xref: /freebsd/sys/kern/vfs_subr.c (revision eacae6dc66aa881c102f11e2003174eea7e8af74)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_compat.h"
45 #include "opt_ddb.h"
46 #include "opt_watchdog.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bio.h>
51 #include <sys/buf.h>
52 #include <sys/condvar.h>
53 #include <sys/conf.h>
54 #include <sys/dirent.h>
55 #include <sys/event.h>
56 #include <sys/eventhandler.h>
57 #include <sys/extattr.h>
58 #include <sys/file.h>
59 #include <sys/fcntl.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/lockf.h>
65 #include <sys/malloc.h>
66 #include <sys/mount.h>
67 #include <sys/namei.h>
68 #include <sys/pctrie.h>
69 #include <sys/priv.h>
70 #include <sys/reboot.h>
71 #include <sys/refcount.h>
72 #include <sys/rwlock.h>
73 #include <sys/sched.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sysctl.h>
78 #include <sys/syslog.h>
79 #include <sys/vmmeter.h>
80 #include <sys/vnode.h>
81 #include <sys/watchdog.h>
82 
83 #include <machine/stdarg.h>
84 
85 #include <security/mac/mac_framework.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_extern.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_kern.h>
94 #include <vm/uma.h>
95 
96 #ifdef DDB
97 #include <ddb/ddb.h>
98 #endif
99 
100 static void	delmntque(struct vnode *vp);
101 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
102 		    int slpflag, int slptimeo);
103 static void	syncer_shutdown(void *arg, int howto);
104 static int	vtryrecycle(struct vnode *vp);
105 static void	v_init_counters(struct vnode *);
106 static void	v_incr_usecount(struct vnode *);
107 static void	v_incr_devcount(struct vnode *);
108 static void	v_decr_devcount(struct vnode *);
109 static void	vnlru_free(int);
110 static void	vgonel(struct vnode *);
111 static void	vfs_knllock(void *arg);
112 static void	vfs_knlunlock(void *arg);
113 static void	vfs_knl_assert_locked(void *arg);
114 static void	vfs_knl_assert_unlocked(void *arg);
115 static void	destroy_vpollinfo(struct vpollinfo *vi);
116 
117 /*
118  * Number of vnodes in existence.  Increased whenever getnewvnode()
119  * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
120  */
121 static unsigned long	numvnodes;
122 
123 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
124     "Number of vnodes in existence");
125 
126 static u_long vnodes_created;
127 SYSCTL_ULONG(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
128     0, "Number of vnodes created by getnewvnode");
129 
130 /*
131  * Conversion tables for conversion from vnode types to inode formats
132  * and back.
133  */
134 enum vtype iftovt_tab[16] = {
135 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
136 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
137 };
138 int vttoif_tab[10] = {
139 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
140 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
141 };
142 
143 /*
144  * List of vnodes that are ready for recycling.
145  */
146 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
147 
148 /*
149  * "Free" vnode target.  Free vnodes are rarely completely free, but are
150  * just ones that are cheap to recycle.  Usually they are for files which
151  * have been stat'd but not read; these usually have inode and namecache
152  * data attached to them.  This target is the preferred minimum size of a
153  * sub-cache consisting mostly of such files. The system balances the size
154  * of this sub-cache with its complement to try to prevent either from
155  * thrashing while the other is relatively inactive.  The targets express
156  * a preference for the best balance.
157  *
158  * "Above" this target there are 2 further targets (watermarks) related
159  * to recyling of free vnodes.  In the best-operating case, the cache is
160  * exactly full, the free list has size between vlowat and vhiwat above the
161  * free target, and recycling from it and normal use maintains this state.
162  * Sometimes the free list is below vlowat or even empty, but this state
163  * is even better for immediate use provided the cache is not full.
164  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
165  * ones) to reach one of these states.  The watermarks are currently hard-
166  * coded as 4% and 9% of the available space higher.  These and the default
167  * of 25% for wantfreevnodes are too large if the memory size is large.
168  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
169  * whenever vnlru_proc() becomes active.
170  */
171 static u_long wantfreevnodes;
172 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
173     &wantfreevnodes, 0, "Target for minimum number of \"free\" vnodes");
174 static u_long freevnodes;
175 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
176     &freevnodes, 0, "Number of \"free\" vnodes");
177 
178 static u_long recycles_count;
179 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 0,
180     "Number of vnodes recycled to meet vnode cache targets");
181 
182 /*
183  * Various variables used for debugging the new implementation of
184  * reassignbuf().
185  * XXX these are probably of (very) limited utility now.
186  */
187 static int reassignbufcalls;
188 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
189     "Number of calls to reassignbuf");
190 
191 static u_long free_owe_inact;
192 SYSCTL_ULONG(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact, 0,
193     "Number of times free vnodes kept on active list due to VFS "
194     "owing inactivation");
195 
196 /* To keep more than one thread at a time from running vfs_getnewfsid */
197 static struct mtx mntid_mtx;
198 
199 /*
200  * Lock for any access to the following:
201  *	vnode_free_list
202  *	numvnodes
203  *	freevnodes
204  */
205 static struct mtx vnode_free_list_mtx;
206 
207 /* Publicly exported FS */
208 struct nfs_public nfs_pub;
209 
210 static uma_zone_t buf_trie_zone;
211 
212 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
213 static uma_zone_t vnode_zone;
214 static uma_zone_t vnodepoll_zone;
215 
216 /*
217  * The workitem queue.
218  *
219  * It is useful to delay writes of file data and filesystem metadata
220  * for tens of seconds so that quickly created and deleted files need
221  * not waste disk bandwidth being created and removed. To realize this,
222  * we append vnodes to a "workitem" queue. When running with a soft
223  * updates implementation, most pending metadata dependencies should
224  * not wait for more than a few seconds. Thus, mounted on block devices
225  * are delayed only about a half the time that file data is delayed.
226  * Similarly, directory updates are more critical, so are only delayed
227  * about a third the time that file data is delayed. Thus, there are
228  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
229  * one each second (driven off the filesystem syncer process). The
230  * syncer_delayno variable indicates the next queue that is to be processed.
231  * Items that need to be processed soon are placed in this queue:
232  *
233  *	syncer_workitem_pending[syncer_delayno]
234  *
235  * A delay of fifteen seconds is done by placing the request fifteen
236  * entries later in the queue:
237  *
238  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
239  *
240  */
241 static int syncer_delayno;
242 static long syncer_mask;
243 LIST_HEAD(synclist, bufobj);
244 static struct synclist *syncer_workitem_pending;
245 /*
246  * The sync_mtx protects:
247  *	bo->bo_synclist
248  *	sync_vnode_count
249  *	syncer_delayno
250  *	syncer_state
251  *	syncer_workitem_pending
252  *	syncer_worklist_len
253  *	rushjob
254  */
255 static struct mtx sync_mtx;
256 static struct cv sync_wakeup;
257 
258 #define SYNCER_MAXDELAY		32
259 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
260 static int syncdelay = 30;		/* max time to delay syncing data */
261 static int filedelay = 30;		/* time to delay syncing files */
262 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
263     "Time to delay syncing files (in seconds)");
264 static int dirdelay = 29;		/* time to delay syncing directories */
265 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
266     "Time to delay syncing directories (in seconds)");
267 static int metadelay = 28;		/* time to delay syncing metadata */
268 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
269     "Time to delay syncing metadata (in seconds)");
270 static int rushjob;		/* number of slots to run ASAP */
271 static int stat_rush_requests;	/* number of times I/O speeded up */
272 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
273     "Number of times I/O speeded up (rush requests)");
274 
275 /*
276  * When shutting down the syncer, run it at four times normal speed.
277  */
278 #define SYNCER_SHUTDOWN_SPEEDUP		4
279 static int sync_vnode_count;
280 static int syncer_worklist_len;
281 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
282     syncer_state;
283 
284 /* Target for maximum number of vnodes. */
285 int desiredvnodes;
286 static int gapvnodes;		/* gap between wanted and desired */
287 static int vhiwat;		/* enough extras after expansion */
288 static int vlowat;		/* minimal extras before expansion */
289 static int vstir;		/* nonzero to stir non-free vnodes */
290 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
291 
292 static int
293 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS)
294 {
295 	int error, old_desiredvnodes;
296 
297 	old_desiredvnodes = desiredvnodes;
298 	if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0)
299 		return (error);
300 	if (old_desiredvnodes != desiredvnodes) {
301 		wantfreevnodes = desiredvnodes / 4;
302 		/* XXX locking seems to be incomplete. */
303 		vfs_hash_changesize(desiredvnodes);
304 		cache_changesize(desiredvnodes);
305 	}
306 	return (0);
307 }
308 
309 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
310     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0,
311     sysctl_update_desiredvnodes, "I", "Target for maximum number of vnodes");
312 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
313     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
314 static int vnlru_nowhere;
315 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
316     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
317 
318 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
319 static int vnsz2log;
320 
321 /*
322  * Support for the bufobj clean & dirty pctrie.
323  */
324 static void *
325 buf_trie_alloc(struct pctrie *ptree)
326 {
327 
328 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
329 }
330 
331 static void
332 buf_trie_free(struct pctrie *ptree, void *node)
333 {
334 
335 	uma_zfree(buf_trie_zone, node);
336 }
337 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
338 
339 /*
340  * Initialize the vnode management data structures.
341  *
342  * Reevaluate the following cap on the number of vnodes after the physical
343  * memory size exceeds 512GB.  In the limit, as the physical memory size
344  * grows, the ratio of the memory size in KB to to vnodes approaches 64:1.
345  */
346 #ifndef	MAXVNODES_MAX
347 #define	MAXVNODES_MAX	(512 * 1024 * 1024 / 64)	/* 8M */
348 #endif
349 
350 /*
351  * Initialize a vnode as it first enters the zone.
352  */
353 static int
354 vnode_init(void *mem, int size, int flags)
355 {
356 	struct vnode *vp;
357 	struct bufobj *bo;
358 
359 	vp = mem;
360 	bzero(vp, size);
361 	/*
362 	 * Setup locks.
363 	 */
364 	vp->v_vnlock = &vp->v_lock;
365 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
366 	/*
367 	 * By default, don't allow shared locks unless filesystems opt-in.
368 	 */
369 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
370 	    LK_NOSHARE | LK_IS_VNODE);
371 	/*
372 	 * Initialize bufobj.
373 	 */
374 	bo = &vp->v_bufobj;
375 	bo->__bo_vnode = vp;
376 	rw_init(BO_LOCKPTR(bo), "bufobj interlock");
377 	bo->bo_private = vp;
378 	TAILQ_INIT(&bo->bo_clean.bv_hd);
379 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
380 	/*
381 	 * Initialize namecache.
382 	 */
383 	LIST_INIT(&vp->v_cache_src);
384 	TAILQ_INIT(&vp->v_cache_dst);
385 	/*
386 	 * Initialize rangelocks.
387 	 */
388 	rangelock_init(&vp->v_rl);
389 	return (0);
390 }
391 
392 /*
393  * Free a vnode when it is cleared from the zone.
394  */
395 static void
396 vnode_fini(void *mem, int size)
397 {
398 	struct vnode *vp;
399 	struct bufobj *bo;
400 
401 	vp = mem;
402 	rangelock_destroy(&vp->v_rl);
403 	lockdestroy(vp->v_vnlock);
404 	mtx_destroy(&vp->v_interlock);
405 	bo = &vp->v_bufobj;
406 	rw_destroy(BO_LOCKPTR(bo));
407 }
408 
409 static void
410 vntblinit(void *dummy __unused)
411 {
412 	u_int i;
413 	int physvnodes, virtvnodes;
414 
415 	/*
416 	 * Desiredvnodes is a function of the physical memory size and the
417 	 * kernel's heap size.  Generally speaking, it scales with the
418 	 * physical memory size.  The ratio of desiredvnodes to the physical
419 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
420 	 * Thereafter, the
421 	 * marginal ratio of desiredvnodes to the physical memory size is
422 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
423 	 * size.  The memory required by desiredvnodes vnodes and vm objects
424 	 * must not exceed 1/7th of the kernel's heap size.
425 	 */
426 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
427 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
428 	virtvnodes = vm_kmem_size / (7 * (sizeof(struct vm_object) +
429 	    sizeof(struct vnode)));
430 	desiredvnodes = min(physvnodes, virtvnodes);
431 	if (desiredvnodes > MAXVNODES_MAX) {
432 		if (bootverbose)
433 			printf("Reducing kern.maxvnodes %d -> %d\n",
434 			    desiredvnodes, MAXVNODES_MAX);
435 		desiredvnodes = MAXVNODES_MAX;
436 	}
437 	wantfreevnodes = desiredvnodes / 4;
438 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
439 	TAILQ_INIT(&vnode_free_list);
440 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
441 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
442 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
443 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
444 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
445 	/*
446 	 * Preallocate enough nodes to support one-per buf so that
447 	 * we can not fail an insert.  reassignbuf() callers can not
448 	 * tolerate the insertion failure.
449 	 */
450 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
451 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
452 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
453 	uma_prealloc(buf_trie_zone, nbuf);
454 	/*
455 	 * Initialize the filesystem syncer.
456 	 */
457 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
458 	    &syncer_mask);
459 	syncer_maxdelay = syncer_mask + 1;
460 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
461 	cv_init(&sync_wakeup, "syncer");
462 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
463 		vnsz2log++;
464 	vnsz2log--;
465 }
466 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
467 
468 
469 /*
470  * Mark a mount point as busy. Used to synchronize access and to delay
471  * unmounting. Eventually, mountlist_mtx is not released on failure.
472  *
473  * vfs_busy() is a custom lock, it can block the caller.
474  * vfs_busy() only sleeps if the unmount is active on the mount point.
475  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
476  * vnode belonging to mp.
477  *
478  * Lookup uses vfs_busy() to traverse mount points.
479  * root fs			var fs
480  * / vnode lock		A	/ vnode lock (/var)		D
481  * /var vnode lock	B	/log vnode lock(/var/log)	E
482  * vfs_busy lock	C	vfs_busy lock			F
483  *
484  * Within each file system, the lock order is C->A->B and F->D->E.
485  *
486  * When traversing across mounts, the system follows that lock order:
487  *
488  *        C->A->B
489  *              |
490  *              +->F->D->E
491  *
492  * The lookup() process for namei("/var") illustrates the process:
493  *  VOP_LOOKUP() obtains B while A is held
494  *  vfs_busy() obtains a shared lock on F while A and B are held
495  *  vput() releases lock on B
496  *  vput() releases lock on A
497  *  VFS_ROOT() obtains lock on D while shared lock on F is held
498  *  vfs_unbusy() releases shared lock on F
499  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
500  *    Attempt to lock A (instead of vp_crossmp) while D is held would
501  *    violate the global order, causing deadlocks.
502  *
503  * dounmount() locks B while F is drained.
504  */
505 int
506 vfs_busy(struct mount *mp, int flags)
507 {
508 
509 	MPASS((flags & ~MBF_MASK) == 0);
510 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
511 
512 	MNT_ILOCK(mp);
513 	MNT_REF(mp);
514 	/*
515 	 * If mount point is currenly being unmounted, sleep until the
516 	 * mount point fate is decided.  If thread doing the unmounting fails,
517 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
518 	 * that this mount point has survived the unmount attempt and vfs_busy
519 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
520 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
521 	 * about to be really destroyed.  vfs_busy needs to release its
522 	 * reference on the mount point in this case and return with ENOENT,
523 	 * telling the caller that mount mount it tried to busy is no longer
524 	 * valid.
525 	 */
526 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
527 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
528 			MNT_REL(mp);
529 			MNT_IUNLOCK(mp);
530 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
531 			    __func__);
532 			return (ENOENT);
533 		}
534 		if (flags & MBF_MNTLSTLOCK)
535 			mtx_unlock(&mountlist_mtx);
536 		mp->mnt_kern_flag |= MNTK_MWAIT;
537 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
538 		if (flags & MBF_MNTLSTLOCK)
539 			mtx_lock(&mountlist_mtx);
540 		MNT_ILOCK(mp);
541 	}
542 	if (flags & MBF_MNTLSTLOCK)
543 		mtx_unlock(&mountlist_mtx);
544 	mp->mnt_lockref++;
545 	MNT_IUNLOCK(mp);
546 	return (0);
547 }
548 
549 /*
550  * Free a busy filesystem.
551  */
552 void
553 vfs_unbusy(struct mount *mp)
554 {
555 
556 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
557 	MNT_ILOCK(mp);
558 	MNT_REL(mp);
559 	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
560 	mp->mnt_lockref--;
561 	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
562 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
563 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
564 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
565 		wakeup(&mp->mnt_lockref);
566 	}
567 	MNT_IUNLOCK(mp);
568 }
569 
570 /*
571  * Lookup a mount point by filesystem identifier.
572  */
573 struct mount *
574 vfs_getvfs(fsid_t *fsid)
575 {
576 	struct mount *mp;
577 
578 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
579 	mtx_lock(&mountlist_mtx);
580 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
581 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
582 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
583 			vfs_ref(mp);
584 			mtx_unlock(&mountlist_mtx);
585 			return (mp);
586 		}
587 	}
588 	mtx_unlock(&mountlist_mtx);
589 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
590 	return ((struct mount *) 0);
591 }
592 
593 /*
594  * Lookup a mount point by filesystem identifier, busying it before
595  * returning.
596  *
597  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
598  * cache for popular filesystem identifiers.  The cache is lockess, using
599  * the fact that struct mount's are never freed.  In worst case we may
600  * get pointer to unmounted or even different filesystem, so we have to
601  * check what we got, and go slow way if so.
602  */
603 struct mount *
604 vfs_busyfs(fsid_t *fsid)
605 {
606 #define	FSID_CACHE_SIZE	256
607 	typedef struct mount * volatile vmp_t;
608 	static vmp_t cache[FSID_CACHE_SIZE];
609 	struct mount *mp;
610 	int error;
611 	uint32_t hash;
612 
613 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
614 	hash = fsid->val[0] ^ fsid->val[1];
615 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
616 	mp = cache[hash];
617 	if (mp == NULL ||
618 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
619 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
620 		goto slow;
621 	if (vfs_busy(mp, 0) != 0) {
622 		cache[hash] = NULL;
623 		goto slow;
624 	}
625 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
626 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
627 		return (mp);
628 	else
629 	    vfs_unbusy(mp);
630 
631 slow:
632 	mtx_lock(&mountlist_mtx);
633 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
634 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
635 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
636 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
637 			if (error) {
638 				cache[hash] = NULL;
639 				mtx_unlock(&mountlist_mtx);
640 				return (NULL);
641 			}
642 			cache[hash] = mp;
643 			return (mp);
644 		}
645 	}
646 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
647 	mtx_unlock(&mountlist_mtx);
648 	return ((struct mount *) 0);
649 }
650 
651 /*
652  * Check if a user can access privileged mount options.
653  */
654 int
655 vfs_suser(struct mount *mp, struct thread *td)
656 {
657 	int error;
658 
659 	/*
660 	 * If the thread is jailed, but this is not a jail-friendly file
661 	 * system, deny immediately.
662 	 */
663 	if (!(mp->mnt_vfc->vfc_flags & VFCF_JAIL) && jailed(td->td_ucred))
664 		return (EPERM);
665 
666 	/*
667 	 * If the file system was mounted outside the jail of the calling
668 	 * thread, deny immediately.
669 	 */
670 	if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
671 		return (EPERM);
672 
673 	/*
674 	 * If file system supports delegated administration, we don't check
675 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
676 	 * by the file system itself.
677 	 * If this is not the user that did original mount, we check for
678 	 * the PRIV_VFS_MOUNT_OWNER privilege.
679 	 */
680 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
681 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
682 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
683 			return (error);
684 	}
685 	return (0);
686 }
687 
688 /*
689  * Get a new unique fsid.  Try to make its val[0] unique, since this value
690  * will be used to create fake device numbers for stat().  Also try (but
691  * not so hard) make its val[0] unique mod 2^16, since some emulators only
692  * support 16-bit device numbers.  We end up with unique val[0]'s for the
693  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
694  *
695  * Keep in mind that several mounts may be running in parallel.  Starting
696  * the search one past where the previous search terminated is both a
697  * micro-optimization and a defense against returning the same fsid to
698  * different mounts.
