xref: /freebsd/sys/kern/vfs_subr.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*-
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
35  */
36 
37 /*
38  * External virtual filesystem routines
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_ddb.h"
45 #include "opt_mac.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/bio.h>
50 #include <sys/buf.h>
51 #include <sys/conf.h>
52 #include <sys/event.h>
53 #include <sys/eventhandler.h>
54 #include <sys/extattr.h>
55 #include <sys/fcntl.h>
56 #include <sys/kdb.h>
57 #include <sys/kernel.h>
58 #include <sys/kthread.h>
59 #include <sys/mac.h>
60 #include <sys/malloc.h>
61 #include <sys/mount.h>
62 #include <sys/namei.h>
63 #include <sys/reboot.h>
64 #include <sys/sleepqueue.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/syslog.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 
71 #include <machine/stdarg.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_object.h>
75 #include <vm/vm_extern.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_kern.h>
80 #include <vm/uma.h>
81 
82 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
83 
84 static void	delmntque(struct vnode *vp);
85 static void	insmntque(struct vnode *vp, struct mount *mp);
86 static void	vlruvp(struct vnode *vp);
87 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
88 		    int slpflag, int slptimeo);
89 static void	syncer_shutdown(void *arg, int howto);
90 static int	vtryrecycle(struct vnode *vp);
91 static void	vbusy(struct vnode *vp);
92 static void	vdropl(struct vnode *vp);
93 static void	vinactive(struct vnode *, struct thread *);
94 static void	v_incr_usecount(struct vnode *, int);
95 static void	vfree(struct vnode *);
96 static void	vnlru_free(int);
97 static void	vdestroy(struct vnode *);
98 
99 /*
100  * Enable Giant pushdown based on whether or not the vm is mpsafe in this
101  * build.  Without mpsafevm the buffer cache can not run Giant free.
102  */
103 #if defined(__alpha__) || defined(__amd64__) || defined(__i386__)
104 int mpsafe_vfs = 1;
105 #else
106 int mpsafe_vfs;
107 #endif
108 TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
109 SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
110     "MPSAFE VFS");
111 
112 /*
113  * Number of vnodes in existence.  Increased whenever getnewvnode()
114  * allocates a new vnode, never decreased.
115  */
116 static unsigned long	numvnodes;
117 
118 SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
119 
120 /*
121  * Conversion tables for conversion from vnode types to inode formats
122  * and back.
123  */
124 enum vtype iftovt_tab[16] = {
125 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
126 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
127 };
128 int vttoif_tab[9] = {
129 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
130 	S_IFSOCK, S_IFIFO, S_IFMT,
131 };
132 
133 /*
134  * List of vnodes that are ready for recycling.
135  */
136 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
137 
138 /*
139  * Free vnode target.  Free vnodes may simply be files which have been stat'd
140  * but not read.  This is somewhat common, and a small cache of such files
141  * should be kept to avoid recreation costs.
142  */
143 static u_long wantfreevnodes;
144 SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
145 /* Number of vnodes in the free list. */
146 static u_long freevnodes;
147 SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
148 
149 /*
150  * Various variables used for debugging the new implementation of
151  * reassignbuf().
152  * XXX these are probably of (very) limited utility now.
153  */
154 static int reassignbufcalls;
155 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
156 
157 /*
158  * Cache for the mount type id assigned to NFS.  This is used for
159  * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
160  */
161 int	nfs_mount_type = -1;
162 
163 /* To keep more than one thread at a time from running vfs_getnewfsid */
164 static struct mtx mntid_mtx;
165 
166 /*
167  * Lock for any access to the following:
168  *	vnode_free_list
169  *	numvnodes
170  *	freevnodes
171  */
172 static struct mtx vnode_free_list_mtx;
173 
174 /* Publicly exported FS */
175 struct nfs_public nfs_pub;
176 
177 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
178 static uma_zone_t vnode_zone;
179 static uma_zone_t vnodepoll_zone;
180 
181 /* Set to 1 to print out reclaim of active vnodes */
182 int	prtactive;
183 
184 /*
185  * The workitem queue.
186  *
187  * It is useful to delay writes of file data and filesystem metadata
188  * for tens of seconds so that quickly created and deleted files need
189  * not waste disk bandwidth being created and removed. To realize this,
190  * we append vnodes to a "workitem" queue. When running with a soft
191  * updates implementation, most pending metadata dependencies should
192  * not wait for more than a few seconds. Thus, mounted on block devices
193  * are delayed only about a half the time that file data is delayed.
194  * Similarly, directory updates are more critical, so are only delayed
195  * about a third the time that file data is delayed. Thus, there are
196  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
197  * one each second (driven off the filesystem syncer process). The
198  * syncer_delayno variable indicates the next queue that is to be processed.
199  * Items that need to be processed soon are placed in this queue:
200  *
201  *	syncer_workitem_pending[syncer_delayno]
202  *
203  * A delay of fifteen seconds is done by placing the request fifteen
204  * entries later in the queue:
205  *
206  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
207  *
208  */
209 static int syncer_delayno;
210 static long syncer_mask;
211 LIST_HEAD(synclist, bufobj);
212 static struct synclist *syncer_workitem_pending;
213 /*
214  * The sync_mtx protects:
215  *	bo->bo_synclist
216  *	sync_vnode_count
217  *	syncer_delayno
218  *	syncer_state
219  *	syncer_workitem_pending
220  *	syncer_worklist_len
221  *	rushjob
222  */
223 static struct mtx sync_mtx;
224 
225 #define SYNCER_MAXDELAY		32
226 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
227 static int syncdelay = 30;		/* max time to delay syncing data */
228 static int filedelay = 30;		/* time to delay syncing files */
229 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
230 static int dirdelay = 29;		/* time to delay syncing directories */
231 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
232 static int metadelay = 28;		/* time to delay syncing metadata */
233 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
234 static int rushjob;		/* number of slots to run ASAP */
235 static int stat_rush_requests;	/* number of times I/O speeded up */
236 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
237 
238 /*
239  * When shutting down the syncer, run it at four times normal speed.
240  */
241 #define SYNCER_SHUTDOWN_SPEEDUP		4
242 static int sync_vnode_count;
243 static int syncer_worklist_len;
244 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
245     syncer_state;
246 
247 /*
248  * Number of vnodes we want to exist at any one time.  This is mostly used
249  * to size hash tables in vnode-related code.  It is normally not used in
250  * getnewvnode(), as wantfreevnodes is normally nonzero.)
251  *
252  * XXX desiredvnodes is historical cruft and should not exist.
253  */
254 int desiredvnodes;
255 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
256     &desiredvnodes, 0, "Maximum number of vnodes");
257 SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
258     &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
259 static int vnlru_nowhere;
260 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
261     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
262 
263 /* Hook for calling soft updates. */
264 int (*softdep_process_worklist_hook)(struct mount *);
265 
266 /*
267  * Macros to control when a vnode is freed and recycled.  All require
268  * the vnode interlock.
269  */
270 #define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
271 #define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
272 #define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)
273 
274 
275 /*
276  * Initialize the vnode management data structures.
277  */
278 #ifndef	MAXVNODES_MAX
279 #define	MAXVNODES_MAX	100000
280 #endif
281 static void
282 vntblinit(void *dummy __unused)
283 {
284 
285 	/*
286 	 * Desiredvnodes is a function of the physical memory size and
287 	 * the kernel's heap size.  Specifically, desiredvnodes scales
288 	 * in proportion to the physical memory size until two fifths
289 	 * of the kernel's heap size is consumed by vnodes and vm
290 	 * objects.
291 	 */
292 	desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
293 	    (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
294 	if (desiredvnodes > MAXVNODES_MAX) {
295 		if (bootverbose)
296 			printf("Reducing kern.maxvnodes %d -> %d\n",
297 			    desiredvnodes, MAXVNODES_MAX);
298 		desiredvnodes = MAXVNODES_MAX;
299 	}
300 	wantfreevnodes = desiredvnodes / 4;
301 	mtx_init(&mountlist_mtx, "mountlist", NULL, MTX_DEF);
302 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
303 	TAILQ_INIT(&vnode_free_list);
304 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
305 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
306 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
308 	      NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309 	/*
310 	 * Initialize the filesystem syncer.
311 	 */
312 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
313 		&syncer_mask);
314 	syncer_maxdelay = syncer_mask + 1;
315 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
316 }
317 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)
318 
319 
320 /*
321  * Mark a mount point as busy. Used to synchronize access and to delay
322  * unmounting. Interlock is not released on failure.
323  */
324 int
325 vfs_busy(mp, flags, interlkp, td)
326 	struct mount *mp;
327 	int flags;
328 	struct mtx *interlkp;
329 	struct thread *td;
330 {
331 	int lkflags;
332 
333 	MNT_ILOCK(mp);
334 	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
335 		if (flags & LK_NOWAIT) {
336 			MNT_IUNLOCK(mp);
337 			return (ENOENT);
338 		}
339 		if (interlkp)
340 			mtx_unlock(interlkp);
341 		mp->mnt_kern_flag |= MNTK_MWAIT;
342 		/*
343 		 * Since all busy locks are shared except the exclusive
344 		 * lock granted when unmounting, the only place that a
345 		 * wakeup needs to be done is at the release of the
346 		 * exclusive lock at the end of dounmount.
347 		 */
348 		msleep(mp, MNT_MTX(mp), PVFS|PDROP, "vfs_busy", 0);
349 		if (interlkp)
350 			mtx_lock(interlkp);
351 		return (ENOENT);
352 	}
353 	if (interlkp)
354 		mtx_unlock(interlkp);
355 	lkflags = LK_SHARED | LK_INTERLOCK;
356 	if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp), td))
357 		panic("vfs_busy: unexpected lock failure");
358 	return (0);
359 }
360 
361 /*
362  * Free a busy filesystem.
363  */
364 void
365 vfs_unbusy(mp, td)
366 	struct mount *mp;
367 	struct thread *td;
368 {
369 
370 	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
371 }
372 
373 /*
374  * Lookup a mount point by filesystem identifier.
375  */
376 struct mount *
377 vfs_getvfs(fsid)
378 	fsid_t *fsid;
379 {
380 	struct mount *mp;
381 
382 	mtx_lock(&mountlist_mtx);
383 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
384 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
385 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
386 			mtx_unlock(&mountlist_mtx);
387 			return (mp);
388 		}
389 	}
390 	mtx_unlock(&mountlist_mtx);
391 	return ((struct mount *) 0);
392 }
393 
394 /*
395  * Check if a user can access priveledged mount options.
396  */
397 int
398 vfs_suser(struct mount *mp, struct thread *td)
399 {
400 	int error;
401 
402 	if ((mp->mnt_flag & MNT_USER) == 0 ||
403 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
404 		if ((error = suser(td)) != 0)
405 			return (error);
406 	}
407 	return (0);
408 }
409 
410 /*
411  * Get a new unique fsid.  Try to make its val[0] unique, since this value
412  * will be used to create fake device numbers for stat().  Also try (but
413  * not so hard) make its val[0] unique mod 2^16, since some emulators only
414  * support 16-bit device numbers.  We end up with unique val[0]'s for the
415  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
416  *
417  * Keep in mind that several mounts may be running in parallel.  Starting
418  * the search one past where the previous search terminated is both a
419  * micro-optimization and a defense against returning the same fsid to
420  * different mounts.
421  */
422 void
423 vfs_getnewfsid(mp)
424 	struct mount *mp;
425 {
426 	static u_int16_t mntid_base;
427 	fsid_t tfsid;
428 	int mtype;
429 
430 	mtx_lock(&mntid_mtx);
431 	mtype = mp->mnt_vfc->vfc_typenum;
432 	tfsid.val[1] = mtype;
433 	mtype = (mtype & 0xFF) << 24;
434 	for (;;) {
435 		tfsid.val[0] = makedev(255,
436 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
437 		mntid_base++;
438 		if (vfs_getvfs(&tfsid) == NULL)
439 			break;
440 	}
441 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
442 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
443 	mtx_unlock(&mntid_mtx);
444 }
445 
446 /*
447  * Knob to control the precision of file timestamps:
448  *
449  *   0 = seconds only; nanoseconds zeroed.
450  *   1 = seconds and nanoseconds, accurate within 1/HZ.
451  *   2 = seconds and nanoseconds, truncated to microseconds.
452  * >=3 = seconds and nanoseconds, maximum precision.
453  */
454 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
455 
456 static int timestamp_precision = TSP_SEC;
457 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
458     &timestamp_precision, 0, "");
459 
460 /*
461  * Get a current timestamp.
462  */
463 void
464 vfs_timestamp(tsp)
465 	struct timespec *tsp;
466 {
467 	struct timeval tv;
468 
469 	switch (timestamp_precision) {
470 	case TSP_SEC:
471 		tsp->tv_sec = time_second;
472 		tsp->tv_nsec = 0;
473 		break;
474 	case TSP_HZ:
475 		getnanotime(tsp);
476 		break;
477 	case TSP_USEC:
478 		microtime(&tv);
479 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
480 		break;
481 	case TSP_NSEC:
482 	default:
483 		nanotime(tsp);
484 		break;
485 	}
486 }
487 
488 /*
489  * Set vnode attributes to VNOVAL
490  */
491 void
492 vattr_null(vap)
493 	struct vattr *vap;
494 {
495 
496 	vap->va_type = VNON;
497 	vap->va_size = VNOVAL;
498 	vap->va_bytes = VNOVAL;
499 	vap->va_mode = VNOVAL;
500 	vap->va_nlink = VNOVAL;
501 	vap->va_uid = VNOVAL;
502 	vap->va_gid = VNOVAL;
503 	vap->va_fsid = VNOVAL;
504 	vap->va_fileid = VNOVAL;
505 	vap->va_blocksize = VNOVAL;
506 	vap->va_rdev = VNOVAL;
507 	vap->va_atime.tv_sec = VNOVAL;
508 	vap->va_atime.tv_nsec = VNOVAL;
509 	vap->va_mtime.tv_sec = VNOVAL;
510 	vap->va_mtime.tv_nsec = VNOVAL;
511 	vap->va_ctime.tv_sec = VNOVAL;
512 	vap->va_ctime.tv_nsec = VNOVAL;
513 	vap->va_birthtime.tv_sec = VNOVAL;
514 	vap->va_birthtime.tv_nsec = VNOVAL;
515 	vap->va_flags = VNOVAL;
516 	vap->va_gen = VNOVAL;
517 	vap->va_vaflags = 0;
518 }
519 
520 /*
521  * This routine is called when we have too many vnodes.  It attempts
522  * to free <count> vnodes and will potentially free vnodes that still
523  * have VM backing store (VM backing store is typically the cause
524  * of a vnode blowout so we want to do this).  Therefore, this operation
525  * is not considered cheap.
