysctl_handle_long(oidp, &val, 0, req);
323 	if (error != 0 || req->newptr == NULL)
324 		return (error);
325 
326 	if (val == desiredvnodes)
327 		return (0);
328 	mtx_lock(&vnode_list_mtx);
329 	desiredvnodes = val;
330 	wantfreevnodes = desiredvnodes / 4;
331 	vnlru_recalc();
332 	mtx_unlock(&vnode_list_mtx);
333 	/*
334 	 * XXX There is no protection against multiple threads changing
335 	 * desiredvnodes at the same time. Locking above only helps vnlru and
336 	 * getnewvnode.
337 	 */
338 	vfs_hash_changesize(desiredvnodes);
339 	cache_changesize(desiredvnodes);
340 	return (0);
341 }
342 
343 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
344     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
345     "LU", "Target for maximum number of vnodes");
346 
347 static int
348 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
349 {
350 	u_long val;
351 	int error;
352 
353 	val = wantfreevnodes;
354 	error = sysctl_handle_long(oidp, &val, 0, req);
355 	if (error != 0 || req->newptr == NULL)
356 		return (error);
357 
358 	if (val == wantfreevnodes)
359 		return (0);
360 	mtx_lock(&vnode_list_mtx);
361 	wantfreevnodes = val;
362 	vnlru_recalc();
363 	mtx_unlock(&vnode_list_mtx);
364 	return (0);
365 }
366 
367 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
368     CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
369     "LU", "Target for minimum number of \"free\" vnodes");
370 
371 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
372     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
373 static int vnlru_nowhere;
374 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW | CTLFLAG_STATS,
375     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
376 
377 static int
378 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
379 {
380 	struct vnode *vp;
381 	struct nameidata nd;
382 	char *buf;
383 	unsigned long ndflags;
384 	int error;
385 
386 	if (req->newptr == NULL)
387 		return (EINVAL);
388 	if (req->newlen >= PATH_MAX)
389 		return (E2BIG);
390 
391 	buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
392 	error = SYSCTL_IN(req, buf, req->newlen);
393 	if (error != 0)
394 		goto out;
395 
396 	buf[req->newlen] = '\0';
397 
398 	ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
399 	NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
400 	if ((error = namei(&nd)) != 0)
401 		goto out;
402 	vp = nd.ni_vp;
403 
404 	if (VN_IS_DOOMED(vp)) {
405 		/*
406 		 * This vnode is being recycled.  Return != 0 to let the caller
407 		 * know that the sysctl had no effect.  Return EAGAIN because a
408 		 * subsequent call will likely succeed (since namei will create
409 		 * a new vnode if necessary)
410 		 */
411 		error = EAGAIN;
412 		goto putvnode;
413 	}
414 
415 	counter_u64_add(recycles_count, 1);
416 	vgone(vp);
417 putvnode:
418 	vput(vp);
419 	NDFREE_PNBUF(&nd);
420 out:
421 	free(buf, M_TEMP);
422 	return (error);
423 }
424 
425 static int
426 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
427 {
428 	struct thread *td = curthread;
429 	struct vnode *vp;
430 	struct file *fp;
431 	int error;
432 	int fd;
433 
434 	if (req->newptr == NULL)
435 		return (EBADF);
436 
437         error = sysctl_handle_int(oidp, &fd, 0, req);
438         if (error != 0)
439                 return (error);
440 	error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
441 	if (error != 0)
442 		return (error);
443 	vp = fp->f_vnode;
444 
445 	error = vn_lock(vp, LK_EXCLUSIVE);
446 	if (error != 0)
447 		goto drop;
448 
449 	counter_u64_add(recycles_count, 1);
450 	vgone(vp);
451 	VOP_UNLOCK(vp);
452 drop:
453 	fdrop(fp, td);
454 	return (error);
455 }
456 
457 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
458     CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
459     sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
460 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
461     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
462     sysctl_ftry_reclaim_vnode, "I",
463     "Try to reclaim a vnode by its file descriptor");
464 
465 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
466 #define vnsz2log 8
467 #ifndef DEBUG_LOCKS
468 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
469     sizeof(struct vnode) < 1UL << (vnsz2log + 1),
470     "vnsz2log needs to be updated");
471 #endif
472 
473 /*
474  * Support for the bufobj clean & dirty pctrie.
475  */
476 static void *
477 buf_trie_alloc(struct pctrie *ptree)
478 {
479 	return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
480 }
481 
482 static void
483 buf_trie_free(struct pctrie *ptree, void *node)
484 {
485 	uma_zfree_smr(buf_trie_zone, node);
486 }
487 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
488     buf_trie_smr);
489 
490 /*
491  * Initialize the vnode management data structures.
492  *
493  * Reevaluate the following cap on the number of vnodes after the physical
494  * memory size exceeds 512GB.  In the limit, as the physical memory size
495  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
496  */
497 #ifndef	MAXVNODES_MAX
498 #define	MAXVNODES_MAX	(512UL * 1024 * 1024 / 64)	/* 8M */
499 #endif
500 
501 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
502 
503 static struct vnode *
504 vn_alloc_marker(struct mount *mp)
505 {
506 	struct vnode *vp;
507 
508 	vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
509 	vp->v_type = VMARKER;
510 	vp->v_mount = mp;
511 
512 	return (vp);
513 }
514 
515 static void
516 vn_free_marker(struct vnode *vp)
517 {
518 
519 	MPASS(vp->v_type == VMARKER);
520 	free(vp, M_VNODE_MARKER);
521 }
522 
523 #ifdef KASAN
524 static int
525 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
526 {
527 	kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
528 	return (0);
529 }
530 
531 static void
532 vnode_dtor(void *mem, int size, void *arg __unused)
533 {
534 	size_t end1, end2, off1, off2;
535 
536 	_Static_assert(offsetof(struct vnode, v_vnodelist) <
537 	    offsetof(struct vnode, v_dbatchcpu),
538 	    "KASAN marks require updating");
539 
540 	off1 = offsetof(struct vnode, v_vnodelist);
541 	off2 = offsetof(struct vnode, v_dbatchcpu);
542 	end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
543 	end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
544 
545 	/*
546 	 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
547 	 * after the vnode has been freed.  Try to get some KASAN coverage by
548 	 * marking everything except those two fields as invalid.  Because
549 	 * KASAN's tracking is not byte-granular, any preceding fields sharing
550 	 * the same 8-byte aligned word must also be marked valid.
551 	 */
552 
553 	/* Handle the area from the start until v_vnodelist... */
554 	off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
555 	kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
556 
557 	/* ... then the area between v_vnodelist and v_dbatchcpu ... */
558 	off1 = roundup2(end1, KASAN_SHADOW_SCALE);
559 	off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
560 	if (off2 > off1)
561 		kasan_mark((void *)((char *)mem + off1), off2 - off1,
562 		    off2 - off1, KASAN_UMA_FREED);
563 
564 	/* ... and finally the area from v_dbatchcpu to the end. */
565 	off2 = roundup2(end2, KASAN_SHADOW_SCALE);
566 	kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
567 	    KASAN_UMA_FREED);
568 }
569 #endif /* KASAN */
570 
571 /*
572  * Initialize a vnode as it first enters the zone.
573  */
574 static int
575 vnode_init(void *mem, int size, int flags)
576 {
577 	struct vnode *vp;
578 
579 	vp = mem;
580 	bzero(vp, size);
581 	/*
582 	 * Setup locks.
583 	 */
584 	vp->v_vnlock = &vp->v_lock;
585 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
586 	/*
587 	 * By default, don't allow shared locks unless filesystems opt-in.
588 	 */
589 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
590 	    LK_NOSHARE | LK_IS_VNODE);
591 	/*
592 	 * Initialize bufobj.
593 	 */
594 	bufobj_init(&vp->v_bufobj, vp);
595 	/*
596 	 * Initialize namecache.
597 	 */
598 	cache_vnode_init(vp);
599 	/*
600 	 * Initialize rangelocks.
601 	 */
602 	rangelock_init(&vp->v_rl);
603 
604 	vp->v_dbatchcpu = NOCPU;
605 
606 	vp->v_state = VSTATE_DEAD;
607 
608 	/*
609 	 * Check vhold_recycle_free for an explanation.
610 	 */
611 	vp->v_holdcnt = VHOLD_NO_SMR;
612 	vp->v_type = VNON;
613 	mtx_lock(&vnode_list_mtx);
614 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
615 	mtx_unlock(&vnode_list_mtx);
616 	return (0);
617 }
618 
619 /*
620  * Free a vnode when it is cleared from the zone.
621  */
622 static void
623 vnode_fini(void *mem, int size)
624 {
625 	struct vnode *vp;
626 	struct bufobj *bo;
627 
628 	vp = mem;
629 	vdbatch_dequeue(vp);
630 	mtx_lock(&vnode_list_mtx);
631 	TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
632 	mtx_unlock(&vnode_list_mtx);
633 	rangelock_destroy(&vp->v_rl);
634 	lockdestroy(vp->v_vnlock);
635 	mtx_destroy(&vp->v_interlock);
636 	bo = &vp->v_bufobj;
637 	rw_destroy(BO_LOCKPTR(bo));
638 
639 	kasan_mark(mem, size, size, 0);
640 }
641 
642 /*
643  * Provide the size of NFS nclnode and NFS fh for calculation of the
644  * vnode memory consumption.  The size is specified directly to
645  * eliminate dependency on NFS-private header.
646  *
647  * Other filesystems may use bigger or smaller (like UFS and ZFS)
648  * private inode data, but the NFS-based estimation is ample enough.
649  * Still, we care about differences in the size between 64- and 32-bit
650  * platforms.
651  *
652  * Namecache structure size is heuristically
653  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
654  */
655 #ifdef _LP64
656 #define	NFS_NCLNODE_SZ	(528 + 64)
657 #define	NC_SZ		148
658 #else
659 #define	NFS_NCLNODE_SZ	(360 + 32)
660 #define	NC_SZ		92
661 #endif
662 
663 static void
664 vntblinit(void *dummy __unused)
665 {
666 	struct vdbatch *vd;
667 	uma_ctor ctor;
668 	uma_dtor dtor;
669 	int cpu, physvnodes, virtvnodes;
670 
671 	/*
672 	 * Desiredvnodes is a function of the physical memory size and the
673 	 * kernel's heap size.  Generally speaking, it scales with the
674 	 * physical memory size.  The ratio of desiredvnodes to the physical
675 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
676 	 * Thereafter, the
677 	 * marginal ratio of desiredvnodes to the physical memory size is
678 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
679 	 * size.  The memory required by desiredvnodes vnodes and vm objects
680 	 * must not exceed 1/10th of the kernel's heap size.
681 	 */
682 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
683 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
684 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
685 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
686 	desiredvnodes = min(physvnodes, virtvnodes);
687 	if (desiredvnodes > MAXVNODES_MAX) {
688 		if (bootverbose)
689 			printf("Reducing kern.maxvnodes %lu -> %lu\n",
690 			    desiredvnodes, MAXVNODES_MAX);
691 		desiredvnodes = MAXVNODES_MAX;
692 	}
693 	wantfreevnodes = desiredvnodes / 4;
694 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
695 	TAILQ_INIT(&vnode_list);
696 	mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
697 	/*
698 	 * The lock is taken to appease WITNESS.
699 	 */
700 	mtx_lock(&vnode_list_mtx);
701 	vnlru_recalc();
702 	mtx_unlock(&vnode_list_mtx);
703 	vnode_list_free_marker = vn_alloc_marker(NULL);
704 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
705 	vnode_list_reclaim_marker = vn_alloc_marker(NULL);
706 	TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
707 
708 #ifdef KASAN
709 	ctor = vnode_ctor;
710 	dtor = vnode_dtor;
711 #else
712 	ctor = NULL;
713 	dtor = NULL;
714 #endif
715 	vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
716 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
717 	uma_zone_set_smr(vnode_zone, vfs_smr);
718 
719 	/*
720 	 * Preallocate enough nodes to support one-per buf so that
721 	 * we can not fail an insert.  reassignbuf() callers can not
722 	 * tolerate the insertion failure.
723 	 */
724 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
725 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
726 	    UMA_ZONE_NOFREE | UMA_ZONE_SMR);
727 	buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
728 	uma_prealloc(buf_trie_zone, nbuf);
729 
730 	vnodes_created = counter_u64_alloc(M_WAITOK);
731 	recycles_count = counter_u64_alloc(M_WAITOK);
732 	recycles_free_count = counter_u64_alloc(M_WAITOK);
733 	deferred_inact = counter_u64_alloc(M_WAITOK);
734 
735 	/*
736 	 * Initialize the filesystem syncer.
737 	 */
738 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
739 	    &syncer_mask);
740 	syncer_maxdelay = syncer_mask + 1;
741 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
742 	cv_init(&sync_wakeup, "syncer");
743 
744 	CPU_FOREACH(cpu) {
745 		vd = DPCPU_ID_PTR((cpu), vd);
746 		bzero(vd, sizeof(*vd));
747 		mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
748 	}
749 }
750 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
751 
752 /*
753  * Mark a mount point as busy. Used to synchronize access and to delay
754  * unmounting. Eventually, mountlist_mtx is not released on failure.
755  *
756  * vfs_busy() is a custom lock, it can block the caller.
757  * vfs_busy() only sleeps if the unmount is active on the mount point.
758  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
759  * vnode belonging to mp.
760  *
761  * Lookup uses vfs_busy() to traverse mount points.
762  * root fs			var fs
763  * / vnode lock		A	/ vnode lock (/var)		D
764  * /var vnode lock	B	/log vnode lock(/var/log)	E
765  * vfs_busy lock	C	vfs_busy lock			F
766  *
767  * Within each file system, the lock order is C->A->B and F->D->E.
768  *
769  * When traversing across mounts, the system follows that lock order:
770  *
771  *        C->A->B
772  *              |
773  *              +->F->D->E
774  *
775  * The lookup() process for namei("/var") illustrates the process:
776  *  1. VOP_LOOKUP() obtains B while A is held
777  *  2. vfs_busy() obtains a shared lock on F while A and B are held
778  *  3. vput() releases lock on B
779  *  4. vput() releases lock on A
780  *  5. VFS_ROOT() obtains lock on D while shared lock on F is held
781  *  6. vfs_unbusy() releases shared lock on F
782  *  7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
783  *     Attempt to lock A (instead of vp_crossmp) while D is held would
784  *     violate the global order, causing deadlocks.
785  *
786  * dounmount() locks B while F is drained.  Note that for stacked
787  * filesystems, D and B in the example above may be the same lock,
788  * which introdues potential lock order reversal deadlock between
789  * dounmount() and step 5 above.  These filesystems may avoid the LOR
790  * by setting VV_CROSSLOCK on the covered vnode so that lock B will
791  * remain held until after step 5.
792  */
793 int
794 vfs_busy(struct mount *mp, int flags)
795 {
796 	struct mount_pcpu *mpcpu;
797 
798 	MPASS((flags & ~MBF_MASK) == 0);
799 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
800 
801 	if (vfs_op_thread_enter(mp, mpcpu)) {
802 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
803 		MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
804 		MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
805 		vfs_mp_count_add_pcpu(mpcpu, ref, 1);
806 		vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
807 		vfs_op_thread_exit(mp, mpcpu);
808 		if (flags & MBF_MNTLSTLOCK)
809 			mtx_unlock(&mountlist_mtx);
810 		return (0);
811 	}
812 
813 	MNT_ILOCK(mp);
814 	vfs_assert_mount_counters(mp);
815 	MNT_REF(mp);
816 	/*
817 	 * If mount point is currently being unmounted, sleep until the
818 	 * mount point fate is decided.  If thread doing the unmounting fails,
819 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
820 	 * that this mount point has survived the unmount attempt and vfs_busy
821 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
822 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
823 	 * about to be really destroyed.  vfs_busy needs to release its
824 	 * reference on the mount point in this case and return with ENOENT,
825 	 * telling the caller the mount it tried to busy is no longer valid.
826 	 */
827 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
828 		KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
829 		    ("%s: non-empty upper mount list with pending unmount",
830 		    __func__));
831 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
832 			MNT_REL(mp);
833 			MNT_IUNLOCK(mp);
834 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
835 			    __func__);
836 			return (ENOENT);
837 		}
838 		if (flags & MBF_MNTLSTLOCK)
839 			mtx_unlock(&mountlist_mtx);
840 		mp->mnt_kern_flag |= MNTK_MWAIT;
841 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
842 		if (flags & MBF_MNTLSTLOCK)
843 			mtx_lock(&mountlist_mtx);
844 		MNT_ILOCK(mp);
845 	}
846 	if (flags & MBF_MNTLSTLOCK)
847 		mtx_unlock(&mountlist_mtx);
848 	mp->mnt_lockref++;
849 	MNT_IUNLOCK(mp);
850 	return (0);
851 }
852 
853 /*
854  * Free a busy filesystem.
855  */
856 void
857 vfs_unbusy(struct mount *mp)
858 {
859 	struct mount_pcpu *mpcpu;
860 	int c;
861 
862 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
863 
864 	if (vfs_op_thread_enter(mp, mpcpu)) {
865 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
866 		vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
867 		vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
868 		vfs_op_thread_exit(mp, mpcpu);
869 		return;
870 	}
871 
872 	MNT_ILOCK(mp);
873 	vfs_assert_mount_counters(mp);
874 	MNT_REL(mp);
875 	c = --mp->mnt_lockref;
876 	if (mp->mnt_vfs_ops == 0) {
877 		MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
878 		MNT_IUNLOCK(mp);
879 		return;
880 	}
881 	if (c < 0)
882 		vfs_dump_mount_counters(mp);
883 	if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
884 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
885 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
886 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
887 		wakeup(&mp->mnt_lockref);
888 	}
889 	MNT_IUNLOCK(mp);
890 }
891 
892 /*
893  * Lookup a mount point by filesystem identifier.
894  */
895 struct mount *
896 vfs_getvfs(fsid_t *fsid)
897 {
898 	struct mount *mp;
899 
900 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
901 	mtx_lock(&mountlist_mtx);
902 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
903 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
904 			vfs_ref(mp);
905 			mtx_unlock(&mountlist_mtx);
906 			return (mp);
907 		}
908 	}
909 	mtx_unlock(&mountlist_mtx);
910 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
911 	return ((struct mount *) 0);
912 }
913 
914 /*
915  * Lookup a mount point by filesystem identifier, busying it before
916  * returning.
917  *
918  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
919  * cache for popular filesystem identifiers.  The cache is lockess, using
920  * the fact that struct mount's are never freed.  In worst case we may
921  * get pointer to unmounted or even different filesystem, so we have to
922  * check what we got, and go slow way if so.
923  */
924 struct mount *
925 vfs_busyfs(fsid_t *fsid)
926 {
927 #define	FSID_CACHE_SIZE	256
928 	typedef struct mount * volatile vmp_t;
929 	static vmp_t cache[FSID_CACHE_SIZE];
930 	struct mount *mp;
931 	int error;
932 	uint32_t hash;
933 
934 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
935 	hash = fsid->val[0] ^ fsid->val[1];
936 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
937 	mp = cache[hash];
938 	if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
939 		goto slow;
940 	if (vfs_busy(mp, 0) != 0) {
941 		cache[hash] = NULL;
942 		goto slow;
943 	}
944 	if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
945 		return (mp);
946 	else
947 	    vfs_unbusy(mp);
948 
949 slow:
950 	mtx_lock(&mountlist_mtx);
951 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
952 		if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
953 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
954 			if (error) {
955 				cache[hash] = NULL;
956 				mtx_unlock(&mountlist_mtx);
957 				return (NULL);
958 			}
959 			cache[hash] = mp;
960 			return (mp);
961 		}
962 	}
963 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
964 	mtx_unlock(&mountlist_mtx);
965 	return ((struct mount *) 0);
966 }
967 
968 /*
969  * Check if a user can access privileged mount options.
970  */
971 int
972 vfs_suser(struct mount *mp, struct thread *td)
973 {
974 	int error;
975 
976 	if (jailed(td->td_ucred)) {
977 		/*
978 		 * If the jail of the calling thread lacks permission for
979 		 * this type of file system, deny immediately.
980 		 */
981 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
982 			return (EPERM);
983 
984 		/*
985 		 * If the file system was mounted outside the jail of the
986 		 * calling thread, deny immediately.
987 		 */
988 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
989 			return (EPERM);
990 	}
991 
992 	/*
993 	 * If file system supports delegated administration, we don't check
994 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
995 	 * by the file system itself.
996 	 * If this is not the user that did original mount, we check for
997 	 * the PRIV_VFS_MOUNT_OWNER privilege.
998 	 */
999 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1000 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1001 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1002 			return (error);
1003 	}
1004 	return (0);
1005 }
1006 
1007 /*
1008  * Get a new unique fsid.  Try to make its val[0] unique, since this value
1009  * will be used to create fake device numbers for stat().  Also try (but
1010  * not so hard) make its val[0] unique mod 2^16, since some emulators only
1011  * support 16-bit device numbers.  We end up with unique val[0]'s for the
1012  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1013  *
1014  * Keep in mind that several mounts may be running in parallel.  Starting
1015  * the search one past where the previous search terminated is both a
1016  * micro-optimization and a defense against returning the same fsid to
1017  * different mounts.
1018  */
1019 void
1020 vfs_getnewfsid(struct mount *mp)
1021 {
1022 	static uint16_t mntid_base;
1023 	struct mount *nmp;
1024 	fsid_t tfsid;
1025 	int mtype;
1026 
1027 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1028 	mtx_lock(&mntid_mtx);
1029 	mtype = mp->mnt_vfc->vfc_typenum;
1030 	tfsid.val[1] = mtype;
1031 	mtype = (mtype & 0xFF) << 24;
1032 	for (;;) {
1033 		tfsid.val[0] = makedev(255,
1034 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1035 		mntid_base++;
1036 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1037 			break;
1038 		vfs_rel(nmp);
1039 	}
1040 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1041 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1042 	mtx_unlock(&mntid_mtx);
1043 }
1044 
1045 /*
1046  * Knob to control the precision of file timestamps:
1047  *
1048  *   0 = seconds only; nanoseconds zeroed.
1049  *   1 = seconds and nanoseconds, accurate within 1/HZ.
1050  *   2 = seconds and nanoseconds, truncated to microseconds.
1051  * >=3 = seconds and nanoseconds, maximum precision.
1052  */
1053 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1054 
1055 static int timestamp_precision = TSP_USEC;
1056 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1057     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
1058     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1059     "3+: sec + ns (max. precision))");
1060 
1061 /*
1062  * Get a current timestamp.
1063  */
1064 void
1065 vfs_timestamp(struct timespec *tsp)
1066 {
1067 	struct timeval tv;
1068 
1069 	switch (timestamp_precision) {
1070 	case TSP_SEC:
1071 		tsp->tv_sec = time_second;
1072 		tsp->tv_nsec = 0;
1073 		break;
1074 	case TSP_HZ:
1075 		getnanotime(tsp);
1076 		break;
1077 	case TSP_USEC:
1078 		microtime(&tv);
1079 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
1080 		break;
1081 	case TSP_NSEC:
1082 	default:
1083 		nanotime(tsp);
1084 		break;
1085 	}
1086 }
1087 
1088 /*
1089  * Set vnode attributes to VNOVAL
1090  */
1091 void
1092 vattr_null(struct vattr *vap)
1093 {
1094 
1095 	vap->va_type = VNON;
1096 	vap->va_size = VNOVAL;
1097 	vap->va_bytes = VNOVAL;
1098 	vap->va_mode = VNOVAL;
1099 	vap->va_nlink = VNOVAL;
1100 	vap->va_uid = VNOVAL;
1101 	vap->va_gid = VNOVAL;
1102 	vap->va_fsid = VNOVAL;
1103 	vap->va_fileid = VNOVAL;
1104 	vap->va_blocksize = VNOVAL;
1105 	vap->va_rdev = VNOVAL;
1106 	vap->va_atime.tv_sec = VNOVAL;
1107 	vap->va_atime.tv_nsec = VNOVAL;
1108 	vap->va_mtime.tv_sec = VNOVAL;
1109 	vap->va_mtime.tv_nsec = VNOVAL;
1110 	vap->va_ctime.tv_sec = VNOVAL;
1111 	vap->va_ctime.tv_nsec = VNOVAL;
1112 	vap->va_birthtime.tv_sec = VNOVAL;
1113 	vap->va_birthtime.tv_nsec = VNOVAL;
1114 	vap->va_flags = VNOVAL;
1115 	vap->va_gen = VNOVAL;
1116 	vap->va_vaflags = 0;
1117 }
1118 
1119 /*
1120  * Try to reduce the total number of vnodes.
1121  *
1122  * This routine (and its user) are buggy in at least the following ways:
1123  * - all parameters were picked years ago when RAM sizes were significantly
1124  *   smaller
1125  * - it can pick vnodes based on pages used by the vm object, but filesystems
1126  *   like ZFS don't use it making the pick broken
1127  * - since ZFS has its own aging policy it gets partially combated by this one
1128  * - a dedicated method should be provided for filesystems to let them decide
1129  *   whether the vnode should be recycled
1130  *
1131  * This routine is called when we have too many vnodes.  It attempts
1132  * to free <count> vnodes and will potentially free vnodes that still
1133  * have VM backing store (VM backing store is typically the cause
1134  * of a vnode blowout so we want to do this).  Therefore, this operation
1135  * is not considered cheap.
1136  *
1137  * A number of conditions may prevent a vnode from being reclaimed.
1138  * the buffer cache may have references on the vnode, a directory
1139  * vnode may still have references due to the namei cache representing
1140  * underlying files, or the vnode may be in active use.   It is not
1141  * desirable to reuse such vnodes.  These conditions may cause the
1142  * number of vnodes to reach some minimum value regardless of what
1143  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
1144  *
1145  * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1146  * 			 entries if this argument is strue
1147  * @param trigger	 Only reclaim vnodes with fewer than this many resident
1148  *			 pages.
1149  * @param target	 How many vnodes to reclaim.
1150  * @return		 The number of vnodes that were reclaimed.
1151  */
1152 static int
1153 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1154 {
1155 	struct vnode *vp, *mvp;
1156 	struct mount *mp;
1157 	struct vm_object *object;
1158 	u_long done;
1159 	bool retried;
1160 
1161 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1162 
1163 	retried = false;
1164 	done = 0;
1165 
1166 	mvp = vnode_list_reclaim_marker;
1167 restart:
1168 	vp = mvp;
1169 	while (done < target) {
1170 		vp = TAILQ_NEXT(vp, v_vnodelist);
1171 		if (__predict_false(vp == NULL))
1172 			break;
1173 
1174 		if (__predict_false(vp->v_type == VMARKER))
1175 			continue;
1176 
1177 		/*
1178 		 * If it's been deconstructed already, it's still
1179 		 * referenced, or it exceeds the trigger, skip it.