699  */
700 void
701 vfs_getnewfsid(struct mount *mp)
702 {
703 	static uint16_t mntid_base;
704 	struct mount *nmp;
705 	fsid_t tfsid;
706 	int mtype;
707 
708 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
709 	mtx_lock(&mntid_mtx);
710 	mtype = mp->mnt_vfc->vfc_typenum;
711 	tfsid.val[1] = mtype;
712 	mtype = (mtype & 0xFF) << 24;
713 	for (;;) {
714 		tfsid.val[0] = makedev(255,
715 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
716 		mntid_base++;
717 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
718 			break;
719 		vfs_rel(nmp);
720 	}
721 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
722 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
723 	mtx_unlock(&mntid_mtx);
724 }
725 
726 /*
727  * Knob to control the precision of file timestamps:
728  *
729  *   0 = seconds only; nanoseconds zeroed.
730  *   1 = seconds and nanoseconds, accurate within 1/HZ.
731  *   2 = seconds and nanoseconds, truncated to microseconds.
732  * >=3 = seconds and nanoseconds, maximum precision.
733  */
734 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
735 
736 static int timestamp_precision = TSP_USEC;
737 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
738     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
739     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to ms, "
740     "3+: sec + ns (max. precision))");
741 
742 /*
743  * Get a current timestamp.
744  */
745 void
746 vfs_timestamp(struct timespec *tsp)
747 {
748 	struct timeval tv;
749 
750 	switch (timestamp_precision) {
751 	case TSP_SEC:
752 		tsp->tv_sec = time_second;
753 		tsp->tv_nsec = 0;
754 		break;
755 	case TSP_HZ:
756 		getnanotime(tsp);
757 		break;
758 	case TSP_USEC:
759 		microtime(&tv);
760 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
761 		break;
762 	case TSP_NSEC:
763 	default:
764 		nanotime(tsp);
765 		break;
766 	}
767 }
768 
769 /*
770  * Set vnode attributes to VNOVAL
771  */
772 void
773 vattr_null(struct vattr *vap)
774 {
775 
776 	vap->va_type = VNON;
777 	vap->va_size = VNOVAL;
778 	vap->va_bytes = VNOVAL;
779 	vap->va_mode = VNOVAL;
780 	vap->va_nlink = VNOVAL;
781 	vap->va_uid = VNOVAL;
782 	vap->va_gid = VNOVAL;
783 	vap->va_fsid = VNOVAL;
784 	vap->va_fileid = VNOVAL;
785 	vap->va_blocksize = VNOVAL;
786 	vap->va_rdev = VNOVAL;
787 	vap->va_atime.tv_sec = VNOVAL;
788 	vap->va_atime.tv_nsec = VNOVAL;
789 	vap->va_mtime.tv_sec = VNOVAL;
790 	vap->va_mtime.tv_nsec = VNOVAL;
791 	vap->va_ctime.tv_sec = VNOVAL;
792 	vap->va_ctime.tv_nsec = VNOVAL;
793 	vap->va_birthtime.tv_sec = VNOVAL;
794 	vap->va_birthtime.tv_nsec = VNOVAL;
795 	vap->va_flags = VNOVAL;
796 	vap->va_gen = VNOVAL;
797 	vap->va_vaflags = 0;
798 }
799 
800 /*
801  * This routine is called when we have too many vnodes.  It attempts
802  * to free <count> vnodes and will potentially free vnodes that still
803  * have VM backing store (VM backing store is typically the cause
804  * of a vnode blowout so we want to do this).  Therefore, this operation
805  * is not considered cheap.
806  *
807  * A number of conditions may prevent a vnode from being reclaimed.
808  * the buffer cache may have references on the vnode, a directory
809  * vnode may still have references due to the namei cache representing
810  * underlying files, or the vnode may be in active use.   It is not
811  * desireable to reuse such vnodes.  These conditions may cause the
812  * number of vnodes to reach some minimum value regardless of what
813  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
814  */
815 static int
816 vlrureclaim(struct mount *mp, int reclaim_nc_src, int trigger)
817 {
818 	struct vnode *vp;
819 	int count, done, target;
820 
821 	done = 0;
822 	vn_start_write(NULL, &mp, V_WAIT);
823 	MNT_ILOCK(mp);
824 	count = mp->mnt_nvnodelistsize;
825 	target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1);
826 	target = target / 10 + 1;
827 	while (count != 0 && done < target) {
828 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
829 		while (vp != NULL && vp->v_type == VMARKER)
830 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
831 		if (vp == NULL)
832 			break;
833 		/*
834 		 * XXX LRU is completely broken for non-free vnodes.  First
835 		 * by calling here in mountpoint order, then by moving
836 		 * unselected vnodes to the end here, and most grossly by
837 		 * removing the vlruvp() function that was supposed to
838 		 * maintain the order.  (This function was born broken
839 		 * since syncer problems prevented it doing anything.)  The
840 		 * order is closer to LRC (C = Created).
841 		 *
842 		 * LRU reclaiming of vnodes seems to have last worked in
843 		 * FreeBSD-3 where LRU wasn't mentioned under any spelling.
844 		 * Then there was no hold count, and inactive vnodes were
845 		 * simply put on the free list in LRU order.  The separate
846 		 * lists also break LRU.  We prefer to reclaim from the
847 		 * free list for technical reasons.  This tends to thrash
848 		 * the free list to keep very unrecently used held vnodes.
849 		 * The problem is mitigated by keeping the free list large.
850 		 */
851 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
852 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
853 		--count;
854 		if (!VI_TRYLOCK(vp))
855 			goto next_iter;
856 		/*
857 		 * If it's been deconstructed already, it's still
858 		 * referenced, or it exceeds the trigger, skip it.
859 		 * Also skip free vnodes.  We are trying to make space
860 		 * to expand the free list, not reduce it.
861 		 */
862 		if (vp->v_usecount ||
863 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
864 		    ((vp->v_iflag & VI_FREE) != 0) ||
865 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
866 		    vp->v_object->resident_page_count > trigger)) {
867 			VI_UNLOCK(vp);
868 			goto next_iter;
869 		}
870 		MNT_IUNLOCK(mp);
871 		vholdl(vp);
872 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
873 			vdrop(vp);
874 			goto next_iter_mntunlocked;
875 		}
876 		VI_LOCK(vp);
877 		/*
878 		 * v_usecount may have been bumped after VOP_LOCK() dropped
879 		 * the vnode interlock and before it was locked again.
880 		 *
881 		 * It is not necessary to recheck VI_DOOMED because it can
882 		 * only be set by another thread that holds both the vnode
883 		 * lock and vnode interlock.  If another thread has the
884 		 * vnode lock before we get to VOP_LOCK() and obtains the
885 		 * vnode interlock after VOP_LOCK() drops the vnode
886 		 * interlock, the other thread will be unable to drop the
887 		 * vnode lock before our VOP_LOCK() call fails.
888 		 */
889 		if (vp->v_usecount ||
890 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
891 		    (vp->v_iflag & VI_FREE) != 0 ||
892 		    (vp->v_object != NULL &&
893 		    vp->v_object->resident_page_count > trigger)) {
894 			VOP_UNLOCK(vp, LK_INTERLOCK);
895 			vdrop(vp);
896 			goto next_iter_mntunlocked;
897 		}
898 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
899 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
900 		atomic_add_long(&recycles_count, 1);
901 		vgonel(vp);
902 		VOP_UNLOCK(vp, 0);
903 		vdropl(vp);
904 		done++;
905 next_iter_mntunlocked:
906 		if (!should_yield())
907 			goto relock_mnt;
908 		goto yield;
909 next_iter:
910 		if (!should_yield())
911 			continue;
912 		MNT_IUNLOCK(mp);
913 yield:
914 		kern_yield(PRI_USER);
915 relock_mnt:
916 		MNT_ILOCK(mp);
917 	}
918 	MNT_IUNLOCK(mp);
919 	vn_finished_write(mp);
920 	return done;
921 }
922 
923 /*
924  * Attempt to reduce the free list by the requested amount.
925  */
926 static void
927 vnlru_free(int count)
928 {
929 	struct vnode *vp;
930 
931 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
932 	for (; count > 0; count--) {
933 		vp = TAILQ_FIRST(&vnode_free_list);
934 		/*
935 		 * The list can be modified while the free_list_mtx
936 		 * has been dropped and vp could be NULL here.
937 		 */
938 		if (!vp)
939 			break;
940 		VNASSERT(vp->v_op != NULL, vp,
941 		    ("vnlru_free: vnode already reclaimed."));
942 		KASSERT((vp->v_iflag & VI_FREE) != 0,
943 		    ("Removing vnode not on freelist"));
944 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
945 		    ("Mangling active vnode"));
946 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
947 		/*
948 		 * Don't recycle if we can't get the interlock.
949 		 */
950 		if (!VI_TRYLOCK(vp)) {
951 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
952 			continue;
953 		}
954 		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
955 		    vp, ("vp inconsistent on freelist"));
956 
957 		/*
958 		 * The clear of VI_FREE prevents activation of the
959 		 * vnode.  There is no sense in putting the vnode on
960 		 * the mount point active list, only to remove it
961 		 * later during recycling.  Inline the relevant part
962 		 * of vholdl(), to avoid triggering assertions or
963 		 * activating.
964 		 */
965 		freevnodes--;
966 		vp->v_iflag &= ~VI_FREE;
967 		refcount_acquire(&vp->v_holdcnt);
968 
969 		mtx_unlock(&vnode_free_list_mtx);
970 		VI_UNLOCK(vp);
971 		vtryrecycle(vp);
972 		/*
973 		 * If the recycled succeeded this vdrop will actually free
974 		 * the vnode.  If not it will simply place it back on
975 		 * the free list.
976 		 */
977 		vdrop(vp);
978 		mtx_lock(&vnode_free_list_mtx);
979 	}
980 }
981 
982 /* XXX some names and initialization are bad for limits and watermarks. */
983 static int
984 vspace(void)
985 {
986 	int space;
987 
988 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
989 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
990 	vlowat = vhiwat / 2;
991 	if (numvnodes > desiredvnodes)
992 		return (0);
993 	space = desiredvnodes - numvnodes;
994 	if (freevnodes > wantfreevnodes)
995 		space += freevnodes - wantfreevnodes;
996 	return (space);
997 }
998 
999 /*
1000  * Attempt to recycle vnodes in a context that is always safe to block.
1001  * Calling vlrurecycle() from the bowels of filesystem code has some
1002  * interesting deadlock problems.
1003  */
1004 static struct proc *vnlruproc;
1005 static int vnlruproc_sig;
1006 
1007 static void
1008 vnlru_proc(void)
1009 {
1010 	struct mount *mp, *nmp;
1011 	unsigned long ofreevnodes, onumvnodes;
1012 	int done, force, reclaim_nc_src, trigger, usevnodes;
1013 
1014 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1015 	    SHUTDOWN_PRI_FIRST);
1016 
1017 	force = 0;
1018 	for (;;) {
1019 		kproc_suspend_check(vnlruproc);
1020 		mtx_lock(&vnode_free_list_mtx);
1021 		/*
1022 		 * If numvnodes is too large (due to desiredvnodes being
1023 		 * adjusted using its sysctl, or emergency growth), first
1024 		 * try to reduce it by discarding from the free list.
1025 		 */
1026 		if (numvnodes > desiredvnodes && freevnodes > 0)
1027 			vnlru_free(ulmin(numvnodes - desiredvnodes,
1028 			    freevnodes));
1029 		/*
1030 		 * Sleep if the vnode cache is in a good state.  This is
1031 		 * when it is not over-full and has space for about a 4%
1032 		 * or 9% expansion (by growing its size or inexcessively
1033 		 * reducing its free list).  Otherwise, try to reclaim
1034 		 * space for a 10% expansion.
1035 		 */
1036 		if (vstir && force == 0) {
1037 			force = 1;
1038 			vstir = 0;
1039 		}
1040 		if (vspace() >= vlowat && force == 0) {
1041 			vnlruproc_sig = 0;
1042 			wakeup(&vnlruproc_sig);
1043 			msleep(vnlruproc, &vnode_free_list_mtx,
1044 			    PVFS|PDROP, "vlruwt", hz);
1045 			continue;
1046 		}
1047 		mtx_unlock(&vnode_free_list_mtx);
1048 		done = 0;
1049 		ofreevnodes = freevnodes;
1050 		onumvnodes = numvnodes;
1051 		/*
1052 		 * Calculate parameters for recycling.  These are the same
1053 		 * throughout the loop to give some semblance of fairness.
1054 		 * The trigger point is to avoid recycling vnodes with lots
1055 		 * of resident pages.  We aren't trying to free memory; we
1056 		 * are trying to recycle or at least free vnodes.
1057 		 */
1058 		if (numvnodes <= desiredvnodes)
1059 			usevnodes = numvnodes - freevnodes;
1060 		else
1061 			usevnodes = numvnodes;
1062 		if (usevnodes <= 0)
1063 			usevnodes = 1;
1064 		/*
1065 		 * The trigger value is is chosen to give a conservatively
1066 		 * large value to ensure that it alone doesn't prevent
1067 		 * making progress.  The value can easily be so large that
1068 		 * it is effectively infinite in some congested and
1069 		 * misconfigured cases, and this is necessary.  Normally
1070 		 * it is about 8 to 100 (pages), which is quite large.
1071 		 */
1072 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1073 		if (force < 2)
1074 			trigger = vsmalltrigger;
1075 		reclaim_nc_src = force >= 3;
1076 		mtx_lock(&mountlist_mtx);
1077 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1078 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
1079 				nmp = TAILQ_NEXT(mp, mnt_list);
1080 				continue;
1081 			}
1082 			done += vlrureclaim(mp, reclaim_nc_src, trigger);
1083 			mtx_lock(&mountlist_mtx);
1084 			nmp = TAILQ_NEXT(mp, mnt_list);
1085 			vfs_unbusy(mp);
1086 		}
1087 		mtx_unlock(&mountlist_mtx);
1088 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1089 			uma_reclaim();
1090 		if (done == 0) {
1091 			if (force == 0 || force == 1) {
1092 				force = 2;
1093 				continue;
1094 			}
1095 			if (force == 2) {
1096 				force = 3;
1097 				continue;
1098 			}
1099 			force = 0;
1100 			vnlru_nowhere++;
1101 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1102 		} else
1103 			kern_yield(PRI_USER);
1104 		/*
1105 		 * After becoming active to expand above low water, keep
1106 		 * active until above high water.
1107 		 */
1108 		force = vspace() < vhiwat;
1109 	}
1110 }
1111 
1112 static struct kproc_desc vnlru_kp = {
1113 	"vnlru",
1114 	vnlru_proc,
1115 	&vnlruproc
1116 };
1117 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1118     &vnlru_kp);
1119 
1120 /*
1121  * Routines having to do with the management of the vnode table.
1122  */
1123 
1124 /*
1125  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1126  * before we actually vgone().  This function must be called with the vnode
1127  * held to prevent the vnode from being returned to the free list midway
1128  * through vgone().
1129  */
1130 static int
1131 vtryrecycle(struct vnode *vp)
1132 {
1133 	struct mount *vnmp;
1134 
1135 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1136 	VNASSERT(vp->v_holdcnt, vp,
1137 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1138 	/*
1139 	 * This vnode may found and locked via some other list, if so we
1140 	 * can't recycle it yet.
1141 	 */
1142 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1143 		CTR2(KTR_VFS,
1144 		    "%s: impossible to recycle, vp %p lock is already held",
1145 		    __func__, vp);
1146 		return (EWOULDBLOCK);
1147 	}
1148 	/*
1149 	 * Don't recycle if its filesystem is being suspended.
1150 	 */
1151 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1152 		VOP_UNLOCK(vp, 0);
1153 		CTR2(KTR_VFS,
1154 		    "%s: impossible to recycle, cannot start the write for %p",
1155 		    __func__, vp);
1156 		return (EBUSY);
1157 	}
1158 	/*
1159 	 * If we got this far, we need to acquire the interlock and see if
1160 	 * anyone picked up this vnode from another list.  If not, we will
1161 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1162 	 * will skip over it.
1163 	 */
1164 	VI_LOCK(vp);
1165 	if (vp->v_usecount) {
1166 		VOP_UNLOCK(vp, LK_INTERLOCK);
1167 		vn_finished_write(vnmp);
1168 		CTR2(KTR_VFS,
1169 		    "%s: impossible to recycle, %p is already referenced",
1170 		    __func__, vp);
1171 		return (EBUSY);
1172 	}
1173 	if ((vp->v_iflag & VI_DOOMED) == 0) {
1174 		atomic_add_long(&recycles_count, 1);
1175 		vgonel(vp);
1176 	}
1177 	VOP_UNLOCK(vp, LK_INTERLOCK);
1178 	vn_finished_write(vnmp);
1179 	return (0);
1180 }
1181 
1182 static void
1183 vcheckspace(void)
1184 {
1185 
1186 	if (vspace() < vlowat && vnlruproc_sig == 0) {
1187 		vnlruproc_sig = 1;
1188 		wakeup(vnlruproc);
1189 	}
1190 }
1191 
1192 /*
1193  * Wait if necessary for space for a new vnode.
1194  */
1195 static int
1196 getnewvnode_wait(int suspended)
1197 {
1198 
1199 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1200 	if (numvnodes >= desiredvnodes) {
1201 		if (suspended) {
1202 			/*
1203 			 * The file system is being suspended.  We cannot
1204 			 * risk a deadlock here, so allow allocation of
1205 			 * another vnode even if this would give too many.
1206 			 */
1207 			return (0);
1208 		}
1209 		if (vnlruproc_sig == 0) {
1210 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1211 			wakeup(vnlruproc);
1212 		}
1213 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1214 		    "vlruwk", hz);
1215 	}
1216 	/* Post-adjust like the pre-adjust in getnewvnode(). */
1217 	if (numvnodes + 1 > desiredvnodes && freevnodes > 1)
1218 		vnlru_free(1);
1219 	return (numvnodes >= desiredvnodes ? ENFILE : 0);
1220 }
1221 
1222 /*
1223  * This hack is fragile, and probably not needed any more now that the
1224  * watermark handling works.
1225  */
1226 void
1227 getnewvnode_reserve(u_int count)
1228 {
1229 	struct thread *td;
1230 
1231 	/* Pre-adjust like the pre-adjust in getnewvnode(), with any count. */
1232 	/* XXX no longer so quick, but this part is not racy. */
1233 	mtx_lock(&vnode_free_list_mtx);
1234 	if (numvnodes + count > desiredvnodes && freevnodes > wantfreevnodes)
1235 		vnlru_free(ulmin(numvnodes + count - desiredvnodes,
1236 		    freevnodes - wantfreevnodes));
1237 	mtx_unlock(&vnode_free_list_mtx);
1238 
1239 	td = curthread;
1240 	/* First try to be quick and racy. */
1241 	if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) {
1242 		td->td_vp_reserv += count;
1243 		vcheckspace();	/* XXX no longer so quick, but more racy */
1244 		return;
1245 	} else
1246 		atomic_subtract_long(&numvnodes, count);
1247 
1248 	mtx_lock(&vnode_free_list_mtx);
1249 	while (count > 0) {
1250 		if (getnewvnode_wait(0) == 0) {
1251 			count--;
1252 			td->td_vp_reserv++;
1253 			atomic_add_long(&numvnodes, 1);
1254 		}
1255 	}
1256 	vcheckspace();
1257 	mtx_unlock(&vnode_free_list_mtx);
1258 }
1259 
1260 /*
1261  * This hack is fragile, especially if desiredvnodes or wantvnodes are
1262  * misconfgured or changed significantly.  Reducing desiredvnodes below
1263  * the reserved amount should cause bizarre behaviour like reducing it
1264  * below the number of active vnodes -- the system will try to reduce
1265  * numvnodes to match, but should fail, so the subtraction below should
1266  * not overflow.
1267  */
1268 void
1269 getnewvnode_drop_reserve(void)
1270 {
1271 	struct thread *td;
1272 
1273 	td = curthread;
1274 	atomic_subtract_long(&numvnodes, td->td_vp_reserv);
1275 	td->td_vp_reserv = 0;
1276 }
1277 
1278 /*
1279  * Return the next vnode from the free list.