526  *
527  * A number of conditions may prevent a vnode from being reclaimed.
528  * the buffer cache may have references on the vnode, a directory
529  * vnode may still have references due to the namei cache representing
530  * underlying files, or the vnode may be in active use.   It is not
531  * desireable to reuse such vnodes.  These conditions may cause the
532  * number of vnodes to reach some minimum value regardless of what
533  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
534  */
535 static int
536 vlrureclaim(struct mount *mp)
537 {
538 	struct vnode *vp;
539 	int done;
540 	int trigger;
541 	int usevnodes;
542 	int count;
543 
544 	/*
545 	 * Calculate the trigger point, don't allow user
546 	 * screwups to blow us up.   This prevents us from
547 	 * recycling vnodes with lots of resident pages.  We
548 	 * aren't trying to free memory, we are trying to
549 	 * free vnodes.
550 	 */
551 	usevnodes = desiredvnodes;
552 	if (usevnodes <= 0)
553 		usevnodes = 1;
554 	trigger = cnt.v_page_count * 2 / usevnodes;
555 
556 	done = 0;
557 	vn_start_write(NULL, &mp, V_WAIT);
558 	MNT_ILOCK(mp);
559 	count = mp->mnt_nvnodelistsize / 10 + 1;
560 	while (count && (vp = TAILQ_FIRST(&mp->mnt_nvnodelist)) != NULL) {
561 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
562 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
563 
564 		if (vp->v_type != VNON &&
565 		    vp->v_type != VBAD &&
566 		    VI_TRYLOCK(vp)) {
567 			/* critical path opt */
568 			if (LIST_EMPTY(&(vp)->v_cache_src) &&
569 			    !(vp)->v_usecount &&
570 			    (vp->v_object == NULL ||
571 			    vp->v_object->resident_page_count < trigger)) {
572 				struct thread *td;
573 
574 				td = curthread;
575 				MNT_IUNLOCK(mp);
576 				VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE, td);
577 				if ((vp->v_iflag & VI_DOOMED) == 0)
578 					vgone(vp);
579 				VOP_UNLOCK(vp, 0, td);
580 				done++;
581 				MNT_ILOCK(mp);
582 			} else
583 				VI_UNLOCK(vp);
584 		}
585 		--count;
586 	}
587 	MNT_IUNLOCK(mp);
588 	vn_finished_write(mp);
589 	return done;
590 }
591 
592 /*
593  * Attempt to keep the free list at wantfreevnodes length.
594  */
595 static void
596 vnlru_free(int count)
597 {
598 	struct vnode *vp;
599 
600 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
601 	for (; count > 0; count--) {
602 		vp = TAILQ_FIRST(&vnode_free_list);
603 		/*
604 		 * The list can be modified while the free_list_mtx
605 		 * has been dropped and vp could be NULL here.
606 		 */
607 		if (!vp)
608 			break;
609 		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
610 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
611 		/*
612 		 * Don't recycle if we can't get the interlock.
613 		 */
614 		if (!VI_TRYLOCK(vp))
615 			continue;
616 		if (!VCANRECYCLE(vp)) {
617 			VI_UNLOCK(vp);
618 			continue;
619 		}
620 		/*
621 		 * We assume success to avoid having to relock the frelist
622 		 * in the common case, simply restore counts on failure.
623 		 */
624 		freevnodes--;
625 		numvnodes--;
626 		mtx_unlock(&vnode_free_list_mtx);
627 		if (vtryrecycle(vp) != 0) {
628 			mtx_lock(&vnode_free_list_mtx);
629 			freevnodes++;
630 			numvnodes++;
631 			continue;
632 		}
633 		vdestroy(vp);
634 		mtx_lock(&vnode_free_list_mtx);
635 	}
636 }
637 /*
638  * Attempt to recycle vnodes in a context that is always safe to block.
639  * Calling vlrurecycle() from the bowels of filesystem code has some
640  * interesting deadlock problems.
641  */
642 static struct proc *vnlruproc;
643 static int vnlruproc_sig;
644 
645 static void
646 vnlru_proc(void)
647 {
648 	struct mount *mp, *nmp;
649 	int done;
650 	struct proc *p = vnlruproc;
651 	struct thread *td = FIRST_THREAD_IN_PROC(p);
652 
653 	mtx_lock(&Giant);
654 
655 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
656 	    SHUTDOWN_PRI_FIRST);
657 
658 	for (;;) {
659 		kthread_suspend_check(p);
660 		mtx_lock(&vnode_free_list_mtx);
661 		if (freevnodes > wantfreevnodes)
662 			vnlru_free(freevnodes - wantfreevnodes);
663 		if (numvnodes <= desiredvnodes * 9 / 10) {
664 			vnlruproc_sig = 0;
665 			wakeup(&vnlruproc_sig);
666 			msleep(vnlruproc, &vnode_free_list_mtx,
667 			    PVFS|PDROP, "vlruwt", hz);
668 			continue;
669 		}
670 		mtx_unlock(&vnode_free_list_mtx);
671 		done = 0;
672 		mtx_lock(&mountlist_mtx);
673 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
674 			if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
675 				nmp = TAILQ_NEXT(mp, mnt_list);
676 				continue;
677 			}
678 			done += vlrureclaim(mp);
679 			mtx_lock(&mountlist_mtx);
680 			nmp = TAILQ_NEXT(mp, mnt_list);
681 			vfs_unbusy(mp, td);
682 		}
683 		mtx_unlock(&mountlist_mtx);
684 		if (done == 0) {
685 #if 0
686 			/* These messages are temporary debugging aids */
687 			if (vnlru_nowhere < 5)
688 				printf("vnlru process getting nowhere..\n");
689 			else if (vnlru_nowhere == 5)
690 				printf("vnlru process messages stopped.\n");
691 #endif
692 			vnlru_nowhere++;
693 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
694 		}
695 	}
696 }
697 
698 static struct kproc_desc vnlru_kp = {
699 	"vnlru",
700 	vnlru_proc,
701 	&vnlruproc
702 };
703 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)
704 
705 /*
706  * Routines having to do with the management of the vnode table.
707  */
708 
709 static void
710 vdestroy(struct vnode *vp)
711 {
712 	struct bufobj *bo;
713 
714 	bo = &vp->v_bufobj;
715 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
716 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
717 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
718 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
719 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
720 	VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
721 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
722 	VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
723 #ifdef MAC
724 	mac_destroy_vnode(vp);
725 #endif
726 	if (vp->v_pollinfo != NULL) {
727 		knlist_destroy(&vp->v_pollinfo->vpi_selinfo.si_note);
728 		mtx_destroy(&vp->v_pollinfo->vpi_lock);
729 		uma_zfree(vnodepoll_zone, vp->v_pollinfo);
730 	}
731 	lockdestroy(vp->v_vnlock);
732 	mtx_destroy(&vp->v_interlock);
733 	uma_zfree(vnode_zone, vp);
734 }
735 
736 /*
737  * Check to see if a free vnode can be recycled. If it can,
738  * recycle it and return it with the vnode interlock held.
739  */
740 static int
741 vtryrecycle(struct vnode *vp)
742 {
743 	struct thread *td = curthread;
744 	struct mount *vnmp;
745 	int error;
746 
747 	ASSERT_VI_LOCKED(vp, "vtryrecycle");
748 	error = 0;
749 	/*
750 	 * This vnode may found and locked via some other list, if so we
751 	 * can't recycle it yet.
752 	 */
753 	if (VOP_LOCK(vp, LK_INTERLOCK | LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
754 		return (EWOULDBLOCK);
755 	/*
756 	 * Don't recycle if its filesystem is being suspended.
757 	 */
758 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
759 		VOP_UNLOCK(vp, 0, td);
760 		return (EBUSY);
761 	}
762 	/*
763 	 * If we got this far, we need to acquire the interlock and see if
764 	 * anyone picked up this vnode from another list.  If not, we will
765 	 * mark it with DOOMED via vgonel() so that anyone who does find it
766 	 * will skip over it.
767 	 */
768 	VI_LOCK(vp);
769 	if (!VCANRECYCLE(vp)) {
770 		VI_UNLOCK(vp);
771 		error = EBUSY;
772 		goto done;
773 	}
774 	mtx_lock(&vnode_free_list_mtx);
775 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
776 	vp->v_iflag &= ~VI_FREE;
777 	mtx_unlock(&vnode_free_list_mtx);
778 	if ((vp->v_iflag & VI_DOOMED) == 0) {
779 		vp->v_iflag |= VI_DOOMED;
780 		vgonel(vp, td);
781 		VI_LOCK(vp);
782 	}
783 	/*
784 	 * If someone ref'd the vnode while we were cleaning, we have to
785 	 * free it once the last ref is dropped.
786 	 */
787 	if (vp->v_holdcnt)
788 		error = EBUSY;
789 	VI_UNLOCK(vp);
790 done:
791 	VOP_UNLOCK(vp, 0, td);
792 	vn_finished_write(vnmp);
793 	return (error);
794 }
795 
796 /*
797  * Return the next vnode from the free list.
798  */
799 int
800 getnewvnode(tag, mp, vops, vpp)
801 	const char *tag;
802 	struct mount *mp;
803 	struct vop_vector *vops;
804 	struct vnode **vpp;
805 {
806 	struct vnode *vp = NULL;
807 	struct bufobj *bo;
808 
809 	mtx_lock(&vnode_free_list_mtx);
810 	/*
811 	 * Lend our context to reclaim vnodes if they've exceeded the max.
812 	 */
813 	if (freevnodes > wantfreevnodes)
814 		vnlru_free(1);
815 	/*
816 	 * Wait for available vnodes.
817 	 */
818 	if (numvnodes > desiredvnodes) {
819 		if (vnlruproc_sig == 0) {
820 			vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
821 			wakeup(vnlruproc);
822 		}
823 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
824 		    "vlruwk", hz);
825 		if (numvnodes > desiredvnodes) {
826 			mtx_unlock(&vnode_free_list_mtx);
827 			return (ENFILE);
828 		}
829 	}
830 	numvnodes++;
831 	mtx_unlock(&vnode_free_list_mtx);
832 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
833 	/*
834 	 * Setup locks.
835 	 */
836 	vp->v_vnlock = &vp->v_lock;
837 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
838 	/*
839 	 * By default, don't allow shared locks unless filesystems
840 	 * opt-in.
841 	 */
842 	lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
843 	/*
844 	 * Initialize bufobj.
845 	 */
846 	bo = &vp->v_bufobj;
847 	bo->__bo_vnode = vp;
848 	bo->bo_mtx = &vp->v_interlock;
849 	bo->bo_ops = &buf_ops_bio;
850 	bo->bo_private = vp;
851 	TAILQ_INIT(&bo->bo_clean.bv_hd);
852 	TAILQ_INIT(&bo->bo_dirty.bv_hd);
853 	/*
854 	 * Initialize namecache.
855 	 */
856 	LIST_INIT(&vp->v_cache_src);
857 	TAILQ_INIT(&vp->v_cache_dst);
858 	/*
859 	 * Finalize various vnode identity bits.
860 	 */
861 	vp->v_type = VNON;
862 	vp->v_tag = tag;
863 	vp->v_op = vops;
864 	v_incr_usecount(vp, 1);
865 	vp->v_data = 0;
866 #ifdef MAC
867 	mac_init_vnode(vp);
868 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
869 		mac_associate_vnode_singlelabel(mp, vp);
870 	else if (mp == NULL)
871 		printf("NULL mp in getnewvnode()\n");
872 #endif
873 	delmntque(vp);
874 	if (mp != NULL) {
875 		insmntque(vp, mp);
876 		bo->bo_bsize = mp->mnt_stat.f_iosize;
877 	}
878 
879 	*vpp = vp;
880 	return (0);
881 }
882 
883 /*
884  * Delete from old mount point vnode list, if on one.
885  */
886 static void
887 delmntque(struct vnode *vp)
888 {
889 	struct mount *mp;
890 
891 	if (vp->v_mount == NULL)
892 		return;
893 	mp = vp->v_mount;
894 	MNT_ILOCK(mp);
895 	vp->v_mount = NULL;
896 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
897 		("bad mount point vnode list size"));
898 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
899 	mp->mnt_nvnodelistsize--;
900 	MNT_IUNLOCK(mp);
901 }
902 
903 /*
904  * Insert into list of vnodes for the new mount point, if available.
905  */
906 static void
907 insmntque(struct vnode *vp, struct mount *mp)
908 {
909 
910 	vp->v_mount = mp;
911 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
912 	MNT_ILOCK(vp->v_mount);
913 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
914 	mp->mnt_nvnodelistsize++;
915 	MNT_IUNLOCK(vp->v_mount);
916 }
917 
918 /*
919  * Flush out and invalidate all buffers associated with a bufobj
920  * Called with the underlying object locked.