1180 		 * Also skip free vnodes.  We are trying to make space
1181 		 * to expand the free list, not reduce it.
1182 		 */
1183 		if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1184 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1185 			goto next_iter;
1186 
1187 		if (vp->v_type == VBAD || vp->v_type == VNON)
1188 			goto next_iter;
1189 
1190 		object = atomic_load_ptr(&vp->v_object);
1191 		if (object == NULL || object->resident_page_count > trigger) {
1192 			goto next_iter;
1193 		}
1194 
1195 		/*
1196 		 * Handle races against vnode allocation. Filesystems lock the
1197 		 * vnode some time after it gets returned from getnewvnode,
1198 		 * despite type and hold count being manipulated earlier.
1199 		 * Resorting to checking v_mount restores guarantees present
1200 		 * before the global list was reworked to contain all vnodes.
1201 		 */
1202 		if (!VI_TRYLOCK(vp))
1203 			goto next_iter;
1204 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1205 			VI_UNLOCK(vp);
1206 			goto next_iter;
1207 		}
1208 		if (vp->v_mount == NULL) {
1209 			VI_UNLOCK(vp);
1210 			goto next_iter;
1211 		}
1212 		vholdl(vp);
1213 		VI_UNLOCK(vp);
1214 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1215 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1216 		mtx_unlock(&vnode_list_mtx);
1217 
1218 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1219 			vdrop_recycle(vp);
1220 			goto next_iter_unlocked;
1221 		}
1222 		if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1223 			vdrop_recycle(vp);
1224 			vn_finished_write(mp);
1225 			goto next_iter_unlocked;
1226 		}
1227 
1228 		VI_LOCK(vp);
1229 		if (vp->v_usecount > 0 ||
1230 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1231 		    (vp->v_object != NULL && vp->v_object->handle == vp &&
1232 		    vp->v_object->resident_page_count > trigger)) {
1233 			VOP_UNLOCK(vp);
1234 			vdropl_recycle(vp);
1235 			vn_finished_write(mp);
1236 			goto next_iter_unlocked;
1237 		}
1238 		counter_u64_add(recycles_count, 1);
1239 		vgonel(vp);
1240 		VOP_UNLOCK(vp);
1241 		vdropl_recycle(vp);
1242 		vn_finished_write(mp);
1243 		done++;
1244 next_iter_unlocked:
1245 		if (should_yield())
1246 			kern_yield(PRI_USER);
1247 		mtx_lock(&vnode_list_mtx);
1248 		goto restart;
1249 next_iter:
1250 		MPASS(vp->v_type != VMARKER);
1251 		if (!should_yield())
1252 			continue;
1253 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1254 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1255 		mtx_unlock(&vnode_list_mtx);
1256 		kern_yield(PRI_USER);
1257 		mtx_lock(&vnode_list_mtx);
1258 		goto restart;
1259 	}
1260 	if (done == 0 && !retried) {
1261 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1262 		TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1263 		retried = true;
1264 		goto restart;
1265 	}
1266 	return (done);
1267 }
1268 
1269 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
1270 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
1271     0,
1272     "limit on vnode free requests per call to the vnlru_free routine");
1273 
1274 /*
1275  * Attempt to reduce the free list by the requested amount.
1276  */
1277 static int
1278 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp)
1279 {
1280 	struct vnode *vp;
1281 	struct mount *mp;
1282 	int ocount;
1283 
1284 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1285 	if (count > max_vnlru_free)
1286 		count = max_vnlru_free;
1287 	ocount = count;
1288 	vp = mvp;
1289 	for (;;) {
1290 		if (count == 0) {
1291 			break;
1292 		}
1293 		vp = TAILQ_NEXT(vp, v_vnodelist);
1294 		if (__predict_false(vp == NULL)) {
1295 			TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1296 			TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1297 			break;
1298 		}
1299 		if (__predict_false(vp->v_type == VMARKER))
1300 			continue;
1301 		if (vp->v_holdcnt > 0)
1302 			continue;
1303 		/*
1304 		 * Don't recycle if our vnode is from different type
1305 		 * of mount point.  Note that mp is type-safe, the
1306 		 * check does not reach unmapped address even if
1307 		 * vnode is reclaimed.
1308 		 */
1309 		if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1310 		    mp->mnt_op != mnt_op) {
1311 			continue;
1312 		}
1313 		if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1314 			continue;
1315 		}
1316 		if (!vhold_recycle_free(vp))
1317 			continue;
1318 		TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1319 		TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1320 		mtx_unlock(&vnode_list_mtx);
1321 		/*
1322 		 * FIXME: ignores the return value, meaning it may be nothing
1323 		 * got recycled but it claims otherwise to the caller.
1324 		 *
1325 		 * Originally the value started being ignored in 2005 with
1326 		 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1327 		 *
1328 		 * Respecting the value can run into significant stalls if most
1329 		 * vnodes belong to one file system and it has writes
1330 		 * suspended.  In presence of many threads and millions of
1331 		 * vnodes they keep contending on the vnode_list_mtx lock only
1332 		 * to find vnodes they can't recycle.
1333 		 *
1334 		 * The solution would be to pre-check if the vnode is likely to
1335 		 * be recycle-able, but it needs to happen with the
1336 		 * vnode_list_mtx lock held. This runs into a problem where
1337 		 * VOP_GETWRITEMOUNT (currently needed to find out about if
1338 		 * writes are frozen) can take locks which LOR against it.
1339 		 *
1340 		 * Check nullfs for one example (null_getwritemount).
1341 		 */
1342 		vtryrecycle(vp);
1343 		count--;
1344 		mtx_lock(&vnode_list_mtx);
1345 		vp = mvp;
1346 	}
1347 	return (ocount - count);
1348 }
1349 
1350 static int
1351 vnlru_free_locked(int count)
1352 {
1353 
1354 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1355 	return (vnlru_free_impl(count, NULL, vnode_list_free_marker));
1356 }
1357 
1358 void
1359 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1360 {
1361 
1362 	MPASS(mnt_op != NULL);
1363 	MPASS(mvp != NULL);
1364 	VNPASS(mvp->v_type == VMARKER, mvp);
1365 	mtx_lock(&vnode_list_mtx);
1366 	vnlru_free_impl(count, mnt_op, mvp);
1367 	mtx_unlock(&vnode_list_mtx);
1368 }
1369 
1370 struct vnode *
1371 vnlru_alloc_marker(void)
1372 {
1373 	struct vnode *mvp;
1374 
1375 	mvp = vn_alloc_marker(NULL);
1376 	mtx_lock(&vnode_list_mtx);
1377 	TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1378 	mtx_unlock(&vnode_list_mtx);
1379 	return (mvp);
1380 }
1381 
1382 void
1383 vnlru_free_marker(struct vnode *mvp)
1384 {
1385 	mtx_lock(&vnode_list_mtx);
1386 	TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1387 	mtx_unlock(&vnode_list_mtx);
1388 	vn_free_marker(mvp);
1389 }
1390 
1391 static void
1392 vnlru_recalc(void)
1393 {
1394 
1395 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1396 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1397 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1398 	vlowat = vhiwat / 2;
1399 }
1400 
1401 /*
1402  * Attempt to recycle vnodes in a context that is always safe to block.
1403  * Calling vlrurecycle() from the bowels of filesystem code has some
1404  * interesting deadlock problems.
1405  */
1406 static struct proc *vnlruproc;
1407 static int vnlruproc_sig;
1408 
1409 /*
1410  * The main freevnodes counter is only updated when threads requeue their vnode
1411  * batches. CPUs are conditionally walked to compute a more accurate total.
1412  *
1413  * Limit how much of a slop are we willing to tolerate. Note: the actual value
1414  * at any given moment can still exceed slop, but it should not be by significant
1415  * margin in practice.
1416  */
1417 #define VNLRU_FREEVNODES_SLOP 128
1418 
1419 static __inline void
1420 vfs_freevnodes_inc(void)
1421 {
1422 	struct vdbatch *vd;
1423 
1424 	critical_enter();
1425 	vd = DPCPU_PTR(vd);
1426 	vd->freevnodes++;
1427 	critical_exit();
1428 }
1429 
1430 static __inline void
1431 vfs_freevnodes_dec(void)
1432 {
1433 	struct vdbatch *vd;
1434 
1435 	critical_enter();
1436 	vd = DPCPU_PTR(vd);
1437 	vd->freevnodes--;
1438 	critical_exit();
1439 }
1440 
1441 static u_long
1442 vnlru_read_freevnodes(void)
1443 {
1444 	struct vdbatch *vd;
1445 	long slop;
1446 	int cpu;
1447 
1448 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1449 	if (freevnodes > freevnodes_old)
1450 		slop = freevnodes - freevnodes_old;
1451 	else
1452 		slop = freevnodes_old - freevnodes;
1453 	if (slop < VNLRU_FREEVNODES_SLOP)
1454 		return (freevnodes >= 0 ? freevnodes : 0);
1455 	freevnodes_old = freevnodes;
1456 	CPU_FOREACH(cpu) {
1457 		vd = DPCPU_ID_PTR((cpu), vd);
1458 		freevnodes_old += vd->freevnodes;
1459 	}
1460 	return (freevnodes_old >= 0 ? freevnodes_old : 0);
1461 }
1462 
1463 static bool
1464 vnlru_under(u_long rnumvnodes, u_long limit)
1465 {
1466 	u_long rfreevnodes, space;
1467 
1468 	if (__predict_false(rnumvnodes > desiredvnodes))
1469 		return (true);
1470 
1471 	space = desiredvnodes - rnumvnodes;
1472 	if (space < limit) {
1473 		rfreevnodes = vnlru_read_freevnodes();
1474 		if (rfreevnodes > wantfreevnodes)
1475 			space += rfreevnodes - wantfreevnodes;
1476 	}
1477 	return (space < limit);
1478 }
1479 
1480 static bool
1481 vnlru_under_unlocked(u_long rnumvnodes, u_long limit)
1482 {
1483 	long rfreevnodes, space;
1484 
1485 	if (__predict_false(rnumvnodes > desiredvnodes))
1486 		return (true);
1487 
1488 	space = desiredvnodes - rnumvnodes;
1489 	if (space < limit) {
1490 		rfreevnodes = atomic_load_long(&freevnodes);
1491 		if (rfreevnodes > wantfreevnodes)
1492 			space += rfreevnodes - wantfreevnodes;
1493 	}
1494 	return (space < limit);
1495 }
1496 
1497 static void
1498 vnlru_kick(void)
1499 {
1500 
1501 	mtx_assert(&vnode_list_mtx, MA_OWNED);
1502 	if (vnlruproc_sig == 0) {
1503 		vnlruproc_sig = 1;
1504 		wakeup(vnlruproc);
1505 	}
1506 }
1507 
1508 static void
1509 vnlru_proc(void)
1510 {
1511 	u_long rnumvnodes, rfreevnodes, target;
1512 	unsigned long onumvnodes;
1513 	int done, force, trigger, usevnodes;
1514 	bool reclaim_nc_src, want_reread;
1515 
1516 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1517 	    SHUTDOWN_PRI_FIRST);
1518 
1519 	force = 0;
1520 	want_reread = false;
1521 	for (;;) {
1522 		kproc_suspend_check(vnlruproc);
1523 		mtx_lock(&vnode_list_mtx);
1524 		rnumvnodes = atomic_load_long(&numvnodes);
1525 
1526 		if (want_reread) {
1527 			force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1528 			want_reread = false;
1529 		}
1530 
1531 		/*
1532 		 * If numvnodes is too large (due to desiredvnodes being
1533 		 * adjusted using its sysctl, or emergency growth), first
1534 		 * try to reduce it by discarding from the free list.
1535 		 */
1536 		if (rnumvnodes > desiredvnodes) {
1537 			vnlru_free_locked(rnumvnodes - desiredvnodes);
1538 			rnumvnodes = atomic_load_long(&numvnodes);
1539 		}
1540 		/*
1541 		 * Sleep if the vnode cache is in a good state.  This is
1542 		 * when it is not over-full and has space for about a 4%
1543 		 * or 9% expansion (by growing its size or inexcessively
1544 		 * reducing its free list).  Otherwise, try to reclaim
1545 		 * space for a 10% expansion.
1546 		 */
1547 		if (vstir && force == 0) {
1548 			force = 1;
1549 			vstir = 0;
1550 		}
1551 		if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1552 			vnlruproc_sig = 0;
1553 			wakeup(&vnlruproc_sig);
1554 			msleep(vnlruproc, &vnode_list_mtx,
1555 			    PVFS|PDROP, "vlruwt", hz);
1556 			continue;
1557 		}
1558 		rfreevnodes = vnlru_read_freevnodes();
1559 
1560 		onumvnodes = rnumvnodes;
1561 		/*
1562 		 * Calculate parameters for recycling.  These are the same
1563 		 * throughout the loop to give some semblance of fairness.
1564 		 * The trigger point is to avoid recycling vnodes with lots
1565 		 * of resident pages.  We aren't trying to free memory; we
1566 		 * are trying to recycle or at least free vnodes.
1567 		 */
1568 		if (rnumvnodes <= desiredvnodes)
1569 			usevnodes = rnumvnodes - rfreevnodes;
1570 		else
1571 			usevnodes = rnumvnodes;
1572 		if (usevnodes <= 0)
1573 			usevnodes = 1;
1574 		/*
1575 		 * The trigger value is chosen to give a conservatively
1576 		 * large value to ensure that it alone doesn't prevent
1577 		 * making progress.  The value can easily be so large that
1578 		 * it is effectively infinite in some congested and
1579 		 * misconfigured cases, and this is necessary.  Normally
1580 		 * it is about 8 to 100 (pages), which is quite large.
1581 		 */
1582 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1583 		if (force < 2)
1584 			trigger = vsmalltrigger;
1585 		reclaim_nc_src = force >= 3;
1586 		target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1587 		target = target / 10 + 1;
1588 		done = vlrureclaim(reclaim_nc_src, trigger, target);
1589 		mtx_unlock(&vnode_list_mtx);
1590 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1591 			uma_reclaim(UMA_RECLAIM_DRAIN);
1592 		if (done == 0) {
1593 			if (force == 0 || force == 1) {
1594 				force = 2;
1595 				continue;
1596 			}
1597 			if (force == 2) {
1598 				force = 3;
1599 				continue;
1600 			}
1601 			want_reread = true;
1602 			force = 0;
1603 			vnlru_nowhere++;
1604 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1605 		} else {
1606 			want_reread = true;
1607 			kern_yield(PRI_USER);
1608 		}
1609 	}
1610 }
1611 
1612 static struct kproc_desc vnlru_kp = {
1613 	"vnlru",
1614 	vnlru_proc,
1615 	&vnlruproc
1616 };
1617 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1618     &vnlru_kp);
1619 
1620 /*
1621  * Routines having to do with the management of the vnode table.
1622  */
1623 
1624 /*
1625  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1626  * before we actually vgone().  This function must be called with the vnode
1627  * held to prevent the vnode from being returned to the free list midway
1628  * through vgone().
1629  */
1630 static int
1631 vtryrecycle(struct vnode *vp)
1632 {
1633 	struct mount *vnmp;
1634 
1635 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1636 	VNASSERT(vp->v_holdcnt, vp,
1637 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1638 	/*
1639 	 * This vnode may found and locked via some other list, if so we
1640 	 * can't recycle it yet.
1641 	 */
1642 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1643 		CTR2(KTR_VFS,
1644 		    "%s: impossible to recycle, vp %p lock is already held",
1645 		    __func__, vp);
1646 		vdrop_recycle(vp);
1647 		return (EWOULDBLOCK);
1648 	}
1649 	/*
1650 	 * Don't recycle if its filesystem is being suspended.
1651 	 */
1652 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1653 		VOP_UNLOCK(vp);
1654 		CTR2(KTR_VFS,
1655 		    "%s: impossible to recycle, cannot start the write for %p",
1656 		    __func__, vp);
1657 		vdrop_recycle(vp);
1658 		return (EBUSY);
1659 	}
1660 	/*
1661 	 * If we got this far, we need to acquire the interlock and see if
1662 	 * anyone picked up this vnode from another list.  If not, we will
1663 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1664 	 * will skip over it.
1665 	 */
1666 	VI_LOCK(vp);
1667 	if (vp->v_usecount) {
1668 		VOP_UNLOCK(vp);
1669 		vdropl_recycle(vp);
1670 		vn_finished_write(vnmp);
1671 		CTR2(KTR_VFS,
1672 		    "%s: impossible to recycle, %p is already referenced",
1673 		    __func__, vp);
1674 		return (EBUSY);
1675 	}
1676 	if (!VN_IS_DOOMED(vp)) {
1677 		counter_u64_add(recycles_free_count, 1);
1678 		vgonel(vp);
1679 	}
1680 	VOP_UNLOCK(vp);
1681 	vdropl_recycle(vp);
1682 	vn_finished_write(vnmp);
1683 	return (0);
1684 }
1685 
1686 /*
1687  * Allocate a new vnode.
1688  *
1689  * The operation never returns an error. Returning an error was disabled
1690  * in r145385 (dated 2005) with the following comment:
1691  *
1692  * XXX Not all VFS_VGET/ffs_vget callers check returns.
1693  *
1694  * Given the age of this commit (almost 15 years at the time of writing this
1695  * comment) restoring the ability to fail requires a significant audit of
1696  * all codepaths.
1697  *
1698  * The routine can try to free a vnode or stall for up to 1 second waiting for
1699  * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1700  */
1701 static u_long vn_alloc_cyclecount;
1702 
1703 static struct vnode * __noinline
1704 vn_alloc_hard(struct mount *mp)
1705 {
1706 	u_long rnumvnodes, rfreevnodes;
1707 
1708 	mtx_lock(&vnode_list_mtx);
1709 	rnumvnodes = atomic_load_long(&numvnodes);
1710 	if (rnumvnodes + 1 < desiredvnodes) {
1711 		vn_alloc_cyclecount = 0;
1712 		goto alloc;
1713 	}
1714 	rfreevnodes = vnlru_read_freevnodes();
1715 	if (vn_alloc_cyclecount++ >= rfreevnodes) {
1716 		vn_alloc_cyclecount = 0;
1717 		vstir = 1;
1718 	}
1719 	/*
1720 	 * Grow the vnode cache if it will not be above its target max
1721 	 * after growing.  Otherwise, if the free list is nonempty, try
1722 	 * to reclaim 1 item from it before growing the cache (possibly
1723 	 * above its target max if the reclamation failed or is delayed).
1724 	 * Otherwise, wait for some space.  In all cases, schedule
1725 	 * vnlru_proc() if we are getting short of space.  The watermarks
1726 	 * should be chosen so that we never wait or even reclaim from
1727 	 * the free list to below its target minimum.
1728 	 */
1729 	if (vnlru_free_locked(1) > 0)
1730 		goto alloc;
1731 	if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
1732 		/*
1733 		 * Wait for space for a new vnode.
1734 		 */
1735 		vnlru_kick();
1736 		msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
1737 		if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
1738 		    vnlru_read_freevnodes() > 1)
1739 			vnlru_free_locked(1);
1740 	}
1741 alloc:
1742 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1743 	if (vnlru_under(rnumvnodes, vlowat))
1744 		vnlru_kick();
1745 	mtx_unlock(&vnode_list_mtx);
1746 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1747 }
1748 
1749 static struct vnode *
1750 vn_alloc(struct mount *mp)
1751 {
1752 	u_long rnumvnodes;
1753 
1754 	if (__predict_false(vn_alloc_cyclecount != 0))
1755 		return (vn_alloc_hard(mp));
1756 	rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
1757 	if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) {
1758 		atomic_subtract_long(&numvnodes, 1);
1759 		return (vn_alloc_hard(mp));
1760 	}
1761 
1762 	return (uma_zalloc_smr(vnode_zone, M_WAITOK));
1763 }
1764 
1765 static void
1766 vn_free(struct vnode *vp)
1767 {
1768 
1769 	atomic_subtract_long(&numvnodes, 1);
1770 	uma_zfree_smr(vnode_zone, vp);
1771 }
1772 
1773 /*
1774  * Return the next vnode from the free list.
1775  */
1776 int
1777 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1778     struct vnode **vpp)
1779 {
1780 	struct vnode *vp;
1781 	struct thread *td;
1782 	struct lock_object *lo;
1783 
1784 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1785 
1786 	KASSERT(vops->registered,
1787 	    ("%s: not registered vector op %p\n", __func__, vops));
1788 
1789 	td = curthread;
1790 	if (td->td_vp_reserved != NULL) {
1791 		vp = td->td_vp_reserved;
1792 		td->td_vp_reserved = NULL;
1793 	} else {
1794 		vp = vn_alloc(mp);
1795 	}
1796 	counter_u64_add(vnodes_created, 1);
1797 
1798 	vn_set_state(vp, VSTATE_UNINITIALIZED);
1799 
1800 	/*
1801 	 * Locks are given the generic name "vnode" when created.
1802 	 * Follow the historic practice of using the filesystem
1803 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1804 	 *
1805 	 * Locks live in a witness group keyed on their name. Thus,
1806 	 * when a lock is renamed, it must also move from the witness
1807 	 * group of its old name to the witness group of its new name.
1808 	 *
1809 	 * The change only needs to be made when the vnode moves
1810 	 * from one filesystem type to another. We ensure that each
1811 	 * filesystem use a single static name pointer for its tag so
1812 	 * that we can compare pointers rather than doing a strcmp().
1813 	 */
1814 	lo = &vp->v_vnlock->lock_object;
1815 #ifdef WITNESS
1816 	if (lo->lo_name != tag) {
1817 #endif
1818 		lo->lo_name = tag;
1819 #ifdef WITNESS
1820 		WITNESS_DESTROY(lo);
1821 		WITNESS_INIT(lo, tag);
1822 	}
1823 #endif
1824 	/*
1825 	 * By default, don't allow shared locks unless filesystems opt-in.
1826 	 */
1827 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1828 	/*
1829 	 * Finalize various vnode identity bits.
1830 	 */
1831 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1832 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1833 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1834 	vp->v_type = VNON;
1835 	vp->v_op = vops;
1836 	vp->v_irflag = 0;
1837 	v_init_counters(vp);
1838 	vn_seqc_init(vp);
1839 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1840 #ifdef DIAGNOSTIC
1841 	if (mp == NULL && vops != &dead_vnodeops)
1842 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1843 #endif
1844 #ifdef MAC
1845 	mac_vnode_init(vp);
1846 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1847 		mac_vnode_associate_singlelabel(mp, vp);
1848 #endif
1849 	if (mp != NULL) {
1850 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1851 	}
1852 
1853 	/*
1854 	 * For the filesystems which do not use vfs_hash_insert(),
1855 	 * still initialize v_hash to have vfs_hash_index() useful.
1856 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1857 	 * its own hashing.
1858 	 */
1859 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1860 
1861 	*vpp = vp;
1862 	return (0);
1863 }
1864 
1865 void
1866 getnewvnode_reserve(void)
1867 {
1868 	struct thread *td;
1869 
1870 	td = curthread;
1871 	MPASS(td->td_vp_reserved == NULL);
1872 	td->td_vp_reserved = vn_alloc(NULL);
1873 }
1874 
1875 void
1876 getnewvnode_drop_reserve(void)
1877 {
1878 	struct thread *td;
1879 
1880 	td = curthread;
1881 	if (td->td_vp_reserved != NULL) {
1882 		vn_free(td->td_vp_reserved);
1883 		td->td_vp_reserved = NULL;
1884 	}
1885 }
1886 
1887 static void __noinline
1888 freevnode(struct vnode *vp)
1889 {
1890 	struct bufobj *bo;
1891 
1892 	/*
1893 	 * The vnode has been marked for destruction, so free it.
1894 	 *
1895 	 * The vnode will be returned to the zone where it will
1896 	 * normally remain until it is needed for another vnode. We
1897 	 * need to cleanup (or verify that the cleanup has already
1898 	 * been done) any residual data left from its current use
1899 	 * so as not to contaminate the freshly allocated vnode.
1900 	 */
1901 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
1902 	/*
1903 	 * Paired with vgone.
1904 	 */
1905 	vn_seqc_write_end_free(vp);
1906 
1907 	bo = &vp->v_bufobj;
1908 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
1909 	VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
1910 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
1911 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
1912 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
1913 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
1914 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
1915 	    ("clean blk trie not empty"));
1916 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
1917 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
1918 	    ("dirty blk trie not empty"));
1919 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
1920 	    ("Dangling rangelock waiters"));
1921 	VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
1922 	    ("Leaked inactivation"));
1923 	VI_UNLOCK(vp);
1924 	cache_assert_no_entries(vp);
1925 
1926 #ifdef MAC
1927 	mac_vnode_destroy(vp);
1928 #endif
1929 	if (vp->v_pollinfo != NULL) {
1930 		/*
1931 		 * Use LK_NOWAIT to shut up witness about the lock. We may get
1932 		 * here while having another vnode locked when trying to
1933 		 * satisfy a lookup and needing to recycle.
1934 		 */
1935 		VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
1936 		destroy_vpollinfo(vp->v_pollinfo);
1937 		VOP_UNLOCK(vp);
1938 		vp->v_pollinfo = NULL;
1939 	}
1940 	vp->v_mountedhere = NULL;
1941 	vp->v_unpcb = NULL;
1942 	vp->v_rdev = NULL;
1943 	vp->v_fifoinfo = NULL;
1944 	vp->v_iflag = 0;
1945 	vp->v_vflag = 0;
1946 	bo->bo_flag = 0;
1947 	vn_free(vp);
1948 }
1949 
1950 /*
1951  * Delete from old mount point vnode list, if on one.
1952  */
1953 static void
1954 delmntque(struct vnode *vp)
1955 {
1956 	struct mount *mp;
1957 
1958 	VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
1959 
1960 	mp = vp->v_mount;
1961 	MNT_ILOCK(mp);
1962 	VI_LOCK(vp);
1963 	vp->v_mount = NULL;
1964 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1965 		("bad mount point vnode list size"));
1966 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1967 	mp->mnt_nvnodelistsize--;
1968 	MNT_REL(mp);
1969 	MNT_IUNLOCK(mp);
1970 	/*
1971 	 * The caller expects the interlock to be still held.
1972 	 */
1973 	ASSERT_VI_LOCKED(vp, __func__);
1974 }
1975 
1976 static int
1977 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
1978 {
1979 
1980 	KASSERT(vp->v_mount == NULL,
1981 		("insmntque: vnode already on per mount vnode list"));
1982 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1983 	if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
1984 		ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1985 	} else {
1986 		KASSERT(!dtr,
1987 		    ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
1988 		    __func__));
1989 	}
1990 
1991 	/*
1992 	 * We acquire the vnode interlock early to ensure that the
1993 	 * vnode cannot be recycled by another process releasing a
1994 	 * holdcnt on it before we get it on both the vnode list
1995 	 * and the active vnode list. The mount mutex protects only
1996 	 * manipulation of the vnode list and the vnode freelist
1997 	 * mutex protects only manipulation of the active vnode list.
