1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95 39 * $FreeBSD$ 40 */ 41 42 /* 43 * External virtual filesystem routines 44 */ 45 #include "opt_ddb.h" 46 #include "opt_ffs.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/bio.h> 51 #include <sys/buf.h> 52 #include <sys/conf.h> 53 #include <sys/eventhandler.h> 54 #include <sys/fcntl.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/malloc.h> 58 #include <sys/mount.h> 59 #include <sys/namei.h> 60 #include <sys/stat.h> 61 #include <sys/sysctl.h> 62 #include <sys/vmmeter.h> 63 #include <sys/vnode.h> 64 65 #include <vm/vm.h> 66 #include <vm/vm_object.h> 67 #include <vm/vm_extern.h> 68 #include <vm/pmap.h> 69 #include <vm/vm_map.h> 70 #include <vm/vm_page.h> 71 #include <vm/vm_zone.h> 72 73 static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure"); 74 75 static void addalias __P((struct vnode *vp, dev_t nvp_rdev)); 76 static void insmntque __P((struct vnode *vp, struct mount *mp)); 77 static void vclean __P((struct vnode *vp, int flags, struct proc *p)); 78 79 /* 80 * Number of vnodes in existence. Increased whenever getnewvnode() 81 * allocates a new vnode, never decreased. 82 */ 83 static unsigned long numvnodes; 84 SYSCTL_LONG(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, ""); 85 86 /* 87 * Conversion tables for conversion from vnode types to inode formats 88 * and back. 89 */ 90 enum vtype iftovt_tab[16] = { 91 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 92 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, 93 }; 94 int vttoif_tab[9] = { 95 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, 96 S_IFSOCK, S_IFIFO, S_IFMT, 97 }; 98 99 /* 100 * List of vnodes that are ready for recycling. 101 */ 102 static TAILQ_HEAD(freelst, vnode) vnode_free_list; 103 104 /* 105 * Minimum number of free vnodes. If there are fewer than this free vnodes, 106 * getnewvnode() will return a newly allocated vnode. 107 */ 108 static u_long wantfreevnodes = 25; 109 SYSCTL_LONG(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, ""); 110 /* Number of vnodes in the free list. */ 111 static u_long freevnodes = 0; 112 SYSCTL_LONG(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, ""); 113 /* Number of vnode allocation. */ 114 static u_long vnodeallocs = 0; 115 SYSCTL_LONG(_debug, OID_AUTO, vnodeallocs, CTLFLAG_RD, &vnodeallocs, 0, ""); 116 /* Period of vnode recycle from namecache in vnode allocation times. */ 117 static u_long vnoderecycleperiod = 1000; 118 SYSCTL_LONG(_debug, OID_AUTO, vnoderecycleperiod, CTLFLAG_RW, &vnoderecycleperiod, 0, ""); 119 /* Minimum number of total vnodes required to invoke vnode recycle from namecache. */ 120 static u_long vnoderecyclemintotalvn = 2000; 121 SYSCTL_LONG(_debug, OID_AUTO, vnoderecyclemintotalvn, CTLFLAG_RW, &vnoderecyclemintotalvn, 0, ""); 122 /* Minimum number of free vnodes required to invoke vnode recycle from namecache. */ 123 static u_long vnoderecycleminfreevn = 2000; 124 SYSCTL_LONG(_debug, OID_AUTO, vnoderecycleminfreevn, CTLFLAG_RW, &vnoderecycleminfreevn, 0, ""); 125 /* Number of vnodes attempted to recycle at a time. */ 126 static u_long vnoderecyclenumber = 3000; 127 SYSCTL_LONG(_debug, OID_AUTO, vnoderecyclenumber, CTLFLAG_RW, &vnoderecyclenumber, 0, ""); 128 129 /* 130 * Various variables used for debugging the new implementation of 131 * reassignbuf(). 132 * XXX these are probably of (very) limited utility now. 133 */ 134 static int reassignbufcalls; 135 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, ""); 136 static int reassignbufloops; 137 SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, ""); 138 static int reassignbufsortgood; 139 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, ""); 140 static int reassignbufsortbad; 141 SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, ""); 142 /* Set to 0 for old insertion-sort based reassignbuf, 1 for modern method. */ 143 static int reassignbufmethod = 1; 144 SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, ""); 145 146 #ifdef ENABLE_VFS_IOOPT 147 /* See NOTES for a description of this setting. */ 148 int vfs_ioopt = 0; 149 SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, ""); 150 #endif 151 152 /* List of mounted filesystems. */ 153 struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); 154 155 /* For any iteration/modification of mountlist */ 156 struct mtx mountlist_mtx; 157 158 /* For any iteration/modification of mnt_vnodelist */ 159 struct mtx mntvnode_mtx; 160 161 /* 162 * Cache for the mount type id assigned to NFS. This is used for 163 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c. 164 */ 165 int nfs_mount_type = -1; 166 167 /* To keep more than one thread at a time from running vfs_getnewfsid */ 168 static struct mtx mntid_mtx; 169 170 /* For any iteration/modification of vnode_free_list */ 171 static struct mtx vnode_free_list_mtx; 172 173 /* 174 * For any iteration/modification of dev->si_hlist (linked through 175 * v_specnext) 176 */ 177 static struct mtx spechash_mtx; 178 179 /* Publicly exported FS */ 180 struct nfs_public nfs_pub; 181 182 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */ 183 static vm_zone_t vnode_zone; 184 185 /* Set to 1 to print out reclaim of active vnodes */ 186 int prtactive = 0; 187 188 /* 189 * The workitem queue. 190 * 191 * It is useful to delay writes of file data and filesystem metadata 192 * for tens of seconds so that quickly created and deleted files need 193 * not waste disk bandwidth being created and removed. To realize this, 194 * we append vnodes to a "workitem" queue. When running with a soft 195 * updates implementation, most pending metadata dependencies should 196 * not wait for more than a few seconds. Thus, mounted on block devices 197 * are delayed only about a half the time that file data is delayed. 198 * Similarly, directory updates are more critical, so are only delayed 199 * about a third the time that file data is delayed. Thus, there are 200 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of 201 * one each second (driven off the filesystem syncer process). The 202 * syncer_delayno variable indicates the next queue that is to be processed. 203 * Items that need to be processed soon are placed in this queue: 204 * 205 * syncer_workitem_pending[syncer_delayno] 206 * 207 * A delay of fifteen seconds is done by placing the request fifteen 208 * entries later in the queue: 209 * 210 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] 211 * 212 */ 213 static int syncer_delayno = 0; 214 static long syncer_mask; 215 LIST_HEAD(synclist, vnode); 216 static struct synclist *syncer_workitem_pending; 217 218 #define SYNCER_MAXDELAY 32 219 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ 220 time_t syncdelay = 30; /* max time to delay syncing data */ 221 time_t filedelay = 30; /* time to delay syncing files */ 222 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, ""); 223 time_t dirdelay = 29; /* time to delay syncing directories */ 224 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, ""); 225 time_t metadelay = 28; /* time to delay syncing metadata */ 226 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, ""); 227 static int rushjob; /* number of slots to run ASAP */ 228 static int stat_rush_requests; /* number of times I/O speeded up */ 229 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, ""); 230 231 /* 232 * Number of vnodes we want to exist at any one time. This is mostly used 233 * to size hash tables in vnode-related code. It is normally not used in 234 * getnewvnode(), as wantfreevnodes is normally nonzero.) 235 * 236 * XXX desiredvnodes is historical cruft and should not exist. 237 */ 238 int desiredvnodes; 239 SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW, 240 &desiredvnodes, 0, "Maximum number of vnodes"); 241 242 /* 243 * Initialize the vnode management data structures. 244 */ 245 static void 246 vntblinit(void *dummy __unused) 247 { 248 249 desiredvnodes = maxproc + cnt.v_page_count / 4; 250 mtx_init(&mountlist_mtx, "mountlist", MTX_DEF); 251 mtx_init(&mntvnode_mtx, "mntvnode", MTX_DEF); 252 mtx_init(&mntid_mtx, "mntid", MTX_DEF); 253 mtx_init(&spechash_mtx, "spechash", MTX_DEF); 254 TAILQ_INIT(&vnode_free_list); 255 mtx_init(&vnode_free_list_mtx, "vnode_free_list", MTX_DEF); 256 vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5); 257 /* 258 * Initialize the filesystem syncer. 259 */ 260 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE, 261 &syncer_mask); 262 syncer_maxdelay = syncer_mask + 1; 263 } 264 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL) 265 266 267 /* 268 * Mark a mount point as busy. Used to synchronize access and to delay 269 * unmounting. Interlock is not released on failure. 270 */ 271 int 272 vfs_busy(mp, flags, interlkp, p) 273 struct mount *mp; 274 int flags; 275 struct mtx *interlkp; 276 struct proc *p; 277 { 278 int lkflags; 279 280 if (mp->mnt_kern_flag & MNTK_UNMOUNT) { 281 if (flags & LK_NOWAIT) 282 return (ENOENT); 283 mp->mnt_kern_flag |= MNTK_MWAIT; 284 /* 285 * Since all busy locks are shared except the exclusive 286 * lock granted when unmounting, the only place that a 287 * wakeup needs to be done is at the release of the 288 * exclusive lock at the end of dounmount. 