921  */
922 int
923 bufobj_invalbuf(struct bufobj *bo, int flags, struct thread *td, int slpflag, int slptimeo)
924 {
925 	int error;
926 
927 	BO_LOCK(bo);
928 	if (flags & V_SAVE) {
929 		error = bufobj_wwait(bo, slpflag, slptimeo);
930 		if (error) {
931 			BO_UNLOCK(bo);
932 			return (error);
933 		}
934 		if (bo->bo_dirty.bv_cnt > 0) {
935 			BO_UNLOCK(bo);
936 			if ((error = BO_SYNC(bo, MNT_WAIT, td)) != 0)
937 				return (error);
938 			/*
939 			 * XXX We could save a lock/unlock if this was only
940 			 * enabled under INVARIANTS
941 			 */
942 			BO_LOCK(bo);
943 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
944 				panic("vinvalbuf: dirty bufs");
945 		}
946 	}
947 	/*
948 	 * If you alter this loop please notice that interlock is dropped and
949 	 * reacquired in flushbuflist.  Special care is needed to ensure that
950 	 * no race conditions occur from this.
951 	 */
952 	do {
953 		error = flushbuflist(&bo->bo_clean,
954 		    flags, bo, slpflag, slptimeo);
955 		if (error == 0)
956 			error = flushbuflist(&bo->bo_dirty,
957 			    flags, bo, slpflag, slptimeo);
958 		if (error != 0 && error != EAGAIN) {
959 			BO_UNLOCK(bo);
960 			return (error);
961 		}
962 	} while (error != 0);
963 
964 	/*
965 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
966 	 * have write I/O in-progress but if there is a VM object then the
967 	 * VM object can also have read-I/O in-progress.
968 	 */
969 	do {
970 		bufobj_wwait(bo, 0, 0);
971 		BO_UNLOCK(bo);
972 		if (bo->bo_object != NULL) {
973 			VM_OBJECT_LOCK(bo->bo_object);
974 			vm_object_pip_wait(bo->bo_object, "bovlbx");
975 			VM_OBJECT_UNLOCK(bo->bo_object);
976 		}
977 		BO_LOCK(bo);
978 	} while (bo->bo_numoutput > 0);
979 	BO_UNLOCK(bo);
980 
981 	/*
982 	 * Destroy the copy in the VM cache, too.
983 	 */
984 	if (bo->bo_object != NULL) {
985 		VM_OBJECT_LOCK(bo->bo_object);
986 		vm_object_page_remove(bo->bo_object, 0, 0,
987 			(flags & V_SAVE) ? TRUE : FALSE);
988 		VM_OBJECT_UNLOCK(bo->bo_object);
989 	}
990 
991 #ifdef INVARIANTS
992 	BO_LOCK(bo);
993 	if ((flags & (V_ALT | V_NORMAL)) == 0 &&
994 	    (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
995 		panic("vinvalbuf: flush failed");
996 	BO_UNLOCK(bo);
997 #endif
998 	return (0);
999 }
1000 
1001 /*
1002  * Flush out and invalidate all buffers associated with a vnode.
1003  * Called with the underlying object locked.
1004  */
1005 int
1006 vinvalbuf(struct vnode *vp, int flags, struct thread *td, int slpflag, int slptimeo)
1007 {
1008 
1009 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1010 	return (bufobj_invalbuf(&vp->v_bufobj, flags, td, slpflag, slptimeo));
1011 }
1012 
1013 /*
1014  * Flush out buffers on the specified list.
1015  *
1016  */
1017 static int
1018 flushbuflist(bufv, flags, bo, slpflag, slptimeo)
1019 	struct bufv *bufv;
1020 	int flags;
1021 	struct bufobj *bo;
1022 	int slpflag, slptimeo;
1023 {
1024 	struct buf *bp, *nbp;
1025 	int retval, error;
1026 
1027 	ASSERT_BO_LOCKED(bo);
1028 
1029 	retval = 0;
1030 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1031 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1032 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1033 			continue;
1034 		}
1035 		retval = EAGAIN;
1036 		error = BUF_TIMELOCK(bp,
1037 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
1038 		    "flushbuf", slpflag, slptimeo);
1039 		if (error) {
1040 			BO_LOCK(bo);
1041 			return (error != ENOLCK ? error : EAGAIN);
1042 		}
1043 		KASSERT(bp->b_bufobj == bo,
1044 	            ("wrong b_bufobj %p should be %p", bp->b_bufobj, bo));
1045 		if (bp->b_bufobj != bo) {	/* XXX: necessary ? */
1046 			BUF_UNLOCK(bp);
1047 			BO_LOCK(bo);
1048 			return (EAGAIN);
1049 		}
1050 		/*
1051 		 * XXX Since there are no node locks for NFS, I
1052 		 * believe there is a slight chance that a delayed
1053 		 * write will occur while sleeping just above, so
1054 		 * check for it.
1055 		 */
1056 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1057 		    (flags & V_SAVE)) {
1058 			bremfree(bp);
1059 			bp->b_flags |= B_ASYNC;
1060 			bwrite(bp);
1061 			BO_LOCK(bo);
1062 			return (EAGAIN);	/* XXX: why not loop ? */
1063 		}
1064 		bremfree(bp);
1065 		bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
1066 		bp->b_flags &= ~B_ASYNC;
1067 		brelse(bp);
1068 		BO_LOCK(bo);
1069 	}
1070 	return (retval);
1071 }
1072 
1073 /*
1074  * Truncate a file's buffer and pages to a specified length.  This
1075  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1076  * sync activity.
1077  */
1078 int
1079 vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td, off_t length, int blksize)
1080 {
1081 	struct buf *bp, *nbp;
1082 	int anyfreed;
1083 	int trunclbn;
1084 	struct bufobj *bo;
1085 
1086 	/*
1087 	 * Round up to the *next* lbn.
1088 	 */
1089 	trunclbn = (length + blksize - 1) / blksize;
1090 
1091 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1092 restart:
1093 	VI_LOCK(vp);
1094 	bo = &vp->v_bufobj;
1095 	anyfreed = 1;
1096 	for (;anyfreed;) {
1097 		anyfreed = 0;
1098 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1099 			if (bp->b_lblkno < trunclbn)
1100 				continue;
1101 			if (BUF_LOCK(bp,
1102 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1103 			    VI_MTX(vp)) == ENOLCK)
1104 				goto restart;
1105 
1106 			bremfree(bp);
1107 			bp->b_flags |= (B_INVAL | B_RELBUF);
1108 			bp->b_flags &= ~B_ASYNC;
1109 			brelse(bp);
1110 			anyfreed = 1;
1111 
1112 			if (nbp != NULL &&
1113 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1114 			    (nbp->b_vp != vp) ||
1115 			    (nbp->b_flags & B_DELWRI))) {
1116 				goto restart;
1117 			}
1118 			VI_LOCK(vp);
1119 		}
1120 
1121 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1122 			if (bp->b_lblkno < trunclbn)
1123 				continue;
1124 			if (BUF_LOCK(bp,
1125 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1126 			    VI_MTX(vp)) == ENOLCK)
1127 				goto restart;
1128 			bremfree(bp);
1129 			bp->b_flags |= (B_INVAL | B_RELBUF);
1130 			bp->b_flags &= ~B_ASYNC;
1131 			brelse(bp);
1132 			anyfreed = 1;
1133 			if (nbp != NULL &&
1134 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1135 			    (nbp->b_vp != vp) ||
1136 			    (nbp->b_flags & B_DELWRI) == 0)) {
1137 				goto restart;
1138 			}
1139 			VI_LOCK(vp);
1140 		}
1141 	}
1142 
1143 	if (length > 0) {
1144 restartsync:
1145 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1146 			if (bp->b_lblkno > 0)
1147 				continue;
1148 			/*
1149 			 * Since we hold the vnode lock this should only
1150 			 * fail if we're racing with the buf daemon.
1151 			 */
1152 			if (BUF_LOCK(bp,
1153 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1154 			    VI_MTX(vp)) == ENOLCK) {
1155 				goto restart;
1156 			}
1157 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1158 			    ("buf(%p) on dirty queue without DELWRI", bp));
1159 
1160 			bremfree(bp);
1161 			bawrite(bp);
1162 			VI_LOCK(vp);
1163 			goto restartsync;
1164 		}
1165 	}
1166 
1167 	bufobj_wwait(bo, 0, 0);
1168 	VI_UNLOCK(vp);
1169 	vnode_pager_setsize(vp, length);
1170 
1171 	return (0);
1172 }
1173 
1174 /*
1175  * buf_splay() - splay tree core for the clean/dirty list of buffers in
1176  * 		 a vnode.
1177  *
1178  *	NOTE: We have to deal with the special case of a background bitmap
1179  *	buffer, a situation where two buffers will have the same logical
1180  *	block offset.  We want (1) only the foreground buffer to be accessed
1181  *	in a lookup and (2) must differentiate between the foreground and
1182  *	background buffer in the splay tree algorithm because the splay
1183  *	tree cannot normally handle multiple entities with the same 'index'.
1184  *	We accomplish this by adding differentiating flags to the splay tree's
1185  *	numerical domain.
1186  */
1187 static
1188 struct buf *
1189 buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
1190 {
1191 	struct buf dummy;
1192 	struct buf *lefttreemax, *righttreemin, *y;
1193 
1194 	if (root == NULL)
1195 		return (NULL);
1196 	lefttreemax = righttreemin = &dummy;
1197 	for (;;) {
1198 		if (lblkno < root->b_lblkno ||
1199 		    (lblkno == root->b_lblkno &&
1200 		    (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1201 			if ((y = root->b_left) == NULL)
1202 				break;
1203 			if (lblkno < y->b_lblkno) {
1204 				/* Rotate right. */
1205 				root->b_left = y->b_right;
1206 				y->b_right = root;
1207 				root = y;
1208 				if ((y = root->b_left) == NULL)
1209 					break;
1210 			}
1211 			/* Link into the new root's right tree. */
1212 			righttreemin->b_left = root;
1213 			righttreemin = root;
1214 		} else if (lblkno > root->b_lblkno ||
1215 		    (lblkno == root->b_lblkno &&
1216 		    (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
1217 			if ((y = root->b_right) == NULL)
1218 				break;
1219 			if (lblkno > y->b_lblkno) {
1220 				/* Rotate left. */
1221 				root->b_right = y->b_left;
1222 				y->b_left = root;
1223 				root = y;
1224 				if ((y = root->b_right) == NULL)
1225 					break;
1226 			}
1227 			/* Link into the new root's left tree. */
1228 			lefttreemax->b_right = root;
1229 			lefttreemax = root;
1230 		} else {
1231 			break;
1232 		}
1233 		root = y;
1234 	}
1235 	/* Assemble the new root. */
1236 	lefttreemax->b_right = root->b_left;
1237 	righttreemin->b_left = root->b_right;
1238 	root->b_left = dummy.b_right;
1239 	root->b_right = dummy.b_left;
1240 	return (root);
1241 }
1242 
1243 static void
1244 buf_vlist_remove(struct buf *bp)
1245 {
1246 	struct buf *root;
1247 	struct bufv *bv;
1248 
1249 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1250 	ASSERT_BO_LOCKED(bp->b_bufobj);
1251 	if (bp->b_xflags & BX_VNDIRTY)
1252 		bv = &bp->b_bufobj->bo_dirty;
1253 	else
1254 		bv = &bp->b_bufobj->bo_clean;
1255 	if (bp != bv->bv_root) {
1256 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1257 		KASSERT(root == bp, ("splay lookup failed in remove"));
1258 	}
1259 	if (bp->b_left == NULL) {
1260 		root = bp->b_right;
1261 	} else {
1262 		root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
1263 		root->b_right = bp->b_right;
1264 	}
1265 	bv->bv_root = root;
1266 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1267 	bv->bv_cnt--;
1268 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1269 }
1270 
1271 /*
1272  * Add the buffer to the sorted clean or dirty block list using a
1273  * splay tree algorithm.
1274  *
1275  * NOTE: xflags is passed as a constant, optimizing this inline function!
1276  */
1277 static void
1278 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1279 {
1280 	struct buf *root;
1281 	struct bufv *bv;
1282 
1283 	ASSERT_BO_LOCKED(bo);
1284 	bp->b_xflags |= xflags;
1285 	if (xflags & BX_VNDIRTY)
1286 		bv = &bo->bo_dirty;
1287 	else
1288 		bv = &bo->bo_clean;
1289 
1290 	root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
1291 	if (root == NULL) {
1292 		bp->b_left = NULL;
1293 		bp->b_right = NULL;
1294 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
1295 	} else if (bp->b_lblkno < root->b_lblkno ||
1296 	    (bp->b_lblkno == root->b_lblkno &&
1297 	    (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
1298 		bp->b_left = root->b_left;
1299 		bp->b_right = root;
1300 		root->b_left = NULL;
1301 		TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
1302 	} else {
1303 		bp->b_right = root->b_right;
1304 		bp->b_left = root;
1305 		root->b_right = NULL;
1306 		TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
1307 	}
1308 	bv->bv_cnt++;
1309 	bv->bv_root = bp;
1310 }
1311 
1312 /*
1313  * Lookup a buffer using the splay tree.  Note that we specifically avoid
1314  * shadow buffers used in background bitmap writes.
1315  *
1316  * This code isn't quite efficient as it could be because we are maintaining
1317  * two sorted lists and do not know which list the block resides in.
1318  *
1319  * During a "make buildworld" the desired buffer is found at one of
1320  * the roots more than 60% of the time.  Thus, checking both roots
1321  * before performing either splay eliminates unnecessary splays on the
1322  * first tree splayed.
1323  */
1324 struct buf *
1325 gbincore(struct bufobj *bo, daddr_t lblkno)
1326 {
1327 	struct buf *bp;
1328 
1329 	ASSERT_BO_LOCKED(bo);
1330 	if ((bp = bo->bo_clean.bv_root) != NULL &&
1331 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1332 		return (bp);
1333 	if ((bp = bo->bo_dirty.bv_root) != NULL &&
1334 	    bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1335 		return (bp);
1336 	if ((bp = bo->bo_clean.bv_root) != NULL) {
1337 		bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
1338 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1339 			return (bp);
1340 	}
1341 	if ((bp = bo->bo_dirty.bv_root) != NULL) {
1342 		bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
1343 		if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
1344 			return (bp);
1345 	}
1346 	return (NULL);
1347 }
1348 
1349 /*
1350  * Associate a buffer with a vnode.
