1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 37 */ 38 39 /* 40 * External virtual filesystem routines 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_ddb.h" 47 #include "opt_watchdog.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/bio.h> 52 #include <sys/buf.h> 53 #include <sys/capsicum.h> 54 #include <sys/condvar.h> 55 #include <sys/conf.h> 56 #include <sys/counter.h> 57 #include <sys/dirent.h> 58 #include <sys/event.h> 59 #include <sys/eventhandler.h> 60 #include <sys/extattr.h> 61 #include <sys/file.h> 62 #include <sys/fcntl.h> 63 #include <sys/jail.h> 64 #include <sys/kdb.h> 65 #include <sys/kernel.h> 66 #include <sys/kthread.h> 67 #include <sys/ktr.h> 68 #include <sys/lockf.h> 69 #include <sys/malloc.h> 70 #include <sys/mount.h> 71 #include <sys/namei.h> 72 #include <sys/pctrie.h> 73 #include <sys/priv.h> 74 #include <sys/reboot.h> 75 #include <sys/refcount.h> 76 #include <sys/rwlock.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smr.h> 80 #include <sys/smp.h> 81 #include <sys/stat.h> 82 #include <sys/sysctl.h> 83 #include <sys/syslog.h> 84 #include <sys/vmmeter.h> 85 #include <sys/vnode.h> 86 #include <sys/watchdog.h> 87 88 #include <machine/stdarg.h> 89 90 #include <security/mac/mac_framework.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_extern.h> 95 #include <vm/pmap.h> 96 #include <vm/vm_map.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_kern.h> 99 #include <vm/uma.h> 100 101 #ifdef DDB 102 #include <ddb/ddb.h> 103 #endif 104 105 static void delmntque(struct vnode *vp); 106 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, 107 int slpflag, int slptimeo); 108 static void syncer_shutdown(void *arg, int howto); 109 static int vtryrecycle(struct vnode *vp); 110 static void v_init_counters(struct vnode *); 111 static void vn_seqc_init(struct vnode *); 112 static void vn_seqc_write_end_free(struct vnode *vp); 113 static void vgonel(struct vnode *); 114 static bool vhold_recycle_free(struct vnode *); 115 static void vfs_knllock(void *arg); 116 static void vfs_knlunlock(void *arg); 117 static void vfs_knl_assert_lock(void *arg, int what); 118 static void destroy_vpollinfo(struct vpollinfo *vi); 119 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 120 daddr_t startlbn, daddr_t endlbn); 121 static void vnlru_recalc(void); 122 123 /* 124 * These fences are intended for cases where some synchronization is 125 * needed between access of v_iflags and lockless vnode refcount (v_holdcnt 126 * and v_usecount) updates. Access to v_iflags is generally synchronized 127 * by the interlock, but we have some internal assertions that check vnode 128 * flags without acquiring the lock. Thus, these fences are INVARIANTS-only 129 * for now. 130 */ 131 #ifdef INVARIANTS 132 #define VNODE_REFCOUNT_FENCE_ACQ() atomic_thread_fence_acq() 133 #define VNODE_REFCOUNT_FENCE_REL() atomic_thread_fence_rel() 134 #else 135 #define VNODE_REFCOUNT_FENCE_ACQ() 136 #define VNODE_REFCOUNT_FENCE_REL() 137 #endif 138 139 /* 140 * Number of vnodes in existence. Increased whenever getnewvnode() 141 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode. 142 */ 143 static u_long __exclusive_cache_line numvnodes; 144 145 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, 146 "Number of vnodes in existence"); 147 148 static counter_u64_t vnodes_created; 149 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created, 150 "Number of vnodes created by getnewvnode"); 151 152 /* 153 * Conversion tables for conversion from vnode types to inode formats 154 * and back. 155 */ 156 enum vtype iftovt_tab[16] = { 157 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 158 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 159 }; 160 int vttoif_tab[10] = { 161 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 162 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT 163 }; 164 165 /* 166 * List of allocates vnodes in the system. 167 */ 168 static TAILQ_HEAD(freelst, vnode) vnode_list; 169 static struct vnode *vnode_list_free_marker; 170 static struct vnode *vnode_list_reclaim_marker; 171 172 /* 173 * "Free" vnode target. Free vnodes are rarely completely free, but are 174 * just ones that are cheap to recycle. Usually they are for files which 175 * have been stat'd but not read; these usually have inode and namecache 176 * data attached to them. This target is the preferred minimum size of a 177 * sub-cache consisting mostly of such files. The system balances the size 178 * of this sub-cache with its complement to try to prevent either from 179 * thrashing while the other is relatively inactive. The targets express 180 * a preference for the best balance. 181 * 182 * "Above" this target there are 2 further targets (watermarks) related 183 * to recyling of free vnodes. In the best-operating case, the cache is 184 * exactly full, the free list has size between vlowat and vhiwat above the 185 * free target, and recycling from it and normal use maintains this state. 186 * Sometimes the free list is below vlowat or even empty, but this state 187 * is even better for immediate use provided the cache is not full. 188 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free 189 * ones) to reach one of these states. The watermarks are currently hard- 190 * coded as 4% and 9% of the available space higher. These and the default 191 * of 25% for wantfreevnodes are too large if the memory size is large. 192 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim 193 * whenever vnlru_proc() becomes active. 194 */ 195 static long wantfreevnodes; 196 static long __exclusive_cache_line freevnodes; 197 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, 198 &freevnodes, 0, "Number of \"free\" vnodes"); 199 static long freevnodes_old; 200 201 static counter_u64_t recycles_count; 202 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count, 203 "Number of vnodes recycled to meet vnode cache targets"); 204 205 static counter_u64_t recycles_free_count; 206 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD, &recycles_free_count, 207 "Number of free vnodes recycled to meet vnode cache targets"); 208 209 static counter_u64_t deferred_inact; 210 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD, &deferred_inact, 211 "Number of times inactive processing was deferred"); 212 213 /* To keep more than one thread at a time from running vfs_getnewfsid */ 214 static struct mtx mntid_mtx; 215 216 /* 217 * Lock for any access to the following: 218 * vnode_list 219 * numvnodes 220 * freevnodes 221 */ 222 static struct mtx __exclusive_cache_line vnode_list_mtx; 223 224 /* Publicly exported FS */ 225 struct nfs_public nfs_pub; 226 227 static uma_zone_t buf_trie_zone; 228 static smr_t buf_trie_smr; 229 230 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 231 static uma_zone_t vnode_zone; 232 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll"); 233 234 __read_frequently smr_t vfs_smr; 235 236 /* 237 * The workitem queue. 238 * 239 * It is useful to delay writes of file data and filesystem metadata 240 * for tens of seconds so that quickly created and deleted files need 241 * not waste disk bandwidth being created and removed. To realize this, 242 * we append vnodes to a "workitem" queue. When running with a soft 243 * updates implementation, most pending metadata dependencies should 244 * not wait for more than a few seconds. Thus, mounted on block devices 245 * are delayed only about a half the time that file data is delayed. 246 * Similarly, directory updates are more critical, so are only delayed 247 * about a third the time that file data is delayed. Thus, there are 248 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 249 * one each second (driven off the filesystem syncer process). The 250 * syncer_delayno variable indicates the next queue that is to be processed. 251 * Items that need to be processed soon are placed in this queue: 252 * 253 * syncer_workitem_pending[syncer_delayno] 254 * 255 * A delay of fifteen seconds is done by placing the request fifteen 256 * entries later in the queue: 257 * 258 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 259 * 260 */ 261 static int syncer_delayno; 262 static long syncer_mask; 263 LIST_HEAD(synclist, bufobj); 264 static struct synclist *syncer_workitem_pending; 265 /* 266 * The sync_mtx protects: 267 * bo->bo_synclist 268 * sync_vnode_count 269 * syncer_delayno 270 * syncer_state 271 * syncer_workitem_pending 272 * syncer_worklist_len 273 * rushjob 274 */ 275 static struct mtx sync_mtx; 276 static struct cv sync_wakeup; 277 278 #define SYNCER_MAXDELAY 32 279 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 280 static int syncdelay = 30; /* max time to delay syncing data */ 281 static int filedelay = 30; /* time to delay syncing files */ 282 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, 283 "Time to delay syncing files (in seconds)"); 284 static int dirdelay = 29; /* time to delay syncing directories */ 285 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, 286 "Time to delay syncing directories (in seconds)"); 287 static int metadelay = 28; /* time to delay syncing metadata */ 288 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, 289 "Time to delay syncing metadata (in seconds)"); 290 static int rushjob; /* number of slots to run ASAP */ 291 static int stat_rush_requests; /* number of times I/O speeded up */ 292 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, 293 "Number of times I/O speeded up (rush requests)"); 294 295 #define VDBATCH_SIZE 8 296 struct vdbatch { 297 u_int index; 298 long freevnodes; 299 struct mtx lock; 300 struct vnode *tab[VDBATCH_SIZE]; 301 }; 302 DPCPU_DEFINE_STATIC(struct vdbatch, vd); 303 304 static void vdbatch_dequeue(struct vnode *vp); 305 306 /* 307 * When shutting down the syncer, run it at four times normal speed. 308 */ 309 #define SYNCER_SHUTDOWN_SPEEDUP 4 310 static int sync_vnode_count; 311 static int syncer_worklist_len; 312 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY } 313 syncer_state; 314 315 /* Target for maximum number of vnodes. */ 316 u_long desiredvnodes; 317 static u_long gapvnodes; /* gap between wanted and desired */ 318 static u_long vhiwat; /* enough extras after expansion */ 319 static u_long vlowat; /* minimal extras before expansion */ 320 static u_long vstir; /* nonzero to stir non-free vnodes */ 321 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */ 322 323 static u_long vnlru_read_freevnodes(void); 324 325 /* 326 * Note that no attempt is made to sanitize these parameters. 327 */ 328 static int 329 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS) 330 { 331 u_long val; 332 int error; 333 334 val = desiredvnodes; 335 error = sysctl_handle_long(oidp, &val, 0, req); 336 if (error != 0 || req->newptr == NULL) 337 return (error); 338 339 if (val == desiredvnodes) 340 return (0); 341 mtx_lock(&vnode_list_mtx); 342 desiredvnodes = val; 343 wantfreevnodes = desiredvnodes / 4; 344 vnlru_recalc(); 345 mtx_unlock(&vnode_list_mtx); 346 /* 347 * XXX There is no protection against multiple threads changing 348 * desiredvnodes at the same time. Locking above only helps vnlru and 349 * getnewvnode. 350 */ 351 vfs_hash_changesize(desiredvnodes); 352 cache_changesize(desiredvnodes); 353 return (0); 354 } 355 356 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes, 357 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes, 358 "LU", "Target for maximum number of vnodes"); 359 360 static int 361 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS) 362 { 363 u_long val; 364 int error; 365 366 val = wantfreevnodes; 367 error = sysctl_handle_long(oidp, &val, 0, req); 368 if (error != 0 || req->newptr == NULL) 369 return (error); 370 371 if (val == wantfreevnodes) 372 return (0); 373 mtx_lock(&vnode_list_mtx); 374 wantfreevnodes = val; 375 vnlru_recalc(); 376 mtx_unlock(&vnode_list_mtx); 377 return (0); 378 } 379 380 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes, 381 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes, 382 "LU", "Target for minimum number of \"free\" vnodes"); 383 384 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW, 385 &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)"); 386 static int vnlru_nowhere; 387 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW, 388 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success"); 389 390 static int 391 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS) 392 { 393 struct vnode *vp; 394 struct nameidata nd; 395 char *buf; 396 unsigned long ndflags; 397 int error; 398 399 if (req->newptr == NULL) 400 return (EINVAL); 401 if (req->newlen >= PATH_MAX) 402 return (E2BIG); 403 404 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK); 405 error = SYSCTL_IN(req, buf, req->newlen); 406 if (error != 0) 407 goto out; 408 409 buf[req->newlen] = '\0'; 410 411 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1 | SAVENAME; 412 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf, curthread); 413 if ((error = namei(&nd)) != 0) 414 goto out; 415 vp = nd.ni_vp; 416 417 if (VN_IS_DOOMED(vp)) { 418 /* 419 * This vnode is being recycled. Return != 0 to let the caller 420 * know that the sysctl had no effect. Return EAGAIN because a 421 * subsequent call will likely succeed (since namei will create 422 * a new vnode if necessary) 423 */ 424 error = EAGAIN; 425 goto putvnode; 426 } 427 428 counter_u64_add(recycles_count, 1); 429 vgone(vp); 430 putvnode: 431 NDFREE(&nd, 0); 432 out: 433 free(buf, M_TEMP); 434 return (error); 435 } 436 437 static int 438 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS) 439 { 440 struct thread *td = curthread; 441 struct vnode *vp; 442 struct file *fp; 443 int error; 444 int fd; 445 446 if (req->newptr == NULL) 447 return (EBADF); 448 449 error = sysctl_handle_int(oidp, &fd, 0, req); 450 if (error != 0) 451 return (error); 452 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp); 453 if (error != 0) 454 return (error); 455 vp = fp->f_vnode; 456 457 error = vn_lock(vp, LK_EXCLUSIVE); 458 if (error != 0) 459 goto drop; 460 461 counter_u64_add(recycles_count, 1); 462 vgone(vp); 463 VOP_UNLOCK(vp); 464 drop: 465 fdrop(fp, td); 466 return (error); 467 } 468 469 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode, 470 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 471 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname"); 472 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode, 473 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0, 474 sysctl_ftry_reclaim_vnode, "I", 475 "Try to reclaim a vnode by its file descriptor"); 476 477 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */ 478 static int vnsz2log; 479 480 /* 481 * Support for the bufobj clean & dirty pctrie. 482 */ 483 static void * 484 buf_trie_alloc(struct pctrie *ptree) 485 { 486 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT)); 487 } 488 489 static void 490 buf_trie_free(struct pctrie *ptree, void *node) 491 { 492 uma_zfree_smr(buf_trie_zone, node); 493 } 494 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free, 495 buf_trie_smr); 496 497 /* 498 * Initialize the vnode management data structures. 499 * 500 * Reevaluate the following cap on the number of vnodes after the physical 501 * memory size exceeds 512GB. In the limit, as the physical memory size 502 * grows, the ratio of the memory size in KB to vnodes approaches 64:1. 503 */ 504 #ifndef MAXVNODES_MAX 505 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */ 506 #endif 507 508 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker"); 509 510 static struct vnode * 511 vn_alloc_marker(struct mount *mp) 512 { 513 struct vnode *vp; 514 515 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO); 516 vp->v_type = VMARKER; 517 vp->v_mount = mp; 518 519 return (vp); 520 } 521 522 static void 523 vn_free_marker(struct vnode *vp) 524 { 525 526 MPASS(vp->v_type == VMARKER); 527 free(vp, M_VNODE_MARKER); 528 } 529 530 /* 531 * Initialize a vnode as it first enters the zone. 532 */ 533 static int 534 vnode_init(void *mem, int size, int flags) 535 { 536 struct vnode *vp; 537 538 vp = mem; 539 bzero(vp, size); 540 /* 541 * Setup locks. 542 */ 543 vp->v_vnlock = &vp->v_lock; 544 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF); 545 /* 546 * By default, don't allow shared locks unless filesystems opt-in. 547 */ 548 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT, 549 LK_NOSHARE | LK_IS_VNODE); 550 /* 551 * Initialize bufobj. 552 */ 553 bufobj_init(&vp->v_bufobj, vp); 554 /* 555 * Initialize namecache. 556 */ 557 cache_vnode_init(vp); 558 /* 559 * Initialize rangelocks. 560 */ 561 rangelock_init(&vp->v_rl); 562 563 vp->v_dbatchcpu = NOCPU; 564 565 /* 566 * Check vhold_recycle_free for an explanation. 567 */ 568 vp->v_holdcnt = VHOLD_NO_SMR; 569 vp->v_type = VNON; 570 mtx_lock(&vnode_list_mtx); 571 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist); 572 mtx_unlock(&vnode_list_mtx); 573 return (0); 574 } 575 576 /* 577 * Free a vnode when it is cleared from the zone. 578 */ 579 static void 580 vnode_fini(void *mem, int size) 581 { 582 struct vnode *vp; 583 struct bufobj *bo; 584 585 vp = mem; 586 vdbatch_dequeue(vp); 587 mtx_lock(&vnode_list_mtx); 588 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 589 mtx_unlock(&vnode_list_mtx); 590 rangelock_destroy(&vp->v_rl); 591 lockdestroy(vp->v_vnlock); 592 mtx_destroy(&vp->v_interlock); 593 bo = &vp->v_bufobj; 594 rw_destroy(BO_LOCKPTR(bo)); 595 } 596 597 /* 598 * Provide the size of NFS nclnode and NFS fh for calculation of the 599 * vnode memory consumption. The size is specified directly to 600 * eliminate dependency on NFS-private header. 601 * 602 * Other filesystems may use bigger or smaller (like UFS and ZFS) 603 * private inode data, but the NFS-based estimation is ample enough. 604 * Still, we care about differences in the size between 64- and 32-bit 605 * platforms. 606 * 607 * Namecache structure size is heuristically 608 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1. 609 */ 610 #ifdef _LP64 611 #define NFS_NCLNODE_SZ (528 + 64) 612 #define NC_SZ 148 613 #else 614 #define NFS_NCLNODE_SZ (360 + 32) 615 #define NC_SZ 92 616 #endif 617 618 static void 619 vntblinit(void *dummy __unused) 620 { 621 struct vdbatch *vd; 622 int cpu, physvnodes, virtvnodes; 623 u_int i; 624 625 /* 626 * Desiredvnodes is a function of the physical memory size and the 627 * kernel's heap size. Generally speaking, it scales with the 628 * physical memory size. The ratio of desiredvnodes to the physical 629 * memory size is 1:16 until desiredvnodes exceeds 98,304. 630 * Thereafter, the 631 * marginal ratio of desiredvnodes to the physical memory size is 632 * 1:64. However, desiredvnodes is limited by the kernel's heap 633 * size. The memory required by desiredvnodes vnodes and vm objects 634 * must not exceed 1/10th of the kernel's heap size. 635 */ 636 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 + 637 3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64; 638 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) + 639 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ)); 640 desiredvnodes = min(physvnodes, virtvnodes); 641 if (desiredvnodes > MAXVNODES_MAX) { 642 if (bootverbose) 643 printf("Reducing kern.maxvnodes %lu -> %lu\n", 644 desiredvnodes, MAXVNODES_MAX); 645 desiredvnodes = MAXVNODES_MAX; 646 } 647 wantfreevnodes = desiredvnodes / 4; 648 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF); 649 TAILQ_INIT(&vnode_list); 650 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF); 651 /* 652 * The lock is taken to appease WITNESS. 653 */ 654 mtx_lock(&vnode_list_mtx); 655 vnlru_recalc(); 656 mtx_unlock(&vnode_list_mtx); 657 vnode_list_free_marker = vn_alloc_marker(NULL); 658 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist); 659 vnode_list_reclaim_marker = vn_alloc_marker(NULL); 660 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist); 661 vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL, 662 vnode_init, vnode_fini, UMA_ALIGN_PTR, 0); 663 uma_zone_set_smr(vnode_zone, vfs_smr); 664 /* 665 * Preallocate enough nodes to support one-per buf so that 666 * we can not fail an insert. reassignbuf() callers can not 667 * tolerate the insertion failure. 668 */ 669 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(), 670 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR, 671 UMA_ZONE_NOFREE | UMA_ZONE_SMR); 672 buf_trie_smr = uma_zone_get_smr(buf_trie_zone); 673 uma_prealloc(buf_trie_zone, nbuf); 674 675 vnodes_created = counter_u64_alloc(M_WAITOK); 676 recycles_count = counter_u64_alloc(M_WAITOK); 677 recycles_free_count = counter_u64_alloc(M_WAITOK); 678 deferred_inact = counter_u64_alloc(M_WAITOK); 679 680 /* 681 * Initialize the filesystem syncer. 682 */ 683 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 684 &syncer_mask); 685 syncer_maxdelay = syncer_mask + 1; 686 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF); 687 cv_init(&sync_wakeup, "syncer"); 688 for (i = 1; i <= sizeof(struct vnode); i <<= 1) 689 vnsz2log++; 690 vnsz2log--; 691 692 CPU_FOREACH(cpu) { 693 vd = DPCPU_ID_PTR((cpu), vd); 694 bzero(vd, sizeof(*vd)); 695 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF); 696 } 697 } 698 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL); 699 700 /* 701 * Mark a mount point as busy. Used to synchronize access and to delay 702 * unmounting. Eventually, mountlist_mtx is not released on failure. 703 * 704 * vfs_busy() is a custom lock, it can block the caller. 705 * vfs_busy() only sleeps if the unmount is active on the mount point. 706 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any 707 * vnode belonging to mp. 708 * 709 * Lookup uses vfs_busy() to traverse mount points. 710 * root fs var fs 711 * / vnode lock A / vnode lock (/var) D 712 * /var vnode lock B /log vnode lock(/var/log) E 713 * vfs_busy lock C vfs_busy lock F 714 * 715 * Within each file system, the lock order is C->A->B and F->D->E. 716 * 717 * When traversing across mounts, the system follows that lock order: 718 * 719 * C->A->B 720 * | 721 * +->F->D->E 722 * 723 * The lookup() process for namei("/var") illustrates the process: 724 * VOP_LOOKUP() obtains B while A is held 725 * vfs_busy() obtains a shared lock on F while A and B are held 726 * vput() releases lock on B 727 * vput() releases lock on A 728 * VFS_ROOT() obtains lock on D while shared lock on F is held 729 * vfs_unbusy() releases shared lock on F 730 * vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A. 731 * Attempt to lock A (instead of vp_crossmp) while D is held would 732 * violate the global order, causing deadlocks. 733 * 734 * dounmount() locks B while F is drained. 735 */ 736 int 737 vfs_busy(struct mount *mp, int flags) 738 { 739 struct mount_pcpu *mpcpu; 740 741 MPASS((flags & ~MBF_MASK) == 0); 742 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags); 743 744 if (vfs_op_thread_enter(mp, mpcpu)) { 745 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 746 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0); 747 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0); 748 vfs_mp_count_add_pcpu(mpcpu, ref, 1); 749 vfs_mp_count_add_pcpu(mpcpu, lockref, 1); 750 vfs_op_thread_exit(mp, mpcpu); 751 if (flags & MBF_MNTLSTLOCK) 752 mtx_unlock(&mountlist_mtx); 753 return (0); 754 } 755 756 MNT_ILOCK(mp); 757 vfs_assert_mount_counters(mp); 758 MNT_REF(mp); 759 /* 760 * If mount point is currently being unmounted, sleep until the 761 * mount point fate is decided. If thread doing the unmounting fails, 762 * it will clear MNTK_UNMOUNT flag before waking us up, indicating 763 * that this mount point has survived the unmount attempt and vfs_busy 764 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE 765 * flag in addition to MNTK_UNMOUNT, indicating that mount point is 766 * about to be really destroyed. vfs_busy needs to release its 767 * reference on the mount point in this case and return with ENOENT, 768 * telling the caller that mount mount it tried to busy is no longer 769 * valid. 