1998 	 * Hence the need to hold the vnode interlock throughout.
1999 	 */
2000 	MNT_ILOCK(mp);
2001 	VI_LOCK(vp);
2002 	if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2003 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2004 	    mp->mnt_nvnodelistsize == 0)) &&
2005 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2006 		VI_UNLOCK(vp);
2007 		MNT_IUNLOCK(mp);
2008 		if (dtr) {
2009 			vp->v_data = NULL;
2010 			vp->v_op = &dead_vnodeops;
2011 			vgone(vp);
2012 			vput(vp);
2013 		}
2014 		return (EBUSY);
2015 	}
2016 	vp->v_mount = mp;
2017 	MNT_REF(mp);
2018 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2019 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2020 		("neg mount point vnode list size"));
2021 	mp->mnt_nvnodelistsize++;
2022 	VI_UNLOCK(vp);
2023 	MNT_IUNLOCK(mp);
2024 	return (0);
2025 }
2026 
2027 /*
2028  * Insert into list of vnodes for the new mount point, if available.
2029  * insmntque() reclaims the vnode on insertion failure, insmntque1()
2030  * leaves handling of the vnode to the caller.
2031  */
2032 int
2033 insmntque(struct vnode *vp, struct mount *mp)
2034 {
2035 	return (insmntque1_int(vp, mp, true));
2036 }
2037 
2038 int
2039 insmntque1(struct vnode *vp, struct mount *mp)
2040 {
2041 	return (insmntque1_int(vp, mp, false));
2042 }
2043 
2044 /*
2045  * Flush out and invalidate all buffers associated with a bufobj
2046  * Called with the underlying object locked.
2047  */
2048 int
2049 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2050 {
2051 	int error;
2052 
2053 	BO_LOCK(bo);
2054 	if (flags & V_SAVE) {
2055 		error = bufobj_wwait(bo, slpflag, slptimeo);
2056 		if (error) {
2057 			BO_UNLOCK(bo);
2058 			return (error);
2059 		}
2060 		if (bo->bo_dirty.bv_cnt > 0) {
2061 			BO_UNLOCK(bo);
2062 			do {
2063 				error = BO_SYNC(bo, MNT_WAIT);
2064 			} while (error == ERELOOKUP);
2065 			if (error != 0)
2066 				return (error);
2067 			BO_LOCK(bo);
2068 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2069 				BO_UNLOCK(bo);
2070 				return (EBUSY);
2071 			}
2072 		}
2073 	}
2074 	/*
2075 	 * If you alter this loop please notice that interlock is dropped and
2076 	 * reacquired in flushbuflist.  Special care is needed to ensure that
2077 	 * no race conditions occur from this.
2078 	 */
2079 	do {
2080 		error = flushbuflist(&bo->bo_clean,
2081 		    flags, bo, slpflag, slptimeo);
2082 		if (error == 0 && !(flags & V_CLEANONLY))
2083 			error = flushbuflist(&bo->bo_dirty,
2084 			    flags, bo, slpflag, slptimeo);
2085 		if (error != 0 && error != EAGAIN) {
2086 			BO_UNLOCK(bo);
2087 			return (error);
2088 		}
2089 	} while (error != 0);
2090 
2091 	/*
2092 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
2093 	 * have write I/O in-progress but if there is a VM object then the
2094 	 * VM object can also have read-I/O in-progress.
2095 	 */
2096 	do {
2097 		bufobj_wwait(bo, 0, 0);
2098 		if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2099 			BO_UNLOCK(bo);
2100 			vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2101 			BO_LOCK(bo);
2102 		}
2103 	} while (bo->bo_numoutput > 0);
2104 	BO_UNLOCK(bo);
2105 
2106 	/*
2107 	 * Destroy the copy in the VM cache, too.
2108 	 */
2109 	if (bo->bo_object != NULL &&
2110 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2111 		VM_OBJECT_WLOCK(bo->bo_object);
2112 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2113 		    OBJPR_CLEANONLY : 0);
2114 		VM_OBJECT_WUNLOCK(bo->bo_object);
2115 	}
2116 
2117 #ifdef INVARIANTS
2118 	BO_LOCK(bo);
2119 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2120 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2121 	    bo->bo_clean.bv_cnt > 0))
2122 		panic("vinvalbuf: flush failed");
2123 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2124 	    bo->bo_dirty.bv_cnt > 0)
2125 		panic("vinvalbuf: flush dirty failed");
2126 	BO_UNLOCK(bo);
2127 #endif
2128 	return (0);
2129 }
2130 
2131 /*
2132  * Flush out and invalidate all buffers associated with a vnode.
2133  * Called with the underlying object locked.
2134  */
2135 int
2136 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2137 {
2138 
2139 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2140 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2141 	if (vp->v_object != NULL && vp->v_object->handle != vp)
2142 		return (0);
2143 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2144 }
2145 
2146 /*
2147  * Flush out buffers on the specified list.
2148  *
2149  */
2150 static int
2151 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2152     int slptimeo)
2153 {
2154 	struct buf *bp, *nbp;
2155 	int retval, error;
2156 	daddr_t lblkno;
2157 	b_xflags_t xflags;
2158 
2159 	ASSERT_BO_WLOCKED(bo);
2160 
2161 	retval = 0;
2162 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2163 		/*
2164 		 * If we are flushing both V_NORMAL and V_ALT buffers then
2165 		 * do not skip any buffers. If we are flushing only V_NORMAL
2166 		 * buffers then skip buffers marked as BX_ALTDATA. If we are
2167 		 * flushing only V_ALT buffers then skip buffers not marked
2168 		 * as BX_ALTDATA.
2169 		 */
2170 		if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2171 		   (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2172 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2173 			continue;
2174 		}
2175 		if (nbp != NULL) {
2176 			lblkno = nbp->b_lblkno;
2177 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2178 		}
2179 		retval = EAGAIN;
2180 		error = BUF_TIMELOCK(bp,
2181 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2182 		    "flushbuf", slpflag, slptimeo);
2183 		if (error) {
2184 			BO_LOCK(bo);
2185 			return (error != ENOLCK ? error : EAGAIN);
2186 		}
2187 		KASSERT(bp->b_bufobj == bo,
2188 		    ("bp %p wrong b_bufobj %p should be %p",
2189 		    bp, bp->b_bufobj, bo));
2190 		/*
2191 		 * XXX Since there are no node locks for NFS, I
2192 		 * believe there is a slight chance that a delayed
2193 		 * write will occur while sleeping just above, so
2194 		 * check for it.
2195 		 */
2196 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2197 		    (flags & V_SAVE)) {
2198 			bremfree(bp);
2199 			bp->b_flags |= B_ASYNC;
2200 			bwrite(bp);
2201 			BO_LOCK(bo);
2202 			return (EAGAIN);	/* XXX: why not loop ? */
2203 		}
2204 		bremfree(bp);
2205 		bp->b_flags |= (B_INVAL | B_RELBUF);
2206 		bp->b_flags &= ~B_ASYNC;
2207 		brelse(bp);
2208 		BO_LOCK(bo);
2209 		if (nbp == NULL)
2210 			break;
2211 		nbp = gbincore(bo, lblkno);
2212 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2213 		    != xflags)
2214 			break;			/* nbp invalid */
2215 	}
2216 	return (retval);
2217 }
2218 
2219 int
2220 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2221 {
2222 	struct buf *bp;
2223 	int error;
2224 	daddr_t lblkno;
2225 
2226 	ASSERT_BO_LOCKED(bo);
2227 
2228 	for (lblkno = startn;;) {
2229 again:
2230 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
2231 		if (bp == NULL || bp->b_lblkno >= endn ||
2232 		    bp->b_lblkno < startn)
2233 			break;
2234 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2235 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2236 		if (error != 0) {
2237 			BO_RLOCK(bo);
2238 			if (error == ENOLCK)
2239 				goto again;
2240 			return (error);
2241 		}
2242 		KASSERT(bp->b_bufobj == bo,
2243 		    ("bp %p wrong b_bufobj %p should be %p",
2244 		    bp, bp->b_bufobj, bo));
2245 		lblkno = bp->b_lblkno + 1;
2246 		if ((bp->b_flags & B_MANAGED) == 0)
2247 			bremfree(bp);
2248 		bp->b_flags |= B_RELBUF;
2249 		/*
2250 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
2251 		 * pages backing each buffer in the range are unlikely to be
2252 		 * reused.  Dirty buffers will have the hint applied once
2253 		 * they've been written.
2254 		 */
2255 		if ((bp->b_flags & B_VMIO) != 0)
2256 			bp->b_flags |= B_NOREUSE;
2257 		brelse(bp);
2258 		BO_RLOCK(bo);
2259 	}
2260 	return (0);
2261 }
2262 
2263 /*
2264  * Truncate a file's buffer and pages to a specified length.  This
2265  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2266  * sync activity.
2267  */
2268 int
2269 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2270 {
2271 	struct buf *bp, *nbp;
2272 	struct bufobj *bo;
2273 	daddr_t startlbn;
2274 
2275 	CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2276 	    vp, blksize, (uintmax_t)length);
2277 
2278 	/*
2279 	 * Round up to the *next* lbn.
2280 	 */
2281 	startlbn = howmany(length, blksize);
2282 
2283 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2284 
2285 	bo = &vp->v_bufobj;
2286 restart_unlocked:
2287 	BO_LOCK(bo);
2288 
2289 	while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2290 		;
2291 
2292 	if (length > 0) {
2293 restartsync:
2294 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2295 			if (bp->b_lblkno > 0)
2296 				continue;
2297 			/*
2298 			 * Since we hold the vnode lock this should only
2299 			 * fail if we're racing with the buf daemon.
2300 			 */
2301 			if (BUF_LOCK(bp,
2302 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2303 			    BO_LOCKPTR(bo)) == ENOLCK)
2304 				goto restart_unlocked;
2305 
2306 			VNASSERT((bp->b_flags & B_DELWRI), vp,
2307 			    ("buf(%p) on dirty queue without DELWRI", bp));
2308 
2309 			bremfree(bp);
2310 			bawrite(bp);
2311 			BO_LOCK(bo);
2312 			goto restartsync;
2313 		}
2314 	}
2315 
2316 	bufobj_wwait(bo, 0, 0);
2317 	BO_UNLOCK(bo);
2318 	vnode_pager_setsize(vp, length);
2319 
2320 	return (0);
2321 }
2322 
2323 /*
2324  * Invalidate the cached pages of a file's buffer within the range of block
2325  * numbers [startlbn, endlbn).
2326  */
2327 void
2328 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2329     int blksize)
2330 {
2331 	struct bufobj *bo;
2332 	off_t start, end;
2333 
2334 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2335 
2336 	start = blksize * startlbn;
2337 	end = blksize * endlbn;
2338 
2339 	bo = &vp->v_bufobj;
2340 	BO_LOCK(bo);
2341 	MPASS(blksize == bo->bo_bsize);
2342 
2343 	while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2344 		;
2345 
2346 	BO_UNLOCK(bo);
2347 	vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2348 }
2349 
2350 static int
2351 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2352     daddr_t startlbn, daddr_t endlbn)
2353 {
2354 	struct buf *bp, *nbp;
2355 	bool anyfreed;
2356 
2357 	ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2358 	ASSERT_BO_LOCKED(bo);
2359 
2360 	do {
2361 		anyfreed = false;
2362 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
2363 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2364 				continue;
2365 			if (BUF_LOCK(bp,
2366 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2367 			    BO_LOCKPTR(bo)) == ENOLCK) {
2368 				BO_LOCK(bo);
2369 				return (EAGAIN);
2370 			}
2371 
2372 			bremfree(bp);
2373 			bp->b_flags |= B_INVAL | B_RELBUF;
2374 			bp->b_flags &= ~B_ASYNC;
2375 			brelse(bp);
2376 			anyfreed = true;
2377 
2378 			BO_LOCK(bo);
2379 			if (nbp != NULL &&
2380 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
2381 			    nbp->b_vp != vp ||
2382 			    (nbp->b_flags & B_DELWRI) != 0))
2383 				return (EAGAIN);
2384 		}
2385 
2386 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2387 			if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn)
2388 				continue;
2389 			if (BUF_LOCK(bp,
2390 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2391 			    BO_LOCKPTR(bo)) == ENOLCK) {
2392 				BO_LOCK(bo);
2393 				return (EAGAIN);
2394 			}
2395 			bremfree(bp);
2396 			bp->b_flags |= B_INVAL | B_RELBUF;
2397 			bp->b_flags &= ~B_ASYNC;
2398 			brelse(bp);
2399 			anyfreed = true;
2400 
2401 			BO_LOCK(bo);
2402 			if (nbp != NULL &&
2403 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
2404 			    (nbp->b_vp != vp) ||
2405 			    (nbp->b_flags & B_DELWRI) == 0))
2406 				return (EAGAIN);
2407 		}
2408 	} while (anyfreed);
2409 	return (0);
2410 }
2411 
2412 static void
2413 buf_vlist_remove(struct buf *bp)
2414 {
2415 	struct bufv *bv;
2416 	b_xflags_t flags;
2417 
2418 	flags = bp->b_xflags;
2419 
2420 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2421 	ASSERT_BO_WLOCKED(bp->b_bufobj);
2422 	KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2423 	    (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2424 	    ("%s: buffer %p has invalid queue state", __func__, bp));
2425 
2426 	if ((flags & BX_VNDIRTY) != 0)
2427 		bv = &bp->b_bufobj->bo_dirty;
2428 	else
2429 		bv = &bp->b_bufobj->bo_clean;
2430 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2431 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2432 	bv->bv_cnt--;
2433 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2434 }
2435 
2436 /*
2437  * Add the buffer to the sorted clean or dirty block list.
2438  *
2439  * NOTE: xflags is passed as a constant, optimizing this inline function!
2440  */
2441 static void
2442 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2443 {
2444 	struct bufv *bv;
2445 	struct buf *n;
2446 	int error;
2447 
2448 	ASSERT_BO_WLOCKED(bo);
2449 	KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2450 	    ("buf_vlist_add: bo %p does not allow bufs", bo));
2451 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2452 	    ("dead bo %p", bo));
2453 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
2454 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2455 	bp->b_xflags |= xflags;
2456 	if (xflags & BX_VNDIRTY)
2457 		bv = &bo->bo_dirty;
2458 	else
2459 		bv = &bo->bo_clean;
2460 
2461 	/*
2462 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2463 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2464 	 * than _ge.
2465 	 */
2466 	if (bv->bv_cnt == 0 ||
2467 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2468 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2469 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2470 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2471 	else
2472 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2473 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2474 	if (error)
2475 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2476 	bv->bv_cnt++;
2477 }
2478 
2479 /*
2480  * Look up a buffer using the buffer tries.
2481  */
2482 struct buf *
2483 gbincore(struct bufobj *bo, daddr_t lblkno)
2484 {
2485 	struct buf *bp;
2486 
2487 	ASSERT_BO_LOCKED(bo);
2488 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2489 	if (bp != NULL)
2490 		return (bp);
2491 	return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2492 }
2493 
2494 /*
2495  * Look up a buf using the buffer tries, without the bufobj lock.  This relies
2496  * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2497  * stability of the result.  Like other lockless lookups, the found buf may
2498  * already be invalid by the time this function returns.
2499  */
2500 struct buf *
2501 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2502 {
2503 	struct buf *bp;
2504 
2505 	ASSERT_BO_UNLOCKED(bo);
2506 	bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2507 	if (bp != NULL)
2508 		return (bp);
2509 	return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2510 }
2511 
2512 /*
2513  * Associate a buffer with a vnode.
2514  */
2515 void
2516 bgetvp(struct vnode *vp, struct buf *bp)
2517 {
2518 	struct bufobj *bo;
2519 
2520 	bo = &vp->v_bufobj;
2521 	ASSERT_BO_WLOCKED(bo);
2522 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2523 
2524 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2525 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2526 	    ("bgetvp: bp already attached! %p", bp));
2527 
2528 	vhold(vp);
2529 	bp->b_vp = vp;
2530 	bp->b_bufobj = bo;
2531 	/*
2532 	 * Insert onto list for new vnode.
2533 	 */
2534 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2535 }
2536 
2537 /*
2538  * Disassociate a buffer from a vnode.
2539  */
2540 void
2541 brelvp(struct buf *bp)
2542 {
2543 	struct bufobj *bo;
2544 	struct vnode *vp;
2545 
2546 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2547 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2548 
2549 	/*
2550 	 * Delete from old vnode list, if on one.
2551 	 */
2552 	vp = bp->b_vp;		/* XXX */
2553 	bo = bp->b_bufobj;
2554 	BO_LOCK(bo);
2555 	buf_vlist_remove(bp);
2556 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2557 		bo->bo_flag &= ~BO_ONWORKLST;
2558 		mtx_lock(&sync_mtx);
2559 		LIST_REMOVE(bo, bo_synclist);
2560 		syncer_worklist_len--;
2561 		mtx_unlock(&sync_mtx);
2562 	}
2563 	bp->b_vp = NULL;
2564 	bp->b_bufobj = NULL;
2565 	BO_UNLOCK(bo);
2566 	vdrop(vp);
2567 }
2568 
2569 /*
2570  * Add an item to the syncer work queue.
2571  */
2572 static void
2573 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2574 {
2575 	int slot;
2576 
2577 	ASSERT_BO_WLOCKED(bo);
2578 
2579 	mtx_lock(&sync_mtx);
2580 	if (bo->bo_flag & BO_ONWORKLST)
2581 		LIST_REMOVE(bo, bo_synclist);
2582 	else {
2583 		bo->bo_flag |= BO_ONWORKLST;
2584 		syncer_worklist_len++;
2585 	}
2586 
2587 	if (delay > syncer_maxdelay - 2)
2588 		delay = syncer_maxdelay - 2;
2589 	slot = (syncer_delayno + delay) & syncer_mask;
2590 
2591 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2592 	mtx_unlock(&sync_mtx);
2593 }
2594 
2595 static int
2596 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2597 {
2598 	int error, len;
2599 
2600 	mtx_lock(&sync_mtx);
2601 	len = syncer_worklist_len - sync_vnode_count;
2602 	mtx_unlock(&sync_mtx);
2603 	error = SYSCTL_OUT(req, &len, sizeof(len));
2604 	return (error);
2605 }
2606 
2607 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2608     CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2609     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2610 
2611 static struct proc *updateproc;
2612 static void sched_sync(void);
2613 static struct kproc_desc up_kp = {
2614 	"syncer",
2615 	sched_sync,
2616 	&updateproc
2617 };
2618 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2619 
2620 static int
2621 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2622 {
2623 	struct vnode *vp;
2624 	struct mount *mp;
2625 
2626 	*bo = LIST_FIRST(slp);
2627 	if (*bo == NULL)
2628 		return (0);
2629 	vp = bo2vnode(*bo);
2630 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2631 		return (1);
2632 	/*
2633 	 * We use vhold in case the vnode does not
2634 	 * successfully sync.  vhold prevents the vnode from
2635 	 * going away when we unlock the sync_mtx so that
2636 	 * we can acquire the vnode interlock.
2637 	 */
2638 	vholdl(vp);
2639 	mtx_unlock(&sync_mtx);
2640 	VI_UNLOCK(vp);
2641 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2642 		vdrop(vp);
2643 		mtx_lock(&sync_mtx);
2644 		return (*bo == LIST_FIRST(slp));
2645 	}
2646 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2647 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2648 	VOP_UNLOCK(vp);
2649 	vn_finished_write(mp);
2650 	BO_LOCK(*bo);
2651 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2652 		/*
2653 		 * Put us back on the worklist.  The worklist
2654 		 * routine will remove us from our current
2655 		 * position and then add us back in at a later
2656 		 * position.
2657 		 */
2658 		vn_syncer_add_to_worklist(*bo, syncdelay);
2659 	}
2660 	BO_UNLOCK(*bo);
2661 	vdrop(vp);
2662 	mtx_lock(&sync_mtx);
2663 	return (0);
2664 }
2665 
2666 static int first_printf = 1;
2667 
2668 /*
2669  * System filesystem synchronizer daemon.
2670  */
2671 static void
2672 sched_sync(void)
2673 {
2674 	struct synclist *next, *slp;
2675 	struct bufobj *bo;
2676 	long starttime;
2677 	struct thread *td = curthread;
2678 	int last_work_seen;
2679 	int net_worklist_len;
2680 	int syncer_final_iter;
2681 	int error;
2682 
2683 	last_work_seen = 0;
2684 	syncer_final_iter = 0;
2685 	syncer_state = SYNCER_RUNNING;
2686 	starttime = time_uptime;
2687 	td->td_pflags |= TDP_NORUNNINGBUF;
2688 
2689 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2690 	    SHUTDOWN_PRI_LAST);
2691 
2692 	mtx_lock(&sync_mtx);
2693 	for (;;) {
2694 		if (syncer_state == SYNCER_FINAL_DELAY &&
2695 		    syncer_final_iter == 0) {
2696 			mtx_unlock(&sync_mtx);
2697 			kproc_suspend_check(td->td_proc);
2698 			mtx_lock(&sync_mtx);
2699 		}
2700 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2701 		if (syncer_state != SYNCER_RUNNING &&
2702 		    starttime != time_uptime) {
2703 			if (first_printf) {
2704 				printf("\nSyncing disks, vnodes remaining... ");
2705 				first_printf = 0;
2706 			}
2707 			printf("%d ", net_worklist_len);
2708 		}
2709 		starttime = time_uptime;
2710 
2711 		/*
2712 		 * Push files whose dirty time has expired.  Be careful
2713 		 * of interrupt race on slp queue.
2714 		 *
2715 		 * Skip over empty worklist slots when shutting down.
2716 		 */
2717 		do {
2718 			slp = &syncer_workitem_pending[syncer_delayno];
2719 			syncer_delayno += 1;
2720 			if (syncer_delayno == syncer_maxdelay)
2721 				syncer_delayno = 0;
2722 			next = &syncer_workitem_pending[syncer_delayno];
2723 			/*
2724 			 * If the worklist has wrapped since the
2725 			 * it was emptied of all but syncer vnodes,
2726 			 * switch to the FINAL_DELAY state and run
2727 			 * for one more second.
2728 			 */
2729 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2730 			    net_worklist_len == 0 &&
2731 			    last_work_seen == syncer_delayno) {
2732 				syncer_state = SYNCER_FINAL_DELAY;
2733 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2734 			}
2735 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2736 		    syncer_worklist_len > 0);
2737 
2738 		/*
2739 		 * Keep track of the last time there was anything
2740 		 * on the worklist other than syncer vnodes.
2741 		 * Return to the SHUTTING_DOWN state if any
2742 		 * new work appears.
2743 		 */
2744 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2745 			last_work_seen = syncer_delayno;
2746 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2747 			syncer_state = SYNCER_SHUTTING_DOWN;
2748 		while (!LIST_EMPTY(slp)) {
2749 			error = sync_vnode(slp, &bo, td);
2750 			if (error == 1) {
2751 				LIST_REMOVE(bo, bo_synclist);
2752 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2753 				continue;
2754 			}
2755 
2756 			if (first_printf == 0) {
2757 				/*
2758 				 * Drop the sync mutex, because some watchdog
2759 				 * drivers need to sleep while patting
2760 				 */
2761 				mtx_unlock(&sync_mtx);
2762 				wdog_kern_pat(WD_LASTVAL);
2763 				mtx_lock(&sync_mtx);
2764 			}
2765 		}
2766 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2767 			syncer_final_iter--;
2768 		/*
2769 		 * The variable rushjob allows the kernel to speed up the
2770 		 * processing of the filesystem syncer process. A rushjob
2771 		 * value of N tells the filesystem syncer to process the next
2772 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2773 		 * is used by the soft update code to speed up the filesystem
2774 		 * syncer process when the incore state is getting so far
2775 		 * ahead of the disk that the kernel memory pool is being
2776 		 * threatened with exhaustion.
2777 		 */
2778 		if (rushjob > 0) {
2779 			rushjob -= 1;
2780 			continue;
2781 		}
2782 		/*
2783 		 * Just sleep for a short period of time between
2784 		 * iterations when shutting down to allow some I/O
2785 		 * to happen.
2786 		 *
2787 		 * If it has taken us less than a second to process the
2788 		 * current work, then wait. Otherwise start right over
2789 		 * again. We can still lose time if any single round
2790 		 * takes more than two seconds, but it does not really
2791 		 * matter as we are just trying to generally pace the
2792 		 * filesystem activity.
2793 		 */
2794 		if (syncer_state != SYNCER_RUNNING ||
2795 		    time_uptime == starttime) {
2796 			thread_lock(td);
2797 			sched_prio(td, PPAUSE);
2798 			thread_unlock(td);
2799 		}
2800 		if (syncer_state != SYNCER_RUNNING)
2801 			cv_timedwait(&sync_wakeup, &sync_mtx,
2802 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2803 		else if (time_uptime == starttime)
2804 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2805 	}
2806 }
2807 
2808 /*
2809  * Request the syncer daemon to speed up its work.
2810  * We never push it to speed up more than half of its
2811  * normal turn time, otherwise it could take over the cpu.
2812  */
2813 int
2814 speedup_syncer(void)
2815 {
2816 	int ret = 0;
2817 
2818 	mtx_lock(&sync_mtx);
2819 	if (rushjob < syncdelay / 2) {
2820 		rushjob += 1;
2821 		stat_rush_requests += 1;
2822 		ret = 1;
2823 	}
2824 	mtx_unlock(&sync_mtx);
2825 	cv_broadcast(&sync_wakeup);
2826 	return (ret);
2827 }
2828 
2829 /*
2830  * Tell the syncer to speed up its work and run though its work
2831  * list several times, then tell it to shut down.
2832  */
2833 static void
2834 syncer_shutdown(void *arg, int howto)
2835 {
2836 
2837 	if (howto & RB_NOSYNC)
2838 		return;
2839 	mtx_lock(&sync_mtx);
2840 	syncer_state = SYNCER_SHUTTING_DOWN;
2841 	rushjob = 0;
2842 	mtx_unlock(&sync_mtx);
2843 	cv_broadcast(&sync_wakeup);
2844 	kproc_shutdown(arg, howto);
2845 }
2846 
2847 void
2848 syncer_suspend(void)
2849 {
2850 
2851 	syncer_shutdown(updateproc, 0);
2852 }
2853 
2854 void
2855 syncer_resume(void)
2856 {
2857 
2858 	mtx_lock(&sync_mtx);
2859 	first_printf = 1;
2860 	syncer_state = SYNCER_RUNNING;
2861 	mtx_unlock(&sync_mtx);
2862 	cv_broadcast(&sync_wakeup);
2863 	kproc_resume(updateproc);
2864 }
2865 
2866 /*
2867  * Move the buffer between the clean and dirty lists of its vnode.