1351  */
1352 void
1353 bgetvp(struct vnode *vp, struct buf *bp)
1354 {
1355 
1356 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
1357 
1358 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
1359 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
1360 	    ("bgetvp: bp already attached! %p", bp));
1361 
1362 	ASSERT_VI_LOCKED(vp, "bgetvp");
1363 	vholdl(vp);
1364 	bp->b_vp = vp;
1365 	bp->b_bufobj = &vp->v_bufobj;
1366 	/*
1367 	 * Insert onto list for new vnode.
1368 	 */
1369 	buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
1370 }
1371 
1372 /*
1373  * Disassociate a buffer from a vnode.
1374  */
1375 void
1376 brelvp(struct buf *bp)
1377 {
1378 	struct bufobj *bo;
1379 	struct vnode *vp;
1380 
1381 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1382 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
1383 
1384 	/*
1385 	 * Delete from old vnode list, if on one.
1386 	 */
1387 	vp = bp->b_vp;		/* XXX */
1388 	bo = bp->b_bufobj;
1389 	BO_LOCK(bo);
1390 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1391 		buf_vlist_remove(bp);
1392 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1393 		bo->bo_flag &= ~BO_ONWORKLST;
1394 		mtx_lock(&sync_mtx);
1395 		LIST_REMOVE(bo, bo_synclist);
1396  		syncer_worklist_len--;
1397 		mtx_unlock(&sync_mtx);
1398 	}
1399 	vdropl(vp);
1400 	bp->b_vp = NULL;
1401 	bp->b_bufobj = NULL;
1402 	BO_UNLOCK(bo);
1403 }
1404 
1405 /*
1406  * Add an item to the syncer work queue.
1407  */
1408 static void
1409 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
1410 {
1411 	int slot;
1412 
1413 	ASSERT_BO_LOCKED(bo);
1414 
1415 	mtx_lock(&sync_mtx);
1416 	if (bo->bo_flag & BO_ONWORKLST)
1417 		LIST_REMOVE(bo, bo_synclist);
1418 	else {
1419 		bo->bo_flag |= BO_ONWORKLST;
1420  		syncer_worklist_len++;
1421 	}
1422 
1423 	if (delay > syncer_maxdelay - 2)
1424 		delay = syncer_maxdelay - 2;
1425 	slot = (syncer_delayno + delay) & syncer_mask;
1426 
1427 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
1428 	mtx_unlock(&sync_mtx);
1429 }
1430 
1431 static int
1432 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
1433 {
1434 	int error, len;
1435 
1436 	mtx_lock(&sync_mtx);
1437 	len = syncer_worklist_len - sync_vnode_count;
1438 	mtx_unlock(&sync_mtx);
1439 	error = SYSCTL_OUT(req, &len, sizeof(len));
1440 	return (error);
1441 }
1442 
1443 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
1444     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
1445 
1446 struct  proc *updateproc;
1447 static void sched_sync(void);
1448 static struct kproc_desc up_kp = {
1449 	"syncer",
1450 	sched_sync,
1451 	&updateproc
1452 };
1453 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
1454 
1455 static int
1456 sync_vnode(struct bufobj *bo, struct thread *td)
1457 {
1458 	struct vnode *vp;
1459 	struct mount *mp;
1460 
1461 	vp = bo->__bo_vnode; 	/* XXX */
1462 	if (VOP_ISLOCKED(vp, NULL) != 0)
1463 		return (1);
1464 	if (VI_TRYLOCK(vp) == 0)
1465 		return (1);
1466 	/*
1467 	 * We use vhold in case the vnode does not
1468 	 * successfully sync.  vhold prevents the vnode from
1469 	 * going away when we unlock the sync_mtx so that
1470 	 * we can acquire the vnode interlock.
1471 	 */
1472 	vholdl(vp);
1473 	mtx_unlock(&sync_mtx);
1474 	VI_UNLOCK(vp);
1475 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1476 		vdrop(vp);
1477 		mtx_lock(&sync_mtx);
1478 		return (1);
1479 	}
1480 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
1481 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
1482 	VOP_UNLOCK(vp, 0, td);
1483 	vn_finished_write(mp);
1484 	VI_LOCK(vp);
1485 	if ((bo->bo_flag & BO_ONWORKLST) != 0) {
1486 		/*
1487 		 * Put us back on the worklist.  The worklist
1488 		 * routine will remove us from our current
1489 		 * position and then add us back in at a later
1490 		 * position.
1491 		 */
1492 		vn_syncer_add_to_worklist(bo, syncdelay);
1493 	}
1494 	vdropl(vp);
1495 	VI_UNLOCK(vp);
1496 	mtx_lock(&sync_mtx);
1497 	return (0);
1498 }
1499 
1500 /*
1501  * System filesystem synchronizer daemon.
1502  */
1503 static void
1504 sched_sync(void)
1505 {
1506 	struct synclist *next;
1507 	struct synclist *slp;
1508 	struct bufobj *bo;
1509 	long starttime;
1510 	struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
1511 	static int dummychan;
1512 	int last_work_seen;
1513 	int net_worklist_len;
1514 	int syncer_final_iter;
1515 	int first_printf;
1516 	int error;
1517 
1518 	mtx_lock(&Giant);
1519 	last_work_seen = 0;
1520 	syncer_final_iter = 0;
1521 	first_printf = 1;
1522 	syncer_state = SYNCER_RUNNING;
1523 	starttime = time_second;
1524 
1525 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
1526 	    SHUTDOWN_PRI_LAST);
1527 
1528 	for (;;) {
1529 		mtx_lock(&sync_mtx);
1530 		if (syncer_state == SYNCER_FINAL_DELAY &&
1531 		    syncer_final_iter == 0) {
1532 			mtx_unlock(&sync_mtx);
1533 			kthread_suspend_check(td->td_proc);
1534 			mtx_lock(&sync_mtx);
1535 		}
1536 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
1537 		if (syncer_state != SYNCER_RUNNING &&
1538 		    starttime != time_second) {
1539 			if (first_printf) {
1540 				printf("\nSyncing disks, vnodes remaining...");
1541 				first_printf = 0;
1542 			}
1543 			printf("%d ", net_worklist_len);
1544 		}
1545 		starttime = time_second;
1546 
1547 		/*
1548 		 * Push files whose dirty time has expired.  Be careful
1549 		 * of interrupt race on slp queue.
1550 		 *
1551 		 * Skip over empty worklist slots when shutting down.
1552 		 */
1553 		do {
1554 			slp = &syncer_workitem_pending[syncer_delayno];
1555 			syncer_delayno += 1;
1556 			if (syncer_delayno == syncer_maxdelay)
1557 				syncer_delayno = 0;
1558 			next = &syncer_workitem_pending[syncer_delayno];
1559 			/*
1560 			 * If the worklist has wrapped since the
1561 			 * it was emptied of all but syncer vnodes,
1562 			 * switch to the FINAL_DELAY state and run
1563 			 * for one more second.
1564 			 */
1565 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
1566 			    net_worklist_len == 0 &&
1567 			    last_work_seen == syncer_delayno) {
1568 				syncer_state = SYNCER_FINAL_DELAY;
1569 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
1570 			}
1571 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
1572 		    syncer_worklist_len > 0);
1573 
1574 		/*
1575 		 * Keep track of the last time there was anything
1576 		 * on the worklist other than syncer vnodes.
1577 		 * Return to the SHUTTING_DOWN state if any
1578 		 * new work appears.
1579 		 */
1580 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
1581 			last_work_seen = syncer_delayno;
1582 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
1583 			syncer_state = SYNCER_SHUTTING_DOWN;
1584 		while ((bo = LIST_FIRST(slp)) != NULL) {
1585 			error = sync_vnode(bo, td);
1586 			if (error == 1) {
1587 				LIST_REMOVE(bo, bo_synclist);
1588 				LIST_INSERT_HEAD(next, bo, bo_synclist);
1589 				continue;
1590 			}
1591 		}
1592 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
1593 			syncer_final_iter--;
1594 		mtx_unlock(&sync_mtx);
1595 
1596 		/*
1597 		 * Do soft update processing.
1598 		 */
1599 		if (softdep_process_worklist_hook != NULL)
1600 			(*softdep_process_worklist_hook)(NULL);
1601 
1602 		/*
1603 		 * The variable rushjob allows the kernel to speed up the
1604 		 * processing of the filesystem syncer process. A rushjob
1605 		 * value of N tells the filesystem syncer to process the next
1606 		 * N seconds worth of work on its queue ASAP. Currently rushjob
1607 		 * is used by the soft update code to speed up the filesystem
1608 		 * syncer process when the incore state is getting so far
1609 		 * ahead of the disk that the kernel memory pool is being
1610 		 * threatened with exhaustion.
1611 		 */
1612 		mtx_lock(&sync_mtx);
1613 		if (rushjob > 0) {
1614 			rushjob -= 1;
1615 			mtx_unlock(&sync_mtx);
1616 			continue;
1617 		}
1618 		mtx_unlock(&sync_mtx);
1619 		/*
1620 		 * Just sleep for a short period if time between
1621 		 * iterations when shutting down to allow some I/O
1622 		 * to happen.
1623 		 *
1624 		 * If it has taken us less than a second to process the
1625 		 * current work, then wait. Otherwise start right over
1626 		 * again. We can still lose time if any single round
1627 		 * takes more than two seconds, but it does not really
1628 		 * matter as we are just trying to generally pace the
1629 		 * filesystem activity.
1630 		 */
1631 		if (syncer_state != SYNCER_RUNNING)
1632 			tsleep(&dummychan, PPAUSE, "syncfnl",
1633 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
1634 		else if (time_second == starttime)
1635 			tsleep(&lbolt, PPAUSE, "syncer", 0);
1636 	}
1637 }
1638 
1639 /*
1640  * Request the syncer daemon to speed up its work.
1641  * We never push it to speed up more than half of its
1642  * normal turn time, otherwise it could take over the cpu.
1643  */
1644 int
1645 speedup_syncer()
1646 {
1647 	struct thread *td;
1648 	int ret = 0;
1649 
1650 	td = FIRST_THREAD_IN_PROC(updateproc);
1651 	sleepq_remove(td, &lbolt);
1652 	mtx_lock(&sync_mtx);
1653 	if (rushjob < syncdelay / 2) {
1654 		rushjob += 1;
1655 		stat_rush_requests += 1;
1656 		ret = 1;
1657 	}
1658 	mtx_unlock(&sync_mtx);
1659 	return (ret);
1660 }
1661 
1662 /*
1663  * Tell the syncer to speed up its work and run though its work
1664  * list several times, then tell it to shut down.
1665  */
1666 static void
1667 syncer_shutdown(void *arg, int howto)
1668 {
1669 	struct thread *td;
1670 
1671 	if (howto & RB_NOSYNC)
1672 		return;
1673 	td = FIRST_THREAD_IN_PROC(updateproc);
1674 	sleepq_remove(td, &lbolt);
1675 	mtx_lock(&sync_mtx);
1676 	syncer_state = SYNCER_SHUTTING_DOWN;
1677 	rushjob = 0;
1678 	mtx_unlock(&sync_mtx);
1679 	kproc_shutdown(arg, howto);
1680 }
1681 
1682 /*
1683  * Reassign a buffer from one vnode to another.
1684  * Used to assign file specific control information
1685  * (indirect blocks) to the vnode to which they belong.
1686  */
1687 void
1688 reassignbuf(struct buf *bp)
1689 {
1690 	struct vnode *vp;
1691 	struct bufobj *bo;
1692 	int delay;
1693 
1694 	vp = bp->b_vp;
1695 	bo = bp->b_bufobj;
1696 	++reassignbufcalls;
1697 
1698 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
1699 	    bp, bp->b_vp, bp->b_flags);
1700 	/*
1701 	 * B_PAGING flagged buffers cannot be reassigned because their vp
1702 	 * is not fully linked in.
1703 	 */
1704 	if (bp->b_flags & B_PAGING)
1705 		panic("cannot reassign paging buffer");
1706 
1707 	/*
1708 	 * Delete from old vnode list, if on one.
1709 	 */
1710 	VI_LOCK(vp);
1711 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1712 		buf_vlist_remove(bp);
1713 	/*
1714 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1715 	 * of clean buffers.
1716 	 */
1717 	if (bp->b_flags & B_DELWRI) {
1718 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
1719 			switch (vp->v_type) {
1720 			case VDIR:
1721 				delay = dirdelay;
1722 				break;
1723 			case VCHR:
1724 				delay = metadelay;
1725 				break;
1726 			default:
1727 				delay = filedelay;
1728 			}
1729 			vn_syncer_add_to_worklist(bo, delay);
1730 		}
1731 		buf_vlist_add(bp, bo, BX_VNDIRTY);
1732 	} else {
1733 		buf_vlist_add(bp, bo, BX_VNCLEAN);
1734 
1735 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
1736 			mtx_lock(&sync_mtx);
1737 			LIST_REMOVE(bo, bo_synclist);
1738  			syncer_worklist_len--;
1739 			mtx_unlock(&sync_mtx);
1740 			bo->bo_flag &= ~BO_ONWORKLST;
1741 		}
1742 	}
1743 	VI_UNLOCK(vp);
1744 }
1745 
1746 static void
1747 v_incr_usecount(struct vnode *vp, int delta)
1748 {
1749 
1750 	vp->v_usecount += delta;
1751 	vp->v_holdcnt += delta;
1752 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
1753 		dev_lock();
1754 		vp->v_rdev->si_usecount += delta;
1755 		dev_unlock();
1756 	}
1757 }
1758 
1759 /*
1760  * Grab a particular vnode from the free list, increment its
1761  * reference count and lock it. The vnode lock bit is set if the
1762  * vnode is being eliminated in vgone. The process is awakened
1763  * when the transition is completed, and an error returned to
1764  * indicate that the vnode is no longer usable (possibly having
1765  * been changed to a new filesystem type).