770 */ 771 while (mp->mnt_kern_flag & MNTK_UNMOUNT) { 772 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) { 773 MNT_REL(mp); 774 MNT_IUNLOCK(mp); 775 CTR1(KTR_VFS, "%s: failed busying before sleeping", 776 __func__); 777 return (ENOENT); 778 } 779 if (flags & MBF_MNTLSTLOCK) 780 mtx_unlock(&mountlist_mtx); 781 mp->mnt_kern_flag |= MNTK_MWAIT; 782 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0); 783 if (flags & MBF_MNTLSTLOCK) 784 mtx_lock(&mountlist_mtx); 785 MNT_ILOCK(mp); 786 } 787 if (flags & MBF_MNTLSTLOCK) 788 mtx_unlock(&mountlist_mtx); 789 mp->mnt_lockref++; 790 MNT_IUNLOCK(mp); 791 return (0); 792 } 793 794 /* 795 * Free a busy filesystem. 796 */ 797 void 798 vfs_unbusy(struct mount *mp) 799 { 800 struct mount_pcpu *mpcpu; 801 int c; 802 803 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 804 805 if (vfs_op_thread_enter(mp, mpcpu)) { 806 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 807 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1); 808 vfs_mp_count_sub_pcpu(mpcpu, ref, 1); 809 vfs_op_thread_exit(mp, mpcpu); 810 return; 811 } 812 813 MNT_ILOCK(mp); 814 vfs_assert_mount_counters(mp); 815 MNT_REL(mp); 816 c = --mp->mnt_lockref; 817 if (mp->mnt_vfs_ops == 0) { 818 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0); 819 MNT_IUNLOCK(mp); 820 return; 821 } 822 if (c < 0) 823 vfs_dump_mount_counters(mp); 824 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) { 825 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT); 826 CTR1(KTR_VFS, "%s: waking up waiters", __func__); 827 mp->mnt_kern_flag &= ~MNTK_DRAINING; 828 wakeup(&mp->mnt_lockref); 829 } 830 MNT_IUNLOCK(mp); 831 } 832 833 /* 834 * Lookup a mount point by filesystem identifier. 835 */ 836 struct mount * 837 vfs_getvfs(fsid_t *fsid) 838 { 839 struct mount *mp; 840 841 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 842 mtx_lock(&mountlist_mtx); 843 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 844 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 845 vfs_ref(mp); 846 mtx_unlock(&mountlist_mtx); 847 return (mp); 848 } 849 } 850 mtx_unlock(&mountlist_mtx); 851 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 852 return ((struct mount *) 0); 853 } 854 855 /* 856 * Lookup a mount point by filesystem identifier, busying it before 857 * returning. 858 * 859 * To avoid congestion on mountlist_mtx, implement simple direct-mapped 860 * cache for popular filesystem identifiers. The cache is lockess, using 861 * the fact that struct mount's are never freed. In worst case we may 862 * get pointer to unmounted or even different filesystem, so we have to 863 * check what we got, and go slow way if so. 864 */ 865 struct mount * 866 vfs_busyfs(fsid_t *fsid) 867 { 868 #define FSID_CACHE_SIZE 256 869 typedef struct mount * volatile vmp_t; 870 static vmp_t cache[FSID_CACHE_SIZE]; 871 struct mount *mp; 872 int error; 873 uint32_t hash; 874 875 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid); 876 hash = fsid->val[0] ^ fsid->val[1]; 877 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1); 878 mp = cache[hash]; 879 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0) 880 goto slow; 881 if (vfs_busy(mp, 0) != 0) { 882 cache[hash] = NULL; 883 goto slow; 884 } 885 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) 886 return (mp); 887 else 888 vfs_unbusy(mp); 889 890 slow: 891 mtx_lock(&mountlist_mtx); 892 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 893 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) { 894 error = vfs_busy(mp, MBF_MNTLSTLOCK); 895 if (error) { 896 cache[hash] = NULL; 897 mtx_unlock(&mountlist_mtx); 898 return (NULL); 899 } 900 cache[hash] = mp; 901 return (mp); 902 } 903 } 904 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid); 905 mtx_unlock(&mountlist_mtx); 906 return ((struct mount *) 0); 907 } 908 909 /* 910 * Check if a user can access privileged mount options. 911 */ 912 int 913 vfs_suser(struct mount *mp, struct thread *td) 914 { 915 int error; 916 917 if (jailed(td->td_ucred)) { 918 /* 919 * If the jail of the calling thread lacks permission for 920 * this type of file system, deny immediately. 921 */ 922 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag)) 923 return (EPERM); 924 925 /* 926 * If the file system was mounted outside the jail of the 927 * calling thread, deny immediately. 928 */ 929 if (prison_check(td->td_ucred, mp->mnt_cred) != 0) 930 return (EPERM); 931 } 932 933 /* 934 * If file system supports delegated administration, we don't check 935 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified 936 * by the file system itself. 937 * If this is not the user that did original mount, we check for 938 * the PRIV_VFS_MOUNT_OWNER privilege. 939 */ 940 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) && 941 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) { 942 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0) 943 return (error); 944 } 945 return (0); 946 } 947 948 /* 949 * Get a new unique fsid. Try to make its val[0] unique, since this value 950 * will be used to create fake device numbers for stat(). Also try (but 951 * not so hard) make its val[0] unique mod 2^16, since some emulators only 952 * support 16-bit device numbers. We end up with unique val[0]'s for the 953 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 954 * 955 * Keep in mind that several mounts may be running in parallel. Starting 956 * the search one past where the previous search terminated is both a 957 * micro-optimization and a defense against returning the same fsid to 958 * different mounts. 959 */ 960 void 961 vfs_getnewfsid(struct mount *mp) 962 { 963 static uint16_t mntid_base; 964 struct mount *nmp; 965 fsid_t tfsid; 966 int mtype; 967 968 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 969 mtx_lock(&mntid_mtx); 970 mtype = mp->mnt_vfc->vfc_typenum; 971 tfsid.val[1] = mtype; 972 mtype = (mtype & 0xFF) << 24; 973 for (;;) { 974 tfsid.val[0] = makedev(255, 975 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 976 mntid_base++; 977 if ((nmp = vfs_getvfs(&tfsid)) == NULL) 978 break; 979 vfs_rel(nmp); 980 } 981 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 982 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 983 mtx_unlock(&mntid_mtx); 984 } 985 986 /* 987 * Knob to control the precision of file timestamps: 988 * 989 * 0 = seconds only; nanoseconds zeroed. 990 * 1 = seconds and nanoseconds, accurate within 1/HZ. 991 * 2 = seconds and nanoseconds, truncated to microseconds. 992 * >=3 = seconds and nanoseconds, maximum precision. 993 */ 994 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 995 996 static int timestamp_precision = TSP_USEC; 997 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 998 ×tamp_precision, 0, "File timestamp precision (0: seconds, " 999 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, " 1000 "3+: sec + ns (max. precision))"); 1001 1002 /* 1003 * Get a current timestamp. 1004 */ 1005 void 1006 vfs_timestamp(struct timespec *tsp) 1007 { 1008 struct timeval tv; 1009 1010 switch (timestamp_precision) { 1011 case TSP_SEC: 1012 tsp->tv_sec = time_second; 1013 tsp->tv_nsec = 0; 1014 break; 1015 case TSP_HZ: 1016 getnanotime(tsp); 1017 break; 1018 case TSP_USEC: 1019 microtime(&tv); 1020 TIMEVAL_TO_TIMESPEC(&tv, tsp); 1021 break; 1022 case TSP_NSEC: 1023 default: 1024 nanotime(tsp); 1025 break; 1026 } 1027 } 1028 1029 /* 1030 * Set vnode attributes to VNOVAL 1031 */ 1032 void 1033 vattr_null(struct vattr *vap) 1034 { 1035 1036 vap->va_type = VNON; 1037 vap->va_size = VNOVAL; 1038 vap->va_bytes = VNOVAL; 1039 vap->va_mode = VNOVAL; 1040 vap->va_nlink = VNOVAL; 1041 vap->va_uid = VNOVAL; 1042 vap->va_gid = VNOVAL; 1043 vap->va_fsid = VNOVAL; 1044 vap->va_fileid = VNOVAL; 1045 vap->va_blocksize = VNOVAL; 1046 vap->va_rdev = VNOVAL; 1047 vap->va_atime.tv_sec = VNOVAL; 1048 vap->va_atime.tv_nsec = VNOVAL; 1049 vap->va_mtime.tv_sec = VNOVAL; 1050 vap->va_mtime.tv_nsec = VNOVAL; 1051 vap->va_ctime.tv_sec = VNOVAL; 1052 vap->va_ctime.tv_nsec = VNOVAL; 1053 vap->va_birthtime.tv_sec = VNOVAL; 1054 vap->va_birthtime.tv_nsec = VNOVAL; 1055 vap->va_flags = VNOVAL; 1056 vap->va_gen = VNOVAL; 1057 vap->va_vaflags = 0; 1058 } 1059 1060 /* 1061 * Try to reduce the total number of vnodes. 1062 * 1063 * This routine (and its user) are buggy in at least the following ways: 1064 * - all parameters were picked years ago when RAM sizes were significantly 1065 * smaller 1066 * - it can pick vnodes based on pages used by the vm object, but filesystems 1067 * like ZFS don't use it making the pick broken 1068 * - since ZFS has its own aging policy it gets partially combated by this one 1069 * - a dedicated method should be provided for filesystems to let them decide 1070 * whether the vnode should be recycled 1071 * 1072 * This routine is called when we have too many vnodes. It attempts 1073 * to free <count> vnodes and will potentially free vnodes that still 1074 * have VM backing store (VM backing store is typically the cause 1075 * of a vnode blowout so we want to do this). Therefore, this operation 1076 * is not considered cheap. 1077 * 1078 * A number of conditions may prevent a vnode from being reclaimed. 1079 * the buffer cache may have references on the vnode, a directory 1080 * vnode may still have references due to the namei cache representing 1081 * underlying files, or the vnode may be in active use. It is not 1082 * desirable to reuse such vnodes. These conditions may cause the 1083 * number of vnodes to reach some minimum value regardless of what 1084 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low. 1085 * 1086 * @param reclaim_nc_src Only reclaim directories with outgoing namecache 1087 * entries if this argument is strue 1088 * @param trigger Only reclaim vnodes with fewer than this many resident 1089 * pages. 1090 * @param target How many vnodes to reclaim. 1091 * @return The number of vnodes that were reclaimed. 1092 */ 1093 static int 1094 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target) 1095 { 1096 struct vnode *vp, *mvp; 1097 struct mount *mp; 1098 struct vm_object *object; 1099 u_long done; 1100 bool retried; 1101 1102 mtx_assert(&vnode_list_mtx, MA_OWNED); 1103 1104 retried = false; 1105 done = 0; 1106 1107 mvp = vnode_list_reclaim_marker; 1108 restart: 1109 vp = mvp; 1110 while (done < target) { 1111 vp = TAILQ_NEXT(vp, v_vnodelist); 1112 if (__predict_false(vp == NULL)) 1113 break; 1114 1115 if (__predict_false(vp->v_type == VMARKER)) 1116 continue; 1117 1118 /* 1119 * If it's been deconstructed already, it's still 1120 * referenced, or it exceeds the trigger, skip it. 1121 * Also skip free vnodes. We are trying to make space 1122 * to expand the free list, not reduce it. 1123 */ 1124 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 || 1125 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src))) 1126 goto next_iter; 1127 1128 if (vp->v_type == VBAD || vp->v_type == VNON) 1129 goto next_iter; 1130 1131 object = atomic_load_ptr(&vp->v_object); 1132 if (object == NULL || object->resident_page_count > trigger) { 1133 goto next_iter; 1134 } 1135 1136 /* 1137 * Handle races against vnode allocation. Filesystems lock the 1138 * vnode some time after it gets returned from getnewvnode, 1139 * despite type and hold count being manipulated earlier. 1140 * Resorting to checking v_mount restores guarantees present 1141 * before the global list was reworked to contain all vnodes. 1142 */ 1143 if (!VI_TRYLOCK(vp)) 1144 goto next_iter; 1145 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1146 VI_UNLOCK(vp); 1147 goto next_iter; 1148 } 1149 if (vp->v_mount == NULL) { 1150 VI_UNLOCK(vp); 1151 goto next_iter; 1152 } 1153 vholdl(vp); 1154 VI_UNLOCK(vp); 1155 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1156 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1157 mtx_unlock(&vnode_list_mtx); 1158 1159 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 1160 vdrop(vp); 1161 goto next_iter_unlocked; 1162 } 1163 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) { 1164 vdrop(vp); 1165 vn_finished_write(mp); 1166 goto next_iter_unlocked; 1167 } 1168 1169 VI_LOCK(vp); 1170 if (vp->v_usecount > 0 || 1171 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) || 1172 (vp->v_object != NULL && 1173 vp->v_object->resident_page_count > trigger)) { 1174 VOP_UNLOCK(vp); 1175 vdropl(vp); 1176 vn_finished_write(mp); 1177 goto next_iter_unlocked; 1178 } 1179 counter_u64_add(recycles_count, 1); 1180 vgonel(vp); 1181 VOP_UNLOCK(vp); 1182 vdropl(vp); 1183 vn_finished_write(mp); 1184 done++; 1185 next_iter_unlocked: 1186 if (should_yield()) 1187 kern_yield(PRI_USER); 1188 mtx_lock(&vnode_list_mtx); 1189 goto restart; 1190 next_iter: 1191 MPASS(vp->v_type != VMARKER); 1192 if (!should_yield()) 1193 continue; 1194 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1195 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1196 mtx_unlock(&vnode_list_mtx); 1197 kern_yield(PRI_USER); 1198 mtx_lock(&vnode_list_mtx); 1199 goto restart; 1200 } 1201 if (done == 0 && !retried) { 1202 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1203 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist); 1204 retried = true; 1205 goto restart; 1206 } 1207 return (done); 1208 } 1209 1210 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */ 1211 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free, 1212 0, 1213 "limit on vnode free requests per call to the vnlru_free routine"); 1214 1215 /* 1216 * Attempt to reduce the free list by the requested amount. 1217 */ 1218 static int 1219 vnlru_free_locked(int count, struct vfsops *mnt_op) 1220 { 1221 struct vnode *vp, *mvp; 1222 struct mount *mp; 1223 int ocount; 1224 1225 mtx_assert(&vnode_list_mtx, MA_OWNED); 1226 if (count > max_vnlru_free) 1227 count = max_vnlru_free; 1228 ocount = count; 1229 mvp = vnode_list_free_marker; 1230 vp = mvp; 1231 for (;;) { 1232 if (count == 0) { 1233 break; 1234 } 1235 vp = TAILQ_NEXT(vp, v_vnodelist); 1236 if (__predict_false(vp == NULL)) { 1237 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1238 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist); 1239 break; 1240 } 1241 if (__predict_false(vp->v_type == VMARKER)) 1242 continue; 1243 if (vp->v_holdcnt > 0) 1244 continue; 1245 /* 1246 * Don't recycle if our vnode is from different type 1247 * of mount point. Note that mp is type-safe, the 1248 * check does not reach unmapped address even if 1249 * vnode is reclaimed. 1250 */ 1251 if (mnt_op != NULL && (mp = vp->v_mount) != NULL && 1252 mp->mnt_op != mnt_op) { 1253 continue; 1254 } 1255 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) { 1256 continue; 1257 } 1258 if (!vhold_recycle_free(vp)) 1259 continue; 1260 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist); 1261 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist); 1262 mtx_unlock(&vnode_list_mtx); 1263 if (vtryrecycle(vp) == 0) 1264 count--; 1265 mtx_lock(&vnode_list_mtx); 1266 vp = mvp; 1267 } 1268 return (ocount - count); 1269 } 1270 1271 void 1272 vnlru_free(int count, struct vfsops *mnt_op) 1273 { 1274 1275 mtx_lock(&vnode_list_mtx); 1276 vnlru_free_locked(count, mnt_op); 1277 mtx_unlock(&vnode_list_mtx); 1278 } 1279 1280 static void 1281 vnlru_recalc(void) 1282 { 1283 1284 mtx_assert(&vnode_list_mtx, MA_OWNED); 1285 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100); 1286 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */ 1287 vlowat = vhiwat / 2; 1288 } 1289 1290 /* 1291 * Attempt to recycle vnodes in a context that is always safe to block. 1292 * Calling vlrurecycle() from the bowels of filesystem code has some 1293 * interesting deadlock problems. 1294 */ 1295 static struct proc *vnlruproc; 1296 static int vnlruproc_sig; 1297 1298 /* 1299 * The main freevnodes counter is only updated when threads requeue their vnode 1300 * batches. CPUs are conditionally walked to compute a more accurate total. 1301 * 1302 * Limit how much of a slop are we willing to tolerate. Note: the actual value 1303 * at any given moment can still exceed slop, but it should not be by significant 1304 * margin in practice. 1305 */ 1306 #define VNLRU_FREEVNODES_SLOP 128 1307 1308 static __inline void 1309 vn_freevnodes_inc(void) 1310 { 1311 struct vdbatch *vd; 1312 1313 critical_enter(); 1314 vd = DPCPU_PTR(vd); 1315 vd->freevnodes++; 1316 critical_exit(); 1317 } 1318 1319 static __inline void 1320 vn_freevnodes_dec(void) 1321 { 1322 struct vdbatch *vd; 1323 1324 critical_enter(); 1325 vd = DPCPU_PTR(vd); 1326 vd->freevnodes--; 1327 critical_exit(); 1328 } 1329 1330 static u_long 1331 vnlru_read_freevnodes(void) 1332 { 1333 struct vdbatch *vd; 1334 long slop; 1335 int cpu; 1336 1337 mtx_assert(&vnode_list_mtx, MA_OWNED); 1338 if (freevnodes > freevnodes_old) 1339 slop = freevnodes - freevnodes_old; 1340 else 1341 slop = freevnodes_old - freevnodes; 1342 if (slop < VNLRU_FREEVNODES_SLOP) 1343 return (freevnodes >= 0 ? freevnodes : 0); 1344 freevnodes_old = freevnodes; 1345 CPU_FOREACH(cpu) { 1346 vd = DPCPU_ID_PTR((cpu), vd); 1347 freevnodes_old += vd->freevnodes; 1348 } 1349 return (freevnodes_old >= 0 ? freevnodes_old : 0); 1350 } 1351 1352 static bool 1353 vnlru_under(u_long rnumvnodes, u_long limit) 1354 { 1355 u_long rfreevnodes, space; 1356 1357 if (__predict_false(rnumvnodes > desiredvnodes)) 1358 return (true); 1359 1360 space = desiredvnodes - rnumvnodes; 1361 if (space < limit) { 1362 rfreevnodes = vnlru_read_freevnodes(); 1363 if (rfreevnodes > wantfreevnodes) 1364 space += rfreevnodes - wantfreevnodes; 1365 } 1366 return (space < limit); 1367 } 1368 1369 static bool 1370 vnlru_under_unlocked(u_long rnumvnodes, u_long limit) 1371 { 1372 long rfreevnodes, space; 1373 1374 if (__predict_false(rnumvnodes > desiredvnodes)) 1375 return (true); 1376 1377 space = desiredvnodes - rnumvnodes; 1378 if (space < limit) { 1379 rfreevnodes = atomic_load_long(&freevnodes); 1380 if (rfreevnodes > wantfreevnodes) 1381 space += rfreevnodes - wantfreevnodes; 1382 } 1383 return (space < limit); 1384 } 1385 1386 static void 1387 vnlru_kick(void) 1388 { 1389 1390 mtx_assert(&vnode_list_mtx, MA_OWNED); 1391 if (vnlruproc_sig == 0) { 1392 vnlruproc_sig = 1; 1393 wakeup(vnlruproc); 1394 } 1395 } 1396 1397 static void 1398 vnlru_proc(void) 1399 { 1400 u_long rnumvnodes, rfreevnodes, target; 1401 unsigned long onumvnodes; 1402 int done, force, trigger, usevnodes; 1403 bool reclaim_nc_src, want_reread; 1404 1405 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc, 1406 SHUTDOWN_PRI_FIRST); 1407 1408 force = 0; 1409 want_reread = false; 1410 for (;;) { 1411 kproc_suspend_check(vnlruproc); 1412 mtx_lock(&vnode_list_mtx); 1413 rnumvnodes = atomic_load_long(&numvnodes); 1414 1415 if (want_reread) { 1416 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0; 1417 want_reread = false; 1418 } 1419 1420 /* 1421 * If numvnodes is too large (due to desiredvnodes being 1422 * adjusted using its sysctl, or emergency growth), first 1423 * try to reduce it by discarding from the free list. 1424 */ 1425 if (rnumvnodes > desiredvnodes) { 1426 vnlru_free_locked(rnumvnodes - desiredvnodes, NULL); 1427 rnumvnodes = atomic_load_long(&numvnodes); 1428 } 1429 /* 1430 * Sleep if the vnode cache is in a good state. This is 1431 * when it is not over-full and has space for about a 4% 1432 * or 9% expansion (by growing its size or inexcessively 1433 * reducing its free list). Otherwise, try to reclaim 1434 * space for a 10% expansion. 1435 */ 1436 if (vstir && force == 0) { 1437 force = 1; 1438 vstir = 0; 1439 } 1440 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) { 1441 vnlruproc_sig = 0; 1442 wakeup(&vnlruproc_sig); 1443 msleep(vnlruproc, &vnode_list_mtx, 1444 PVFS|PDROP, "vlruwt", hz); 1445 continue; 1446 } 1447 rfreevnodes = vnlru_read_freevnodes(); 1448 1449 onumvnodes = rnumvnodes; 1450 /* 1451 * Calculate parameters for recycling. These are the same 1452 * throughout the loop to give some semblance of fairness. 1453 * The trigger point is to avoid recycling vnodes with lots 1454 * of resident pages. We aren't trying to free memory; we 1455 * are trying to recycle or at least free vnodes. 1456 */ 1457 if (rnumvnodes <= desiredvnodes) 1458 usevnodes = rnumvnodes - rfreevnodes; 1459 else 1460 usevnodes = rnumvnodes; 1461 if (usevnodes <= 0) 1462 usevnodes = 1; 1463 /* 1464 * The trigger value is is chosen to give a conservatively 1465 * large value to ensure that it alone doesn't prevent 1466 * making progress. The value can easily be so large that 1467 * it is effectively infinite in some congested and 1468 * misconfigured cases, and this is necessary. Normally 1469 * it is about 8 to 100 (pages), which is quite large. 1470 */ 1471 trigger = vm_cnt.v_page_count * 2 / usevnodes; 1472 if (force < 2) 1473 trigger = vsmalltrigger; 1474 reclaim_nc_src = force >= 3; 1475 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1); 1476 target = target / 10 + 1; 1477 done = vlrureclaim(reclaim_nc_src, trigger, target); 1478 mtx_unlock(&vnode_list_mtx); 1479 if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes) 1480 uma_reclaim(UMA_RECLAIM_DRAIN); 1481 if (done == 0) { 1482 if (force == 0 || force == 1) { 1483 force = 2; 1484 continue; 1485 } 1486 if (force == 2) { 1487 force = 3; 1488 continue; 1489 } 1490 want_reread = true; 1491 force = 0; 1492 vnlru_nowhere++; 1493 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3); 1494 } else { 1495 want_reread = true; 1496 kern_yield(PRI_USER); 1497 } 1498 } 1499 } 1500 1501 static struct kproc_desc vnlru_kp = { 1502 "vnlru", 1503 vnlru_proc, 1504 &vnlruproc 1505 }; 1506 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, 1507 &vnlru_kp); 1508 1509 /* 1510 * Routines having to do with the management of the vnode table. 1511 */ 1512 1513 /* 1514 * Try to recycle a freed vnode. We abort if anyone picks up a reference 1515 * before we actually vgone(). This function must be called with the vnode 1516 * held to prevent the vnode from being returned to the free list midway 1517 * through vgone(). 1518 */ 1519 static int 1520 vtryrecycle(struct vnode *vp) 1521 { 1522 struct mount *vnmp; 1523 1524 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 1525 VNASSERT(vp->v_holdcnt, vp, 1526 ("vtryrecycle: Recycling vp %p without a reference.", vp)); 1527 /* 1528 * This vnode may found and locked via some other list, if so we 1529 * can't recycle it yet. 1530 */ 1531 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 1532 CTR2(KTR_VFS, 1533 "%s: impossible to recycle, vp %p lock is already held", 1534 __func__, vp); 1535 vdrop(vp); 1536 return (EWOULDBLOCK); 1537 } 1538 /* 1539 * Don't recycle if its filesystem is being suspended. 1540 */ 1541 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) { 1542 VOP_UNLOCK(vp); 1543 CTR2(KTR_VFS, 1544 "%s: impossible to recycle, cannot start the write for %p", 1545 __func__, vp); 1546 vdrop(vp); 1547 return (EBUSY); 1548 } 1549 /* 1550 * If we got this far, we need to acquire the interlock and see if 1551 * anyone picked up this vnode from another list. If not, we will 1552 * mark it with DOOMED via vgonel() so that anyone who does find it 1553 * will skip over it. 1554 */ 1555 VI_LOCK(vp); 1556 if (vp->v_usecount) { 1557 VOP_UNLOCK(vp); 1558 vdropl(vp); 1559 vn_finished_write(vnmp); 1560 CTR2(KTR_VFS, 1561 "%s: impossible to recycle, %p is already referenced", 1562 __func__, vp); 1563 return (EBUSY); 1564 } 1565 if (!VN_IS_DOOMED(vp)) { 1566 counter_u64_add(recycles_free_count, 1); 1567 vgonel(vp); 1568 } 1569 VOP_UNLOCK(vp); 1570 vdropl(vp); 1571 vn_finished_write(vnmp); 1572 return (0); 1573 } 1574 1575 /* 1576 * Allocate a new vnode. 1577 * 1578 * The operation never returns an error. Returning an error was disabled 1579 * in r145385 (dated 2005) with the following comment: 1580 * 1581 * XXX Not all VFS_VGET/ffs_vget callers check returns. 1582 * 1583 * Given the age of this commit (almost 15 years at the time of writing this 1584 * comment) restoring the ability to fail requires a significant audit of 1585 * all codepaths. 1586 * 1587 * The routine can try to free a vnode or stall for up to 1 second waiting for 1588 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation. 