1280  */
1281 int
1282 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1283     struct vnode **vpp)
1284 {
1285 	struct vnode *vp;
1286 	struct thread *td;
1287 	struct lock_object *lo;
1288 	static int cyclecount;
1289 	int error;
1290 
1291 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1292 	vp = NULL;
1293 	td = curthread;
1294 	if (td->td_vp_reserv > 0) {
1295 		td->td_vp_reserv -= 1;
1296 		goto alloc;
1297 	}
1298 	mtx_lock(&vnode_free_list_mtx);
1299 	if (numvnodes < desiredvnodes)
1300 		cyclecount = 0;
1301 	else if (cyclecount++ >= freevnodes) {
1302 		cyclecount = 0;
1303 		vstir = 1;
1304 	}
1305 	/*
1306 	 * Grow the vnode cache if it will not be above its target max
1307 	 * after growing.  Otherwise, if the free list is nonempty, try
1308 	 * to reclaim 1 item from it before growing the cache (possibly
1309 	 * above its target max if the reclamation failed or is delayed).
1310 	 * Otherwise, wait for some space.  In all cases, schedule
1311 	 * vnlru_proc() if we are getting short of space.  The watermarks
1312 	 * should be chosen so that we never wait or even reclaim from
1313 	 * the free list to below its target minimum.
1314 	 */
1315 	if (numvnodes + 1 <= desiredvnodes)
1316 		;
1317 	else if (freevnodes > 0)
1318 		vnlru_free(1);
1319 	else {
1320 		error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1321 		    MNTK_SUSPEND));
1322 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1323 		if (error != 0) {
1324 			mtx_unlock(&vnode_free_list_mtx);
1325 			return (error);
1326 		}
1327 #endif
1328 	}
1329 	vcheckspace();
1330 	atomic_add_long(&numvnodes, 1);
1331 	mtx_unlock(&vnode_free_list_mtx);
1332 alloc:
1333 	atomic_add_long(&vnodes_created, 1);
1334 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
1335 	/*
1336 	 * Locks are given the generic name "vnode" when created.
1337 	 * Follow the historic practice of using the filesystem
1338 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1339 	 *
1340 	 * Locks live in a witness group keyed on their name. Thus,
1341 	 * when a lock is renamed, it must also move from the witness
1342 	 * group of its old name to the witness group of its new name.
1343 	 *
1344 	 * The change only needs to be made when the vnode moves
1345 	 * from one filesystem type to another. We ensure that each
1346 	 * filesystem use a single static name pointer for its tag so
1347 	 * that we can compare pointers rather than doing a strcmp().
1348 	 */
1349 	lo = &vp->v_vnlock->lock_object;
1350 	if (lo->lo_name != tag) {
1351 		lo->lo_name = tag;
1352 		WITNESS_DESTROY(lo);
1353 		WITNESS_INIT(lo, tag);
1354 	}
1355 	/*
1356 	 * By default, don't allow shared locks unless filesystems opt-in.
1357 	 */
1358 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1359 	/*
1360 	 * Finalize various vnode identity bits.
1361 	 */
1362 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1363 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1364 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1365 	vp->v_type = VNON;
1366 	vp->v_tag = tag;
1367 	vp->v_op = vops;
1368 	v_init_counters(vp);
1369 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1370 #ifdef MAC
1371 	mac_vnode_init(vp);
1372 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1373 		mac_vnode_associate_singlelabel(mp, vp);
1374 	else if (mp == NULL && vops != &dead_vnodeops)
1375 		printf("NULL mp in getnewvnode()\n");
1376 #endif
1377 	if (mp != NULL) {
1378 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1379 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1380 			vp->v_vflag |= VV_NOKNOTE;
1381 	}
1382 
1383 	/*
1384 	 * For the filesystems which do not use vfs_hash_insert(),
1385 	 * still initialize v_hash to have vfs_hash_index() useful.
1386 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1387 	 * its own hashing.
1388 	 */
1389 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1390 
1391 	*vpp = vp;
1392 	return (0);
1393 }
1394 
1395 /*
1396  * Delete from old mount point vnode list, if on one.
1397  */
1398 static void
1399 delmntque(struct vnode *vp)
1400 {
1401 	struct mount *mp;
1402 	int active;
1403 
1404 	mp = vp->v_mount;
1405 	if (mp == NULL)
1406 		return;
1407 	MNT_ILOCK(mp);
1408 	VI_LOCK(vp);
1409 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1410 	    ("Active vnode list size %d > Vnode list size %d",
1411 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1412 	active = vp->v_iflag & VI_ACTIVE;
1413 	vp->v_iflag &= ~VI_ACTIVE;
1414 	if (active) {
1415 		mtx_lock(&vnode_free_list_mtx);
1416 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1417 		mp->mnt_activevnodelistsize--;
1418 		mtx_unlock(&vnode_free_list_mtx);
1419 	}
1420 	vp->v_mount = NULL;
1421 	VI_UNLOCK(vp);
1422 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1423 		("bad mount point vnode list size"));
1424 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1425 	mp->mnt_nvnodelistsize--;
1426 	MNT_REL(mp);
1427 	MNT_IUNLOCK(mp);
1428 }
1429 
1430 static void
1431 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1432 {
1433 
1434 	vp->v_data = NULL;
1435 	vp->v_op = &dead_vnodeops;
1436 	vgone(vp);
1437 	vput(vp);
1438 }
1439 
1440 /*
1441  * Insert into list of vnodes for the new mount point, if available.
1442  */
1443 int
1444 insmntque1(struct vnode *vp, struct mount *mp,
1445 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1446 {
1447 
1448 	KASSERT(vp->v_mount == NULL,
1449 		("insmntque: vnode already on per mount vnode list"));
1450 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1451 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1452 
1453 	/*
1454 	 * We acquire the vnode interlock early to ensure that the
1455 	 * vnode cannot be recycled by another process releasing a
1456 	 * holdcnt on it before we get it on both the vnode list
1457 	 * and the active vnode list. The mount mutex protects only
1458 	 * manipulation of the vnode list and the vnode freelist
1459 	 * mutex protects only manipulation of the active vnode list.
1460 	 * Hence the need to hold the vnode interlock throughout.
1461 	 */
1462 	MNT_ILOCK(mp);
1463 	VI_LOCK(vp);
1464 	if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1465 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1466 	    mp->mnt_nvnodelistsize == 0)) &&
1467 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1468 		VI_UNLOCK(vp);
1469 		MNT_IUNLOCK(mp);
1470 		if (dtr != NULL)
1471 			dtr(vp, dtr_arg);
1472 		return (EBUSY);
1473 	}
1474 	vp->v_mount = mp;
1475 	MNT_REF(mp);
1476 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1477 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1478 		("neg mount point vnode list size"));
1479 	mp->mnt_nvnodelistsize++;
1480 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1481 	    ("Activating already active vnode"));
1482 	vp->v_iflag |= VI_ACTIVE;
1483 	mtx_lock(&vnode_free_list_mtx);
1484 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1485 	mp->mnt_activevnodelistsize++;
1486 	mtx_unlock(&vnode_free_list_mtx);
1487 	VI_UNLOCK(vp);
1488 	MNT_IUNLOCK(mp);
1489 	return (0);
1490 }
1491 
1492 int
1493 insmntque(struct vnode *vp, struct mount *mp)
1494 {
1495 
1496 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1497 }
1498 
1499 /*
1500  * Flush out and invalidate all buffers associated with a bufobj
1501  * Called with the underlying object locked.
1502  */
1503 int
1504 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1505 {
1506 	int error;
1507 
1508 	BO_LOCK(bo);
1509 	if (flags & V_SAVE) {
1510 		error = bufobj_wwait(bo, slpflag, slptimeo);
1511 		if (error) {
1512 			BO_UNLOCK(bo);
1513 			return (error);
1514 		}
1515 		if (bo->bo_dirty.bv_cnt > 0) {
1516 			BO_UNLOCK(bo);
1517 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1518 				return (error);
1519 			/*
1520 			 * XXX We could save a lock/unlock if this was only
1521 			 * enabled under INVARIANTS
1522 			 */
1523 			BO_LOCK(bo);
1524 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1525 				panic("vinvalbuf: dirty bufs");
1526 		}
1527 	}
1528 	/*
1529 	 * If you alter this loop please notice that interlock is dropped and
1530 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1531 	 * no race conditions occur from this.
1532 	 */
1533 	do {
1534 		error = flushbuflist(&bo->bo_clean,
1535 		    flags, bo, slpflag, slptimeo);
1536 		if (error == 0 && !(flags & V_CLEANONLY))
1537 			error = flushbuflist(&bo->bo_dirty,
1538 			    flags, bo, slpflag, slptimeo);
1539 		if (error != 0 && error != EAGAIN) {
1540 			BO_UNLOCK(bo);
1541 			return (error);
1542 		}
1543 	} while (error != 0);
1544 
1545 	/*
1546 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1547 	 * have write I/O in-progress but if there is a VM object then the
1548 	 * VM object can also have read-I/O in-progress.
1549 	 */
1550 	do {
1551 		bufobj_wwait(bo, 0, 0);
1552 		BO_UNLOCK(bo);
1553 		if (bo->bo_object != NULL) {
1554 			VM_OBJECT_WLOCK(bo->bo_object);
1555 			vm_object_pip_wait(bo->bo_object, "bovlbx");
1556 			VM_OBJECT_WUNLOCK(bo->bo_object);
1557 		}
1558 		BO_LOCK(bo);
1559 	} while (bo->bo_numoutput > 0);
1560 	BO_UNLOCK(bo);
1561 
1562 	/*
1563 	 * Destroy the copy in the VM cache, too.
1564 	 */
1565 	if (bo->bo_object != NULL &&
1566 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0) {
1567 		VM_OBJECT_WLOCK(bo->bo_object);
1568 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1569 		    OBJPR_CLEANONLY : 0);
1570 		VM_OBJECT_WUNLOCK(bo->bo_object);
1571 	}
1572 
1573 #ifdef INVARIANTS
1574 	BO_LOCK(bo);
1575 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY)) == 0 &&
1576 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
1577 		panic("vinvalbuf: flush failed");
1578 	BO_UNLOCK(bo);
1579 #endif
1580 	return (0);
1581 }
1582 
1583 /*
1584  * Flush out and invalidate all buffers associated with a vnode.
1585  * Called with the underlying object locked.
1586  */
1587 int
1588 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1589 {
1590 
1591 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1592 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1593 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1594 		return (0);
1595 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1596 }
1597 
1598 /*
1599  * Flush out buffers on the specified list.
1600  *
1601  */
1602 static int
1603 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1604     int slptimeo)
1605 {
1606 	struct buf *bp, *nbp;
1607 	int retval, error;
1608 	daddr_t lblkno;
1609 	b_xflags_t xflags;
1610 
1611 	ASSERT_BO_WLOCKED(bo);
1612 
1613 	retval = 0;
1614 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1615 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1616 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1617 			continue;
1618 		}
1619 		lblkno = 0;
1620 		xflags = 0;
1621 		if (nbp != NULL) {
1622 			lblkno = nbp->b_lblkno;
1623 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1624 		}
1625 		retval = EAGAIN;
1626 		error = BUF_TIMELOCK(bp,
1627 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1628 		    "flushbuf", slpflag, slptimeo);
1629 		if (error) {
1630 			BO_LOCK(bo);
1631 			return (error != ENOLCK ? error : EAGAIN);
1632 		}
1633 		KASSERT(bp->b_bufobj == bo,
1634 		    ("bp %p wrong b_bufobj %p should be %p",
1635 		    bp, bp->b_bufobj, bo));
1636 		/*
1637 		 * XXX Since there are no node locks for NFS, I
1638 		 * believe there is a slight chance that a delayed
1639 		 * write will occur while sleeping just above, so
1640 		 * check for it.
1641 		 */
1642 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1643 		    (flags & V_SAVE)) {
1644 			bremfree(bp);
1645 			bp->b_flags |= B_ASYNC;
1646 			bwrite(bp);
1647 			BO_LOCK(bo);
1648 			return (EAGAIN);	/* XXX: why not loop ? */
1649 		}
1650 		bremfree(bp);
1651 		bp->b_flags |= (B_INVAL | B_RELBUF);
1652 		bp->b_flags &= ~B_ASYNC;
1653 		brelse(bp);
1654 		BO_LOCK(bo);
1655 		if (nbp != NULL &&
1656 		    (nbp->b_bufobj != bo ||
1657 		     nbp->b_lblkno != lblkno ||
1658 		     (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) != xflags))
1659 			break;			/* nbp invalid */
1660 	}
1661 	return (retval);
1662 }
1663 
1664 /*
1665  * Truncate a file's buffer and pages to a specified length.  This
1666  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1667  * sync activity.
1668  */
1669 int
1670 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1671 {
1672 	struct buf *bp, *nbp;
1673 	int anyfreed;
1674 	int trunclbn;
1675 	struct bufobj *bo;
1676 
1677 	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1678 	    vp, cred, blksize, (uintmax_t)length);
1679 
1680 	/*
1681 	 * Round up to the *next* lbn.
1682 	 */
1683 	trunclbn = (length + blksize - 1) / blksize;
1684 
1685 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1686 restart:
1687 	bo = &vp->v_bufobj;
1688 	BO_LOCK(bo);
1689 	anyfreed = 1;
1690 	for (;anyfreed;) {
1691 		anyfreed = 0;
1692 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1693 			if (bp->b_lblkno < trunclbn)
1694 				continue;
1695 			if (BUF_LOCK(bp,
1696 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1697 			    BO_LOCKPTR(bo)) == ENOLCK)
1698 				goto restart;
1699 
1700 			bremfree(bp);
1701 			bp->b_flags |= (B_INVAL | B_RELBUF);
1702 			bp->b_flags &= ~B_ASYNC;
1703 			brelse(bp);
1704 			anyfreed = 1;
1705 
1706 			BO_LOCK(bo);
1707 			if (nbp != NULL &&
1708 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1709 			    (nbp->b_vp != vp) ||
1710 			    (nbp->b_flags & B_DELWRI))) {
1711 				BO_UNLOCK(bo);
1712 				goto restart;
1713 			}
1714 		}
1715 
1716 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1717 			if (bp->b_lblkno < trunclbn)
1718 				continue;
1719 			if (BUF_LOCK(bp,
1720 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1721 			    BO_LOCKPTR(bo)) == ENOLCK)
1722 				goto restart;
1723 			bremfree(bp);
1724 			bp->b_flags |= (B_INVAL | B_RELBUF);
1725 			bp->b_flags &= ~B_ASYNC;
1726 			brelse(bp);
1727 			anyfreed = 1;
1728 
1729 			BO_LOCK(bo);
1730 			if (nbp != NULL &&
1731 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1732 			    (nbp->b_vp != vp) ||
1733 			    (nbp->b_flags & B_DELWRI) == 0)) {
1734 				BO_UNLOCK(bo);
1735 				goto restart;
1736 			}
1737 		}
1738 	}
1739 
1740 	if (length > 0) {
1741 restartsync:
1742 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1743 			if (bp->b_lblkno > 0)
1744 				continue;
1745 			/*
1746 			 * Since we hold the vnode lock this should only
1747 			 * fail if we're racing with the buf daemon.
1748 			 */
1749 			if (BUF_LOCK(bp,
1750 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1751 			    BO_LOCKPTR(bo)) == ENOLCK) {
1752 				goto restart;
1753 			}
1754 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1755 			    ("buf(%p) on dirty queue without DELWRI", bp));
1756 
1757 			bremfree(bp);
1758 			bawrite(bp);
1759 			BO_LOCK(bo);
1760 			goto restartsync;
1761 		}
1762 	}
1763 
1764 	bufobj_wwait(bo, 0, 0);
1765 	BO_UNLOCK(bo);
1766 	vnode_pager_setsize(vp, length);
1767 
1768 	return (0);
1769 }
1770 
1771 static void
1772 buf_vlist_remove(struct buf *bp)
1773 {
1774 	struct bufv *bv;
1775 
1776 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1777 	ASSERT_BO_WLOCKED(bp->b_bufobj);
1778 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1779 	    (BX_VNDIRTY|BX_VNCLEAN),
1780 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1781 	if (bp->b_xflags & BX_VNDIRTY)
1782 		bv = &bp->b_bufobj->bo_dirty;
1783 	else
1784 		bv = &bp->b_bufobj->bo_clean;
1785 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
1786 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1787 	bv->bv_cnt--;
1788 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1789 }
1790 
1791 /*
1792  * Add the buffer to the sorted clean or dirty block list.
1793  *
1794  * NOTE: xflags is passed as a constant, optimizing this inline function!
1795  */
1796 static void
1797 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1798 {
1799 	struct bufv *bv;
1800 	struct buf *n;
1801 	int error;
1802 
1803 	ASSERT_BO_WLOCKED(bo);
1804 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
1805 	    ("dead bo %p", bo));
1806 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1807 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1808 	bp->b_xflags |= xflags;
1809 	if (xflags & BX_VNDIRTY)
1810 		bv = &bo->bo_dirty;
1811 	else
1812 		bv = &bo->bo_clean;
1813 
1814 	/*
1815 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
1816 	 * we tend to grow at the tail so lookup_le should usually be cheaper
1817 	 * than _ge.
1818 	 */
1819 	if (bv->bv_cnt == 0 ||
1820 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
1821 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1822 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
1823 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
1824 	else
1825 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
1826 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
1827 	if (error)
1828 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
1829 	bv->bv_cnt++;
1830 }
1831 
1832 /*
1833  * Look up a buffer using the buffer tries.
1834  */
1835 struct buf *
1836 gbincore(struct bufobj *bo, daddr_t lblkno)
1837 {
1838 	struct buf *bp;
1839 
1840 	ASSERT_BO_LOCKED(bo);
1841 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
1842 	if (bp != NULL)
1843 		return (bp);
1844 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
1845 }
1846 
1847 /*
1848  * Associate a buffer with a vnode.
1849  */
1850 void
1851 bgetvp(struct vnode *vp, struct buf *bp)
1852 {
1853 	struct bufobj *bo;
1854 
1855 	bo = &vp->v_bufobj;
1856 	ASSERT_BO_WLOCKED(bo);
1857 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1858 
1859 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1860 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1861 	    ("bgetvp: bp already attached! %p", bp));
1862 
1863 	vhold(vp);
1864 	bp->b_vp = vp;
1865 	bp->b_bufobj = bo;
1866 	/*
1867 	 * Insert onto list for new vnode.
1868 	 */
1869 	buf_vlist_add(bp, bo, BX_VNCLEAN);
1870 }
1871 
1872 /*
1873  * Disassociate a buffer from a vnode.
1874  */
1875 void
1876 brelvp(struct buf *bp)
1877 {
1878 	struct bufobj *bo;
1879 	struct vnode *vp;
1880 
1881 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1882 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1883 
1884 	/*
1885 	 * Delete from old vnode list, if on one.
1886 	 */
1887 	vp = bp->b_vp;		/* XXX */
1888 	bo = bp->b_bufobj;
1889 	BO_LOCK(bo);
1890 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1891 		buf_vlist_remove(bp);
1892 	else
1893 		panic("brelvp: Buffer %p not on queue.", bp);
1894 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1895 		bo->bo_flag &= ~BO_ONWORKLST;
1896 		mtx_lock(&sync_mtx);
1897 		LIST_REMOVE(bo, bo_synclist);
1898 		syncer_worklist_len--;
1899 		mtx_unlock(&sync_mtx);
1900 	}
1901 	bp->b_vp = NULL;
1902 	bp->b_bufobj = NULL;
1903 	BO_UNLOCK(bo);
1904 	vdrop(vp);
1905 }
1906 
1907 /*
1908  * Add an item to the syncer work queue.