1766  */
1767 int
1768 vget(vp, flags, td)
1769 	struct vnode *vp;
1770 	int flags;
1771 	struct thread *td;
1772 {
1773 	int oweinact;
1774 	int oldflags;
1775 	int error;
1776 
1777 	error = 0;
1778 	oldflags = flags;
1779 	oweinact = 0;
1780 	if ((flags & LK_INTERLOCK) == 0)
1781 		VI_LOCK(vp);
1782 	/*
1783 	 * If the inactive call was deferred because vput() was called
1784 	 * with a shared lock, we have to do it here before another thread
1785 	 * gets a reference to data that should be dead.
1786 	 */
1787 	if (vp->v_iflag & VI_OWEINACT) {
1788 		if (flags & LK_NOWAIT) {
1789 			VI_UNLOCK(vp);
1790 			return (EBUSY);
1791 		}
1792 		flags &= ~LK_TYPE_MASK;
1793 		flags |= LK_EXCLUSIVE;
1794 		oweinact = 1;
1795 	}
1796 	v_incr_usecount(vp, 1);
1797 	if (VSHOULDBUSY(vp))
1798 		vbusy(vp);
1799 	if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
1800 		VI_LOCK(vp);
1801 		/*
1802 		 * must expand vrele here because we do not want
1803 		 * to call VOP_INACTIVE if the reference count
1804 		 * drops back to zero since it was never really
1805 		 * active.
1806 		 */
1807 		v_incr_usecount(vp, -1);
1808 		if (VSHOULDFREE(vp))
1809 			vfree(vp);
1810 		else
1811 			vlruvp(vp);
1812 		VI_UNLOCK(vp);
1813 		return (error);
1814 	}
1815 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
1816 		panic("vget: vn_lock failed to return ENOENT\n");
1817 	if (oweinact) {
1818 		VI_LOCK(vp);
1819 		if (vp->v_iflag & VI_OWEINACT)
1820 			vinactive(vp, td);
1821 		VI_UNLOCK(vp);
1822 		if ((oldflags & LK_TYPE_MASK) == 0)
1823 			VOP_UNLOCK(vp, 0, td);
1824 	}
1825 	return (0);
1826 }
1827 
1828 /*
1829  * Increase the reference count of a vnode.
1830  */
1831 void
1832 vref(struct vnode *vp)
1833 {
1834 
1835 	VI_LOCK(vp);
1836 	v_incr_usecount(vp, 1);
1837 	VI_UNLOCK(vp);
1838 }
1839 
1840 /*
1841  * Return reference count of a vnode.
1842  *
1843  * The results of this call are only guaranteed when some mechanism other
1844  * than the VI lock is used to stop other processes from gaining references
1845  * to the vnode.  This may be the case if the caller holds the only reference.
1846  * This is also useful when stale data is acceptable as race conditions may
1847  * be accounted for by some other means.
1848  */
1849 int
1850 vrefcnt(struct vnode *vp)
1851 {
1852 	int usecnt;
1853 
1854 	VI_LOCK(vp);
1855 	usecnt = vp->v_usecount;
1856 	VI_UNLOCK(vp);
1857 
1858 	return (usecnt);
1859 }
1860 
1861 
1862 /*
1863  * Vnode put/release.
1864  * If count drops to zero, call inactive routine and return to freelist.
1865  */
1866 void
1867 vrele(vp)
1868 	struct vnode *vp;
1869 {
1870 	struct thread *td = curthread;	/* XXX */
1871 
1872 	KASSERT(vp != NULL, ("vrele: null vp"));
1873 
1874 	VI_LOCK(vp);
1875 
1876 	/* Skip this v_writecount check if we're going to panic below. */
1877 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
1878 	    ("vrele: missed vn_close"));
1879 
1880 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
1881 	    vp->v_usecount == 1)) {
1882 		v_incr_usecount(vp, -1);
1883 		VI_UNLOCK(vp);
1884 
1885 		return;
1886 	}
1887 	if (vp->v_usecount != 1) {
1888 #ifdef DIAGNOSTIC
1889 		vprint("vrele: negative ref count", vp);
1890 #endif
1891 		VI_UNLOCK(vp);
1892 		panic("vrele: negative ref cnt");
1893 	}
1894 	v_incr_usecount(vp, -1);
1895 	/*
1896 	 * We must call VOP_INACTIVE with the node locked. Mark
1897 	 * as VI_DOINGINACT to avoid recursion.
1898 	 */
1899 	if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
1900 		VI_LOCK(vp);
1901 		vinactive(vp, td);
1902 		VOP_UNLOCK(vp, 0, td);
1903 	} else
1904 		VI_LOCK(vp);
1905 	if (VSHOULDFREE(vp))
1906 		vfree(vp);
1907 	else
1908 		vlruvp(vp);
1909 	VI_UNLOCK(vp);
1910 }
1911 
1912 /*
1913  * Release an already locked vnode.  This give the same effects as
1914  * unlock+vrele(), but takes less time and avoids releasing and
1915  * re-aquiring the lock (as vrele() aquires the lock internally.)
1916  */
1917 void
1918 vput(vp)
1919 	struct vnode *vp;
1920 {
1921 	struct thread *td = curthread;	/* XXX */
1922 	int error;
1923 
1924 	KASSERT(vp != NULL, ("vput: null vp"));
1925 	ASSERT_VOP_LOCKED(vp, "vput");
1926 	VI_LOCK(vp);
1927 	/* Skip this v_writecount check if we're going to panic below. */
1928 	VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
1929 	    ("vput: missed vn_close"));
1930 	error = 0;
1931 
1932 	if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
1933 	    vp->v_usecount == 1)) {
1934 		v_incr_usecount(vp, -1);
1935 		VOP_UNLOCK(vp, LK_INTERLOCK, td);
1936 		return;
1937 	}
1938 
1939 	if (vp->v_usecount != 1) {
1940 #ifdef DIAGNOSTIC
1941 		vprint("vput: negative ref count", vp);
1942 #endif
1943 		panic("vput: negative ref cnt");
1944 	}
1945 	v_incr_usecount(vp, -1);
1946 	vp->v_iflag |= VI_OWEINACT;
1947 	if (VOP_ISLOCKED(vp, NULL) != LK_EXCLUSIVE) {
1948 		error = VOP_LOCK(vp, LK_EXCLUPGRADE|LK_INTERLOCK|LK_NOWAIT, td);
1949 		VI_LOCK(vp);
1950 		if (error)
1951 			goto done;
1952 	}
1953 	if (vp->v_iflag & VI_OWEINACT)
1954 		vinactive(vp, td);
1955 	VOP_UNLOCK(vp, 0, td);
1956 done:
1957 	if (VSHOULDFREE(vp))
1958 		vfree(vp);
1959 	else
1960 		vlruvp(vp);
1961 	VI_UNLOCK(vp);
1962 }
1963 
1964 /*
1965  * Somebody doesn't want the vnode recycled.
1966  */
1967 void
1968 vhold(struct vnode *vp)
1969 {
1970 
1971 	VI_LOCK(vp);
1972 	vholdl(vp);
1973 	VI_UNLOCK(vp);
1974 }
1975 
1976 void
1977 vholdl(struct vnode *vp)
1978 {
1979 
1980 	vp->v_holdcnt++;
1981 	if (VSHOULDBUSY(vp))
1982 		vbusy(vp);
1983 }
1984 
1985 /*
1986  * Note that there is one less who cares about this vnode.  vdrop() is the
1987  * opposite of vhold().
1988  */
1989 void
1990 vdrop(struct vnode *vp)
1991 {
1992 
1993 	VI_LOCK(vp);
1994 	vdropl(vp);
1995 	VI_UNLOCK(vp);
1996 }
1997 
1998 static void
1999 vdropl(struct vnode *vp)
2000 {
2001 
2002 	if (vp->v_holdcnt <= 0)
2003 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2004 	vp->v_holdcnt--;
2005 	if (VSHOULDFREE(vp))
2006 		vfree(vp);
2007 	else
2008 		vlruvp(vp);
2009 }
2010 
2011 static void
2012 vinactive(struct vnode *vp, struct thread *td)
2013 {
2014 	ASSERT_VOP_LOCKED(vp, "vinactive");
2015 	ASSERT_VI_LOCKED(vp, "vinactive");
2016 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
2017 	    ("vinactive: recursed on VI_DOINGINACT"));
2018 	vp->v_iflag |= VI_DOINGINACT;
2019 	VI_UNLOCK(vp);
2020 	VOP_INACTIVE(vp, td);
2021 	VI_LOCK(vp);
2022 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
2023 	    ("vinactive: lost VI_DOINGINACT"));
2024 	vp->v_iflag &= ~(VI_DOINGINACT|VI_OWEINACT);
2025 }
2026 
2027 /*
2028  * Remove any vnodes in the vnode table belonging to mount point mp.
2029  *
2030  * If FORCECLOSE is not specified, there should not be any active ones,
2031  * return error if any are found (nb: this is a user error, not a
2032  * system error). If FORCECLOSE is specified, detach any active vnodes
2033  * that are found.
2034  *
2035  * If WRITECLOSE is set, only flush out regular file vnodes open for
2036  * writing.
2037  *
2038  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
2039  *
2040  * `rootrefs' specifies the base reference count for the root vnode
2041  * of this filesystem. The root vnode is considered busy if its
2042  * v_usecount exceeds this value. On a successful return, vflush(, td)
2043  * will call vrele() on the root vnode exactly rootrefs times.
2044  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
2045  * be zero.
2046  */
2047 #ifdef DIAGNOSTIC
2048 static int busyprt = 0;		/* print out busy vnodes */
2049 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
2050 #endif
2051 
2052 int
2053 vflush(mp, rootrefs, flags, td)
2054 	struct mount *mp;
2055 	int rootrefs;
2056 	int flags;
2057 	struct thread *td;
2058 {
2059 	struct vnode *vp, *nvp, *rootvp = NULL;
2060 	struct vattr vattr;
2061 	int busy = 0, error;
2062 
2063 	if (rootrefs > 0) {
2064 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
2065 		    ("vflush: bad args"));
2066 		/*
2067 		 * Get the filesystem root vnode. We can vput() it
2068 		 * immediately, since with rootrefs > 0, it won't go away.
2069 		 */
2070 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
2071 			return (error);
2072 		vput(rootvp);
2073 
2074 	}
2075 	MNT_ILOCK(mp);
2076 loop:
2077 	MNT_VNODE_FOREACH(vp, mp, nvp) {
2078 
2079 		VI_LOCK(vp);
2080 		MNT_IUNLOCK(mp);
2081 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
2082 		if (error) {
2083 			MNT_ILOCK(mp);
2084 			goto loop;
2085 		}
2086 		/*
2087 		 * Skip over a vnodes marked VV_SYSTEM.
2088 		 */
2089 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
2090 			VOP_UNLOCK(vp, 0, td);
2091 			MNT_ILOCK(mp);
2092 			continue;
2093 		}
2094 		/*
2095 		 * If WRITECLOSE is set, flush out unlinked but still open
2096 		 * files (even if open only for reading) and regular file
2097 		 * vnodes open for writing.
2098 		 */
2099 		if (flags & WRITECLOSE) {
2100 			error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
2101 			VI_LOCK(vp);
2102 
2103 			if ((vp->v_type == VNON ||
2104 			    (error == 0 && vattr.va_nlink > 0)) &&
2105 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
2106 				VOP_UNLOCK(vp, LK_INTERLOCK, td);
2107 				MNT_ILOCK(mp);
2108 				continue;
2109 			}
2110 		} else
2111 			VI_LOCK(vp);
2112 		/*
2113 		 * With v_usecount == 0, all we need to do is clear out the
2114 		 * vnode data structures and we are done.
2115 		 */
2116 		if (vp->v_usecount == 0) {
2117 			vgonel(vp, td);
2118 			VOP_UNLOCK(vp, 0, td);
2119 			MNT_ILOCK(mp);
2120 			continue;
2121 		}
2122 		/*
2123 		 * If FORCECLOSE is set, forcibly close the vnode. For block
2124 		 * or character devices, revert to an anonymous device. For
2125 		 * all other files, just kill them.
2126 		 */
2127 		if (flags & FORCECLOSE) {
2128 			VNASSERT(vp->v_type != VCHR && vp->v_type != VBLK, vp,
2129 			    ("device VNODE %p is FORCECLOSED", vp));
2130 			vgonel(vp, td);
2131 			VOP_UNLOCK(vp, 0, td);
2132 			MNT_ILOCK(mp);
2133 			continue;
2134 		}
2135 		VOP_UNLOCK(vp, 0, td);
2136 #ifdef DIAGNOSTIC
2137 		if (busyprt)
2138 			vprint("vflush: busy vnode", vp);
2139 #endif
2140 		VI_UNLOCK(vp);
2141 		MNT_ILOCK(mp);
2142 		busy++;
2143 	}
2144 	MNT_IUNLOCK(mp);
2145 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
2146 		/*
2147 		 * If just the root vnode is busy, and if its refcount
2148 		 * is equal to `rootrefs', then go ahead and kill it.
2149 		 */
2150 		VI_LOCK(rootvp);
2151 		KASSERT(busy > 0, ("vflush: not busy"));
2152 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
2153 		    ("vflush: usecount %d < rootrefs %d",
2154 		     rootvp->v_usecount, rootrefs));
2155 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
2156 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK, td);
2157 			vgone(rootvp);
2158 			VOP_UNLOCK(rootvp, 0, td);
2159 			busy = 0;
2160 		} else
2161 			VI_UNLOCK(rootvp);
2162 	}
2163 	if (busy)
2164 		return (EBUSY);
2165 	for (; rootrefs > 0; rootrefs--)
2166 		vrele(rootvp);
2167 	return (0);
2168 }
2169 
2170 /*
2171  * This moves a now (likely recyclable) vnode to the end of the
2172  * mountlist.  XXX However, it is temporarily disabled until we
2173  * can clean up ffs_sync() and friends, which have loop restart
2174  * conditions which this code causes to operate O(N^2).