1589 */ 1590 static u_long vn_alloc_cyclecount; 1591 1592 static struct vnode * __noinline 1593 vn_alloc_hard(struct mount *mp) 1594 { 1595 u_long rnumvnodes, rfreevnodes; 1596 1597 mtx_lock(&vnode_list_mtx); 1598 rnumvnodes = atomic_load_long(&numvnodes); 1599 if (rnumvnodes + 1 < desiredvnodes) { 1600 vn_alloc_cyclecount = 0; 1601 goto alloc; 1602 } 1603 rfreevnodes = vnlru_read_freevnodes(); 1604 if (vn_alloc_cyclecount++ >= rfreevnodes) { 1605 vn_alloc_cyclecount = 0; 1606 vstir = 1; 1607 } 1608 /* 1609 * Grow the vnode cache if it will not be above its target max 1610 * after growing. Otherwise, if the free list is nonempty, try 1611 * to reclaim 1 item from it before growing the cache (possibly 1612 * above its target max if the reclamation failed or is delayed). 1613 * Otherwise, wait for some space. In all cases, schedule 1614 * vnlru_proc() if we are getting short of space. The watermarks 1615 * should be chosen so that we never wait or even reclaim from 1616 * the free list to below its target minimum. 1617 */ 1618 if (vnlru_free_locked(1, NULL) > 0) 1619 goto alloc; 1620 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 1621 /* 1622 * Wait for space for a new vnode. 1623 */ 1624 vnlru_kick(); 1625 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz); 1626 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes && 1627 vnlru_read_freevnodes() > 1) 1628 vnlru_free_locked(1, NULL); 1629 } 1630 alloc: 1631 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 1632 if (vnlru_under(rnumvnodes, vlowat)) 1633 vnlru_kick(); 1634 mtx_unlock(&vnode_list_mtx); 1635 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 1636 } 1637 1638 static struct vnode * 1639 vn_alloc(struct mount *mp) 1640 { 1641 u_long rnumvnodes; 1642 1643 if (__predict_false(vn_alloc_cyclecount != 0)) 1644 return (vn_alloc_hard(mp)); 1645 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1; 1646 if (__predict_false(vnlru_under_unlocked(rnumvnodes, vlowat))) { 1647 atomic_subtract_long(&numvnodes, 1); 1648 return (vn_alloc_hard(mp)); 1649 } 1650 1651 return (uma_zalloc_smr(vnode_zone, M_WAITOK)); 1652 } 1653 1654 static void 1655 vn_free(struct vnode *vp) 1656 { 1657 1658 atomic_subtract_long(&numvnodes, 1); 1659 uma_zfree_smr(vnode_zone, vp); 1660 } 1661 1662 /* 1663 * Return the next vnode from the free list. 1664 */ 1665 int 1666 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops, 1667 struct vnode **vpp) 1668 { 1669 struct vnode *vp; 1670 struct thread *td; 1671 struct lock_object *lo; 1672 1673 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag); 1674 1675 KASSERT(vops->registered, 1676 ("%s: not registered vector op %p\n", __func__, vops)); 1677 1678 td = curthread; 1679 if (td->td_vp_reserved != NULL) { 1680 vp = td->td_vp_reserved; 1681 td->td_vp_reserved = NULL; 1682 } else { 1683 vp = vn_alloc(mp); 1684 } 1685 counter_u64_add(vnodes_created, 1); 1686 /* 1687 * Locks are given the generic name "vnode" when created. 1688 * Follow the historic practice of using the filesystem 1689 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc. 1690 * 1691 * Locks live in a witness group keyed on their name. Thus, 1692 * when a lock is renamed, it must also move from the witness 1693 * group of its old name to the witness group of its new name. 1694 * 1695 * The change only needs to be made when the vnode moves 1696 * from one filesystem type to another. We ensure that each 1697 * filesystem use a single static name pointer for its tag so 1698 * that we can compare pointers rather than doing a strcmp(). 1699 */ 1700 lo = &vp->v_vnlock->lock_object; 1701 #ifdef WITNESS 1702 if (lo->lo_name != tag) { 1703 #endif 1704 lo->lo_name = tag; 1705 #ifdef WITNESS 1706 WITNESS_DESTROY(lo); 1707 WITNESS_INIT(lo, tag); 1708 } 1709 #endif 1710 /* 1711 * By default, don't allow shared locks unless filesystems opt-in. 1712 */ 1713 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE; 1714 /* 1715 * Finalize various vnode identity bits. 1716 */ 1717 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp)); 1718 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp)); 1719 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp)); 1720 vp->v_type = VNON; 1721 vp->v_op = vops; 1722 vp->v_irflag = 0; 1723 v_init_counters(vp); 1724 vn_seqc_init(vp); 1725 vp->v_bufobj.bo_ops = &buf_ops_bio; 1726 #ifdef DIAGNOSTIC 1727 if (mp == NULL && vops != &dead_vnodeops) 1728 printf("NULL mp in getnewvnode(9), tag %s\n", tag); 1729 #endif 1730 #ifdef MAC 1731 mac_vnode_init(vp); 1732 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0) 1733 mac_vnode_associate_singlelabel(mp, vp); 1734 #endif 1735 if (mp != NULL) { 1736 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize; 1737 if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0) 1738 vp->v_vflag |= VV_NOKNOTE; 1739 } 1740 1741 /* 1742 * For the filesystems which do not use vfs_hash_insert(), 1743 * still initialize v_hash to have vfs_hash_index() useful. 1744 * E.g., nullfs uses vfs_hash_index() on the lower vnode for 1745 * its own hashing. 1746 */ 1747 vp->v_hash = (uintptr_t)vp >> vnsz2log; 1748 1749 *vpp = vp; 1750 return (0); 1751 } 1752 1753 void 1754 getnewvnode_reserve(void) 1755 { 1756 struct thread *td; 1757 1758 td = curthread; 1759 MPASS(td->td_vp_reserved == NULL); 1760 td->td_vp_reserved = vn_alloc(NULL); 1761 } 1762 1763 void 1764 getnewvnode_drop_reserve(void) 1765 { 1766 struct thread *td; 1767 1768 td = curthread; 1769 if (td->td_vp_reserved != NULL) { 1770 vn_free(td->td_vp_reserved); 1771 td->td_vp_reserved = NULL; 1772 } 1773 } 1774 1775 static void __noinline 1776 freevnode(struct vnode *vp) 1777 { 1778 struct bufobj *bo; 1779 1780 /* 1781 * The vnode has been marked for destruction, so free it. 1782 * 1783 * The vnode will be returned to the zone where it will 1784 * normally remain until it is needed for another vnode. We 1785 * need to cleanup (or verify that the cleanup has already 1786 * been done) any residual data left from its current use 1787 * so as not to contaminate the freshly allocated vnode. 1788 */ 1789 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp); 1790 /* 1791 * Paired with vgone. 1792 */ 1793 vn_seqc_write_end_free(vp); 1794 1795 bo = &vp->v_bufobj; 1796 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't")); 1797 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp); 1798 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count")); 1799 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count")); 1800 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's")); 1801 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0")); 1802 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp, 1803 ("clean blk trie not empty")); 1804 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0")); 1805 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp, 1806 ("dirty blk trie not empty")); 1807 VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst")); 1808 VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src")); 1809 VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for ..")); 1810 VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp, 1811 ("Dangling rangelock waiters")); 1812 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp, 1813 ("Leaked inactivation")); 1814 VI_UNLOCK(vp); 1815 #ifdef MAC 1816 mac_vnode_destroy(vp); 1817 #endif 1818 if (vp->v_pollinfo != NULL) { 1819 destroy_vpollinfo(vp->v_pollinfo); 1820 vp->v_pollinfo = NULL; 1821 } 1822 vp->v_mountedhere = NULL; 1823 vp->v_unpcb = NULL; 1824 vp->v_rdev = NULL; 1825 vp->v_fifoinfo = NULL; 1826 vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; 1827 vp->v_iflag = 0; 1828 vp->v_vflag = 0; 1829 bo->bo_flag = 0; 1830 vn_free(vp); 1831 } 1832 1833 /* 1834 * Delete from old mount point vnode list, if on one. 1835 */ 1836 static void 1837 delmntque(struct vnode *vp) 1838 { 1839 struct mount *mp; 1840 1841 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 1842 1843 mp = vp->v_mount; 1844 if (mp == NULL) 1845 return; 1846 MNT_ILOCK(mp); 1847 VI_LOCK(vp); 1848 vp->v_mount = NULL; 1849 VI_UNLOCK(vp); 1850 VNASSERT(mp->mnt_nvnodelistsize > 0, vp, 1851 ("bad mount point vnode list size")); 1852 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1853 mp->mnt_nvnodelistsize--; 1854 MNT_REL(mp); 1855 MNT_IUNLOCK(mp); 1856 } 1857 1858 static void 1859 insmntque_stddtr(struct vnode *vp, void *dtr_arg) 1860 { 1861 1862 vp->v_data = NULL; 1863 vp->v_op = &dead_vnodeops; 1864 vgone(vp); 1865 vput(vp); 1866 } 1867 1868 /* 1869 * Insert into list of vnodes for the new mount point, if available. 1870 */ 1871 int 1872 insmntque1(struct vnode *vp, struct mount *mp, 1873 void (*dtr)(struct vnode *, void *), void *dtr_arg) 1874 { 1875 1876 KASSERT(vp->v_mount == NULL, 1877 ("insmntque: vnode already on per mount vnode list")); 1878 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)")); 1879 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp"); 1880 1881 /* 1882 * We acquire the vnode interlock early to ensure that the 1883 * vnode cannot be recycled by another process releasing a 1884 * holdcnt on it before we get it on both the vnode list 1885 * and the active vnode list. The mount mutex protects only 1886 * manipulation of the vnode list and the vnode freelist 1887 * mutex protects only manipulation of the active vnode list. 1888 * Hence the need to hold the vnode interlock throughout. 1889 */ 1890 MNT_ILOCK(mp); 1891 VI_LOCK(vp); 1892 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 && 1893 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 || 1894 mp->mnt_nvnodelistsize == 0)) && 1895 (vp->v_vflag & VV_FORCEINSMQ) == 0) { 1896 VI_UNLOCK(vp); 1897 MNT_IUNLOCK(mp); 1898 if (dtr != NULL) 1899 dtr(vp, dtr_arg); 1900 return (EBUSY); 1901 } 1902 vp->v_mount = mp; 1903 MNT_REF(mp); 1904 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes); 1905 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp, 1906 ("neg mount point vnode list size")); 1907 mp->mnt_nvnodelistsize++; 1908 VI_UNLOCK(vp); 1909 MNT_IUNLOCK(mp); 1910 return (0); 1911 } 1912 1913 int 1914 insmntque(struct vnode *vp, struct mount *mp) 1915 { 1916 1917 return (insmntque1(vp, mp, insmntque_stddtr, NULL)); 1918 } 1919 1920 /* 1921 * Flush out and invalidate all buffers associated with a bufobj 1922 * Called with the underlying object locked. 1923 */ 1924 int 1925 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo) 1926 { 1927 int error; 1928 1929 BO_LOCK(bo); 1930 if (flags & V_SAVE) { 1931 error = bufobj_wwait(bo, slpflag, slptimeo); 1932 if (error) { 1933 BO_UNLOCK(bo); 1934 return (error); 1935 } 1936 if (bo->bo_dirty.bv_cnt > 0) { 1937 BO_UNLOCK(bo); 1938 do { 1939 error = BO_SYNC(bo, MNT_WAIT); 1940 } while (error == ERELOOKUP); 1941 if (error != 0) 1942 return (error); 1943 /* 1944 * XXX We could save a lock/unlock if this was only 1945 * enabled under INVARIANTS 1946 */ 1947 BO_LOCK(bo); 1948 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) 1949 panic("vinvalbuf: dirty bufs"); 1950 } 1951 } 1952 /* 1953 * If you alter this loop please notice that interlock is dropped and 1954 * reacquired in flushbuflist. Special care is needed to ensure that 1955 * no race conditions occur from this. 1956 */ 1957 do { 1958 error = flushbuflist(&bo->bo_clean, 1959 flags, bo, slpflag, slptimeo); 1960 if (error == 0 && !(flags & V_CLEANONLY)) 1961 error = flushbuflist(&bo->bo_dirty, 1962 flags, bo, slpflag, slptimeo); 1963 if (error != 0 && error != EAGAIN) { 1964 BO_UNLOCK(bo); 1965 return (error); 1966 } 1967 } while (error != 0); 1968 1969 /* 1970 * Wait for I/O to complete. XXX needs cleaning up. The vnode can 1971 * have write I/O in-progress but if there is a VM object then the 1972 * VM object can also have read-I/O in-progress. 1973 */ 1974 do { 1975 bufobj_wwait(bo, 0, 0); 1976 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) { 1977 BO_UNLOCK(bo); 1978 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx"); 1979 BO_LOCK(bo); 1980 } 1981 } while (bo->bo_numoutput > 0); 1982 BO_UNLOCK(bo); 1983 1984 /* 1985 * Destroy the copy in the VM cache, too. 1986 */ 1987 if (bo->bo_object != NULL && 1988 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) { 1989 VM_OBJECT_WLOCK(bo->bo_object); 1990 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ? 1991 OBJPR_CLEANONLY : 0); 1992 VM_OBJECT_WUNLOCK(bo->bo_object); 1993 } 1994 1995 #ifdef INVARIANTS 1996 BO_LOCK(bo); 1997 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO | 1998 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 || 1999 bo->bo_clean.bv_cnt > 0)) 2000 panic("vinvalbuf: flush failed"); 2001 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 && 2002 bo->bo_dirty.bv_cnt > 0) 2003 panic("vinvalbuf: flush dirty failed"); 2004 BO_UNLOCK(bo); 2005 #endif 2006 return (0); 2007 } 2008 2009 /* 2010 * Flush out and invalidate all buffers associated with a vnode. 2011 * Called with the underlying object locked. 2012 */ 2013 int 2014 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo) 2015 { 2016 2017 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags); 2018 ASSERT_VOP_LOCKED(vp, "vinvalbuf"); 2019 if (vp->v_object != NULL && vp->v_object->handle != vp) 2020 return (0); 2021 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo)); 2022 } 2023 2024 /* 2025 * Flush out buffers on the specified list. 2026 * 2027 */ 2028 static int 2029 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag, 2030 int slptimeo) 2031 { 2032 struct buf *bp, *nbp; 2033 int retval, error; 2034 daddr_t lblkno; 2035 b_xflags_t xflags; 2036 2037 ASSERT_BO_WLOCKED(bo); 2038 2039 retval = 0; 2040 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) { 2041 /* 2042 * If we are flushing both V_NORMAL and V_ALT buffers then 2043 * do not skip any buffers. If we are flushing only V_NORMAL 2044 * buffers then skip buffers marked as BX_ALTDATA. If we are 2045 * flushing only V_ALT buffers then skip buffers not marked 2046 * as BX_ALTDATA. 2047 */ 2048 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) && 2049 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) || 2050 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) { 2051 continue; 2052 } 2053 if (nbp != NULL) { 2054 lblkno = nbp->b_lblkno; 2055 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN); 2056 } 2057 retval = EAGAIN; 2058 error = BUF_TIMELOCK(bp, 2059 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo), 2060 "flushbuf", slpflag, slptimeo); 2061 if (error) { 2062 BO_LOCK(bo); 2063 return (error != ENOLCK ? error : EAGAIN); 2064 } 2065 KASSERT(bp->b_bufobj == bo, 2066 ("bp %p wrong b_bufobj %p should be %p", 2067 bp, bp->b_bufobj, bo)); 2068 /* 2069 * XXX Since there are no node locks for NFS, I 2070 * believe there is a slight chance that a delayed 2071 * write will occur while sleeping just above, so 2072 * check for it. 2073 */ 2074 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 2075 (flags & V_SAVE)) { 2076 bremfree(bp); 2077 bp->b_flags |= B_ASYNC; 2078 bwrite(bp); 2079 BO_LOCK(bo); 2080 return (EAGAIN); /* XXX: why not loop ? */ 2081 } 2082 bremfree(bp); 2083 bp->b_flags |= (B_INVAL | B_RELBUF); 2084 bp->b_flags &= ~B_ASYNC; 2085 brelse(bp); 2086 BO_LOCK(bo); 2087 if (nbp == NULL) 2088 break; 2089 nbp = gbincore(bo, lblkno); 2090 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) 2091 != xflags) 2092 break; /* nbp invalid */ 2093 } 2094 return (retval); 2095 } 2096 2097 int 2098 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn) 2099 { 2100 struct buf *bp; 2101 int error; 2102 daddr_t lblkno; 2103 2104 ASSERT_BO_LOCKED(bo); 2105 2106 for (lblkno = startn;;) { 2107 again: 2108 bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno); 2109 if (bp == NULL || bp->b_lblkno >= endn || 2110 bp->b_lblkno < startn) 2111 break; 2112 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 2113 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0); 2114 if (error != 0) { 2115 BO_RLOCK(bo); 2116 if (error == ENOLCK) 2117 goto again; 2118 return (error); 2119 } 2120 KASSERT(bp->b_bufobj == bo, 2121 ("bp %p wrong b_bufobj %p should be %p", 2122 bp, bp->b_bufobj, bo)); 2123 lblkno = bp->b_lblkno + 1; 2124 if ((bp->b_flags & B_MANAGED) == 0) 2125 bremfree(bp); 2126 bp->b_flags |= B_RELBUF; 2127 /* 2128 * In the VMIO case, use the B_NOREUSE flag to hint that the 2129 * pages backing each buffer in the range are unlikely to be 2130 * reused. Dirty buffers will have the hint applied once 2131 * they've been written. 2132 */ 2133 if ((bp->b_flags & B_VMIO) != 0) 2134 bp->b_flags |= B_NOREUSE; 2135 brelse(bp); 2136 BO_RLOCK(bo); 2137 } 2138 return (0); 2139 } 2140 2141 /* 2142 * Truncate a file's buffer and pages to a specified length. This 2143 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 2144 * sync activity. 2145 */ 2146 int 2147 vtruncbuf(struct vnode *vp, off_t length, int blksize) 2148 { 2149 struct buf *bp, *nbp; 2150 struct bufobj *bo; 2151 daddr_t startlbn; 2152 2153 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__, 2154 vp, blksize, (uintmax_t)length); 2155 2156 /* 2157 * Round up to the *next* lbn. 2158 */ 2159 startlbn = howmany(length, blksize); 2160 2161 ASSERT_VOP_LOCKED(vp, "vtruncbuf"); 2162 2163 bo = &vp->v_bufobj; 2164 restart_unlocked: 2165 BO_LOCK(bo); 2166 2167 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN) 2168 ; 2169 2170 if (length > 0) { 2171 restartsync: 2172 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2173 if (bp->b_lblkno > 0) 2174 continue; 2175 /* 2176 * Since we hold the vnode lock this should only 2177 * fail if we're racing with the buf daemon. 2178 */ 2179 if (BUF_LOCK(bp, 2180 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2181 BO_LOCKPTR(bo)) == ENOLCK) 2182 goto restart_unlocked; 2183 2184 VNASSERT((bp->b_flags & B_DELWRI), vp, 2185 ("buf(%p) on dirty queue without DELWRI", bp)); 2186 2187 bremfree(bp); 2188 bawrite(bp); 2189 BO_LOCK(bo); 2190 goto restartsync; 2191 } 2192 } 2193 2194 bufobj_wwait(bo, 0, 0); 2195 BO_UNLOCK(bo); 2196 vnode_pager_setsize(vp, length); 2197 2198 return (0); 2199 } 2200 2201 /* 2202 * Invalidate the cached pages of a file's buffer within the range of block 2203 * numbers [startlbn, endlbn). 2204 */ 2205 void 2206 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn, 2207 int blksize) 2208 { 2209 struct bufobj *bo; 2210 off_t start, end; 2211 2212 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range"); 2213 2214 start = blksize * startlbn; 2215 end = blksize * endlbn; 2216 2217 bo = &vp->v_bufobj; 2218 BO_LOCK(bo); 2219 MPASS(blksize == bo->bo_bsize); 2220 2221 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN) 2222 ; 2223 2224 BO_UNLOCK(bo); 2225 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1)); 2226 } 2227 2228 static int 2229 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo, 2230 daddr_t startlbn, daddr_t endlbn) 2231 { 2232 struct buf *bp, *nbp; 2233 bool anyfreed; 2234 2235 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked"); 2236 ASSERT_BO_LOCKED(bo); 2237 2238 do { 2239 anyfreed = false; 2240 TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) { 2241 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2242 continue; 2243 if (BUF_LOCK(bp, 2244 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2245 BO_LOCKPTR(bo)) == ENOLCK) { 2246 BO_LOCK(bo); 2247 return (EAGAIN); 2248 } 2249 2250 bremfree(bp); 2251 bp->b_flags |= B_INVAL | B_RELBUF; 2252 bp->b_flags &= ~B_ASYNC; 2253 brelse(bp); 2254 anyfreed = true; 2255 2256 BO_LOCK(bo); 2257 if (nbp != NULL && 2258 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 2259 nbp->b_vp != vp || 2260 (nbp->b_flags & B_DELWRI) != 0)) 2261 return (EAGAIN); 2262 } 2263 2264 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 2265 if (bp->b_lblkno < startlbn || bp->b_lblkno >= endlbn) 2266 continue; 2267 if (BUF_LOCK(bp, 2268 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 2269 BO_LOCKPTR(bo)) == ENOLCK) { 2270 BO_LOCK(bo); 2271 return (EAGAIN); 2272 } 2273 bremfree(bp); 2274 bp->b_flags |= B_INVAL | B_RELBUF; 2275 bp->b_flags &= ~B_ASYNC; 2276 brelse(bp); 2277 anyfreed = true; 2278 2279 BO_LOCK(bo); 2280 if (nbp != NULL && 2281 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 2282 (nbp->b_vp != vp) || 2283 (nbp->b_flags & B_DELWRI) == 0)) 2284 return (EAGAIN); 2285 } 2286 } while (anyfreed); 2287 return (0); 2288 } 2289 2290 static void 2291 buf_vlist_remove(struct buf *bp) 2292 { 2293 struct bufv *bv; 2294 b_xflags_t flags; 2295 2296 flags = bp->b_xflags; 2297 2298 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp)); 2299 ASSERT_BO_WLOCKED(bp->b_bufobj); 2300 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 && 2301 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN), 2302 ("%s: buffer %p has invalid queue state", __func__, bp)); 2303 2304 if ((flags & BX_VNDIRTY) != 0) 2305 bv = &bp->b_bufobj->bo_dirty; 2306 else 2307 bv = &bp->b_bufobj->bo_clean; 2308 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno); 2309 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs); 2310 bv->bv_cnt--; 2311 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 2312 } 2313 2314 /* 2315 * Add the buffer to the sorted clean or dirty block list. 2316 * 2317 * NOTE: xflags is passed as a constant, optimizing this inline function! 2318 */ 2319 static void 2320 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags) 2321 { 2322 struct bufv *bv; 2323 struct buf *n; 2324 int error; 2325 2326 ASSERT_BO_WLOCKED(bo); 2327 KASSERT((bo->bo_flag & BO_NOBUFS) == 0, 2328 ("buf_vlist_add: bo %p does not allow bufs", bo)); 2329 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0, 2330 ("dead bo %p", bo)); 2331 KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, 2332 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags)); 2333 bp->b_xflags |= xflags; 2334 if (xflags & BX_VNDIRTY) 2335 bv = &bo->bo_dirty; 2336 else 2337 bv = &bo->bo_clean; 2338 2339 /* 2340 * Keep the list ordered. Optimize empty list insertion. Assume 2341 * we tend to grow at the tail so lookup_le should usually be cheaper 2342 * than _ge. 2343 */ 2344 if (bv->bv_cnt == 0 || 2345 bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno) 2346 TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs); 2347 else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL) 2348 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs); 2349 else 2350 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs); 2351 error = BUF_PCTRIE_INSERT(&bv->bv_root, bp); 2352 if (error) 2353 panic("buf_vlist_add: Preallocated nodes insufficient."); 2354 bv->bv_cnt++; 2355 } 2356 2357 /* 2358 * Look up a buffer using the buffer tries. 2359 */ 2360 struct buf * 2361 gbincore(struct bufobj *bo, daddr_t lblkno) 2362 { 2363 struct buf *bp; 2364 2365 ASSERT_BO_LOCKED(bo); 2366 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno); 2367 if (bp != NULL) 2368 return (bp); 2369 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno)); 2370 } 2371 2372 /* 2373 * Look up a buf using the buffer tries, without the bufobj lock. This relies 2374 * on SMR for safe lookup, and bufs being in a no-free zone to provide type 2375 * stability of the result. Like other lockless lookups, the found buf may 2376 * already be invalid by the time this function returns. 2377 */ 2378 struct buf * 2379 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno) 2380 { 2381 struct buf *bp; 2382 2383 ASSERT_BO_UNLOCKED(bo); 2384 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno); 2385 if (bp != NULL) 2386 return (bp); 2387 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno)); 2388 } 2389 2390 /* 2391 * Associate a buffer with a vnode. 2392 */ 2393 void 2394 bgetvp(struct vnode *vp, struct buf *bp) 2395 { 2396 struct bufobj *bo; 2397 2398 bo = &vp->v_bufobj; 2399 ASSERT_BO_WLOCKED(bo); 2400 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free")); 2401 2402 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags); 2403 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp, 2404 ("bgetvp: bp already attached! %p", bp)); 2405 2406 vhold(vp); 2407 bp->b_vp = vp; 2408 bp->b_bufobj = bo; 2409 /* 2410 * Insert onto list for new vnode. 