2868  */
2869 void
2870 reassignbuf(struct buf *bp)
2871 {
2872 	struct vnode *vp;
2873 	struct bufobj *bo;
2874 	int delay;
2875 #ifdef INVARIANTS
2876 	struct bufv *bv;
2877 #endif
2878 
2879 	vp = bp->b_vp;
2880 	bo = bp->b_bufobj;
2881 
2882 	KASSERT((bp->b_flags & B_PAGING) == 0,
2883 	    ("%s: cannot reassign paging buffer %p", __func__, bp));
2884 
2885 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2886 	    bp, bp->b_vp, bp->b_flags);
2887 
2888 	BO_LOCK(bo);
2889 	buf_vlist_remove(bp);
2890 
2891 	/*
2892 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2893 	 * of clean buffers.
2894 	 */
2895 	if (bp->b_flags & B_DELWRI) {
2896 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2897 			switch (vp->v_type) {
2898 			case VDIR:
2899 				delay = dirdelay;
2900 				break;
2901 			case VCHR:
2902 				delay = metadelay;
2903 				break;
2904 			default:
2905 				delay = filedelay;
2906 			}
2907 			vn_syncer_add_to_worklist(bo, delay);
2908 		}
2909 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2910 	} else {
2911 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2912 
2913 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2914 			mtx_lock(&sync_mtx);
2915 			LIST_REMOVE(bo, bo_synclist);
2916 			syncer_worklist_len--;
2917 			mtx_unlock(&sync_mtx);
2918 			bo->bo_flag &= ~BO_ONWORKLST;
2919 		}
2920 	}
2921 #ifdef INVARIANTS
2922 	bv = &bo->bo_clean;
2923 	bp = TAILQ_FIRST(&bv->bv_hd);
2924 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2925 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2926 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2927 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2928 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2929 	bv = &bo->bo_dirty;
2930 	bp = TAILQ_FIRST(&bv->bv_hd);
2931 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2932 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2933 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2934 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2935 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2936 #endif
2937 	BO_UNLOCK(bo);
2938 }
2939 
2940 static void
2941 v_init_counters(struct vnode *vp)
2942 {
2943 
2944 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2945 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2946 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2947 
2948 	refcount_init(&vp->v_holdcnt, 1);
2949 	refcount_init(&vp->v_usecount, 1);
2950 }
2951 
2952 /*
2953  * Grab a particular vnode from the free list, increment its
2954  * reference count and lock it.  VIRF_DOOMED is set if the vnode
2955  * is being destroyed.  Only callers who specify LK_RETRY will
2956  * see doomed vnodes.  If inactive processing was delayed in
2957  * vput try to do it here.
2958  *
2959  * usecount is manipulated using atomics without holding any locks.
2960  *
2961  * holdcnt can be manipulated using atomics without holding any locks,
2962  * except when transitioning 1<->0, in which case the interlock is held.
2963  *
2964  * Consumers which don't guarantee liveness of the vnode can use SMR to
2965  * try to get a reference. Note this operation can fail since the vnode
2966  * may be awaiting getting freed by the time they get to it.
2967  */
2968 enum vgetstate
2969 vget_prep_smr(struct vnode *vp)
2970 {
2971 	enum vgetstate vs;
2972 
2973 	VFS_SMR_ASSERT_ENTERED();
2974 
2975 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2976 		vs = VGET_USECOUNT;
2977 	} else {
2978 		if (vhold_smr(vp))
2979 			vs = VGET_HOLDCNT;
2980 		else
2981 			vs = VGET_NONE;
2982 	}
2983 	return (vs);
2984 }
2985 
2986 enum vgetstate
2987 vget_prep(struct vnode *vp)
2988 {
2989 	enum vgetstate vs;
2990 
2991 	if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
2992 		vs = VGET_USECOUNT;
2993 	} else {
2994 		vhold(vp);
2995 		vs = VGET_HOLDCNT;
2996 	}
2997 	return (vs);
2998 }
2999 
3000 void
3001 vget_abort(struct vnode *vp, enum vgetstate vs)
3002 {
3003 
3004 	switch (vs) {
3005 	case VGET_USECOUNT:
3006 		vrele(vp);
3007 		break;
3008 	case VGET_HOLDCNT:
3009 		vdrop(vp);
3010 		break;
3011 	default:
3012 		__assert_unreachable();
3013 	}
3014 }
3015 
3016 int
3017 vget(struct vnode *vp, int flags)
3018 {
3019 	enum vgetstate vs;
3020 
3021 	vs = vget_prep(vp);
3022 	return (vget_finish(vp, flags, vs));
3023 }
3024 
3025 int
3026 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3027 {
3028 	int error;
3029 
3030 	if ((flags & LK_INTERLOCK) != 0)
3031 		ASSERT_VI_LOCKED(vp, __func__);
3032 	else
3033 		ASSERT_VI_UNLOCKED(vp, __func__);
3034 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3035 	VNPASS(vp->v_holdcnt > 0, vp);
3036 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3037 
3038 	error = vn_lock(vp, flags);
3039 	if (__predict_false(error != 0)) {
3040 		vget_abort(vp, vs);
3041 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3042 		    vp);
3043 		return (error);
3044 	}
3045 
3046 	vget_finish_ref(vp, vs);
3047 	return (0);
3048 }
3049 
3050 void
3051 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3052 {
3053 	int old;
3054 
3055 	VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3056 	VNPASS(vp->v_holdcnt > 0, vp);
3057 	VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3058 
3059 	if (vs == VGET_USECOUNT)
3060 		return;
3061 
3062 	/*
3063 	 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3064 	 * the vnode around. Otherwise someone else lended their hold count and
3065 	 * we have to drop ours.
3066 	 */
3067 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
3068 	VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3069 	if (old != 0) {
3070 #ifdef INVARIANTS
3071 		old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3072 		VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3073 #else
3074 		refcount_release(&vp->v_holdcnt);
3075 #endif
3076 	}
3077 }
3078 
3079 void
3080 vref(struct vnode *vp)
3081 {
3082 	enum vgetstate vs;
3083 
3084 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3085 	vs = vget_prep(vp);
3086 	vget_finish_ref(vp, vs);
3087 }
3088 
3089 void
3090 vrefact(struct vnode *vp)
3091 {
3092 
3093 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3094 #ifdef INVARIANTS
3095 	int old = atomic_fetchadd_int(&vp->v_usecount, 1);
3096 	VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3097 #else
3098 	refcount_acquire(&vp->v_usecount);
3099 #endif
3100 }
3101 
3102 void
3103 vlazy(struct vnode *vp)
3104 {
3105 	struct mount *mp;
3106 
3107 	VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3108 
3109 	if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3110 		return;
3111 	/*
3112 	 * We may get here for inactive routines after the vnode got doomed.
3113 	 */
3114 	if (VN_IS_DOOMED(vp))
3115 		return;
3116 	mp = vp->v_mount;
3117 	mtx_lock(&mp->mnt_listmtx);
3118 	if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3119 		vp->v_mflag |= VMP_LAZYLIST;
3120 		TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3121 		mp->mnt_lazyvnodelistsize++;
3122 	}
3123 	mtx_unlock(&mp->mnt_listmtx);
3124 }
3125 
3126 static void
3127 vunlazy(struct vnode *vp)
3128 {
3129 	struct mount *mp;
3130 
3131 	ASSERT_VI_LOCKED(vp, __func__);
3132 	VNPASS(!VN_IS_DOOMED(vp), vp);
3133 
3134 	mp = vp->v_mount;
3135 	mtx_lock(&mp->mnt_listmtx);
3136 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3137 	/*
3138 	 * Don't remove the vnode from the lazy list if another thread
3139 	 * has increased the hold count. It may have re-enqueued the
3140 	 * vnode to the lazy list and is now responsible for its
3141 	 * removal.
3142 	 */
3143 	if (vp->v_holdcnt == 0) {
3144 		vp->v_mflag &= ~VMP_LAZYLIST;
3145 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3146 		mp->mnt_lazyvnodelistsize--;
3147 	}
3148 	mtx_unlock(&mp->mnt_listmtx);
3149 }
3150 
3151 /*
3152  * This routine is only meant to be called from vgonel prior to dooming
3153  * the vnode.
3154  */
3155 static void
3156 vunlazy_gone(struct vnode *vp)
3157 {
3158 	struct mount *mp;
3159 
3160 	ASSERT_VOP_ELOCKED(vp, __func__);
3161 	ASSERT_VI_LOCKED(vp, __func__);
3162 	VNPASS(!VN_IS_DOOMED(vp), vp);
3163 
3164 	if (vp->v_mflag & VMP_LAZYLIST) {
3165 		mp = vp->v_mount;
3166 		mtx_lock(&mp->mnt_listmtx);
3167 		VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3168 		vp->v_mflag &= ~VMP_LAZYLIST;
3169 		TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3170 		mp->mnt_lazyvnodelistsize--;
3171 		mtx_unlock(&mp->mnt_listmtx);
3172 	}
3173 }
3174 
3175 static void
3176 vdefer_inactive(struct vnode *vp)
3177 {
3178 
3179 	ASSERT_VI_LOCKED(vp, __func__);
3180 	VNASSERT(vp->v_holdcnt > 0, vp,
3181 	    ("%s: vnode without hold count", __func__));
3182 	if (VN_IS_DOOMED(vp)) {
3183 		vdropl(vp);
3184 		return;
3185 	}
3186 	if (vp->v_iflag & VI_DEFINACT) {
3187 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
3188 		vdropl(vp);
3189 		return;
3190 	}
3191 	if (vp->v_usecount > 0) {
3192 		vp->v_iflag &= ~VI_OWEINACT;
3193 		vdropl(vp);
3194 		return;
3195 	}
3196 	vlazy(vp);
3197 	vp->v_iflag |= VI_DEFINACT;
3198 	VI_UNLOCK(vp);
3199 	counter_u64_add(deferred_inact, 1);
3200 }
3201 
3202 static void
3203 vdefer_inactive_unlocked(struct vnode *vp)
3204 {
3205 
3206 	VI_LOCK(vp);
3207 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
3208 		vdropl(vp);
3209 		return;
3210 	}
3211 	vdefer_inactive(vp);
3212 }
3213 
3214 enum vput_op { VRELE, VPUT, VUNREF };
3215 
3216 /*
3217  * Handle ->v_usecount transitioning to 0.
3218  *
3219  * By releasing the last usecount we take ownership of the hold count which
3220  * provides liveness of the vnode, meaning we have to vdrop.
3221  *
3222  * For all vnodes we may need to perform inactive processing. It requires an
3223  * exclusive lock on the vnode, while it is legal to call here with only a
3224  * shared lock (or no locks). If locking the vnode in an expected manner fails,
3225  * inactive processing gets deferred to the syncer.
3226  *
3227  * XXX Some filesystems pass in an exclusively locked vnode and strongly depend
3228  * on the lock being held all the way until VOP_INACTIVE. This in particular
3229  * happens with UFS which adds half-constructed vnodes to the hash, where they
3230  * can be found by other code.
3231  */
3232 static void
3233 vput_final(struct vnode *vp, enum vput_op func)
3234 {
3235 	int error;
3236 	bool want_unlock;
3237 
3238 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3239 	VNPASS(vp->v_holdcnt > 0, vp);
3240 
3241 	VI_LOCK(vp);
3242 
3243 	/*
3244 	 * By the time we got here someone else might have transitioned
3245 	 * the count back to > 0.
3246 	 */
3247 	if (vp->v_usecount > 0)
3248 		goto out;
3249 
3250 	/*
3251 	 * If the vnode is doomed vgone already performed inactive processing
3252 	 * (if needed).
3253 	 */
3254 	if (VN_IS_DOOMED(vp))
3255 		goto out;
3256 
3257 	if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3258 		goto out;
3259 
3260 	if (vp->v_iflag & VI_DOINGINACT)
3261 		goto out;
3262 
3263 	/*
3264 	 * Locking operations here will drop the interlock and possibly the
3265 	 * vnode lock, opening a window where the vnode can get doomed all the
3266 	 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3267 	 * perform inactive.
3268 	 */
3269 	vp->v_iflag |= VI_OWEINACT;
3270 	want_unlock = false;
3271 	error = 0;
3272 	switch (func) {
3273 	case VRELE:
3274 		switch (VOP_ISLOCKED(vp)) {
3275 		case LK_EXCLUSIVE:
3276 			break;
3277 		case LK_EXCLOTHER:
3278 		case 0:
3279 			want_unlock = true;
3280 			error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3281 			VI_LOCK(vp);
3282 			break;
3283 		default:
3284 			/*
3285 			 * The lock has at least one sharer, but we have no way
3286 			 * to conclude whether this is us. Play it safe and
3287 			 * defer processing.
3288 			 */
3289 			error = EAGAIN;
3290 			break;
3291 		}
3292 		break;
3293 	case VPUT:
3294 		want_unlock = true;
3295 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3296 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3297 			    LK_NOWAIT);
3298 			VI_LOCK(vp);
3299 		}
3300 		break;
3301 	case VUNREF:
3302 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3303 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3304 			VI_LOCK(vp);
3305 		}
3306 		break;
3307 	}
3308 	if (error == 0) {
3309 		if (func == VUNREF) {
3310 			VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3311 			    ("recursive vunref"));
3312 			vp->v_vflag |= VV_UNREF;
3313 		}
3314 		for (;;) {
3315 			error = vinactive(vp);
3316 			if (want_unlock)
3317 				VOP_UNLOCK(vp);
3318 			if (error != ERELOOKUP || !want_unlock)
3319 				break;
3320 			VOP_LOCK(vp, LK_EXCLUSIVE);
3321 		}
3322 		if (func == VUNREF)
3323 			vp->v_vflag &= ~VV_UNREF;
3324 		vdropl(vp);
3325 	} else {
3326 		vdefer_inactive(vp);
3327 	}
3328 	return;
3329 out:
3330 	if (func == VPUT)
3331 		VOP_UNLOCK(vp);
3332 	vdropl(vp);
3333 }
3334 
3335 /*
3336  * Decrement ->v_usecount for a vnode.
3337  *
3338  * Releasing the last use count requires additional processing, see vput_final
3339  * above for details.
3340  *
3341  * Comment above each variant denotes lock state on entry and exit.
3342  */
3343 
3344 /*
3345  * in: any
3346  * out: same as passed in
3347  */
3348 void
3349 vrele(struct vnode *vp)
3350 {
3351 
3352 	ASSERT_VI_UNLOCKED(vp, __func__);
3353 	if (!refcount_release(&vp->v_usecount))
3354 		return;
3355 	vput_final(vp, VRELE);
3356 }
3357 
3358 /*
3359  * in: locked
3360  * out: unlocked
3361  */
3362 void
3363 vput(struct vnode *vp)
3364 {
3365 
3366 	ASSERT_VOP_LOCKED(vp, __func__);
3367 	ASSERT_VI_UNLOCKED(vp, __func__);
3368 	if (!refcount_release(&vp->v_usecount)) {
3369 		VOP_UNLOCK(vp);
3370 		return;
3371 	}
3372 	vput_final(vp, VPUT);
3373 }
3374 
3375 /*
3376  * in: locked
3377  * out: locked
3378  */
3379 void
3380 vunref(struct vnode *vp)
3381 {
3382 
3383 	ASSERT_VOP_LOCKED(vp, __func__);
3384 	ASSERT_VI_UNLOCKED(vp, __func__);
3385 	if (!refcount_release(&vp->v_usecount))
3386 		return;
3387 	vput_final(vp, VUNREF);
3388 }
3389 
3390 void
3391 vhold(struct vnode *vp)
3392 {
3393 	int old;
3394 
3395 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3396 	old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3397 	VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3398 	    ("%s: wrong hold count %d", __func__, old));
3399 	if (old == 0)
3400 		vfs_freevnodes_dec();
3401 }
3402 
3403 void
3404 vholdnz(struct vnode *vp)
3405 {
3406 
3407 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3408 #ifdef INVARIANTS
3409 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3410 	VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3411 	    ("%s: wrong hold count %d", __func__, old));
3412 #else
3413 	atomic_add_int(&vp->v_holdcnt, 1);
3414 #endif
3415 }
3416 
3417 /*
3418  * Grab a hold count unless the vnode is freed.
3419  *
3420  * Only use this routine if vfs smr is the only protection you have against
3421  * freeing the vnode.
3422  *
3423  * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3424  * is not set.  After the flag is set the vnode becomes immutable to anyone but
3425  * the thread which managed to set the flag.
3426  *
3427  * It may be tempting to replace the loop with:
3428  * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3429  * if (count & VHOLD_NO_SMR) {
3430  *     backpedal and error out;
3431  * }
3432  *
3433  * However, while this is more performant, it hinders debugging by eliminating
3434  * the previously mentioned invariant.
3435  */
3436 bool
3437 vhold_smr(struct vnode *vp)
3438 {
3439 	int count;
3440 
3441 	VFS_SMR_ASSERT_ENTERED();
3442 
3443 	count = atomic_load_int(&vp->v_holdcnt);
3444 	for (;;) {
3445 		if (count & VHOLD_NO_SMR) {
3446 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3447 			    ("non-zero hold count with flags %d\n", count));
3448 			return (false);
3449 		}
3450 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3451 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3452 			if (count == 0)
3453 				vfs_freevnodes_dec();
3454 			return (true);
3455 		}
3456 	}
3457 }
3458 
3459 /*
3460  * Hold a free vnode for recycling.
3461  *
3462  * Note: vnode_init references this comment.
3463  *
3464  * Attempts to recycle only need the global vnode list lock and have no use for
3465  * SMR.
3466  *
3467  * However, vnodes get inserted into the global list before they get fully
3468  * initialized and stay there until UMA decides to free the memory. This in
3469  * particular means the target can be found before it becomes usable and after
3470  * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3471  * VHOLD_NO_SMR.
3472  *
3473  * Note: the vnode may gain more references after we transition the count 0->1.
3474  */
3475 static bool
3476 vhold_recycle_free(struct vnode *vp)
3477 {
3478 	int count;
3479 
3480 	mtx_assert(&vnode_list_mtx, MA_OWNED);
3481 
3482 	count = atomic_load_int(&vp->v_holdcnt);
3483 	for (;;) {
3484 		if (count & VHOLD_NO_SMR) {
3485 			VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3486 			    ("non-zero hold count with flags %d\n", count));
3487 			return (false);
3488 		}
3489 		VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3490 		if (count > 0) {
3491 			return (false);
3492 		}
3493 		if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3494 			vfs_freevnodes_dec();
3495 			return (true);
3496 		}
3497 	}
3498 }
3499 
3500 static void __noinline
3501 vdbatch_process(struct vdbatch *vd)
3502 {
3503 	struct vnode *vp;
3504 	int i;
3505 
3506 	mtx_assert(&vd->lock, MA_OWNED);
3507 	MPASS(curthread->td_pinned > 0);
3508 	MPASS(vd->index == VDBATCH_SIZE);
3509 
3510 	mtx_lock(&vnode_list_mtx);
3511 	critical_enter();
3512 	freevnodes += vd->freevnodes;
3513 	for (i = 0; i < VDBATCH_SIZE; i++) {
3514 		vp = vd->tab[i];
3515 		TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3516 		TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3517 		MPASS(vp->v_dbatchcpu != NOCPU);
3518 		vp->v_dbatchcpu = NOCPU;
3519 	}
3520 	mtx_unlock(&vnode_list_mtx);
3521 	vd->freevnodes = 0;
3522 	bzero(vd->tab, sizeof(vd->tab));
3523 	vd->index = 0;
3524 	critical_exit();
3525 }
3526 
3527 static void
3528 vdbatch_enqueue(struct vnode *vp)
3529 {
3530 	struct vdbatch *vd;
3531 
3532 	ASSERT_VI_LOCKED(vp, __func__);
3533 	VNASSERT(!VN_IS_DOOMED(vp), vp,
3534 	    ("%s: deferring requeue of a doomed vnode", __func__));
3535 
3536 	if (vp->v_dbatchcpu != NOCPU) {
3537 		VI_UNLOCK(vp);
3538 		return;
3539 	}
3540 
3541 	sched_pin();
3542 	vd = DPCPU_PTR(vd);
3543 	mtx_lock(&vd->lock);
3544 	MPASS(vd->index < VDBATCH_SIZE);
3545 	MPASS(vd->tab[vd->index] == NULL);
3546 	/*
3547 	 * A hack: we depend on being pinned so that we know what to put in
3548 	 * ->v_dbatchcpu.
3549 	 */
3550 	vp->v_dbatchcpu = curcpu;
3551 	vd->tab[vd->index] = vp;
3552 	vd->index++;
3553 	VI_UNLOCK(vp);
3554 	if (vd->index == VDBATCH_SIZE)
3555 		vdbatch_process(vd);
3556 	mtx_unlock(&vd->lock);
3557 	sched_unpin();
3558 }
3559 
3560 /*
3561  * This routine must only be called for vnodes which are about to be
3562  * deallocated. Supporting dequeue for arbitrary vndoes would require
3563  * validating that the locked batch matches.
3564  */
3565 static void
3566 vdbatch_dequeue(struct vnode *vp)
3567 {
3568 	struct vdbatch *vd;
3569 	int i;
3570 	short cpu;
3571 
3572 	VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp,
3573 	    ("%s: called for a used vnode\n", __func__));
3574 
3575 	cpu = vp->v_dbatchcpu;
3576 	if (cpu == NOCPU)
3577 		return;
3578 
3579 	vd = DPCPU_ID_PTR(cpu, vd);
3580 	mtx_lock(&vd->lock);
3581 	for (i = 0; i < vd->index; i++) {
3582 		if (vd->tab[i] != vp)
3583 			continue;
3584 		vp->v_dbatchcpu = NOCPU;
3585 		vd->index--;
3586 		vd->tab[i] = vd->tab[vd->index];
3587 		vd->tab[vd->index] = NULL;
3588 		break;
3589 	}
3590 	mtx_unlock(&vd->lock);
3591 	/*
3592 	 * Either we dequeued the vnode above or the target CPU beat us to it.
3593 	 */
3594 	MPASS(vp->v_dbatchcpu == NOCPU);
3595 }
3596 
3597 /*
3598  * Drop the hold count of the vnode.  If this is the last reference to
3599  * the vnode we place it on the free list unless it has been vgone'd
3600  * (marked VIRF_DOOMED) in which case we will free it.
3601  *
3602  * Because the vnode vm object keeps a hold reference on the vnode if
3603  * there is at least one resident non-cached page, the vnode cannot
3604  * leave the active list without the page cleanup done.
3605  */
3606 static void __noinline
3607 vdropl_final(struct vnode *vp)
3608 {
3609 
3610 	ASSERT_VI_LOCKED(vp, __func__);
3611 	VNPASS(VN_IS_DOOMED(vp), vp);
3612 	/*
3613 	 * Set the VHOLD_NO_SMR flag.
3614 	 *
3615 	 * We may be racing against vhold_smr. If they win we can just pretend
3616 	 * we never got this far, they will vdrop later.
3617 	 */
3618 	if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3619 		vfs_freevnodes_inc();
3620 		VI_UNLOCK(vp);
3621 		/*
3622 		 * We lost the aforementioned race. Any subsequent access is
3623 		 * invalid as they might have managed to vdropl on their own.
3624 		 */
3625 		return;
3626 	}
3627 	/*
3628 	 * Don't bump freevnodes as this one is going away.
3629 	 */
3630 	freevnode(vp);
3631 }
3632 
3633 void
3634 vdrop(struct vnode *vp)
3635 {
3636 
3637 	ASSERT_VI_UNLOCKED(vp, __func__);
3638 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3639 	if (refcount_release_if_not_last(&vp->v_holdcnt))
3640 		return;
3641 	VI_LOCK(vp);
3642 	vdropl(vp);
3643 }
3644 
3645 static void __always_inline
3646 vdropl_impl(struct vnode *vp, bool enqueue)
3647 {
3648 
3649 	ASSERT_VI_LOCKED(vp, __func__);
3650 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3651 	if (!refcount_release(&vp->v_holdcnt)) {
3652 		VI_UNLOCK(vp);
3653 		return;
3654 	}
3655 	VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
3656 	VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
3657 	if (VN_IS_DOOMED(vp)) {
3658 		vdropl_final(vp);
3659 		return;
3660 	}
3661 
3662 	vfs_freevnodes_inc();
3663 	if (vp->v_mflag & VMP_LAZYLIST) {
3664 		vunlazy(vp);
3665 	}
3666 
3667 	if (!enqueue) {
3668 		VI_UNLOCK(vp);
3669 		return;
3670 	}
3671 
3672 	/*
3673 	 * Also unlocks the interlock. We can't assert on it as we
3674 	 * released our hold and by now the vnode might have been
3675 	 * freed.
3676 	 */
3677 	vdbatch_enqueue(vp);
3678 }
3679 
3680 void
3681 vdropl(struct vnode *vp)
3682 {
3683 
3684 	vdropl_impl(vp, true);
3685 }
3686 
3687 /*
3688  * vdrop a vnode when recycling
3689  *
3690  * This is a special case routine only to be used when recycling, differs from
3691  * regular vdrop by not requeieing the vnode on LRU.
3692  *
3693  * Consider a case where vtryrecycle continuously fails with all vnodes (due to
3694  * e.g., frozen writes on the filesystem), filling the batch and causing it to
3695  * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
3696  * loop which can last for as long as writes are frozen.
3697  */
3698 static void
3699 vdropl_recycle(struct vnode *vp)
3700 {
3701 
3702 	vdropl_impl(vp, false);
3703 }
3704 
3705 static void
3706 vdrop_recycle(struct vnode *vp)
3707 {
3708 
3709 	VI_LOCK(vp);
3710 	vdropl_recycle(vp);
3711 }
3712 
3713 /*
3714  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3715  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3716  */
3717 static int
3718 vinactivef(struct vnode *vp)
3719 {
3720 	struct vm_object *obj;
3721 	int error;
3722 
3723 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3724 	ASSERT_VI_LOCKED(vp, "vinactive");
3725 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3726 	    ("vinactive: recursed on VI_DOINGINACT"));
3727 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3728 	vp->v_iflag |= VI_DOINGINACT;
3729 	vp->v_iflag &= ~VI_OWEINACT;
3730 	VI_UNLOCK(vp);
3731 	/*
3732 	 * Before moving off the active list, we must be sure that any
3733 	 * modified pages are converted into the vnode's dirty
3734 	 * buffers, since these will no longer be checked once the
3735 	 * vnode is on the inactive list.