1909  */
1910 static void
1911 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1912 {
1913 	int slot;
1914 
1915 	ASSERT_BO_WLOCKED(bo);
1916 
1917 	mtx_lock(&sync_mtx);
1918 	if (bo->bo_flag & BO_ONWORKLST)
1919 		LIST_REMOVE(bo, bo_synclist);
1920 	else {
1921 		bo->bo_flag |= BO_ONWORKLST;
1922 		syncer_worklist_len++;
1923 	}
1924 
1925 	if (delay > syncer_maxdelay - 2)
1926 		delay = syncer_maxdelay - 2;
1927 	slot = (syncer_delayno + delay) & syncer_mask;
1928 
1929 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1930 	mtx_unlock(&sync_mtx);
1931 }
1932 
1933 static int
1934 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1935 {
1936 	int error, len;
1937 
1938 	mtx_lock(&sync_mtx);
1939 	len = syncer_worklist_len - sync_vnode_count;
1940 	mtx_unlock(&sync_mtx);
1941 	error = SYSCTL_OUT(req, &len, sizeof(len));
1942 	return (error);
1943 }
1944 
1945 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1946     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1947 
1948 static struct proc *updateproc;
1949 static void sched_sync(void);
1950 static struct kproc_desc up_kp = {
1951 	"syncer",
1952 	sched_sync,
1953 	&updateproc
1954 };
1955 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
1956 
1957 static int
1958 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
1959 {
1960 	struct vnode *vp;
1961 	struct mount *mp;
1962 
1963 	*bo = LIST_FIRST(slp);
1964 	if (*bo == NULL)
1965 		return (0);
1966 	vp = (*bo)->__bo_vnode;	/* XXX */
1967 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
1968 		return (1);
1969 	/*
1970 	 * We use vhold in case the vnode does not
1971 	 * successfully sync.  vhold prevents the vnode from
1972 	 * going away when we unlock the sync_mtx so that
1973 	 * we can acquire the vnode interlock.
1974 	 */
1975 	vholdl(vp);
1976 	mtx_unlock(&sync_mtx);
1977 	VI_UNLOCK(vp);
1978 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1979 		vdrop(vp);
1980 		mtx_lock(&sync_mtx);
1981 		return (*bo == LIST_FIRST(slp));
1982 	}
1983 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1984 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1985 	VOP_UNLOCK(vp, 0);
1986 	vn_finished_write(mp);
1987 	BO_LOCK(*bo);
1988 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
1989 		/*
1990 		 * Put us back on the worklist.  The worklist
1991 		 * routine will remove us from our current
1992 		 * position and then add us back in at a later
1993 		 * position.
1994 		 */
1995 		vn_syncer_add_to_worklist(*bo, syncdelay);
1996 	}
1997 	BO_UNLOCK(*bo);
1998 	vdrop(vp);
1999 	mtx_lock(&sync_mtx);
2000 	return (0);
2001 }
2002 
2003 static int first_printf = 1;
2004 
2005 /*
2006  * System filesystem synchronizer daemon.
2007  */
2008 static void
2009 sched_sync(void)
2010 {
2011 	struct synclist *next, *slp;
2012 	struct bufobj *bo;
2013 	long starttime;
2014 	struct thread *td = curthread;
2015 	int last_work_seen;
2016 	int net_worklist_len;
2017 	int syncer_final_iter;
2018 	int error;
2019 
2020 	last_work_seen = 0;
2021 	syncer_final_iter = 0;
2022 	syncer_state = SYNCER_RUNNING;
2023 	starttime = time_uptime;
2024 	td->td_pflags |= TDP_NORUNNINGBUF;
2025 
2026 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2027 	    SHUTDOWN_PRI_LAST);
2028 
2029 	mtx_lock(&sync_mtx);
2030 	for (;;) {
2031 		if (syncer_state == SYNCER_FINAL_DELAY &&
2032 		    syncer_final_iter == 0) {
2033 			mtx_unlock(&sync_mtx);
2034 			kproc_suspend_check(td->td_proc);
2035 			mtx_lock(&sync_mtx);
2036 		}
2037 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2038 		if (syncer_state != SYNCER_RUNNING &&
2039 		    starttime != time_uptime) {
2040 			if (first_printf) {
2041 				printf("\nSyncing disks, vnodes remaining...");
2042 				first_printf = 0;
2043 			}
2044 			printf("%d ", net_worklist_len);
2045 		}
2046 		starttime = time_uptime;
2047 
2048 		/*
2049 		 * Push files whose dirty time has expired.  Be careful
2050 		 * of interrupt race on slp queue.
2051 		 *
2052 		 * Skip over empty worklist slots when shutting down.
2053 		 */
2054 		do {
2055 			slp = &syncer_workitem_pending[syncer_delayno];
2056 			syncer_delayno += 1;
2057 			if (syncer_delayno == syncer_maxdelay)
2058 				syncer_delayno = 0;
2059 			next = &syncer_workitem_pending[syncer_delayno];
2060 			/*
2061 			 * If the worklist has wrapped since the
2062 			 * it was emptied of all but syncer vnodes,
2063 			 * switch to the FINAL_DELAY state and run
2064 			 * for one more second.
2065 			 */
2066 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2067 			    net_worklist_len == 0 &&
2068 			    last_work_seen == syncer_delayno) {
2069 				syncer_state = SYNCER_FINAL_DELAY;
2070 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2071 			}
2072 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2073 		    syncer_worklist_len > 0);
2074 
2075 		/*
2076 		 * Keep track of the last time there was anything
2077 		 * on the worklist other than syncer vnodes.
2078 		 * Return to the SHUTTING_DOWN state if any
2079 		 * new work appears.
2080 		 */
2081 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2082 			last_work_seen = syncer_delayno;
2083 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2084 			syncer_state = SYNCER_SHUTTING_DOWN;
2085 		while (!LIST_EMPTY(slp)) {
2086 			error = sync_vnode(slp, &bo, td);
2087 			if (error == 1) {
2088 				LIST_REMOVE(bo, bo_synclist);
2089 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2090 				continue;
2091 			}
2092 
2093 			if (first_printf == 0) {
2094 				/*
2095 				 * Drop the sync mutex, because some watchdog
2096 				 * drivers need to sleep while patting
2097 				 */
2098 				mtx_unlock(&sync_mtx);
2099 				wdog_kern_pat(WD_LASTVAL);
2100 				mtx_lock(&sync_mtx);
2101 			}
2102 
2103 		}
2104 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2105 			syncer_final_iter--;
2106 		/*
2107 		 * The variable rushjob allows the kernel to speed up the
2108 		 * processing of the filesystem syncer process. A rushjob
2109 		 * value of N tells the filesystem syncer to process the next
2110 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2111 		 * is used by the soft update code to speed up the filesystem
2112 		 * syncer process when the incore state is getting so far
2113 		 * ahead of the disk that the kernel memory pool is being
2114 		 * threatened with exhaustion.
2115 		 */
2116 		if (rushjob > 0) {
2117 			rushjob -= 1;
2118 			continue;
2119 		}
2120 		/*
2121 		 * Just sleep for a short period of time between
2122 		 * iterations when shutting down to allow some I/O
2123 		 * to happen.
2124 		 *
2125 		 * If it has taken us less than a second to process the
2126 		 * current work, then wait. Otherwise start right over
2127 		 * again. We can still lose time if any single round
2128 		 * takes more than two seconds, but it does not really
2129 		 * matter as we are just trying to generally pace the
2130 		 * filesystem activity.
2131 		 */
2132 		if (syncer_state != SYNCER_RUNNING ||
2133 		    time_uptime == starttime) {
2134 			thread_lock(td);
2135 			sched_prio(td, PPAUSE);
2136 			thread_unlock(td);
2137 		}
2138 		if (syncer_state != SYNCER_RUNNING)
2139 			cv_timedwait(&sync_wakeup, &sync_mtx,
2140 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2141 		else if (time_uptime == starttime)
2142 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2143 	}
2144 }
2145 
2146 /*
2147  * Request the syncer daemon to speed up its work.
2148  * We never push it to speed up more than half of its
2149  * normal turn time, otherwise it could take over the cpu.
2150  */
2151 int
2152 speedup_syncer(void)
2153 {
2154 	int ret = 0;
2155 
2156 	mtx_lock(&sync_mtx);
2157 	if (rushjob < syncdelay / 2) {
2158 		rushjob += 1;
2159 		stat_rush_requests += 1;
2160 		ret = 1;
2161 	}
2162 	mtx_unlock(&sync_mtx);
2163 	cv_broadcast(&sync_wakeup);
2164 	return (ret);
2165 }
2166 
2167 /*
2168  * Tell the syncer to speed up its work and run though its work
2169  * list several times, then tell it to shut down.
2170  */
2171 static void
2172 syncer_shutdown(void *arg, int howto)
2173 {
2174 
2175 	if (howto & RB_NOSYNC)
2176 		return;
2177 	mtx_lock(&sync_mtx);
2178 	syncer_state = SYNCER_SHUTTING_DOWN;
2179 	rushjob = 0;
2180 	mtx_unlock(&sync_mtx);
2181 	cv_broadcast(&sync_wakeup);
2182 	kproc_shutdown(arg, howto);
2183 }
2184 
2185 void
2186 syncer_suspend(void)
2187 {
2188 
2189 	syncer_shutdown(updateproc, 0);
2190 }
2191 
2192 void
2193 syncer_resume(void)
2194 {
2195 
2196 	mtx_lock(&sync_mtx);
2197 	first_printf = 1;
2198 	syncer_state = SYNCER_RUNNING;
2199 	mtx_unlock(&sync_mtx);
2200 	cv_broadcast(&sync_wakeup);
2201 	kproc_resume(updateproc);
2202 }
2203 
2204 /*
2205  * Reassign a buffer from one vnode to another.
2206  * Used to assign file specific control information
2207  * (indirect blocks) to the vnode to which they belong.
2208  */
2209 void
2210 reassignbuf(struct buf *bp)
2211 {
2212 	struct vnode *vp;
2213 	struct bufobj *bo;
2214 	int delay;
2215 #ifdef INVARIANTS
2216 	struct bufv *bv;
2217 #endif
2218 
2219 	vp = bp->b_vp;
2220 	bo = bp->b_bufobj;
2221 	++reassignbufcalls;
2222 
2223 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2224 	    bp, bp->b_vp, bp->b_flags);
2225 	/*
2226 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2227 	 * is not fully linked in.
2228 	 */
2229 	if (bp->b_flags & B_PAGING)
2230 		panic("cannot reassign paging buffer");
2231 
2232 	/*
2233 	 * Delete from old vnode list, if on one.
2234 	 */
2235 	BO_LOCK(bo);
2236 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2237 		buf_vlist_remove(bp);
2238 	else
2239 		panic("reassignbuf: Buffer %p not on queue.", bp);
2240 	/*
2241 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2242 	 * of clean buffers.
2243 	 */
2244 	if (bp->b_flags & B_DELWRI) {
2245 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2246 			switch (vp->v_type) {
2247 			case VDIR:
2248 				delay = dirdelay;
2249 				break;
2250 			case VCHR:
2251 				delay = metadelay;
2252 				break;
2253 			default:
2254 				delay = filedelay;
2255 			}
2256 			vn_syncer_add_to_worklist(bo, delay);
2257 		}
2258 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2259 	} else {
2260 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2261 
2262 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2263 			mtx_lock(&sync_mtx);
2264 			LIST_REMOVE(bo, bo_synclist);
2265 			syncer_worklist_len--;
2266 			mtx_unlock(&sync_mtx);
2267 			bo->bo_flag &= ~BO_ONWORKLST;
2268 		}
2269 	}
2270 #ifdef INVARIANTS
2271 	bv = &bo->bo_clean;
2272 	bp = TAILQ_FIRST(&bv->bv_hd);
2273 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2274 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2275 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2276 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2277 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2278 	bv = &bo->bo_dirty;
2279 	bp = TAILQ_FIRST(&bv->bv_hd);
2280 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2281 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2282 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2283 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2284 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2285 #endif
2286 	BO_UNLOCK(bo);
2287 }
2288 
2289 /*
2290  * A temporary hack until refcount_* APIs are sorted out.
2291  */
2292 static __inline int
2293 vfs_refcount_acquire_if_not_zero(volatile u_int *count)
2294 {
2295 	u_int old;
2296 
2297 	for (;;) {
2298 		old = *count;
2299 		if (old == 0)
2300 			return (0);
2301 		if (atomic_cmpset_int(count, old, old + 1))
2302 			return (1);
2303 	}
2304 }
2305 
2306 static __inline int
2307 vfs_refcount_release_if_not_last(volatile u_int *count)
2308 {
2309 	u_int old;
2310 
2311 	for (;;) {
2312 		old = *count;
2313 		if (old == 1)
2314 			return (0);
2315 		if (atomic_cmpset_int(count, old, old - 1))
2316 			return (1);
2317 	}
2318 }
2319 
2320 static void
2321 v_init_counters(struct vnode *vp)
2322 {
2323 
2324 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2325 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2326 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2327 
2328 	refcount_init(&vp->v_holdcnt, 1);
2329 	refcount_init(&vp->v_usecount, 1);
2330 }
2331 
2332 /*
2333  * Increment the use and hold counts on the vnode, taking care to reference
2334  * the driver's usecount if this is a chardev.  The _vhold() will remove
2335  * the vnode from the free list if it is presently free.
2336  */
2337 static void
2338 v_incr_usecount(struct vnode *vp)
2339 {
2340 
2341 	ASSERT_VI_UNLOCKED(vp, __func__);
2342 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2343 
2344 	if (vp->v_type == VCHR) {
2345 		VI_LOCK(vp);
2346 		_vhold(vp, true);
2347 		if (vp->v_iflag & VI_OWEINACT) {
2348 			VNASSERT(vp->v_usecount == 0, vp,
2349 			    ("vnode with usecount and VI_OWEINACT set"));
2350 			vp->v_iflag &= ~VI_OWEINACT;
2351 		}
2352 		refcount_acquire(&vp->v_usecount);
2353 		v_incr_devcount(vp);
2354 		VI_UNLOCK(vp);
2355 		return;
2356 	}
2357 
2358 	_vhold(vp, false);
2359 	if (vfs_refcount_acquire_if_not_zero(&vp->v_usecount)) {
2360 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2361 		    ("vnode with usecount and VI_OWEINACT set"));
2362 	} else {
2363 		VI_LOCK(vp);
2364 		if (vp->v_iflag & VI_OWEINACT)
2365 			vp->v_iflag &= ~VI_OWEINACT;
2366 		refcount_acquire(&vp->v_usecount);
2367 		VI_UNLOCK(vp);
2368 	}
2369 }
2370 
2371 /*
2372  * Increment si_usecount of the associated device, if any.
2373  */
2374 static void
2375 v_incr_devcount(struct vnode *vp)
2376 {
2377 
2378 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2379 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2380 		dev_lock();
2381 		vp->v_rdev->si_usecount++;
2382 		dev_unlock();
2383 	}
2384 }
2385 
2386 /*
2387  * Decrement si_usecount of the associated device, if any.
2388  */
2389 static void
2390 v_decr_devcount(struct vnode *vp)
2391 {
2392 
2393 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2394 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2395 		dev_lock();
2396 		vp->v_rdev->si_usecount--;
2397 		dev_unlock();
2398 	}
2399 }
2400 
2401 /*
2402  * Grab a particular vnode from the free list, increment its
2403  * reference count and lock it.  VI_DOOMED is set if the vnode
2404  * is being destroyed.  Only callers who specify LK_RETRY will
2405  * see doomed vnodes.  If inactive processing was delayed in
2406  * vput try to do it here.
2407  *
2408  * Notes on lockless counter manipulation:
2409  * _vhold, vputx and other routines make various decisions based
2410  * on either holdcnt or usecount being 0. As long as either contuner
2411  * is not transitioning 0->1 nor 1->0, the manipulation can be done
2412  * with atomic operations. Otherwise the interlock is taken.
2413  */
2414 int
2415 vget(struct vnode *vp, int flags, struct thread *td)
2416 {
2417 	int error, oweinact;
2418 
2419 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2420 	    ("vget: invalid lock operation"));
2421 
2422 	if ((flags & LK_INTERLOCK) != 0)
2423 		ASSERT_VI_LOCKED(vp, __func__);
2424 	else
2425 		ASSERT_VI_UNLOCKED(vp, __func__);
2426 	if ((flags & LK_VNHELD) != 0)
2427 		VNASSERT((vp->v_holdcnt > 0), vp,
2428 		    ("vget: LK_VNHELD passed but vnode not held"));
2429 
2430 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2431 
2432 	if ((flags & LK_VNHELD) == 0)
2433 		_vhold(vp, (flags & LK_INTERLOCK) != 0);
2434 
2435 	if ((error = vn_lock(vp, flags)) != 0) {
2436 		vdrop(vp);
2437 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2438 		    vp);
2439 		return (error);
2440 	}
2441 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2442 		panic("vget: vn_lock failed to return ENOENT\n");
2443 	/*
2444 	 * We don't guarantee that any particular close will
2445 	 * trigger inactive processing so just make a best effort
2446 	 * here at preventing a reference to a removed file.  If
2447 	 * we don't succeed no harm is done.
2448 	 *
2449 	 * Upgrade our holdcnt to a usecount.
2450 	 */
2451 	if (vp->v_type != VCHR &&
2452 	    vfs_refcount_acquire_if_not_zero(&vp->v_usecount)) {
2453 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2454 		    ("vnode with usecount and VI_OWEINACT set"));
2455 	} else {
2456 		VI_LOCK(vp);
2457 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2458 			oweinact = 0;
2459 		} else {
2460 			oweinact = 1;
2461 			vp->v_iflag &= ~VI_OWEINACT;
2462 		}
2463 		refcount_acquire(&vp->v_usecount);
2464 		v_incr_devcount(vp);
2465 		if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2466 		    (flags & LK_NOWAIT) == 0)
2467 			vinactive(vp, td);
2468 		VI_UNLOCK(vp);
2469 	}
2470 	return (0);
2471 }
2472 
2473 /*
2474  * Increase the reference count of a vnode.
2475  */
2476 void
2477 vref(struct vnode *vp)
2478 {
2479 
2480 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2481 	v_incr_usecount(vp);
2482 }
2483 
2484 /*
2485  * Return reference count of a vnode.
2486  *
2487  * The results of this call are only guaranteed when some mechanism is used to
2488  * stop other processes from gaining references to the vnode.  This may be the
2489  * case if the caller holds the only reference.  This is also useful when stale
2490  * data is acceptable as race conditions may be accounted for by some other
2491  * means.
2492  */
2493 int
2494 vrefcnt(struct vnode *vp)
2495 {
2496 
2497 	return (vp->v_usecount);
2498 }
2499 
2500 #define	VPUTX_VRELE	1
2501 #define	VPUTX_VPUT	2
2502 #define	VPUTX_VUNREF	3
2503 
2504 /*
2505  * Decrement the use and hold counts for a vnode.
2506  *
2507  * See an explanation near vget() as to why atomic operation is safe.
2508  */
2509 static void
2510 vputx(struct vnode *vp, int func)
2511 {
2512 	int error;
2513 
2514 	KASSERT(vp != NULL, ("vputx: null vp"));
2515 	if (func == VPUTX_VUNREF)
2516 		ASSERT_VOP_LOCKED(vp, "vunref");
2517 	else if (func == VPUTX_VPUT)
2518 		ASSERT_VOP_LOCKED(vp, "vput");
2519 	else
2520 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2521 	ASSERT_VI_UNLOCKED(vp, __func__);
2522 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2523 
2524 	if (vp->v_type != VCHR &&
2525 	    vfs_refcount_release_if_not_last(&vp->v_usecount)) {
2526 		if (func == VPUTX_VPUT)
2527 			VOP_UNLOCK(vp, 0);
2528 		vdrop(vp);
2529 		return;
2530 	}
2531 
2532 	VI_LOCK(vp);
2533 
2534 	/*
2535 	 * We want to hold the vnode until the inactive finishes to
2536 	 * prevent vgone() races.  We drop the use count here and the
2537 	 * hold count below when we're done.
2538 	 */
2539 	if (!refcount_release(&vp->v_usecount) ||
2540 	    (vp->v_iflag & VI_DOINGINACT)) {
2541 		if (func == VPUTX_VPUT)
2542 			VOP_UNLOCK(vp, 0);
2543 		v_decr_devcount(vp);
2544 		vdropl(vp);
2545 		return;
2546 	}
2547 
2548 	v_decr_devcount(vp);
2549 
2550 	error = 0;
2551 
2552 	if (vp->v_usecount != 0) {
2553 		vprint("vputx: usecount not zero", vp);
2554 		panic("vputx: usecount not zero");
2555 	}
2556 
2557 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2558 
2559 	/*
2560 	 * We must call VOP_INACTIVE with the node locked. Mark
2561 	 * as VI_DOINGINACT to avoid recursion.