2411 */ 2412 buf_vlist_add(bp, bo, BX_VNCLEAN); 2413 } 2414 2415 /* 2416 * Disassociate a buffer from a vnode. 2417 */ 2418 void 2419 brelvp(struct buf *bp) 2420 { 2421 struct bufobj *bo; 2422 struct vnode *vp; 2423 2424 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); 2425 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 2426 2427 /* 2428 * Delete from old vnode list, if on one. 2429 */ 2430 vp = bp->b_vp; /* XXX */ 2431 bo = bp->b_bufobj; 2432 BO_LOCK(bo); 2433 buf_vlist_remove(bp); 2434 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2435 bo->bo_flag &= ~BO_ONWORKLST; 2436 mtx_lock(&sync_mtx); 2437 LIST_REMOVE(bo, bo_synclist); 2438 syncer_worklist_len--; 2439 mtx_unlock(&sync_mtx); 2440 } 2441 bp->b_vp = NULL; 2442 bp->b_bufobj = NULL; 2443 BO_UNLOCK(bo); 2444 vdrop(vp); 2445 } 2446 2447 /* 2448 * Add an item to the syncer work queue. 2449 */ 2450 static void 2451 vn_syncer_add_to_worklist(struct bufobj *bo, int delay) 2452 { 2453 int slot; 2454 2455 ASSERT_BO_WLOCKED(bo); 2456 2457 mtx_lock(&sync_mtx); 2458 if (bo->bo_flag & BO_ONWORKLST) 2459 LIST_REMOVE(bo, bo_synclist); 2460 else { 2461 bo->bo_flag |= BO_ONWORKLST; 2462 syncer_worklist_len++; 2463 } 2464 2465 if (delay > syncer_maxdelay - 2) 2466 delay = syncer_maxdelay - 2; 2467 slot = (syncer_delayno + delay) & syncer_mask; 2468 2469 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist); 2470 mtx_unlock(&sync_mtx); 2471 } 2472 2473 static int 2474 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS) 2475 { 2476 int error, len; 2477 2478 mtx_lock(&sync_mtx); 2479 len = syncer_worklist_len - sync_vnode_count; 2480 mtx_unlock(&sync_mtx); 2481 error = SYSCTL_OUT(req, &len, sizeof(len)); 2482 return (error); 2483 } 2484 2485 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, 2486 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0, 2487 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length"); 2488 2489 static struct proc *updateproc; 2490 static void sched_sync(void); 2491 static struct kproc_desc up_kp = { 2492 "syncer", 2493 sched_sync, 2494 &updateproc 2495 }; 2496 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp); 2497 2498 static int 2499 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td) 2500 { 2501 struct vnode *vp; 2502 struct mount *mp; 2503 2504 *bo = LIST_FIRST(slp); 2505 if (*bo == NULL) 2506 return (0); 2507 vp = bo2vnode(*bo); 2508 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0) 2509 return (1); 2510 /* 2511 * We use vhold in case the vnode does not 2512 * successfully sync. vhold prevents the vnode from 2513 * going away when we unlock the sync_mtx so that 2514 * we can acquire the vnode interlock. 2515 */ 2516 vholdl(vp); 2517 mtx_unlock(&sync_mtx); 2518 VI_UNLOCK(vp); 2519 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) { 2520 vdrop(vp); 2521 mtx_lock(&sync_mtx); 2522 return (*bo == LIST_FIRST(slp)); 2523 } 2524 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2525 (void) VOP_FSYNC(vp, MNT_LAZY, td); 2526 VOP_UNLOCK(vp); 2527 vn_finished_write(mp); 2528 BO_LOCK(*bo); 2529 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) { 2530 /* 2531 * Put us back on the worklist. The worklist 2532 * routine will remove us from our current 2533 * position and then add us back in at a later 2534 * position. 2535 */ 2536 vn_syncer_add_to_worklist(*bo, syncdelay); 2537 } 2538 BO_UNLOCK(*bo); 2539 vdrop(vp); 2540 mtx_lock(&sync_mtx); 2541 return (0); 2542 } 2543 2544 static int first_printf = 1; 2545 2546 /* 2547 * System filesystem synchronizer daemon. 2548 */ 2549 static void 2550 sched_sync(void) 2551 { 2552 struct synclist *next, *slp; 2553 struct bufobj *bo; 2554 long starttime; 2555 struct thread *td = curthread; 2556 int last_work_seen; 2557 int net_worklist_len; 2558 int syncer_final_iter; 2559 int error; 2560 2561 last_work_seen = 0; 2562 syncer_final_iter = 0; 2563 syncer_state = SYNCER_RUNNING; 2564 starttime = time_uptime; 2565 td->td_pflags |= TDP_NORUNNINGBUF; 2566 2567 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc, 2568 SHUTDOWN_PRI_LAST); 2569 2570 mtx_lock(&sync_mtx); 2571 for (;;) { 2572 if (syncer_state == SYNCER_FINAL_DELAY && 2573 syncer_final_iter == 0) { 2574 mtx_unlock(&sync_mtx); 2575 kproc_suspend_check(td->td_proc); 2576 mtx_lock(&sync_mtx); 2577 } 2578 net_worklist_len = syncer_worklist_len - sync_vnode_count; 2579 if (syncer_state != SYNCER_RUNNING && 2580 starttime != time_uptime) { 2581 if (first_printf) { 2582 printf("\nSyncing disks, vnodes remaining... "); 2583 first_printf = 0; 2584 } 2585 printf("%d ", net_worklist_len); 2586 } 2587 starttime = time_uptime; 2588 2589 /* 2590 * Push files whose dirty time has expired. Be careful 2591 * of interrupt race on slp queue. 2592 * 2593 * Skip over empty worklist slots when shutting down. 2594 */ 2595 do { 2596 slp = &syncer_workitem_pending[syncer_delayno]; 2597 syncer_delayno += 1; 2598 if (syncer_delayno == syncer_maxdelay) 2599 syncer_delayno = 0; 2600 next = &syncer_workitem_pending[syncer_delayno]; 2601 /* 2602 * If the worklist has wrapped since the 2603 * it was emptied of all but syncer vnodes, 2604 * switch to the FINAL_DELAY state and run 2605 * for one more second. 2606 */ 2607 if (syncer_state == SYNCER_SHUTTING_DOWN && 2608 net_worklist_len == 0 && 2609 last_work_seen == syncer_delayno) { 2610 syncer_state = SYNCER_FINAL_DELAY; 2611 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP; 2612 } 2613 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) && 2614 syncer_worklist_len > 0); 2615 2616 /* 2617 * Keep track of the last time there was anything 2618 * on the worklist other than syncer vnodes. 2619 * Return to the SHUTTING_DOWN state if any 2620 * new work appears. 2621 */ 2622 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING) 2623 last_work_seen = syncer_delayno; 2624 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY) 2625 syncer_state = SYNCER_SHUTTING_DOWN; 2626 while (!LIST_EMPTY(slp)) { 2627 error = sync_vnode(slp, &bo, td); 2628 if (error == 1) { 2629 LIST_REMOVE(bo, bo_synclist); 2630 LIST_INSERT_HEAD(next, bo, bo_synclist); 2631 continue; 2632 } 2633 2634 if (first_printf == 0) { 2635 /* 2636 * Drop the sync mutex, because some watchdog 2637 * drivers need to sleep while patting 2638 */ 2639 mtx_unlock(&sync_mtx); 2640 wdog_kern_pat(WD_LASTVAL); 2641 mtx_lock(&sync_mtx); 2642 } 2643 } 2644 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0) 2645 syncer_final_iter--; 2646 /* 2647 * The variable rushjob allows the kernel to speed up the 2648 * processing of the filesystem syncer process. A rushjob 2649 * value of N tells the filesystem syncer to process the next 2650 * N seconds worth of work on its queue ASAP. Currently rushjob 2651 * is used by the soft update code to speed up the filesystem 2652 * syncer process when the incore state is getting so far 2653 * ahead of the disk that the kernel memory pool is being 2654 * threatened with exhaustion. 2655 */ 2656 if (rushjob > 0) { 2657 rushjob -= 1; 2658 continue; 2659 } 2660 /* 2661 * Just sleep for a short period of time between 2662 * iterations when shutting down to allow some I/O 2663 * to happen. 2664 * 2665 * If it has taken us less than a second to process the 2666 * current work, then wait. Otherwise start right over 2667 * again. We can still lose time if any single round 2668 * takes more than two seconds, but it does not really 2669 * matter as we are just trying to generally pace the 2670 * filesystem activity. 2671 */ 2672 if (syncer_state != SYNCER_RUNNING || 2673 time_uptime == starttime) { 2674 thread_lock(td); 2675 sched_prio(td, PPAUSE); 2676 thread_unlock(td); 2677 } 2678 if (syncer_state != SYNCER_RUNNING) 2679 cv_timedwait(&sync_wakeup, &sync_mtx, 2680 hz / SYNCER_SHUTDOWN_SPEEDUP); 2681 else if (time_uptime == starttime) 2682 cv_timedwait(&sync_wakeup, &sync_mtx, hz); 2683 } 2684 } 2685 2686 /* 2687 * Request the syncer daemon to speed up its work. 2688 * We never push it to speed up more than half of its 2689 * normal turn time, otherwise it could take over the cpu. 2690 */ 2691 int 2692 speedup_syncer(void) 2693 { 2694 int ret = 0; 2695 2696 mtx_lock(&sync_mtx); 2697 if (rushjob < syncdelay / 2) { 2698 rushjob += 1; 2699 stat_rush_requests += 1; 2700 ret = 1; 2701 } 2702 mtx_unlock(&sync_mtx); 2703 cv_broadcast(&sync_wakeup); 2704 return (ret); 2705 } 2706 2707 /* 2708 * Tell the syncer to speed up its work and run though its work 2709 * list several times, then tell it to shut down. 2710 */ 2711 static void 2712 syncer_shutdown(void *arg, int howto) 2713 { 2714 2715 if (howto & RB_NOSYNC) 2716 return; 2717 mtx_lock(&sync_mtx); 2718 syncer_state = SYNCER_SHUTTING_DOWN; 2719 rushjob = 0; 2720 mtx_unlock(&sync_mtx); 2721 cv_broadcast(&sync_wakeup); 2722 kproc_shutdown(arg, howto); 2723 } 2724 2725 void 2726 syncer_suspend(void) 2727 { 2728 2729 syncer_shutdown(updateproc, 0); 2730 } 2731 2732 void 2733 syncer_resume(void) 2734 { 2735 2736 mtx_lock(&sync_mtx); 2737 first_printf = 1; 2738 syncer_state = SYNCER_RUNNING; 2739 mtx_unlock(&sync_mtx); 2740 cv_broadcast(&sync_wakeup); 2741 kproc_resume(updateproc); 2742 } 2743 2744 /* 2745 * Move the buffer between the clean and dirty lists of its vnode. 2746 */ 2747 void 2748 reassignbuf(struct buf *bp) 2749 { 2750 struct vnode *vp; 2751 struct bufobj *bo; 2752 int delay; 2753 #ifdef INVARIANTS 2754 struct bufv *bv; 2755 #endif 2756 2757 vp = bp->b_vp; 2758 bo = bp->b_bufobj; 2759 2760 KASSERT((bp->b_flags & B_PAGING) == 0, 2761 ("%s: cannot reassign paging buffer %p", __func__, bp)); 2762 2763 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X", 2764 bp, bp->b_vp, bp->b_flags); 2765 2766 BO_LOCK(bo); 2767 buf_vlist_remove(bp); 2768 2769 /* 2770 * If dirty, put on list of dirty buffers; otherwise insert onto list 2771 * of clean buffers. 2772 */ 2773 if (bp->b_flags & B_DELWRI) { 2774 if ((bo->bo_flag & BO_ONWORKLST) == 0) { 2775 switch (vp->v_type) { 2776 case VDIR: 2777 delay = dirdelay; 2778 break; 2779 case VCHR: 2780 delay = metadelay; 2781 break; 2782 default: 2783 delay = filedelay; 2784 } 2785 vn_syncer_add_to_worklist(bo, delay); 2786 } 2787 buf_vlist_add(bp, bo, BX_VNDIRTY); 2788 } else { 2789 buf_vlist_add(bp, bo, BX_VNCLEAN); 2790 2791 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) { 2792 mtx_lock(&sync_mtx); 2793 LIST_REMOVE(bo, bo_synclist); 2794 syncer_worklist_len--; 2795 mtx_unlock(&sync_mtx); 2796 bo->bo_flag &= ~BO_ONWORKLST; 2797 } 2798 } 2799 #ifdef INVARIANTS 2800 bv = &bo->bo_clean; 2801 bp = TAILQ_FIRST(&bv->bv_hd); 2802 KASSERT(bp == NULL || bp->b_bufobj == bo, 2803 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2804 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2805 KASSERT(bp == NULL || bp->b_bufobj == bo, 2806 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2807 bv = &bo->bo_dirty; 2808 bp = TAILQ_FIRST(&bv->bv_hd); 2809 KASSERT(bp == NULL || bp->b_bufobj == bo, 2810 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2811 bp = TAILQ_LAST(&bv->bv_hd, buflists); 2812 KASSERT(bp == NULL || bp->b_bufobj == bo, 2813 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); 2814 #endif 2815 BO_UNLOCK(bo); 2816 } 2817 2818 static void 2819 v_init_counters(struct vnode *vp) 2820 { 2821 2822 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0, 2823 vp, ("%s called for an initialized vnode", __FUNCTION__)); 2824 ASSERT_VI_UNLOCKED(vp, __FUNCTION__); 2825 2826 refcount_init(&vp->v_holdcnt, 1); 2827 refcount_init(&vp->v_usecount, 1); 2828 } 2829 2830 /* 2831 * Grab a particular vnode from the free list, increment its 2832 * reference count and lock it. VIRF_DOOMED is set if the vnode 2833 * is being destroyed. Only callers who specify LK_RETRY will 2834 * see doomed vnodes. If inactive processing was delayed in 2835 * vput try to do it here. 2836 * 2837 * usecount is manipulated using atomics without holding any locks. 2838 * 2839 * holdcnt can be manipulated using atomics without holding any locks, 2840 * except when transitioning 1<->0, in which case the interlock is held. 2841 * 2842 * Consumers which don't guarantee liveness of the vnode can use SMR to 2843 * try to get a reference. Note this operation can fail since the vnode 2844 * may be awaiting getting freed by the time they get to it. 2845 */ 2846 enum vgetstate 2847 vget_prep_smr(struct vnode *vp) 2848 { 2849 enum vgetstate vs; 2850 2851 VFS_SMR_ASSERT_ENTERED(); 2852 2853 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 2854 vs = VGET_USECOUNT; 2855 } else { 2856 if (vhold_smr(vp)) 2857 vs = VGET_HOLDCNT; 2858 else 2859 vs = VGET_NONE; 2860 } 2861 return (vs); 2862 } 2863 2864 enum vgetstate 2865 vget_prep(struct vnode *vp) 2866 { 2867 enum vgetstate vs; 2868 2869 if (refcount_acquire_if_not_zero(&vp->v_usecount)) { 2870 vs = VGET_USECOUNT; 2871 } else { 2872 vhold(vp); 2873 vs = VGET_HOLDCNT; 2874 } 2875 return (vs); 2876 } 2877 2878 void 2879 vget_abort(struct vnode *vp, enum vgetstate vs) 2880 { 2881 2882 switch (vs) { 2883 case VGET_USECOUNT: 2884 vrele(vp); 2885 break; 2886 case VGET_HOLDCNT: 2887 vdrop(vp); 2888 break; 2889 default: 2890 __assert_unreachable(); 2891 } 2892 } 2893 2894 int 2895 vget(struct vnode *vp, int flags) 2896 { 2897 enum vgetstate vs; 2898 2899 vs = vget_prep(vp); 2900 return (vget_finish(vp, flags, vs)); 2901 } 2902 2903 int 2904 vget_finish(struct vnode *vp, int flags, enum vgetstate vs) 2905 { 2906 int error; 2907 2908 if ((flags & LK_INTERLOCK) != 0) 2909 ASSERT_VI_LOCKED(vp, __func__); 2910 else 2911 ASSERT_VI_UNLOCKED(vp, __func__); 2912 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 2913 VNPASS(vp->v_holdcnt > 0, vp); 2914 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 2915 2916 error = vn_lock(vp, flags); 2917 if (__predict_false(error != 0)) { 2918 vget_abort(vp, vs); 2919 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__, 2920 vp); 2921 return (error); 2922 } 2923 2924 vget_finish_ref(vp, vs); 2925 return (0); 2926 } 2927 2928 void 2929 vget_finish_ref(struct vnode *vp, enum vgetstate vs) 2930 { 2931 int old; 2932 2933 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp); 2934 VNPASS(vp->v_holdcnt > 0, vp); 2935 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp); 2936 2937 if (vs == VGET_USECOUNT) 2938 return; 2939 2940 /* 2941 * We hold the vnode. If the usecount is 0 it will be utilized to keep 2942 * the vnode around. Otherwise someone else lended their hold count and 2943 * we have to drop ours. 2944 */ 2945 old = atomic_fetchadd_int(&vp->v_usecount, 1); 2946 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old)); 2947 if (old != 0) { 2948 #ifdef INVARIANTS 2949 old = atomic_fetchadd_int(&vp->v_holdcnt, -1); 2950 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old)); 2951 #else 2952 refcount_release(&vp->v_holdcnt); 2953 #endif 2954 } 2955 } 2956 2957 void 2958 vref(struct vnode *vp) 2959 { 2960 enum vgetstate vs; 2961 2962 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2963 vs = vget_prep(vp); 2964 vget_finish_ref(vp, vs); 2965 } 2966 2967 void 2968 vrefact(struct vnode *vp) 2969 { 2970 2971 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 2972 #ifdef INVARIANTS 2973 int old = atomic_fetchadd_int(&vp->v_usecount, 1); 2974 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old)); 2975 #else 2976 refcount_acquire(&vp->v_usecount); 2977 #endif 2978 } 2979 2980 void 2981 vlazy(struct vnode *vp) 2982 { 2983 struct mount *mp; 2984 2985 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__)); 2986 2987 if ((vp->v_mflag & VMP_LAZYLIST) != 0) 2988 return; 2989 /* 2990 * We may get here for inactive routines after the vnode got doomed. 2991 */ 2992 if (VN_IS_DOOMED(vp)) 2993 return; 2994 mp = vp->v_mount; 2995 mtx_lock(&mp->mnt_listmtx); 2996 if ((vp->v_mflag & VMP_LAZYLIST) == 0) { 2997 vp->v_mflag |= VMP_LAZYLIST; 2998 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist); 2999 mp->mnt_lazyvnodelistsize++; 3000 } 3001 mtx_unlock(&mp->mnt_listmtx); 3002 } 3003 3004 /* 3005 * This routine is only meant to be called from vgonel prior to dooming 3006 * the vnode. 3007 */ 3008 static void 3009 vunlazy_gone(struct vnode *vp) 3010 { 3011 struct mount *mp; 3012 3013 ASSERT_VOP_ELOCKED(vp, __func__); 3014 ASSERT_VI_LOCKED(vp, __func__); 3015 VNPASS(!VN_IS_DOOMED(vp), vp); 3016 3017 if (vp->v_mflag & VMP_LAZYLIST) { 3018 mp = vp->v_mount; 3019 mtx_lock(&mp->mnt_listmtx); 3020 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 3021 vp->v_mflag &= ~VMP_LAZYLIST; 3022 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3023 mp->mnt_lazyvnodelistsize--; 3024 mtx_unlock(&mp->mnt_listmtx); 3025 } 3026 } 3027 3028 static void 3029 vdefer_inactive(struct vnode *vp) 3030 { 3031 3032 ASSERT_VI_LOCKED(vp, __func__); 3033 VNASSERT(vp->v_holdcnt > 0, vp, 3034 ("%s: vnode without hold count", __func__)); 3035 if (VN_IS_DOOMED(vp)) { 3036 vdropl(vp); 3037 return; 3038 } 3039 if (vp->v_iflag & VI_DEFINACT) { 3040 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 3041 vdropl(vp); 3042 return; 3043 } 3044 if (vp->v_usecount > 0) { 3045 vp->v_iflag &= ~VI_OWEINACT; 3046 vdropl(vp); 3047 return; 3048 } 3049 vlazy(vp); 3050 vp->v_iflag |= VI_DEFINACT; 3051 VI_UNLOCK(vp); 3052 counter_u64_add(deferred_inact, 1); 3053 } 3054 3055 static void 3056 vdefer_inactive_unlocked(struct vnode *vp) 3057 { 3058 3059 VI_LOCK(vp); 3060 if ((vp->v_iflag & VI_OWEINACT) == 0) { 3061 vdropl(vp); 3062 return; 3063 } 3064 vdefer_inactive(vp); 3065 } 3066 3067 enum vput_op { VRELE, VPUT, VUNREF }; 3068 3069 /* 3070 * Handle ->v_usecount transitioning to 0. 3071 * 3072 * By releasing the last usecount we take ownership of the hold count which 3073 * provides liveness of the vnode, meaning we have to vdrop. 3074 * 3075 * For all vnodes we may need to perform inactive processing. It requires an 3076 * exclusive lock on the vnode, while it is legal to call here with only a 3077 * shared lock (or no locks). If locking the vnode in an expected manner fails, 3078 * inactive processing gets deferred to the syncer. 3079 * 3080 * XXX Some filesystems pass in an exclusively locked vnode and strongly depend 3081 * on the lock being held all the way until VOP_INACTIVE. This in particular 3082 * happens with UFS which adds half-constructed vnodes to the hash, where they 3083 * can be found by other code. 3084 */ 3085 static void 3086 vput_final(struct vnode *vp, enum vput_op func) 3087 { 3088 int error; 3089 bool want_unlock; 3090 3091 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3092 VNPASS(vp->v_holdcnt > 0, vp); 3093 3094 VI_LOCK(vp); 3095 3096 /* 3097 * By the time we got here someone else might have transitioned 3098 * the count back to > 0. 3099 */ 3100 if (vp->v_usecount > 0) 3101 goto out; 3102 3103 /* 3104 * If the vnode is doomed vgone already performed inactive processing 3105 * (if needed). 3106 */ 3107 if (VN_IS_DOOMED(vp)) 3108 goto out; 3109 3110 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0)) 3111 goto out; 3112 3113 if (vp->v_iflag & VI_DOINGINACT) 3114 goto out; 3115 3116 /* 3117 * Locking operations here will drop the interlock and possibly the 3118 * vnode lock, opening a window where the vnode can get doomed all the 3119 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to 3120 * perform inactive. 3121 */ 3122 vp->v_iflag |= VI_OWEINACT; 3123 want_unlock = false; 3124 error = 0; 3125 switch (func) { 3126 case VRELE: 3127 switch (VOP_ISLOCKED(vp)) { 3128 case LK_EXCLUSIVE: 3129 break; 3130 case LK_EXCLOTHER: 3131 case 0: 3132 want_unlock = true; 3133 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK); 3134 VI_LOCK(vp); 3135 break; 3136 default: 3137 /* 3138 * The lock has at least one sharer, but we have no way 3139 * to conclude whether this is us. Play it safe and 3140 * defer processing. 3141 */ 3142 error = EAGAIN; 3143 break; 3144 } 3145 break; 3146 case VPUT: 3147 want_unlock = true; 3148 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3149 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK | 3150 LK_NOWAIT); 3151 VI_LOCK(vp); 3152 } 3153 break; 3154 case VUNREF: 3155 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) { 3156 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK); 3157 VI_LOCK(vp); 3158 } 3159 break; 3160 } 3161 if (error == 0) { 3162 if (func == VUNREF) { 3163 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp, 3164 ("recursive vunref")); 3165 vp->v_vflag |= VV_UNREF; 3166 } 3167 for (;;) { 3168 error = vinactive(vp); 3169 if (want_unlock) 3170 VOP_UNLOCK(vp); 3171 if (error != ERELOOKUP || !want_unlock) 3172 break; 3173 VOP_LOCK(vp, LK_EXCLUSIVE); 3174 } 3175 if (func == VUNREF) 3176 vp->v_vflag &= ~VV_UNREF; 3177 vdropl(vp); 3178 } else { 3179 vdefer_inactive(vp); 3180 } 3181 return; 3182 out: 3183 if (func == VPUT) 3184 VOP_UNLOCK(vp); 3185 vdropl(vp); 3186 } 3187 3188 /* 3189 * Decrement ->v_usecount for a vnode. 3190 * 3191 * Releasing the last use count requires additional processing, see vput_final 3192 * above for details. 3193 * 3194 * Comment above each variant denotes lock state on entry and exit. 3195 */ 3196 3197 /* 3198 * in: any 3199 * out: same as passed in 3200 */ 3201 void 3202 vrele(struct vnode *vp) 3203 { 3204 3205 ASSERT_VI_UNLOCKED(vp, __func__); 3206 if (!refcount_release(&vp->v_usecount)) 3207 return; 3208 vput_final(vp, VRELE); 3209 } 3210 3211 /* 3212 * in: locked 3213 * out: unlocked 3214 */ 3215 void 3216 vput(struct vnode *vp) 3217 { 3218 3219 ASSERT_VOP_LOCKED(vp, __func__); 3220 ASSERT_VI_UNLOCKED(vp, __func__); 3221 if (!refcount_release(&vp->v_usecount)) { 3222 VOP_UNLOCK(vp); 3223 return; 3224 } 3225 vput_final(vp, VPUT); 3226 } 3227 3228 /* 3229 * in: locked 3230 * out: locked 3231 */ 3232 void 3233 vunref(struct vnode *vp) 3234 { 3235 3236 ASSERT_VOP_LOCKED(vp, __func__); 3237 ASSERT_VI_UNLOCKED(vp, __func__); 3238 if (!refcount_release(&vp->v_usecount)) 3239 return; 3240 vput_final(vp, VUNREF); 3241 } 3242 3243 void 3244 vhold(struct vnode *vp) 3245 { 3246 int old; 3247 3248 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3249 old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3250 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3251 ("%s: wrong hold count %d", __func__, old)); 3252 if (old == 0) 3253 vn_freevnodes_dec(); 3254 } 3255 3256 void 3257 vholdnz(struct vnode *vp) 3258 { 3259 3260 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3261 #ifdef INVARIANTS 3262 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3263 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp, 3264 ("%s: wrong hold count %d", __func__, old)); 3265 #else 3266 atomic_add_int(&vp->v_holdcnt, 1); 3267 #endif 3268 } 3269 3270 /* 3271 * Grab a hold count unless the vnode is freed. 3272 * 3273 * Only use this routine if vfs smr is the only protection you have against 3274 * freeing the vnode. 3275 * 3276 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag 3277 * is not set. After the flag is set the vnode becomes immutable to anyone but 3278 * the thread which managed to set the flag. 3279 * 3280 * It may be tempting to replace the loop with: 3281 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1); 3282 * if (count & VHOLD_NO_SMR) { 3283 * backpedal and error out; 3284 * } 3285 * 3286 * However, while this is more performant, it hinders debugging by eliminating 3287 * the previously mentioned invariant. 3288 */ 3289 bool 3290 vhold_smr(struct vnode *vp) 3291 { 3292 int count; 3293 3294 VFS_SMR_ASSERT_ENTERED(); 3295 3296 count = atomic_load_int(&vp->v_holdcnt); 3297 for (;;) { 3298 if (count & VHOLD_NO_SMR) { 3299 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3300 ("non-zero hold count with flags %d\n", count)); 3301 return (false); 3302 } 3303 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3304 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3305 if (count == 0) 3306 vn_freevnodes_dec(); 3307 return (true); 3308 } 3309 } 3310 } 3311 3312 /* 3313 * Hold a free vnode for recycling. 3314 * 3315 * Note: vnode_init references this comment. 