289 */ 290 msleep((caddr_t)mp, interlkp, PVFS, "vfs_busy", 0); 291 return (ENOENT); 292 } 293 lkflags = LK_SHARED | LK_NOPAUSE; 294 if (interlkp) 295 lkflags |= LK_INTERLOCK; 296 if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p)) 297 panic("vfs_busy: unexpected lock failure"); 298 return (0); 299 } 300 301 /* 302 * Free a busy filesystem. 303 */ 304 void 305 vfs_unbusy(mp, p) 306 struct mount *mp; 307 struct proc *p; 308 { 309 310 lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p); 311 } 312 313 /* 314 * Lookup a filesystem type, and if found allocate and initialize 315 * a mount structure for it. 316 * 317 * Devname is usually updated by mount(8) after booting. 318 */ 319 int 320 vfs_rootmountalloc(fstypename, devname, mpp) 321 char *fstypename; 322 char *devname; 323 struct mount **mpp; 324 { 325 struct proc *p = curproc; /* XXX */ 326 struct vfsconf *vfsp; 327 struct mount *mp; 328 329 if (fstypename == NULL) 330 return (ENODEV); 331 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) 332 if (!strcmp(vfsp->vfc_name, fstypename)) 333 break; 334 if (vfsp == NULL) 335 return (ENODEV); 336 mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK | M_ZERO); 337 lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE); 338 (void)vfs_busy(mp, LK_NOWAIT, 0, p); 339 LIST_INIT(&mp->mnt_vnodelist); 340 mp->mnt_vfc = vfsp; 341 mp->mnt_op = vfsp->vfc_vfsops; 342 mp->mnt_flag = MNT_RDONLY; 343 mp->mnt_vnodecovered = NULLVP; 344 vfsp->vfc_refcount++; 345 mp->mnt_iosize_max = DFLTPHYS; 346 mp->mnt_stat.f_type = vfsp->vfc_typenum; 347 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK; 348 strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN); 349 mp->mnt_stat.f_mntonname[0] = '/'; 350 mp->mnt_stat.f_mntonname[1] = 0; 351 (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0); 352 *mpp = mp; 353 return (0); 354 } 355 356 /* 357 * Find an appropriate filesystem to use for the root. If a filesystem 358 * has not been preselected, walk through the list of known filesystems 359 * trying those that have mountroot routines, and try them until one 360 * works or we have tried them all. 361 */ 362 #ifdef notdef /* XXX JH */ 363 int 364 lite2_vfs_mountroot() 365 { 366 struct vfsconf *vfsp; 367 extern int (*lite2_mountroot) __P((void)); 368 int error; 369 370 if (lite2_mountroot != NULL) 371 return ((*lite2_mountroot)()); 372 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) { 373 if (vfsp->vfc_mountroot == NULL) 374 continue; 375 if ((error = (*vfsp->vfc_mountroot)()) == 0) 376 return (0); 377 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error); 378 } 379 return (ENODEV); 380 } 381 #endif 382 383 /* 384 * Lookup a mount point by filesystem identifier. 385 */ 386 struct mount * 387 vfs_getvfs(fsid) 388 fsid_t *fsid; 389 { 390 register struct mount *mp; 391 392 mtx_lock(&mountlist_mtx); 393 TAILQ_FOREACH(mp, &mountlist, mnt_list) { 394 if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && 395 mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { 396 mtx_unlock(&mountlist_mtx); 397 return (mp); 398 } 399 } 400 mtx_unlock(&mountlist_mtx); 401 return ((struct mount *) 0); 402 } 403 404 /* 405 * Get a new unique fsid. Try to make its val[0] unique, since this value 406 * will be used to create fake device numbers for stat(). Also try (but 407 * not so hard) make its val[0] unique mod 2^16, since some emulators only 408 * support 16-bit device numbers. We end up with unique val[0]'s for the 409 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls. 410 * 411 * Keep in mind that several mounts may be running in parallel. Starting 412 * the search one past where the previous search terminated is both a 413 * micro-optimization and a defense against returning the same fsid to 414 * different mounts. 415 */ 416 void 417 vfs_getnewfsid(mp) 418 struct mount *mp; 419 { 420 static u_int16_t mntid_base; 421 fsid_t tfsid; 422 int mtype; 423 424 mtx_lock(&mntid_mtx); 425 mtype = mp->mnt_vfc->vfc_typenum; 426 tfsid.val[1] = mtype; 427 mtype = (mtype & 0xFF) << 24; 428 for (;;) { 429 tfsid.val[0] = makeudev(255, 430 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF)); 431 mntid_base++; 432 if (vfs_getvfs(&tfsid) == NULL) 433 break; 434 } 435 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; 436 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1]; 437 mtx_unlock(&mntid_mtx); 438 } 439 440 /* 441 * Knob to control the precision of file timestamps: 442 * 443 * 0 = seconds only; nanoseconds zeroed. 444 * 1 = seconds and nanoseconds, accurate within 1/HZ. 445 * 2 = seconds and nanoseconds, truncated to microseconds. 446 * >=3 = seconds and nanoseconds, maximum precision. 447 */ 448 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC }; 449 450 static int timestamp_precision = TSP_SEC; 451 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW, 452 ×tamp_precision, 0, ""); 453 454 /* 455 * Get a current timestamp. 456 */ 457 void 458 vfs_timestamp(tsp) 459 struct timespec *tsp; 460 { 461 struct timeval tv; 462 463 switch (timestamp_precision) { 464 case TSP_SEC: 465 tsp->tv_sec = time_second; 466 tsp->tv_nsec = 0; 467 break; 468 case TSP_HZ: 469 getnanotime(tsp); 470 break; 471 case TSP_USEC: 472 microtime(&tv); 473 TIMEVAL_TO_TIMESPEC(&tv, tsp); 474 break; 475 case TSP_NSEC: 476 default: 477 nanotime(tsp); 478 break; 479 } 480 } 481 482 /* 483 * Set vnode attributes to VNOVAL 484 */ 485 void 486 vattr_null(vap) 487 register struct vattr *vap; 488 { 489 490 vap->va_type = VNON; 491 vap->va_size = VNOVAL; 492 vap->va_bytes = VNOVAL; 493 vap->va_mode = VNOVAL; 494 vap->va_nlink = VNOVAL; 495 vap->va_uid = VNOVAL; 496 vap->va_gid = VNOVAL; 497 vap->va_fsid = VNOVAL; 498 vap->va_fileid = VNOVAL; 499 vap->va_blocksize = VNOVAL; 500 vap->va_rdev = VNOVAL; 501 vap->va_atime.tv_sec = VNOVAL; 502 vap->va_atime.tv_nsec = VNOVAL; 503 vap->va_mtime.tv_sec = VNOVAL; 504 vap->va_mtime.tv_nsec = VNOVAL; 505 vap->va_ctime.tv_sec = VNOVAL; 506 vap->va_ctime.tv_nsec = VNOVAL; 507 vap->va_flags = VNOVAL; 508 vap->va_gen = VNOVAL; 509 vap->va_vaflags = 0; 510 } 511 512 /* 513 * Routines having to do with the management of the vnode table. 514 */ 515 516 /* 517 * Return the next vnode from the free list. 518 */ 519 int 520 getnewvnode(tag, mp, vops, vpp) 521 enum vtagtype tag; 522 struct mount *mp; 523 vop_t **vops; 524 struct vnode **vpp; 525 { 526 int s, count; 527 struct proc *p = curproc; /* XXX */ 528 struct vnode *vp = NULL; 529 struct mount *vnmp; 530 vm_object_t object; 531 532 /* 533 * We take the least recently used vnode from the freelist 534 * if we can get it and it has no cached pages, and no 535 * namecache entries are relative to it. 536 * Otherwise we allocate a new vnode 537 */ 538 539 s = splbio(); 540 mtx_lock(&vnode_free_list_mtx); 541 542 if (wantfreevnodes && freevnodes < wantfreevnodes) { 543 vp = NULL; 544 } else if (!wantfreevnodes && freevnodes <= desiredvnodes) { 545 /* 546 * XXX: this is only here to be backwards compatible 547 */ 548 vp = NULL; 549 } else for (count = 0; count < freevnodes; count++) { 550 vp = TAILQ_FIRST(&vnode_free_list); 551 if (vp == NULL || vp->v_usecount) 552 panic("getnewvnode: free vnode isn't"); 553 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 554 555 /* 556 * Don't recycle if active in the namecache or 557 * if it still has cached pages or we cannot get 558 * its interlock. 559 */ 560 if (LIST_FIRST(&vp->v_cache_src) != NULL || 561 (VOP_GETVOBJECT(vp, &object) == 0 && 562 (object->resident_page_count || object->ref_count)) || 563 !mtx_trylock(&vp->v_interlock)) { 564 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 565 vp = NULL; 566 continue; 567 } 568 /* 569 * Skip over it if its filesystem is being suspended. 570 */ 571 if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0) 572 break; 573 mtx_unlock(&vp->v_interlock); 574 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 575 vp = NULL; 576 } 577 if (vp) { 578 vp->v_flag |= VDOOMED; 579 vp->v_flag &= ~VFREE; 580 freevnodes--; 581 mtx_unlock(&vnode_free_list_mtx); 582 cache_purge(vp); 583 vp->v_lease = NULL; 584 if (vp->v_type != VBAD) { 585 vgonel(vp, p); 586 } else { 587 mtx_unlock(&vp->v_interlock); 588 } 589 vn_finished_write(vnmp); 590 591 #ifdef INVARIANTS 592 { 593 int s; 594 595 if (vp->v_data) 596 panic("cleaned vnode isn't"); 597 s = splbio(); 598 if (vp->v_numoutput) 599 panic("Clean vnode has pending I/O's"); 600 splx(s); 601 if (vp->v_writecount != 0) 602 panic("Non-zero write count"); 603 } 604 #endif 605 vp->v_flag = 0; 606 vp->v_lastw = 0; 607 vp->v_lasta = 0; 608 vp->v_cstart = 0; 609 vp->v_clen = 0; 610 vp->v_socket = 0; 611 } else { 612 mtx_unlock(&vnode_free_list_mtx); 613 vp = (struct vnode *) zalloc(vnode_zone); 614 bzero((char *) vp, sizeof *vp); 615 mtx_init(&vp->v_interlock, "vnode interlock", MTX_DEF); 616 vp->v_dd = vp; 617 mtx_init(&vp->v_pollinfo.vpi_lock, "vnode pollinfo", MTX_DEF); 618 cache_purge(vp); 619 LIST_INIT(&vp->v_cache_src); 620 TAILQ_INIT(&vp->v_cache_dst); 621 numvnodes++; 622 } 623 624 TAILQ_INIT(&vp->v_cleanblkhd); 625 TAILQ_INIT(&vp->v_dirtyblkhd); 626 vp->v_type = VNON; 627 vp->v_tag = tag; 628 vp->v_op = vops; 629 lockinit(&vp->v_lock, PVFS, "vnlock", 0, LK_NOPAUSE); 630 insmntque(vp, mp); 631 *vpp = vp; 632 vp->v_usecount = 1; 633 vp->v_data = 0; 634 635 splx(s); 636 637 vfs_object_create(vp, p, p->p_ucred); 638 639 vnodeallocs++; 640 if (vnodeallocs % vnoderecycleperiod == 0 && 641 freevnodes < vnoderecycleminfreevn && 642 vnoderecyclemintotalvn < numvnodes) { 643 /* Recycle vnodes. */ 644 cache_purgeleafdirs(vnoderecyclenumber); 645 } 646 647 return (0); 648 } 649 650 /* 651 * Move a vnode from one mount queue to another. 