2562 	 */
2563 	vp->v_iflag |= VI_OWEINACT;
2564 	switch (func) {
2565 	case VPUTX_VRELE:
2566 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2567 		VI_LOCK(vp);
2568 		break;
2569 	case VPUTX_VPUT:
2570 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2571 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2572 			    LK_NOWAIT);
2573 			VI_LOCK(vp);
2574 		}
2575 		break;
2576 	case VPUTX_VUNREF:
2577 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2578 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
2579 			VI_LOCK(vp);
2580 		}
2581 		break;
2582 	}
2583 	VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp,
2584 	    ("vnode with usecount and VI_OWEINACT set"));
2585 	if (error == 0) {
2586 		if (vp->v_iflag & VI_OWEINACT)
2587 			vinactive(vp, curthread);
2588 		if (func != VPUTX_VUNREF)
2589 			VOP_UNLOCK(vp, 0);
2590 	}
2591 	vdropl(vp);
2592 }
2593 
2594 /*
2595  * Vnode put/release.
2596  * If count drops to zero, call inactive routine and return to freelist.
2597  */
2598 void
2599 vrele(struct vnode *vp)
2600 {
2601 
2602 	vputx(vp, VPUTX_VRELE);
2603 }
2604 
2605 /*
2606  * Release an already locked vnode.  This give the same effects as
2607  * unlock+vrele(), but takes less time and avoids releasing and
2608  * re-aquiring the lock (as vrele() acquires the lock internally.)
2609  */
2610 void
2611 vput(struct vnode *vp)
2612 {
2613 
2614 	vputx(vp, VPUTX_VPUT);
2615 }
2616 
2617 /*
2618  * Release an exclusively locked vnode. Do not unlock the vnode lock.
2619  */
2620 void
2621 vunref(struct vnode *vp)
2622 {
2623 
2624 	vputx(vp, VPUTX_VUNREF);
2625 }
2626 
2627 /*
2628  * Increase the hold count and activate if this is the first reference.
2629  */
2630 void
2631 _vhold(struct vnode *vp, bool locked)
2632 {
2633 	struct mount *mp;
2634 
2635 	if (locked)
2636 		ASSERT_VI_LOCKED(vp, __func__);
2637 	else
2638 		ASSERT_VI_UNLOCKED(vp, __func__);
2639 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2640 	if (!locked && vfs_refcount_acquire_if_not_zero(&vp->v_holdcnt)) {
2641 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2642 		    ("_vhold: vnode with holdcnt is free"));
2643 		return;
2644 	}
2645 
2646 	if (!locked)
2647 		VI_LOCK(vp);
2648 	if ((vp->v_iflag & VI_FREE) == 0) {
2649 		refcount_acquire(&vp->v_holdcnt);
2650 		if (!locked)
2651 			VI_UNLOCK(vp);
2652 		return;
2653 	}
2654 	VNASSERT(vp->v_holdcnt == 0, vp,
2655 	    ("%s: wrong hold count", __func__));
2656 	VNASSERT(vp->v_op != NULL, vp,
2657 	    ("%s: vnode already reclaimed.", __func__));
2658 	/*
2659 	 * Remove a vnode from the free list, mark it as in use,
2660 	 * and put it on the active list.
2661 	 */
2662 	mtx_lock(&vnode_free_list_mtx);
2663 	TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2664 	freevnodes--;
2665 	vp->v_iflag &= ~VI_FREE;
2666 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2667 	    ("Activating already active vnode"));
2668 	vp->v_iflag |= VI_ACTIVE;
2669 	mp = vp->v_mount;
2670 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2671 	mp->mnt_activevnodelistsize++;
2672 	mtx_unlock(&vnode_free_list_mtx);
2673 	refcount_acquire(&vp->v_holdcnt);
2674 	if (!locked)
2675 		VI_UNLOCK(vp);
2676 }
2677 
2678 /*
2679  * Drop the hold count of the vnode.  If this is the last reference to
2680  * the vnode we place it on the free list unless it has been vgone'd
2681  * (marked VI_DOOMED) in which case we will free it.
2682  *
2683  * Because the vnode vm object keeps a hold reference on the vnode if
2684  * there is at least one resident non-cached page, the vnode cannot
2685  * leave the active list without the page cleanup done.
2686  */
2687 void
2688 _vdrop(struct vnode *vp, bool locked)
2689 {
2690 	struct bufobj *bo;
2691 	struct mount *mp;
2692 	int active;
2693 
2694 	if (locked)
2695 		ASSERT_VI_LOCKED(vp, __func__);
2696 	else
2697 		ASSERT_VI_UNLOCKED(vp, __func__);
2698 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2699 	if ((int)vp->v_holdcnt <= 0)
2700 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2701 	if (vfs_refcount_release_if_not_last(&vp->v_holdcnt)) {
2702 		if (locked)
2703 			VI_UNLOCK(vp);
2704 		return;
2705 	}
2706 
2707 	if (!locked)
2708 		VI_LOCK(vp);
2709 	if (refcount_release(&vp->v_holdcnt) == 0) {
2710 		VI_UNLOCK(vp);
2711 		return;
2712 	}
2713 	if ((vp->v_iflag & VI_DOOMED) == 0) {
2714 		/*
2715 		 * Mark a vnode as free: remove it from its active list
2716 		 * and put it up for recycling on the freelist.
2717 		 */
2718 		VNASSERT(vp->v_op != NULL, vp,
2719 		    ("vdropl: vnode already reclaimed."));
2720 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2721 		    ("vnode already free"));
2722 		VNASSERT(vp->v_holdcnt == 0, vp,
2723 		    ("vdropl: freeing when we shouldn't"));
2724 		active = vp->v_iflag & VI_ACTIVE;
2725 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2726 			vp->v_iflag &= ~VI_ACTIVE;
2727 			mp = vp->v_mount;
2728 			mtx_lock(&vnode_free_list_mtx);
2729 			if (active) {
2730 				TAILQ_REMOVE(&mp->mnt_activevnodelist, vp,
2731 				    v_actfreelist);
2732 				mp->mnt_activevnodelistsize--;
2733 			}
2734 			TAILQ_INSERT_TAIL(&vnode_free_list, vp,
2735 			    v_actfreelist);
2736 			freevnodes++;
2737 			vp->v_iflag |= VI_FREE;
2738 			mtx_unlock(&vnode_free_list_mtx);
2739 		} else {
2740 			atomic_add_long(&free_owe_inact, 1);
2741 		}
2742 		VI_UNLOCK(vp);
2743 		return;
2744 	}
2745 	/*
2746 	 * The vnode has been marked for destruction, so free it.
2747 	 *
2748 	 * The vnode will be returned to the zone where it will
2749 	 * normally remain until it is needed for another vnode. We
2750 	 * need to cleanup (or verify that the cleanup has already
2751 	 * been done) any residual data left from its current use
2752 	 * so as not to contaminate the freshly allocated vnode.
2753 	 */
2754 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2755 	atomic_subtract_long(&numvnodes, 1);
2756 	bo = &vp->v_bufobj;
2757 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2758 	    ("cleaned vnode still on the free list."));
2759 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2760 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2761 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2762 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2763 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2764 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2765 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2766 	    ("clean blk trie not empty"));
2767 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2768 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2769 	    ("dirty blk trie not empty"));
2770 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2771 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2772 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2773 	VI_UNLOCK(vp);
2774 #ifdef MAC
2775 	mac_vnode_destroy(vp);
2776 #endif
2777 	if (vp->v_pollinfo != NULL) {
2778 		destroy_vpollinfo(vp->v_pollinfo);
2779 		vp->v_pollinfo = NULL;
2780 	}
2781 #ifdef INVARIANTS
2782 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
2783 	vp->v_op = NULL;
2784 #endif
2785 	bzero(&vp->v_un, sizeof(vp->v_un));
2786 	vp->v_iflag = 0;
2787 	vp->v_vflag = 0;
2788 	bo->bo_flag = 0;
2789 	uma_zfree(vnode_zone, vp);
2790 }
2791 
2792 /*
2793  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
2794  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
2795  * OWEINACT tracks whether a vnode missed a call to inactive due to a
2796  * failed lock upgrade.
2797  */
2798 void
2799 vinactive(struct vnode *vp, struct thread *td)
2800 {
2801 	struct vm_object *obj;
2802 
2803 	ASSERT_VOP_ELOCKED(vp, "vinactive");
2804 	ASSERT_VI_LOCKED(vp, "vinactive");
2805 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2806 	    ("vinactive: recursed on VI_DOINGINACT"));
2807 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2808 	vp->v_iflag |= VI_DOINGINACT;
2809 	vp->v_iflag &= ~VI_OWEINACT;
2810 	VI_UNLOCK(vp);
2811 	/*
2812 	 * Before moving off the active list, we must be sure that any
2813 	 * modified pages are converted into the vnode's dirty
2814 	 * buffers, since these will no longer be checked once the
2815 	 * vnode is on the inactive list.
2816 	 *
2817 	 * The write-out of the dirty pages is asynchronous.  At the
2818 	 * point that VOP_INACTIVE() is called, there could still be
2819 	 * pending I/O and dirty pages in the object.
2820 	 */
2821 	obj = vp->v_object;
2822 	if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
2823 		VM_OBJECT_WLOCK(obj);
2824 		vm_object_page_clean(obj, 0, 0, OBJPC_NOSYNC);
2825 		VM_OBJECT_WUNLOCK(obj);
2826 	}
2827 	VOP_INACTIVE(vp, td);
2828 	VI_LOCK(vp);
2829 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2830 	    ("vinactive: lost VI_DOINGINACT"));
2831 	vp->v_iflag &= ~VI_DOINGINACT;
2832 }
2833 
2834 /*
2835  * Remove any vnodes in the vnode table belonging to mount point mp.
2836  *
2837  * If FORCECLOSE is not specified, there should not be any active ones,
2838  * return error if any are found (nb: this is a user error, not a
2839  * system error). If FORCECLOSE is specified, detach any active vnodes
2840  * that are found.
2841  *
2842  * If WRITECLOSE is set, only flush out regular file vnodes open for
2843  * writing.
2844  *
2845  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2846  *
2847  * `rootrefs' specifies the base reference count for the root vnode
2848  * of this filesystem. The root vnode is considered busy if its
2849  * v_usecount exceeds this value. On a successful return, vflush(, td)
2850  * will call vrele() on the root vnode exactly rootrefs times.
2851  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2852  * be zero.
2853  */
2854 #ifdef DIAGNOSTIC
2855 static int busyprt = 0;		/* print out busy vnodes */
2856 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
2857 #endif
2858 
2859 int
2860 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
2861 {
2862 	struct vnode *vp, *mvp, *rootvp = NULL;
2863 	struct vattr vattr;
2864 	int busy = 0, error;
2865 
2866 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
2867 	    rootrefs, flags);
2868 	if (rootrefs > 0) {
2869 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2870 		    ("vflush: bad args"));
2871 		/*
2872 		 * Get the filesystem root vnode. We can vput() it
2873 		 * immediately, since with rootrefs > 0, it won't go away.
2874 		 */
2875 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
2876 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
2877 			    __func__, error);
2878 			return (error);
2879 		}
2880 		vput(rootvp);
2881 	}
2882 loop:
2883 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
2884 		vholdl(vp);
2885 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
2886 		if (error) {
2887 			vdrop(vp);
2888 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2889 			goto loop;
2890 		}
2891 		/*
2892 		 * Skip over a vnodes marked VV_SYSTEM.
2893 		 */
2894 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2895 			VOP_UNLOCK(vp, 0);
2896 			vdrop(vp);
2897 			continue;
2898 		}
2899 		/*
2900 		 * If WRITECLOSE is set, flush out unlinked but still open
2901 		 * files (even if open only for reading) and regular file
2902 		 * vnodes open for writing.
2903 		 */
2904 		if (flags & WRITECLOSE) {
2905 			if (vp->v_object != NULL) {
2906 				VM_OBJECT_WLOCK(vp->v_object);
2907 				vm_object_page_clean(vp->v_object, 0, 0, 0);
2908 				VM_OBJECT_WUNLOCK(vp->v_object);
2909 			}
2910 			error = VOP_FSYNC(vp, MNT_WAIT, td);
2911 			if (error != 0) {
2912 				VOP_UNLOCK(vp, 0);
2913 				vdrop(vp);
2914 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
2915 				return (error);
2916 			}
2917 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
2918 			VI_LOCK(vp);
2919 
2920 			if ((vp->v_type == VNON ||
2921 			    (error == 0 && vattr.va_nlink > 0)) &&
2922 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2923 				VOP_UNLOCK(vp, 0);
2924 				vdropl(vp);
2925 				continue;
2926 			}
2927 		} else
2928 			VI_LOCK(vp);
2929 		/*
2930 		 * With v_usecount == 0, all we need to do is clear out the
2931 		 * vnode data structures and we are done.
2932 		 *
2933 		 * If FORCECLOSE is set, forcibly close the vnode.
2934 		 */
2935 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
2936 			vgonel(vp);
2937 		} else {
2938 			busy++;
2939 #ifdef DIAGNOSTIC
2940 			if (busyprt)
2941 				vprint("vflush: busy vnode", vp);
2942 #endif
2943 		}
2944 		VOP_UNLOCK(vp, 0);
2945 		vdropl(vp);
2946 	}
2947 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2948 		/*
2949 		 * If just the root vnode is busy, and if its refcount
2950 		 * is equal to `rootrefs', then go ahead and kill it.
2951 		 */
2952 		VI_LOCK(rootvp);
2953 		KASSERT(busy > 0, ("vflush: not busy"));
2954 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2955 		    ("vflush: usecount %d < rootrefs %d",
2956 		     rootvp->v_usecount, rootrefs));
2957 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2958 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
2959 			vgone(rootvp);
2960 			VOP_UNLOCK(rootvp, 0);
2961 			busy = 0;
2962 		} else
2963 			VI_UNLOCK(rootvp);
2964 	}
2965 	if (busy) {
2966 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
2967 		    busy);
2968 		return (EBUSY);
2969 	}
2970 	for (; rootrefs > 0; rootrefs--)
2971 		vrele(rootvp);
2972 	return (0);
2973 }
2974 
2975 /*
2976  * Recycle an unused vnode to the front of the free list.
2977  */
2978 int
2979 vrecycle(struct vnode *vp)
2980 {
2981 	int recycled;
2982 
2983 	ASSERT_VOP_ELOCKED(vp, "vrecycle");
2984 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2985 	recycled = 0;
2986 	VI_LOCK(vp);
2987 	if (vp->v_usecount == 0) {
2988 		recycled = 1;
2989 		vgonel(vp);
2990 	}
2991 	VI_UNLOCK(vp);
2992 	return (recycled);
2993 }
2994 
2995 /*
2996  * Eliminate all activity associated with a vnode
2997  * in preparation for reuse.
2998  */
2999 void
3000 vgone(struct vnode *vp)
3001 {
3002 	VI_LOCK(vp);
3003 	vgonel(vp);
3004 	VI_UNLOCK(vp);
3005 }
3006 
3007 static void
3008 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3009     struct vnode *lowervp __unused)
3010 {
3011 }
3012 
3013 /*
3014  * Notify upper mounts about reclaimed or unlinked vnode.
3015  */
3016 void
3017 vfs_notify_upper(struct vnode *vp, int event)
3018 {
3019 	static struct vfsops vgonel_vfsops = {
3020 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3021 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3022 	};
3023 	struct mount *mp, *ump, *mmp;
3024 
3025 	mp = vp->v_mount;
3026 	if (mp == NULL)
3027 		return;
3028 
3029 	MNT_ILOCK(mp);
3030 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3031 		goto unlock;
3032 	MNT_IUNLOCK(mp);
3033 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3034 	mmp->mnt_op = &vgonel_vfsops;
3035 	mmp->mnt_kern_flag |= MNTK_MARKER;
3036 	MNT_ILOCK(mp);
3037 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3038 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3039 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3040 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3041 			continue;
3042 		}
3043 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3044 		MNT_IUNLOCK(mp);
3045 		switch (event) {
3046 		case VFS_NOTIFY_UPPER_RECLAIM:
3047 			VFS_RECLAIM_LOWERVP(ump, vp);
3048 			break;
3049 		case VFS_NOTIFY_UPPER_UNLINK:
3050 			VFS_UNLINK_LOWERVP(ump, vp);
3051 			break;
3052 		default:
3053 			KASSERT(0, ("invalid event %d", event));
3054 			break;
3055 		}
3056 		MNT_ILOCK(mp);
3057 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3058 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3059 	}
3060 	free(mmp, M_TEMP);
3061 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3062 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3063 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3064 		wakeup(&mp->mnt_uppers);
3065 	}
3066 unlock:
3067 	MNT_IUNLOCK(mp);
3068 }
3069 
3070 /*
3071  * vgone, with the vp interlock held.
3072  */
3073 static void
3074 vgonel(struct vnode *vp)
3075 {
3076 	struct thread *td;
3077 	int oweinact;
3078 	int active;
3079 	struct mount *mp;
3080 
3081 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3082 	ASSERT_VI_LOCKED(vp, "vgonel");
3083 	VNASSERT(vp->v_holdcnt, vp,
3084 	    ("vgonel: vp %p has no reference.", vp));
3085 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3086 	td = curthread;
3087 
3088 	/*
3089 	 * Don't vgonel if we're already doomed.
3090 	 */
3091 	if (vp->v_iflag & VI_DOOMED)
3092 		return;
3093 	vp->v_iflag |= VI_DOOMED;
3094 
3095 	/*
3096 	 * Check to see if the vnode is in use.  If so, we have to call
3097 	 * VOP_CLOSE() and VOP_INACTIVE().
3098 	 */
3099 	active = vp->v_usecount;
3100 	oweinact = (vp->v_iflag & VI_OWEINACT);
3101 	VI_UNLOCK(vp);
3102 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3103 
3104 	/*
3105 	 * If purging an active vnode, it must be closed and
3106 	 * deactivated before being reclaimed.
3107 	 */
3108 	if (active)
3109 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3110 	if (oweinact || active) {
3111 		VI_LOCK(vp);
3112 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
3113 			vinactive(vp, td);
3114 		VI_UNLOCK(vp);
3115 	}
3116 	if (vp->v_type == VSOCK)
3117 		vfs_unp_reclaim(vp);
3118 
3119 	/*
3120 	 * Clean out any buffers associated with the vnode.
3121 	 * If the flush fails, just toss the buffers.
3122 	 */
3123 	mp = NULL;
3124 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3125 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3126 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3127 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3128 			;
3129 	}
3130 
3131 	BO_LOCK(&vp->v_bufobj);
3132 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3133 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3134 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3135 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3136 	    ("vp %p bufobj not invalidated", vp));
3137 	vp->v_bufobj.bo_flag |= BO_DEAD;
3138 	BO_UNLOCK(&vp->v_bufobj);
3139 
3140 	/*
3141 	 * Reclaim the vnode.
3142 	 */
3143 	if (VOP_RECLAIM(vp, td))
3144 		panic("vgone: cannot reclaim");
3145 	if (mp != NULL)
3146 		vn_finished_secondary_write(mp);
3147 	VNASSERT(vp->v_object == NULL, vp,
3148 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
3149 	/*
3150 	 * Clear the advisory locks and wake up waiting threads.
3151 	 */
3152 	(void)VOP_ADVLOCKPURGE(vp);
3153 	vp->v_lockf = NULL;
3154 	/*
3155 	 * Delete from old mount point vnode list.
3156 	 */
3157 	delmntque(vp);
3158 	cache_purge(vp);
3159 	/*
3160 	 * Done with purge, reset to the standard lock and invalidate
3161 	 * the vnode.
3162 	 */
3163 	VI_LOCK(vp);
3164 	vp->v_vnlock = &vp->v_lock;
3165 	vp->v_op = &dead_vnodeops;
3166 	vp->v_tag = "none";
3167 	vp->v_type = VBAD;
3168 }
3169 
3170 /*
3171  * Calculate the total number of references to a special device.