3316 * 3317 * Attempts to recycle only need the global vnode list lock and have no use for 3318 * SMR. 3319 * 3320 * However, vnodes get inserted into the global list before they get fully 3321 * initialized and stay there until UMA decides to free the memory. This in 3322 * particular means the target can be found before it becomes usable and after 3323 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to 3324 * VHOLD_NO_SMR. 3325 * 3326 * Note: the vnode may gain more references after we transition the count 0->1. 3327 */ 3328 static bool 3329 vhold_recycle_free(struct vnode *vp) 3330 { 3331 int count; 3332 3333 mtx_assert(&vnode_list_mtx, MA_OWNED); 3334 3335 count = atomic_load_int(&vp->v_holdcnt); 3336 for (;;) { 3337 if (count & VHOLD_NO_SMR) { 3338 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp, 3339 ("non-zero hold count with flags %d\n", count)); 3340 return (false); 3341 } 3342 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count)); 3343 if (count > 0) { 3344 return (false); 3345 } 3346 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) { 3347 vn_freevnodes_dec(); 3348 return (true); 3349 } 3350 } 3351 } 3352 3353 static void __noinline 3354 vdbatch_process(struct vdbatch *vd) 3355 { 3356 struct vnode *vp; 3357 int i; 3358 3359 mtx_assert(&vd->lock, MA_OWNED); 3360 MPASS(curthread->td_pinned > 0); 3361 MPASS(vd->index == VDBATCH_SIZE); 3362 3363 mtx_lock(&vnode_list_mtx); 3364 critical_enter(); 3365 freevnodes += vd->freevnodes; 3366 for (i = 0; i < VDBATCH_SIZE; i++) { 3367 vp = vd->tab[i]; 3368 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist); 3369 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist); 3370 MPASS(vp->v_dbatchcpu != NOCPU); 3371 vp->v_dbatchcpu = NOCPU; 3372 } 3373 mtx_unlock(&vnode_list_mtx); 3374 vd->freevnodes = 0; 3375 bzero(vd->tab, sizeof(vd->tab)); 3376 vd->index = 0; 3377 critical_exit(); 3378 } 3379 3380 static void 3381 vdbatch_enqueue(struct vnode *vp) 3382 { 3383 struct vdbatch *vd; 3384 3385 ASSERT_VI_LOCKED(vp, __func__); 3386 VNASSERT(!VN_IS_DOOMED(vp), vp, 3387 ("%s: deferring requeue of a doomed vnode", __func__)); 3388 3389 if (vp->v_dbatchcpu != NOCPU) { 3390 VI_UNLOCK(vp); 3391 return; 3392 } 3393 3394 sched_pin(); 3395 vd = DPCPU_PTR(vd); 3396 mtx_lock(&vd->lock); 3397 MPASS(vd->index < VDBATCH_SIZE); 3398 MPASS(vd->tab[vd->index] == NULL); 3399 /* 3400 * A hack: we depend on being pinned so that we know what to put in 3401 * ->v_dbatchcpu. 3402 */ 3403 vp->v_dbatchcpu = curcpu; 3404 vd->tab[vd->index] = vp; 3405 vd->index++; 3406 VI_UNLOCK(vp); 3407 if (vd->index == VDBATCH_SIZE) 3408 vdbatch_process(vd); 3409 mtx_unlock(&vd->lock); 3410 sched_unpin(); 3411 } 3412 3413 /* 3414 * This routine must only be called for vnodes which are about to be 3415 * deallocated. Supporting dequeue for arbitrary vndoes would require 3416 * validating that the locked batch matches. 3417 */ 3418 static void 3419 vdbatch_dequeue(struct vnode *vp) 3420 { 3421 struct vdbatch *vd; 3422 int i; 3423 short cpu; 3424 3425 VNASSERT(vp->v_type == VBAD || vp->v_type == VNON, vp, 3426 ("%s: called for a used vnode\n", __func__)); 3427 3428 cpu = vp->v_dbatchcpu; 3429 if (cpu == NOCPU) 3430 return; 3431 3432 vd = DPCPU_ID_PTR(cpu, vd); 3433 mtx_lock(&vd->lock); 3434 for (i = 0; i < vd->index; i++) { 3435 if (vd->tab[i] != vp) 3436 continue; 3437 vp->v_dbatchcpu = NOCPU; 3438 vd->index--; 3439 vd->tab[i] = vd->tab[vd->index]; 3440 vd->tab[vd->index] = NULL; 3441 break; 3442 } 3443 mtx_unlock(&vd->lock); 3444 /* 3445 * Either we dequeued the vnode above or the target CPU beat us to it. 3446 */ 3447 MPASS(vp->v_dbatchcpu == NOCPU); 3448 } 3449 3450 /* 3451 * Drop the hold count of the vnode. If this is the last reference to 3452 * the vnode we place it on the free list unless it has been vgone'd 3453 * (marked VIRF_DOOMED) in which case we will free it. 3454 * 3455 * Because the vnode vm object keeps a hold reference on the vnode if 3456 * there is at least one resident non-cached page, the vnode cannot 3457 * leave the active list without the page cleanup done. 3458 */ 3459 static void 3460 vdrop_deactivate(struct vnode *vp) 3461 { 3462 struct mount *mp; 3463 3464 ASSERT_VI_LOCKED(vp, __func__); 3465 /* 3466 * Mark a vnode as free: remove it from its active list 3467 * and put it up for recycling on the freelist. 3468 */ 3469 VNASSERT(!VN_IS_DOOMED(vp), vp, 3470 ("vdrop: returning doomed vnode")); 3471 VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp, 3472 ("vnode with VI_OWEINACT set")); 3473 VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, 3474 ("vnode with VI_DEFINACT set")); 3475 if (vp->v_mflag & VMP_LAZYLIST) { 3476 mp = vp->v_mount; 3477 mtx_lock(&mp->mnt_listmtx); 3478 VNASSERT(vp->v_mflag & VMP_LAZYLIST, vp, ("lost VMP_LAZYLIST")); 3479 /* 3480 * Don't remove the vnode from the lazy list if another thread 3481 * has increased the hold count. It may have re-enqueued the 3482 * vnode to the lazy list and is now responsible for its 3483 * removal. 3484 */ 3485 if (vp->v_holdcnt == 0) { 3486 vp->v_mflag &= ~VMP_LAZYLIST; 3487 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist); 3488 mp->mnt_lazyvnodelistsize--; 3489 } 3490 mtx_unlock(&mp->mnt_listmtx); 3491 } 3492 vdbatch_enqueue(vp); 3493 } 3494 3495 static void __noinline 3496 vdropl_final(struct vnode *vp) 3497 { 3498 3499 ASSERT_VI_LOCKED(vp, __func__); 3500 VNPASS(VN_IS_DOOMED(vp), vp); 3501 /* 3502 * Set the VHOLD_NO_SMR flag. 3503 * 3504 * We may be racing against vhold_smr. If they win we can just pretend 3505 * we never got this far, they will vdrop later. 3506 */ 3507 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) { 3508 vn_freevnodes_inc(); 3509 VI_UNLOCK(vp); 3510 /* 3511 * We lost the aforementioned race. Any subsequent access is 3512 * invalid as they might have managed to vdropl on their own. 3513 */ 3514 return; 3515 } 3516 /* 3517 * Don't bump freevnodes as this one is going away. 3518 */ 3519 freevnode(vp); 3520 } 3521 3522 void 3523 vdrop(struct vnode *vp) 3524 { 3525 3526 ASSERT_VI_UNLOCKED(vp, __func__); 3527 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3528 if (refcount_release_if_not_last(&vp->v_holdcnt)) 3529 return; 3530 VI_LOCK(vp); 3531 vdropl(vp); 3532 } 3533 3534 void 3535 vdropl(struct vnode *vp) 3536 { 3537 3538 ASSERT_VI_LOCKED(vp, __func__); 3539 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3540 if (!refcount_release(&vp->v_holdcnt)) { 3541 VI_UNLOCK(vp); 3542 return; 3543 } 3544 if (!VN_IS_DOOMED(vp)) { 3545 vn_freevnodes_inc(); 3546 vdrop_deactivate(vp); 3547 /* 3548 * Also unlocks the interlock. We can't assert on it as we 3549 * released our hold and by now the vnode might have been 3550 * freed. 3551 */ 3552 return; 3553 } 3554 vdropl_final(vp); 3555 } 3556 3557 /* 3558 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT 3559 * flags. DOINGINACT prevents us from recursing in calls to vinactive. 3560 */ 3561 static int 3562 vinactivef(struct vnode *vp) 3563 { 3564 struct vm_object *obj; 3565 int error; 3566 3567 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3568 ASSERT_VI_LOCKED(vp, "vinactive"); 3569 VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp, 3570 ("vinactive: recursed on VI_DOINGINACT")); 3571 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3572 vp->v_iflag |= VI_DOINGINACT; 3573 vp->v_iflag &= ~VI_OWEINACT; 3574 VI_UNLOCK(vp); 3575 /* 3576 * Before moving off the active list, we must be sure that any 3577 * modified pages are converted into the vnode's dirty 3578 * buffers, since these will no longer be checked once the 3579 * vnode is on the inactive list. 3580 * 3581 * The write-out of the dirty pages is asynchronous. At the 3582 * point that VOP_INACTIVE() is called, there could still be 3583 * pending I/O and dirty pages in the object. 3584 */ 3585 if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 3586 vm_object_mightbedirty(obj)) { 3587 VM_OBJECT_WLOCK(obj); 3588 vm_object_page_clean(obj, 0, 0, 0); 3589 VM_OBJECT_WUNLOCK(obj); 3590 } 3591 error = VOP_INACTIVE(vp); 3592 VI_LOCK(vp); 3593 VNASSERT(vp->v_iflag & VI_DOINGINACT, vp, 3594 ("vinactive: lost VI_DOINGINACT")); 3595 vp->v_iflag &= ~VI_DOINGINACT; 3596 return (error); 3597 } 3598 3599 int 3600 vinactive(struct vnode *vp) 3601 { 3602 3603 ASSERT_VOP_ELOCKED(vp, "vinactive"); 3604 ASSERT_VI_LOCKED(vp, "vinactive"); 3605 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3606 3607 if ((vp->v_iflag & VI_OWEINACT) == 0) 3608 return (0); 3609 if (vp->v_iflag & VI_DOINGINACT) 3610 return (0); 3611 if (vp->v_usecount > 0) { 3612 vp->v_iflag &= ~VI_OWEINACT; 3613 return (0); 3614 } 3615 return (vinactivef(vp)); 3616 } 3617 3618 /* 3619 * Remove any vnodes in the vnode table belonging to mount point mp. 3620 * 3621 * If FORCECLOSE is not specified, there should not be any active ones, 3622 * return error if any are found (nb: this is a user error, not a 3623 * system error). If FORCECLOSE is specified, detach any active vnodes 3624 * that are found. 3625 * 3626 * If WRITECLOSE is set, only flush out regular file vnodes open for 3627 * writing. 3628 * 3629 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped. 3630 * 3631 * `rootrefs' specifies the base reference count for the root vnode 3632 * of this filesystem. The root vnode is considered busy if its 3633 * v_usecount exceeds this value. On a successful return, vflush(, td) 3634 * will call vrele() on the root vnode exactly rootrefs times. 3635 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must 3636 * be zero. 3637 */ 3638 #ifdef DIAGNOSTIC 3639 static int busyprt = 0; /* print out busy vnodes */ 3640 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes"); 3641 #endif 3642 3643 int 3644 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td) 3645 { 3646 struct vnode *vp, *mvp, *rootvp = NULL; 3647 struct vattr vattr; 3648 int busy = 0, error; 3649 3650 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp, 3651 rootrefs, flags); 3652 if (rootrefs > 0) { 3653 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0, 3654 ("vflush: bad args")); 3655 /* 3656 * Get the filesystem root vnode. We can vput() it 3657 * immediately, since with rootrefs > 0, it won't go away. 3658 */ 3659 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) { 3660 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d", 3661 __func__, error); 3662 return (error); 3663 } 3664 vput(rootvp); 3665 } 3666 loop: 3667 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { 3668 vholdl(vp); 3669 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE); 3670 if (error) { 3671 vdrop(vp); 3672 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3673 goto loop; 3674 } 3675 /* 3676 * Skip over a vnodes marked VV_SYSTEM. 3677 */ 3678 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { 3679 VOP_UNLOCK(vp); 3680 vdrop(vp); 3681 continue; 3682 } 3683 /* 3684 * If WRITECLOSE is set, flush out unlinked but still open 3685 * files (even if open only for reading) and regular file 3686 * vnodes open for writing. 3687 */ 3688 if (flags & WRITECLOSE) { 3689 if (vp->v_object != NULL) { 3690 VM_OBJECT_WLOCK(vp->v_object); 3691 vm_object_page_clean(vp->v_object, 0, 0, 0); 3692 VM_OBJECT_WUNLOCK(vp->v_object); 3693 } 3694 do { 3695 error = VOP_FSYNC(vp, MNT_WAIT, td); 3696 } while (error == ERELOOKUP); 3697 if (error != 0) { 3698 VOP_UNLOCK(vp); 3699 vdrop(vp); 3700 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); 3701 return (error); 3702 } 3703 error = VOP_GETATTR(vp, &vattr, td->td_ucred); 3704 VI_LOCK(vp); 3705 3706 if ((vp->v_type == VNON || 3707 (error == 0 && vattr.va_nlink > 0)) && 3708 (vp->v_writecount <= 0 || vp->v_type != VREG)) { 3709 VOP_UNLOCK(vp); 3710 vdropl(vp); 3711 continue; 3712 } 3713 } else 3714 VI_LOCK(vp); 3715 /* 3716 * With v_usecount == 0, all we need to do is clear out the 3717 * vnode data structures and we are done. 3718 * 3719 * If FORCECLOSE is set, forcibly close the vnode. 3720 */ 3721 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) { 3722 vgonel(vp); 3723 } else { 3724 busy++; 3725 #ifdef DIAGNOSTIC 3726 if (busyprt) 3727 vn_printf(vp, "vflush: busy vnode "); 3728 #endif 3729 } 3730 VOP_UNLOCK(vp); 3731 vdropl(vp); 3732 } 3733 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) { 3734 /* 3735 * If just the root vnode is busy, and if its refcount 3736 * is equal to `rootrefs', then go ahead and kill it. 3737 */ 3738 VI_LOCK(rootvp); 3739 KASSERT(busy > 0, ("vflush: not busy")); 3740 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp, 3741 ("vflush: usecount %d < rootrefs %d", 3742 rootvp->v_usecount, rootrefs)); 3743 if (busy == 1 && rootvp->v_usecount == rootrefs) { 3744 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK); 3745 vgone(rootvp); 3746 VOP_UNLOCK(rootvp); 3747 busy = 0; 3748 } else 3749 VI_UNLOCK(rootvp); 3750 } 3751 if (busy) { 3752 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__, 3753 busy); 3754 return (EBUSY); 3755 } 3756 for (; rootrefs > 0; rootrefs--) 3757 vrele(rootvp); 3758 return (0); 3759 } 3760 3761 /* 3762 * Recycle an unused vnode to the front of the free list. 3763 */ 3764 int 3765 vrecycle(struct vnode *vp) 3766 { 3767 int recycled; 3768 3769 VI_LOCK(vp); 3770 recycled = vrecyclel(vp); 3771 VI_UNLOCK(vp); 3772 return (recycled); 3773 } 3774 3775 /* 3776 * vrecycle, with the vp interlock held. 3777 */ 3778 int 3779 vrecyclel(struct vnode *vp) 3780 { 3781 int recycled; 3782 3783 ASSERT_VOP_ELOCKED(vp, __func__); 3784 ASSERT_VI_LOCKED(vp, __func__); 3785 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3786 recycled = 0; 3787 if (vp->v_usecount == 0) { 3788 recycled = 1; 3789 vgonel(vp); 3790 } 3791 return (recycled); 3792 } 3793 3794 /* 3795 * Eliminate all activity associated with a vnode 3796 * in preparation for reuse. 3797 */ 3798 void 3799 vgone(struct vnode *vp) 3800 { 3801 VI_LOCK(vp); 3802 vgonel(vp); 3803 VI_UNLOCK(vp); 3804 } 3805 3806 static void 3807 notify_lowervp_vfs_dummy(struct mount *mp __unused, 3808 struct vnode *lowervp __unused) 3809 { 3810 } 3811 3812 /* 3813 * Notify upper mounts about reclaimed or unlinked vnode. 3814 */ 3815 void 3816 vfs_notify_upper(struct vnode *vp, int event) 3817 { 3818 static struct vfsops vgonel_vfsops = { 3819 .vfs_reclaim_lowervp = notify_lowervp_vfs_dummy, 3820 .vfs_unlink_lowervp = notify_lowervp_vfs_dummy, 3821 }; 3822 struct mount *mp, *ump, *mmp; 3823 3824 mp = vp->v_mount; 3825 if (mp == NULL) 3826 return; 3827 if (TAILQ_EMPTY(&mp->mnt_uppers)) 3828 return; 3829 3830 mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO); 3831 mmp->mnt_op = &vgonel_vfsops; 3832 mmp->mnt_kern_flag |= MNTK_MARKER; 3833 MNT_ILOCK(mp); 3834 mp->mnt_kern_flag |= MNTK_VGONE_UPPER; 3835 for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) { 3836 if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) { 3837 ump = TAILQ_NEXT(ump, mnt_upper_link); 3838 continue; 3839 } 3840 TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link); 3841 MNT_IUNLOCK(mp); 3842 switch (event) { 3843 case VFS_NOTIFY_UPPER_RECLAIM: 3844 VFS_RECLAIM_LOWERVP(ump, vp); 3845 break; 3846 case VFS_NOTIFY_UPPER_UNLINK: 3847 VFS_UNLINK_LOWERVP(ump, vp); 3848 break; 3849 default: 3850 KASSERT(0, ("invalid event %d", event)); 3851 break; 3852 } 3853 MNT_ILOCK(mp); 3854 ump = TAILQ_NEXT(mmp, mnt_upper_link); 3855 TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link); 3856 } 3857 free(mmp, M_TEMP); 3858 mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER; 3859 if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) { 3860 mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER; 3861 wakeup(&mp->mnt_uppers); 3862 } 3863 MNT_IUNLOCK(mp); 3864 } 3865 3866 /* 3867 * vgone, with the vp interlock held. 3868 */ 3869 static void 3870 vgonel(struct vnode *vp) 3871 { 3872 struct thread *td; 3873 struct mount *mp; 3874 vm_object_t object; 3875 bool active, doinginact, oweinact; 3876 3877 ASSERT_VOP_ELOCKED(vp, "vgonel"); 3878 ASSERT_VI_LOCKED(vp, "vgonel"); 3879 VNASSERT(vp->v_holdcnt, vp, 3880 ("vgonel: vp %p has no reference.", vp)); 3881 CTR2(KTR_VFS, "%s: vp %p", __func__, vp); 3882 td = curthread; 3883 3884 /* 3885 * Don't vgonel if we're already doomed. 3886 */ 3887 if (VN_IS_DOOMED(vp)) 3888 return; 3889 /* 3890 * Paired with freevnode. 3891 */ 3892 vn_seqc_write_begin_locked(vp); 3893 vunlazy_gone(vp); 3894 vn_irflag_set_locked(vp, VIRF_DOOMED); 3895 3896 /* 3897 * Check to see if the vnode is in use. If so, we have to 3898 * call VOP_CLOSE() and VOP_INACTIVE(). 3899 * 3900 * It could be that VOP_INACTIVE() requested reclamation, in 3901 * which case we should avoid recursion, so check 3902 * VI_DOINGINACT. This is not precise but good enough. 3903 */ 3904 active = vp->v_usecount > 0; 3905 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 3906 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0; 3907 3908 /* 3909 * If we need to do inactive VI_OWEINACT will be set. 3910 */ 3911 if (vp->v_iflag & VI_DEFINACT) { 3912 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count")); 3913 vp->v_iflag &= ~VI_DEFINACT; 3914 vdropl(vp); 3915 } else { 3916 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count")); 3917 VI_UNLOCK(vp); 3918 } 3919 cache_purge_vgone(vp); 3920 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM); 3921 3922 /* 3923 * If purging an active vnode, it must be closed and 3924 * deactivated before being reclaimed. 3925 */ 3926 if (active) 3927 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td); 3928 if (!doinginact) { 3929 do { 3930 if (oweinact || active) { 3931 VI_LOCK(vp); 3932 vinactivef(vp); 3933 oweinact = (vp->v_iflag & VI_OWEINACT) != 0; 3934 VI_UNLOCK(vp); 3935 } 3936 } while (oweinact); 3937 } 3938 if (vp->v_type == VSOCK) 3939 vfs_unp_reclaim(vp); 3940 3941 /* 3942 * Clean out any buffers associated with the vnode. 3943 * If the flush fails, just toss the buffers. 3944 */ 3945 mp = NULL; 3946 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd)) 3947 (void) vn_start_secondary_write(vp, &mp, V_WAIT); 3948 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) { 3949 while (vinvalbuf(vp, 0, 0, 0) != 0) 3950 ; 3951 } 3952 3953 BO_LOCK(&vp->v_bufobj); 3954 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) && 3955 vp->v_bufobj.bo_dirty.bv_cnt == 0 && 3956 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) && 3957 vp->v_bufobj.bo_clean.bv_cnt == 0, 3958 ("vp %p bufobj not invalidated", vp)); 3959 3960 /* 3961 * For VMIO bufobj, BO_DEAD is set later, or in 3962 * vm_object_terminate() after the object's page queue is 3963 * flushed. 3964 */ 3965 object = vp->v_bufobj.bo_object; 3966 if (object == NULL) 3967 vp->v_bufobj.bo_flag |= BO_DEAD; 3968 BO_UNLOCK(&vp->v_bufobj); 3969 3970 /* 3971 * Handle the VM part. Tmpfs handles v_object on its own (the 3972 * OBJT_VNODE check). Nullfs or other bypassing filesystems 3973 * should not touch the object borrowed from the lower vnode 3974 * (the handle check). 3975 */ 3976 if (object != NULL && object->type == OBJT_VNODE && 3977 object->handle == vp) 3978 vnode_destroy_vobject(vp); 3979 3980 /* 3981 * Reclaim the vnode. 3982 */ 3983 if (VOP_RECLAIM(vp)) 3984 panic("vgone: cannot reclaim"); 3985 if (mp != NULL) 3986 vn_finished_secondary_write(mp); 3987 VNASSERT(vp->v_object == NULL, vp, 3988 ("vop_reclaim left v_object vp=%p", vp)); 3989 /* 3990 * Clear the advisory locks and wake up waiting threads. 3991 */ 3992 (void)VOP_ADVLOCKPURGE(vp); 3993 vp->v_lockf = NULL; 3994 /* 3995 * Delete from old mount point vnode list. 3996 */ 3997 delmntque(vp); 3998 /* 3999 * Done with purge, reset to the standard lock and invalidate 4000 * the vnode. 4001 */ 4002 VI_LOCK(vp); 4003 vp->v_vnlock = &vp->v_lock; 4004 vp->v_op = &dead_vnodeops; 4005 vp->v_type = VBAD; 4006 } 4007 4008 /* 4009 * Print out a description of a vnode. 4010 */ 4011 static const char * const typename[] = 4012 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", 4013 "VMARKER"}; 4014 4015 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0, 4016 "new hold count flag not added to vn_printf"); 4017 4018 void 4019 vn_printf(struct vnode *vp, const char *fmt, ...) 4020 { 4021 va_list ap; 4022 char buf[256], buf2[16]; 4023 u_long flags; 4024 u_int holdcnt; 4025 short irflag; 4026 4027 va_start(ap, fmt); 4028 vprintf(fmt, ap); 4029 va_end(ap); 4030 printf("%p: ", (void *)vp); 4031 printf("type %s\n", typename[vp->v_type]); 4032 holdcnt = atomic_load_int(&vp->v_holdcnt); 4033 printf(" usecount %d, writecount %d, refcount %d seqc users %d", 4034 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS, 4035 vp->v_seqc_users); 4036 switch (vp->v_type) { 4037 case VDIR: 4038 printf(" mountedhere %p\n", vp->v_mountedhere); 4039 break; 4040 case VCHR: 4041 printf(" rdev %p\n", vp->v_rdev); 4042 break; 4043 case VSOCK: 4044 printf(" socket %p\n", vp->v_unpcb); 4045 break; 4046 case VFIFO: 4047 printf(" fifoinfo %p\n", vp->v_fifoinfo); 4048 break; 4049 default: 4050 printf("\n"); 4051 break; 4052 } 4053 buf[0] = '\0'; 4054 buf[1] = '\0'; 4055 if (holdcnt & VHOLD_NO_SMR) 4056 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf)); 4057 printf(" hold count flags (%s)\n", buf + 1); 4058 4059 buf[0] = '\0'; 4060 buf[1] = '\0'; 4061 irflag = vn_irflag_read(vp); 4062 if (irflag & VIRF_DOOMED) 4063 strlcat(buf, "|VIRF_DOOMED", sizeof(buf)); 4064 if (irflag & VIRF_PGREAD) 4065 strlcat(buf, "|VIRF_PGREAD", sizeof(buf)); 4066 if (irflag & VIRF_MOUNTPOINT) 4067 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf)); 4068 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT); 4069 if (flags != 0) { 4070 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags); 4071 strlcat(buf, buf2, sizeof(buf)); 4072 } 4073 if (vp->v_vflag & VV_ROOT) 4074 strlcat(buf, "|VV_ROOT", sizeof(buf)); 4075 if (vp->v_vflag & VV_ISTTY) 4076 strlcat(buf, "|VV_ISTTY", sizeof(buf)); 4077 if (vp->v_vflag & VV_NOSYNC) 4078 strlcat(buf, "|VV_NOSYNC", sizeof(buf)); 4079 if (vp->v_vflag & VV_ETERNALDEV) 4080 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf)); 4081 if (vp->v_vflag & VV_CACHEDLABEL) 4082 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf)); 4083 if (vp->v_vflag & VV_VMSIZEVNLOCK) 4084 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf)); 4085 if (vp->v_vflag & VV_COPYONWRITE) 4086 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf)); 4087 if (vp->v_vflag & VV_SYSTEM) 4088 strlcat(buf, "|VV_SYSTEM", sizeof(buf)); 4089 if (vp->v_vflag & VV_PROCDEP) 4090 strlcat(buf, "|VV_PROCDEP", sizeof(buf)); 4091 if (vp->v_vflag & VV_NOKNOTE) 4092 strlcat(buf, "|VV_NOKNOTE", sizeof(buf)); 4093 if (vp->v_vflag & VV_DELETED) 4094 strlcat(buf, "|VV_DELETED", sizeof(buf)); 4095 if (vp->v_vflag & VV_MD) 4096 strlcat(buf, "|VV_MD", sizeof(buf)); 4097 if (vp->v_vflag & VV_FORCEINSMQ) 4098 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf)); 4099 if (vp->v_vflag & VV_READLINK) 4100 strlcat(buf, "|VV_READLINK", sizeof(buf)); 4101 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV | 4102 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM | 4103 VV_PROCDEP | VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ | 4104 VV_READLINK); 4105 if (flags != 0) { 4106 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags); 4107 strlcat(buf, buf2, sizeof(buf)); 4108 } 4109 if (vp->v_iflag & VI_TEXT_REF) 4110 strlcat(buf, "|VI_TEXT_REF", sizeof(buf)); 4111 if (vp->v_iflag & VI_MOUNT) 4112 strlcat(buf, "|VI_MOUNT", sizeof(buf)); 4113 if (vp->v_iflag & VI_DOINGINACT) 4114 strlcat(buf, "|VI_DOINGINACT", sizeof(buf)); 4115 if (vp->v_iflag & VI_OWEINACT) 4116 strlcat(buf, "|VI_OWEINACT", sizeof(buf)); 4117 if (vp->v_iflag & VI_DEFINACT) 4118 strlcat(buf, "|VI_DEFINACT", sizeof(buf)); 4119 if (vp->v_iflag & VI_FOPENING) 4120 strlcat(buf, "|VI_FOPENING", sizeof(buf)); 4121 flags = vp->v_iflag & ~(VI_TEXT_REF | VI_MOUNT | VI_DOINGINACT | 4122 VI_OWEINACT | VI_DEFINACT | VI_FOPENING); 4123 if (flags != 0) { 4124 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags); 4125 strlcat(buf, buf2, sizeof(buf)); 4126 } 4127 if (vp->v_mflag & VMP_LAZYLIST) 4128 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf)); 4129 flags = vp->v_mflag & ~(VMP_LAZYLIST); 4130 if (flags != 0) { 4131 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags); 4132 strlcat(buf, buf2, sizeof(buf)); 4133 } 4134 printf(" flags (%s)", buf + 1); 4135 if (mtx_owned(VI_MTX(vp))) 4136 printf(" VI_LOCKed"); 4137 printf("\n"); 4138 if (vp->v_object != NULL) 4139 printf(" v_object %p ref %d pages %d " 4140 "cleanbuf %d dirtybuf %d\n", 4141 vp->v_object, vp->v_object->ref_count, 4142 vp->v_object->resident_page_count, 4143 vp->v_bufobj.bo_clean.bv_cnt, 4144 vp->v_bufobj.bo_dirty.bv_cnt); 4145 printf(" "); 4146 lockmgr_printinfo(vp->v_vnlock); 4147 if (vp->v_data != NULL) 4148 VOP_PRINT(vp); 4149 } 4150 4151 #ifdef DDB 4152 /* 4153 * List all of the locked vnodes in the system. 