2175  */
2176 static void
2177 vlruvp(struct vnode *vp)
2178 {
2179 #if 0
2180 	struct mount *mp;
2181 
2182 	if ((mp = vp->v_mount) != NULL) {
2183 		MNT_ILOCK(mp);
2184 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2185 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2186 		MNT_IUNLOCK(mp);
2187 	}
2188 #endif
2189 }
2190 
2191 /*
2192  * Recycle an unused vnode to the front of the free list.
2193  * Release the passed interlock if the vnode will be recycled.
2194  */
2195 int
2196 vrecycle(struct vnode *vp, struct thread *td)
2197 {
2198 
2199 	ASSERT_VOP_LOCKED(vp, "vrecycle");
2200 	VI_LOCK(vp);
2201 	if (vp->v_usecount == 0) {
2202 		vgonel(vp, td);
2203 		return (1);
2204 	}
2205 	VI_UNLOCK(vp);
2206 	return (0);
2207 }
2208 
2209 /*
2210  * Eliminate all activity associated with a vnode
2211  * in preparation for reuse.
2212  */
2213 void
2214 vgone(struct vnode *vp)
2215 {
2216 	struct thread *td = curthread;	/* XXX */
2217 	ASSERT_VOP_LOCKED(vp, "vgone");
2218 
2219 	VI_LOCK(vp);
2220 	vgonel(vp, td);
2221 }
2222 
2223 /*
2224  * vgone, with the vp interlock held.
2225  */
2226 void
2227 vgonel(struct vnode *vp, struct thread *td)
2228 {
2229 	int oweinact;
2230 	int active;
2231 	int doomed;
2232 
2233 	ASSERT_VOP_LOCKED(vp, "vgonel");
2234 	ASSERT_VI_LOCKED(vp, "vgonel");
2235 
2236 	/*
2237 	 * Check to see if the vnode is in use. If so we have to reference it
2238 	 * before we clean it out so that its count cannot fall to zero and
2239 	 * generate a race against ourselves to recycle it.
2240 	 */
2241 	if ((active = vp->v_usecount))
2242 		v_incr_usecount(vp, 1);
2243 
2244 	/*
2245 	 * See if we're already doomed, if so, this is coming from a
2246 	 * successful vtryrecycle();
2247 	 */
2248 	doomed = (vp->v_iflag & VI_DOOMED);
2249 	vp->v_iflag |= VI_DOOMED;
2250 	vp->v_vxthread = curthread;
2251 	oweinact = (vp->v_iflag & VI_OWEINACT);
2252 	VI_UNLOCK(vp);
2253 
2254 	/*
2255 	 * Clean out any buffers associated with the vnode.
2256 	 * If the flush fails, just toss the buffers.
2257 	 */
2258 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
2259 		(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
2260 	if (vinvalbuf(vp, V_SAVE, td, 0, 0) != 0)
2261 		vinvalbuf(vp, 0, td, 0, 0);
2262 
2263 	/*
2264 	 * If purging an active vnode, it must be closed and
2265 	 * deactivated before being reclaimed.
2266 	 */
2267 	if (active)
2268 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
2269 	if (oweinact || active) {
2270 		VI_LOCK(vp);
2271 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
2272 			vinactive(vp, td);
2273 		VI_UNLOCK(vp);
2274 	}
2275 	/*
2276 	 * Reclaim the vnode.
2277 	 */
2278 	if (VOP_RECLAIM(vp, td))
2279 		panic("vgone: cannot reclaim");
2280 
2281 	VNASSERT(vp->v_object == NULL, vp,
2282 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
2283 
2284 	/*
2285 	 * Delete from old mount point vnode list.
2286 	 */
2287 	delmntque(vp);
2288 	cache_purge(vp);
2289 	VI_LOCK(vp);
2290 	if (active) {
2291 		v_incr_usecount(vp, -1);
2292 		VNASSERT(vp->v_usecount >= 0, vp, ("vgone: bad ref count"));
2293 	}
2294 	/*
2295 	 * Done with purge, reset to the standard lock and
2296 	 * notify sleepers of the grim news.
2297 	 */
2298 	vp->v_vnlock = &vp->v_lock;
2299 	vp->v_op = &dead_vnodeops;
2300 	vp->v_tag = "none";
2301 	vp->v_type = VBAD;
2302 	vp->v_vxthread = NULL;
2303 
2304 	/*
2305 	 * If it is on the freelist and not already at the head,
2306 	 * move it to the head of the list. The test of the
2307 	 * VDOOMED flag and the reference count of zero is because
2308 	 * it will be removed from the free list by getnewvnode,
2309 	 * but will not have its reference count incremented until
2310 	 * after calling vgone. If the reference count were
2311 	 * incremented first, vgone would (incorrectly) try to
2312 	 * close the previous instance of the underlying object.
2313 	 */
2314 	if (vp->v_holdcnt == 0 && !doomed) {
2315 		mtx_lock(&vnode_free_list_mtx);
2316 		if (vp->v_iflag & VI_FREE) {
2317 			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2318 		} else {
2319 			vp->v_iflag |= VI_FREE;
2320 			freevnodes++;
2321 		}
2322 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2323 		mtx_unlock(&vnode_free_list_mtx);
2324 	}
2325 	VI_UNLOCK(vp);
2326 }
2327 
2328 /*
2329  * Calculate the total number of references to a special device.
2330  */
2331 int
2332 vcount(vp)
2333 	struct vnode *vp;
2334 {
2335 	int count;
2336 
2337 	dev_lock();
2338 	count = vp->v_rdev->si_usecount;
2339 	dev_unlock();
2340 	return (count);
2341 }
2342 
2343 /*
2344  * Same as above, but using the struct cdev *as argument
2345  */
2346 int
2347 count_dev(dev)
2348 	struct cdev *dev;
2349 {
2350 	int count;
2351 
2352 	dev_lock();
2353 	count = dev->si_usecount;
2354 	dev_unlock();
2355 	return(count);
2356 }
2357 
2358 /*
2359  * Print out a description of a vnode.
2360  */
2361 static char *typename[] =
2362 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
2363 
2364 void
2365 vn_printf(struct vnode *vp, const char *fmt, ...)
2366 {
2367 	va_list ap;
2368 	char buf[96];
2369 
2370 	va_start(ap, fmt);
2371 	vprintf(fmt, ap);
2372 	va_end(ap);
2373 	printf("%p: ", (void *)vp);
2374 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
2375 	printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
2376 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
2377 	buf[0] = '\0';
2378 	buf[1] = '\0';
2379 	if (vp->v_vflag & VV_ROOT)
2380 		strcat(buf, "|VV_ROOT");
2381 	if (vp->v_vflag & VV_TEXT)
2382 		strcat(buf, "|VV_TEXT");
2383 	if (vp->v_vflag & VV_SYSTEM)
2384 		strcat(buf, "|VV_SYSTEM");
2385 	if (vp->v_iflag & VI_DOOMED)
2386 		strcat(buf, "|VI_DOOMED");
2387 	if (vp->v_iflag & VI_FREE)
2388 		strcat(buf, "|VI_FREE");
2389 	printf("    flags (%s)\n", buf + 1);
2390 	if (mtx_owned(VI_MTX(vp)))
2391 		printf(" VI_LOCKed");
2392 	if (vp->v_object != NULL)
2393 		printf("    v_object %p ref %d pages %d\n",
2394 		    vp->v_object, vp->v_object->ref_count,
2395 		    vp->v_object->resident_page_count);
2396 	printf("    ");
2397 	lockmgr_printinfo(vp->v_vnlock);
2398 	printf("\n");
2399 	if (vp->v_data != NULL)
2400 		VOP_PRINT(vp);
2401 }
2402 
2403 #ifdef DDB
2404 #include <ddb/ddb.h>
2405 /*
2406  * List all of the locked vnodes in the system.
2407  * Called when debugging the kernel.
2408  */
2409 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
2410 {
2411 	struct mount *mp, *nmp;
2412 	struct vnode *vp;
2413 
2414 	/*
2415 	 * Note: because this is DDB, we can't obey the locking semantics
2416 	 * for these structures, which means we could catch an inconsistent
2417 	 * state and dereference a nasty pointer.  Not much to be done
2418 	 * about that.
2419 	 */
2420 	printf("Locked vnodes\n");
2421 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2422 		nmp = TAILQ_NEXT(mp, mnt_list);
2423 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2424 			if (VOP_ISLOCKED(vp, NULL))
2425 				vprint("", vp);
2426 		}
2427 		nmp = TAILQ_NEXT(mp, mnt_list);
2428 	}
2429 }
2430 #endif
2431 
2432 /*
2433  * Fill in a struct xvfsconf based on a struct vfsconf.
2434  */
2435 static void
2436 vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
2437 {
2438 
2439 	strcpy(xvfsp->vfc_name, vfsp->vfc_name);
2440 	xvfsp->vfc_typenum = vfsp->vfc_typenum;
2441 	xvfsp->vfc_refcount = vfsp->vfc_refcount;
2442 	xvfsp->vfc_flags = vfsp->vfc_flags;
2443 	/*
2444 	 * These are unused in userland, we keep them
2445 	 * to not break binary compatibility.
2446 	 */
2447 	xvfsp->vfc_vfsops = NULL;
2448 	xvfsp->vfc_next = NULL;
2449 }
2450 
2451 /*
2452  * Top level filesystem related information gathering.
2453  */
2454 static int
2455 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
2456 {
2457 	struct vfsconf *vfsp;
2458 	struct xvfsconf xvfsp;
2459 	int error;
2460 
2461 	error = 0;
2462 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2463 		vfsconf2x(vfsp, &xvfsp);
2464 		error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
2465 		if (error)
2466 			break;
2467 	}
2468 	return (error);
2469 }
2470 
2471 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
2472     "S,xvfsconf", "List of all configured filesystems");
2473 
2474 #ifndef BURN_BRIDGES
2475 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
2476 
2477 static int
2478 vfs_sysctl(SYSCTL_HANDLER_ARGS)
2479 {
2480 	int *name = (int *)arg1 - 1;	/* XXX */
2481 	u_int namelen = arg2 + 1;	/* XXX */
2482 	struct vfsconf *vfsp;
2483 	struct xvfsconf xvfsp;
2484 
2485 	printf("WARNING: userland calling deprecated sysctl, "
2486 	    "please rebuild world\n");
2487 
2488 #if 1 || defined(COMPAT_PRELITE2)
2489 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2490 	if (namelen == 1)
2491 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2492 #endif
2493 
2494 	switch (name[1]) {
2495 	case VFS_MAXTYPENUM:
2496 		if (namelen != 2)
2497 			return (ENOTDIR);
2498 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2499 	case VFS_CONF:
2500 		if (namelen != 3)
2501 			return (ENOTDIR);	/* overloaded */
2502 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
2503 			if (vfsp->vfc_typenum == name[2])
2504 				break;
2505 		if (vfsp == NULL)
2506 			return (EOPNOTSUPP);
2507 		vfsconf2x(vfsp, &xvfsp);
2508 		return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
2509 	}
2510 	return (EOPNOTSUPP);
2511 }
2512 
2513 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
2514 	vfs_sysctl, "Generic filesystem");
2515 
2516 #if 1 || defined(COMPAT_PRELITE2)
2517 
2518 static int
2519 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2520 {
2521 	int error;
2522 	struct vfsconf *vfsp;
2523 	struct ovfsconf ovfs;
2524 
2525 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
2526 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2527 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2528 		ovfs.vfc_index = vfsp->vfc_typenum;
2529 		ovfs.vfc_refcount = vfsp->vfc_refcount;
2530 		ovfs.vfc_flags = vfsp->vfc_flags;
2531 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2532 		if (error)
2533 			return error;
2534 	}
2535 	return 0;
2536 }
2537 
2538 #endif /* 1 || COMPAT_PRELITE2 */
2539 #endif /* !BURN_BRIDGES */
2540 
2541 #define KINFO_VNODESLOP		10
2542 #ifdef notyet
2543 /*
2544  * Dump vnode list (via sysctl).
2545  */
2546 /* ARGSUSED */
2547 static int
2548 sysctl_vnode(SYSCTL_HANDLER_ARGS)
2549 {
2550 	struct xvnode *xvn;
2551 	struct thread *td = req->td;
2552 	struct mount *mp;
2553 	struct vnode *vp;
2554 	int error, len, n;
2555 
2556 	/*
2557 	 * Stale numvnodes access is not fatal here.