3172  */
3173 int
3174 vcount(struct vnode *vp)
3175 {
3176 	int count;
3177 
3178 	dev_lock();
3179 	count = vp->v_rdev->si_usecount;
3180 	dev_unlock();
3181 	return (count);
3182 }
3183 
3184 /*
3185  * Same as above, but using the struct cdev *as argument
3186  */
3187 int
3188 count_dev(struct cdev *dev)
3189 {
3190 	int count;
3191 
3192 	dev_lock();
3193 	count = dev->si_usecount;
3194 	dev_unlock();
3195 	return(count);
3196 }
3197 
3198 /*
3199  * Print out a description of a vnode.
3200  */
3201 static char *typename[] =
3202 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3203  "VMARKER"};
3204 
3205 void
3206 vn_printf(struct vnode *vp, const char *fmt, ...)
3207 {
3208 	va_list ap;
3209 	char buf[256], buf2[16];
3210 	u_long flags;
3211 
3212 	va_start(ap, fmt);
3213 	vprintf(fmt, ap);
3214 	va_end(ap);
3215 	printf("%p: ", (void *)vp);
3216 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
3217 	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
3218 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
3219 	buf[0] = '\0';
3220 	buf[1] = '\0';
3221 	if (vp->v_vflag & VV_ROOT)
3222 		strlcat(buf, "|VV_ROOT", sizeof(buf));
3223 	if (vp->v_vflag & VV_ISTTY)
3224 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3225 	if (vp->v_vflag & VV_NOSYNC)
3226 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3227 	if (vp->v_vflag & VV_ETERNALDEV)
3228 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3229 	if (vp->v_vflag & VV_CACHEDLABEL)
3230 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3231 	if (vp->v_vflag & VV_TEXT)
3232 		strlcat(buf, "|VV_TEXT", sizeof(buf));
3233 	if (vp->v_vflag & VV_COPYONWRITE)
3234 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3235 	if (vp->v_vflag & VV_SYSTEM)
3236 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3237 	if (vp->v_vflag & VV_PROCDEP)
3238 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3239 	if (vp->v_vflag & VV_NOKNOTE)
3240 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3241 	if (vp->v_vflag & VV_DELETED)
3242 		strlcat(buf, "|VV_DELETED", sizeof(buf));
3243 	if (vp->v_vflag & VV_MD)
3244 		strlcat(buf, "|VV_MD", sizeof(buf));
3245 	if (vp->v_vflag & VV_FORCEINSMQ)
3246 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3247 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3248 	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3249 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3250 	if (flags != 0) {
3251 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3252 		strlcat(buf, buf2, sizeof(buf));
3253 	}
3254 	if (vp->v_iflag & VI_MOUNT)
3255 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3256 	if (vp->v_iflag & VI_DOOMED)
3257 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
3258 	if (vp->v_iflag & VI_FREE)
3259 		strlcat(buf, "|VI_FREE", sizeof(buf));
3260 	if (vp->v_iflag & VI_ACTIVE)
3261 		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3262 	if (vp->v_iflag & VI_DOINGINACT)
3263 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3264 	if (vp->v_iflag & VI_OWEINACT)
3265 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3266 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOOMED | VI_FREE |
3267 	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT);
3268 	if (flags != 0) {
3269 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3270 		strlcat(buf, buf2, sizeof(buf));
3271 	}
3272 	printf("    flags (%s)\n", buf + 1);
3273 	if (mtx_owned(VI_MTX(vp)))
3274 		printf(" VI_LOCKed");
3275 	if (vp->v_object != NULL)
3276 		printf("    v_object %p ref %d pages %d "
3277 		    "cleanbuf %d dirtybuf %d\n",
3278 		    vp->v_object, vp->v_object->ref_count,
3279 		    vp->v_object->resident_page_count,
3280 		    vp->v_bufobj.bo_clean.bv_cnt,
3281 		    vp->v_bufobj.bo_dirty.bv_cnt);
3282 	printf("    ");
3283 	lockmgr_printinfo(vp->v_vnlock);
3284 	if (vp->v_data != NULL)
3285 		VOP_PRINT(vp);
3286 }
3287 
3288 #ifdef DDB
3289 /*
3290  * List all of the locked vnodes in the system.
3291  * Called when debugging the kernel.
3292  */
3293 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3294 {
3295 	struct mount *mp;
3296 	struct vnode *vp;
3297 
3298 	/*
3299 	 * Note: because this is DDB, we can't obey the locking semantics
3300 	 * for these structures, which means we could catch an inconsistent
3301 	 * state and dereference a nasty pointer.  Not much to be done
3302 	 * about that.
3303 	 */
3304 	db_printf("Locked vnodes\n");
3305 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3306 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3307 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3308 				vprint("", vp);
3309 		}
3310 	}
3311 }
3312 
3313 /*
3314  * Show details about the given vnode.
3315  */
3316 DB_SHOW_COMMAND(vnode, db_show_vnode)
3317 {
3318 	struct vnode *vp;
3319 
3320 	if (!have_addr)
3321 		return;
3322 	vp = (struct vnode *)addr;
3323 	vn_printf(vp, "vnode ");
3324 }
3325 
3326 /*
3327  * Show details about the given mount point.
3328  */
3329 DB_SHOW_COMMAND(mount, db_show_mount)
3330 {
3331 	struct mount *mp;
3332 	struct vfsopt *opt;
3333 	struct statfs *sp;
3334 	struct vnode *vp;
3335 	char buf[512];
3336 	uint64_t mflags;
3337 	u_int flags;
3338 
3339 	if (!have_addr) {
3340 		/* No address given, print short info about all mount points. */
3341 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3342 			db_printf("%p %s on %s (%s)\n", mp,
3343 			    mp->mnt_stat.f_mntfromname,
3344 			    mp->mnt_stat.f_mntonname,
3345 			    mp->mnt_stat.f_fstypename);
3346 			if (db_pager_quit)
3347 				break;
3348 		}
3349 		db_printf("\nMore info: show mount <addr>\n");
3350 		return;
3351 	}
3352 
3353 	mp = (struct mount *)addr;
3354 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3355 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3356 
3357 	buf[0] = '\0';
3358 	mflags = mp->mnt_flag;
3359 #define	MNT_FLAG(flag)	do {						\
3360 	if (mflags & (flag)) {						\
3361 		if (buf[0] != '\0')					\
3362 			strlcat(buf, ", ", sizeof(buf));		\
3363 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3364 		mflags &= ~(flag);					\
3365 	}								\
3366 } while (0)
3367 	MNT_FLAG(MNT_RDONLY);
3368 	MNT_FLAG(MNT_SYNCHRONOUS);
3369 	MNT_FLAG(MNT_NOEXEC);
3370 	MNT_FLAG(MNT_NOSUID);
3371 	MNT_FLAG(MNT_NFS4ACLS);
3372 	MNT_FLAG(MNT_UNION);
3373 	MNT_FLAG(MNT_ASYNC);
3374 	MNT_FLAG(MNT_SUIDDIR);
3375 	MNT_FLAG(MNT_SOFTDEP);
3376 	MNT_FLAG(MNT_NOSYMFOLLOW);
3377 	MNT_FLAG(MNT_GJOURNAL);
3378 	MNT_FLAG(MNT_MULTILABEL);
3379 	MNT_FLAG(MNT_ACLS);
3380 	MNT_FLAG(MNT_NOATIME);
3381 	MNT_FLAG(MNT_NOCLUSTERR);
3382 	MNT_FLAG(MNT_NOCLUSTERW);
3383 	MNT_FLAG(MNT_SUJ);
3384 	MNT_FLAG(MNT_EXRDONLY);
3385 	MNT_FLAG(MNT_EXPORTED);
3386 	MNT_FLAG(MNT_DEFEXPORTED);
3387 	MNT_FLAG(MNT_EXPORTANON);
3388 	MNT_FLAG(MNT_EXKERB);
3389 	MNT_FLAG(MNT_EXPUBLIC);
3390 	MNT_FLAG(MNT_LOCAL);
3391 	MNT_FLAG(MNT_QUOTA);
3392 	MNT_FLAG(MNT_ROOTFS);
3393 	MNT_FLAG(MNT_USER);
3394 	MNT_FLAG(MNT_IGNORE);
3395 	MNT_FLAG(MNT_UPDATE);
3396 	MNT_FLAG(MNT_DELEXPORT);
3397 	MNT_FLAG(MNT_RELOAD);
3398 	MNT_FLAG(MNT_FORCE);
3399 	MNT_FLAG(MNT_SNAPSHOT);
3400 	MNT_FLAG(MNT_BYFSID);
3401 #undef MNT_FLAG
3402 	if (mflags != 0) {
3403 		if (buf[0] != '\0')
3404 			strlcat(buf, ", ", sizeof(buf));
3405 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3406 		    "0x%016jx", mflags);
3407 	}
3408 	db_printf("    mnt_flag = %s\n", buf);
3409 
3410 	buf[0] = '\0';
3411 	flags = mp->mnt_kern_flag;
3412 #define	MNT_KERN_FLAG(flag)	do {					\
3413 	if (flags & (flag)) {						\
3414 		if (buf[0] != '\0')					\
3415 			strlcat(buf, ", ", sizeof(buf));		\
3416 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3417 		flags &= ~(flag);					\
3418 	}								\
3419 } while (0)
3420 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3421 	MNT_KERN_FLAG(MNTK_ASYNC);
3422 	MNT_KERN_FLAG(MNTK_SOFTDEP);
3423 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3424 	MNT_KERN_FLAG(MNTK_DRAINING);
3425 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3426 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3427 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3428 	MNT_KERN_FLAG(MNTK_NO_IOPF);
3429 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3430 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3431 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3432 	MNT_KERN_FLAG(MNTK_MARKER);
3433 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
3434 	MNT_KERN_FLAG(MNTK_NOASYNC);
3435 	MNT_KERN_FLAG(MNTK_UNMOUNT);
3436 	MNT_KERN_FLAG(MNTK_MWAIT);
3437 	MNT_KERN_FLAG(MNTK_SUSPEND);
3438 	MNT_KERN_FLAG(MNTK_SUSPEND2);
3439 	MNT_KERN_FLAG(MNTK_SUSPENDED);
3440 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3441 	MNT_KERN_FLAG(MNTK_NOKNOTE);
3442 #undef MNT_KERN_FLAG
3443 	if (flags != 0) {
3444 		if (buf[0] != '\0')
3445 			strlcat(buf, ", ", sizeof(buf));
3446 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3447 		    "0x%08x", flags);
3448 	}
3449 	db_printf("    mnt_kern_flag = %s\n", buf);
3450 
3451 	db_printf("    mnt_opt = ");
3452 	opt = TAILQ_FIRST(mp->mnt_opt);
3453 	if (opt != NULL) {
3454 		db_printf("%s", opt->name);
3455 		opt = TAILQ_NEXT(opt, link);
3456 		while (opt != NULL) {
3457 			db_printf(", %s", opt->name);
3458 			opt = TAILQ_NEXT(opt, link);
3459 		}
3460 	}
3461 	db_printf("\n");
3462 
3463 	sp = &mp->mnt_stat;
3464 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3465 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3466 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3467 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3468 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3469 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3470 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3471 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3472 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3473 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3474 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3475 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3476 
3477 	db_printf("    mnt_cred = { uid=%u ruid=%u",
3478 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3479 	if (jailed(mp->mnt_cred))
3480 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3481 	db_printf(" }\n");
3482 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3483 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3484 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3485 	db_printf("    mnt_activevnodelistsize = %d\n",
3486 	    mp->mnt_activevnodelistsize);
3487 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3488 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3489 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3490 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3491 	db_printf("    mnt_lockref = %d\n", mp->mnt_lockref);
3492 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3493 	db_printf("    mnt_secondary_accwrites = %d\n",
3494 	    mp->mnt_secondary_accwrites);
3495 	db_printf("    mnt_gjprovider = %s\n",
3496 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3497 
3498 	db_printf("\n\nList of active vnodes\n");
3499 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3500 		if (vp->v_type != VMARKER) {
3501 			vn_printf(vp, "vnode ");
3502 			if (db_pager_quit)
3503 				break;
3504 		}
3505 	}
3506 	db_printf("\n\nList of inactive vnodes\n");
3507 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3508 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3509 			vn_printf(vp, "vnode ");
3510 			if (db_pager_quit)
3511 				break;
3512 		}
3513 	}
3514 }
3515 #endif	/* DDB */
3516 
3517 /*
3518  * Fill in a struct xvfsconf based on a struct vfsconf.
3519  */
3520 static int
3521 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
3522 {
3523 	struct xvfsconf xvfsp;
3524 
3525 	bzero(&xvfsp, sizeof(xvfsp));
3526 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3527 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3528 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3529 	xvfsp.vfc_flags = vfsp->vfc_flags;
3530 	/*
3531 	 * These are unused in userland, we keep them
3532 	 * to not break binary compatibility.
3533 	 */
3534 	xvfsp.vfc_vfsops = NULL;
3535 	xvfsp.vfc_next = NULL;
3536 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3537 }
3538 
3539 #ifdef COMPAT_FREEBSD32
3540 struct xvfsconf32 {
3541 	uint32_t	vfc_vfsops;
3542 	char		vfc_name[MFSNAMELEN];
3543 	int32_t		vfc_typenum;
3544 	int32_t		vfc_refcount;
3545 	int32_t		vfc_flags;
3546 	uint32_t	vfc_next;
3547 };
3548 
3549 static int
3550 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
3551 {
3552 	struct xvfsconf32 xvfsp;
3553 
3554 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3555 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3556 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3557 	xvfsp.vfc_flags = vfsp->vfc_flags;
3558 	xvfsp.vfc_vfsops = 0;
3559 	xvfsp.vfc_next = 0;
3560 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3561 }
3562 #endif
3563 
3564 /*
3565  * Top level filesystem related information gathering.
3566  */
3567 static int
3568 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3569 {
3570 	struct vfsconf *vfsp;
3571 	int error;
3572 
3573 	error = 0;
3574 	vfsconf_slock();
3575 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3576 #ifdef COMPAT_FREEBSD32
3577 		if (req->flags & SCTL_MASK32)
3578 			error = vfsconf2x32(req, vfsp);
3579 		else
3580 #endif
3581 			error = vfsconf2x(req, vfsp);
3582 		if (error)
3583 			break;
3584 	}
3585 	vfsconf_sunlock();
3586 	return (error);
3587 }
3588 
3589 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
3590     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
3591     "S,xvfsconf", "List of all configured filesystems");
3592 
3593 #ifndef BURN_BRIDGES
3594 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3595 
3596 static int
3597 vfs_sysctl(SYSCTL_HANDLER_ARGS)
3598 {
3599 	int *name = (int *)arg1 - 1;	/* XXX */
3600 	u_int namelen = arg2 + 1;	/* XXX */
3601 	struct vfsconf *vfsp;
3602 
3603 	log(LOG_WARNING, "userland calling deprecated sysctl, "
3604 	    "please rebuild world\n");
3605 
3606 #if 1 || defined(COMPAT_PRELITE2)
3607 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3608 	if (namelen == 1)
3609 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3610 #endif
3611 
3612 	switch (name[1]) {
3613 	case VFS_MAXTYPENUM:
3614 		if (namelen != 2)
3615 			return (ENOTDIR);
3616 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3617 	case VFS_CONF:
3618 		if (namelen != 3)
3619 			return (ENOTDIR);	/* overloaded */
3620 		vfsconf_slock();
3621 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3622 			if (vfsp->vfc_typenum == name[2])
3623 				break;
3624 		}
3625 		vfsconf_sunlock();
3626 		if (vfsp == NULL)
3627 			return (EOPNOTSUPP);
3628 #ifdef COMPAT_FREEBSD32
3629 		if (req->flags & SCTL_MASK32)
3630 			return (vfsconf2x32(req, vfsp));
3631 		else
3632 #endif
3633 			return (vfsconf2x(req, vfsp));
3634 	}
3635 	return (EOPNOTSUPP);
3636 }
3637 
3638 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
3639     CTLFLAG_MPSAFE, vfs_sysctl,
3640     "Generic filesystem");
3641 
3642 #if 1 || defined(COMPAT_PRELITE2)
3643 
3644 static int
3645 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3646 {
3647 	int error;
3648 	struct vfsconf *vfsp;
3649 	struct ovfsconf ovfs;
3650 
3651 	vfsconf_slock();
3652 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3653 		bzero(&ovfs, sizeof(ovfs));
3654 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3655 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3656 		ovfs.vfc_index = vfsp->vfc_typenum;
3657 		ovfs.vfc_refcount = vfsp->vfc_refcount;
3658 		ovfs.vfc_flags = vfsp->vfc_flags;
3659 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3660 		if (error != 0) {
3661 			vfsconf_sunlock();
3662 			return (error);
3663 		}
3664 	}
3665 	vfsconf_sunlock();
3666 	return (0);
3667 }
3668 
3669 #endif /* 1 || COMPAT_PRELITE2 */
3670 #endif /* !BURN_BRIDGES */
3671 
3672 #define KINFO_VNODESLOP		10
3673 #ifdef notyet
3674 /*
3675  * Dump vnode list (via sysctl).
3676  */
3677 /* ARGSUSED */
3678 static int
3679 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3680 {
3681 	struct xvnode *xvn;
3682 	struct mount *mp;
3683 	struct vnode *vp;
3684 	int error, len, n;
3685 
3686 	/*
3687 	 * Stale numvnodes access is not fatal here.
3688 	 */
3689 	req->lock = 0;
3690 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3691 	if (!req->oldptr)
3692 		/* Make an estimate */
3693 		return (SYSCTL_OUT(req, 0, len));
3694 
3695 	error = sysctl_wire_old_buffer(req, 0);
3696 	if (error != 0)
3697 		return (error);
3698 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3699 	n = 0;
3700 	mtx_lock(&mountlist_mtx);
3701 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3702 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3703 			continue;
3704 		MNT_ILOCK(mp);
3705 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3706 			if (n == len)
3707 				break;
3708 			vref(vp);
3709 			xvn[n].xv_size = sizeof *xvn;
3710 			xvn[n].xv_vnode = vp;
3711 			xvn[n].xv_id = 0;	/* XXX compat */
3712 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3713 			XV_COPY(usecount);
3714 			XV_COPY(writecount);
3715 			XV_COPY(holdcnt);
3716 			XV_COPY(mount);
3717 			XV_COPY(numoutput);
3718 			XV_COPY(type);
3719 #undef XV_COPY
3720 			xvn[n].xv_flag = vp->v_vflag;
3721 
3722 			switch (vp->v_type) {
3723 			case VREG:
3724 			case VDIR:
3725 			case VLNK:
3726 				break;
3727 			case VBLK:
3728 			case VCHR:
3729 				if (vp->v_rdev == NULL) {
3730 					vrele(vp);
3731 					continue;
3732 				}
3733 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3734 				break;
3735 			case VSOCK:
3736 				xvn[n].xv_socket = vp->v_socket;
3737 				break;
3738 			case VFIFO:
3739 				xvn[n].xv_fifo = vp->v_fifoinfo;
3740 				break;
3741 			case VNON:
3742 			case VBAD:
3743 			default:
3744 				/* shouldn't happen? */
3745 				vrele(vp);
3746 				continue;
3747 			}
3748 			vrele(vp);
3749 			++n;
3750 		}
3751 		MNT_IUNLOCK(mp);
3752 		mtx_lock(&mountlist_mtx);
3753 		vfs_unbusy(mp);
3754 		if (n == len)
3755 			break;
3756 	}
3757 	mtx_unlock(&mountlist_mtx);
3758 
3759 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
3760 	free(xvn, M_TEMP);
3761 	return (error);
3762 }
3763 
3764 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
3765     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
3766     "");
3767 #endif
3768 
3769 static void
3770 unmount_or_warn(struct mount *mp)
3771 {
3772 	int error;
3773 
3774 	error = dounmount(mp, MNT_FORCE, curthread);
3775 	if (error != 0) {
3776 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
3777 		if (error == EBUSY)
3778 			printf("BUSY)\n");
3779 		else
3780 			printf("%d)\n", error);
3781 	}
3782 }
3783 
3784 /*
3785  * Unmount all filesystems. The list is traversed in reverse order
3786  * of mounting to avoid dependencies.
3787  */
3788 void
3789 vfs_unmountall(void)
3790 {
3791 	struct mount *mp, *tmp;
3792 
3793 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
3794 
3795 	/*
3796 	 * Since this only runs when rebooting, it is not interlocked.