4154 * Called when debugging the kernel. 4155 */ 4156 DB_SHOW_COMMAND(lockedvnods, lockedvnodes) 4157 { 4158 struct mount *mp; 4159 struct vnode *vp; 4160 4161 /* 4162 * Note: because this is DDB, we can't obey the locking semantics 4163 * for these structures, which means we could catch an inconsistent 4164 * state and dereference a nasty pointer. Not much to be done 4165 * about that. 4166 */ 4167 db_printf("Locked vnodes\n"); 4168 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4169 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4170 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp)) 4171 vn_printf(vp, "vnode "); 4172 } 4173 } 4174 } 4175 4176 /* 4177 * Show details about the given vnode. 4178 */ 4179 DB_SHOW_COMMAND(vnode, db_show_vnode) 4180 { 4181 struct vnode *vp; 4182 4183 if (!have_addr) 4184 return; 4185 vp = (struct vnode *)addr; 4186 vn_printf(vp, "vnode "); 4187 } 4188 4189 /* 4190 * Show details about the given mount point. 4191 */ 4192 DB_SHOW_COMMAND(mount, db_show_mount) 4193 { 4194 struct mount *mp; 4195 struct vfsopt *opt; 4196 struct statfs *sp; 4197 struct vnode *vp; 4198 char buf[512]; 4199 uint64_t mflags; 4200 u_int flags; 4201 4202 if (!have_addr) { 4203 /* No address given, print short info about all mount points. */ 4204 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4205 db_printf("%p %s on %s (%s)\n", mp, 4206 mp->mnt_stat.f_mntfromname, 4207 mp->mnt_stat.f_mntonname, 4208 mp->mnt_stat.f_fstypename); 4209 if (db_pager_quit) 4210 break; 4211 } 4212 db_printf("\nMore info: show mount <addr>\n"); 4213 return; 4214 } 4215 4216 mp = (struct mount *)addr; 4217 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname, 4218 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename); 4219 4220 buf[0] = '\0'; 4221 mflags = mp->mnt_flag; 4222 #define MNT_FLAG(flag) do { \ 4223 if (mflags & (flag)) { \ 4224 if (buf[0] != '\0') \ 4225 strlcat(buf, ", ", sizeof(buf)); \ 4226 strlcat(buf, (#flag) + 4, sizeof(buf)); \ 4227 mflags &= ~(flag); \ 4228 } \ 4229 } while (0) 4230 MNT_FLAG(MNT_RDONLY); 4231 MNT_FLAG(MNT_SYNCHRONOUS); 4232 MNT_FLAG(MNT_NOEXEC); 4233 MNT_FLAG(MNT_NOSUID); 4234 MNT_FLAG(MNT_NFS4ACLS); 4235 MNT_FLAG(MNT_UNION); 4236 MNT_FLAG(MNT_ASYNC); 4237 MNT_FLAG(MNT_SUIDDIR); 4238 MNT_FLAG(MNT_SOFTDEP); 4239 MNT_FLAG(MNT_NOSYMFOLLOW); 4240 MNT_FLAG(MNT_GJOURNAL); 4241 MNT_FLAG(MNT_MULTILABEL); 4242 MNT_FLAG(MNT_ACLS); 4243 MNT_FLAG(MNT_NOATIME); 4244 MNT_FLAG(MNT_NOCLUSTERR); 4245 MNT_FLAG(MNT_NOCLUSTERW); 4246 MNT_FLAG(MNT_SUJ); 4247 MNT_FLAG(MNT_EXRDONLY); 4248 MNT_FLAG(MNT_EXPORTED); 4249 MNT_FLAG(MNT_DEFEXPORTED); 4250 MNT_FLAG(MNT_EXPORTANON); 4251 MNT_FLAG(MNT_EXKERB); 4252 MNT_FLAG(MNT_EXPUBLIC); 4253 MNT_FLAG(MNT_LOCAL); 4254 MNT_FLAG(MNT_QUOTA); 4255 MNT_FLAG(MNT_ROOTFS); 4256 MNT_FLAG(MNT_USER); 4257 MNT_FLAG(MNT_IGNORE); 4258 MNT_FLAG(MNT_UPDATE); 4259 MNT_FLAG(MNT_DELEXPORT); 4260 MNT_FLAG(MNT_RELOAD); 4261 MNT_FLAG(MNT_FORCE); 4262 MNT_FLAG(MNT_SNAPSHOT); 4263 MNT_FLAG(MNT_BYFSID); 4264 #undef MNT_FLAG 4265 if (mflags != 0) { 4266 if (buf[0] != '\0') 4267 strlcat(buf, ", ", sizeof(buf)); 4268 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4269 "0x%016jx", mflags); 4270 } 4271 db_printf(" mnt_flag = %s\n", buf); 4272 4273 buf[0] = '\0'; 4274 flags = mp->mnt_kern_flag; 4275 #define MNT_KERN_FLAG(flag) do { \ 4276 if (flags & (flag)) { \ 4277 if (buf[0] != '\0') \ 4278 strlcat(buf, ", ", sizeof(buf)); \ 4279 strlcat(buf, (#flag) + 5, sizeof(buf)); \ 4280 flags &= ~(flag); \ 4281 } \ 4282 } while (0) 4283 MNT_KERN_FLAG(MNTK_UNMOUNTF); 4284 MNT_KERN_FLAG(MNTK_ASYNC); 4285 MNT_KERN_FLAG(MNTK_SOFTDEP); 4286 MNT_KERN_FLAG(MNTK_DRAINING); 4287 MNT_KERN_FLAG(MNTK_REFEXPIRE); 4288 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED); 4289 MNT_KERN_FLAG(MNTK_SHARED_WRITES); 4290 MNT_KERN_FLAG(MNTK_NO_IOPF); 4291 MNT_KERN_FLAG(MNTK_VGONE_UPPER); 4292 MNT_KERN_FLAG(MNTK_VGONE_WAITER); 4293 MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT); 4294 MNT_KERN_FLAG(MNTK_MARKER); 4295 MNT_KERN_FLAG(MNTK_USES_BCACHE); 4296 MNT_KERN_FLAG(MNTK_FPLOOKUP); 4297 MNT_KERN_FLAG(MNTK_NOASYNC); 4298 MNT_KERN_FLAG(MNTK_UNMOUNT); 4299 MNT_KERN_FLAG(MNTK_MWAIT); 4300 MNT_KERN_FLAG(MNTK_SUSPEND); 4301 MNT_KERN_FLAG(MNTK_SUSPEND2); 4302 MNT_KERN_FLAG(MNTK_SUSPENDED); 4303 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED); 4304 MNT_KERN_FLAG(MNTK_NOKNOTE); 4305 #undef MNT_KERN_FLAG 4306 if (flags != 0) { 4307 if (buf[0] != '\0') 4308 strlcat(buf, ", ", sizeof(buf)); 4309 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), 4310 "0x%08x", flags); 4311 } 4312 db_printf(" mnt_kern_flag = %s\n", buf); 4313 4314 db_printf(" mnt_opt = "); 4315 opt = TAILQ_FIRST(mp->mnt_opt); 4316 if (opt != NULL) { 4317 db_printf("%s", opt->name); 4318 opt = TAILQ_NEXT(opt, link); 4319 while (opt != NULL) { 4320 db_printf(", %s", opt->name); 4321 opt = TAILQ_NEXT(opt, link); 4322 } 4323 } 4324 db_printf("\n"); 4325 4326 sp = &mp->mnt_stat; 4327 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx " 4328 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju " 4329 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju " 4330 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n", 4331 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags, 4332 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize, 4333 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree, 4334 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files, 4335 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites, 4336 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads, 4337 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax, 4338 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]); 4339 4340 db_printf(" mnt_cred = { uid=%u ruid=%u", 4341 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid); 4342 if (jailed(mp->mnt_cred)) 4343 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id); 4344 db_printf(" }\n"); 4345 db_printf(" mnt_ref = %d (with %d in the struct)\n", 4346 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref); 4347 db_printf(" mnt_gen = %d\n", mp->mnt_gen); 4348 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize); 4349 db_printf(" mnt_lazyvnodelistsize = %d\n", 4350 mp->mnt_lazyvnodelistsize); 4351 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n", 4352 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount); 4353 db_printf(" mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen); 4354 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max); 4355 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed); 4356 db_printf(" mnt_lockref = %d (with %d in the struct)\n", 4357 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref); 4358 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes); 4359 db_printf(" mnt_secondary_accwrites = %d\n", 4360 mp->mnt_secondary_accwrites); 4361 db_printf(" mnt_gjprovider = %s\n", 4362 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL"); 4363 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops); 4364 4365 db_printf("\n\nList of active vnodes\n"); 4366 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4367 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) { 4368 vn_printf(vp, "vnode "); 4369 if (db_pager_quit) 4370 break; 4371 } 4372 } 4373 db_printf("\n\nList of inactive vnodes\n"); 4374 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4375 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) { 4376 vn_printf(vp, "vnode "); 4377 if (db_pager_quit) 4378 break; 4379 } 4380 } 4381 } 4382 #endif /* DDB */ 4383 4384 /* 4385 * Fill in a struct xvfsconf based on a struct vfsconf. 4386 */ 4387 static int 4388 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp) 4389 { 4390 struct xvfsconf xvfsp; 4391 4392 bzero(&xvfsp, sizeof(xvfsp)); 4393 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4394 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4395 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4396 xvfsp.vfc_flags = vfsp->vfc_flags; 4397 /* 4398 * These are unused in userland, we keep them 4399 * to not break binary compatibility. 4400 */ 4401 xvfsp.vfc_vfsops = NULL; 4402 xvfsp.vfc_next = NULL; 4403 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4404 } 4405 4406 #ifdef COMPAT_FREEBSD32 4407 struct xvfsconf32 { 4408 uint32_t vfc_vfsops; 4409 char vfc_name[MFSNAMELEN]; 4410 int32_t vfc_typenum; 4411 int32_t vfc_refcount; 4412 int32_t vfc_flags; 4413 uint32_t vfc_next; 4414 }; 4415 4416 static int 4417 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp) 4418 { 4419 struct xvfsconf32 xvfsp; 4420 4421 bzero(&xvfsp, sizeof(xvfsp)); 4422 strcpy(xvfsp.vfc_name, vfsp->vfc_name); 4423 xvfsp.vfc_typenum = vfsp->vfc_typenum; 4424 xvfsp.vfc_refcount = vfsp->vfc_refcount; 4425 xvfsp.vfc_flags = vfsp->vfc_flags; 4426 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp))); 4427 } 4428 #endif 4429 4430 /* 4431 * Top level filesystem related information gathering. 4432 */ 4433 static int 4434 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS) 4435 { 4436 struct vfsconf *vfsp; 4437 int error; 4438 4439 error = 0; 4440 vfsconf_slock(); 4441 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4442 #ifdef COMPAT_FREEBSD32 4443 if (req->flags & SCTL_MASK32) 4444 error = vfsconf2x32(req, vfsp); 4445 else 4446 #endif 4447 error = vfsconf2x(req, vfsp); 4448 if (error) 4449 break; 4450 } 4451 vfsconf_sunlock(); 4452 return (error); 4453 } 4454 4455 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD | 4456 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist, 4457 "S,xvfsconf", "List of all configured filesystems"); 4458 4459 #ifndef BURN_BRIDGES 4460 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS); 4461 4462 static int 4463 vfs_sysctl(SYSCTL_HANDLER_ARGS) 4464 { 4465 int *name = (int *)arg1 - 1; /* XXX */ 4466 u_int namelen = arg2 + 1; /* XXX */ 4467 struct vfsconf *vfsp; 4468 4469 log(LOG_WARNING, "userland calling deprecated sysctl, " 4470 "please rebuild world\n"); 4471 4472 #if 1 || defined(COMPAT_PRELITE2) 4473 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 4474 if (namelen == 1) 4475 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 4476 #endif 4477 4478 switch (name[1]) { 4479 case VFS_MAXTYPENUM: 4480 if (namelen != 2) 4481 return (ENOTDIR); 4482 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 4483 case VFS_CONF: 4484 if (namelen != 3) 4485 return (ENOTDIR); /* overloaded */ 4486 vfsconf_slock(); 4487 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4488 if (vfsp->vfc_typenum == name[2]) 4489 break; 4490 } 4491 vfsconf_sunlock(); 4492 if (vfsp == NULL) 4493 return (EOPNOTSUPP); 4494 #ifdef COMPAT_FREEBSD32 4495 if (req->flags & SCTL_MASK32) 4496 return (vfsconf2x32(req, vfsp)); 4497 else 4498 #endif 4499 return (vfsconf2x(req, vfsp)); 4500 } 4501 return (EOPNOTSUPP); 4502 } 4503 4504 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP | 4505 CTLFLAG_MPSAFE, vfs_sysctl, 4506 "Generic filesystem"); 4507 4508 #if 1 || defined(COMPAT_PRELITE2) 4509 4510 static int 4511 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 4512 { 4513 int error; 4514 struct vfsconf *vfsp; 4515 struct ovfsconf ovfs; 4516 4517 vfsconf_slock(); 4518 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) { 4519 bzero(&ovfs, sizeof(ovfs)); 4520 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 4521 strcpy(ovfs.vfc_name, vfsp->vfc_name); 4522 ovfs.vfc_index = vfsp->vfc_typenum; 4523 ovfs.vfc_refcount = vfsp->vfc_refcount; 4524 ovfs.vfc_flags = vfsp->vfc_flags; 4525 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 4526 if (error != 0) { 4527 vfsconf_sunlock(); 4528 return (error); 4529 } 4530 } 4531 vfsconf_sunlock(); 4532 return (0); 4533 } 4534 4535 #endif /* 1 || COMPAT_PRELITE2 */ 4536 #endif /* !BURN_BRIDGES */ 4537 4538 #define KINFO_VNODESLOP 10 4539 #ifdef notyet 4540 /* 4541 * Dump vnode list (via sysctl). 4542 */ 4543 /* ARGSUSED */ 4544 static int 4545 sysctl_vnode(SYSCTL_HANDLER_ARGS) 4546 { 4547 struct xvnode *xvn; 4548 struct mount *mp; 4549 struct vnode *vp; 4550 int error, len, n; 4551 4552 /* 4553 * Stale numvnodes access is not fatal here. 4554 */ 4555 req->lock = 0; 4556 len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn; 4557 if (!req->oldptr) 4558 /* Make an estimate */ 4559 return (SYSCTL_OUT(req, 0, len)); 4560 4561 error = sysctl_wire_old_buffer(req, 0); 4562 if (error != 0) 4563 return (error); 4564 xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK); 4565 n = 0; 4566 mtx_lock(&mountlist_mtx); 4567 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 4568 if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) 4569 continue; 4570 MNT_ILOCK(mp); 4571 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 4572 if (n == len) 4573 break; 4574 vref(vp); 4575 xvn[n].xv_size = sizeof *xvn; 4576 xvn[n].xv_vnode = vp; 4577 xvn[n].xv_id = 0; /* XXX compat */ 4578 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field 4579 XV_COPY(usecount); 4580 XV_COPY(writecount); 4581 XV_COPY(holdcnt); 4582 XV_COPY(mount); 4583 XV_COPY(numoutput); 4584 XV_COPY(type); 4585 #undef XV_COPY 4586 xvn[n].xv_flag = vp->v_vflag; 4587 4588 switch (vp->v_type) { 4589 case VREG: 4590 case VDIR: 4591 case VLNK: 4592 break; 4593 case VBLK: 4594 case VCHR: 4595 if (vp->v_rdev == NULL) { 4596 vrele(vp); 4597 continue; 4598 } 4599 xvn[n].xv_dev = dev2udev(vp->v_rdev); 4600 break; 4601 case VSOCK: 4602 xvn[n].xv_socket = vp->v_socket; 4603 break; 4604 case VFIFO: 4605 xvn[n].xv_fifo = vp->v_fifoinfo; 4606 break; 4607 case VNON: 4608 case VBAD: 4609 default: 4610 /* shouldn't happen? */ 4611 vrele(vp); 4612 continue; 4613 } 4614 vrele(vp); 4615 ++n; 4616 } 4617 MNT_IUNLOCK(mp); 4618 mtx_lock(&mountlist_mtx); 4619 vfs_unbusy(mp); 4620 if (n == len) 4621 break; 4622 } 4623 mtx_unlock(&mountlist_mtx); 4624 4625 error = SYSCTL_OUT(req, xvn, n * sizeof *xvn); 4626 free(xvn, M_TEMP); 4627 return (error); 4628 } 4629 4630 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD | 4631 CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode", 4632 ""); 4633 #endif 4634 4635 static void 4636 unmount_or_warn(struct mount *mp) 4637 { 4638 int error; 4639 4640 error = dounmount(mp, MNT_FORCE, curthread); 4641 if (error != 0) { 4642 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname); 4643 if (error == EBUSY) 4644 printf("BUSY)\n"); 4645 else 4646 printf("%d)\n", error); 4647 } 4648 } 4649 4650 /* 4651 * Unmount all filesystems. The list is traversed in reverse order 4652 * of mounting to avoid dependencies. 4653 */ 4654 void 4655 vfs_unmountall(void) 4656 { 4657 struct mount *mp, *tmp; 4658 4659 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__); 4660 4661 /* 4662 * Since this only runs when rebooting, it is not interlocked. 4663 */ 4664 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) { 4665 vfs_ref(mp); 4666 4667 /* 4668 * Forcibly unmounting "/dev" before "/" would prevent clean 4669 * unmount of the latter. 4670 */ 4671 if (mp == rootdevmp) 4672 continue; 4673 4674 unmount_or_warn(mp); 4675 } 4676 4677 if (rootdevmp != NULL) 4678 unmount_or_warn(rootdevmp); 4679 } 4680 4681 static void 4682 vfs_deferred_inactive(struct vnode *vp, int lkflags) 4683 { 4684 4685 ASSERT_VI_LOCKED(vp, __func__); 4686 VNASSERT((vp->v_iflag & VI_DEFINACT) == 0, vp, ("VI_DEFINACT still set")); 4687 if ((vp->v_iflag & VI_OWEINACT) == 0) { 4688 vdropl(vp); 4689 return; 4690 } 4691 if (vn_lock(vp, lkflags) == 0) { 4692 VI_LOCK(vp); 4693 vinactive(vp); 4694 VOP_UNLOCK(vp); 4695 vdropl(vp); 4696 return; 4697 } 4698 vdefer_inactive_unlocked(vp); 4699 } 4700 4701 static int 4702 vfs_periodic_inactive_filter(struct vnode *vp, void *arg) 4703 { 4704 4705 return (vp->v_iflag & VI_DEFINACT); 4706 } 4707 4708 static void __noinline 4709 vfs_periodic_inactive(struct mount *mp, int flags) 4710 { 4711 struct vnode *vp, *mvp; 4712 int lkflags; 4713 4714 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 4715 if (flags != MNT_WAIT) 4716 lkflags |= LK_NOWAIT; 4717 4718 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) { 4719 if ((vp->v_iflag & VI_DEFINACT) == 0) { 4720 VI_UNLOCK(vp); 4721 continue; 4722 } 4723 vp->v_iflag &= ~VI_DEFINACT; 4724 vfs_deferred_inactive(vp, lkflags); 4725 } 4726 } 4727 4728 static inline bool 4729 vfs_want_msync(struct vnode *vp) 4730 { 4731 struct vm_object *obj; 4732 4733 /* 4734 * This test may be performed without any locks held. 4735 * We rely on vm_object's type stability. 4736 */ 4737 if (vp->v_vflag & VV_NOSYNC) 4738 return (false); 4739 obj = vp->v_object; 4740 return (obj != NULL && vm_object_mightbedirty(obj)); 4741 } 4742 4743 static int 4744 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused) 4745 { 4746 4747 if (vp->v_vflag & VV_NOSYNC) 4748 return (false); 4749 if (vp->v_iflag & VI_DEFINACT) 4750 return (true); 4751 return (vfs_want_msync(vp)); 4752 } 4753 4754 static void __noinline 4755 vfs_periodic_msync_inactive(struct mount *mp, int flags) 4756 { 4757 struct vnode *vp, *mvp; 4758 struct vm_object *obj; 4759 int lkflags, objflags; 4760 bool seen_defer; 4761 4762 lkflags = LK_EXCLUSIVE | LK_INTERLOCK; 4763 if (flags != MNT_WAIT) { 4764 lkflags |= LK_NOWAIT; 4765 objflags = OBJPC_NOSYNC; 4766 } else { 4767 objflags = OBJPC_SYNC; 4768 } 4769 4770 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) { 4771 seen_defer = false; 4772 if (vp->v_iflag & VI_DEFINACT) { 4773 vp->v_iflag &= ~VI_DEFINACT; 4774 seen_defer = true; 4775 } 4776 if (!vfs_want_msync(vp)) { 4777 if (seen_defer) 4778 vfs_deferred_inactive(vp, lkflags); 4779 else 4780 VI_UNLOCK(vp); 4781 continue; 4782 } 4783 if (vget(vp, lkflags) == 0) { 4784 obj = vp->v_object; 4785 if (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0) { 4786 VM_OBJECT_WLOCK(obj); 4787 vm_object_page_clean(obj, 0, 0, objflags); 4788 VM_OBJECT_WUNLOCK(obj); 4789 } 4790 vput(vp); 4791 if (seen_defer) 4792 vdrop(vp); 4793 } else { 4794 if (seen_defer) 4795 vdefer_inactive_unlocked(vp); 4796 } 4797 } 4798 } 4799 4800 void 4801 vfs_periodic(struct mount *mp, int flags) 4802 { 4803 4804 CTR2(KTR_VFS, "%s: mp %p", __func__, mp); 4805 4806 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0) 4807 vfs_periodic_inactive(mp, flags); 4808 else 4809 vfs_periodic_msync_inactive(mp, flags); 4810 } 4811 4812 static void 4813 destroy_vpollinfo_free(struct vpollinfo *vi) 4814 { 4815 4816 knlist_destroy(&vi->vpi_selinfo.si_note); 4817 mtx_destroy(&vi->vpi_lock); 4818 free(vi, M_VNODEPOLL); 4819 } 4820 4821 static void 4822 destroy_vpollinfo(struct vpollinfo *vi) 4823 { 4824 4825 knlist_clear(&vi->vpi_selinfo.si_note, 1); 4826 seldrain(&vi->vpi_selinfo); 4827 destroy_vpollinfo_free(vi); 4828 } 4829 4830 /* 4831 * Initialize per-vnode helper structure to hold poll-related state. 4832 */ 4833 void 4834 v_addpollinfo(struct vnode *vp) 4835 { 4836 struct vpollinfo *vi; 4837 4838 if (vp->v_pollinfo != NULL) 4839 return; 4840 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO); 4841 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF); 4842 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock, 4843 vfs_knlunlock, vfs_knl_assert_lock); 4844 VI_LOCK(vp); 4845 if (vp->v_pollinfo != NULL) { 4846 VI_UNLOCK(vp); 4847 destroy_vpollinfo_free(vi); 4848 return; 4849 } 4850 vp->v_pollinfo = vi; 4851 VI_UNLOCK(vp); 4852 } 4853 4854 /* 4855 * Record a process's interest in events which might happen to 4856 * a vnode. Because poll uses the historic select-style interface 4857 * internally, this routine serves as both the ``check for any 4858 * pending events'' and the ``record my interest in future events'' 4859 * functions. (These are done together, while the lock is held, 4860 * to avoid race conditions.) 4861 */ 4862 int 4863 vn_pollrecord(struct vnode *vp, struct thread *td, int events) 4864 { 4865 4866 v_addpollinfo(vp); 4867 mtx_lock(&vp->v_pollinfo->vpi_lock); 4868 if (vp->v_pollinfo->vpi_revents & events) { 4869 /* 4870 * This leaves events we are not interested 4871 * in available for the other process which 4872 * which presumably had requested them 4873 * (otherwise they would never have been 4874 * recorded). 4875 */ 4876 events &= vp->v_pollinfo->vpi_revents; 4877 vp->v_pollinfo->vpi_revents &= ~events; 4878 4879 mtx_unlock(&vp->v_pollinfo->vpi_lock); 4880 return (events); 4881 } 4882 vp->v_pollinfo->vpi_events |= events; 4883 selrecord(td, &vp->v_pollinfo->vpi_selinfo); 4884 mtx_unlock(&vp->v_pollinfo->vpi_lock); 4885 return (0); 4886 } 4887 4888 /* 4889 * Routine to create and manage a filesystem syncer vnode. 4890 */ 4891 #define sync_close ((int (*)(struct vop_close_args *))nullop) 4892 static int sync_fsync(struct vop_fsync_args *); 4893 static int sync_inactive(struct vop_inactive_args *); 4894 static int sync_reclaim(struct vop_reclaim_args *); 4895 4896 static struct vop_vector sync_vnodeops = { 4897 .vop_bypass = VOP_EOPNOTSUPP, 4898 .vop_close = sync_close, /* close */ 4899 .vop_fsync = sync_fsync, /* fsync */ 4900 .vop_inactive = sync_inactive, /* inactive */ 4901 .vop_need_inactive = vop_stdneed_inactive, /* need_inactive */ 4902 .vop_reclaim = sync_reclaim, /* reclaim */ 4903 .vop_lock1 = vop_stdlock, /* lock */ 4904 .vop_unlock = vop_stdunlock, /* unlock */ 4905 .vop_islocked = vop_stdislocked, /* islocked */ 4906 }; 4907 VFS_VOP_VECTOR_REGISTER(sync_vnodeops); 4908 4909 /* 4910 * Create a new filesystem syncer vnode for the specified mount point. 4911 */ 4912 void 4913 vfs_allocate_syncvnode(struct mount *mp) 4914 { 4915 struct vnode *vp; 4916 struct bufobj *bo; 4917 static long start, incr, next; 4918 int error; 4919 4920 /* Allocate a new vnode */ 4921 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp); 4922 if (error != 0) 4923 panic("vfs_allocate_syncvnode: getnewvnode() failed"); 4924 vp->v_type = VNON; 4925 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 4926 vp->v_vflag |= VV_FORCEINSMQ; 4927 error = insmntque(vp, mp); 4928 if (error != 0) 4929 panic("vfs_allocate_syncvnode: insmntque() failed"); 4930 vp->v_vflag &= ~VV_FORCEINSMQ; 4931 VOP_UNLOCK(vp); 4932 /* 4933 * Place the vnode onto the syncer worklist. We attempt to 4934 * scatter them about on the list so that they will go off 4935 * at evenly distributed times even if all the filesystems 4936 * are mounted at once. 4937 */ 4938 next += incr; 4939 if (next == 0 || next > syncer_maxdelay) { 4940 start /= 2; 4941 incr /= 2; 4942 if (start == 0) { 4943 start = syncer_maxdelay / 2; 4944 incr = syncer_maxdelay; 4945 } 4946 next = start; 4947 } 4948 bo = &vp->v_bufobj; 4949 BO_LOCK(bo); 4950 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0); 4951 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */ 4952 mtx_lock(&sync_mtx); 4953 sync_vnode_count++; 4954 if (mp->mnt_syncer == NULL) { 4955 mp->mnt_syncer = vp; 4956 vp = NULL; 4957 } 4958 mtx_unlock(&sync_mtx); 4959 BO_UNLOCK(bo); 4960 if (vp != NULL) { 4961 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 4962 vgone(vp); 4963 vput(vp); 4964 } 4965 } 4966 4967 void 4968 vfs_deallocate_syncvnode(struct mount *mp) 4969 { 4970 struct vnode *vp; 4971 4972 mtx_lock(&sync_mtx); 4973 vp = mp->mnt_syncer; 4974 if (vp != NULL) 4975 mp->mnt_syncer = NULL; 4976 mtx_unlock(&sync_mtx); 4977 if (vp != NULL) 4978 vrele(vp); 4979 } 4980 4981 /* 4982 * Do a lazy sync of the filesystem. 