2558 	 */
2559 	req->lock = 0;
2560 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
2561 	if (!req->oldptr)
2562 		/* Make an estimate */
2563 		return (SYSCTL_OUT(req, 0, len));
2564 
2565 	error = sysctl_wire_old_buffer(req, 0);
2566 	if (error != 0)
2567 		return (error);
2568 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
2569 	n = 0;
2570 	mtx_lock(&mountlist_mtx);
2571 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2572 		if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
2573 			continue;
2574 		MNT_ILOCK(mp);
2575 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
2576 			if (n == len)
2577 				break;
2578 			vref(vp);
2579 			xvn[n].xv_size = sizeof *xvn;
2580 			xvn[n].xv_vnode = vp;
2581 			xvn[n].xv_id = 0;	/* XXX compat */
2582 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
2583 			XV_COPY(usecount);
2584 			XV_COPY(writecount);
2585 			XV_COPY(holdcnt);
2586 			XV_COPY(mount);
2587 			XV_COPY(numoutput);
2588 			XV_COPY(type);
2589 #undef XV_COPY
2590 			xvn[n].xv_flag = vp->v_vflag;
2591 
2592 			switch (vp->v_type) {
2593 			case VREG:
2594 			case VDIR:
2595 			case VLNK:
2596 				break;
2597 			case VBLK:
2598 			case VCHR:
2599 				if (vp->v_rdev == NULL) {
2600 					vrele(vp);
2601 					continue;
2602 				}
2603 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
2604 				break;
2605 			case VSOCK:
2606 				xvn[n].xv_socket = vp->v_socket;
2607 				break;
2608 			case VFIFO:
2609 				xvn[n].xv_fifo = vp->v_fifoinfo;
2610 				break;
2611 			case VNON:
2612 			case VBAD:
2613 			default:
2614 				/* shouldn't happen? */
2615 				vrele(vp);
2616 				continue;
2617 			}
2618 			vrele(vp);
2619 			++n;
2620 		}
2621 		MNT_IUNLOCK(mp);
2622 		mtx_lock(&mountlist_mtx);
2623 		vfs_unbusy(mp, td);
2624 		if (n == len)
2625 			break;
2626 	}
2627 	mtx_unlock(&mountlist_mtx);
2628 
2629 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
2630 	free(xvn, M_TEMP);
2631 	return (error);
2632 }
2633 
2634 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2635 	0, 0, sysctl_vnode, "S,xvnode", "");
2636 #endif
2637 
2638 /*
2639  * Unmount all filesystems. The list is traversed in reverse order
2640  * of mounting to avoid dependencies.
2641  */
2642 void
2643 vfs_unmountall()
2644 {
2645 	struct mount *mp;
2646 	struct thread *td;
2647 	int error;
2648 
2649 	if (curthread != NULL)
2650 		td = curthread;
2651 	else
2652 		td = FIRST_THREAD_IN_PROC(initproc); /* XXX XXX proc0? */
2653 	/*
2654 	 * Since this only runs when rebooting, it is not interlocked.
2655 	 */
2656 	while(!TAILQ_EMPTY(&mountlist)) {
2657 		mp = TAILQ_LAST(&mountlist, mntlist);
2658 		error = dounmount(mp, MNT_FORCE, td);
2659 		if (error) {
2660 			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2661 			printf("unmount of %s failed (",
2662 			    mp->mnt_stat.f_mntonname);
2663 			if (error == EBUSY)
2664 				printf("BUSY)\n");
2665 			else
2666 				printf("%d)\n", error);
2667 		} else {
2668 			/* The unmount has removed mp from the mountlist */
2669 		}
2670 	}
2671 }
2672 
2673 /*
2674  * perform msync on all vnodes under a mount point
2675  * the mount point must be locked.
2676  */
2677 void
2678 vfs_msync(struct mount *mp, int flags)
2679 {
2680 	struct vnode *vp, *nvp;
2681 	struct vm_object *obj;
2682 	int tries;
2683 
2684 	tries = 5;
2685 	MNT_ILOCK(mp);
2686 loop:
2687 	TAILQ_FOREACH_SAFE(vp, &mp->mnt_nvnodelist, v_nmntvnodes, nvp) {
2688 		if (vp->v_mount != mp) {
2689 			if (--tries > 0)
2690 				goto loop;
2691 			break;
2692 		}
2693 
2694 		VI_LOCK(vp);
2695 		if ((vp->v_iflag & VI_OBJDIRTY) &&
2696 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
2697 			MNT_IUNLOCK(mp);
2698 			if (!vget(vp,
2699 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
2700 			    curthread)) {
2701 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
2702 					vput(vp);
2703 					MNT_ILOCK(mp);
2704 					continue;
2705 				}
2706 
2707 				obj = vp->v_object;
2708 				if (obj != NULL) {
2709 					VM_OBJECT_LOCK(obj);
2710 					vm_object_page_clean(obj, 0, 0,
2711 					    flags == MNT_WAIT ?
2712 					    OBJPC_SYNC : OBJPC_NOSYNC);
2713 					VM_OBJECT_UNLOCK(obj);
2714 				}
2715 				vput(vp);
2716 			}
2717 			MNT_ILOCK(mp);
2718 			if (TAILQ_NEXT(vp, v_nmntvnodes) != nvp) {
2719 				if (--tries > 0)
2720 					goto loop;
2721 				break;
2722 			}
2723 		} else
2724 			VI_UNLOCK(vp);
2725 	}
2726 	MNT_IUNLOCK(mp);
2727 }
2728 
2729 /*
2730  * Mark a vnode as free, putting it up for recycling.
2731  */
2732 static void
2733 vfree(struct vnode *vp)
2734 {
2735 
2736 	ASSERT_VI_LOCKED(vp, "vfree");
2737 	mtx_lock(&vnode_free_list_mtx);
2738 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
2739 	VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
2740 	if (vp->v_iflag & (VI_AGE|VI_DOOMED)) {
2741 		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2742 	} else {
2743 		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2744 	}
2745 	freevnodes++;
2746 	mtx_unlock(&vnode_free_list_mtx);
2747 	vp->v_iflag &= ~(VI_AGE|VI_DOOMED);
2748 	vp->v_iflag |= VI_FREE;
2749 }
2750 
2751 /*
2752  * Opposite of vfree() - mark a vnode as in use.
2753  */
2754 static void
2755 vbusy(struct vnode *vp)
2756 {
2757 
2758 	ASSERT_VI_LOCKED(vp, "vbusy");
2759 	VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
2760 
2761 	mtx_lock(&vnode_free_list_mtx);
2762 	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2763 	freevnodes--;
2764 	mtx_unlock(&vnode_free_list_mtx);
2765 
2766 	vp->v_iflag &= ~(VI_FREE|VI_AGE);
2767 }
2768 
2769 /*
2770  * Initalize per-vnode helper structure to hold poll-related state.
2771  */
2772 void
2773 v_addpollinfo(struct vnode *vp)
2774 {
2775 	struct vpollinfo *vi;
2776 
2777 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
2778 	if (vp->v_pollinfo != NULL) {
2779 		uma_zfree(vnodepoll_zone, vi);
2780 		return;
2781 	}
2782 	vp->v_pollinfo = vi;
2783 	mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
2784 	knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note,
2785 	    &vp->v_pollinfo->vpi_lock);
2786 }
2787 
2788 /*
2789  * Record a process's interest in events which might happen to
2790  * a vnode.  Because poll uses the historic select-style interface
2791  * internally, this routine serves as both the ``check for any
2792  * pending events'' and the ``record my interest in future events''
2793  * functions.  (These are done together, while the lock is held,
2794  * to avoid race conditions.)
2795  */
2796 int
2797 vn_pollrecord(vp, td, events)
2798 	struct vnode *vp;
2799 	struct thread *td;
2800 	short events;
2801 {
2802 
2803 	if (vp->v_pollinfo == NULL)
2804 		v_addpollinfo(vp);
2805 	mtx_lock(&vp->v_pollinfo->vpi_lock);
2806 	if (vp->v_pollinfo->vpi_revents & events) {
2807 		/*
2808 		 * This leaves events we are not interested
2809 		 * in available for the other process which
2810 		 * which presumably had requested them
2811 		 * (otherwise they would never have been
2812 		 * recorded).
2813 		 */
2814 		events &= vp->v_pollinfo->vpi_revents;
2815 		vp->v_pollinfo->vpi_revents &= ~events;
2816 
2817 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
2818 		return events;
2819 	}
2820 	vp->v_pollinfo->vpi_events |= events;
2821 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
2822 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
2823 	return 0;
2824 }
2825 
2826 /*
2827  * Routine to create and manage a filesystem syncer vnode.
2828  */
2829 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
2830 static int	sync_fsync(struct  vop_fsync_args *);
2831 static int	sync_inactive(struct  vop_inactive_args *);
2832 static int	sync_reclaim(struct  vop_reclaim_args *);
2833 
2834 static struct vop_vector sync_vnodeops = {
2835 	.vop_bypass =	VOP_EOPNOTSUPP,
2836 	.vop_close =	sync_close,		/* close */
2837 	.vop_fsync =	sync_fsync,		/* fsync */
2838 	.vop_inactive =	sync_inactive,	/* inactive */
2839 	.vop_reclaim =	sync_reclaim,	/* reclaim */
2840 	.vop_lock =	vop_stdlock,	/* lock */
2841 	.vop_unlock =	vop_stdunlock,	/* unlock */
2842 	.vop_islocked =	vop_stdislocked,	/* islocked */
2843 };
2844 
2845 /*
2846  * Create a new filesystem syncer vnode for the specified mount point.
2847  */
2848 int
2849 vfs_allocate_syncvnode(mp)
2850 	struct mount *mp;
2851 {
2852 	struct vnode *vp;
2853 	static long start, incr, next;
2854 	int error;
2855 
2856 	/* Allocate a new vnode */
2857 	if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
2858 		mp->mnt_syncer = NULL;
2859 		return (error);
2860 	}
2861 	vp->v_type = VNON;
2862 	/*
2863 	 * Place the vnode onto the syncer worklist. We attempt to
2864 	 * scatter them about on the list so that they will go off
2865 	 * at evenly distributed times even if all the filesystems
2866 	 * are mounted at once.
2867 	 */
2868 	next += incr;
2869 	if (next == 0 || next > syncer_maxdelay) {
2870 		start /= 2;
2871 		incr /= 2;
2872 		if (start == 0) {
2873 			start = syncer_maxdelay / 2;
2874 			incr = syncer_maxdelay;
2875 		}
2876 		next = start;
2877 	}
2878 	VI_LOCK(vp);
2879 	vn_syncer_add_to_worklist(&vp->v_bufobj,
2880 	    syncdelay > 0 ? next % syncdelay : 0);
2881 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
2882 	mtx_lock(&sync_mtx);
2883 	sync_vnode_count++;
2884 	mtx_unlock(&sync_mtx);
2885 	VI_UNLOCK(vp);
2886 	mp->mnt_syncer = vp;
2887 	return (0);
2888 }
2889 
2890 /*
2891  * Do a lazy sync of the filesystem.
2892  */
2893 static int
2894 sync_fsync(ap)
2895 	struct vop_fsync_args /* {
2896 		struct vnode *a_vp;
2897 		struct ucred *a_cred;
2898 		int a_waitfor;
2899 		struct thread *a_td;
2900 	} */ *ap;
2901 {
2902 	struct vnode *syncvp = ap->a_vp;
2903 	struct mount *mp = syncvp->v_mount;
2904 	struct thread *td = ap->a_td;
2905 	int error, asyncflag;
2906 	struct bufobj *bo;
2907 
2908 	/*
2909 	 * We only need to do something if this is a lazy evaluation.
2910 	 */
2911 	if (ap->a_waitfor != MNT_LAZY)
2912 		return (0);
2913 
2914 	/*
2915 	 * Move ourselves to the back of the sync list.
2916 	 */
2917 	bo = &syncvp->v_bufobj;
2918 	BO_LOCK(bo);
2919 	vn_syncer_add_to_worklist(bo, syncdelay);
2920 	BO_UNLOCK(bo);
2921 
2922 	/*
2923 	 * Walk the list of vnodes pushing all that are dirty and
2924 	 * not already on the sync list.
2925 	 */
2926 	mtx_lock(&mountlist_mtx);
2927 	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
2928 		mtx_unlock(&mountlist_mtx);
2929 		return (0);
2930 	}
2931 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
2932 		vfs_unbusy(mp, td);
2933 		return (0);
2934 	}
2935 	asyncflag = mp->mnt_flag & MNT_ASYNC;
2936 	mp->mnt_flag &= ~MNT_ASYNC;
2937 	vfs_msync(mp, MNT_NOWAIT);
2938 	error = VFS_SYNC(mp, MNT_LAZY, td);
2939 	if (asyncflag)
2940 		mp->mnt_flag |= MNT_ASYNC;
2941 	vn_finished_write(mp);
2942 	vfs_unbusy(mp, td);
2943 	return (error);
2944 }
2945 
2946 /*
2947  * The syncer vnode is no referenced.
2948  */
2949 static int
2950 sync_inactive(ap)
2951 	struct vop_inactive_args /* {
2952 		struct vnode *a_vp;
2953 		struct thread *a_td;
2954 	} */ *ap;
2955 {
2956 
2957 	vgone(ap->a_vp);
2958 	return (0);
2959 }
2960 
2961 /*
2962  * The syncer vnode is no longer needed and is being decommissioned.
2963  *
2964  * Modifications to the worklist must be protected by sync_mtx.
2965  */
2966 static int
2967 sync_reclaim(ap)
2968 	struct vop_reclaim_args /* {
2969 		struct vnode *a_vp;
2970 	} */ *ap;
2971 {
2972 	struct vnode *vp = ap->a_vp;
2973 	struct bufobj *bo;
2974 
2975 	VI_LOCK(vp);
2976 	bo = &vp->v_bufobj;
2977 	vp->v_mount->mnt_syncer = NULL;
2978 	if (bo->bo_flag & BO_ONWORKLST) {
2979 		mtx_lock(&sync_mtx);
2980 		LIST_REMOVE(bo, bo_synclist);
2981  		syncer_worklist_len--;
2982 		sync_vnode_count--;
2983 		mtx_unlock(&sync_mtx);
2984 		bo->bo_flag &= ~BO_ONWORKLST;
2985 	}
2986 	VI_UNLOCK(vp);
2987 
2988 	return (0);
2989 }
2990 
2991 /*
2992  * Check if vnode represents a disk device
2993  */
2994 int
2995 vn_isdisk(vp, errp)
2996 	struct vnode *vp;
2997 	int *errp;
2998 {
2999 	int error;
3000 
3001 	error = 0;
3002 	dev_lock();
3003 	if (vp->v_type != VCHR)
3004 		error = ENOTBLK;
3005 	else if (vp->v_rdev == NULL)
3006 		error = ENXIO;
3007 	else if (vp->v_rdev->si_devsw == NULL)
3008 		error = ENXIO;
3009 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
3010 		error = ENOTBLK;
3011 	dev_unlock();
3012 	if (errp != NULL)
3013 		*errp = error;
3014 	return (error == 0);
3015 }
3016 
3017 /*
3018  * Common filesystem object access control check routine.  Accepts a
3019  * vnode's type, "mode", uid and gid, requested access mode, credentials,
3020  * and optional call-by-reference privused argument allowing vaccess()
3021  * to indicate to the caller whether privilege was used to satisfy the
3022  * request (obsoleted).  Returns 0 on success, or an errno on failure.