652 */ 653 static void 654 insmntque(vp, mp) 655 register struct vnode *vp; 656 register struct mount *mp; 657 { 658 659 mtx_lock(&mntvnode_mtx); 660 /* 661 * Delete from old mount point vnode list, if on one. 662 */ 663 if (vp->v_mount != NULL) 664 LIST_REMOVE(vp, v_mntvnodes); 665 /* 666 * Insert into list of vnodes for the new mount point, if available. 667 */ 668 if ((vp->v_mount = mp) == NULL) { 669 mtx_unlock(&mntvnode_mtx); 670 return; 671 } 672 LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes); 673 mtx_unlock(&mntvnode_mtx); 674 } 675 676 /* 677 * Update outstanding I/O count and do wakeup if requested. 678 */ 679 void 680 vwakeup(bp) 681 register struct buf *bp; 682 { 683 register struct vnode *vp; 684 685 bp->b_flags &= ~B_WRITEINPROG; 686 if ((vp = bp->b_vp)) { 687 vp->v_numoutput--; 688 if (vp->v_numoutput < 0) 689 panic("vwakeup: neg numoutput"); 690 if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) { 691 vp->v_flag &= ~VBWAIT; 692 wakeup((caddr_t) &vp->v_numoutput); 693 } 694 } 695 } 696 697 /* 698 * Flush out and invalidate all buffers associated with a vnode. 699 * Called with the underlying object locked. 700 */ 701 int 702 vinvalbuf(vp, flags, cred, p, slpflag, slptimeo) 703 register struct vnode *vp; 704 int flags; 705 struct ucred *cred; 706 struct proc *p; 707 int slpflag, slptimeo; 708 { 709 register struct buf *bp; 710 struct buf *nbp, *blist; 711 int s, error; 712 vm_object_t object; 713 714 if (flags & V_SAVE) { 715 s = splbio(); 716 while (vp->v_numoutput) { 717 vp->v_flag |= VBWAIT; 718 error = tsleep((caddr_t)&vp->v_numoutput, 719 slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo); 720 if (error) { 721 splx(s); 722 return (error); 723 } 724 } 725 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) { 726 splx(s); 727 if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0) 728 return (error); 729 s = splbio(); 730 if (vp->v_numoutput > 0 || 731 !TAILQ_EMPTY(&vp->v_dirtyblkhd)) 732 panic("vinvalbuf: dirty bufs"); 733 } 734 splx(s); 735 } 736 s = splbio(); 737 for (;;) { 738 blist = TAILQ_FIRST(&vp->v_cleanblkhd); 739 if (!blist) 740 blist = TAILQ_FIRST(&vp->v_dirtyblkhd); 741 if (!blist) 742 break; 743 744 for (bp = blist; bp; bp = nbp) { 745 nbp = TAILQ_NEXT(bp, b_vnbufs); 746 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 747 error = BUF_TIMELOCK(bp, 748 LK_EXCLUSIVE | LK_SLEEPFAIL, 749 "vinvalbuf", slpflag, slptimeo); 750 if (error == ENOLCK) 751 break; 752 splx(s); 753 return (error); 754 } 755 /* 756 * XXX Since there are no node locks for NFS, I 757 * believe there is a slight chance that a delayed 758 * write will occur while sleeping just above, so 759 * check for it. Note that vfs_bio_awrite expects 760 * buffers to reside on a queue, while BUF_WRITE and 761 * brelse do not. 762 */ 763 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) && 764 (flags & V_SAVE)) { 765 766 if (bp->b_vp == vp) { 767 if (bp->b_flags & B_CLUSTEROK) { 768 BUF_UNLOCK(bp); 769 vfs_bio_awrite(bp); 770 } else { 771 bremfree(bp); 772 bp->b_flags |= B_ASYNC; 773 BUF_WRITE(bp); 774 } 775 } else { 776 bremfree(bp); 777 (void) BUF_WRITE(bp); 778 } 779 break; 780 } 781 bremfree(bp); 782 bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF); 783 bp->b_flags &= ~B_ASYNC; 784 brelse(bp); 785 } 786 } 787 788 while (vp->v_numoutput > 0) { 789 vp->v_flag |= VBWAIT; 790 tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0); 791 } 792 793 splx(s); 794 795 /* 796 * Destroy the copy in the VM cache, too. 797 */ 798 mtx_lock(&vp->v_interlock); 799 if (VOP_GETVOBJECT(vp, &object) == 0) { 800 vm_object_page_remove(object, 0, 0, 801 (flags & V_SAVE) ? TRUE : FALSE); 802 } 803 mtx_unlock(&vp->v_interlock); 804 805 if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd)) 806 panic("vinvalbuf: flush failed"); 807 return (0); 808 } 809 810 /* 811 * Truncate a file's buffer and pages to a specified length. This 812 * is in lieu of the old vinvalbuf mechanism, which performed unneeded 813 * sync activity. 814 */ 815 int 816 vtruncbuf(vp, cred, p, length, blksize) 817 register struct vnode *vp; 818 struct ucred *cred; 819 struct proc *p; 820 off_t length; 821 int blksize; 822 { 823 register struct buf *bp; 824 struct buf *nbp; 825 int s, anyfreed; 826 int trunclbn; 827 828 /* 829 * Round up to the *next* lbn. 830 */ 831 trunclbn = (length + blksize - 1) / blksize; 832 833 s = splbio(); 834 restart: 835 anyfreed = 1; 836 for (;anyfreed;) { 837 anyfreed = 0; 838 for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { 839 nbp = TAILQ_NEXT(bp, b_vnbufs); 840 if (bp->b_lblkno >= trunclbn) { 841 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 842 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL); 843 goto restart; 844 } else { 845 bremfree(bp); 846 bp->b_flags |= (B_INVAL | B_RELBUF); 847 bp->b_flags &= ~B_ASYNC; 848 brelse(bp); 849 anyfreed = 1; 850 } 851 if (nbp && 852 (((nbp->b_xflags & BX_VNCLEAN) == 0) || 853 (nbp->b_vp != vp) || 854 (nbp->b_flags & B_DELWRI))) { 855 goto restart; 856 } 857 } 858 } 859 860 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 861 nbp = TAILQ_NEXT(bp, b_vnbufs); 862 if (bp->b_lblkno >= trunclbn) { 863 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 864 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL); 865 goto restart; 866 } else { 867 bremfree(bp); 868 bp->b_flags |= (B_INVAL | B_RELBUF); 869 bp->b_flags &= ~B_ASYNC; 870 brelse(bp); 871 anyfreed = 1; 872 } 873 if (nbp && 874 (((nbp->b_xflags & BX_VNDIRTY) == 0) || 875 (nbp->b_vp != vp) || 876 (nbp->b_flags & B_DELWRI) == 0)) { 877 goto restart; 878 } 879 } 880 } 881 } 882 883 if (length > 0) { 884 restartsync: 885 for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { 886 nbp = TAILQ_NEXT(bp, b_vnbufs); 887 if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) { 888 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { 889 BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL); 890 goto restart; 891 } else { 892 bremfree(bp); 893 if (bp->b_vp == vp) { 894 bp->b_flags |= B_ASYNC; 895 } else { 896 bp->b_flags &= ~B_ASYNC; 897 } 898 BUF_WRITE(bp); 899 } 900 goto restartsync; 901 } 902 903 } 904 } 905 906 while (vp->v_numoutput > 0) { 907 vp->v_flag |= VBWAIT; 908 tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0); 909 } 910 911 splx(s); 912 913 vnode_pager_setsize(vp, length); 914 915 return (0); 916 } 917 918 /* 919 * Associate a buffer with a vnode. 920 */ 921 void 922 bgetvp(vp, bp) 923 register struct vnode *vp; 924 register struct buf *bp; 925 { 926 int s; 927 928 KASSERT(bp->b_vp == NULL, ("bgetvp: not free")); 929 930 vhold(vp); 931 bp->b_vp = vp; 932 bp->b_dev = vn_todev(vp); 933 /* 934 * Insert onto list for new vnode. 935 */ 936 s = splbio(); 937 bp->b_xflags |= BX_VNCLEAN; 938 bp->b_xflags &= ~BX_VNDIRTY; 939 TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs); 940 splx(s); 941 } 942 943 /* 944 * Disassociate a buffer from a vnode. 945 */ 946 void 947 brelvp(bp) 948 register struct buf *bp; 949 { 950 struct vnode *vp; 951 struct buflists *listheadp; 952 int s; 953 954 KASSERT(bp->b_vp != NULL, ("brelvp: NULL")); 955 956 /* 957 * Delete from old vnode list, if on one. 958 */ 959 vp = bp->b_vp; 960 s = splbio(); 961 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) { 962 if (bp->b_xflags & BX_VNDIRTY) 963 listheadp = &vp->v_dirtyblkhd; 964 else 965 listheadp = &vp->v_cleanblkhd; 966 TAILQ_REMOVE(listheadp, bp, b_vnbufs); 967 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 968 } 969 if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) { 970 vp->v_flag &= ~VONWORKLST; 971 LIST_REMOVE(vp, v_synclist); 972 } 973 splx(s); 974 bp->b_vp = (struct vnode *) 0; 975 vdrop(vp); 976 } 977 978 /* 979 * Add an item to the syncer work queue. 980 */ 981 static void 982 vn_syncer_add_to_worklist(struct vnode *vp, int delay) 983 { 984 int s, slot; 985 986 s = splbio(); 987 988 if (vp->v_flag & VONWORKLST) { 989 LIST_REMOVE(vp, v_synclist); 990 } 991 992 if (delay > syncer_maxdelay - 2) 993 delay = syncer_maxdelay - 2; 994 slot = (syncer_delayno + delay) & syncer_mask; 995 996 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist); 997 vp->v_flag |= VONWORKLST; 998 splx(s); 999 } 1000 1001 struct proc *updateproc; 1002 static void sched_sync __P((void)); 1003 static struct kproc_desc up_kp = { 1004 "syncer", 1005 sched_sync, 1006 &updateproc 1007 }; 1008 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp) 1009 1010 /* 1011 * System filesystem synchronizer daemon. 