3797 	 */
3798 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
3799 		vfs_ref(mp);
3800 
3801 		/*
3802 		 * Forcibly unmounting "/dev" before "/" would prevent clean
3803 		 * unmount of the latter.
3804 		 */
3805 		if (mp == rootdevmp)
3806 			continue;
3807 
3808 		unmount_or_warn(mp);
3809 	}
3810 
3811 	if (rootdevmp != NULL)
3812 		unmount_or_warn(rootdevmp);
3813 }
3814 
3815 /*
3816  * perform msync on all vnodes under a mount point
3817  * the mount point must be locked.
3818  */
3819 void
3820 vfs_msync(struct mount *mp, int flags)
3821 {
3822 	struct vnode *vp, *mvp;
3823 	struct vm_object *obj;
3824 
3825 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
3826 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
3827 		obj = vp->v_object;
3828 		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
3829 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
3830 			if (!vget(vp,
3831 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
3832 			    curthread)) {
3833 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
3834 					vput(vp);
3835 					continue;
3836 				}
3837 
3838 				obj = vp->v_object;
3839 				if (obj != NULL) {
3840 					VM_OBJECT_WLOCK(obj);
3841 					vm_object_page_clean(obj, 0, 0,
3842 					    flags == MNT_WAIT ?
3843 					    OBJPC_SYNC : OBJPC_NOSYNC);
3844 					VM_OBJECT_WUNLOCK(obj);
3845 				}
3846 				vput(vp);
3847 			}
3848 		} else
3849 			VI_UNLOCK(vp);
3850 	}
3851 }
3852 
3853 static void
3854 destroy_vpollinfo_free(struct vpollinfo *vi)
3855 {
3856 
3857 	knlist_destroy(&vi->vpi_selinfo.si_note);
3858 	mtx_destroy(&vi->vpi_lock);
3859 	uma_zfree(vnodepoll_zone, vi);
3860 }
3861 
3862 static void
3863 destroy_vpollinfo(struct vpollinfo *vi)
3864 {
3865 
3866 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
3867 	seldrain(&vi->vpi_selinfo);
3868 	destroy_vpollinfo_free(vi);
3869 }
3870 
3871 /*
3872  * Initalize per-vnode helper structure to hold poll-related state.
3873  */
3874 void
3875 v_addpollinfo(struct vnode *vp)
3876 {
3877 	struct vpollinfo *vi;
3878 
3879 	if (vp->v_pollinfo != NULL)
3880 		return;
3881 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
3882 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
3883 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
3884 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
3885 	VI_LOCK(vp);
3886 	if (vp->v_pollinfo != NULL) {
3887 		VI_UNLOCK(vp);
3888 		destroy_vpollinfo_free(vi);
3889 		return;
3890 	}
3891 	vp->v_pollinfo = vi;
3892 	VI_UNLOCK(vp);
3893 }
3894 
3895 /*
3896  * Record a process's interest in events which might happen to
3897  * a vnode.  Because poll uses the historic select-style interface
3898  * internally, this routine serves as both the ``check for any
3899  * pending events'' and the ``record my interest in future events''
3900  * functions.  (These are done together, while the lock is held,
3901  * to avoid race conditions.)
3902  */
3903 int
3904 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
3905 {
3906 
3907 	v_addpollinfo(vp);
3908 	mtx_lock(&vp->v_pollinfo->vpi_lock);
3909 	if (vp->v_pollinfo->vpi_revents & events) {
3910 		/*
3911 		 * This leaves events we are not interested
3912 		 * in available for the other process which
3913 		 * which presumably had requested them
3914 		 * (otherwise they would never have been
3915 		 * recorded).
3916 		 */
3917 		events &= vp->v_pollinfo->vpi_revents;
3918 		vp->v_pollinfo->vpi_revents &= ~events;
3919 
3920 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
3921 		return (events);
3922 	}
3923 	vp->v_pollinfo->vpi_events |= events;
3924 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
3925 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
3926 	return (0);
3927 }
3928 
3929 /*
3930  * Routine to create and manage a filesystem syncer vnode.
3931  */
3932 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
3933 static int	sync_fsync(struct  vop_fsync_args *);
3934 static int	sync_inactive(struct  vop_inactive_args *);
3935 static int	sync_reclaim(struct  vop_reclaim_args *);
3936 
3937 static struct vop_vector sync_vnodeops = {
3938 	.vop_bypass =	VOP_EOPNOTSUPP,
3939 	.vop_close =	sync_close,		/* close */
3940 	.vop_fsync =	sync_fsync,		/* fsync */
3941 	.vop_inactive =	sync_inactive,	/* inactive */
3942 	.vop_reclaim =	sync_reclaim,	/* reclaim */
3943 	.vop_lock1 =	vop_stdlock,	/* lock */
3944 	.vop_unlock =	vop_stdunlock,	/* unlock */
3945 	.vop_islocked =	vop_stdislocked,	/* islocked */
3946 };
3947 
3948 /*
3949  * Create a new filesystem syncer vnode for the specified mount point.
3950  */
3951 void
3952 vfs_allocate_syncvnode(struct mount *mp)
3953 {
3954 	struct vnode *vp;
3955 	struct bufobj *bo;
3956 	static long start, incr, next;
3957 	int error;
3958 
3959 	/* Allocate a new vnode */
3960 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
3961 	if (error != 0)
3962 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
3963 	vp->v_type = VNON;
3964 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3965 	vp->v_vflag |= VV_FORCEINSMQ;
3966 	error = insmntque(vp, mp);
3967 	if (error != 0)
3968 		panic("vfs_allocate_syncvnode: insmntque() failed");
3969 	vp->v_vflag &= ~VV_FORCEINSMQ;
3970 	VOP_UNLOCK(vp, 0);
3971 	/*
3972 	 * Place the vnode onto the syncer worklist. We attempt to
3973 	 * scatter them about on the list so that they will go off
3974 	 * at evenly distributed times even if all the filesystems
3975 	 * are mounted at once.
3976 	 */
3977 	next += incr;
3978 	if (next == 0 || next > syncer_maxdelay) {
3979 		start /= 2;
3980 		incr /= 2;
3981 		if (start == 0) {
3982 			start = syncer_maxdelay / 2;
3983 			incr = syncer_maxdelay;
3984 		}
3985 		next = start;
3986 	}
3987 	bo = &vp->v_bufobj;
3988 	BO_LOCK(bo);
3989 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
3990 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
3991 	mtx_lock(&sync_mtx);
3992 	sync_vnode_count++;
3993 	if (mp->mnt_syncer == NULL) {
3994 		mp->mnt_syncer = vp;
3995 		vp = NULL;
3996 	}
3997 	mtx_unlock(&sync_mtx);
3998 	BO_UNLOCK(bo);
3999 	if (vp != NULL) {
4000 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4001 		vgone(vp);
4002 		vput(vp);
4003 	}
4004 }
4005 
4006 void
4007 vfs_deallocate_syncvnode(struct mount *mp)
4008 {
4009 	struct vnode *vp;
4010 
4011 	mtx_lock(&sync_mtx);
4012 	vp = mp->mnt_syncer;
4013 	if (vp != NULL)
4014 		mp->mnt_syncer = NULL;
4015 	mtx_unlock(&sync_mtx);
4016 	if (vp != NULL)
4017 		vrele(vp);
4018 }
4019 
4020 /*
4021  * Do a lazy sync of the filesystem.
4022  */
4023 static int
4024 sync_fsync(struct vop_fsync_args *ap)
4025 {
4026 	struct vnode *syncvp = ap->a_vp;
4027 	struct mount *mp = syncvp->v_mount;
4028 	int error, save;
4029 	struct bufobj *bo;
4030 
4031 	/*
4032 	 * We only need to do something if this is a lazy evaluation.
4033 	 */
4034 	if (ap->a_waitfor != MNT_LAZY)
4035 		return (0);
4036 
4037 	/*
4038 	 * Move ourselves to the back of the sync list.
4039 	 */
4040 	bo = &syncvp->v_bufobj;
4041 	BO_LOCK(bo);
4042 	vn_syncer_add_to_worklist(bo, syncdelay);
4043 	BO_UNLOCK(bo);
4044 
4045 	/*
4046 	 * Walk the list of vnodes pushing all that are dirty and
4047 	 * not already on the sync list.
4048 	 */
4049 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4050 		return (0);
4051 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4052 		vfs_unbusy(mp);
4053 		return (0);
4054 	}
4055 	save = curthread_pflags_set(TDP_SYNCIO);
4056 	vfs_msync(mp, MNT_NOWAIT);
4057 	error = VFS_SYNC(mp, MNT_LAZY);
4058 	curthread_pflags_restore(save);
4059 	vn_finished_write(mp);
4060 	vfs_unbusy(mp);
4061 	return (error);
4062 }
4063 
4064 /*
4065  * The syncer vnode is no referenced.
4066  */
4067 static int
4068 sync_inactive(struct vop_inactive_args *ap)
4069 {
4070 
4071 	vgone(ap->a_vp);
4072 	return (0);
4073 }
4074 
4075 /*
4076  * The syncer vnode is no longer needed and is being decommissioned.
4077  *
4078  * Modifications to the worklist must be protected by sync_mtx.
4079  */
4080 static int
4081 sync_reclaim(struct vop_reclaim_args *ap)
4082 {
4083 	struct vnode *vp = ap->a_vp;
4084 	struct bufobj *bo;
4085 
4086 	bo = &vp->v_bufobj;
4087 	BO_LOCK(bo);
4088 	mtx_lock(&sync_mtx);
4089 	if (vp->v_mount->mnt_syncer == vp)
4090 		vp->v_mount->mnt_syncer = NULL;
4091 	if (bo->bo_flag & BO_ONWORKLST) {
4092 		LIST_REMOVE(bo, bo_synclist);
4093 		syncer_worklist_len--;
4094 		sync_vnode_count--;
4095 		bo->bo_flag &= ~BO_ONWORKLST;
4096 	}
4097 	mtx_unlock(&sync_mtx);
4098 	BO_UNLOCK(bo);
4099 
4100 	return (0);
4101 }
4102 
4103 /*
4104  * Check if vnode represents a disk device
4105  */
4106 int
4107 vn_isdisk(struct vnode *vp, int *errp)
4108 {
4109 	int error;
4110 
4111 	if (vp->v_type != VCHR) {
4112 		error = ENOTBLK;
4113 		goto out;
4114 	}
4115 	error = 0;
4116 	dev_lock();
4117 	if (vp->v_rdev == NULL)
4118 		error = ENXIO;
4119 	else if (vp->v_rdev->si_devsw == NULL)
4120 		error = ENXIO;
4121 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
4122 		error = ENOTBLK;
4123 	dev_unlock();
4124 out:
4125 	if (errp != NULL)
4126 		*errp = error;
4127 	return (error == 0);
4128 }
4129 
4130 /*
4131  * Common filesystem object access control check routine.  Accepts a
4132  * vnode's type, "mode", uid and gid, requested access mode, credentials,
4133  * and optional call-by-reference privused argument allowing vaccess()
4134  * to indicate to the caller whether privilege was used to satisfy the
4135  * request (obsoleted).  Returns 0 on success, or an errno on failure.
4136  */
4137 int
4138 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
4139     accmode_t accmode, struct ucred *cred, int *privused)
4140 {
4141 	accmode_t dac_granted;
4142 	accmode_t priv_granted;
4143 
4144 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
4145 	    ("invalid bit in accmode"));
4146 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
4147 	    ("VAPPEND without VWRITE"));
4148 
4149 	/*
4150 	 * Look for a normal, non-privileged way to access the file/directory
4151 	 * as requested.  If it exists, go with that.
4152 	 */
4153 
4154 	if (privused != NULL)
4155 		*privused = 0;
4156 
4157 	dac_granted = 0;
4158 
4159 	/* Check the owner. */
4160 	if (cred->cr_uid == file_uid) {
4161 		dac_granted |= VADMIN;
4162 		if (file_mode & S_IXUSR)
4163 			dac_granted |= VEXEC;
4164 		if (file_mode & S_IRUSR)
4165 			dac_granted |= VREAD;
4166 		if (file_mode & S_IWUSR)
4167 			dac_granted |= (VWRITE | VAPPEND);
4168 
4169 		if ((accmode & dac_granted) == accmode)
4170 			return (0);
4171 
4172 		goto privcheck;
4173 	}
4174 
4175 	/* Otherwise, check the groups (first match) */
4176 	if (groupmember(file_gid, cred)) {
4177 		if (file_mode & S_IXGRP)
4178 			dac_granted |= VEXEC;
4179 		if (file_mode & S_IRGRP)
4180 			dac_granted |= VREAD;
4181 		if (file_mode & S_IWGRP)
4182 			dac_granted |= (VWRITE | VAPPEND);
4183 
4184 		if ((accmode & dac_granted) == accmode)
4185 			return (0);
4186 
4187 		goto privcheck;
4188 	}
4189 
4190 	/* Otherwise, check everyone else. */
4191 	if (file_mode & S_IXOTH)
4192 		dac_granted |= VEXEC;
4193 	if (file_mode & S_IROTH)
4194 		dac_granted |= VREAD;
4195 	if (file_mode & S_IWOTH)
4196 		dac_granted |= (VWRITE | VAPPEND);
4197 	if ((accmode & dac_granted) == accmode)
4198 		return (0);
4199 
4200 privcheck:
4201 	/*
4202 	 * Build a privilege mask to determine if the set of privileges
4203 	 * satisfies the requirements when combined with the granted mask
4204 	 * from above.  For each privilege, if the privilege is required,
4205 	 * bitwise or the request type onto the priv_granted mask.
4206 	 */
4207 	priv_granted = 0;
4208 
4209 	if (type == VDIR) {
4210 		/*
4211 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4212 		 * requests, instead of PRIV_VFS_EXEC.
4213 		 */
4214 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4215 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
4216 			priv_granted |= VEXEC;
4217 	} else {
4218 		/*
4219 		 * Ensure that at least one execute bit is on. Otherwise,
4220 		 * a privileged user will always succeed, and we don't want
4221 		 * this to happen unless the file really is executable.
4222 		 */
4223 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4224 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4225 		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
4226 			priv_granted |= VEXEC;
4227 	}
4228 
4229 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4230 	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
4231 		priv_granted |= VREAD;
4232 
4233 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4234 	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
4235 		priv_granted |= (VWRITE | VAPPEND);
4236 
4237 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4238 	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
4239 		priv_granted |= VADMIN;
4240 
4241 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4242 		/* XXX audit: privilege used */
4243 		if (privused != NULL)
4244 			*privused = 1;
4245 		return (0);
4246 	}
4247 
4248 	return ((accmode & VADMIN) ? EPERM : EACCES);
4249 }
4250 
4251 /*
4252  * Credential check based on process requesting service, and per-attribute
4253  * permissions.
4254  */
4255 int
4256 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4257     struct thread *td, accmode_t accmode)
4258 {
4259 
4260 	/*
4261 	 * Kernel-invoked always succeeds.
4262 	 */
4263 	if (cred == NOCRED)
4264 		return (0);
4265 
4266 	/*
4267 	 * Do not allow privileged processes in jail to directly manipulate
4268 	 * system attributes.
4269 	 */
4270 	switch (attrnamespace) {
4271 	case EXTATTR_NAMESPACE_SYSTEM:
4272 		/* Potentially should be: return (EPERM); */
4273 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
4274 	case EXTATTR_NAMESPACE_USER:
4275 		return (VOP_ACCESS(vp, accmode, cred, td));
4276 	default:
4277 		return (EPERM);
4278 	}
4279 }
4280 
4281 #ifdef DEBUG_VFS_LOCKS
4282 /*
4283  * This only exists to supress warnings from unlocked specfs accesses.  It is
4284  * no longer ok to have an unlocked VFS.
4285  */
4286 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
4287 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
4288 
4289 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
4290 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
4291     "Drop into debugger on lock violation");
4292 
4293 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
4294 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
4295     0, "Check for interlock across VOPs");
4296 
4297 int vfs_badlock_print = 1;	/* Print lock violations. */
4298 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
4299     0, "Print lock violations");
4300 
4301 #ifdef KDB
4302 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
4303 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
4304     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
4305 #endif
4306 
4307 static void
4308 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
4309 {
4310 
4311 #ifdef KDB
4312 	if (vfs_badlock_backtrace)
4313 		kdb_backtrace();
4314 #endif
4315 	if (vfs_badlock_print)
4316 		printf("%s: %p %s\n", str, (void *)vp, msg);
4317 	if (vfs_badlock_ddb)
4318 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4319 }
4320 
4321 void
4322 assert_vi_locked(struct vnode *vp, const char *str)
4323 {
4324 
4325 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
4326 		vfs_badlock("interlock is not locked but should be", str, vp);
4327 }
4328 
4329 void
4330 assert_vi_unlocked(struct vnode *vp, const char *str)
4331 {
4332 
4333 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
4334 		vfs_badlock("interlock is locked but should not be", str, vp);
4335 }
4336 
4337 void
4338 assert_vop_locked(struct vnode *vp, const char *str)
4339 {
4340 	int locked;
4341 
4342 	if (!IGNORE_LOCK(vp)) {
4343 		locked = VOP_ISLOCKED(vp);
4344 		if (locked == 0 || locked == LK_EXCLOTHER)
4345 			vfs_badlock("is not locked but should be", str, vp);
4346 	}
4347 }
4348 
4349 void
4350 assert_vop_unlocked(struct vnode *vp, const char *str)
4351 {
4352 
4353 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4354 		vfs_badlock("is locked but should not be", str, vp);
4355 }
4356 
4357 void
4358 assert_vop_elocked(struct vnode *vp, const char *str)
4359 {
4360 
4361 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4362 		vfs_badlock("is not exclusive locked but should be", str, vp);
4363 }
4364 
4365 #if 0
4366 void
4367 assert_vop_elocked_other(struct vnode *vp, const char *str)
4368 {
4369 
4370 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLOTHER)
4371 		vfs_badlock("is not exclusive locked by another thread",
4372 		    str, vp);
4373 }
4374 
4375 void
4376 assert_vop_slocked(struct vnode *vp, const char *str)
4377 {
4378 
4379 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_SHARED)
4380 		vfs_badlock("is not locked shared but should be", str, vp);
4381 }
4382 #endif /* 0 */
4383 #endif /* DEBUG_VFS_LOCKS */
4384 
4385 void
4386 vop_rename_fail(struct vop_rename_args *ap)
4387 {
4388 
4389 	if (ap->a_tvp != NULL)
4390 		vput(ap->a_tvp);
4391 	if (ap->a_tdvp == ap->a_tvp)
4392 		vrele(ap->a_tdvp);
4393 	else
4394 		vput(ap->a_tdvp);
4395 	vrele(ap->a_fdvp);
4396 	vrele(ap->a_fvp);
4397 }
4398 
4399 void
4400 vop_rename_pre(void *ap)
4401 {
4402 	struct vop_rename_args *a = ap;
4403 
4404 #ifdef DEBUG_VFS_LOCKS
4405 	if (a->a_tvp)
4406 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4407 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4408 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4409 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4410 
4411 	/* Check the source (from). */
4412 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4413 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4414 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4415 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4416 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4417 
4418 	/* Check the target. */
4419 	if (a->a_tvp)
4420 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4421 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4422 #endif
4423 	if (a->a_tdvp != a->a_fdvp)
4424 		vhold(a->a_fdvp);
4425 	if (a->a_tvp != a->a_fvp)
4426 		vhold(a->a_fvp);
4427 	vhold(a->a_tdvp);
4428 	if (a->a_tvp)
4429 		vhold(a->a_tvp);
4430 }
4431 
4432 void
4433 vop_strategy_pre(void *ap)
4434 {
4435 #ifdef DEBUG_VFS_LOCKS
4436 	struct vop_strategy_args *a;
4437 	struct buf *bp;
4438 
4439 	a = ap;
4440 	bp = a->a_bp;
4441 
4442 	/*
4443 	 * Cluster ops lock their component buffers but not the IO container.