3736 	 *
3737 	 * The write-out of the dirty pages is asynchronous.  At the
3738 	 * point that VOP_INACTIVE() is called, there could still be
3739 	 * pending I/O and dirty pages in the object.
3740 	 */
3741 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3742 	    vm_object_mightbedirty(obj)) {
3743 		VM_OBJECT_WLOCK(obj);
3744 		vm_object_page_clean(obj, 0, 0, 0);
3745 		VM_OBJECT_WUNLOCK(obj);
3746 	}
3747 	error = VOP_INACTIVE(vp);
3748 	VI_LOCK(vp);
3749 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3750 	    ("vinactive: lost VI_DOINGINACT"));
3751 	vp->v_iflag &= ~VI_DOINGINACT;
3752 	return (error);
3753 }
3754 
3755 int
3756 vinactive(struct vnode *vp)
3757 {
3758 
3759 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3760 	ASSERT_VI_LOCKED(vp, "vinactive");
3761 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3762 
3763 	if ((vp->v_iflag & VI_OWEINACT) == 0)
3764 		return (0);
3765 	if (vp->v_iflag & VI_DOINGINACT)
3766 		return (0);
3767 	if (vp->v_usecount > 0) {
3768 		vp->v_iflag &= ~VI_OWEINACT;
3769 		return (0);
3770 	}
3771 	return (vinactivef(vp));
3772 }
3773 
3774 /*
3775  * Remove any vnodes in the vnode table belonging to mount point mp.
3776  *
3777  * If FORCECLOSE is not specified, there should not be any active ones,
3778  * return error if any are found (nb: this is a user error, not a
3779  * system error). If FORCECLOSE is specified, detach any active vnodes
3780  * that are found.
3781  *
3782  * If WRITECLOSE is set, only flush out regular file vnodes open for
3783  * writing.
3784  *
3785  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3786  *
3787  * `rootrefs' specifies the base reference count for the root vnode
3788  * of this filesystem. The root vnode is considered busy if its
3789  * v_usecount exceeds this value. On a successful return, vflush(, td)
3790  * will call vrele() on the root vnode exactly rootrefs times.
3791  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3792  * be zero.
3793  */
3794 #ifdef DIAGNOSTIC
3795 static int busyprt = 0;		/* print out busy vnodes */
3796 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3797 #endif
3798 
3799 int
3800 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3801 {
3802 	struct vnode *vp, *mvp, *rootvp = NULL;
3803 	struct vattr vattr;
3804 	int busy = 0, error;
3805 
3806 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3807 	    rootrefs, flags);
3808 	if (rootrefs > 0) {
3809 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3810 		    ("vflush: bad args"));
3811 		/*
3812 		 * Get the filesystem root vnode. We can vput() it
3813 		 * immediately, since with rootrefs > 0, it won't go away.
3814 		 */
3815 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3816 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3817 			    __func__, error);
3818 			return (error);
3819 		}
3820 		vput(rootvp);
3821 	}
3822 loop:
3823 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3824 		vholdl(vp);
3825 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3826 		if (error) {
3827 			vdrop(vp);
3828 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3829 			goto loop;
3830 		}
3831 		/*
3832 		 * Skip over a vnodes marked VV_SYSTEM.
3833 		 */
3834 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3835 			VOP_UNLOCK(vp);
3836 			vdrop(vp);
3837 			continue;
3838 		}
3839 		/*
3840 		 * If WRITECLOSE is set, flush out unlinked but still open
3841 		 * files (even if open only for reading) and regular file
3842 		 * vnodes open for writing.
3843 		 */
3844 		if (flags & WRITECLOSE) {
3845 			if (vp->v_object != NULL) {
3846 				VM_OBJECT_WLOCK(vp->v_object);
3847 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3848 				VM_OBJECT_WUNLOCK(vp->v_object);
3849 			}
3850 			do {
3851 				error = VOP_FSYNC(vp, MNT_WAIT, td);
3852 			} while (error == ERELOOKUP);
3853 			if (error != 0) {
3854 				VOP_UNLOCK(vp);
3855 				vdrop(vp);
3856 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3857 				return (error);
3858 			}
3859 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3860 			VI_LOCK(vp);
3861 
3862 			if ((vp->v_type == VNON ||
3863 			    (error == 0 && vattr.va_nlink > 0)) &&
3864 			    (vp->v_writecount <= 0 || vp->v_type != VREG)) {
3865 				VOP_UNLOCK(vp);
3866 				vdropl(vp);
3867 				continue;
3868 			}
3869 		} else
3870 			VI_LOCK(vp);
3871 		/*
3872 		 * With v_usecount == 0, all we need to do is clear out the
3873 		 * vnode data structures and we are done.
3874 		 *
3875 		 * If FORCECLOSE is set, forcibly close the vnode.
3876 		 */
3877 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3878 			vgonel(vp);
3879 		} else {
3880 			busy++;
3881 #ifdef DIAGNOSTIC
3882 			if (busyprt)
3883 				vn_printf(vp, "vflush: busy vnode ");
3884 #endif
3885 		}
3886 		VOP_UNLOCK(vp);
3887 		vdropl(vp);
3888 	}
3889 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3890 		/*
3891 		 * If just the root vnode is busy, and if its refcount
3892 		 * is equal to `rootrefs', then go ahead and kill it.
3893 		 */
3894 		VI_LOCK(rootvp);
3895 		KASSERT(busy > 0, ("vflush: not busy"));
3896 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3897 		    ("vflush: usecount %d < rootrefs %d",
3898 		     rootvp->v_usecount, rootrefs));
3899 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3900 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3901 			vgone(rootvp);
3902 			VOP_UNLOCK(rootvp);
3903 			busy = 0;
3904 		} else
3905 			VI_UNLOCK(rootvp);
3906 	}
3907 	if (busy) {
3908 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3909 		    busy);
3910 		return (EBUSY);
3911 	}
3912 	for (; rootrefs > 0; rootrefs--)
3913 		vrele(rootvp);
3914 	return (0);
3915 }
3916 
3917 /*
3918  * Recycle an unused vnode to the front of the free list.
3919  */
3920 int
3921 vrecycle(struct vnode *vp)
3922 {
3923 	int recycled;
3924 
3925 	VI_LOCK(vp);
3926 	recycled = vrecyclel(vp);
3927 	VI_UNLOCK(vp);
3928 	return (recycled);
3929 }
3930 
3931 /*
3932  * vrecycle, with the vp interlock held.
3933  */
3934 int
3935 vrecyclel(struct vnode *vp)
3936 {
3937 	int recycled;
3938 
3939 	ASSERT_VOP_ELOCKED(vp, __func__);
3940 	ASSERT_VI_LOCKED(vp, __func__);
3941 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3942 	recycled = 0;
3943 	if (vp->v_usecount == 0) {
3944 		recycled = 1;
3945 		vgonel(vp);
3946 	}
3947 	return (recycled);
3948 }
3949 
3950 /*
3951  * Eliminate all activity associated with a vnode
3952  * in preparation for reuse.
3953  */
3954 void
3955 vgone(struct vnode *vp)
3956 {
3957 	VI_LOCK(vp);
3958 	vgonel(vp);
3959 	VI_UNLOCK(vp);
3960 }
3961 
3962 /*
3963  * Notify upper mounts about reclaimed or unlinked vnode.
3964  */
3965 void
3966 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
3967 {
3968 	struct mount *mp;
3969 	struct mount_upper_node *ump;
3970 
3971 	mp = atomic_load_ptr(&vp->v_mount);
3972 	if (mp == NULL)
3973 		return;
3974 	if (TAILQ_EMPTY(&mp->mnt_notify))
3975 		return;
3976 
3977 	MNT_ILOCK(mp);
3978 	mp->mnt_upper_pending++;
3979 	KASSERT(mp->mnt_upper_pending > 0,
3980 	    ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
3981 	TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
3982 		MNT_IUNLOCK(mp);
3983 		switch (event) {
3984 		case VFS_NOTIFY_UPPER_RECLAIM:
3985 			VFS_RECLAIM_LOWERVP(ump->mp, vp);
3986 			break;
3987 		case VFS_NOTIFY_UPPER_UNLINK:
3988 			VFS_UNLINK_LOWERVP(ump->mp, vp);
3989 			break;
3990 		}
3991 		MNT_ILOCK(mp);
3992 	}
3993 	mp->mnt_upper_pending--;
3994 	if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
3995 	    mp->mnt_upper_pending == 0) {
3996 		mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
3997 		wakeup(&mp->mnt_uppers);
3998 	}
3999 	MNT_IUNLOCK(mp);
4000 }
4001 
4002 /*
4003  * vgone, with the vp interlock held.
4004  */
4005 static void
4006 vgonel(struct vnode *vp)
4007 {
4008 	struct thread *td;
4009 	struct mount *mp;
4010 	vm_object_t object;
4011 	bool active, doinginact, oweinact;
4012 
4013 	ASSERT_VOP_ELOCKED(vp, "vgonel");
4014 	ASSERT_VI_LOCKED(vp, "vgonel");
4015 	VNASSERT(vp->v_holdcnt, vp,
4016 	    ("vgonel: vp %p has no reference.", vp));
4017 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4018 	td = curthread;
4019 
4020 	/*
4021 	 * Don't vgonel if we're already doomed.
4022 	 */
4023 	if (VN_IS_DOOMED(vp)) {
4024 		VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4025 		    vn_get_state(vp) == VSTATE_DEAD, vp);
4026 		return;
4027 	}
4028 	/*
4029 	 * Paired with freevnode.
4030 	 */
4031 	vn_seqc_write_begin_locked(vp);
4032 	vunlazy_gone(vp);
4033 	vn_irflag_set_locked(vp, VIRF_DOOMED);
4034 	vn_set_state(vp, VSTATE_DESTROYING);
4035 
4036 	/*
4037 	 * Check to see if the vnode is in use.  If so, we have to
4038 	 * call VOP_CLOSE() and VOP_INACTIVE().
4039 	 *
4040 	 * It could be that VOP_INACTIVE() requested reclamation, in
4041 	 * which case we should avoid recursion, so check
4042 	 * VI_DOINGINACT.  This is not precise but good enough.
4043 	 */
4044 	active = vp->v_usecount > 0;
4045 	oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4046 	doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4047 
4048 	/*
4049 	 * If we need to do inactive VI_OWEINACT will be set.
4050 	 */
4051 	if (vp->v_iflag & VI_DEFINACT) {
4052 		VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4053 		vp->v_iflag &= ~VI_DEFINACT;
4054 		vdropl(vp);
4055 	} else {
4056 		VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4057 		VI_UNLOCK(vp);
4058 	}
4059 	cache_purge_vgone(vp);
4060 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4061 
4062 	/*
4063 	 * If purging an active vnode, it must be closed and
4064 	 * deactivated before being reclaimed.
4065 	 */
4066 	if (active)
4067 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4068 	if (!doinginact) {
4069 		do {
4070 			if (oweinact || active) {
4071 				VI_LOCK(vp);
4072 				vinactivef(vp);
4073 				oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4074 				VI_UNLOCK(vp);
4075 			}
4076 		} while (oweinact);
4077 	}
4078 	if (vp->v_type == VSOCK)
4079 		vfs_unp_reclaim(vp);
4080 
4081 	/*
4082 	 * Clean out any buffers associated with the vnode.
4083 	 * If the flush fails, just toss the buffers.
4084 	 */
4085 	mp = NULL;
4086 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4087 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
4088 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4089 		while (vinvalbuf(vp, 0, 0, 0) != 0)
4090 			;
4091 	}
4092 
4093 	BO_LOCK(&vp->v_bufobj);
4094 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4095 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4096 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4097 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
4098 	    ("vp %p bufobj not invalidated", vp));
4099 
4100 	/*
4101 	 * For VMIO bufobj, BO_DEAD is set later, or in
4102 	 * vm_object_terminate() after the object's page queue is
4103 	 * flushed.
4104 	 */
4105 	object = vp->v_bufobj.bo_object;
4106 	if (object == NULL)
4107 		vp->v_bufobj.bo_flag |= BO_DEAD;
4108 	BO_UNLOCK(&vp->v_bufobj);
4109 
4110 	/*
4111 	 * Handle the VM part.  Tmpfs handles v_object on its own (the
4112 	 * OBJT_VNODE check).  Nullfs or other bypassing filesystems
4113 	 * should not touch the object borrowed from the lower vnode
4114 	 * (the handle check).
4115 	 */
4116 	if (object != NULL && object->type == OBJT_VNODE &&
4117 	    object->handle == vp)
4118 		vnode_destroy_vobject(vp);
4119 
4120 	/*
4121 	 * Reclaim the vnode.
4122 	 */
4123 	if (VOP_RECLAIM(vp))
4124 		panic("vgone: cannot reclaim");
4125 	if (mp != NULL)
4126 		vn_finished_secondary_write(mp);
4127 	VNASSERT(vp->v_object == NULL, vp,
4128 	    ("vop_reclaim left v_object vp=%p", vp));
4129 	/*
4130 	 * Clear the advisory locks and wake up waiting threads.
4131 	 */
4132 	if (vp->v_lockf != NULL) {
4133 		(void)VOP_ADVLOCKPURGE(vp);
4134 		vp->v_lockf = NULL;
4135 	}
4136 	/*
4137 	 * Delete from old mount point vnode list.
4138 	 */
4139 	if (vp->v_mount == NULL) {
4140 		VI_LOCK(vp);
4141 	} else {
4142 		delmntque(vp);
4143 		ASSERT_VI_LOCKED(vp, "vgonel 2");
4144 	}
4145 	/*
4146 	 * Done with purge, reset to the standard lock and invalidate
4147 	 * the vnode.
4148 	 */
4149 	vp->v_vnlock = &vp->v_lock;
4150 	vp->v_op = &dead_vnodeops;
4151 	vp->v_type = VBAD;
4152 	vn_set_state(vp, VSTATE_DEAD);
4153 }
4154 
4155 /*
4156  * Print out a description of a vnode.
4157  */
4158 static const char *const vtypename[] = {
4159 	[VNON] = "VNON",
4160 	[VREG] = "VREG",
4161 	[VDIR] = "VDIR",
4162 	[VBLK] = "VBLK",
4163 	[VCHR] = "VCHR",
4164 	[VLNK] = "VLNK",
4165 	[VSOCK] = "VSOCK",
4166 	[VFIFO] = "VFIFO",
4167 	[VBAD] = "VBAD",
4168 	[VMARKER] = "VMARKER",
4169 };
4170 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4171     "vnode type name not added to vtypename");
4172 
4173 static const char *const vstatename[] = {
4174 	[VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4175 	[VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4176 	[VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4177 	[VSTATE_DEAD] = "VSTATE_DEAD",
4178 };
4179 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4180     "vnode state name not added to vstatename");
4181 
4182 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4183     "new hold count flag not added to vn_printf");
4184 
4185 void
4186 vn_printf(struct vnode *vp, const char *fmt, ...)
4187 {
4188 	va_list ap;
4189 	char buf[256], buf2[16];
4190 	u_long flags;
4191 	u_int holdcnt;
4192 	short irflag;
4193 
4194 	va_start(ap, fmt);
4195 	vprintf(fmt, ap);
4196 	va_end(ap);
4197 	printf("%p: ", (void *)vp);
4198 	printf("type %s state %s\n", vtypename[vp->v_type], vstatename[vp->v_state]);
4199 	holdcnt = atomic_load_int(&vp->v_holdcnt);
4200 	printf("    usecount %d, writecount %d, refcount %d seqc users %d",
4201 	    vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4202 	    vp->v_seqc_users);
4203 	switch (vp->v_type) {
4204 	case VDIR:
4205 		printf(" mountedhere %p\n", vp->v_mountedhere);
4206 		break;
4207 	case VCHR:
4208 		printf(" rdev %p\n", vp->v_rdev);
4209 		break;
4210 	case VSOCK:
4211 		printf(" socket %p\n", vp->v_unpcb);
4212 		break;
4213 	case VFIFO:
4214 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
4215 		break;
4216 	default:
4217 		printf("\n");
4218 		break;
4219 	}
4220 	buf[0] = '\0';
4221 	buf[1] = '\0';
4222 	if (holdcnt & VHOLD_NO_SMR)
4223 		strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4224 	printf("    hold count flags (%s)\n", buf + 1);
4225 
4226 	buf[0] = '\0';
4227 	buf[1] = '\0';
4228 	irflag = vn_irflag_read(vp);
4229 	if (irflag & VIRF_DOOMED)
4230 		strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4231 	if (irflag & VIRF_PGREAD)
4232 		strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4233 	if (irflag & VIRF_MOUNTPOINT)
4234 		strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4235 	if (irflag & VIRF_TEXT_REF)
4236 		strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4237 	flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4238 	if (flags != 0) {
4239 		snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4240 		strlcat(buf, buf2, sizeof(buf));
4241 	}
4242 	if (vp->v_vflag & VV_ROOT)
4243 		strlcat(buf, "|VV_ROOT", sizeof(buf));
4244 	if (vp->v_vflag & VV_ISTTY)
4245 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
4246 	if (vp->v_vflag & VV_NOSYNC)
4247 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4248 	if (vp->v_vflag & VV_ETERNALDEV)
4249 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4250 	if (vp->v_vflag & VV_CACHEDLABEL)
4251 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4252 	if (vp->v_vflag & VV_VMSIZEVNLOCK)
4253 		strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4254 	if (vp->v_vflag & VV_COPYONWRITE)
4255 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4256 	if (vp->v_vflag & VV_SYSTEM)
4257 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4258 	if (vp->v_vflag & VV_PROCDEP)
4259 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4260 	if (vp->v_vflag & VV_DELETED)
4261 		strlcat(buf, "|VV_DELETED", sizeof(buf));
4262 	if (vp->v_vflag & VV_MD)
4263 		strlcat(buf, "|VV_MD", sizeof(buf));
4264 	if (vp->v_vflag & VV_FORCEINSMQ)
4265 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4266 	if (vp->v_vflag & VV_READLINK)
4267 		strlcat(buf, "|VV_READLINK", sizeof(buf));
4268 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4269 	    VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4270 	    VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4271 	if (flags != 0) {
4272 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4273 		strlcat(buf, buf2, sizeof(buf));
4274 	}
4275 	if (vp->v_iflag & VI_MOUNT)
4276 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
4277 	if (vp->v_iflag & VI_DOINGINACT)
4278 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4279 	if (vp->v_iflag & VI_OWEINACT)
4280 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4281 	if (vp->v_iflag & VI_DEFINACT)
4282 		strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4283 	if (vp->v_iflag & VI_FOPENING)
4284 		strlcat(buf, "|VI_FOPENING", sizeof(buf));
4285 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4286 	    VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4287 	if (flags != 0) {
4288 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4289 		strlcat(buf, buf2, sizeof(buf));
4290 	}
4291 	if (vp->v_mflag & VMP_LAZYLIST)
4292 		strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4293 	flags = vp->v_mflag & ~(VMP_LAZYLIST);
4294 	if (flags != 0) {
4295 		snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4296 		strlcat(buf, buf2, sizeof(buf));
4297 	}
4298 	printf("    flags (%s)", buf + 1);
4299 	if (mtx_owned(VI_MTX(vp)))
4300 		printf(" VI_LOCKed");
4301 	printf("\n");
4302 	if (vp->v_object != NULL)
4303 		printf("    v_object %p ref %d pages %d "
4304 		    "cleanbuf %d dirtybuf %d\n",
4305 		    vp->v_object, vp->v_object->ref_count,
4306 		    vp->v_object->resident_page_count,
4307 		    vp->v_bufobj.bo_clean.bv_cnt,
4308 		    vp->v_bufobj.bo_dirty.bv_cnt);
4309 	printf("    ");
4310 	lockmgr_printinfo(vp->v_vnlock);
4311 	if (vp->v_data != NULL)
4312 		VOP_PRINT(vp);
4313 }
4314 
4315 #ifdef DDB
4316 /*
4317  * List all of the locked vnodes in the system.
4318  * Called when debugging the kernel.
4319  */
4320 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4321 {
4322 	struct mount *mp;
4323 	struct vnode *vp;
4324 
4325 	/*
4326 	 * Note: because this is DDB, we can't obey the locking semantics
4327 	 * for these structures, which means we could catch an inconsistent
4328 	 * state and dereference a nasty pointer.  Not much to be done
4329 	 * about that.
4330 	 */
4331 	db_printf("Locked vnodes\n");
4332 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4333 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4334 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4335 				vn_printf(vp, "vnode ");
4336 		}
4337 	}
4338 }
4339 
4340 /*
4341  * Show details about the given vnode.
4342  */
4343 DB_SHOW_COMMAND(vnode, db_show_vnode)
4344 {
4345 	struct vnode *vp;
4346 
4347 	if (!have_addr)
4348 		return;
4349 	vp = (struct vnode *)addr;
4350 	vn_printf(vp, "vnode ");
4351 }
4352 
4353 /*
4354  * Show details about the given mount point.
4355  */
4356 DB_SHOW_COMMAND(mount, db_show_mount)
4357 {
4358 	struct mount *mp;
4359 	struct vfsopt *opt;
4360 	struct statfs *sp;
4361 	struct vnode *vp;
4362 	char buf[512];
4363 	uint64_t mflags;
4364 	u_int flags;
4365 
4366 	if (!have_addr) {
4367 		/* No address given, print short info about all mount points. */
4368 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4369 			db_printf("%p %s on %s (%s)\n", mp,
4370 			    mp->mnt_stat.f_mntfromname,
4371 			    mp->mnt_stat.f_mntonname,
4372 			    mp->mnt_stat.f_fstypename);
4373 			if (db_pager_quit)
4374 				break;
4375 		}
4376 		db_printf("\nMore info: show mount <addr>\n");
4377 		return;
4378 	}
4379 
4380 	mp = (struct mount *)addr;
4381 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4382 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4383 
4384 	buf[0] = '\0';
4385 	mflags = mp->mnt_flag;
4386 #define	MNT_FLAG(flag)	do {						\
4387 	if (mflags & (flag)) {						\
4388 		if (buf[0] != '\0')					\
4389 			strlcat(buf, ", ", sizeof(buf));		\
4390 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
4391 		mflags &= ~(flag);					\
4392 	}								\
4393 } while (0)
4394 	MNT_FLAG(MNT_RDONLY);
4395 	MNT_FLAG(MNT_SYNCHRONOUS);
4396 	MNT_FLAG(MNT_NOEXEC);
4397 	MNT_FLAG(MNT_NOSUID);
4398 	MNT_FLAG(MNT_NFS4ACLS);
4399 	MNT_FLAG(MNT_UNION);
4400 	MNT_FLAG(MNT_ASYNC);
4401 	MNT_FLAG(MNT_SUIDDIR);
4402 	MNT_FLAG(MNT_SOFTDEP);
4403 	MNT_FLAG(MNT_NOSYMFOLLOW);
4404 	MNT_FLAG(MNT_GJOURNAL);
4405 	MNT_FLAG(MNT_MULTILABEL);
4406 	MNT_FLAG(MNT_ACLS);
4407 	MNT_FLAG(MNT_NOATIME);
4408 	MNT_FLAG(MNT_NOCLUSTERR);
4409 	MNT_FLAG(MNT_NOCLUSTERW);
4410 	MNT_FLAG(MNT_SUJ);
4411 	MNT_FLAG(MNT_EXRDONLY);
4412 	MNT_FLAG(MNT_EXPORTED);
4413 	MNT_FLAG(MNT_DEFEXPORTED);
4414 	MNT_FLAG(MNT_EXPORTANON);
4415 	MNT_FLAG(MNT_EXKERB);
4416 	MNT_FLAG(MNT_EXPUBLIC);
4417 	MNT_FLAG(MNT_LOCAL);
4418 	MNT_FLAG(MNT_QUOTA);
4419 	MNT_FLAG(MNT_ROOTFS);
4420 	MNT_FLAG(MNT_USER);
4421 	MNT_FLAG(MNT_IGNORE);
4422 	MNT_FLAG(MNT_UPDATE);
4423 	MNT_FLAG(MNT_DELEXPORT);
4424 	MNT_FLAG(MNT_RELOAD);
4425 	MNT_FLAG(MNT_FORCE);
4426 	MNT_FLAG(MNT_SNAPSHOT);
4427 	MNT_FLAG(MNT_BYFSID);
4428 #undef MNT_FLAG
4429 	if (mflags != 0) {
4430 		if (buf[0] != '\0')
4431 			strlcat(buf, ", ", sizeof(buf));
4432 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4433 		    "0x%016jx", mflags);
4434 	}
4435 	db_printf("    mnt_flag = %s\n", buf);
4436 
4437 	buf[0] = '\0';
4438 	flags = mp->mnt_kern_flag;
4439 #define	MNT_KERN_FLAG(flag)	do {					\
4440 	if (flags & (flag)) {						\
4441 		if (buf[0] != '\0')					\
4442 			strlcat(buf, ", ", sizeof(buf));		\
4443 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
4444 		flags &= ~(flag);					\
4445 	}								\
4446 } while (0)
4447 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
4448 	MNT_KERN_FLAG(MNTK_ASYNC);
4449 	MNT_KERN_FLAG(MNTK_SOFTDEP);
4450 	MNT_KERN_FLAG(MNTK_NOMSYNC);
4451 	MNT_KERN_FLAG(MNTK_DRAINING);
4452 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
4453 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4454 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4455 	MNT_KERN_FLAG(MNTK_NO_IOPF);
4456 	MNT_KERN_FLAG(MNTK_RECURSE);
4457 	MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4458 	MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4459 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
4460 	MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4461 	MNT_KERN_FLAG(MNTK_FPLOOKUP);
4462 	MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4463 	MNT_KERN_FLAG(MNTK_NOASYNC);
4464 	MNT_KERN_FLAG(MNTK_UNMOUNT);
4465 	MNT_KERN_FLAG(MNTK_MWAIT);
4466 	MNT_KERN_FLAG(MNTK_SUSPEND);
4467 	MNT_KERN_FLAG(MNTK_SUSPEND2);
4468 	MNT_KERN_FLAG(MNTK_SUSPENDED);
4469 	MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4470 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4471 #undef MNT_KERN_FLAG
4472 	if (flags != 0) {
4473 		if (buf[0] != '\0')
4474 			strlcat(buf, ", ", sizeof(buf));
4475 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4476 		    "0x%08x", flags);
4477 	}
4478 	db_printf("    mnt_kern_flag = %s\n", buf);
4479 
4480 	db_printf("    mnt_opt = ");
4481 	opt = TAILQ_FIRST(mp->mnt_opt);
4482 	if (opt != NULL) {
4483 		db_printf("%s", opt->name);
4484 		opt = TAILQ_NEXT(opt, link);
4485 		while (opt != NULL) {
4486 			db_printf(", %s", opt->name);
4487 			opt = TAILQ_NEXT(opt, link);
4488 		}
4489 	}
4490 	db_printf("\n");
4491 
4492 	sp = &mp->mnt_stat;
4493 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
4494 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4495 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4496 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4497 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4498 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4499 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4500 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4501 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4502 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4503 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4504 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4505 
4506 	db_printf("    mnt_cred = { uid=%u ruid=%u",
4507 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4508 	if (jailed(mp->mnt_cred))
4509 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4510 	db_printf(" }\n");
4511 	db_printf("    mnt_ref = %d (with %d in the struct)\n",
4512 	    vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4513 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
4514 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4515 	db_printf("    mnt_lazyvnodelistsize = %d\n",
4516 	    mp->mnt_lazyvnodelistsize);
4517 	db_printf("    mnt_writeopcount = %d (with %d in the struct)\n",
4518 	    vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4519 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4520 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
4521 	db_printf("    mnt_lockref = %d (with %d in the struct)\n",
4522 	    vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4523 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4524 	db_printf("    mnt_secondary_accwrites = %d\n",
4525 	    mp->mnt_secondary_accwrites);
4526 	db_printf("    mnt_gjprovider = %s\n",
4527 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4528 	db_printf("    mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4529 
4530 	db_printf("\n\nList of active vnodes\n");
4531 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4532 		if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4533 			vn_printf(vp, "vnode ");
4534 			if (db_pager_quit)
4535 				break;
4536 		}
4537 	}
4538 	db_printf("\n\nList of inactive vnodes\n");
4539 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4540 		if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4541 			vn_printf(vp, "vnode ");
4542 			if (db_pager_quit)
4543 				break;
4544 		}
4545 	}
4546 }
4547 #endif	/* DDB */
4548 
4549 /*
4550  * Fill in a struct xvfsconf based on a struct vfsconf.