1012 */ 1013 void 1014 sched_sync(void) 1015 { 1016 struct synclist *slp; 1017 struct vnode *vp; 1018 struct mount *mp; 1019 long starttime; 1020 int s; 1021 struct proc *p = updateproc; 1022 1023 mtx_lock(&Giant); 1024 1025 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p, 1026 SHUTDOWN_PRI_LAST); 1027 1028 for (;;) { 1029 kthread_suspend_check(p); 1030 1031 starttime = time_second; 1032 1033 /* 1034 * Push files whose dirty time has expired. Be careful 1035 * of interrupt race on slp queue. 1036 */ 1037 s = splbio(); 1038 slp = &syncer_workitem_pending[syncer_delayno]; 1039 syncer_delayno += 1; 1040 if (syncer_delayno == syncer_maxdelay) 1041 syncer_delayno = 0; 1042 splx(s); 1043 1044 while ((vp = LIST_FIRST(slp)) != NULL) { 1045 if (VOP_ISLOCKED(vp, NULL) == 0 && 1046 vn_start_write(vp, &mp, V_NOWAIT) == 0) { 1047 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p); 1048 (void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p); 1049 VOP_UNLOCK(vp, 0, p); 1050 vn_finished_write(mp); 1051 } 1052 s = splbio(); 1053 if (LIST_FIRST(slp) == vp) { 1054 /* 1055 * Note: v_tag VT_VFS vps can remain on the 1056 * worklist too with no dirty blocks, but 1057 * since sync_fsync() moves it to a different 1058 * slot we are safe. 1059 */ 1060 if (TAILQ_EMPTY(&vp->v_dirtyblkhd) && 1061 !vn_isdisk(vp, NULL)) 1062 panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag); 1063 /* 1064 * Put us back on the worklist. The worklist 1065 * routine will remove us from our current 1066 * position and then add us back in at a later 1067 * position. 1068 */ 1069 vn_syncer_add_to_worklist(vp, syncdelay); 1070 } 1071 splx(s); 1072 } 1073 1074 /* 1075 * Do soft update processing. 1076 */ 1077 #ifdef SOFTUPDATES 1078 softdep_process_worklist(NULL); 1079 #endif 1080 1081 /* 1082 * The variable rushjob allows the kernel to speed up the 1083 * processing of the filesystem syncer process. A rushjob 1084 * value of N tells the filesystem syncer to process the next 1085 * N seconds worth of work on its queue ASAP. Currently rushjob 1086 * is used by the soft update code to speed up the filesystem 1087 * syncer process when the incore state is getting so far 1088 * ahead of the disk that the kernel memory pool is being 1089 * threatened with exhaustion. 1090 */ 1091 if (rushjob > 0) { 1092 rushjob -= 1; 1093 continue; 1094 } 1095 /* 1096 * If it has taken us less than a second to process the 1097 * current work, then wait. Otherwise start right over 1098 * again. We can still lose time if any single round 1099 * takes more than two seconds, but it does not really 1100 * matter as we are just trying to generally pace the 1101 * filesystem activity. 1102 */ 1103 if (time_second == starttime) 1104 tsleep(&lbolt, PPAUSE, "syncer", 0); 1105 } 1106 } 1107 1108 /* 1109 * Request the syncer daemon to speed up its work. 1110 * We never push it to speed up more than half of its 1111 * normal turn time, otherwise it could take over the cpu. 1112 */ 1113 int 1114 speedup_syncer() 1115 { 1116 1117 mtx_lock_spin(&sched_lock); 1118 if (updateproc->p_wchan == &lbolt) 1119 setrunnable(updateproc); 1120 mtx_unlock_spin(&sched_lock); 1121 if (rushjob < syncdelay / 2) { 1122 rushjob += 1; 1123 stat_rush_requests += 1; 1124 return (1); 1125 } 1126 return(0); 1127 } 1128 1129 /* 1130 * Associate a p-buffer with a vnode. 1131 * 1132 * Also sets B_PAGING flag to indicate that vnode is not fully associated 1133 * with the buffer. i.e. the bp has not been linked into the vnode or 1134 * ref-counted. 1135 */ 1136 void 1137 pbgetvp(vp, bp) 1138 register struct vnode *vp; 1139 register struct buf *bp; 1140 { 1141 1142 KASSERT(bp->b_vp == NULL, ("pbgetvp: not free")); 1143 1144 bp->b_vp = vp; 1145 bp->b_flags |= B_PAGING; 1146 bp->b_dev = vn_todev(vp); 1147 } 1148 1149 /* 1150 * Disassociate a p-buffer from a vnode. 1151 */ 1152 void 1153 pbrelvp(bp) 1154 register struct buf *bp; 1155 { 1156 1157 KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL")); 1158 1159 /* XXX REMOVE ME */ 1160 if (TAILQ_NEXT(bp, b_vnbufs) != NULL) { 1161 panic( 1162 "relpbuf(): b_vp was probably reassignbuf()d %p %x", 1163 bp, 1164 (int)bp->b_flags 1165 ); 1166 } 1167 bp->b_vp = (struct vnode *) 0; 1168 bp->b_flags &= ~B_PAGING; 1169 } 1170 1171 /* 1172 * Change the vnode a pager buffer is associated with. 1173 */ 1174 void 1175 pbreassignbuf(bp, newvp) 1176 struct buf *bp; 1177 struct vnode *newvp; 1178 { 1179 1180 KASSERT(bp->b_flags & B_PAGING, 1181 ("pbreassignbuf() on non phys bp %p", bp)); 1182 bp->b_vp = newvp; 1183 } 1184 1185 /* 1186 * Reassign a buffer from one vnode to another. 1187 * Used to assign file specific control information 1188 * (indirect blocks) to the vnode to which they belong. 1189 */ 1190 void 1191 reassignbuf(bp, newvp) 1192 register struct buf *bp; 1193 register struct vnode *newvp; 1194 { 1195 struct buflists *listheadp; 1196 int delay; 1197 int s; 1198 1199 if (newvp == NULL) { 1200 printf("reassignbuf: NULL"); 1201 return; 1202 } 1203 ++reassignbufcalls; 1204 1205 /* 1206 * B_PAGING flagged buffers cannot be reassigned because their vp 1207 * is not fully linked in. 1208 */ 1209 if (bp->b_flags & B_PAGING) 1210 panic("cannot reassign paging buffer"); 1211 1212 s = splbio(); 1213 /* 1214 * Delete from old vnode list, if on one. 1215 */ 1216 if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) { 1217 if (bp->b_xflags & BX_VNDIRTY) 1218 listheadp = &bp->b_vp->v_dirtyblkhd; 1219 else 1220 listheadp = &bp->b_vp->v_cleanblkhd; 1221 TAILQ_REMOVE(listheadp, bp, b_vnbufs); 1222 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN); 1223 if (bp->b_vp != newvp) { 1224 vdrop(bp->b_vp); 1225 bp->b_vp = NULL; /* for clarification */ 1226 } 1227 } 1228 /* 1229 * If dirty, put on list of dirty buffers; otherwise insert onto list 1230 * of clean buffers. 1231 */ 1232 if (bp->b_flags & B_DELWRI) { 1233 struct buf *tbp; 1234 1235 listheadp = &newvp->v_dirtyblkhd; 1236 if ((newvp->v_flag & VONWORKLST) == 0) { 1237 switch (newvp->v_type) { 1238 case VDIR: 1239 delay = dirdelay; 1240 break; 1241 case VCHR: 1242 if (newvp->v_rdev->si_mountpoint != NULL) { 1243 delay = metadelay; 1244 break; 1245 } 1246 /* fall through */ 1247 default: 1248 delay = filedelay; 1249 } 1250 vn_syncer_add_to_worklist(newvp, delay); 1251 } 1252 bp->b_xflags |= BX_VNDIRTY; 1253 tbp = TAILQ_FIRST(listheadp); 1254 if (tbp == NULL || 1255 bp->b_lblkno == 0 || 1256 (bp->b_lblkno > 0 && tbp->b_lblkno < 0) || 1257 (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) { 1258 TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs); 1259 ++reassignbufsortgood; 1260 } else if (bp->b_lblkno < 0) { 1261 TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs); 1262 ++reassignbufsortgood; 1263 } else if (reassignbufmethod == 1) { 1264 /* 1265 * New sorting algorithm, only handle sequential case, 1266 * otherwise append to end (but before metadata) 1267 */ 1268 if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL && 1269 (tbp->b_xflags & BX_VNDIRTY)) { 1270 /* 1271 * Found the best place to insert the buffer 1272 */ 1273 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs); 1274 ++reassignbufsortgood; 1275 } else { 1276 /* 1277 * Missed, append to end, but before meta-data. 1278 * We know that the head buffer in the list is 1279 * not meta-data due to prior conditionals. 1280 * 1281 * Indirect effects: NFS second stage write 1282 * tends to wind up here, giving maximum 1283 * distance between the unstable write and the 1284 * commit rpc. 1285 */ 1286 tbp = TAILQ_LAST(listheadp, buflists); 1287 while (tbp && tbp->b_lblkno < 0) 1288 tbp = TAILQ_PREV(tbp, buflists, b_vnbufs); 1289 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs); 1290 ++reassignbufsortbad; 1291 } 1292 } else { 1293 /* 1294 * Old sorting algorithm, scan queue and insert 1295 */ 1296 struct buf *ttbp; 1297 while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) && 1298 (ttbp->b_lblkno < bp->b_lblkno)) { 1299 ++reassignbufloops; 1300 tbp = ttbp; 1301 } 1302 TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs); 1303 } 1304 } else { 1305 bp->b_xflags |= BX_VNCLEAN; 1306 TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs); 1307 if ((newvp->v_flag & VONWORKLST) && 1308 TAILQ_EMPTY(&newvp->v_dirtyblkhd)) { 1309 newvp->v_flag &= ~VONWORKLST; 1310 LIST_REMOVE(newvp, v_synclist); 1311 } 1312 } 1313 if (bp->b_vp != newvp) { 1314 bp->b_vp = newvp; 1315 vhold(bp->b_vp); 1316 } 1317 splx(s); 1318 } 1319 1320 /* 1321 * Create a vnode for a device. 1322 * Used for mounting the root file system. 1323 */ 1324 int 1325 bdevvp(dev, vpp) 1326 dev_t dev; 1327 struct vnode **vpp; 1328 { 1329 register struct vnode *vp; 1330 struct vnode *nvp; 1331 int error; 1332 1333 if (dev == NODEV) { 1334 *vpp = NULLVP; 1335 return (ENXIO); 1336 } 1337 if (vfinddev(dev, VCHR, vpp)) 1338 return (0); 1339 error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp); 1340 if (error) { 1341 *vpp = NULLVP; 1342 return (error); 1343 } 1344 vp = nvp; 1345 vp->v_type = VCHR; 1346 addalias(vp, dev); 1347 *vpp = vp; 1348 return (0); 1349 } 1350 1351 /* 1352 * Add vnode to the alias list hung off the dev_t. 1353 * 1354 * The reason for this gunk is that multiple vnodes can reference 1355 * the same physical device, so checking vp->v_usecount to see 1356 * how many users there are is inadequate; the v_usecount for 1357 * the vnodes need to be accumulated. vcount() does that. 1358 */ 1359 struct vnode * 1360 addaliasu(nvp, nvp_rdev) 1361 struct vnode *nvp; 1362 udev_t nvp_rdev; 1363 { 1364 struct vnode *ovp; 1365 vop_t **ops; 1366 dev_t dev; 1367 1368 if (nvp->v_type == VBLK) 1369 return (nvp); 1370 if (nvp->v_type != VCHR) 1371 panic("addaliasu on non-special vnode"); 1372 dev = udev2dev(nvp_rdev, 0); 1373 /* 1374 * Check to see if we have a bdevvp vnode with no associated 1375 * filesystem. If so, we want to associate the filesystem of 1376 * the new newly instigated vnode with the bdevvp vnode and 1377 * discard the newly created vnode rather than leaving the 1378 * bdevvp vnode lying around with no associated filesystem. 