3023  */
3024 int
3025 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
3026 	enum vtype type;
3027 	mode_t file_mode;
3028 	uid_t file_uid;
3029 	gid_t file_gid;
3030 	mode_t acc_mode;
3031 	struct ucred *cred;
3032 	int *privused;
3033 {
3034 	mode_t dac_granted;
3035 #ifdef CAPABILITIES
3036 	mode_t cap_granted;
3037 #endif
3038 
3039 	/*
3040 	 * Look for a normal, non-privileged way to access the file/directory
3041 	 * as requested.  If it exists, go with that.
3042 	 */
3043 
3044 	if (privused != NULL)
3045 		*privused = 0;
3046 
3047 	dac_granted = 0;
3048 
3049 	/* Check the owner. */
3050 	if (cred->cr_uid == file_uid) {
3051 		dac_granted |= VADMIN;
3052 		if (file_mode & S_IXUSR)
3053 			dac_granted |= VEXEC;
3054 		if (file_mode & S_IRUSR)
3055 			dac_granted |= VREAD;
3056 		if (file_mode & S_IWUSR)
3057 			dac_granted |= (VWRITE | VAPPEND);
3058 
3059 		if ((acc_mode & dac_granted) == acc_mode)
3060 			return (0);
3061 
3062 		goto privcheck;
3063 	}
3064 
3065 	/* Otherwise, check the groups (first match) */
3066 	if (groupmember(file_gid, cred)) {
3067 		if (file_mode & S_IXGRP)
3068 			dac_granted |= VEXEC;
3069 		if (file_mode & S_IRGRP)
3070 			dac_granted |= VREAD;
3071 		if (file_mode & S_IWGRP)
3072 			dac_granted |= (VWRITE | VAPPEND);
3073 
3074 		if ((acc_mode & dac_granted) == acc_mode)
3075 			return (0);
3076 
3077 		goto privcheck;
3078 	}
3079 
3080 	/* Otherwise, check everyone else. */
3081 	if (file_mode & S_IXOTH)
3082 		dac_granted |= VEXEC;
3083 	if (file_mode & S_IROTH)
3084 		dac_granted |= VREAD;
3085 	if (file_mode & S_IWOTH)
3086 		dac_granted |= (VWRITE | VAPPEND);
3087 	if ((acc_mode & dac_granted) == acc_mode)
3088 		return (0);
3089 
3090 privcheck:
3091 	if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
3092 		/* XXX audit: privilege used */
3093 		if (privused != NULL)
3094 			*privused = 1;
3095 		return (0);
3096 	}
3097 
3098 #ifdef CAPABILITIES
3099 	/*
3100 	 * Build a capability mask to determine if the set of capabilities
3101 	 * satisfies the requirements when combined with the granted mask
3102 	 * from above.
3103 	 * For each capability, if the capability is required, bitwise
3104 	 * or the request type onto the cap_granted mask.
3105 	 */
3106 	cap_granted = 0;
3107 
3108 	if (type == VDIR) {
3109 		/*
3110 		 * For directories, use CAP_DAC_READ_SEARCH to satisfy
3111 		 * VEXEC requests, instead of CAP_DAC_EXECUTE.
3112 		 */
3113 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3114 		    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3115 			cap_granted |= VEXEC;
3116 	} else {
3117 		if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
3118 		    !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
3119 			cap_granted |= VEXEC;
3120 	}
3121 
3122 	if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
3123 	    !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
3124 		cap_granted |= VREAD;
3125 
3126 	if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
3127 	    !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
3128 		cap_granted |= (VWRITE | VAPPEND);
3129 
3130 	if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
3131 	    !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
3132 		cap_granted |= VADMIN;
3133 
3134 	if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
3135 		/* XXX audit: privilege used */
3136 		if (privused != NULL)
3137 			*privused = 1;
3138 		return (0);
3139 	}
3140 #endif
3141 
3142 	return ((acc_mode & VADMIN) ? EPERM : EACCES);
3143 }
3144 
3145 /*
3146  * Credential check based on process requesting service, and per-attribute
3147  * permissions.
3148  */
3149 int
3150 extattr_check_cred(struct vnode *vp, int attrnamespace,
3151     struct ucred *cred, struct thread *td, int access)
3152 {
3153 
3154 	/*
3155 	 * Kernel-invoked always succeeds.
3156 	 */
3157 	if (cred == NOCRED)
3158 		return (0);
3159 
3160 	/*
3161 	 * Do not allow privileged processes in jail to directly
3162 	 * manipulate system attributes.
3163 	 *
3164 	 * XXX What capability should apply here?
3165 	 * Probably CAP_SYS_SETFFLAG.
3166 	 */
3167 	switch (attrnamespace) {
3168 	case EXTATTR_NAMESPACE_SYSTEM:
3169 		/* Potentially should be: return (EPERM); */
3170 		return (suser_cred(cred, 0));
3171 	case EXTATTR_NAMESPACE_USER:
3172 		return (VOP_ACCESS(vp, access, cred, td));
3173 	default:
3174 		return (EPERM);
3175 	}
3176 }
3177 
3178 #ifdef DEBUG_VFS_LOCKS
3179 /*
3180  * This only exists to supress warnings from unlocked specfs accesses.  It is
3181  * no longer ok to have an unlocked VFS.
3182  */
3183 #define	IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)
3184 
3185 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
3186 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");
3187 
3188 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
3189 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");
3190 
3191 int vfs_badlock_print = 1;	/* Print lock violations. */
3192 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");
3193 
3194 #ifdef KDB
3195 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
3196 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
3197 #endif
3198 
3199 static void
3200 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
3201 {
3202 
3203 #ifdef KDB
3204 	if (vfs_badlock_backtrace)
3205 		kdb_backtrace();
3206 #endif
3207 	if (vfs_badlock_print)
3208 		printf("%s: %p %s\n", str, (void *)vp, msg);
3209 	if (vfs_badlock_ddb)
3210 		kdb_enter("lock violation");
3211 }
3212 
3213 void
3214 assert_vi_locked(struct vnode *vp, const char *str)
3215 {
3216 
3217 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
3218 		vfs_badlock("interlock is not locked but should be", str, vp);
3219 }
3220 
3221 void
3222 assert_vi_unlocked(struct vnode *vp, const char *str)
3223 {
3224 
3225 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
3226 		vfs_badlock("interlock is locked but should not be", str, vp);
3227 }
3228 
3229 void
3230 assert_vop_locked(struct vnode *vp, const char *str)
3231 {
3232 
3233 	if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
3234 		vfs_badlock("is not locked but should be", str, vp);
3235 }
3236 
3237 void
3238 assert_vop_unlocked(struct vnode *vp, const char *str)
3239 {
3240 
3241 	if (vp && !IGNORE_LOCK(vp) &&
3242 	    VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
3243 		vfs_badlock("is locked but should not be", str, vp);
3244 }
3245 
3246 void
3247 assert_vop_elocked(struct vnode *vp, const char *str)
3248 {
3249 
3250 	if (vp && !IGNORE_LOCK(vp) &&
3251 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
3252 		vfs_badlock("is not exclusive locked but should be", str, vp);
3253 }
3254 
3255 #if 0
3256 void
3257 assert_vop_elocked_other(struct vnode *vp, const char *str)
3258 {
3259 
3260 	if (vp && !IGNORE_LOCK(vp) &&
3261 	    VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
3262 		vfs_badlock("is not exclusive locked by another thread",
3263 		    str, vp);
3264 }
3265 
3266 void
3267 assert_vop_slocked(struct vnode *vp, const char *str)
3268 {
3269 
3270 	if (vp && !IGNORE_LOCK(vp) &&
3271 	    VOP_ISLOCKED(vp, curthread) != LK_SHARED)
3272 		vfs_badlock("is not locked shared but should be", str, vp);
3273 }
3274 #endif /* 0 */
3275 
3276 void
3277 vop_rename_pre(void *ap)
3278 {
3279 	struct vop_rename_args *a = ap;
3280 
3281 	if (a->a_tvp)
3282 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
3283 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
3284 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
3285 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
3286 
3287 	/* Check the source (from). */
3288 	if (a->a_tdvp != a->a_fdvp)
3289 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
3290 	if (a->a_tvp != a->a_fvp)
3291 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");
3292 
3293 	/* Check the target. */
3294 	if (a->a_tvp)
3295 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
3296 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
3297 }
3298 
3299 void
3300 vop_strategy_pre(void *ap)
3301 {
3302 	struct vop_strategy_args *a;
3303 	struct buf *bp;
3304 
3305 	a = ap;
3306 	bp = a->a_bp;
3307 
3308 	/*
3309 	 * Cluster ops lock their component buffers but not the IO container.
3310 	 */
3311 	if ((bp->b_flags & B_CLUSTER) != 0)
3312 		return;
3313 
3314 	if (BUF_REFCNT(bp) < 1) {
3315 		if (vfs_badlock_print)
3316 			printf(
3317 			    "VOP_STRATEGY: bp is not locked but should be\n");
3318 		if (vfs_badlock_ddb)
3319 			kdb_enter("lock violation");
3320 	}
3321 }
3322 
3323 void
3324 vop_lookup_pre(void *ap)
3325 {
3326 	struct vop_lookup_args *a;
3327 	struct vnode *dvp;
3328 
3329 	a = ap;
3330 	dvp = a->a_dvp;
3331 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3332 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3333 }
3334 
3335 void
3336 vop_lookup_post(void *ap, int rc)
3337 {
3338 	struct vop_lookup_args *a;
3339 	struct vnode *dvp;
3340 	struct vnode *vp;
3341 
3342 	a = ap;
3343 	dvp = a->a_dvp;
3344 	vp = *(a->a_vpp);
3345 
3346 	ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
3347 	ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
3348 
3349 	if (!rc)
3350 		ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
3351 }
3352 
3353 void
3354 vop_lock_pre(void *ap)
3355 {
3356 	struct vop_lock_args *a = ap;
3357 
3358 	if ((a->a_flags & LK_INTERLOCK) == 0)
3359 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3360 	else
3361 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
3362 }
3363 
3364 void
3365 vop_lock_post(void *ap, int rc)
3366 {
3367 	struct vop_lock_args *a = ap;
3368 
3369 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
3370 	if (rc == 0)
3371 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
3372 }
3373 
3374 void
3375 vop_unlock_pre(void *ap)
3376 {
3377 	struct vop_unlock_args *a = ap;
3378 
3379 	if (a->a_flags & LK_INTERLOCK)
3380 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
3381 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
3382 }
3383 
3384 void
3385 vop_unlock_post(void *ap, int rc)
3386 {
3387 	struct vop_unlock_args *a = ap;
3388 
3389 	if (a->a_flags & LK_INTERLOCK)
3390 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
3391 }
3392 #endif /* DEBUG_VFS_LOCKS */
3393 
3394 static struct knlist fs_knlist;
3395 
3396 static void
3397 vfs_event_init(void *arg)
3398 {
3399 	knlist_init(&fs_knlist, NULL);
3400 }
3401 /* XXX - correct order? */
3402 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
3403 
3404 void
3405 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
3406 {
3407 
3408 	KNOTE_UNLOCKED(&fs_knlist, event);
3409 }
3410 
3411 static int	filt_fsattach(struct knote *kn);
3412 static void	filt_fsdetach(struct knote *kn);
3413 static int	filt_fsevent(struct knote *kn, long hint);
3414 
3415 struct filterops fs_filtops =
3416 	{ 0, filt_fsattach, filt_fsdetach, filt_fsevent };
3417 
3418 static int
3419 filt_fsattach(struct knote *kn)
3420 {
3421 
3422 	kn->kn_flags |= EV_CLEAR;
3423 	knlist_add(&fs_knlist, kn, 0);
3424 	return (0);
3425 }
3426 
3427 static void
3428 filt_fsdetach(struct knote *kn)
3429 {
3430 
3431 	knlist_remove(&fs_knlist, kn, 0);
3432 }
3433 
3434 static int
3435 filt_fsevent(struct knote *kn, long hint)
3436 {
3437 
3438 	kn->kn_fflags |= hint;
3439 	return (kn->kn_fflags != 0);
3440 }
3441 
3442 static int
3443 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
3444 {
3445 	struct vfsidctl vc;
3446 	int error;
3447 	struct mount *mp;
3448 
3449 	error = SYSCTL_IN(req, &vc, sizeof(vc));
3450 	if (error)
3451 		return (error);
3452 	if (vc.vc_vers != VFS_CTL_VERS1)
3453 		return (EINVAL);
3454 	mp = vfs_getvfs(&vc.vc_fsid);
3455 	if (mp == NULL)
3456 		return (ENOENT);
3457 	/* ensure that a specific sysctl goes to the right filesystem. */
3458 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
3459 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
3460 		return (EINVAL);
3461 	}
3462 	VCTLTOREQ(&vc, req);
3463 	return (VFS_SYSCTL(mp, vc.vc_op, req));
3464 }
3465 
3466 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
3467         NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");
3468 
3469 /*
3470  * Function to initialize a va_filerev field sensibly.
3471  * XXX: Wouldn't a random number make a lot more sense ??
3472  */
3473 u_quad_t
3474 init_va_filerev(void)
3475 {
3476 	struct bintime bt;
3477 
3478 	getbinuptime(&bt);
3479 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
3480 }
3481