4551  */
4552 static int
4553 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4554 {
4555 	struct xvfsconf xvfsp;
4556 
4557 	bzero(&xvfsp, sizeof(xvfsp));
4558 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4559 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4560 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4561 	xvfsp.vfc_flags = vfsp->vfc_flags;
4562 	/*
4563 	 * These are unused in userland, we keep them
4564 	 * to not break binary compatibility.
4565 	 */
4566 	xvfsp.vfc_vfsops = NULL;
4567 	xvfsp.vfc_next = NULL;
4568 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4569 }
4570 
4571 #ifdef COMPAT_FREEBSD32
4572 struct xvfsconf32 {
4573 	uint32_t	vfc_vfsops;
4574 	char		vfc_name[MFSNAMELEN];
4575 	int32_t		vfc_typenum;
4576 	int32_t		vfc_refcount;
4577 	int32_t		vfc_flags;
4578 	uint32_t	vfc_next;
4579 };
4580 
4581 static int
4582 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4583 {
4584 	struct xvfsconf32 xvfsp;
4585 
4586 	bzero(&xvfsp, sizeof(xvfsp));
4587 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4588 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
4589 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
4590 	xvfsp.vfc_flags = vfsp->vfc_flags;
4591 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4592 }
4593 #endif
4594 
4595 /*
4596  * Top level filesystem related information gathering.
4597  */
4598 static int
4599 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4600 {
4601 	struct vfsconf *vfsp;
4602 	int error;
4603 
4604 	error = 0;
4605 	vfsconf_slock();
4606 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4607 #ifdef COMPAT_FREEBSD32
4608 		if (req->flags & SCTL_MASK32)
4609 			error = vfsconf2x32(req, vfsp);
4610 		else
4611 #endif
4612 			error = vfsconf2x(req, vfsp);
4613 		if (error)
4614 			break;
4615 	}
4616 	vfsconf_sunlock();
4617 	return (error);
4618 }
4619 
4620 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
4621     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
4622     "S,xvfsconf", "List of all configured filesystems");
4623 
4624 #ifndef BURN_BRIDGES
4625 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
4626 
4627 static int
4628 vfs_sysctl(SYSCTL_HANDLER_ARGS)
4629 {
4630 	int *name = (int *)arg1 - 1;	/* XXX */
4631 	u_int namelen = arg2 + 1;	/* XXX */
4632 	struct vfsconf *vfsp;
4633 
4634 	log(LOG_WARNING, "userland calling deprecated sysctl, "
4635 	    "please rebuild world\n");
4636 
4637 #if 1 || defined(COMPAT_PRELITE2)
4638 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
4639 	if (namelen == 1)
4640 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
4641 #endif
4642 
4643 	switch (name[1]) {
4644 	case VFS_MAXTYPENUM:
4645 		if (namelen != 2)
4646 			return (ENOTDIR);
4647 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
4648 	case VFS_CONF:
4649 		if (namelen != 3)
4650 			return (ENOTDIR);	/* overloaded */
4651 		vfsconf_slock();
4652 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4653 			if (vfsp->vfc_typenum == name[2])
4654 				break;
4655 		}
4656 		vfsconf_sunlock();
4657 		if (vfsp == NULL)
4658 			return (EOPNOTSUPP);
4659 #ifdef COMPAT_FREEBSD32
4660 		if (req->flags & SCTL_MASK32)
4661 			return (vfsconf2x32(req, vfsp));
4662 		else
4663 #endif
4664 			return (vfsconf2x(req, vfsp));
4665 	}
4666 	return (EOPNOTSUPP);
4667 }
4668 
4669 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
4670     CTLFLAG_MPSAFE, vfs_sysctl,
4671     "Generic filesystem");
4672 
4673 #if 1 || defined(COMPAT_PRELITE2)
4674 
4675 static int
4676 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
4677 {
4678 	int error;
4679 	struct vfsconf *vfsp;
4680 	struct ovfsconf ovfs;
4681 
4682 	vfsconf_slock();
4683 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4684 		bzero(&ovfs, sizeof(ovfs));
4685 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
4686 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
4687 		ovfs.vfc_index = vfsp->vfc_typenum;
4688 		ovfs.vfc_refcount = vfsp->vfc_refcount;
4689 		ovfs.vfc_flags = vfsp->vfc_flags;
4690 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
4691 		if (error != 0) {
4692 			vfsconf_sunlock();
4693 			return (error);
4694 		}
4695 	}
4696 	vfsconf_sunlock();
4697 	return (0);
4698 }
4699 
4700 #endif /* 1 || COMPAT_PRELITE2 */
4701 #endif /* !BURN_BRIDGES */
4702 
4703 #define KINFO_VNODESLOP		10
4704 #ifdef notyet
4705 /*
4706  * Dump vnode list (via sysctl).
4707  */
4708 /* ARGSUSED */
4709 static int
4710 sysctl_vnode(SYSCTL_HANDLER_ARGS)
4711 {
4712 	struct xvnode *xvn;
4713 	struct mount *mp;
4714 	struct vnode *vp;
4715 	int error, len, n;
4716 
4717 	/*
4718 	 * Stale numvnodes access is not fatal here.
4719 	 */
4720 	req->lock = 0;
4721 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
4722 	if (!req->oldptr)
4723 		/* Make an estimate */
4724 		return (SYSCTL_OUT(req, 0, len));
4725 
4726 	error = sysctl_wire_old_buffer(req, 0);
4727 	if (error != 0)
4728 		return (error);
4729 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
4730 	n = 0;
4731 	mtx_lock(&mountlist_mtx);
4732 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4733 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
4734 			continue;
4735 		MNT_ILOCK(mp);
4736 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4737 			if (n == len)
4738 				break;
4739 			vref(vp);
4740 			xvn[n].xv_size = sizeof *xvn;
4741 			xvn[n].xv_vnode = vp;
4742 			xvn[n].xv_id = 0;	/* XXX compat */
4743 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
4744 			XV_COPY(usecount);
4745 			XV_COPY(writecount);
4746 			XV_COPY(holdcnt);
4747 			XV_COPY(mount);
4748 			XV_COPY(numoutput);
4749 			XV_COPY(type);
4750 #undef XV_COPY
4751 			xvn[n].xv_flag = vp->v_vflag;
4752 
4753 			switch (vp->v_type) {
4754 			case VREG:
4755 			case VDIR:
4756 			case VLNK:
4757 				break;
4758 			case VBLK:
4759 			case VCHR:
4760 				if (vp->v_rdev == NULL) {
4761 					vrele(vp);
4762 					continue;
4763 				}
4764 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
4765 				break;
4766 			case VSOCK:
4767 				xvn[n].xv_socket = vp->v_socket;
4768 				break;
4769 			case VFIFO:
4770 				xvn[n].xv_fifo = vp->v_fifoinfo;
4771 				break;
4772 			case VNON:
4773 			case VBAD:
4774 			default:
4775 				/* shouldn't happen? */
4776 				vrele(vp);
4777 				continue;
4778 			}
4779 			vrele(vp);
4780 			++n;
4781 		}
4782 		MNT_IUNLOCK(mp);
4783 		mtx_lock(&mountlist_mtx);
4784 		vfs_unbusy(mp);
4785 		if (n == len)
4786 			break;
4787 	}
4788 	mtx_unlock(&mountlist_mtx);
4789 
4790 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4791 	free(xvn, M_TEMP);
4792 	return (error);
4793 }
4794 
4795 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4796     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4797     "");
4798 #endif
4799 
4800 static void
4801 unmount_or_warn(struct mount *mp)
4802 {
4803 	int error;
4804 
4805 	error = dounmount(mp, MNT_FORCE, curthread);
4806 	if (error != 0) {
4807 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4808 		if (error == EBUSY)
4809 			printf("BUSY)\n");
4810 		else
4811 			printf("%d)\n", error);
4812 	}
4813 }
4814 
4815 /*
4816  * Unmount all filesystems. The list is traversed in reverse order
4817  * of mounting to avoid dependencies.
4818  */
4819 void
4820 vfs_unmountall(void)
4821 {
4822 	struct mount *mp, *tmp;
4823 
4824 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4825 
4826 	/*
4827 	 * Since this only runs when rebooting, it is not interlocked.
4828 	 */
4829 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4830 		vfs_ref(mp);
4831 
4832 		/*
4833 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4834 		 * unmount of the latter.
4835 		 */
4836 		if (mp == rootdevmp)
4837 			continue;
4838 
4839 		unmount_or_warn(mp);
4840 	}
4841 
4842 	if (rootdevmp != NULL)
4843 		unmount_or_warn(rootdevmp);
4844 }
4845 
4846 static void
4847 vfs_deferred_inactive(struct vnode *vp, int lkflags)
4848 {
4849 
4850 	ASSERT_VI_LOCKED(vp, __func__);
4851 	VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set"));
4852 	if ((vp->v_iflag & VI_OWEINACT) == 0) {
4853 		vdropl(vp);
4854 		return;
4855 	}
4856 	if (vn_lock(vp, lkflags) == 0) {
4857 		VI_LOCK(vp);
4858 		vinactive(vp);
4859 		VOP_UNLOCK(vp);
4860 		vdropl(vp);
4861 		return;
4862 	}
4863 	vdefer_inactive_unlocked(vp);
4864 }
4865 
4866 static int
4867 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
4868 {
4869 
4870 	return (vp->v_iflag & VI_DEFINACT);
4871 }
4872 
4873 static void __noinline
4874 vfs_periodic_inactive(struct mount *mp, int flags)
4875 {
4876 	struct vnode *vp, *mvp;
4877 	int lkflags;
4878 
4879 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4880 	if (flags != MNT_WAIT)
4881 		lkflags |= LK_NOWAIT;
4882 
4883 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
4884 		if ((vp->v_iflag & VI_DEFINACT) == 0) {
4885 			VI_UNLOCK(vp);
4886 			continue;
4887 		}
4888 		vp->v_iflag &= ~VI_DEFINACT;
4889 		vfs_deferred_inactive(vp, lkflags);
4890 	}
4891 }
4892 
4893 static inline bool
4894 vfs_want_msync(struct vnode *vp)
4895 {
4896 	struct vm_object *obj;
4897 
4898 	/*
4899 	 * This test may be performed without any locks held.
4900 	 * We rely on vm_object's type stability.
4901 	 */
4902 	if (vp->v_vflag & VV_NOSYNC)
4903 		return (false);
4904 	obj = vp->v_object;
4905 	return (obj != NULL && vm_object_mightbedirty(obj));
4906 }
4907 
4908 static int
4909 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
4910 {
4911 
4912 	if (vp->v_vflag & VV_NOSYNC)
4913 		return (false);
4914 	if (vp->v_iflag & VI_DEFINACT)
4915 		return (true);
4916 	return (vfs_want_msync(vp));
4917 }
4918 
4919 static void __noinline
4920 vfs_periodic_msync_inactive(struct mount *mp, int flags)
4921 {
4922 	struct vnode *vp, *mvp;
4923 	struct vm_object *obj;
4924 	int lkflags, objflags;
4925 	bool seen_defer;
4926 
4927 	lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
4928 	if (flags != MNT_WAIT) {
4929 		lkflags |= LK_NOWAIT;
4930 		objflags = OBJPC_NOSYNC;
4931 	} else {
4932 		objflags = OBJPC_SYNC;
4933 	}
4934 
4935 	MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
4936 		seen_defer = false;
4937 		if (vp->v_iflag & VI_DEFINACT) {
4938 			vp->v_iflag &= ~VI_DEFINACT;
4939 			seen_defer = true;
4940 		}
4941 		if (!vfs_want_msync(vp)) {
4942 			if (seen_defer)
4943 				vfs_deferred_inactive(vp, lkflags);
4944 			else
4945 				VI_UNLOCK(vp);
4946 			continue;
4947 		}
4948 		if (vget(vp, lkflags) == 0) {
4949 			obj = vp->v_object;
4950 			if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) {
4951 				VM_OBJECT_WLOCK(obj);
4952 				vm_object_page_clean(obj, 0, 0, objflags);
4953 				VM_OBJECT_WUNLOCK(obj);
4954 			}
4955 			vput(vp);
4956 			if (seen_defer)
4957 				vdrop(vp);
4958 		} else {
4959 			if (seen_defer)
4960 				vdefer_inactive_unlocked(vp);
4961 		}
4962 	}
4963 }
4964 
4965 void
4966 vfs_periodic(struct mount *mp, int flags)
4967 {
4968 
4969 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4970 
4971 	if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
4972 		vfs_periodic_inactive(mp, flags);
4973 	else
4974 		vfs_periodic_msync_inactive(mp, flags);
4975 }
4976 
4977 static void
4978 destroy_vpollinfo_free(struct vpollinfo *vi)
4979 {
4980 
4981 	knlist_destroy(&vi->vpi_selinfo.si_note);
4982 	mtx_destroy(&vi->vpi_lock);
4983 	free(vi, M_VNODEPOLL);
4984 }
4985 
4986 static void
4987 destroy_vpollinfo(struct vpollinfo *vi)
4988 {
4989 
4990 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4991 	seldrain(&vi->vpi_selinfo);
4992 	destroy_vpollinfo_free(vi);
4993 }
4994 
4995 /*
4996  * Initialize per-vnode helper structure to hold poll-related state.
4997  */
4998 void
4999 v_addpollinfo(struct vnode *vp)
5000 {
5001 	struct vpollinfo *vi;
5002 
5003 	if (vp->v_pollinfo != NULL)
5004 		return;
5005 	vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5006 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5007 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5008 	    vfs_knlunlock, vfs_knl_assert_lock);
5009 	VI_LOCK(vp);
5010 	if (vp->v_pollinfo != NULL) {
5011 		VI_UNLOCK(vp);
5012 		destroy_vpollinfo_free(vi);
5013 		return;
5014 	}
5015 	vp->v_pollinfo = vi;
5016 	VI_UNLOCK(vp);
5017 }
5018 
5019 /*
5020  * Record a process's interest in events which might happen to
5021  * a vnode.  Because poll uses the historic select-style interface
5022  * internally, this routine serves as both the ``check for any
5023  * pending events'' and the ``record my interest in future events''
5024  * functions.  (These are done together, while the lock is held,
5025  * to avoid race conditions.)
5026  */
5027 int
5028 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5029 {
5030 
5031 	v_addpollinfo(vp);
5032 	mtx_lock(&vp->v_pollinfo->vpi_lock);
5033 	if (vp->v_pollinfo->vpi_revents & events) {
5034 		/*
5035 		 * This leaves events we are not interested
5036 		 * in available for the other process which
5037 		 * which presumably had requested them
5038 		 * (otherwise they would never have been
5039 		 * recorded).
5040 		 */
5041 		events &= vp->v_pollinfo->vpi_revents;
5042 		vp->v_pollinfo->vpi_revents &= ~events;
5043 
5044 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
5045 		return (events);
5046 	}
5047 	vp->v_pollinfo->vpi_events |= events;
5048 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5049 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
5050 	return (0);
5051 }
5052 
5053 /*
5054  * Routine to create and manage a filesystem syncer vnode.
5055  */
5056 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
5057 static int	sync_fsync(struct  vop_fsync_args *);
5058 static int	sync_inactive(struct  vop_inactive_args *);
5059 static int	sync_reclaim(struct  vop_reclaim_args *);
5060 
5061 static struct vop_vector sync_vnodeops = {
5062 	.vop_bypass =	VOP_EOPNOTSUPP,
5063 	.vop_close =	sync_close,		/* close */
5064 	.vop_fsync =	sync_fsync,		/* fsync */
5065 	.vop_inactive =	sync_inactive,	/* inactive */
5066 	.vop_need_inactive = vop_stdneed_inactive, /* need_inactive */
5067 	.vop_reclaim =	sync_reclaim,	/* reclaim */
5068 	.vop_lock1 =	vop_stdlock,	/* lock */
5069 	.vop_unlock =	vop_stdunlock,	/* unlock */
5070 	.vop_islocked =	vop_stdislocked,	/* islocked */
5071 };
5072 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5073 
5074 /*
5075  * Create a new filesystem syncer vnode for the specified mount point.
5076  */
5077 void
5078 vfs_allocate_syncvnode(struct mount *mp)
5079 {
5080 	struct vnode *vp;
5081 	struct bufobj *bo;
5082 	static long start, incr, next;
5083 	int error;
5084 
5085 	/* Allocate a new vnode */
5086 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5087 	if (error != 0)
5088 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
5089 	vp->v_type = VNON;
5090 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5091 	vp->v_vflag |= VV_FORCEINSMQ;
5092 	error = insmntque1(vp, mp);
5093 	if (error != 0)
5094 		panic("vfs_allocate_syncvnode: insmntque() failed");
5095 	vp->v_vflag &= ~VV_FORCEINSMQ;
5096 	vn_set_state(vp, VSTATE_CONSTRUCTED);
5097 	VOP_UNLOCK(vp);
5098 	/*
5099 	 * Place the vnode onto the syncer worklist. We attempt to
5100 	 * scatter them about on the list so that they will go off
5101 	 * at evenly distributed times even if all the filesystems
5102 	 * are mounted at once.
5103 	 */
5104 	next += incr;
5105 	if (next == 0 || next > syncer_maxdelay) {
5106 		start /= 2;
5107 		incr /= 2;
5108 		if (start == 0) {
5109 			start = syncer_maxdelay / 2;
5110 			incr = syncer_maxdelay;
5111 		}
5112 		next = start;
5113 	}
5114 	bo = &vp->v_bufobj;
5115 	BO_LOCK(bo);
5116 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5117 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5118 	mtx_lock(&sync_mtx);
5119 	sync_vnode_count++;
5120 	if (mp->mnt_syncer == NULL) {
5121 		mp->mnt_syncer = vp;
5122 		vp = NULL;
5123 	}
5124 	mtx_unlock(&sync_mtx);
5125 	BO_UNLOCK(bo);
5126 	if (vp != NULL) {
5127 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5128 		vgone(vp);
5129 		vput(vp);
5130 	}
5131 }
5132 
5133 void
5134 vfs_deallocate_syncvnode(struct mount *mp)
5135 {
5136 	struct vnode *vp;
5137 
5138 	mtx_lock(&sync_mtx);
5139 	vp = mp->mnt_syncer;
5140 	if (vp != NULL)
5141 		mp->mnt_syncer = NULL;
5142 	mtx_unlock(&sync_mtx);
5143 	if (vp != NULL)
5144 		vrele(vp);
5145 }
5146 
5147 /*
5148  * Do a lazy sync of the filesystem.
5149  */
5150 static int
5151 sync_fsync(struct vop_fsync_args *ap)
5152 {
5153 	struct vnode *syncvp = ap->a_vp;
5154 	struct mount *mp = syncvp->v_mount;
5155 	int error, save;
5156 	struct bufobj *bo;
5157 
5158 	/*
5159 	 * We only need to do something if this is a lazy evaluation.
5160 	 */
5161 	if (ap->a_waitfor != MNT_LAZY)
5162 		return (0);
5163 
5164 	/*
5165 	 * Move ourselves to the back of the sync list.
5166 	 */
5167 	bo = &syncvp->v_bufobj;
5168 	BO_LOCK(bo);
5169 	vn_syncer_add_to_worklist(bo, syncdelay);
5170 	BO_UNLOCK(bo);
5171 
5172 	/*
5173 	 * Walk the list of vnodes pushing all that are dirty and
5174 	 * not already on the sync list.
5175 	 */
5176 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
5177 		return (0);
5178 	VOP_UNLOCK(syncvp);
5179 	save = curthread_pflags_set(TDP_SYNCIO);
5180 	/*
5181 	 * The filesystem at hand may be idle with free vnodes stored in the
5182 	 * batch.  Return them instead of letting them stay there indefinitely.
5183 	 */
5184 	vfs_periodic(mp, MNT_NOWAIT);
5185 	error = VFS_SYNC(mp, MNT_LAZY);
5186 	curthread_pflags_restore(save);
5187 	vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5188 	vfs_unbusy(mp);
5189 	return (error);
5190 }
5191 
5192 /*
5193  * The syncer vnode is no referenced.
5194  */
5195 static int
5196 sync_inactive(struct vop_inactive_args *ap)
5197 {
5198 
5199 	vgone(ap->a_vp);
5200 	return (0);
5201 }
5202 
5203 /*
5204  * The syncer vnode is no longer needed and is being decommissioned.
5205  *
5206  * Modifications to the worklist must be protected by sync_mtx.
5207  */
5208 static int
5209 sync_reclaim(struct vop_reclaim_args *ap)
5210 {
5211 	struct vnode *vp = ap->a_vp;
5212 	struct bufobj *bo;
5213 
5214 	bo = &vp->v_bufobj;
5215 	BO_LOCK(bo);
5216 	mtx_lock(&sync_mtx);
5217 	if (vp->v_mount->mnt_syncer == vp)
5218 		vp->v_mount->mnt_syncer = NULL;
5219 	if (bo->bo_flag & BO_ONWORKLST) {
5220 		LIST_REMOVE(bo, bo_synclist);
5221 		syncer_worklist_len--;
5222 		sync_vnode_count--;
5223 		bo->bo_flag &= ~BO_ONWORKLST;
5224 	}
5225 	mtx_unlock(&sync_mtx);
5226 	BO_UNLOCK(bo);
5227 
5228 	return (0);
5229 }
5230 
5231 int
5232 vn_need_pageq_flush(struct vnode *vp)
5233 {
5234 	struct vm_object *obj;
5235 
5236 	obj = vp->v_object;
5237 	return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5238 	    vm_object_mightbedirty(obj));
5239 }
5240 
5241 /*
5242  * Check if vnode represents a disk device
5243  */
5244 bool
5245 vn_isdisk_error(struct vnode *vp, int *errp)
5246 {
5247 	int error;
5248 
5249 	if (vp->v_type != VCHR) {
5250 		error = ENOTBLK;
5251 		goto out;
5252 	}
5253 	error = 0;
5254 	dev_lock();
5255 	if (vp->v_rdev == NULL)
5256 		error = ENXIO;
5257 	else if (vp->v_rdev->si_devsw == NULL)
5258 		error = ENXIO;
5259 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5260 		error = ENOTBLK;
5261 	dev_unlock();
5262 out:
5263 	*errp = error;
5264 	return (error == 0);
5265 }
5266 
5267 bool
5268 vn_isdisk(struct vnode *vp)
5269 {
5270 	int error;
5271 
5272 	return (vn_isdisk_error(vp, &error));
5273 }
5274 
5275 /*
5276  * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5277  * the comment above cache_fplookup for details.
5278  */
5279 int
5280 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5281 {
5282 	int error;
5283 
5284 	VFS_SMR_ASSERT_ENTERED();
5285 
5286 	/* Check the owner. */
5287 	if (cred->cr_uid == file_uid) {
5288 		if (file_mode & S_IXUSR)
5289 			return (0);
5290 		goto out_error;
5291 	}
5292 
5293 	/* Otherwise, check the groups (first match) */
5294 	if (groupmember(file_gid, cred)) {
5295 		if (file_mode & S_IXGRP)
5296 			return (0);
5297 		goto out_error;
5298 	}
5299 
5300 	/* Otherwise, check everyone else. */
5301 	if (file_mode & S_IXOTH)
5302 		return (0);
5303 out_error:
5304 	/*
5305 	 * Permission check failed, but it is possible denial will get overwritten
5306 	 * (e.g., when root is traversing through a 700 directory owned by someone
5307 	 * else).
5308 	 *
5309 	 * vaccess() calls priv_check_cred which in turn can descent into MAC
5310 	 * modules overriding this result. It's quite unclear what semantics
5311 	 * are allowed for them to operate, thus for safety we don't call them
5312 	 * from within the SMR section. This also means if any such modules
5313 	 * are present, we have to let the regular lookup decide.
5314 	 */
5315 	error = priv_check_cred_vfs_lookup_nomac(cred);
5316 	switch (error) {
5317 	case 0:
5318 		return (0);
5319 	case EAGAIN:
5320 		/*
5321 		 * MAC modules present.
5322 		 */
5323 		return (EAGAIN);
5324 	case EPERM:
5325 		return (EACCES);
5326 	default:
5327 		return (error);
5328 	}
5329 }
5330 
5331 /*
5332  * Common filesystem object access control check routine.  Accepts a
5333  * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5334  * Returns 0 on success, or an errno on failure.
5335  */
5336 int
5337 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5338     accmode_t accmode, struct ucred *cred)
5339 {
5340 	accmode_t dac_granted;
5341 	accmode_t priv_granted;
5342 
5343 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5344 	    ("invalid bit in accmode"));
5345 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5346 	    ("VAPPEND without VWRITE"));
5347 
5348 	/*
5349 	 * Look for a normal, non-privileged way to access the file/directory
5350 	 * as requested.  If it exists, go with that.