1379 */ 1380 if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) { 1381 addalias(nvp, dev); 1382 return (nvp); 1383 } 1384 /* 1385 * Discard unneeded vnode, but save its node specific data. 1386 * Note that if there is a lock, it is carried over in the 1387 * node specific data to the replacement vnode. 1388 */ 1389 vref(ovp); 1390 ovp->v_data = nvp->v_data; 1391 ovp->v_tag = nvp->v_tag; 1392 nvp->v_data = NULL; 1393 lockinit(&ovp->v_lock, PVFS, nvp->v_lock.lk_wmesg, 1394 nvp->v_lock.lk_timo, nvp->v_lock.lk_flags & LK_EXTFLG_MASK); 1395 if (nvp->v_vnlock) 1396 ovp->v_vnlock = &ovp->v_lock; 1397 ops = ovp->v_op; 1398 ovp->v_op = nvp->v_op; 1399 if (VOP_ISLOCKED(nvp, curproc)) { 1400 VOP_UNLOCK(nvp, 0, curproc); 1401 vn_lock(ovp, LK_EXCLUSIVE | LK_RETRY, curproc); 1402 } 1403 nvp->v_op = ops; 1404 insmntque(ovp, nvp->v_mount); 1405 vrele(nvp); 1406 vgone(nvp); 1407 return (ovp); 1408 } 1409 1410 /* This is a local helper function that do the same as addaliasu, but for a 1411 * dev_t instead of an udev_t. */ 1412 static void 1413 addalias(nvp, dev) 1414 struct vnode *nvp; 1415 dev_t dev; 1416 { 1417 1418 KASSERT(nvp->v_type == VCHR, ("addalias on non-special vnode")); 1419 nvp->v_rdev = dev; 1420 mtx_lock(&spechash_mtx); 1421 SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext); 1422 mtx_unlock(&spechash_mtx); 1423 } 1424 1425 /* 1426 * Grab a particular vnode from the free list, increment its 1427 * reference count and lock it. The vnode lock bit is set if the 1428 * vnode is being eliminated in vgone. The process is awakened 1429 * when the transition is completed, and an error returned to 1430 * indicate that the vnode is no longer usable (possibly having 1431 * been changed to a new file system type). 1432 */ 1433 int 1434 vget(vp, flags, p) 1435 register struct vnode *vp; 1436 int flags; 1437 struct proc *p; 1438 { 1439 int error; 1440 1441 /* 1442 * If the vnode is in the process of being cleaned out for 1443 * another use, we wait for the cleaning to finish and then 1444 * return failure. Cleaning is determined by checking that 1445 * the VXLOCK flag is set. 1446 */ 1447 if ((flags & LK_INTERLOCK) == 0) 1448 mtx_lock(&vp->v_interlock); 1449 if (vp->v_flag & VXLOCK) { 1450 if (vp->v_vxproc == curproc) { 1451 printf("VXLOCK interlock avoided\n"); 1452 } else { 1453 vp->v_flag |= VXWANT; 1454 msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP, 1455 "vget", 0); 1456 return (ENOENT); 1457 } 1458 } 1459 1460 vp->v_usecount++; 1461 1462 if (VSHOULDBUSY(vp)) 1463 vbusy(vp); 1464 if (flags & LK_TYPE_MASK) { 1465 if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) { 1466 /* 1467 * must expand vrele here because we do not want 1468 * to call VOP_INACTIVE if the reference count 1469 * drops back to zero since it was never really 1470 * active. We must remove it from the free list 1471 * before sleeping so that multiple processes do 1472 * not try to recycle it. 1473 */ 1474 mtx_lock(&vp->v_interlock); 1475 vp->v_usecount--; 1476 if (VSHOULDFREE(vp)) 1477 vfree(vp); 1478 mtx_unlock(&vp->v_interlock); 1479 } 1480 return (error); 1481 } 1482 mtx_unlock(&vp->v_interlock); 1483 return (0); 1484 } 1485 1486 /* 1487 * Increase the reference count of a vnode. 1488 */ 1489 void 1490 vref(struct vnode *vp) 1491 { 1492 mtx_lock(&vp->v_interlock); 1493 vp->v_usecount++; 1494 mtx_unlock(&vp->v_interlock); 1495 } 1496 1497 /* 1498 * Vnode put/release. 1499 * If count drops to zero, call inactive routine and return to freelist. 1500 */ 1501 void 1502 vrele(vp) 1503 struct vnode *vp; 1504 { 1505 struct proc *p = curproc; /* XXX */ 1506 1507 KASSERT(vp != NULL, ("vrele: null vp")); 1508 1509 mtx_lock(&vp->v_interlock); 1510 1511 KASSERT(vp->v_writecount < vp->v_usecount, ("vrele: missed vn_close")); 1512 1513 if (vp->v_usecount > 1) { 1514 1515 vp->v_usecount--; 1516 mtx_unlock(&vp->v_interlock); 1517 1518 return; 1519 } 1520 1521 if (vp->v_usecount == 1) { 1522 1523 vp->v_usecount--; 1524 if (VSHOULDFREE(vp)) 1525 vfree(vp); 1526 /* 1527 * If we are doing a vput, the node is already locked, and we must 1528 * call VOP_INACTIVE with the node locked. So, in the case of 1529 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE. 1530 */ 1531 if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) { 1532 VOP_INACTIVE(vp, p); 1533 } 1534 1535 } else { 1536 #ifdef DIAGNOSTIC 1537 vprint("vrele: negative ref count", vp); 1538 mtx_unlock(&vp->v_interlock); 1539 #endif 1540 panic("vrele: negative ref cnt"); 1541 } 1542 } 1543 1544 /* 1545 * Release an already locked vnode. This give the same effects as 1546 * unlock+vrele(), but takes less time and avoids releasing and 1547 * re-aquiring the lock (as vrele() aquires the lock internally.) 1548 */ 1549 void 1550 vput(vp) 1551 struct vnode *vp; 1552 { 1553 struct proc *p = curproc; /* XXX */ 1554 1555 KASSERT(vp != NULL, ("vput: null vp")); 1556 mtx_lock(&vp->v_interlock); 1557 KASSERT(vp->v_writecount < vp->v_usecount, ("vput: missed vn_close")); 1558 1559 if (vp->v_usecount > 1) { 1560 1561 vp->v_usecount--; 1562 VOP_UNLOCK(vp, LK_INTERLOCK, p); 1563 return; 1564 1565 } 1566 1567 if (vp->v_usecount == 1) { 1568 1569 vp->v_usecount--; 1570 if (VSHOULDFREE(vp)) 1571 vfree(vp); 1572 /* 1573 * If we are doing a vput, the node is already locked, and we must 1574 * call VOP_INACTIVE with the node locked. So, in the case of 1575 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE. 1576 */ 1577 mtx_unlock(&vp->v_interlock); 1578 VOP_INACTIVE(vp, p); 1579 1580 } else { 1581 #ifdef DIAGNOSTIC 1582 vprint("vput: negative ref count", vp); 1583 #endif 1584 panic("vput: negative ref cnt"); 1585 } 1586 } 1587 1588 /* 1589 * Somebody doesn't want the vnode recycled. 1590 */ 1591 void 1592 vhold(vp) 1593 register struct vnode *vp; 1594 { 1595 int s; 1596 1597 s = splbio(); 1598 vp->v_holdcnt++; 1599 if (VSHOULDBUSY(vp)) 1600 vbusy(vp); 1601 splx(s); 1602 } 1603 1604 /* 1605 * Note that there is one less who cares about this vnode. vdrop() is the 1606 * opposite of vhold(). 1607 */ 1608 void 1609 vdrop(vp) 1610 register struct vnode *vp; 1611 { 1612 int s; 1613 1614 s = splbio(); 1615 if (vp->v_holdcnt <= 0) 1616 panic("vdrop: holdcnt"); 1617 vp->v_holdcnt--; 1618 if (VSHOULDFREE(vp)) 1619 vfree(vp); 1620 splx(s); 1621 } 1622 1623 /* 1624 * Remove any vnodes in the vnode table belonging to mount point mp. 1625 * 1626 * If MNT_NOFORCE is specified, there should not be any active ones, 1627 * return error if any are found (nb: this is a user error, not a 1628 * system error). If MNT_FORCE is specified, detach any active vnodes 1629 * that are found. 1630 */ 1631 #ifdef DIAGNOSTIC 1632 static int busyprt = 0; /* print out busy vnodes */ 1633 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, ""); 1634 #endif 1635 1636 int 1637 vflush(mp, skipvp, flags) 1638 struct mount *mp; 1639 struct vnode *skipvp; 1640 int flags; 1641 { 1642 struct proc *p = curproc; /* XXX */ 1643 struct vnode *vp, *nvp; 1644 int busy = 0; 1645 1646 mtx_lock(&mntvnode_mtx); 1647 loop: 1648 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { 1649 /* 1650 * Make sure this vnode wasn't reclaimed in getnewvnode(). 1651 * Start over if it has (it won't be on the list anymore). 1652 */ 1653 if (vp->v_mount != mp) 1654 goto loop; 1655 nvp = LIST_NEXT(vp, v_mntvnodes); 1656 /* 1657 * Skip over a selected vnode. 1658 */ 1659 if (vp == skipvp) 1660 continue; 1661 1662 mtx_lock(&vp->v_interlock); 1663 /* 1664 * Skip over a vnodes marked VSYSTEM. 1665 */ 1666 if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) { 1667 mtx_unlock(&vp->v_interlock); 1668 continue; 1669 } 1670 /* 1671 * If WRITECLOSE is set, only flush out regular file vnodes 1672 * open for writing. 1673 */ 1674 if ((flags & WRITECLOSE) && 1675 (vp->v_writecount == 0 || vp->v_type != VREG)) { 1676 mtx_unlock(&vp->v_interlock); 1677 continue; 1678 } 1679 1680 /* 1681 * With v_usecount == 0, all we need to do is clear out the 1682 * vnode data structures and we are done. 1683 */ 1684 if (vp->v_usecount == 0) { 1685 mtx_unlock(&mntvnode_mtx); 1686 vgonel(vp, p); 1687 mtx_lock(&mntvnode_mtx); 1688 continue; 1689 } 1690 1691 /* 1692 * If FORCECLOSE is set, forcibly close the vnode. For block 1693 * or character devices, revert to an anonymous device. For 1694 * all other files, just kill them. 1695 */ 1696 if (flags & FORCECLOSE) { 1697 mtx_unlock(&mntvnode_mtx); 1698 if (vp->v_type != VCHR) { 1699 vgonel(vp, p); 1700 } else { 1701 vclean(vp, 0, p); 1702 vp->v_op = spec_vnodeop_p; 1703 insmntque(vp, (struct mount *) 0); 1704 } 1705 mtx_lock(&mntvnode_mtx); 1706 continue; 1707 } 1708 #ifdef DIAGNOSTIC 1709 if (busyprt) 1710 vprint("vflush: busy vnode", vp); 1711 #endif 1712 mtx_unlock(&vp->v_interlock); 1713 busy++; 1714 } 1715 mtx_unlock(&mntvnode_mtx); 1716 if (busy) 1717 return (EBUSY); 1718 return (0); 1719 } 1720 1721 /* 1722 * Disassociate the underlying file system from a vnode. 