4444 	 */
4445 	if ((bp->b_flags & B_CLUSTER) != 0)
4446 		return;
4447 
4448 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4449 		if (vfs_badlock_print)
4450 			printf(
4451 			    "VOP_STRATEGY: bp is not locked but should be\n");
4452 		if (vfs_badlock_ddb)
4453 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4454 	}
4455 #endif
4456 }
4457 
4458 void
4459 vop_lock_pre(void *ap)
4460 {
4461 #ifdef DEBUG_VFS_LOCKS
4462 	struct vop_lock1_args *a = ap;
4463 
4464 	if ((a->a_flags & LK_INTERLOCK) == 0)
4465 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4466 	else
4467 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4468 #endif
4469 }
4470 
4471 void
4472 vop_lock_post(void *ap, int rc)
4473 {
4474 #ifdef DEBUG_VFS_LOCKS
4475 	struct vop_lock1_args *a = ap;
4476 
4477 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4478 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
4479 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4480 #endif
4481 }
4482 
4483 void
4484 vop_unlock_pre(void *ap)
4485 {
4486 #ifdef DEBUG_VFS_LOCKS
4487 	struct vop_unlock_args *a = ap;
4488 
4489 	if (a->a_flags & LK_INTERLOCK)
4490 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4491 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4492 #endif
4493 }
4494 
4495 void
4496 vop_unlock_post(void *ap, int rc)
4497 {
4498 #ifdef DEBUG_VFS_LOCKS
4499 	struct vop_unlock_args *a = ap;
4500 
4501 	if (a->a_flags & LK_INTERLOCK)
4502 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4503 #endif
4504 }
4505 
4506 void
4507 vop_create_post(void *ap, int rc)
4508 {
4509 	struct vop_create_args *a = ap;
4510 
4511 	if (!rc)
4512 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4513 }
4514 
4515 void
4516 vop_deleteextattr_post(void *ap, int rc)
4517 {
4518 	struct vop_deleteextattr_args *a = ap;
4519 
4520 	if (!rc)
4521 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4522 }
4523 
4524 void
4525 vop_link_post(void *ap, int rc)
4526 {
4527 	struct vop_link_args *a = ap;
4528 
4529 	if (!rc) {
4530 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4531 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4532 	}
4533 }
4534 
4535 void
4536 vop_mkdir_post(void *ap, int rc)
4537 {
4538 	struct vop_mkdir_args *a = ap;
4539 
4540 	if (!rc)
4541 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4542 }
4543 
4544 void
4545 vop_mknod_post(void *ap, int rc)
4546 {
4547 	struct vop_mknod_args *a = ap;
4548 
4549 	if (!rc)
4550 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4551 }
4552 
4553 void
4554 vop_reclaim_post(void *ap, int rc)
4555 {
4556 	struct vop_reclaim_args *a = ap;
4557 
4558 	if (!rc)
4559 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
4560 }
4561 
4562 void
4563 vop_remove_post(void *ap, int rc)
4564 {
4565 	struct vop_remove_args *a = ap;
4566 
4567 	if (!rc) {
4568 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4569 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4570 	}
4571 }
4572 
4573 void
4574 vop_rename_post(void *ap, int rc)
4575 {
4576 	struct vop_rename_args *a = ap;
4577 
4578 	if (!rc) {
4579 		VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
4580 		VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
4581 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4582 		if (a->a_tvp)
4583 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4584 	}
4585 	if (a->a_tdvp != a->a_fdvp)
4586 		vdrop(a->a_fdvp);
4587 	if (a->a_tvp != a->a_fvp)
4588 		vdrop(a->a_fvp);
4589 	vdrop(a->a_tdvp);
4590 	if (a->a_tvp)
4591 		vdrop(a->a_tvp);
4592 }
4593 
4594 void
4595 vop_rmdir_post(void *ap, int rc)
4596 {
4597 	struct vop_rmdir_args *a = ap;
4598 
4599 	if (!rc) {
4600 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4601 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4602 	}
4603 }
4604 
4605 void
4606 vop_setattr_post(void *ap, int rc)
4607 {
4608 	struct vop_setattr_args *a = ap;
4609 
4610 	if (!rc)
4611 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4612 }
4613 
4614 void
4615 vop_setextattr_post(void *ap, int rc)
4616 {
4617 	struct vop_setextattr_args *a = ap;
4618 
4619 	if (!rc)
4620 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4621 }
4622 
4623 void
4624 vop_symlink_post(void *ap, int rc)
4625 {
4626 	struct vop_symlink_args *a = ap;
4627 
4628 	if (!rc)
4629 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4630 }
4631 
4632 static struct knlist fs_knlist;
4633 
4634 static void
4635 vfs_event_init(void *arg)
4636 {
4637 	knlist_init_mtx(&fs_knlist, NULL);
4638 }
4639 /* XXX - correct order? */
4640 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4641 
4642 void
4643 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4644 {
4645 
4646 	KNOTE_UNLOCKED(&fs_knlist, event);
4647 }
4648 
4649 static int	filt_fsattach(struct knote *kn);
4650 static void	filt_fsdetach(struct knote *kn);
4651 static int	filt_fsevent(struct knote *kn, long hint);
4652 
4653 struct filterops fs_filtops = {
4654 	.f_isfd = 0,
4655 	.f_attach = filt_fsattach,
4656 	.f_detach = filt_fsdetach,
4657 	.f_event = filt_fsevent
4658 };
4659 
4660 static int
4661 filt_fsattach(struct knote *kn)
4662 {
4663 
4664 	kn->kn_flags |= EV_CLEAR;
4665 	knlist_add(&fs_knlist, kn, 0);
4666 	return (0);
4667 }
4668 
4669 static void
4670 filt_fsdetach(struct knote *kn)
4671 {
4672 
4673 	knlist_remove(&fs_knlist, kn, 0);
4674 }
4675 
4676 static int
4677 filt_fsevent(struct knote *kn, long hint)
4678 {
4679 
4680 	kn->kn_fflags |= hint;
4681 	return (kn->kn_fflags != 0);
4682 }
4683 
4684 static int
4685 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4686 {
4687 	struct vfsidctl vc;
4688 	int error;
4689 	struct mount *mp;
4690 
4691 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4692 	if (error)
4693 		return (error);
4694 	if (vc.vc_vers != VFS_CTL_VERS1)
4695 		return (EINVAL);
4696 	mp = vfs_getvfs(&vc.vc_fsid);
4697 	if (mp == NULL)
4698 		return (ENOENT);
4699 	/* ensure that a specific sysctl goes to the right filesystem. */
4700 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4701 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4702 		vfs_rel(mp);
4703 		return (EINVAL);
4704 	}
4705 	VCTLTOREQ(&vc, req);
4706 	error = VFS_SYSCTL(mp, vc.vc_op, req);
4707 	vfs_rel(mp);
4708 	return (error);
4709 }
4710 
4711 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
4712     NULL, 0, sysctl_vfs_ctl, "",
4713     "Sysctl by fsid");
4714 
4715 /*
4716  * Function to initialize a va_filerev field sensibly.
4717  * XXX: Wouldn't a random number make a lot more sense ??
4718  */
4719 u_quad_t
4720 init_va_filerev(void)
4721 {
4722 	struct bintime bt;
4723 
4724 	getbinuptime(&bt);
4725 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
4726 }
4727 
4728 static int	filt_vfsread(struct knote *kn, long hint);
4729 static int	filt_vfswrite(struct knote *kn, long hint);
4730 static int	filt_vfsvnode(struct knote *kn, long hint);
4731 static void	filt_vfsdetach(struct knote *kn);
4732 static struct filterops vfsread_filtops = {
4733 	.f_isfd = 1,
4734 	.f_detach = filt_vfsdetach,
4735 	.f_event = filt_vfsread
4736 };
4737 static struct filterops vfswrite_filtops = {
4738 	.f_isfd = 1,
4739 	.f_detach = filt_vfsdetach,
4740 	.f_event = filt_vfswrite
4741 };
4742 static struct filterops vfsvnode_filtops = {
4743 	.f_isfd = 1,
4744 	.f_detach = filt_vfsdetach,
4745 	.f_event = filt_vfsvnode
4746 };
4747 
4748 static void
4749 vfs_knllock(void *arg)
4750 {
4751 	struct vnode *vp = arg;
4752 
4753 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4754 }
4755 
4756 static void
4757 vfs_knlunlock(void *arg)
4758 {
4759 	struct vnode *vp = arg;
4760 
4761 	VOP_UNLOCK(vp, 0);
4762 }
4763 
4764 static void
4765 vfs_knl_assert_locked(void *arg)
4766 {
4767 #ifdef DEBUG_VFS_LOCKS
4768 	struct vnode *vp = arg;
4769 
4770 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
4771 #endif
4772 }
4773 
4774 static void
4775 vfs_knl_assert_unlocked(void *arg)
4776 {
4777 #ifdef DEBUG_VFS_LOCKS
4778 	struct vnode *vp = arg;
4779 
4780 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
4781 #endif
4782 }
4783 
4784 int
4785 vfs_kqfilter(struct vop_kqfilter_args *ap)
4786 {
4787 	struct vnode *vp = ap->a_vp;
4788 	struct knote *kn = ap->a_kn;
4789 	struct knlist *knl;
4790 
4791 	switch (kn->kn_filter) {
4792 	case EVFILT_READ:
4793 		kn->kn_fop = &vfsread_filtops;
4794 		break;
4795 	case EVFILT_WRITE:
4796 		kn->kn_fop = &vfswrite_filtops;
4797 		break;
4798 	case EVFILT_VNODE:
4799 		kn->kn_fop = &vfsvnode_filtops;
4800 		break;
4801 	default:
4802 		return (EINVAL);
4803 	}
4804 
4805 	kn->kn_hook = (caddr_t)vp;
4806 
4807 	v_addpollinfo(vp);
4808 	if (vp->v_pollinfo == NULL)
4809 		return (ENOMEM);
4810 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
4811 	vhold(vp);
4812 	knlist_add(knl, kn, 0);
4813 
4814 	return (0);
4815 }
4816 
4817 /*
4818  * Detach knote from vnode
4819  */
4820 static void
4821 filt_vfsdetach(struct knote *kn)
4822 {
4823 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4824 
4825 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
4826 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
4827 	vdrop(vp);
4828 }
4829 
4830 /*ARGSUSED*/
4831 static int
4832 filt_vfsread(struct knote *kn, long hint)
4833 {
4834 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4835 	struct vattr va;
4836 	int res;
4837 
4838 	/*
4839 	 * filesystem is gone, so set the EOF flag and schedule
4840 	 * the knote for deletion.
4841 	 */
4842 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
4843 		VI_LOCK(vp);
4844 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4845 		VI_UNLOCK(vp);
4846 		return (1);
4847 	}
4848 
4849 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
4850 		return (0);
4851 
4852 	VI_LOCK(vp);
4853 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
4854 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
4855 	VI_UNLOCK(vp);
4856 	return (res);
4857 }
4858 
4859 /*ARGSUSED*/
4860 static int
4861 filt_vfswrite(struct knote *kn, long hint)
4862 {
4863 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4864 
4865 	VI_LOCK(vp);
4866 
4867 	/*
4868 	 * filesystem is gone, so set the EOF flag and schedule
4869 	 * the knote for deletion.
4870 	 */
4871 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
4872 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
4873 
4874 	kn->kn_data = 0;
4875 	VI_UNLOCK(vp);
4876 	return (1);
4877 }
4878 
4879 static int
4880 filt_vfsvnode(struct knote *kn, long hint)
4881 {
4882 	struct vnode *vp = (struct vnode *)kn->kn_hook;
4883 	int res;
4884 
4885 	VI_LOCK(vp);
4886 	if (kn->kn_sfflags & hint)
4887 		kn->kn_fflags |= hint;
4888 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
4889 		kn->kn_flags |= EV_EOF;
4890 		VI_UNLOCK(vp);
4891 		return (1);
4892 	}
4893 	res = (kn->kn_fflags != 0);
4894 	VI_UNLOCK(vp);
4895 	return (res);
4896 }
4897 
4898 int
4899 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
4900 {
4901 	int error;
4902 
4903 	if (dp->d_reclen > ap->a_uio->uio_resid)
4904 		return (ENAMETOOLONG);
4905 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
4906 	if (error) {
4907 		if (ap->a_ncookies != NULL) {
4908 			if (ap->a_cookies != NULL)
4909 				free(ap->a_cookies, M_TEMP);
4910 			ap->a_cookies = NULL;
4911 			*ap->a_ncookies = 0;
4912 		}
4913 		return (error);
4914 	}
4915 	if (ap->a_ncookies == NULL)
4916 		return (0);
4917 
4918 	KASSERT(ap->a_cookies,
4919 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
4920 
4921 	*ap->a_cookies = realloc(*ap->a_cookies,
4922 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
4923 	(*ap->a_cookies)[*ap->a_ncookies] = off;
4924 	return (0);
4925 }
4926 
4927 /*
4928  * Mark for update the access time of the file if the filesystem
4929  * supports VOP_MARKATIME.  This functionality is used by execve and
4930  * mmap, so we want to avoid the I/O implied by directly setting
4931  * va_atime for the sake of efficiency.
4932  */
4933 void
4934 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
4935 {
4936 	struct mount *mp;
4937 
4938 	mp = vp->v_mount;
4939 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
4940 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
4941 		(void)VOP_MARKATIME(vp);
4942 }
4943 
4944 /*
4945  * The purpose of this routine is to remove granularity from accmode_t,
4946  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
4947  * VADMIN and VAPPEND.
4948  *
4949  * If it returns 0, the caller is supposed to continue with the usual
4950  * access checks using 'accmode' as modified by this routine.  If it
4951  * returns nonzero value, the caller is supposed to return that value
4952  * as errno.
4953  *
4954  * Note that after this routine runs, accmode may be zero.
4955  */
4956 int
4957 vfs_unixify_accmode(accmode_t *accmode)
4958 {
4959 	/*
4960 	 * There is no way to specify explicit "deny" rule using
4961 	 * file mode or POSIX.1e ACLs.
4962 	 */
4963 	if (*accmode & VEXPLICIT_DENY) {
4964 		*accmode = 0;
4965 		return (0);
4966 	}
4967 
4968 	/*
4969 	 * None of these can be translated into usual access bits.
4970 	 * Also, the common case for NFSv4 ACLs is to not contain
4971 	 * either of these bits. Caller should check for VWRITE
4972 	 * on the containing directory instead.
4973 	 */
4974 	if (*accmode & (VDELETE_CHILD | VDELETE))
4975 		return (EPERM);
4976 
4977 	if (*accmode & VADMIN_PERMS) {
4978 		*accmode &= ~VADMIN_PERMS;
4979 		*accmode |= VADMIN;
4980 	}
4981 
4982 	/*
4983 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
4984 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
4985 	 */
4986 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
4987 
4988 	return (0);
4989 }
4990 
4991 /*
4992  * These are helper functions for filesystems to traverse all
4993  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
4994  *
4995  * This interface replaces MNT_VNODE_FOREACH.
4996  */
4997 
4998 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
4999 
5000 struct vnode *
5001 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
5002 {
5003 	struct vnode *vp;
5004 
5005 	if (should_yield())
5006 		kern_yield(PRI_USER);
5007 	MNT_ILOCK(mp);
5008 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5009 	vp = TAILQ_NEXT(*mvp, v_nmntvnodes);
5010 	while (vp != NULL && (vp->v_type == VMARKER ||
5011 	    (vp->v_iflag & VI_DOOMED) != 0))
5012 		vp = TAILQ_NEXT(vp, v_nmntvnodes);
5013 
5014 	/* Check if we are done */
5015 	if (vp == NULL) {
5016 		__mnt_vnode_markerfree_all(mvp, mp);
5017 		/* MNT_IUNLOCK(mp); -- done in above function */
5018 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
5019 		return (NULL);
5020 	}
5021 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5022 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5023 	VI_LOCK(vp);
5024 	MNT_IUNLOCK(mp);
5025 	return (vp);
5026 }
5027 
5028 struct vnode *
5029 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
5030 {
5031 	struct vnode *vp;
5032 
5033 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5034 	MNT_ILOCK(mp);
5035 	MNT_REF(mp);
5036 	(*mvp)->v_type = VMARKER;
5037 
5038 	vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
5039 	while (vp != NULL && (vp->v_type == VMARKER ||
5040 	    (vp->v_iflag & VI_DOOMED) != 0))
5041 		vp = TAILQ_NEXT(vp, v_nmntvnodes);
5042 
5043 	/* Check if we are done */
5044 	if (vp == NULL) {
5045 		MNT_REL(mp);
5046 		MNT_IUNLOCK(mp);
5047 		free(*mvp, M_VNODE_MARKER);
5048 		*mvp = NULL;
5049 		return (NULL);
5050 	}
5051 	(*mvp)->v_mount = mp;
5052 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5053 	VI_LOCK(vp);
5054 	MNT_IUNLOCK(mp);
5055 	return (vp);
5056 }
5057 
5058 
5059 void
5060 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
5061 {
5062 
5063 	if (*mvp == NULL) {
5064 		MNT_IUNLOCK(mp);
5065 		return;
5066 	}
5067 
5068 	mtx_assert(MNT_MTX(mp), MA_OWNED);
5069 
5070 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5071 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5072 	MNT_REL(mp);
5073 	MNT_IUNLOCK(mp);
5074 	free(*mvp, M_VNODE_MARKER);
5075 	*mvp = NULL;
5076 }
5077 
5078 /*
5079  * These are helper functions for filesystems to traverse their
5080  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
5081  */
5082 static void
5083 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5084 {
5085 
5086 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5087 
5088 	MNT_ILOCK(mp);
5089 	MNT_REL(mp);
5090 	MNT_IUNLOCK(mp);
5091 	free(*mvp, M_VNODE_MARKER);
5092 	*mvp = NULL;
5093 }
5094 
5095 static struct vnode *
5096 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5097 {
5098 	struct vnode *vp, *nvp;
5099 
5100 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
5101 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5102 restart:
5103 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
5104 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5105 	while (vp != NULL) {
5106 		if (vp->v_type == VMARKER) {
5107 			vp = TAILQ_NEXT(vp, v_actfreelist);
5108 			continue;
5109 		}
5110 		if (!VI_TRYLOCK(vp)) {
5111 			if (mp_ncpus == 1 || should_yield()) {
5112 				TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
5113 				mtx_unlock(&vnode_free_list_mtx);
5114 				pause("vnacti", 1);
5115 				mtx_lock(&vnode_free_list_mtx);
5116 				goto restart;
5117 			}
5118 			continue;
5119 		}
5120 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
5121 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
5122 		    ("alien vnode on the active list %p %p", vp, mp));
5123 		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
5124 			break;
5125 		nvp = TAILQ_NEXT(vp, v_actfreelist);
5126 		VI_UNLOCK(vp);
5127 		vp = nvp;
5128 	}
5129 
5130 	/* Check if we are done */
5131 	if (vp == NULL) {
5132 		mtx_unlock(&vnode_free_list_mtx);
5133 		mnt_vnode_markerfree_active(mvp, mp);
5134 		return (NULL);
5135 	}
5136 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
5137 	mtx_unlock(&vnode_free_list_mtx);
5138 	ASSERT_VI_LOCKED(vp, "active iter");
5139 	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
5140 	return (vp);
5141 }
5142 
5143 struct vnode *
5144 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5145 {
5146 
5147 	if (should_yield())
5148 		kern_yield(PRI_USER);
5149 	mtx_lock(&vnode_free_list_mtx);
5150 	return (mnt_vnode_next_active(mvp, mp));
5151 }
5152 
5153 struct vnode *
5154 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
5155 {
5156 	struct vnode *vp;
5157 
5158 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5159 	MNT_ILOCK(mp);
5160 	MNT_REF(mp);
5161 	MNT_IUNLOCK(mp);
5162 	(*mvp)->v_type = VMARKER;
5163 	(*mvp)->v_mount = mp;
5164 
5165 	mtx_lock(&vnode_free_list_mtx);
5166 	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
5167 	if (vp == NULL) {
5168 		mtx_unlock(&vnode_free_list_mtx);
5169 		mnt_vnode_markerfree_active(mvp, mp);
5170 		return (NULL);
5171 	}
5172 	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
5173 	return (mnt_vnode_next_active(mvp, mp));
5174 }
5175 
5176 void
5177 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5178 {
5179 
5180 	if (*mvp == NULL)
5181 		return;
5182 
5183 	mtx_lock(&vnode_free_list_mtx);
5184 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5185 	mtx_unlock(&vnode_free_list_mtx);
5186 	mnt_vnode_markerfree_active(mvp, mp);
5187 }
5188