5351 	 */
5352 
5353 	dac_granted = 0;
5354 
5355 	/* Check the owner. */
5356 	if (cred->cr_uid == file_uid) {
5357 		dac_granted |= VADMIN;
5358 		if (file_mode & S_IXUSR)
5359 			dac_granted |= VEXEC;
5360 		if (file_mode & S_IRUSR)
5361 			dac_granted |= VREAD;
5362 		if (file_mode & S_IWUSR)
5363 			dac_granted |= (VWRITE | VAPPEND);
5364 
5365 		if ((accmode & dac_granted) == accmode)
5366 			return (0);
5367 
5368 		goto privcheck;
5369 	}
5370 
5371 	/* Otherwise, check the groups (first match) */
5372 	if (groupmember(file_gid, cred)) {
5373 		if (file_mode & S_IXGRP)
5374 			dac_granted |= VEXEC;
5375 		if (file_mode & S_IRGRP)
5376 			dac_granted |= VREAD;
5377 		if (file_mode & S_IWGRP)
5378 			dac_granted |= (VWRITE | VAPPEND);
5379 
5380 		if ((accmode & dac_granted) == accmode)
5381 			return (0);
5382 
5383 		goto privcheck;
5384 	}
5385 
5386 	/* Otherwise, check everyone else. */
5387 	if (file_mode & S_IXOTH)
5388 		dac_granted |= VEXEC;
5389 	if (file_mode & S_IROTH)
5390 		dac_granted |= VREAD;
5391 	if (file_mode & S_IWOTH)
5392 		dac_granted |= (VWRITE | VAPPEND);
5393 	if ((accmode & dac_granted) == accmode)
5394 		return (0);
5395 
5396 privcheck:
5397 	/*
5398 	 * Build a privilege mask to determine if the set of privileges
5399 	 * satisfies the requirements when combined with the granted mask
5400 	 * from above.  For each privilege, if the privilege is required,
5401 	 * bitwise or the request type onto the priv_granted mask.
5402 	 */
5403 	priv_granted = 0;
5404 
5405 	if (type == VDIR) {
5406 		/*
5407 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5408 		 * requests, instead of PRIV_VFS_EXEC.
5409 		 */
5410 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5411 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5412 			priv_granted |= VEXEC;
5413 	} else {
5414 		/*
5415 		 * Ensure that at least one execute bit is on. Otherwise,
5416 		 * a privileged user will always succeed, and we don't want
5417 		 * this to happen unless the file really is executable.
5418 		 */
5419 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5420 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5421 		    !priv_check_cred(cred, PRIV_VFS_EXEC))
5422 			priv_granted |= VEXEC;
5423 	}
5424 
5425 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5426 	    !priv_check_cred(cred, PRIV_VFS_READ))
5427 		priv_granted |= VREAD;
5428 
5429 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5430 	    !priv_check_cred(cred, PRIV_VFS_WRITE))
5431 		priv_granted |= (VWRITE | VAPPEND);
5432 
5433 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5434 	    !priv_check_cred(cred, PRIV_VFS_ADMIN))
5435 		priv_granted |= VADMIN;
5436 
5437 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
5438 		return (0);
5439 	}
5440 
5441 	return ((accmode & VADMIN) ? EPERM : EACCES);
5442 }
5443 
5444 /*
5445  * Credential check based on process requesting service, and per-attribute
5446  * permissions.
5447  */
5448 int
5449 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5450     struct thread *td, accmode_t accmode)
5451 {
5452 
5453 	/*
5454 	 * Kernel-invoked always succeeds.
5455 	 */
5456 	if (cred == NOCRED)
5457 		return (0);
5458 
5459 	/*
5460 	 * Do not allow privileged processes in jail to directly manipulate
5461 	 * system attributes.
5462 	 */
5463 	switch (attrnamespace) {
5464 	case EXTATTR_NAMESPACE_SYSTEM:
5465 		/* Potentially should be: return (EPERM); */
5466 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5467 	case EXTATTR_NAMESPACE_USER:
5468 		return (VOP_ACCESS(vp, accmode, cred, td));
5469 	default:
5470 		return (EPERM);
5471 	}
5472 }
5473 
5474 #ifdef DEBUG_VFS_LOCKS
5475 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
5476 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
5477     "Drop into debugger on lock violation");
5478 
5479 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
5480 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
5481     0, "Check for interlock across VOPs");
5482 
5483 int vfs_badlock_print = 1;	/* Print lock violations. */
5484 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
5485     0, "Print lock violations");
5486 
5487 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
5488 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
5489     0, "Print vnode details on lock violations");
5490 
5491 #ifdef KDB
5492 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
5493 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
5494     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
5495 #endif
5496 
5497 static void
5498 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
5499 {
5500 
5501 #ifdef KDB
5502 	if (vfs_badlock_backtrace)
5503 		kdb_backtrace();
5504 #endif
5505 	if (vfs_badlock_vnode)
5506 		vn_printf(vp, "vnode ");
5507 	if (vfs_badlock_print)
5508 		printf("%s: %p %s\n", str, (void *)vp, msg);
5509 	if (vfs_badlock_ddb)
5510 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5511 }
5512 
5513 void
5514 assert_vi_locked(struct vnode *vp, const char *str)
5515 {
5516 
5517 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
5518 		vfs_badlock("interlock is not locked but should be", str, vp);
5519 }
5520 
5521 void
5522 assert_vi_unlocked(struct vnode *vp, const char *str)
5523 {
5524 
5525 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
5526 		vfs_badlock("interlock is locked but should not be", str, vp);
5527 }
5528 
5529 void
5530 assert_vop_locked(struct vnode *vp, const char *str)
5531 {
5532 	int locked;
5533 
5534 	if (KERNEL_PANICKED() || vp == NULL)
5535 		return;
5536 
5537 	locked = VOP_ISLOCKED(vp);
5538 	if (locked == 0 || locked == LK_EXCLOTHER)
5539 		vfs_badlock("is not locked but should be", str, vp);
5540 }
5541 
5542 void
5543 assert_vop_unlocked(struct vnode *vp, const char *str)
5544 {
5545 	if (KERNEL_PANICKED() || vp == NULL)
5546 		return;
5547 
5548 	if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
5549 		vfs_badlock("is locked but should not be", str, vp);
5550 }
5551 
5552 void
5553 assert_vop_elocked(struct vnode *vp, const char *str)
5554 {
5555 	if (KERNEL_PANICKED() || vp == NULL)
5556 		return;
5557 
5558 	if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
5559 		vfs_badlock("is not exclusive locked but should be", str, vp);
5560 }
5561 #endif /* DEBUG_VFS_LOCKS */
5562 
5563 void
5564 vop_rename_fail(struct vop_rename_args *ap)
5565 {
5566 
5567 	if (ap->a_tvp != NULL)
5568 		vput(ap->a_tvp);
5569 	if (ap->a_tdvp == ap->a_tvp)
5570 		vrele(ap->a_tdvp);
5571 	else
5572 		vput(ap->a_tdvp);
5573 	vrele(ap->a_fdvp);
5574 	vrele(ap->a_fvp);
5575 }
5576 
5577 void
5578 vop_rename_pre(void *ap)
5579 {
5580 	struct vop_rename_args *a = ap;
5581 
5582 #ifdef DEBUG_VFS_LOCKS
5583 	if (a->a_tvp)
5584 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5585 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5586 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5587 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5588 
5589 	/* Check the source (from). */
5590 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5591 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5592 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5593 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5594 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5595 
5596 	/* Check the target. */
5597 	if (a->a_tvp)
5598 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5599 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5600 #endif
5601 	/*
5602 	 * It may be tempting to add vn_seqc_write_begin/end calls here and
5603 	 * in vop_rename_post but that's not going to work out since some
5604 	 * filesystems relookup vnodes mid-rename. This is probably a bug.
5605 	 *
5606 	 * For now filesystems are expected to do the relevant calls after they
5607 	 * decide what vnodes to operate on.
5608 	 */
5609 	if (a->a_tdvp != a->a_fdvp)
5610 		vhold(a->a_fdvp);
5611 	if (a->a_tvp != a->a_fvp)
5612 		vhold(a->a_fvp);
5613 	vhold(a->a_tdvp);
5614 	if (a->a_tvp)
5615 		vhold(a->a_tvp);
5616 }
5617 
5618 #ifdef DEBUG_VFS_LOCKS
5619 void
5620 vop_fplookup_vexec_debugpre(void *ap __unused)
5621 {
5622 
5623 	VFS_SMR_ASSERT_ENTERED();
5624 }
5625 
5626 void
5627 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused)
5628 {
5629 
5630 	VFS_SMR_ASSERT_ENTERED();
5631 }
5632 
5633 void
5634 vop_fplookup_symlink_debugpre(void *ap __unused)
5635 {
5636 
5637 	VFS_SMR_ASSERT_ENTERED();
5638 }
5639 
5640 void
5641 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5642 {
5643 
5644 	VFS_SMR_ASSERT_ENTERED();
5645 }
5646 
5647 static void
5648 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5649 {
5650 	if (vp->v_type == VCHR)
5651 		;
5652 	else if (MNT_EXTENDED_SHARED(vp->v_mount))
5653 		ASSERT_VOP_LOCKED(vp, name);
5654 	else
5655 		ASSERT_VOP_ELOCKED(vp, name);
5656 }
5657 
5658 void
5659 vop_fsync_debugpre(void *a)
5660 {
5661 	struct vop_fsync_args *ap;
5662 
5663 	ap = a;
5664 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5665 }
5666 
5667 void
5668 vop_fsync_debugpost(void *a, int rc __unused)
5669 {
5670 	struct vop_fsync_args *ap;
5671 
5672 	ap = a;
5673 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5674 }
5675 
5676 void
5677 vop_fdatasync_debugpre(void *a)
5678 {
5679 	struct vop_fdatasync_args *ap;
5680 
5681 	ap = a;
5682 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5683 }
5684 
5685 void
5686 vop_fdatasync_debugpost(void *a, int rc __unused)
5687 {
5688 	struct vop_fdatasync_args *ap;
5689 
5690 	ap = a;
5691 	vop_fsync_debugprepost(ap->a_vp, "fsync");
5692 }
5693 
5694 void
5695 vop_strategy_debugpre(void *ap)
5696 {
5697 	struct vop_strategy_args *a;
5698 	struct buf *bp;
5699 
5700 	a = ap;
5701 	bp = a->a_bp;
5702 
5703 	/*
5704 	 * Cluster ops lock their component buffers but not the IO container.
5705 	 */
5706 	if ((bp->b_flags & B_CLUSTER) != 0)
5707 		return;
5708 
5709 	if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) {
5710 		if (vfs_badlock_print)
5711 			printf(
5712 			    "VOP_STRATEGY: bp is not locked but should be\n");
5713 		if (vfs_badlock_ddb)
5714 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
5715 	}
5716 }
5717 
5718 void
5719 vop_lock_debugpre(void *ap)
5720 {
5721 	struct vop_lock1_args *a = ap;
5722 
5723 	if ((a->a_flags & LK_INTERLOCK) == 0)
5724 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5725 	else
5726 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
5727 }
5728 
5729 void
5730 vop_lock_debugpost(void *ap, int rc)
5731 {
5732 	struct vop_lock1_args *a = ap;
5733 
5734 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
5735 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
5736 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
5737 }
5738 
5739 void
5740 vop_unlock_debugpre(void *ap)
5741 {
5742 	struct vop_unlock_args *a = ap;
5743 	struct vnode *vp = a->a_vp;
5744 
5745 	VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
5746 	ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
5747 }
5748 
5749 void
5750 vop_need_inactive_debugpre(void *ap)
5751 {
5752 	struct vop_need_inactive_args *a = ap;
5753 
5754 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5755 }
5756 
5757 void
5758 vop_need_inactive_debugpost(void *ap, int rc)
5759 {
5760 	struct vop_need_inactive_args *a = ap;
5761 
5762 	ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
5763 }
5764 #endif
5765 
5766 void
5767 vop_create_pre(void *ap)
5768 {
5769 	struct vop_create_args *a;
5770 	struct vnode *dvp;
5771 
5772 	a = ap;
5773 	dvp = a->a_dvp;
5774 	vn_seqc_write_begin(dvp);
5775 }
5776 
5777 void
5778 vop_create_post(void *ap, int rc)
5779 {
5780 	struct vop_create_args *a;
5781 	struct vnode *dvp;
5782 
5783 	a = ap;
5784 	dvp = a->a_dvp;
5785 	vn_seqc_write_end(dvp);
5786 	if (!rc)
5787 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5788 }
5789 
5790 void
5791 vop_whiteout_pre(void *ap)
5792 {
5793 	struct vop_whiteout_args *a;
5794 	struct vnode *dvp;
5795 
5796 	a = ap;
5797 	dvp = a->a_dvp;
5798 	vn_seqc_write_begin(dvp);
5799 }
5800 
5801 void
5802 vop_whiteout_post(void *ap, int rc)
5803 {
5804 	struct vop_whiteout_args *a;
5805 	struct vnode *dvp;
5806 
5807 	a = ap;
5808 	dvp = a->a_dvp;
5809 	vn_seqc_write_end(dvp);
5810 }
5811 
5812 void
5813 vop_deleteextattr_pre(void *ap)
5814 {
5815 	struct vop_deleteextattr_args *a;
5816 	struct vnode *vp;
5817 
5818 	a = ap;
5819 	vp = a->a_vp;
5820 	vn_seqc_write_begin(vp);
5821 }
5822 
5823 void
5824 vop_deleteextattr_post(void *ap, int rc)
5825 {
5826 	struct vop_deleteextattr_args *a;
5827 	struct vnode *vp;
5828 
5829 	a = ap;
5830 	vp = a->a_vp;
5831 	vn_seqc_write_end(vp);
5832 	if (!rc)
5833 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
5834 }
5835 
5836 void
5837 vop_link_pre(void *ap)
5838 {
5839 	struct vop_link_args *a;
5840 	struct vnode *vp, *tdvp;
5841 
5842 	a = ap;
5843 	vp = a->a_vp;
5844 	tdvp = a->a_tdvp;
5845 	vn_seqc_write_begin(vp);
5846 	vn_seqc_write_begin(tdvp);
5847 }
5848 
5849 void
5850 vop_link_post(void *ap, int rc)
5851 {
5852 	struct vop_link_args *a;
5853 	struct vnode *vp, *tdvp;
5854 
5855 	a = ap;
5856 	vp = a->a_vp;
5857 	tdvp = a->a_tdvp;
5858 	vn_seqc_write_end(vp);
5859 	vn_seqc_write_end(tdvp);
5860 	if (!rc) {
5861 		VFS_KNOTE_LOCKED(vp, NOTE_LINK);
5862 		VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
5863 	}
5864 }
5865 
5866 void
5867 vop_mkdir_pre(void *ap)
5868 {
5869 	struct vop_mkdir_args *a;
5870 	struct vnode *dvp;
5871 
5872 	a = ap;
5873 	dvp = a->a_dvp;
5874 	vn_seqc_write_begin(dvp);
5875 }
5876 
5877 void
5878 vop_mkdir_post(void *ap, int rc)
5879 {
5880 	struct vop_mkdir_args *a;
5881 	struct vnode *dvp;
5882 
5883 	a = ap;
5884 	dvp = a->a_dvp;
5885 	vn_seqc_write_end(dvp);
5886 	if (!rc)
5887 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
5888 }
5889 
5890 #ifdef DEBUG_VFS_LOCKS
5891 void
5892 vop_mkdir_debugpost(void *ap, int rc)
5893 {
5894 	struct vop_mkdir_args *a;
5895 
5896 	a = ap;
5897 	if (!rc)
5898 		cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
5899 }
5900 #endif
5901 
5902 void
5903 vop_mknod_pre(void *ap)
5904 {
5905 	struct vop_mknod_args *a;
5906 	struct vnode *dvp;
5907 
5908 	a = ap;
5909 	dvp = a->a_dvp;
5910 	vn_seqc_write_begin(dvp);
5911 }
5912 
5913 void
5914 vop_mknod_post(void *ap, int rc)
5915 {
5916 	struct vop_mknod_args *a;
5917 	struct vnode *dvp;
5918 
5919 	a = ap;
5920 	dvp = a->a_dvp;
5921 	vn_seqc_write_end(dvp);
5922 	if (!rc)
5923 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5924 }
5925 
5926 void
5927 vop_reclaim_post(void *ap, int rc)
5928 {
5929 	struct vop_reclaim_args *a;
5930 	struct vnode *vp;
5931 
5932 	a = ap;
5933 	vp = a->a_vp;
5934 	ASSERT_VOP_IN_SEQC(vp);
5935 	if (!rc)
5936 		VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
5937 }
5938 
5939 void
5940 vop_remove_pre(void *ap)
5941 {
5942 	struct vop_remove_args *a;
5943 	struct vnode *dvp, *vp;
5944 
5945 	a = ap;
5946 	dvp = a->a_dvp;
5947 	vp = a->a_vp;
5948 	vn_seqc_write_begin(dvp);
5949 	vn_seqc_write_begin(vp);
5950 }
5951 
5952 void
5953 vop_remove_post(void *ap, int rc)
5954 {
5955 	struct vop_remove_args *a;
5956 	struct vnode *dvp, *vp;
5957 
5958 	a = ap;
5959 	dvp = a->a_dvp;
5960 	vp = a->a_vp;
5961 	vn_seqc_write_end(dvp);
5962 	vn_seqc_write_end(vp);
5963 	if (!rc) {
5964 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
5965 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
5966 	}
5967 }
5968 
5969 void
5970 vop_rename_post(void *ap, int rc)
5971 {
5972 	struct vop_rename_args *a = ap;
5973 	long hint;
5974 
5975 	if (!rc) {
5976 		hint = NOTE_WRITE;
5977 		if (a->a_fdvp == a->a_tdvp) {
5978 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
5979 				hint |= NOTE_LINK;
5980 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5981 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5982 		} else {
5983 			hint |= NOTE_EXTEND;
5984 			if (a->a_fvp->v_type == VDIR)
5985 				hint |= NOTE_LINK;
5986 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
5987 
5988 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
5989 			    a->a_tvp->v_type == VDIR)
5990 				hint &= ~NOTE_LINK;
5991 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
5992 		}
5993 
5994 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
5995 		if (a->a_tvp)
5996 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
5997 	}
5998 	if (a->a_tdvp != a->a_fdvp)
5999 		vdrop(a->a_fdvp);
6000 	if (a->a_tvp != a->a_fvp)
6001 		vdrop(a->a_fvp);
6002 	vdrop(a->a_tdvp);
6003 	if (a->a_tvp)
6004 		vdrop(a->a_tvp);
6005 }
6006 
6007 void
6008 vop_rmdir_pre(void *ap)
6009 {
6010 	struct vop_rmdir_args *a;
6011 	struct vnode *dvp, *vp;
6012 
6013 	a = ap;
6014 	dvp = a->a_dvp;
6015 	vp = a->a_vp;
6016 	vn_seqc_write_begin(dvp);
6017 	vn_seqc_write_begin(vp);
6018 }
6019 
6020 void
6021 vop_rmdir_post(void *ap, int rc)
6022 {
6023 	struct vop_rmdir_args *a;
6024 	struct vnode *dvp, *vp;
6025 
6026 	a = ap;
6027 	dvp = a->a_dvp;
6028 	vp = a->a_vp;
6029 	vn_seqc_write_end(dvp);
6030 	vn_seqc_write_end(vp);
6031 	if (!rc) {
6032 		vp->v_vflag |= VV_UNLINKED;
6033 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6034 		VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6035 	}
6036 }
6037 
6038 void
6039 vop_setattr_pre(void *ap)
6040 {
6041 	struct vop_setattr_args *a;
6042 	struct vnode *vp;
6043 
6044 	a = ap;
6045 	vp = a->a_vp;
6046 	vn_seqc_write_begin(vp);
6047 }
6048 
6049 void
6050 vop_setattr_post(void *ap, int rc)
6051 {
6052 	struct vop_setattr_args *a;
6053 	struct vnode *vp;
6054 
6055 	a = ap;
6056 	vp = a->a_vp;
6057 	vn_seqc_write_end(vp);
6058 	if (!rc)
6059 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6060 }
6061 
6062 void
6063 vop_setacl_pre(void *ap)
6064 {
6065 	struct vop_setacl_args *a;
6066 	struct vnode *vp;
6067 
6068 	a = ap;
6069 	vp = a->a_vp;
6070 	vn_seqc_write_begin(vp);
6071 }
6072 
6073 void
6074 vop_setacl_post(void *ap, int rc __unused)
6075 {
6076 	struct vop_setacl_args *a;
6077 	struct vnode *vp;
6078 
6079 	a = ap;
6080 	vp = a->a_vp;
6081 	vn_seqc_write_end(vp);
6082 }
6083 
6084 void
6085 vop_setextattr_pre(void *ap)
6086 {
6087 	struct vop_setextattr_args *a;
6088 	struct vnode *vp;
6089 
6090 	a = ap;
6091 	vp = a->a_vp;
6092 	vn_seqc_write_begin(vp);
6093 }
6094 
6095 void
6096 vop_setextattr_post(void *ap, int rc)
6097 {
6098 	struct vop_setextattr_args *a;
6099 	struct vnode *vp;
6100 
6101 	a = ap;
6102 	vp = a->a_vp;
6103 	vn_seqc_write_end(vp);
6104 	if (!rc)
6105 		VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6106 }
6107 
6108 void
6109 vop_symlink_pre(void *ap)
6110 {
6111 	struct vop_symlink_args *a;
6112 	struct vnode *dvp;
6113 
6114 	a = ap;
6115 	dvp = a->a_dvp;
6116 	vn_seqc_write_begin(dvp);
6117 }
6118 
6119 void
6120 vop_symlink_post(void *ap, int rc)
6121 {
6122 	struct vop_symlink_args *a;
6123 	struct vnode *dvp;
6124 
6125 	a = ap;
6126 	dvp = a->a_dvp;
6127 	vn_seqc_write_end(dvp);
6128 	if (!rc)
6129 		VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6130 }
6131 
6132 void
6133 vop_open_post(void *ap, int rc)
6134 {
6135 	struct vop_open_args *a = ap;
6136 
6137 	if (!rc)
6138 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6139 }
6140 
6141 void
6142 vop_close_post(void *ap, int rc)
6143 {
6144 	struct vop_close_args *a = ap;
6145 
6146 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6147 	    !VN_IS_DOOMED(a->a_vp))) {
6148 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6149 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
6150 	}
6151 }
6152 
6153 void
6154 vop_read_post(void *ap, int rc)
6155 {
6156 	struct vop_read_args *a = ap;
6157 
6158 	if (!rc)
6159 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6160 }
6161 
6162 void
6163 vop_read_pgcache_post(void *ap, int rc)
6164 {
6165 	struct vop_read_pgcache_args *a = ap;
6166 
6167 	if (!rc)
6168 		VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6169 }
6170 
6171 void
6172 vop_readdir_post(void *ap, int rc)
6173 {
6174 	struct vop_readdir_args *a = ap;
6175 
6176 	if (!rc)
6177 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6178 }
6179 
6180 static struct knlist fs_knlist;
6181 
6182 static void
6183 vfs_event_init(void *arg)
6184 {
6185 	knlist_init_mtx(&fs_knlist, NULL);
6186 }
6187 /* XXX - correct order? */
6188 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6189 
6190 void
6191 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6192 {
6193 
6194 	KNOTE_UNLOCKED(&fs_knlist, event);
6195 }
6196 
6197 static int	filt_fsattach(struct knote *kn);
6198 static void	filt_fsdetach(struct knote *kn);
6199 static int	filt_fsevent(struct knote *kn, long hint);
6200 
6201 struct filterops fs_filtops = {
6202 	.f_isfd = 0,
6203 	.f_attach = filt_fsattach,
6204 	.f_detach = filt_fsdetach,
6205 	.f_event = filt_fsevent
6206 };
6207 
6208 static int
6209 filt_fsattach(struct knote *kn)
6210 {
6211 
6212 	kn->kn_flags |= EV_CLEAR;
6213 	knlist_add(&fs_knlist, kn, 0);
6214 	return (0);
6215 }
6216 
6217 static void
6218 filt_fsdetach(struct knote *kn)
6219 {
6220 
6221 	knlist_remove(&fs_knlist, kn, 0);
6222 }
6223 
6224 static int
6225 filt_fsevent(struct knote *kn, long hint)
6226 {
6227 
6228 	kn->kn_fflags |= kn->kn_sfflags & hint;
6229 
6230 	return (kn->kn_fflags != 0);
6231 }
6232 
6233 static int
6234 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6235 {
6236 	struct vfsidctl vc;
6237 	int error;
6238 	struct mount *mp;
6239 
6240 	error = SYSCTL_IN(req, &vc, sizeof(vc));
6241 	if (error)
6242 		return (error);
6243 	if (vc.vc_vers != VFS_CTL_VERS1)
6244 		return (EINVAL);
6245 	mp = vfs_getvfs(&vc.vc_fsid);
6246 	if (mp == NULL)
6247 		return (ENOENT);
6248 	/* ensure that a specific sysctl goes to the right filesystem. */
6249 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
6250 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6251 		vfs_rel(mp);
6252 		return (EINVAL);
6253 	}
6254 	VCTLTOREQ(&vc, req);
6255 	error = VFS_SYSCTL(mp, vc.vc_op, req);
6256 	vfs_rel(mp);
6257 	return (error);
6258 }
6259 
6260 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6261     NULL, 0, sysctl_vfs_ctl, "",
6262     "Sysctl by fsid");
6263 
6264 /*
6265  * Function to initialize a va_filerev field sensibly.
6266  * XXX: Wouldn't a random number make a lot more sense ??