1723 */ 1724 static void 1725 vclean(vp, flags, p) 1726 struct vnode *vp; 1727 int flags; 1728 struct proc *p; 1729 { 1730 int active; 1731 1732 /* 1733 * Check to see if the vnode is in use. If so we have to reference it 1734 * before we clean it out so that its count cannot fall to zero and 1735 * generate a race against ourselves to recycle it. 1736 */ 1737 if ((active = vp->v_usecount)) 1738 vp->v_usecount++; 1739 1740 /* 1741 * Prevent the vnode from being recycled or brought into use while we 1742 * clean it out. 1743 */ 1744 if (vp->v_flag & VXLOCK) 1745 panic("vclean: deadlock"); 1746 vp->v_flag |= VXLOCK; 1747 vp->v_vxproc = curproc; 1748 /* 1749 * Even if the count is zero, the VOP_INACTIVE routine may still 1750 * have the object locked while it cleans it out. The VOP_LOCK 1751 * ensures that the VOP_INACTIVE routine is done with its work. 1752 * For active vnodes, it ensures that no other activity can 1753 * occur while the underlying object is being cleaned out. 1754 */ 1755 VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p); 1756 1757 /* 1758 * Clean out any buffers associated with the vnode. 1759 * If the flush fails, just toss the buffers. 1760 */ 1761 if (flags & DOCLOSE) { 1762 if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL) 1763 (void) vn_write_suspend_wait(vp, NULL, V_WAIT); 1764 if (vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0) != 0) 1765 vinvalbuf(vp, 0, NOCRED, p, 0, 0); 1766 } 1767 1768 VOP_DESTROYVOBJECT(vp); 1769 1770 /* 1771 * If purging an active vnode, it must be closed and 1772 * deactivated before being reclaimed. Note that the 1773 * VOP_INACTIVE will unlock the vnode. 1774 */ 1775 if (active) { 1776 if (flags & DOCLOSE) 1777 VOP_CLOSE(vp, FNONBLOCK, NOCRED, p); 1778 VOP_INACTIVE(vp, p); 1779 } else { 1780 /* 1781 * Any other processes trying to obtain this lock must first 1782 * wait for VXLOCK to clear, then call the new lock operation. 1783 */ 1784 VOP_UNLOCK(vp, 0, p); 1785 } 1786 /* 1787 * Reclaim the vnode. 1788 */ 1789 if (VOP_RECLAIM(vp, p)) 1790 panic("vclean: cannot reclaim"); 1791 1792 if (active) { 1793 /* 1794 * Inline copy of vrele() since VOP_INACTIVE 1795 * has already been called. 1796 */ 1797 mtx_lock(&vp->v_interlock); 1798 if (--vp->v_usecount <= 0) { 1799 #ifdef DIAGNOSTIC 1800 if (vp->v_usecount < 0 || vp->v_writecount != 0) { 1801 vprint("vclean: bad ref count", vp); 1802 panic("vclean: ref cnt"); 1803 } 1804 #endif 1805 vfree(vp); 1806 } 1807 mtx_unlock(&vp->v_interlock); 1808 } 1809 1810 cache_purge(vp); 1811 vp->v_vnlock = NULL; 1812 lockdestroy(&vp->v_lock); 1813 1814 if (VSHOULDFREE(vp)) 1815 vfree(vp); 1816 1817 /* 1818 * Done with purge, notify sleepers of the grim news. 1819 */ 1820 vp->v_op = dead_vnodeop_p; 1821 vn_pollgone(vp); 1822 vp->v_tag = VT_NON; 1823 vp->v_flag &= ~VXLOCK; 1824 vp->v_vxproc = NULL; 1825 if (vp->v_flag & VXWANT) { 1826 vp->v_flag &= ~VXWANT; 1827 wakeup((caddr_t) vp); 1828 } 1829 } 1830 1831 /* 1832 * Eliminate all activity associated with the requested vnode 1833 * and with all vnodes aliased to the requested vnode. 1834 */ 1835 int 1836 vop_revoke(ap) 1837 struct vop_revoke_args /* { 1838 struct vnode *a_vp; 1839 int a_flags; 1840 } */ *ap; 1841 { 1842 struct vnode *vp, *vq; 1843 dev_t dev; 1844 1845 KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke")); 1846 1847 vp = ap->a_vp; 1848 /* 1849 * If a vgone (or vclean) is already in progress, 1850 * wait until it is done and return. 1851 */ 1852 if (vp->v_flag & VXLOCK) { 1853 vp->v_flag |= VXWANT; 1854 msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP, 1855 "vop_revokeall", 0); 1856 return (0); 1857 } 1858 dev = vp->v_rdev; 1859 for (;;) { 1860 mtx_lock(&spechash_mtx); 1861 vq = SLIST_FIRST(&dev->si_hlist); 1862 mtx_unlock(&spechash_mtx); 1863 if (!vq) 1864 break; 1865 vgone(vq); 1866 } 1867 return (0); 1868 } 1869 1870 /* 1871 * Recycle an unused vnode to the front of the free list. 1872 * Release the passed interlock if the vnode will be recycled. 1873 */ 1874 int 1875 vrecycle(vp, inter_lkp, p) 1876 struct vnode *vp; 1877 struct mtx *inter_lkp; 1878 struct proc *p; 1879 { 1880 1881 mtx_lock(&vp->v_interlock); 1882 if (vp->v_usecount == 0) { 1883 if (inter_lkp) { 1884 mtx_unlock(inter_lkp); 1885 } 1886 vgonel(vp, p); 1887 return (1); 1888 } 1889 mtx_unlock(&vp->v_interlock); 1890 return (0); 1891 } 1892 1893 /* 1894 * Eliminate all activity associated with a vnode 1895 * in preparation for reuse. 1896 */ 1897 void 1898 vgone(vp) 1899 register struct vnode *vp; 1900 { 1901 struct proc *p = curproc; /* XXX */ 1902 1903 mtx_lock(&vp->v_interlock); 1904 vgonel(vp, p); 1905 } 1906 1907 /* 1908 * vgone, with the vp interlock held. 1909 */ 1910 void 1911 vgonel(vp, p) 1912 struct vnode *vp; 1913 struct proc *p; 1914 { 1915 int s; 1916 1917 /* 1918 * If a vgone (or vclean) is already in progress, 1919 * wait until it is done and return. 1920 */ 1921 if (vp->v_flag & VXLOCK) { 1922 vp->v_flag |= VXWANT; 1923 msleep((caddr_t)vp, &vp->v_interlock, PINOD | PDROP, 1924 "vgone", 0); 1925 return; 1926 } 1927 1928 /* 1929 * Clean out the filesystem specific data. 1930 */ 1931 vclean(vp, DOCLOSE, p); 1932 mtx_lock(&vp->v_interlock); 1933 1934 /* 1935 * Delete from old mount point vnode list, if on one. 1936 */ 1937 if (vp->v_mount != NULL) 1938 insmntque(vp, (struct mount *)0); 1939 /* 1940 * If special device, remove it from special device alias list 1941 * if it is on one. 1942 */ 1943 if (vp->v_type == VCHR && vp->v_rdev != NULL && vp->v_rdev != NODEV) { 1944 mtx_lock(&spechash_mtx); 1945 SLIST_REMOVE(&vp->v_rdev->si_hlist, vp, vnode, v_specnext); 1946 freedev(vp->v_rdev); 1947 mtx_unlock(&spechash_mtx); 1948 vp->v_rdev = NULL; 1949 } 1950 1951 /* 1952 * If it is on the freelist and not already at the head, 1953 * move it to the head of the list. The test of the 1954 * VDOOMED flag and the reference count of zero is because 1955 * it will be removed from the free list by getnewvnode, 1956 * but will not have its reference count incremented until 1957 * after calling vgone. If the reference count were 1958 * incremented first, vgone would (incorrectly) try to 1959 * close the previous instance of the underlying object. 1960 */ 1961 if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) { 1962 s = splbio(); 1963 mtx_lock(&vnode_free_list_mtx); 1964 if (vp->v_flag & VFREE) 1965 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 1966 else 1967 freevnodes++; 1968 vp->v_flag |= VFREE; 1969 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 1970 mtx_unlock(&vnode_free_list_mtx); 1971 splx(s); 1972 } 1973 1974 vp->v_type = VBAD; 1975 mtx_unlock(&vp->v_interlock); 1976 } 1977 1978 /* 1979 * Lookup a vnode by device number. 1980 */ 1981 int 1982 vfinddev(dev, type, vpp) 1983 dev_t dev; 1984 enum vtype type; 1985 struct vnode **vpp; 1986 { 1987 struct vnode *vp; 1988 1989 mtx_lock(&spechash_mtx); 1990 SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) { 1991 if (type == vp->v_type) { 1992 *vpp = vp; 1993 mtx_unlock(&spechash_mtx); 1994 return (1); 1995 } 1996 } 1997 mtx_unlock(&spechash_mtx); 1998 return (0); 1999 } 2000 2001 /* 2002 * Calculate the total number of references to a special device. 2003 */ 2004 int 2005 vcount(vp) 2006 struct vnode *vp; 2007 { 2008 struct vnode *vq; 2009 int count; 2010 2011 count = 0; 2012 mtx_lock(&spechash_mtx); 2013 SLIST_FOREACH(vq, &vp->v_rdev->si_hlist, v_specnext) 2014 count += vq->v_usecount; 2015 mtx_unlock(&spechash_mtx); 2016 return (count); 2017 } 2018 2019 /* 2020 * Same as above, but using the dev_t as argument 2021 */ 2022 int 2023 count_dev(dev) 2024 dev_t dev; 2025 { 2026 struct vnode *vp; 2027 2028 vp = SLIST_FIRST(&dev->si_hlist); 2029 if (vp == NULL) 2030 return (0); 2031 return(vcount(vp)); 2032 } 2033 2034 /* 2035 * Print out a description of a vnode. 2036 */ 2037 static char *typename[] = 2038 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"}; 2039 2040 void 2041 vprint(label, vp) 2042 char *label; 2043 struct vnode *vp; 2044 { 2045 char buf[96]; 2046 2047 if (label != NULL) 2048 printf("%s: %p: ", label, (void *)vp); 2049 else 2050 printf("%p: ", (void *)vp); 2051 printf("type %s, usecount %d, writecount %d, refcount %d,", 2052 typename[vp->v_type], vp->v_usecount, vp->v_writecount, 2053 vp->v_holdcnt); 2054 buf[0] = '\0'; 2055 if (vp->v_flag & VROOT) 2056 strcat(buf, "|VROOT"); 2057 if (vp->v_flag & VTEXT) 2058 strcat(buf, "|VTEXT"); 2059 if (vp->v_flag & VSYSTEM) 2060 strcat(buf, "|VSYSTEM"); 2061 if (vp->v_flag & VXLOCK) 2062 strcat(buf, "|VXLOCK"); 2063 if (vp->v_flag & VXWANT) 2064 strcat(buf, "|VXWANT"); 2065 if (vp->v_flag & VBWAIT) 2066 strcat(buf, "|VBWAIT"); 2067 if (vp->v_flag & VDOOMED) 2068 strcat(buf, "|VDOOMED"); 2069 if (vp->v_flag & VFREE) 2070 strcat(buf, "|VFREE"); 2071 if (vp->v_flag & VOBJBUF) 2072 strcat(buf, "|VOBJBUF"); 2073 if (buf[0] != '\0') 2074 printf(" flags (%s)", &buf[1]); 2075 if (vp->v_data == NULL) { 2076 printf("\n"); 2077 } else { 2078 printf("\n\t"); 2079 VOP_PRINT(vp); 2080 } 2081 } 2082 2083 #ifdef DDB 2084 #include <ddb/ddb.h> 2085 /* 2086 * List all of the locked vnodes in the system. 