4983 */ 4984 static int 4985 sync_fsync(struct vop_fsync_args *ap) 4986 { 4987 struct vnode *syncvp = ap->a_vp; 4988 struct mount *mp = syncvp->v_mount; 4989 int error, save; 4990 struct bufobj *bo; 4991 4992 /* 4993 * We only need to do something if this is a lazy evaluation. 4994 */ 4995 if (ap->a_waitfor != MNT_LAZY) 4996 return (0); 4997 4998 /* 4999 * Move ourselves to the back of the sync list. 5000 */ 5001 bo = &syncvp->v_bufobj; 5002 BO_LOCK(bo); 5003 vn_syncer_add_to_worklist(bo, syncdelay); 5004 BO_UNLOCK(bo); 5005 5006 /* 5007 * Walk the list of vnodes pushing all that are dirty and 5008 * not already on the sync list. 5009 */ 5010 if (vfs_busy(mp, MBF_NOWAIT) != 0) 5011 return (0); 5012 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 5013 vfs_unbusy(mp); 5014 return (0); 5015 } 5016 save = curthread_pflags_set(TDP_SYNCIO); 5017 /* 5018 * The filesystem at hand may be idle with free vnodes stored in the 5019 * batch. Return them instead of letting them stay there indefinitely. 5020 */ 5021 vfs_periodic(mp, MNT_NOWAIT); 5022 error = VFS_SYNC(mp, MNT_LAZY); 5023 curthread_pflags_restore(save); 5024 vn_finished_write(mp); 5025 vfs_unbusy(mp); 5026 return (error); 5027 } 5028 5029 /* 5030 * The syncer vnode is no referenced. 5031 */ 5032 static int 5033 sync_inactive(struct vop_inactive_args *ap) 5034 { 5035 5036 vgone(ap->a_vp); 5037 return (0); 5038 } 5039 5040 /* 5041 * The syncer vnode is no longer needed and is being decommissioned. 5042 * 5043 * Modifications to the worklist must be protected by sync_mtx. 5044 */ 5045 static int 5046 sync_reclaim(struct vop_reclaim_args *ap) 5047 { 5048 struct vnode *vp = ap->a_vp; 5049 struct bufobj *bo; 5050 5051 bo = &vp->v_bufobj; 5052 BO_LOCK(bo); 5053 mtx_lock(&sync_mtx); 5054 if (vp->v_mount->mnt_syncer == vp) 5055 vp->v_mount->mnt_syncer = NULL; 5056 if (bo->bo_flag & BO_ONWORKLST) { 5057 LIST_REMOVE(bo, bo_synclist); 5058 syncer_worklist_len--; 5059 sync_vnode_count--; 5060 bo->bo_flag &= ~BO_ONWORKLST; 5061 } 5062 mtx_unlock(&sync_mtx); 5063 BO_UNLOCK(bo); 5064 5065 return (0); 5066 } 5067 5068 int 5069 vn_need_pageq_flush(struct vnode *vp) 5070 { 5071 struct vm_object *obj; 5072 int need; 5073 5074 MPASS(mtx_owned(VI_MTX(vp))); 5075 need = 0; 5076 if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 && 5077 vm_object_mightbedirty(obj)) 5078 need = 1; 5079 return (need); 5080 } 5081 5082 /* 5083 * Check if vnode represents a disk device 5084 */ 5085 bool 5086 vn_isdisk_error(struct vnode *vp, int *errp) 5087 { 5088 int error; 5089 5090 if (vp->v_type != VCHR) { 5091 error = ENOTBLK; 5092 goto out; 5093 } 5094 error = 0; 5095 dev_lock(); 5096 if (vp->v_rdev == NULL) 5097 error = ENXIO; 5098 else if (vp->v_rdev->si_devsw == NULL) 5099 error = ENXIO; 5100 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK)) 5101 error = ENOTBLK; 5102 dev_unlock(); 5103 out: 5104 *errp = error; 5105 return (error == 0); 5106 } 5107 5108 bool 5109 vn_isdisk(struct vnode *vp) 5110 { 5111 int error; 5112 5113 return (vn_isdisk_error(vp, &error)); 5114 } 5115 5116 /* 5117 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see 5118 * the comment above cache_fplookup for details. 5119 */ 5120 int 5121 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred) 5122 { 5123 int error; 5124 5125 VFS_SMR_ASSERT_ENTERED(); 5126 5127 /* Check the owner. */ 5128 if (cred->cr_uid == file_uid) { 5129 if (file_mode & S_IXUSR) 5130 return (0); 5131 goto out_error; 5132 } 5133 5134 /* Otherwise, check the groups (first match) */ 5135 if (groupmember(file_gid, cred)) { 5136 if (file_mode & S_IXGRP) 5137 return (0); 5138 goto out_error; 5139 } 5140 5141 /* Otherwise, check everyone else. */ 5142 if (file_mode & S_IXOTH) 5143 return (0); 5144 out_error: 5145 /* 5146 * Permission check failed, but it is possible denial will get overwritten 5147 * (e.g., when root is traversing through a 700 directory owned by someone 5148 * else). 5149 * 5150 * vaccess() calls priv_check_cred which in turn can descent into MAC 5151 * modules overriding this result. It's quite unclear what semantics 5152 * are allowed for them to operate, thus for safety we don't call them 5153 * from within the SMR section. This also means if any such modules 5154 * are present, we have to let the regular lookup decide. 5155 */ 5156 error = priv_check_cred_vfs_lookup_nomac(cred); 5157 switch (error) { 5158 case 0: 5159 return (0); 5160 case EAGAIN: 5161 /* 5162 * MAC modules present. 5163 */ 5164 return (EAGAIN); 5165 case EPERM: 5166 return (EACCES); 5167 default: 5168 return (error); 5169 } 5170 } 5171 5172 /* 5173 * Common filesystem object access control check routine. Accepts a 5174 * vnode's type, "mode", uid and gid, requested access mode, and credentials. 5175 * Returns 0 on success, or an errno on failure. 5176 */ 5177 int 5178 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid, 5179 accmode_t accmode, struct ucred *cred) 5180 { 5181 accmode_t dac_granted; 5182 accmode_t priv_granted; 5183 5184 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0, 5185 ("invalid bit in accmode")); 5186 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE), 5187 ("VAPPEND without VWRITE")); 5188 5189 /* 5190 * Look for a normal, non-privileged way to access the file/directory 5191 * as requested. If it exists, go with that. 5192 */ 5193 5194 dac_granted = 0; 5195 5196 /* Check the owner. */ 5197 if (cred->cr_uid == file_uid) { 5198 dac_granted |= VADMIN; 5199 if (file_mode & S_IXUSR) 5200 dac_granted |= VEXEC; 5201 if (file_mode & S_IRUSR) 5202 dac_granted |= VREAD; 5203 if (file_mode & S_IWUSR) 5204 dac_granted |= (VWRITE | VAPPEND); 5205 5206 if ((accmode & dac_granted) == accmode) 5207 return (0); 5208 5209 goto privcheck; 5210 } 5211 5212 /* Otherwise, check the groups (first match) */ 5213 if (groupmember(file_gid, cred)) { 5214 if (file_mode & S_IXGRP) 5215 dac_granted |= VEXEC; 5216 if (file_mode & S_IRGRP) 5217 dac_granted |= VREAD; 5218 if (file_mode & S_IWGRP) 5219 dac_granted |= (VWRITE | VAPPEND); 5220 5221 if ((accmode & dac_granted) == accmode) 5222 return (0); 5223 5224 goto privcheck; 5225 } 5226 5227 /* Otherwise, check everyone else. */ 5228 if (file_mode & S_IXOTH) 5229 dac_granted |= VEXEC; 5230 if (file_mode & S_IROTH) 5231 dac_granted |= VREAD; 5232 if (file_mode & S_IWOTH) 5233 dac_granted |= (VWRITE | VAPPEND); 5234 if ((accmode & dac_granted) == accmode) 5235 return (0); 5236 5237 privcheck: 5238 /* 5239 * Build a privilege mask to determine if the set of privileges 5240 * satisfies the requirements when combined with the granted mask 5241 * from above. For each privilege, if the privilege is required, 5242 * bitwise or the request type onto the priv_granted mask. 5243 */ 5244 priv_granted = 0; 5245 5246 if (type == VDIR) { 5247 /* 5248 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC 5249 * requests, instead of PRIV_VFS_EXEC. 5250 */ 5251 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5252 !priv_check_cred(cred, PRIV_VFS_LOOKUP)) 5253 priv_granted |= VEXEC; 5254 } else { 5255 /* 5256 * Ensure that at least one execute bit is on. Otherwise, 5257 * a privileged user will always succeed, and we don't want 5258 * this to happen unless the file really is executable. 5259 */ 5260 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) && 5261 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 && 5262 !priv_check_cred(cred, PRIV_VFS_EXEC)) 5263 priv_granted |= VEXEC; 5264 } 5265 5266 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) && 5267 !priv_check_cred(cred, PRIV_VFS_READ)) 5268 priv_granted |= VREAD; 5269 5270 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) && 5271 !priv_check_cred(cred, PRIV_VFS_WRITE)) 5272 priv_granted |= (VWRITE | VAPPEND); 5273 5274 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) && 5275 !priv_check_cred(cred, PRIV_VFS_ADMIN)) 5276 priv_granted |= VADMIN; 5277 5278 if ((accmode & (priv_granted | dac_granted)) == accmode) { 5279 return (0); 5280 } 5281 5282 return ((accmode & VADMIN) ? EPERM : EACCES); 5283 } 5284 5285 /* 5286 * Credential check based on process requesting service, and per-attribute 5287 * permissions. 5288 */ 5289 int 5290 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred, 5291 struct thread *td, accmode_t accmode) 5292 { 5293 5294 /* 5295 * Kernel-invoked always succeeds. 5296 */ 5297 if (cred == NOCRED) 5298 return (0); 5299 5300 /* 5301 * Do not allow privileged processes in jail to directly manipulate 5302 * system attributes. 5303 */ 5304 switch (attrnamespace) { 5305 case EXTATTR_NAMESPACE_SYSTEM: 5306 /* Potentially should be: return (EPERM); */ 5307 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM)); 5308 case EXTATTR_NAMESPACE_USER: 5309 return (VOP_ACCESS(vp, accmode, cred, td)); 5310 default: 5311 return (EPERM); 5312 } 5313 } 5314 5315 #ifdef DEBUG_VFS_LOCKS 5316 /* 5317 * This only exists to suppress warnings from unlocked specfs accesses. It is 5318 * no longer ok to have an unlocked VFS. 5319 */ 5320 #define IGNORE_LOCK(vp) (KERNEL_PANICKED() || (vp) == NULL || \ 5321 (vp)->v_type == VCHR || (vp)->v_type == VBAD) 5322 5323 int vfs_badlock_ddb = 1; /* Drop into debugger on violation. */ 5324 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, 5325 "Drop into debugger on lock violation"); 5326 5327 int vfs_badlock_mutex = 1; /* Check for interlock across VOPs. */ 5328 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 5329 0, "Check for interlock across VOPs"); 5330 5331 int vfs_badlock_print = 1; /* Print lock violations. */ 5332 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 5333 0, "Print lock violations"); 5334 5335 int vfs_badlock_vnode = 1; /* Print vnode details on lock violations. */ 5336 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode, 5337 0, "Print vnode details on lock violations"); 5338 5339 #ifdef KDB 5340 int vfs_badlock_backtrace = 1; /* Print backtrace at lock violations. */ 5341 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, 5342 &vfs_badlock_backtrace, 0, "Print backtrace at lock violations"); 5343 #endif 5344 5345 static void 5346 vfs_badlock(const char *msg, const char *str, struct vnode *vp) 5347 { 5348 5349 #ifdef KDB 5350 if (vfs_badlock_backtrace) 5351 kdb_backtrace(); 5352 #endif 5353 if (vfs_badlock_vnode) 5354 vn_printf(vp, "vnode "); 5355 if (vfs_badlock_print) 5356 printf("%s: %p %s\n", str, (void *)vp, msg); 5357 if (vfs_badlock_ddb) 5358 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5359 } 5360 5361 void 5362 assert_vi_locked(struct vnode *vp, const char *str) 5363 { 5364 5365 if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp))) 5366 vfs_badlock("interlock is not locked but should be", str, vp); 5367 } 5368 5369 void 5370 assert_vi_unlocked(struct vnode *vp, const char *str) 5371 { 5372 5373 if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp))) 5374 vfs_badlock("interlock is locked but should not be", str, vp); 5375 } 5376 5377 void 5378 assert_vop_locked(struct vnode *vp, const char *str) 5379 { 5380 int locked; 5381 5382 if (!IGNORE_LOCK(vp)) { 5383 locked = VOP_ISLOCKED(vp); 5384 if (locked == 0 || locked == LK_EXCLOTHER) 5385 vfs_badlock("is not locked but should be", str, vp); 5386 } 5387 } 5388 5389 void 5390 assert_vop_unlocked(struct vnode *vp, const char *str) 5391 { 5392 5393 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE) 5394 vfs_badlock("is locked but should not be", str, vp); 5395 } 5396 5397 void 5398 assert_vop_elocked(struct vnode *vp, const char *str) 5399 { 5400 5401 if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) 5402 vfs_badlock("is not exclusive locked but should be", str, vp); 5403 } 5404 #endif /* DEBUG_VFS_LOCKS */ 5405 5406 void 5407 vop_rename_fail(struct vop_rename_args *ap) 5408 { 5409 5410 if (ap->a_tvp != NULL) 5411 vput(ap->a_tvp); 5412 if (ap->a_tdvp == ap->a_tvp) 5413 vrele(ap->a_tdvp); 5414 else 5415 vput(ap->a_tdvp); 5416 vrele(ap->a_fdvp); 5417 vrele(ap->a_fvp); 5418 } 5419 5420 void 5421 vop_rename_pre(void *ap) 5422 { 5423 struct vop_rename_args *a = ap; 5424 5425 #ifdef DEBUG_VFS_LOCKS 5426 if (a->a_tvp) 5427 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME"); 5428 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME"); 5429 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME"); 5430 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME"); 5431 5432 /* Check the source (from). */ 5433 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock && 5434 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock)) 5435 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked"); 5436 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock) 5437 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked"); 5438 5439 /* Check the target. */ 5440 if (a->a_tvp) 5441 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked"); 5442 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked"); 5443 #endif 5444 /* 5445 * It may be tempting to add vn_seqc_write_begin/end calls here and 5446 * in vop_rename_post but that's not going to work out since some 5447 * filesystems relookup vnodes mid-rename. This is probably a bug. 5448 * 5449 * For now filesystems are expected to do the relevant calls after they 5450 * decide what vnodes to operate on. 5451 */ 5452 if (a->a_tdvp != a->a_fdvp) 5453 vhold(a->a_fdvp); 5454 if (a->a_tvp != a->a_fvp) 5455 vhold(a->a_fvp); 5456 vhold(a->a_tdvp); 5457 if (a->a_tvp) 5458 vhold(a->a_tvp); 5459 } 5460 5461 #ifdef DEBUG_VFS_LOCKS 5462 void 5463 vop_fplookup_vexec_debugpre(void *ap __unused) 5464 { 5465 5466 VFS_SMR_ASSERT_ENTERED(); 5467 } 5468 5469 void 5470 vop_fplookup_vexec_debugpost(void *ap __unused, int rc __unused) 5471 { 5472 5473 VFS_SMR_ASSERT_ENTERED(); 5474 } 5475 5476 void 5477 vop_fplookup_symlink_debugpre(void *ap __unused) 5478 { 5479 5480 VFS_SMR_ASSERT_ENTERED(); 5481 } 5482 5483 void 5484 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused) 5485 { 5486 5487 VFS_SMR_ASSERT_ENTERED(); 5488 } 5489 void 5490 vop_strategy_debugpre(void *ap) 5491 { 5492 struct vop_strategy_args *a; 5493 struct buf *bp; 5494 5495 a = ap; 5496 bp = a->a_bp; 5497 5498 /* 5499 * Cluster ops lock their component buffers but not the IO container. 5500 */ 5501 if ((bp->b_flags & B_CLUSTER) != 0) 5502 return; 5503 5504 if (!KERNEL_PANICKED() && !BUF_ISLOCKED(bp)) { 5505 if (vfs_badlock_print) 5506 printf( 5507 "VOP_STRATEGY: bp is not locked but should be\n"); 5508 if (vfs_badlock_ddb) 5509 kdb_enter(KDB_WHY_VFSLOCK, "lock violation"); 5510 } 5511 } 5512 5513 void 5514 vop_lock_debugpre(void *ap) 5515 { 5516 struct vop_lock1_args *a = ap; 5517 5518 if ((a->a_flags & LK_INTERLOCK) == 0) 5519 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5520 else 5521 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK"); 5522 } 5523 5524 void 5525 vop_lock_debugpost(void *ap, int rc) 5526 { 5527 struct vop_lock1_args *a = ap; 5528 5529 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK"); 5530 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0) 5531 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK"); 5532 } 5533 5534 void 5535 vop_unlock_debugpre(void *ap) 5536 { 5537 struct vop_unlock_args *a = ap; 5538 5539 ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK"); 5540 } 5541 5542 void 5543 vop_need_inactive_debugpre(void *ap) 5544 { 5545 struct vop_need_inactive_args *a = ap; 5546 5547 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 5548 } 5549 5550 void 5551 vop_need_inactive_debugpost(void *ap, int rc) 5552 { 5553 struct vop_need_inactive_args *a = ap; 5554 5555 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE"); 5556 } 5557 #endif 5558 5559 void 5560 vop_create_pre(void *ap) 5561 { 5562 struct vop_create_args *a; 5563 struct vnode *dvp; 5564 5565 a = ap; 5566 dvp = a->a_dvp; 5567 vn_seqc_write_begin(dvp); 5568 } 5569 5570 void 5571 vop_create_post(void *ap, int rc) 5572 { 5573 struct vop_create_args *a; 5574 struct vnode *dvp; 5575 5576 a = ap; 5577 dvp = a->a_dvp; 5578 vn_seqc_write_end(dvp); 5579 if (!rc) 5580 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5581 } 5582 5583 void 5584 vop_whiteout_pre(void *ap) 5585 { 5586 struct vop_whiteout_args *a; 5587 struct vnode *dvp; 5588 5589 a = ap; 5590 dvp = a->a_dvp; 5591 vn_seqc_write_begin(dvp); 5592 } 5593 5594 void 5595 vop_whiteout_post(void *ap, int rc) 5596 { 5597 struct vop_whiteout_args *a; 5598 struct vnode *dvp; 5599 5600 a = ap; 5601 dvp = a->a_dvp; 5602 vn_seqc_write_end(dvp); 5603 } 5604 5605 void 5606 vop_deleteextattr_pre(void *ap) 5607 { 5608 struct vop_deleteextattr_args *a; 5609 struct vnode *vp; 5610 5611 a = ap; 5612 vp = a->a_vp; 5613 vn_seqc_write_begin(vp); 5614 } 5615 5616 void 5617 vop_deleteextattr_post(void *ap, int rc) 5618 { 5619 struct vop_deleteextattr_args *a; 5620 struct vnode *vp; 5621 5622 a = ap; 5623 vp = a->a_vp; 5624 vn_seqc_write_end(vp); 5625 if (!rc) 5626 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB); 5627 } 5628 5629 void 5630 vop_link_pre(void *ap) 5631 { 5632 struct vop_link_args *a; 5633 struct vnode *vp, *tdvp; 5634 5635 a = ap; 5636 vp = a->a_vp; 5637 tdvp = a->a_tdvp; 5638 vn_seqc_write_begin(vp); 5639 vn_seqc_write_begin(tdvp); 5640 } 5641 5642 void 5643 vop_link_post(void *ap, int rc) 5644 { 5645 struct vop_link_args *a; 5646 struct vnode *vp, *tdvp; 5647 5648 a = ap; 5649 vp = a->a_vp; 5650 tdvp = a->a_tdvp; 5651 vn_seqc_write_end(vp); 5652 vn_seqc_write_end(tdvp); 5653 if (!rc) { 5654 VFS_KNOTE_LOCKED(vp, NOTE_LINK); 5655 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE); 5656 } 5657 } 5658 5659 void 5660 vop_mkdir_pre(void *ap) 5661 { 5662 struct vop_mkdir_args *a; 5663 struct vnode *dvp; 5664 5665 a = ap; 5666 dvp = a->a_dvp; 5667 vn_seqc_write_begin(dvp); 5668 } 5669 5670 void 5671 vop_mkdir_post(void *ap, int rc) 5672 { 5673 struct vop_mkdir_args *a; 5674 struct vnode *dvp; 5675 5676 a = ap; 5677 dvp = a->a_dvp; 5678 vn_seqc_write_end(dvp); 5679 if (!rc) 5680 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 5681 } 5682 5683 #ifdef DEBUG_VFS_LOCKS 5684 void 5685 vop_mkdir_debugpost(void *ap, int rc) 5686 { 5687 struct vop_mkdir_args *a; 5688 5689 a = ap; 5690 if (!rc) 5691 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp); 5692 } 5693 #endif 5694 5695 void 5696 vop_mknod_pre(void *ap) 5697 { 5698 struct vop_mknod_args *a; 5699 struct vnode *dvp; 5700 5701 a = ap; 5702 dvp = a->a_dvp; 5703 vn_seqc_write_begin(dvp); 5704 } 5705 5706 void 5707 vop_mknod_post(void *ap, int rc) 5708 { 5709 struct vop_mknod_args *a; 5710 struct vnode *dvp; 5711 5712 a = ap; 5713 dvp = a->a_dvp; 5714 vn_seqc_write_end(dvp); 5715 if (!rc) 5716 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5717 } 5718 5719 void 5720 vop_reclaim_post(void *ap, int rc) 5721 { 5722 struct vop_reclaim_args *a; 5723 struct vnode *vp; 5724 5725 a = ap; 5726 vp = a->a_vp; 5727 ASSERT_VOP_IN_SEQC(vp); 5728 if (!rc) 5729 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE); 5730 } 5731 5732 void 5733 vop_remove_pre(void *ap) 5734 { 5735 struct vop_remove_args *a; 5736 struct vnode *dvp, *vp; 5737 5738 a = ap; 5739 dvp = a->a_dvp; 5740 vp = a->a_vp; 5741 vn_seqc_write_begin(dvp); 5742 vn_seqc_write_begin(vp); 5743 } 5744 5745 void 5746 vop_remove_post(void *ap, int rc) 5747 { 5748 struct vop_remove_args *a; 5749 struct vnode *dvp, *vp; 5750 5751 a = ap; 5752 dvp = a->a_dvp; 5753 vp = a->a_vp; 5754 vn_seqc_write_end(dvp); 5755 vn_seqc_write_end(vp); 5756 if (!rc) { 5757 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5758 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 5759 } 5760 } 5761 5762 void 5763 vop_rename_post(void *ap, int rc) 5764 { 5765 struct vop_rename_args *a = ap; 5766 long hint; 5767 5768 if (!rc) { 5769 hint = NOTE_WRITE; 5770 if (a->a_fdvp == a->a_tdvp) { 5771 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR) 5772 hint |= NOTE_LINK; 5773 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 5774 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 5775 } else { 5776 hint |= NOTE_EXTEND; 5777 if (a->a_fvp->v_type == VDIR) 5778 hint |= NOTE_LINK; 5779 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint); 5780 5781 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL && 5782 a->a_tvp->v_type == VDIR) 5783 hint &= ~NOTE_LINK; 5784 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint); 5785 } 5786 5787 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME); 5788 if (a->a_tvp) 5789 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE); 5790 } 5791 if (a->a_tdvp != a->a_fdvp) 5792 vdrop(a->a_fdvp); 5793 if (a->a_tvp != a->a_fvp) 5794 vdrop(a->a_fvp); 5795 vdrop(a->a_tdvp); 5796 if (a->a_tvp) 5797 vdrop(a->a_tvp); 5798 } 5799 5800 void 5801 vop_rmdir_pre(void *ap) 5802 { 5803 struct vop_rmdir_args *a; 5804 struct vnode *dvp, *vp; 5805 5806 a = ap; 5807 dvp = a->a_dvp; 5808 vp = a->a_vp; 5809 vn_seqc_write_begin(dvp); 5810 vn_seqc_write_begin(vp); 5811 } 5812 5813 void 5814 vop_rmdir_post(void *ap, int rc) 5815 { 5816 struct vop_rmdir_args *a; 5817 struct vnode *dvp, *vp; 5818 5819 a = ap; 5820 dvp = a->a_dvp; 5821 vp = a->a_vp; 5822 vn_seqc_write_end(dvp); 5823 vn_seqc_write_end(vp); 5824 if (!rc) { 5825 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK); 5826 VFS_KNOTE_LOCKED(vp, NOTE_DELETE); 5827 } 5828 } 5829 5830 void 5831 vop_setattr_pre(void *ap) 5832 { 5833 struct vop_setattr_args *a; 5834 struct vnode *vp; 5835 5836 a = ap; 5837 vp = a->a_vp; 5838 vn_seqc_write_begin(vp); 5839 } 5840 5841 void 5842 vop_setattr_post(void *ap, int rc) 5843 { 5844 struct vop_setattr_args *a; 5845 struct vnode *vp; 5846 5847 a = ap; 5848 vp = a->a_vp; 5849 vn_seqc_write_end(vp); 5850 if (!rc) 5851 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 5852 } 5853 5854 void 5855 vop_setacl_pre(void *ap) 5856 { 5857 struct vop_setacl_args *a; 5858 struct vnode *vp; 5859 5860 a = ap; 5861 vp = a->a_vp; 5862 vn_seqc_write_begin(vp); 5863 } 5864 5865 void 5866 vop_setacl_post(void *ap, int rc __unused) 5867 { 5868 struct vop_setacl_args *a; 5869 struct vnode *vp; 5870 5871 a = ap; 5872 vp = a->a_vp; 5873 vn_seqc_write_end(vp); 5874 } 5875 5876 void 5877 vop_setextattr_pre(void *ap) 5878 { 5879 struct vop_setextattr_args *a; 5880 struct vnode *vp; 5881 5882 a = ap; 5883 vp = a->a_vp; 5884 vn_seqc_write_begin(vp); 5885 } 5886 5887 void 5888 vop_setextattr_post(void *ap, int rc) 5889 { 5890 struct vop_setextattr_args *a; 5891 struct vnode *vp; 5892 5893 a = ap; 5894 vp = a->a_vp; 5895 vn_seqc_write_end(vp); 5896 if (!rc) 5897 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB); 5898 } 5899 5900 void 5901 vop_symlink_pre(void *ap) 5902 { 5903 struct vop_symlink_args *a; 5904 struct vnode *dvp; 5905 5906 a = ap; 5907 dvp = a->a_dvp; 5908 vn_seqc_write_begin(dvp); 5909 } 5910 5911 void 5912 vop_symlink_post(void *ap, int rc) 5913 { 5914 struct vop_symlink_args *a; 5915 struct vnode *dvp; 5916 5917 a = ap; 5918 dvp = a->a_dvp; 5919 vn_seqc_write_end(dvp); 5920 if (!rc) 5921 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE); 5922 } 5923 5924 void 5925 vop_open_post(void *ap, int rc) 5926 { 5927 struct vop_open_args *a = ap; 5928 5929 if (!rc) 5930 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN); 5931 } 5932 5933 void 5934 vop_close_post(void *ap, int rc) 5935 { 5936 struct vop_close_args *a = ap; 5937 5938 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */ 5939 !VN_IS_DOOMED(a->a_vp))) { 5940 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ? 