6267  */
6268 u_quad_t
6269 init_va_filerev(void)
6270 {
6271 	struct bintime bt;
6272 
6273 	getbinuptime(&bt);
6274 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6275 }
6276 
6277 static int	filt_vfsread(struct knote *kn, long hint);
6278 static int	filt_vfswrite(struct knote *kn, long hint);
6279 static int	filt_vfsvnode(struct knote *kn, long hint);
6280 static void	filt_vfsdetach(struct knote *kn);
6281 static struct filterops vfsread_filtops = {
6282 	.f_isfd = 1,
6283 	.f_detach = filt_vfsdetach,
6284 	.f_event = filt_vfsread
6285 };
6286 static struct filterops vfswrite_filtops = {
6287 	.f_isfd = 1,
6288 	.f_detach = filt_vfsdetach,
6289 	.f_event = filt_vfswrite
6290 };
6291 static struct filterops vfsvnode_filtops = {
6292 	.f_isfd = 1,
6293 	.f_detach = filt_vfsdetach,
6294 	.f_event = filt_vfsvnode
6295 };
6296 
6297 static void
6298 vfs_knllock(void *arg)
6299 {
6300 	struct vnode *vp = arg;
6301 
6302 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6303 }
6304 
6305 static void
6306 vfs_knlunlock(void *arg)
6307 {
6308 	struct vnode *vp = arg;
6309 
6310 	VOP_UNLOCK(vp);
6311 }
6312 
6313 static void
6314 vfs_knl_assert_lock(void *arg, int what)
6315 {
6316 #ifdef DEBUG_VFS_LOCKS
6317 	struct vnode *vp = arg;
6318 
6319 	if (what == LA_LOCKED)
6320 		ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6321 	else
6322 		ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6323 #endif
6324 }
6325 
6326 int
6327 vfs_kqfilter(struct vop_kqfilter_args *ap)
6328 {
6329 	struct vnode *vp = ap->a_vp;
6330 	struct knote *kn = ap->a_kn;
6331 	struct knlist *knl;
6332 
6333 	KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6334 	    kn->kn_filter != EVFILT_WRITE),
6335 	    ("READ/WRITE filter on a FIFO leaked through"));
6336 	switch (kn->kn_filter) {
6337 	case EVFILT_READ:
6338 		kn->kn_fop = &vfsread_filtops;
6339 		break;
6340 	case EVFILT_WRITE:
6341 		kn->kn_fop = &vfswrite_filtops;
6342 		break;
6343 	case EVFILT_VNODE:
6344 		kn->kn_fop = &vfsvnode_filtops;
6345 		break;
6346 	default:
6347 		return (EINVAL);
6348 	}
6349 
6350 	kn->kn_hook = (caddr_t)vp;
6351 
6352 	v_addpollinfo(vp);
6353 	if (vp->v_pollinfo == NULL)
6354 		return (ENOMEM);
6355 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6356 	vhold(vp);
6357 	knlist_add(knl, kn, 0);
6358 
6359 	return (0);
6360 }
6361 
6362 /*
6363  * Detach knote from vnode
6364  */
6365 static void
6366 filt_vfsdetach(struct knote *kn)
6367 {
6368 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6369 
6370 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6371 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6372 	vdrop(vp);
6373 }
6374 
6375 /*ARGSUSED*/
6376 static int
6377 filt_vfsread(struct knote *kn, long hint)
6378 {
6379 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6380 	off_t size;
6381 	int res;
6382 
6383 	/*
6384 	 * filesystem is gone, so set the EOF flag and schedule
6385 	 * the knote for deletion.
6386 	 */
6387 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6388 		VI_LOCK(vp);
6389 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6390 		VI_UNLOCK(vp);
6391 		return (1);
6392 	}
6393 
6394 	if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6395 		return (0);
6396 
6397 	VI_LOCK(vp);
6398 	kn->kn_data = size - kn->kn_fp->f_offset;
6399 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6400 	VI_UNLOCK(vp);
6401 	return (res);
6402 }
6403 
6404 /*ARGSUSED*/
6405 static int
6406 filt_vfswrite(struct knote *kn, long hint)
6407 {
6408 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6409 
6410 	VI_LOCK(vp);
6411 
6412 	/*
6413 	 * filesystem is gone, so set the EOF flag and schedule
6414 	 * the knote for deletion.
6415 	 */
6416 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6417 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6418 
6419 	kn->kn_data = 0;
6420 	VI_UNLOCK(vp);
6421 	return (1);
6422 }
6423 
6424 static int
6425 filt_vfsvnode(struct knote *kn, long hint)
6426 {
6427 	struct vnode *vp = (struct vnode *)kn->kn_hook;
6428 	int res;
6429 
6430 	VI_LOCK(vp);
6431 	if (kn->kn_sfflags & hint)
6432 		kn->kn_fflags |= hint;
6433 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6434 		kn->kn_flags |= EV_EOF;
6435 		VI_UNLOCK(vp);
6436 		return (1);
6437 	}
6438 	res = (kn->kn_fflags != 0);
6439 	VI_UNLOCK(vp);
6440 	return (res);
6441 }
6442 
6443 /*
6444  * Returns whether the directory is empty or not.
6445  * If it is empty, the return value is 0; otherwise
6446  * the return value is an error value (which may
6447  * be ENOTEMPTY).
6448  */
6449 int
6450 vfs_emptydir(struct vnode *vp)
6451 {
6452 	struct uio uio;
6453 	struct iovec iov;
6454 	struct dirent *dirent, *dp, *endp;
6455 	int error, eof;
6456 
6457 	error = 0;
6458 	eof = 0;
6459 
6460 	ASSERT_VOP_LOCKED(vp, "vfs_emptydir");
6461 	VNASSERT(vp->v_type == VDIR, vp, ("vp is not a directory"));
6462 
6463 	dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK);
6464 	iov.iov_base = dirent;
6465 	iov.iov_len = sizeof(struct dirent);
6466 
6467 	uio.uio_iov = &iov;
6468 	uio.uio_iovcnt = 1;
6469 	uio.uio_offset = 0;
6470 	uio.uio_resid = sizeof(struct dirent);
6471 	uio.uio_segflg = UIO_SYSSPACE;
6472 	uio.uio_rw = UIO_READ;
6473 	uio.uio_td = curthread;
6474 
6475 	while (eof == 0 && error == 0) {
6476 		error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof,
6477 		    NULL, NULL);
6478 		if (error != 0)
6479 			break;
6480 		endp = (void *)((uint8_t *)dirent +
6481 		    sizeof(struct dirent) - uio.uio_resid);
6482 		for (dp = dirent; dp < endp;
6483 		     dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) {
6484 			if (dp->d_type == DT_WHT)
6485 				continue;
6486 			if (dp->d_namlen == 0)
6487 				continue;
6488 			if (dp->d_type != DT_DIR &&
6489 			    dp->d_type != DT_UNKNOWN) {
6490 				error = ENOTEMPTY;
6491 				break;
6492 			}
6493 			if (dp->d_namlen > 2) {
6494 				error = ENOTEMPTY;
6495 				break;
6496 			}
6497 			if (dp->d_namlen == 1 &&
6498 			    dp->d_name[0] != '.') {
6499 				error = ENOTEMPTY;
6500 				break;
6501 			}
6502 			if (dp->d_namlen == 2 &&
6503 			    dp->d_name[1] != '.') {
6504 				error = ENOTEMPTY;
6505 				break;
6506 			}
6507 			uio.uio_resid = sizeof(struct dirent);
6508 		}
6509 	}
6510 	free(dirent, M_TEMP);
6511 	return (error);
6512 }
6513 
6514 int
6515 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6516 {
6517 	int error;
6518 
6519 	if (dp->d_reclen > ap->a_uio->uio_resid)
6520 		return (ENAMETOOLONG);
6521 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
6522 	if (error) {
6523 		if (ap->a_ncookies != NULL) {
6524 			if (ap->a_cookies != NULL)
6525 				free(ap->a_cookies, M_TEMP);
6526 			ap->a_cookies = NULL;
6527 			*ap->a_ncookies = 0;
6528 		}
6529 		return (error);
6530 	}
6531 	if (ap->a_ncookies == NULL)
6532 		return (0);
6533 
6534 	KASSERT(ap->a_cookies,
6535 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6536 
6537 	*ap->a_cookies = realloc(*ap->a_cookies,
6538 	    (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6539 	(*ap->a_cookies)[*ap->a_ncookies] = off;
6540 	*ap->a_ncookies += 1;
6541 	return (0);
6542 }
6543 
6544 /*
6545  * The purpose of this routine is to remove granularity from accmode_t,
6546  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6547  * VADMIN and VAPPEND.
6548  *
6549  * If it returns 0, the caller is supposed to continue with the usual
6550  * access checks using 'accmode' as modified by this routine.  If it
6551  * returns nonzero value, the caller is supposed to return that value
6552  * as errno.
6553  *
6554  * Note that after this routine runs, accmode may be zero.
6555  */
6556 int
6557 vfs_unixify_accmode(accmode_t *accmode)
6558 {
6559 	/*
6560 	 * There is no way to specify explicit "deny" rule using
6561 	 * file mode or POSIX.1e ACLs.
6562 	 */
6563 	if (*accmode & VEXPLICIT_DENY) {
6564 		*accmode = 0;
6565 		return (0);
6566 	}
6567 
6568 	/*
6569 	 * None of these can be translated into usual access bits.
6570 	 * Also, the common case for NFSv4 ACLs is to not contain
6571 	 * either of these bits. Caller should check for VWRITE
6572 	 * on the containing directory instead.
6573 	 */
6574 	if (*accmode & (VDELETE_CHILD | VDELETE))
6575 		return (EPERM);
6576 
6577 	if (*accmode & VADMIN_PERMS) {
6578 		*accmode &= ~VADMIN_PERMS;
6579 		*accmode |= VADMIN;
6580 	}
6581 
6582 	/*
6583 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6584 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6585 	 */
6586 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6587 
6588 	return (0);
6589 }
6590 
6591 /*
6592  * Clear out a doomed vnode (if any) and replace it with a new one as long
6593  * as the fs is not being unmounted. Return the root vnode to the caller.
6594  */
6595 static int __noinline
6596 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6597 {
6598 	struct vnode *vp;
6599 	int error;
6600 
6601 restart:
6602 	if (mp->mnt_rootvnode != NULL) {
6603 		MNT_ILOCK(mp);
6604 		vp = mp->mnt_rootvnode;
6605 		if (vp != NULL) {
6606 			if (!VN_IS_DOOMED(vp)) {
6607 				vrefact(vp);
6608 				MNT_IUNLOCK(mp);
6609 				error = vn_lock(vp, flags);
6610 				if (error == 0) {
6611 					*vpp = vp;
6612 					return (0);
6613 				}
6614 				vrele(vp);
6615 				goto restart;
6616 			}
6617 			/*
6618 			 * Clear the old one.
6619 			 */
6620 			mp->mnt_rootvnode = NULL;
6621 		}
6622 		MNT_IUNLOCK(mp);
6623 		if (vp != NULL) {
6624 			vfs_op_barrier_wait(mp);
6625 			vrele(vp);
6626 		}
6627 	}
6628 	error = VFS_CACHEDROOT(mp, flags, vpp);
6629 	if (error != 0)
6630 		return (error);
6631 	if (mp->mnt_vfs_ops == 0) {
6632 		MNT_ILOCK(mp);
6633 		if (mp->mnt_vfs_ops != 0) {
6634 			MNT_IUNLOCK(mp);
6635 			return (0);
6636 		}
6637 		if (mp->mnt_rootvnode == NULL) {
6638 			vrefact(*vpp);
6639 			mp->mnt_rootvnode = *vpp;
6640 		} else {
6641 			if (mp->mnt_rootvnode != *vpp) {
6642 				if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6643 					panic("%s: mismatch between vnode returned "
6644 					    " by VFS_CACHEDROOT and the one cached "
6645 					    " (%p != %p)",
6646 					    __func__, *vpp, mp->mnt_rootvnode);
6647 				}
6648 			}
6649 		}
6650 		MNT_IUNLOCK(mp);
6651 	}
6652 	return (0);
6653 }
6654 
6655 int
6656 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6657 {
6658 	struct mount_pcpu *mpcpu;
6659 	struct vnode *vp;
6660 	int error;
6661 
6662 	if (!vfs_op_thread_enter(mp, mpcpu))
6663 		return (vfs_cache_root_fallback(mp, flags, vpp));
6664 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
6665 	if (vp == NULL || VN_IS_DOOMED(vp)) {
6666 		vfs_op_thread_exit(mp, mpcpu);
6667 		return (vfs_cache_root_fallback(mp, flags, vpp));
6668 	}
6669 	vrefact(vp);
6670 	vfs_op_thread_exit(mp, mpcpu);
6671 	error = vn_lock(vp, flags);
6672 	if (error != 0) {
6673 		vrele(vp);
6674 		return (vfs_cache_root_fallback(mp, flags, vpp));
6675 	}
6676 	*vpp = vp;
6677 	return (0);
6678 }
6679 
6680 struct vnode *
6681 vfs_cache_root_clear(struct mount *mp)
6682 {
6683 	struct vnode *vp;
6684 
6685 	/*
6686 	 * ops > 0 guarantees there is nobody who can see this vnode
6687 	 */
6688 	MPASS(mp->mnt_vfs_ops > 0);
6689 	vp = mp->mnt_rootvnode;
6690 	if (vp != NULL)
6691 		vn_seqc_write_begin(vp);
6692 	mp->mnt_rootvnode = NULL;
6693 	return (vp);
6694 }
6695 
6696 void
6697 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
6698 {
6699 
6700 	MPASS(mp->mnt_vfs_ops > 0);
6701 	vrefact(vp);
6702 	mp->mnt_rootvnode = vp;
6703 }
6704 
6705 /*
6706  * These are helper functions for filesystems to traverse all
6707  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
6708  *
6709  * This interface replaces MNT_VNODE_FOREACH.
6710  */
6711 
6712 struct vnode *
6713 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
6714 {
6715 	struct vnode *vp;
6716 
6717 	if (should_yield())
6718 		kern_yield(PRI_USER);
6719 	MNT_ILOCK(mp);
6720 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6721 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
6722 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
6723 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6724 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6725 			continue;
6726 		VI_LOCK(vp);
6727 		if (VN_IS_DOOMED(vp)) {
6728 			VI_UNLOCK(vp);
6729 			continue;
6730 		}
6731 		break;
6732 	}
6733 	if (vp == NULL) {
6734 		__mnt_vnode_markerfree_all(mvp, mp);
6735 		/* MNT_IUNLOCK(mp); -- done in above function */
6736 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
6737 		return (NULL);
6738 	}
6739 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6740 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6741 	MNT_IUNLOCK(mp);
6742 	return (vp);
6743 }
6744 
6745 struct vnode *
6746 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
6747 {
6748 	struct vnode *vp;
6749 
6750 	*mvp = vn_alloc_marker(mp);
6751 	MNT_ILOCK(mp);
6752 	MNT_REF(mp);
6753 
6754 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
6755 		/* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
6756 		if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
6757 			continue;
6758 		VI_LOCK(vp);
6759 		if (VN_IS_DOOMED(vp)) {
6760 			VI_UNLOCK(vp);
6761 			continue;
6762 		}
6763 		break;
6764 	}
6765 	if (vp == NULL) {
6766 		MNT_REL(mp);
6767 		MNT_IUNLOCK(mp);
6768 		vn_free_marker(*mvp);
6769 		*mvp = NULL;
6770 		return (NULL);
6771 	}
6772 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
6773 	MNT_IUNLOCK(mp);
6774 	return (vp);
6775 }
6776 
6777 void
6778 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
6779 {
6780 
6781 	if (*mvp == NULL) {
6782 		MNT_IUNLOCK(mp);
6783 		return;
6784 	}
6785 
6786 	mtx_assert(MNT_MTX(mp), MA_OWNED);
6787 
6788 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6789 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
6790 	MNT_REL(mp);
6791 	MNT_IUNLOCK(mp);
6792 	vn_free_marker(*mvp);
6793 	*mvp = NULL;
6794 }
6795 
6796 /*
6797  * These are helper functions for filesystems to traverse their
6798  * lazy vnodes.  See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
6799  */
6800 static void
6801 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6802 {
6803 
6804 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6805 
6806 	MNT_ILOCK(mp);
6807 	MNT_REL(mp);
6808 	MNT_IUNLOCK(mp);
6809 	vn_free_marker(*mvp);
6810 	*mvp = NULL;
6811 }
6812 
6813 /*
6814  * Relock the mp mount vnode list lock with the vp vnode interlock in the
6815  * conventional lock order during mnt_vnode_next_lazy iteration.
6816  *
6817  * On entry, the mount vnode list lock is held and the vnode interlock is not.
6818  * The list lock is dropped and reacquired.  On success, both locks are held.
6819  * On failure, the mount vnode list lock is held but the vnode interlock is
6820  * not, and the procedure may have yielded.
6821  */
6822 static bool
6823 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
6824     struct vnode *vp)
6825 {
6826 
6827 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
6828 	    TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
6829 	    ("%s: bad marker", __func__));
6830 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
6831 	    ("%s: inappropriate vnode", __func__));
6832 	ASSERT_VI_UNLOCKED(vp, __func__);
6833 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6834 
6835 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
6836 	TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
6837 
6838 	/*
6839 	 * Note we may be racing against vdrop which transitioned the hold
6840 	 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
6841 	 * if we are the only user after we get the interlock we will just
6842 	 * vdrop.
6843 	 */
6844 	vhold(vp);
6845 	mtx_unlock(&mp->mnt_listmtx);
6846 	VI_LOCK(vp);
6847 	if (VN_IS_DOOMED(vp)) {
6848 		VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
6849 		goto out_lost;
6850 	}
6851 	VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
6852 	/*
6853 	 * There is nothing to do if we are the last user.
6854 	 */
6855 	if (!refcount_release_if_not_last(&vp->v_holdcnt))
6856 		goto out_lost;
6857 	mtx_lock(&mp->mnt_listmtx);
6858 	return (true);
6859 out_lost:
6860 	vdropl(vp);
6861 	maybe_yield();
6862 	mtx_lock(&mp->mnt_listmtx);
6863 	return (false);
6864 }
6865 
6866 static struct vnode *
6867 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6868     void *cbarg)
6869 {
6870 	struct vnode *vp;
6871 
6872 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
6873 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
6874 restart:
6875 	vp = TAILQ_NEXT(*mvp, v_lazylist);
6876 	while (vp != NULL) {
6877 		if (vp->v_type == VMARKER) {
6878 			vp = TAILQ_NEXT(vp, v_lazylist);
6879 			continue;
6880 		}
6881 		/*
6882 		 * See if we want to process the vnode. Note we may encounter a
6883 		 * long string of vnodes we don't care about and hog the list
6884 		 * as a result. Check for it and requeue the marker.
6885 		 */
6886 		VNPASS(!VN_IS_DOOMED(vp), vp);
6887 		if (!cb(vp, cbarg)) {
6888 			if (!should_yield()) {
6889 				vp = TAILQ_NEXT(vp, v_lazylist);
6890 				continue;
6891 			}
6892 			TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
6893 			    v_lazylist);
6894 			TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
6895 			    v_lazylist);
6896 			mtx_unlock(&mp->mnt_listmtx);
6897 			kern_yield(PRI_USER);
6898 			mtx_lock(&mp->mnt_listmtx);
6899 			goto restart;
6900 		}
6901 		/*
6902 		 * Try-lock because this is the wrong lock order.
6903 		 */
6904 		if (!VI_TRYLOCK(vp) &&
6905 		    !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
6906 			goto restart;
6907 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
6908 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
6909 		    ("alien vnode on the lazy list %p %p", vp, mp));
6910 		VNPASS(vp->v_mount == mp, vp);
6911 		VNPASS(!VN_IS_DOOMED(vp), vp);
6912 		break;
6913 	}
6914 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6915 
6916 	/* Check if we are done */
6917 	if (vp == NULL) {
6918 		mtx_unlock(&mp->mnt_listmtx);
6919 		mnt_vnode_markerfree_lazy(mvp, mp);
6920 		return (NULL);
6921 	}
6922 	TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
6923 	mtx_unlock(&mp->mnt_listmtx);
6924 	ASSERT_VI_LOCKED(vp, "lazy iter");
6925 	return (vp);
6926 }
6927 
6928 struct vnode *
6929 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6930     void *cbarg)
6931 {
6932 
6933 	if (should_yield())
6934 		kern_yield(PRI_USER);
6935 	mtx_lock(&mp->mnt_listmtx);
6936 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6937 }
6938 
6939 struct vnode *
6940 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
6941     void *cbarg)
6942 {
6943 	struct vnode *vp;
6944 
6945 	if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
6946 		return (NULL);
6947 
6948 	*mvp = vn_alloc_marker(mp);
6949 	MNT_ILOCK(mp);
6950 	MNT_REF(mp);
6951 	MNT_IUNLOCK(mp);
6952 
6953 	mtx_lock(&mp->mnt_listmtx);
6954 	vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
6955 	if (vp == NULL) {
6956 		mtx_unlock(&mp->mnt_listmtx);
6957 		mnt_vnode_markerfree_lazy(mvp, mp);
6958 		return (NULL);
6959 	}
6960 	TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
6961 	return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
6962 }
6963 
6964 void
6965 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
6966 {
6967 
6968 	if (*mvp == NULL)
6969 		return;
6970 
6971 	mtx_lock(&mp->mnt_listmtx);
6972 	TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
6973 	mtx_unlock(&mp->mnt_listmtx);
6974 	mnt_vnode_markerfree_lazy(mvp, mp);
6975 }
6976 
6977 int
6978 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
6979 {
6980 
6981 	if ((cnp->cn_flags & NOEXECCHECK) != 0) {
6982 		cnp->cn_flags &= ~NOEXECCHECK;
6983 		return (0);
6984 	}
6985 
6986 	return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
6987 }
6988 
6989 /*
6990  * Do not use this variant unless you have means other than the hold count
6991  * to prevent the vnode from getting freed.
6992  */
6993 void
6994 vn_seqc_write_begin_locked(struct vnode *vp)
6995 {
6996 
6997 	ASSERT_VI_LOCKED(vp, __func__);
6998 	VNPASS(vp->v_holdcnt > 0, vp);
6999 	VNPASS(vp->v_seqc_users >= 0, vp);
7000 	vp->v_seqc_users++;
7001 	if (vp->v_seqc_users == 1)
7002 		seqc_sleepable_write_begin(&vp->v_seqc);
7003 }
7004 
7005 void
7006 vn_seqc_write_begin(struct vnode *vp)
7007 {
7008 
7009 	VI_LOCK(vp);
7010 	vn_seqc_write_begin_locked(vp);
7011 	VI_UNLOCK(vp);
7012 }
7013 
7014 void
7015 vn_seqc_write_end_locked(struct vnode *vp)
7016 {
7017 
7018 	ASSERT_VI_LOCKED(vp, __func__);
7019 	VNPASS(vp->v_seqc_users > 0, vp);
7020 	vp->v_seqc_users--;
7021 	if (vp->v_seqc_users == 0)
7022 		seqc_sleepable_write_end(&vp->v_seqc);
7023 }
7024 
7025 void
7026 vn_seqc_write_end(struct vnode *vp)
7027 {
7028 
7029 	VI_LOCK(vp);
7030 	vn_seqc_write_end_locked(vp);
7031 	VI_UNLOCK(vp);
7032 }
7033 
7034 /*
7035  * Special case handling for allocating and freeing vnodes.
7036  *
7037  * The counter remains unchanged on free so that a doomed vnode will
7038  * keep testing as in modify as long as it is accessible with SMR.
7039  */
7040 static void
7041 vn_seqc_init(struct vnode *vp)
7042 {
7043 
7044 	vp->v_seqc = 0;
7045 	vp->v_seqc_users = 0;
7046 }
7047 
7048 static void
7049 vn_seqc_write_end_free(struct vnode *vp)
7050 {
7051 
7052 	VNPASS(seqc_in_modify(vp->v_seqc), vp);
7053 	VNPASS(vp->v_seqc_users == 1, vp);
7054 }
7055 
7056 void
7057 vn_irflag_set_locked(struct vnode *vp, short toset)
7058 {
7059 	short flags;
7060 
7061 	ASSERT_VI_LOCKED(vp, __func__);
7062 	flags = vn_irflag_read(vp);
7063 	VNASSERT((flags & toset) == 0, vp,
7064 	    ("%s: some of the passed flags already set (have %d, passed %d)\n",
7065 	    __func__, flags, toset));
7066 	atomic_store_short(&vp->v_irflag, flags | toset);
7067 }
7068 
7069 void
7070 vn_irflag_set(struct vnode *vp, short toset)
7071 {
7072 
7073 	VI_LOCK(vp);
7074 	vn_irflag_set_locked(vp, toset);
7075 	VI_UNLOCK(vp);
7076 }
7077 
7078 void
7079 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7080 {
7081 	short flags;
7082 
7083 	ASSERT_VI_LOCKED(vp, __func__);
7084 	flags = vn_irflag_read(vp);
7085 	atomic_store_short(&vp->v_irflag, flags | toset);
7086 }
7087 
7088 void
7089 vn_irflag_set_cond(struct vnode *vp, short toset)
7090 {
7091 
7092 	VI_LOCK(vp);
7093 	vn_irflag_set_cond_locked(vp, toset);
7094 	VI_UNLOCK(vp);
7095 }
7096 
7097 void
7098 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7099 {
7100 	short flags;
7101 
7102 	ASSERT_VI_LOCKED(vp, __func__);
7103 	flags = vn_irflag_read(vp);
7104 	VNASSERT((flags & tounset) == tounset, vp,
7105 	    ("%s: some of the passed flags not set (have %d, passed %d)\n",
7106 	    __func__, flags, tounset));
7107 	atomic_store_short(&vp->v_irflag, flags & ~tounset);
7108 }
7109 
7110 void
7111 vn_irflag_unset(struct vnode *vp, short tounset)
7112 {
7113 
7114 	VI_LOCK(vp);
7115 	vn_irflag_unset_locked(vp, tounset);
7116 	VI_UNLOCK(vp);
7117 }
7118 
7119 int
7120 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7121 {
7122 	struct vattr vattr;
7123 	int error;
7124 
7125 	ASSERT_VOP_LOCKED(vp, __func__);
7126 	error = VOP_GETATTR(vp, &vattr, cred);
7127 	if (__predict_true(error == 0))
7128 		*size = vattr.va_size;
7129 	return (error);
7130 }
7131 
7132 int
7133 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7134 {
7135 	int error;
7136 
7137 	VOP_LOCK(vp, LK_SHARED);
7138 	error = vn_getsize_locked(vp, size, cred);
7139 	VOP_UNLOCK(vp);
7140 	return (error);
7141 }
7142 
7143 #ifdef INVARIANTS
7144 void
7145 vn_set_state_validate(struct vnode *vp, enum vstate state)
7146 {
7147 
7148 	switch (vp->v_state) {
7149 	case VSTATE_UNINITIALIZED:
7150 		switch (state) {
7151 		case VSTATE_CONSTRUCTED:
7152 		case VSTATE_DESTROYING:
7153 			return;
7154 		default:
7155 			break;
7156 		}
7157 		break;
7158 	case VSTATE_CONSTRUCTED:
7159 		ASSERT_VOP_ELOCKED(vp, __func__);
7160 		switch (state) {
7161 		case VSTATE_DESTROYING:
7162 			return;
7163 		default:
7164 			break;
7165 		}
7166 		break;
7167 	case VSTATE_DESTROYING:
7168 		ASSERT_VOP_ELOCKED(vp, __func__);
7169 		switch (state) {
7170 		case VSTATE_DEAD:
7171 			return;
7172 		default:
7173 			break;
7174 		}
7175 		break;
7176 	case VSTATE_DEAD:
7177 		switch (state) {
7178 		case VSTATE_UNINITIALIZED:
7179 			return;
7180 		default:
7181 			break;
7182 		}
7183 		break;
7184 	}
7185 
7186 	vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7187 	panic("invalid state transition %d -> %d\n", vp->v_state, state);
7188 }
7189 #endif
7190