2087 * Called when debugging the kernel. 2088 */ 2089 DB_SHOW_COMMAND(lockedvnodes, lockedvnodes) 2090 { 2091 struct proc *p = curproc; /* XXX */ 2092 struct mount *mp, *nmp; 2093 struct vnode *vp; 2094 2095 printf("Locked vnodes\n"); 2096 mtx_lock(&mountlist_mtx); 2097 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 2098 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, p)) { 2099 nmp = TAILQ_NEXT(mp, mnt_list); 2100 continue; 2101 } 2102 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { 2103 if (VOP_ISLOCKED(vp, NULL)) 2104 vprint((char *)0, vp); 2105 } 2106 mtx_lock(&mountlist_mtx); 2107 nmp = TAILQ_NEXT(mp, mnt_list); 2108 vfs_unbusy(mp, p); 2109 } 2110 mtx_unlock(&mountlist_mtx); 2111 } 2112 #endif 2113 2114 /* 2115 * Top level filesystem related information gathering. 2116 */ 2117 static int sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS)); 2118 2119 static int 2120 vfs_sysctl(SYSCTL_HANDLER_ARGS) 2121 { 2122 int *name = (int *)arg1 - 1; /* XXX */ 2123 u_int namelen = arg2 + 1; /* XXX */ 2124 struct vfsconf *vfsp; 2125 2126 #if 1 || defined(COMPAT_PRELITE2) 2127 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */ 2128 if (namelen == 1) 2129 return (sysctl_ovfs_conf(oidp, arg1, arg2, req)); 2130 #endif 2131 2132 /* XXX the below code does not compile; vfs_sysctl does not exist. */ 2133 #ifdef notyet 2134 /* all sysctl names at this level are at least name and field */ 2135 if (namelen < 2) 2136 return (ENOTDIR); /* overloaded */ 2137 if (name[0] != VFS_GENERIC) { 2138 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) 2139 if (vfsp->vfc_typenum == name[0]) 2140 break; 2141 if (vfsp == NULL) 2142 return (EOPNOTSUPP); 2143 return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1, 2144 oldp, oldlenp, newp, newlen, p)); 2145 } 2146 #endif 2147 switch (name[1]) { 2148 case VFS_MAXTYPENUM: 2149 if (namelen != 2) 2150 return (ENOTDIR); 2151 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int))); 2152 case VFS_CONF: 2153 if (namelen != 3) 2154 return (ENOTDIR); /* overloaded */ 2155 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) 2156 if (vfsp->vfc_typenum == name[2]) 2157 break; 2158 if (vfsp == NULL) 2159 return (EOPNOTSUPP); 2160 return (SYSCTL_OUT(req, vfsp, sizeof *vfsp)); 2161 } 2162 return (EOPNOTSUPP); 2163 } 2164 2165 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl, 2166 "Generic filesystem"); 2167 2168 #if 1 || defined(COMPAT_PRELITE2) 2169 2170 static int 2171 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS) 2172 { 2173 int error; 2174 struct vfsconf *vfsp; 2175 struct ovfsconf ovfs; 2176 2177 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) { 2178 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */ 2179 strcpy(ovfs.vfc_name, vfsp->vfc_name); 2180 ovfs.vfc_index = vfsp->vfc_typenum; 2181 ovfs.vfc_refcount = vfsp->vfc_refcount; 2182 ovfs.vfc_flags = vfsp->vfc_flags; 2183 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs); 2184 if (error) 2185 return error; 2186 } 2187 return 0; 2188 } 2189 2190 #endif /* 1 || COMPAT_PRELITE2 */ 2191 2192 #if COMPILING_LINT 2193 #define KINFO_VNODESLOP 10 2194 /* 2195 * Dump vnode list (via sysctl). 2196 * Copyout address of vnode followed by vnode. 2197 */ 2198 /* ARGSUSED */ 2199 static int 2200 sysctl_vnode(SYSCTL_HANDLER_ARGS) 2201 { 2202 struct proc *p = curproc; /* XXX */ 2203 struct mount *mp, *nmp; 2204 struct vnode *nvp, *vp; 2205 int error; 2206 2207 #define VPTRSZ sizeof (struct vnode *) 2208 #define VNODESZ sizeof (struct vnode) 2209 2210 req->lock = 0; 2211 if (!req->oldptr) /* Make an estimate */ 2212 return (SYSCTL_OUT(req, 0, 2213 (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ))); 2214 2215 mtx_lock(&mountlist_mtx); 2216 for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) { 2217 if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, p)) { 2218 nmp = TAILQ_NEXT(mp, mnt_list); 2219 continue; 2220 } 2221 again: 2222 mtx_lock(&mntvnode_mtx); 2223 for (vp = LIST_FIRST(&mp->mnt_vnodelist); 2224 vp != NULL; 2225 vp = nvp) { 2226 /* 2227 * Check that the vp is still associated with 2228 * this filesystem. RACE: could have been 2229 * recycled onto the same filesystem. 2230 */ 2231 if (vp->v_mount != mp) { 2232 mtx_unlock(&mntvnode_mtx); 2233 goto again; 2234 } 2235 nvp = LIST_NEXT(vp, v_mntvnodes); 2236 mtx_unlock(&mntvnode_mtx); 2237 if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) || 2238 (error = SYSCTL_OUT(req, vp, VNODESZ))) 2239 return (error); 2240 mtx_lock(&mntvnode_mtx); 2241 } 2242 mtx_unlock(&mntvnode_mtx); 2243 mtx_lock(&mountlist_mtx); 2244 nmp = TAILQ_NEXT(mp, mnt_list); 2245 vfs_unbusy(mp, p); 2246 } 2247 mtx_unlock(&mountlist_mtx); 2248 2249 return (0); 2250 } 2251 2252 /* 2253 * XXX 2254 * Exporting the vnode list on large systems causes them to crash. 2255 * Exporting the vnode list on medium systems causes sysctl to coredump. 2256 */ 2257 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD, 2258 0, 0, sysctl_vnode, "S,vnode", ""); 2259 #endif 2260 2261 /* 2262 * Check to see if a filesystem is mounted on a block device. 2263 */ 2264 int 2265 vfs_mountedon(vp) 2266 struct vnode *vp; 2267 { 2268 2269 if (vp->v_rdev->si_mountpoint != NULL) 2270 return (EBUSY); 2271 return (0); 2272 } 2273 2274 /* 2275 * Unmount all filesystems. The list is traversed in reverse order 2276 * of mounting to avoid dependencies. 2277 */ 2278 void 2279 vfs_unmountall() 2280 { 2281 struct mount *mp; 2282 struct proc *p; 2283 int error; 2284 2285 if (curproc != NULL) 2286 p = curproc; 2287 else 2288 p = initproc; /* XXX XXX should this be proc0? */ 2289 /* 2290 * Since this only runs when rebooting, it is not interlocked. 2291 */ 2292 while(!TAILQ_EMPTY(&mountlist)) { 2293 mp = TAILQ_LAST(&mountlist, mntlist); 2294 error = dounmount(mp, MNT_FORCE, p); 2295 if (error) { 2296 TAILQ_REMOVE(&mountlist, mp, mnt_list); 2297 printf("unmount of %s failed (", 2298 mp->mnt_stat.f_mntonname); 2299 if (error == EBUSY) 2300 printf("BUSY)\n"); 2301 else 2302 printf("%d)\n", error); 2303 } else { 2304 /* The unmount has removed mp from the mountlist */ 2305 } 2306 } 2307 } 2308 2309 /* 2310 * perform msync on all vnodes under a mount point 2311 * the mount point must be locked. 2312 */ 2313 void 2314 vfs_msync(struct mount *mp, int flags) { 2315 struct vnode *vp, *nvp; 2316 struct vm_object *obj; 2317 int anyio, tries; 2318 2319 tries = 5; 2320 loop: 2321 anyio = 0; 2322 for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) { 2323 2324 nvp = LIST_NEXT(vp, v_mntvnodes); 2325 2326 if (vp->v_mount != mp) { 2327 goto loop; 2328 } 2329 2330 if (vp->v_flag & VXLOCK) /* XXX: what if MNT_WAIT? */ 2331 continue; 2332 2333 if (flags != MNT_WAIT) { 2334 if (VOP_GETVOBJECT(vp, &obj) != 0 || 2335 (obj->flags & OBJ_MIGHTBEDIRTY) == 0) 2336 continue; 2337 if (VOP_ISLOCKED(vp, NULL)) 2338 continue; 2339 } 2340 2341 mtx_lock(&vp->v_interlock); 2342 if (VOP_GETVOBJECT(vp, &obj) == 0 && 2343 (obj->flags & OBJ_MIGHTBEDIRTY)) { 2344 if (!vget(vp, 2345 LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) { 2346 if (VOP_GETVOBJECT(vp, &obj) == 0) { 2347 vm_object_page_clean(obj, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC); 2348 anyio = 1; 2349 } 2350 vput(vp); 2351 } 2352 } else { 2353 mtx_unlock(&vp->v_interlock); 2354 } 2355 } 2356 if (anyio && (--tries > 0)) 2357 goto loop; 2358 } 2359 2360 /* 2361 * Create the VM object needed for VMIO and mmap support. This 2362 * is done for all VREG files in the system. Some filesystems might 2363 * afford the additional metadata buffering capability of the 2364 * VMIO code by making the device node be VMIO mode also. 2365 * 2366 * vp must be locked when vfs_object_create is called. 2367 */ 2368 int 2369 vfs_object_create(vp, p, cred) 2370 struct vnode *vp; 2371 struct proc *p; 2372 struct ucred *cred; 2373 { 2374 return (VOP_CREATEVOBJECT(vp, cred, p)); 2375 } 2376 2377 /* 2378 * Mark a vnode as free, putting it up for recycling. 2379 */ 2380 void 2381 vfree(vp) 2382 struct vnode *vp; 2383 { 2384 int s; 2385 2386 s = splbio(); 2387 mtx_lock(&vnode_free_list_mtx); 2388 KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free")); 2389 if (vp->v_flag & VAGE) { 2390 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); 2391 } else { 2392 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); 2393 } 2394 freevnodes++; 2395 mtx_unlock(&vnode_free_list_mtx); 2396 vp->v_flag &= ~VAGE; 2397 vp->v_flag |= VFREE; 2398 splx(s); 2399 } 2400 2401 /* 2402 * Opposite of vfree() - mark a vnode as in use. 2403 */ 2404 void 2405 vbusy(vp) 2406 struct vnode *vp; 2407 { 2408 int s; 2409 2410 s = splbio(); 2411 mtx_lock(&vnode_free_list_mtx); 2412 KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free")); 2413 TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); 2414 freevnodes--; 2415 mtx_unlock(&vnode_free_list_mtx); 2416 vp->v_flag &= ~(VFREE|VAGE); 2417 splx(s); 2418 } 2419 2420 /* 2421 * Record a process's interest in events which might happen to 2422 * a vnode. Because poll uses the historic select-style interface 2423 * internally, this routine serves as both the ``check for any 2424 * pending events'' and the ``record my interest in future events'' 2425 * functions. (These are done together, while the lock is held, 2426 * to avoid race conditions.) 