5941 NOTE_CLOSE_WRITE : NOTE_CLOSE); 5942 } 5943 } 5944 5945 void 5946 vop_read_post(void *ap, int rc) 5947 { 5948 struct vop_read_args *a = ap; 5949 5950 if (!rc) 5951 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 5952 } 5953 5954 void 5955 vop_read_pgcache_post(void *ap, int rc) 5956 { 5957 struct vop_read_pgcache_args *a = ap; 5958 5959 if (!rc) 5960 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ); 5961 } 5962 5963 void 5964 vop_readdir_post(void *ap, int rc) 5965 { 5966 struct vop_readdir_args *a = ap; 5967 5968 if (!rc) 5969 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ); 5970 } 5971 5972 static struct knlist fs_knlist; 5973 5974 static void 5975 vfs_event_init(void *arg) 5976 { 5977 knlist_init_mtx(&fs_knlist, NULL); 5978 } 5979 /* XXX - correct order? */ 5980 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL); 5981 5982 void 5983 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused) 5984 { 5985 5986 KNOTE_UNLOCKED(&fs_knlist, event); 5987 } 5988 5989 static int filt_fsattach(struct knote *kn); 5990 static void filt_fsdetach(struct knote *kn); 5991 static int filt_fsevent(struct knote *kn, long hint); 5992 5993 struct filterops fs_filtops = { 5994 .f_isfd = 0, 5995 .f_attach = filt_fsattach, 5996 .f_detach = filt_fsdetach, 5997 .f_event = filt_fsevent 5998 }; 5999 6000 static int 6001 filt_fsattach(struct knote *kn) 6002 { 6003 6004 kn->kn_flags |= EV_CLEAR; 6005 knlist_add(&fs_knlist, kn, 0); 6006 return (0); 6007 } 6008 6009 static void 6010 filt_fsdetach(struct knote *kn) 6011 { 6012 6013 knlist_remove(&fs_knlist, kn, 0); 6014 } 6015 6016 static int 6017 filt_fsevent(struct knote *kn, long hint) 6018 { 6019 6020 kn->kn_fflags |= hint; 6021 return (kn->kn_fflags != 0); 6022 } 6023 6024 static int 6025 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS) 6026 { 6027 struct vfsidctl vc; 6028 int error; 6029 struct mount *mp; 6030 6031 error = SYSCTL_IN(req, &vc, sizeof(vc)); 6032 if (error) 6033 return (error); 6034 if (vc.vc_vers != VFS_CTL_VERS1) 6035 return (EINVAL); 6036 mp = vfs_getvfs(&vc.vc_fsid); 6037 if (mp == NULL) 6038 return (ENOENT); 6039 /* ensure that a specific sysctl goes to the right filesystem. */ 6040 if (strcmp(vc.vc_fstypename, "*") != 0 && 6041 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) { 6042 vfs_rel(mp); 6043 return (EINVAL); 6044 } 6045 VCTLTOREQ(&vc, req); 6046 error = VFS_SYSCTL(mp, vc.vc_op, req); 6047 vfs_rel(mp); 6048 return (error); 6049 } 6050 6051 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR, 6052 NULL, 0, sysctl_vfs_ctl, "", 6053 "Sysctl by fsid"); 6054 6055 /* 6056 * Function to initialize a va_filerev field sensibly. 6057 * XXX: Wouldn't a random number make a lot more sense ?? 6058 */ 6059 u_quad_t 6060 init_va_filerev(void) 6061 { 6062 struct bintime bt; 6063 6064 getbinuptime(&bt); 6065 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL)); 6066 } 6067 6068 static int filt_vfsread(struct knote *kn, long hint); 6069 static int filt_vfswrite(struct knote *kn, long hint); 6070 static int filt_vfsvnode(struct knote *kn, long hint); 6071 static void filt_vfsdetach(struct knote *kn); 6072 static struct filterops vfsread_filtops = { 6073 .f_isfd = 1, 6074 .f_detach = filt_vfsdetach, 6075 .f_event = filt_vfsread 6076 }; 6077 static struct filterops vfswrite_filtops = { 6078 .f_isfd = 1, 6079 .f_detach = filt_vfsdetach, 6080 .f_event = filt_vfswrite 6081 }; 6082 static struct filterops vfsvnode_filtops = { 6083 .f_isfd = 1, 6084 .f_detach = filt_vfsdetach, 6085 .f_event = filt_vfsvnode 6086 }; 6087 6088 static void 6089 vfs_knllock(void *arg) 6090 { 6091 struct vnode *vp = arg; 6092 6093 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 6094 } 6095 6096 static void 6097 vfs_knlunlock(void *arg) 6098 { 6099 struct vnode *vp = arg; 6100 6101 VOP_UNLOCK(vp); 6102 } 6103 6104 static void 6105 vfs_knl_assert_lock(void *arg, int what) 6106 { 6107 #ifdef DEBUG_VFS_LOCKS 6108 struct vnode *vp = arg; 6109 6110 if (what == LA_LOCKED) 6111 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked"); 6112 else 6113 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked"); 6114 #endif 6115 } 6116 6117 int 6118 vfs_kqfilter(struct vop_kqfilter_args *ap) 6119 { 6120 struct vnode *vp = ap->a_vp; 6121 struct knote *kn = ap->a_kn; 6122 struct knlist *knl; 6123 6124 switch (kn->kn_filter) { 6125 case EVFILT_READ: 6126 kn->kn_fop = &vfsread_filtops; 6127 break; 6128 case EVFILT_WRITE: 6129 kn->kn_fop = &vfswrite_filtops; 6130 break; 6131 case EVFILT_VNODE: 6132 kn->kn_fop = &vfsvnode_filtops; 6133 break; 6134 default: 6135 return (EINVAL); 6136 } 6137 6138 kn->kn_hook = (caddr_t)vp; 6139 6140 v_addpollinfo(vp); 6141 if (vp->v_pollinfo == NULL) 6142 return (ENOMEM); 6143 knl = &vp->v_pollinfo->vpi_selinfo.si_note; 6144 vhold(vp); 6145 knlist_add(knl, kn, 0); 6146 6147 return (0); 6148 } 6149 6150 /* 6151 * Detach knote from vnode 6152 */ 6153 static void 6154 filt_vfsdetach(struct knote *kn) 6155 { 6156 struct vnode *vp = (struct vnode *)kn->kn_hook; 6157 6158 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo")); 6159 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0); 6160 vdrop(vp); 6161 } 6162 6163 /*ARGSUSED*/ 6164 static int 6165 filt_vfsread(struct knote *kn, long hint) 6166 { 6167 struct vnode *vp = (struct vnode *)kn->kn_hook; 6168 struct vattr va; 6169 int res; 6170 6171 /* 6172 * filesystem is gone, so set the EOF flag and schedule 6173 * the knote for deletion. 6174 */ 6175 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6176 VI_LOCK(vp); 6177 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6178 VI_UNLOCK(vp); 6179 return (1); 6180 } 6181 6182 if (VOP_GETATTR(vp, &va, curthread->td_ucred)) 6183 return (0); 6184 6185 VI_LOCK(vp); 6186 kn->kn_data = va.va_size - kn->kn_fp->f_offset; 6187 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0; 6188 VI_UNLOCK(vp); 6189 return (res); 6190 } 6191 6192 /*ARGSUSED*/ 6193 static int 6194 filt_vfswrite(struct knote *kn, long hint) 6195 { 6196 struct vnode *vp = (struct vnode *)kn->kn_hook; 6197 6198 VI_LOCK(vp); 6199 6200 /* 6201 * filesystem is gone, so set the EOF flag and schedule 6202 * the knote for deletion. 6203 */ 6204 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) 6205 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 6206 6207 kn->kn_data = 0; 6208 VI_UNLOCK(vp); 6209 return (1); 6210 } 6211 6212 static int 6213 filt_vfsvnode(struct knote *kn, long hint) 6214 { 6215 struct vnode *vp = (struct vnode *)kn->kn_hook; 6216 int res; 6217 6218 VI_LOCK(vp); 6219 if (kn->kn_sfflags & hint) 6220 kn->kn_fflags |= hint; 6221 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) { 6222 kn->kn_flags |= EV_EOF; 6223 VI_UNLOCK(vp); 6224 return (1); 6225 } 6226 res = (kn->kn_fflags != 0); 6227 VI_UNLOCK(vp); 6228 return (res); 6229 } 6230 6231 /* 6232 * Returns whether the directory is empty or not. 6233 * If it is empty, the return value is 0; otherwise 6234 * the return value is an error value (which may 6235 * be ENOTEMPTY). 6236 */ 6237 int 6238 vfs_emptydir(struct vnode *vp) 6239 { 6240 struct uio uio; 6241 struct iovec iov; 6242 struct dirent *dirent, *dp, *endp; 6243 int error, eof; 6244 6245 error = 0; 6246 eof = 0; 6247 6248 ASSERT_VOP_LOCKED(vp, "vfs_emptydir"); 6249 6250 dirent = malloc(sizeof(struct dirent), M_TEMP, M_WAITOK); 6251 iov.iov_base = dirent; 6252 iov.iov_len = sizeof(struct dirent); 6253 6254 uio.uio_iov = &iov; 6255 uio.uio_iovcnt = 1; 6256 uio.uio_offset = 0; 6257 uio.uio_resid = sizeof(struct dirent); 6258 uio.uio_segflg = UIO_SYSSPACE; 6259 uio.uio_rw = UIO_READ; 6260 uio.uio_td = curthread; 6261 6262 while (eof == 0 && error == 0) { 6263 error = VOP_READDIR(vp, &uio, curthread->td_ucred, &eof, 6264 NULL, NULL); 6265 if (error != 0) 6266 break; 6267 endp = (void *)((uint8_t *)dirent + 6268 sizeof(struct dirent) - uio.uio_resid); 6269 for (dp = dirent; dp < endp; 6270 dp = (void *)((uint8_t *)dp + GENERIC_DIRSIZ(dp))) { 6271 if (dp->d_type == DT_WHT) 6272 continue; 6273 if (dp->d_namlen == 0) 6274 continue; 6275 if (dp->d_type != DT_DIR && 6276 dp->d_type != DT_UNKNOWN) { 6277 error = ENOTEMPTY; 6278 break; 6279 } 6280 if (dp->d_namlen > 2) { 6281 error = ENOTEMPTY; 6282 break; 6283 } 6284 if (dp->d_namlen == 1 && 6285 dp->d_name[0] != '.') { 6286 error = ENOTEMPTY; 6287 break; 6288 } 6289 if (dp->d_namlen == 2 && 6290 dp->d_name[1] != '.') { 6291 error = ENOTEMPTY; 6292 break; 6293 } 6294 uio.uio_resid = sizeof(struct dirent); 6295 } 6296 } 6297 free(dirent, M_TEMP); 6298 return (error); 6299 } 6300 6301 int 6302 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off) 6303 { 6304 int error; 6305 6306 if (dp->d_reclen > ap->a_uio->uio_resid) 6307 return (ENAMETOOLONG); 6308 error = uiomove(dp, dp->d_reclen, ap->a_uio); 6309 if (error) { 6310 if (ap->a_ncookies != NULL) { 6311 if (ap->a_cookies != NULL) 6312 free(ap->a_cookies, M_TEMP); 6313 ap->a_cookies = NULL; 6314 *ap->a_ncookies = 0; 6315 } 6316 return (error); 6317 } 6318 if (ap->a_ncookies == NULL) 6319 return (0); 6320 6321 KASSERT(ap->a_cookies, 6322 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!")); 6323 6324 *ap->a_cookies = realloc(*ap->a_cookies, 6325 (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO); 6326 (*ap->a_cookies)[*ap->a_ncookies] = off; 6327 *ap->a_ncookies += 1; 6328 return (0); 6329 } 6330 6331 /* 6332 * The purpose of this routine is to remove granularity from accmode_t, 6333 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE, 6334 * VADMIN and VAPPEND. 6335 * 6336 * If it returns 0, the caller is supposed to continue with the usual 6337 * access checks using 'accmode' as modified by this routine. If it 6338 * returns nonzero value, the caller is supposed to return that value 6339 * as errno. 6340 * 6341 * Note that after this routine runs, accmode may be zero. 6342 */ 6343 int 6344 vfs_unixify_accmode(accmode_t *accmode) 6345 { 6346 /* 6347 * There is no way to specify explicit "deny" rule using 6348 * file mode or POSIX.1e ACLs. 6349 */ 6350 if (*accmode & VEXPLICIT_DENY) { 6351 *accmode = 0; 6352 return (0); 6353 } 6354 6355 /* 6356 * None of these can be translated into usual access bits. 6357 * Also, the common case for NFSv4 ACLs is to not contain 6358 * either of these bits. Caller should check for VWRITE 6359 * on the containing directory instead. 6360 */ 6361 if (*accmode & (VDELETE_CHILD | VDELETE)) 6362 return (EPERM); 6363 6364 if (*accmode & VADMIN_PERMS) { 6365 *accmode &= ~VADMIN_PERMS; 6366 *accmode |= VADMIN; 6367 } 6368 6369 /* 6370 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL 6371 * or VSYNCHRONIZE using file mode or POSIX.1e ACL. 6372 */ 6373 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE); 6374 6375 return (0); 6376 } 6377 6378 /* 6379 * Clear out a doomed vnode (if any) and replace it with a new one as long 6380 * as the fs is not being unmounted. Return the root vnode to the caller. 6381 */ 6382 static int __noinline 6383 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp) 6384 { 6385 struct vnode *vp; 6386 int error; 6387 6388 restart: 6389 if (mp->mnt_rootvnode != NULL) { 6390 MNT_ILOCK(mp); 6391 vp = mp->mnt_rootvnode; 6392 if (vp != NULL) { 6393 if (!VN_IS_DOOMED(vp)) { 6394 vrefact(vp); 6395 MNT_IUNLOCK(mp); 6396 error = vn_lock(vp, flags); 6397 if (error == 0) { 6398 *vpp = vp; 6399 return (0); 6400 } 6401 vrele(vp); 6402 goto restart; 6403 } 6404 /* 6405 * Clear the old one. 6406 */ 6407 mp->mnt_rootvnode = NULL; 6408 } 6409 MNT_IUNLOCK(mp); 6410 if (vp != NULL) { 6411 vfs_op_barrier_wait(mp); 6412 vrele(vp); 6413 } 6414 } 6415 error = VFS_CACHEDROOT(mp, flags, vpp); 6416 if (error != 0) 6417 return (error); 6418 if (mp->mnt_vfs_ops == 0) { 6419 MNT_ILOCK(mp); 6420 if (mp->mnt_vfs_ops != 0) { 6421 MNT_IUNLOCK(mp); 6422 return (0); 6423 } 6424 if (mp->mnt_rootvnode == NULL) { 6425 vrefact(*vpp); 6426 mp->mnt_rootvnode = *vpp; 6427 } else { 6428 if (mp->mnt_rootvnode != *vpp) { 6429 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) { 6430 panic("%s: mismatch between vnode returned " 6431 " by VFS_CACHEDROOT and the one cached " 6432 " (%p != %p)", 6433 __func__, *vpp, mp->mnt_rootvnode); 6434 } 6435 } 6436 } 6437 MNT_IUNLOCK(mp); 6438 } 6439 return (0); 6440 } 6441 6442 int 6443 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp) 6444 { 6445 struct mount_pcpu *mpcpu; 6446 struct vnode *vp; 6447 int error; 6448 6449 if (!vfs_op_thread_enter(mp, mpcpu)) 6450 return (vfs_cache_root_fallback(mp, flags, vpp)); 6451 vp = atomic_load_ptr(&mp->mnt_rootvnode); 6452 if (vp == NULL || VN_IS_DOOMED(vp)) { 6453 vfs_op_thread_exit(mp, mpcpu); 6454 return (vfs_cache_root_fallback(mp, flags, vpp)); 6455 } 6456 vrefact(vp); 6457 vfs_op_thread_exit(mp, mpcpu); 6458 error = vn_lock(vp, flags); 6459 if (error != 0) { 6460 vrele(vp); 6461 return (vfs_cache_root_fallback(mp, flags, vpp)); 6462 } 6463 *vpp = vp; 6464 return (0); 6465 } 6466 6467 struct vnode * 6468 vfs_cache_root_clear(struct mount *mp) 6469 { 6470 struct vnode *vp; 6471 6472 /* 6473 * ops > 0 guarantees there is nobody who can see this vnode 6474 */ 6475 MPASS(mp->mnt_vfs_ops > 0); 6476 vp = mp->mnt_rootvnode; 6477 if (vp != NULL) 6478 vn_seqc_write_begin(vp); 6479 mp->mnt_rootvnode = NULL; 6480 return (vp); 6481 } 6482 6483 void 6484 vfs_cache_root_set(struct mount *mp, struct vnode *vp) 6485 { 6486 6487 MPASS(mp->mnt_vfs_ops > 0); 6488 vrefact(vp); 6489 mp->mnt_rootvnode = vp; 6490 } 6491 6492 /* 6493 * These are helper functions for filesystems to traverse all 6494 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h. 6495 * 6496 * This interface replaces MNT_VNODE_FOREACH. 6497 */ 6498 6499 struct vnode * 6500 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp) 6501 { 6502 struct vnode *vp; 6503 6504 if (should_yield()) 6505 kern_yield(PRI_USER); 6506 MNT_ILOCK(mp); 6507 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6508 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL; 6509 vp = TAILQ_NEXT(vp, v_nmntvnodes)) { 6510 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6511 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6512 continue; 6513 VI_LOCK(vp); 6514 if (VN_IS_DOOMED(vp)) { 6515 VI_UNLOCK(vp); 6516 continue; 6517 } 6518 break; 6519 } 6520 if (vp == NULL) { 6521 __mnt_vnode_markerfree_all(mvp, mp); 6522 /* MNT_IUNLOCK(mp); -- done in above function */ 6523 mtx_assert(MNT_MTX(mp), MA_NOTOWNED); 6524 return (NULL); 6525 } 6526 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6527 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6528 MNT_IUNLOCK(mp); 6529 return (vp); 6530 } 6531 6532 struct vnode * 6533 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp) 6534 { 6535 struct vnode *vp; 6536 6537 *mvp = vn_alloc_marker(mp); 6538 MNT_ILOCK(mp); 6539 MNT_REF(mp); 6540 6541 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) { 6542 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */ 6543 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp)) 6544 continue; 6545 VI_LOCK(vp); 6546 if (VN_IS_DOOMED(vp)) { 6547 VI_UNLOCK(vp); 6548 continue; 6549 } 6550 break; 6551 } 6552 if (vp == NULL) { 6553 MNT_REL(mp); 6554 MNT_IUNLOCK(mp); 6555 vn_free_marker(*mvp); 6556 *mvp = NULL; 6557 return (NULL); 6558 } 6559 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes); 6560 MNT_IUNLOCK(mp); 6561 return (vp); 6562 } 6563 6564 void 6565 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp) 6566 { 6567 6568 if (*mvp == NULL) { 6569 MNT_IUNLOCK(mp); 6570 return; 6571 } 6572 6573 mtx_assert(MNT_MTX(mp), MA_OWNED); 6574 6575 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6576 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes); 6577 MNT_REL(mp); 6578 MNT_IUNLOCK(mp); 6579 vn_free_marker(*mvp); 6580 *mvp = NULL; 6581 } 6582 6583 /* 6584 * These are helper functions for filesystems to traverse their 6585 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h 6586 */ 6587 static void 6588 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 6589 { 6590 6591 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6592 6593 MNT_ILOCK(mp); 6594 MNT_REL(mp); 6595 MNT_IUNLOCK(mp); 6596 vn_free_marker(*mvp); 6597 *mvp = NULL; 6598 } 6599 6600 /* 6601 * Relock the mp mount vnode list lock with the vp vnode interlock in the 6602 * conventional lock order during mnt_vnode_next_lazy iteration. 6603 * 6604 * On entry, the mount vnode list lock is held and the vnode interlock is not. 6605 * The list lock is dropped and reacquired. On success, both locks are held. 6606 * On failure, the mount vnode list lock is held but the vnode interlock is 6607 * not, and the procedure may have yielded. 6608 */ 6609 static bool 6610 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp, 6611 struct vnode *vp) 6612 { 6613 6614 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER && 6615 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp, 6616 ("%s: bad marker", __func__)); 6617 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp, 6618 ("%s: inappropriate vnode", __func__)); 6619 ASSERT_VI_UNLOCKED(vp, __func__); 6620 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 6621 6622 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist); 6623 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist); 6624 6625 /* 6626 * Note we may be racing against vdrop which transitioned the hold 6627 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine, 6628 * if we are the only user after we get the interlock we will just 6629 * vdrop. 6630 */ 6631 vhold(vp); 6632 mtx_unlock(&mp->mnt_listmtx); 6633 VI_LOCK(vp); 6634 if (VN_IS_DOOMED(vp)) { 6635 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp); 6636 goto out_lost; 6637 } 6638 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp); 6639 /* 6640 * There is nothing to do if we are the last user. 6641 */ 6642 if (!refcount_release_if_not_last(&vp->v_holdcnt)) 6643 goto out_lost; 6644 mtx_lock(&mp->mnt_listmtx); 6645 return (true); 6646 out_lost: 6647 vdropl(vp); 6648 maybe_yield(); 6649 mtx_lock(&mp->mnt_listmtx); 6650 return (false); 6651 } 6652 6653 static struct vnode * 6654 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6655 void *cbarg) 6656 { 6657 struct vnode *vp; 6658 6659 mtx_assert(&mp->mnt_listmtx, MA_OWNED); 6660 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch")); 6661 restart: 6662 vp = TAILQ_NEXT(*mvp, v_lazylist); 6663 while (vp != NULL) { 6664 if (vp->v_type == VMARKER) { 6665 vp = TAILQ_NEXT(vp, v_lazylist); 6666 continue; 6667 } 6668 /* 6669 * See if we want to process the vnode. Note we may encounter a 6670 * long string of vnodes we don't care about and hog the list 6671 * as a result. Check for it and requeue the marker. 6672 */ 6673 VNPASS(!VN_IS_DOOMED(vp), vp); 6674 if (!cb(vp, cbarg)) { 6675 if (!should_yield()) { 6676 vp = TAILQ_NEXT(vp, v_lazylist); 6677 continue; 6678 } 6679 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, 6680 v_lazylist); 6681 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, 6682 v_lazylist); 6683 mtx_unlock(&mp->mnt_listmtx); 6684 kern_yield(PRI_USER); 6685 mtx_lock(&mp->mnt_listmtx); 6686 goto restart; 6687 } 6688 /* 6689 * Try-lock because this is the wrong lock order. 6690 */ 6691 if (!VI_TRYLOCK(vp) && 6692 !mnt_vnode_next_lazy_relock(*mvp, mp, vp)) 6693 goto restart; 6694 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp)); 6695 KASSERT(vp->v_mount == mp || vp->v_mount == NULL, 6696 ("alien vnode on the lazy list %p %p", vp, mp)); 6697 VNPASS(vp->v_mount == mp, vp); 6698 VNPASS(!VN_IS_DOOMED(vp), vp); 6699 break; 6700 } 6701 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 6702 6703 /* Check if we are done */ 6704 if (vp == NULL) { 6705 mtx_unlock(&mp->mnt_listmtx); 6706 mnt_vnode_markerfree_lazy(mvp, mp); 6707 return (NULL); 6708 } 6709 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist); 6710 mtx_unlock(&mp->mnt_listmtx); 6711 ASSERT_VI_LOCKED(vp, "lazy iter"); 6712 return (vp); 6713 } 6714 6715 struct vnode * 6716 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6717 void *cbarg) 6718 { 6719 6720 if (should_yield()) 6721 kern_yield(PRI_USER); 6722 mtx_lock(&mp->mnt_listmtx); 6723 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 6724 } 6725 6726 struct vnode * 6727 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb, 6728 void *cbarg) 6729 { 6730 struct vnode *vp; 6731 6732 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist)) 6733 return (NULL); 6734 6735 *mvp = vn_alloc_marker(mp); 6736 MNT_ILOCK(mp); 6737 MNT_REF(mp); 6738 MNT_IUNLOCK(mp); 6739 6740 mtx_lock(&mp->mnt_listmtx); 6741 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist); 6742 if (vp == NULL) { 6743 mtx_unlock(&mp->mnt_listmtx); 6744 mnt_vnode_markerfree_lazy(mvp, mp); 6745 return (NULL); 6746 } 6747 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist); 6748 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg)); 6749 } 6750 6751 void 6752 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp) 6753 { 6754 6755 if (*mvp == NULL) 6756 return; 6757 6758 mtx_lock(&mp->mnt_listmtx); 6759 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist); 6760 mtx_unlock(&mp->mnt_listmtx); 6761 mnt_vnode_markerfree_lazy(mvp, mp); 6762 } 6763 6764 int 6765 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp) 6766 { 6767 6768 if ((cnp->cn_flags & NOEXECCHECK) != 0) { 6769 cnp->cn_flags &= ~NOEXECCHECK; 6770 return (0); 6771 } 6772 6773 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, cnp->cn_thread)); 6774 } 6775 6776 /* 6777 * Do not use this variant unless you have means other than the hold count 6778 * to prevent the vnode from getting freed. 6779 */ 6780 void 6781 vn_seqc_write_begin_unheld_locked(struct vnode *vp) 6782 { 6783 6784 ASSERT_VI_LOCKED(vp, __func__); 6785 VNPASS(vp->v_seqc_users >= 0, vp); 6786 vp->v_seqc_users++; 6787 if (vp->v_seqc_users == 1) 6788 seqc_sleepable_write_begin(&vp->v_seqc); 6789 } 6790 6791 void 6792 vn_seqc_write_begin_locked(struct vnode *vp) 6793 { 6794 6795 ASSERT_VI_LOCKED(vp, __func__); 6796 VNPASS(vp->v_holdcnt > 0, vp); 6797 vn_seqc_write_begin_unheld_locked(vp); 6798 } 6799 6800 void 6801 vn_seqc_write_begin(struct vnode *vp) 6802 { 6803 6804 VI_LOCK(vp); 6805 vn_seqc_write_begin_locked(vp); 6806 VI_UNLOCK(vp); 6807 } 6808 6809 void 6810 vn_seqc_write_begin_unheld(struct vnode *vp) 6811 { 6812 6813 VI_LOCK(vp); 6814 vn_seqc_write_begin_unheld_locked(vp); 6815 VI_UNLOCK(vp); 6816 } 6817 6818 void 6819 vn_seqc_write_end_locked(struct vnode *vp) 6820 { 6821 6822 ASSERT_VI_LOCKED(vp, __func__); 6823 VNPASS(vp->v_seqc_users > 0, vp); 6824 vp->v_seqc_users--; 6825 if (vp->v_seqc_users == 0) 6826 seqc_sleepable_write_end(&vp->v_seqc); 6827 } 6828 6829 void 6830 vn_seqc_write_end(struct vnode *vp) 6831 { 6832 6833 VI_LOCK(vp); 6834 vn_seqc_write_end_locked(vp); 6835 VI_UNLOCK(vp); 6836 } 6837 6838 /* 6839 * Special case handling for allocating and freeing vnodes. 6840 * 6841 * The counter remains unchanged on free so that a doomed vnode will 6842 * keep testing as in modify as long as it is accessible with SMR. 6843 */ 6844 static void 6845 vn_seqc_init(struct vnode *vp) 6846 { 6847 6848 vp->v_seqc = 0; 6849 vp->v_seqc_users = 0; 6850 } 6851 6852 static void 6853 vn_seqc_write_end_free(struct vnode *vp) 6854 { 6855 6856 VNPASS(seqc_in_modify(vp->v_seqc), vp); 6857 VNPASS(vp->v_seqc_users == 1, vp); 6858 } 6859 6860 void 6861 vn_irflag_set_locked(struct vnode *vp, short toset) 6862 { 6863 short flags; 6864 6865 ASSERT_VI_LOCKED(vp, __func__); 6866 flags = vn_irflag_read(vp); 6867 VNASSERT((flags & toset) == 0, vp, 6868 ("%s: some of the passed flags already set (have %d, passed %d)\n", 6869 __func__, flags, toset)); 6870 atomic_store_short(&vp->v_irflag, flags | toset); 6871 } 6872 6873 void 6874 vn_irflag_set(struct vnode *vp, short toset) 6875 { 6876 6877 VI_LOCK(vp); 6878 vn_irflag_set_locked(vp, toset); 6879 VI_UNLOCK(vp); 6880 } 6881 6882 void 6883 vn_irflag_set_cond_locked(struct vnode *vp, short toset) 6884 { 6885 short flags; 6886 6887 ASSERT_VI_LOCKED(vp, __func__); 6888 flags = vn_irflag_read(vp); 6889 atomic_store_short(&vp->v_irflag, flags | toset); 6890 } 6891 6892 void 6893 vn_irflag_set_cond(struct vnode *vp, short toset) 6894 { 6895 6896 VI_LOCK(vp); 6897 vn_irflag_set_cond_locked(vp, toset); 6898 VI_UNLOCK(vp); 6899 } 6900 6901 void 6902 vn_irflag_unset_locked(struct vnode *vp, short tounset) 6903 { 6904 short flags; 6905 6906 ASSERT_VI_LOCKED(vp, __func__); 6907 flags = vn_irflag_read(vp); 6908 VNASSERT((flags & tounset) == tounset, vp, 6909 ("%s: some of the passed flags not set (have %d, passed %d)\n", 6910 __func__, flags, tounset)); 6911 atomic_store_short(&vp->v_irflag, flags & ~tounset); 6912 } 6913 6914 void 6915 vn_irflag_unset(struct vnode *vp, short tounset) 6916 { 6917 6918 VI_LOCK(vp); 6919 vn_irflag_unset_locked(vp, tounset); 6920 VI_UNLOCK(vp); 6921 } 6922