2427 */ 2428 int 2429 vn_pollrecord(vp, p, events) 2430 struct vnode *vp; 2431 struct proc *p; 2432 short events; 2433 { 2434 mtx_lock(&vp->v_pollinfo.vpi_lock); 2435 if (vp->v_pollinfo.vpi_revents & events) { 2436 /* 2437 * This leaves events we are not interested 2438 * in available for the other process which 2439 * which presumably had requested them 2440 * (otherwise they would never have been 2441 * recorded). 2442 */ 2443 events &= vp->v_pollinfo.vpi_revents; 2444 vp->v_pollinfo.vpi_revents &= ~events; 2445 2446 mtx_unlock(&vp->v_pollinfo.vpi_lock); 2447 return events; 2448 } 2449 vp->v_pollinfo.vpi_events |= events; 2450 selrecord(p, &vp->v_pollinfo.vpi_selinfo); 2451 mtx_unlock(&vp->v_pollinfo.vpi_lock); 2452 return 0; 2453 } 2454 2455 /* 2456 * Note the occurrence of an event. If the VN_POLLEVENT macro is used, 2457 * it is possible for us to miss an event due to race conditions, but 2458 * that condition is expected to be rare, so for the moment it is the 2459 * preferred interface. 2460 */ 2461 void 2462 vn_pollevent(vp, events) 2463 struct vnode *vp; 2464 short events; 2465 { 2466 mtx_lock(&vp->v_pollinfo.vpi_lock); 2467 if (vp->v_pollinfo.vpi_events & events) { 2468 /* 2469 * We clear vpi_events so that we don't 2470 * call selwakeup() twice if two events are 2471 * posted before the polling process(es) is 2472 * awakened. This also ensures that we take at 2473 * most one selwakeup() if the polling process 2474 * is no longer interested. However, it does 2475 * mean that only one event can be noticed at 2476 * a time. (Perhaps we should only clear those 2477 * event bits which we note?) XXX 2478 */ 2479 vp->v_pollinfo.vpi_events = 0; /* &= ~events ??? */ 2480 vp->v_pollinfo.vpi_revents |= events; 2481 selwakeup(&vp->v_pollinfo.vpi_selinfo); 2482 } 2483 mtx_unlock(&vp->v_pollinfo.vpi_lock); 2484 } 2485 2486 #define VN_KNOTE(vp, b) \ 2487 KNOTE((struct klist *)&vp->v_pollinfo.vpi_selinfo.si_note, (b)) 2488 2489 /* 2490 * Wake up anyone polling on vp because it is being revoked. 2491 * This depends on dead_poll() returning POLLHUP for correct 2492 * behavior. 2493 */ 2494 void 2495 vn_pollgone(vp) 2496 struct vnode *vp; 2497 { 2498 mtx_lock(&vp->v_pollinfo.vpi_lock); 2499 VN_KNOTE(vp, NOTE_REVOKE); 2500 if (vp->v_pollinfo.vpi_events) { 2501 vp->v_pollinfo.vpi_events = 0; 2502 selwakeup(&vp->v_pollinfo.vpi_selinfo); 2503 } 2504 mtx_unlock(&vp->v_pollinfo.vpi_lock); 2505 } 2506 2507 2508 2509 /* 2510 * Routine to create and manage a filesystem syncer vnode. 2511 */ 2512 #define sync_close ((int (*) __P((struct vop_close_args *)))nullop) 2513 static int sync_fsync __P((struct vop_fsync_args *)); 2514 static int sync_inactive __P((struct vop_inactive_args *)); 2515 static int sync_reclaim __P((struct vop_reclaim_args *)); 2516 #define sync_lock ((int (*) __P((struct vop_lock_args *)))vop_nolock) 2517 #define sync_unlock ((int (*) __P((struct vop_unlock_args *)))vop_nounlock) 2518 static int sync_print __P((struct vop_print_args *)); 2519 #define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked) 2520 2521 static vop_t **sync_vnodeop_p; 2522 static struct vnodeopv_entry_desc sync_vnodeop_entries[] = { 2523 { &vop_default_desc, (vop_t *) vop_eopnotsupp }, 2524 { &vop_close_desc, (vop_t *) sync_close }, /* close */ 2525 { &vop_fsync_desc, (vop_t *) sync_fsync }, /* fsync */ 2526 { &vop_inactive_desc, (vop_t *) sync_inactive }, /* inactive */ 2527 { &vop_reclaim_desc, (vop_t *) sync_reclaim }, /* reclaim */ 2528 { &vop_lock_desc, (vop_t *) sync_lock }, /* lock */ 2529 { &vop_unlock_desc, (vop_t *) sync_unlock }, /* unlock */ 2530 { &vop_print_desc, (vop_t *) sync_print }, /* print */ 2531 { &vop_islocked_desc, (vop_t *) sync_islocked }, /* islocked */ 2532 { NULL, NULL } 2533 }; 2534 static struct vnodeopv_desc sync_vnodeop_opv_desc = 2535 { &sync_vnodeop_p, sync_vnodeop_entries }; 2536 2537 VNODEOP_SET(sync_vnodeop_opv_desc); 2538 2539 /* 2540 * Create a new filesystem syncer vnode for the specified mount point. 2541 */ 2542 int 2543 vfs_allocate_syncvnode(mp) 2544 struct mount *mp; 2545 { 2546 struct vnode *vp; 2547 static long start, incr, next; 2548 int error; 2549 2550 /* Allocate a new vnode */ 2551 if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) { 2552 mp->mnt_syncer = NULL; 2553 return (error); 2554 } 2555 vp->v_type = VNON; 2556 /* 2557 * Place the vnode onto the syncer worklist. We attempt to 2558 * scatter them about on the list so that they will go off 2559 * at evenly distributed times even if all the filesystems 2560 * are mounted at once. 2561 */ 2562 next += incr; 2563 if (next == 0 || next > syncer_maxdelay) { 2564 start /= 2; 2565 incr /= 2; 2566 if (start == 0) { 2567 start = syncer_maxdelay / 2; 2568 incr = syncer_maxdelay; 2569 } 2570 next = start; 2571 } 2572 vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0); 2573 mp->mnt_syncer = vp; 2574 return (0); 2575 } 2576 2577 /* 2578 * Do a lazy sync of the filesystem. 2579 */ 2580 static int 2581 sync_fsync(ap) 2582 struct vop_fsync_args /* { 2583 struct vnode *a_vp; 2584 struct ucred *a_cred; 2585 int a_waitfor; 2586 struct proc *a_p; 2587 } */ *ap; 2588 { 2589 struct vnode *syncvp = ap->a_vp; 2590 struct mount *mp = syncvp->v_mount; 2591 struct proc *p = ap->a_p; 2592 int asyncflag; 2593 2594 /* 2595 * We only need to do something if this is a lazy evaluation. 2596 */ 2597 if (ap->a_waitfor != MNT_LAZY) 2598 return (0); 2599 2600 /* 2601 * Move ourselves to the back of the sync list. 2602 */ 2603 vn_syncer_add_to_worklist(syncvp, syncdelay); 2604 2605 /* 2606 * Walk the list of vnodes pushing all that are dirty and 2607 * not already on the sync list. 2608 */ 2609 mtx_lock(&mountlist_mtx); 2610 if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, p) != 0) { 2611 mtx_unlock(&mountlist_mtx); 2612 return (0); 2613 } 2614 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) { 2615 vfs_unbusy(mp, p); 2616 return (0); 2617 } 2618 asyncflag = mp->mnt_flag & MNT_ASYNC; 2619 mp->mnt_flag &= ~MNT_ASYNC; 2620 vfs_msync(mp, MNT_NOWAIT); 2621 VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p); 2622 if (asyncflag) 2623 mp->mnt_flag |= MNT_ASYNC; 2624 vn_finished_write(mp); 2625 vfs_unbusy(mp, p); 2626 return (0); 2627 } 2628 2629 /* 2630 * The syncer vnode is no referenced. 2631 */ 2632 static int 2633 sync_inactive(ap) 2634 struct vop_inactive_args /* { 2635 struct vnode *a_vp; 2636 struct proc *a_p; 2637 } */ *ap; 2638 { 2639 2640 vgone(ap->a_vp); 2641 return (0); 2642 } 2643 2644 /* 2645 * The syncer vnode is no longer needed and is being decommissioned. 2646 * 2647 * Modifications to the worklist must be protected at splbio(). 2648 */ 2649 static int 2650 sync_reclaim(ap) 2651 struct vop_reclaim_args /* { 2652 struct vnode *a_vp; 2653 } */ *ap; 2654 { 2655 struct vnode *vp = ap->a_vp; 2656 int s; 2657 2658 s = splbio(); 2659 vp->v_mount->mnt_syncer = NULL; 2660 if (vp->v_flag & VONWORKLST) { 2661 LIST_REMOVE(vp, v_synclist); 2662 vp->v_flag &= ~VONWORKLST; 2663 } 2664 splx(s); 2665 2666 return (0); 2667 } 2668 2669 /* 2670 * Print out a syncer vnode. 2671 */ 2672 static int 2673 sync_print(ap) 2674 struct vop_print_args /* { 2675 struct vnode *a_vp; 2676 } */ *ap; 2677 { 2678 struct vnode *vp = ap->a_vp; 2679 2680 printf("syncer vnode"); 2681 if (vp->v_vnlock != NULL) 2682 lockmgr_printinfo(vp->v_vnlock); 2683 printf("\n"); 2684 return (0); 2685 } 2686 2687 /* 2688 * extract the dev_t from a VCHR 2689 */ 2690 dev_t 2691 vn_todev(vp) 2692 struct vnode *vp; 2693 { 2694 if (vp->v_type != VCHR) 2695 return (NODEV); 2696 return (vp->v_rdev); 2697 } 2698 2699 /* 2700 * Check if vnode represents a disk device 2701 */ 2702 int 2703 vn_isdisk(vp, errp) 2704 struct vnode *vp; 2705 int *errp; 2706 { 2707 struct cdevsw *cdevsw; 2708 2709 if (vp->v_type != VCHR) { 2710 if (errp != NULL) 2711 *errp = ENOTBLK; 2712 return (0); 2713 } 2714 if (vp->v_rdev == NULL) { 2715 if (errp != NULL) 2716 *errp = ENXIO; 2717 return (0); 2718 } 2719 cdevsw = devsw(vp->v_rdev); 2720 if (cdevsw == NULL) { 2721 if (errp != NULL) 2722 *errp = ENXIO; 2723 return (0); 2724 } 2725 if (!(cdevsw->d_flags & D_DISK)) { 2726 if (errp != NULL) 2727 *errp = ENOTBLK; 2728 return (0); 2729 } 2730 if (errp != NULL) 2731 *errp = 0; 2732 return (1); 2733 } 2734 2735 /* 2736 * Free data allocated by namei(); see namei(9) for details. 2737 */ 2738 void 2739 NDFREE(ndp, flags) 2740 struct nameidata *ndp; 2741 const uint flags; 2742 { 2743 if (!(flags & NDF_NO_FREE_PNBUF) && 2744 (ndp->ni_cnd.cn_flags & HASBUF)) { 2745 zfree(namei_zone, ndp->ni_cnd.cn_pnbuf); 2746 ndp->ni_cnd.cn_flags &= ~HASBUF; 2747 } 2748 if (!(flags & NDF_NO_DVP_UNLOCK) && 2749 (ndp->ni_cnd.cn_flags & LOCKPARENT) && 2750 ndp->ni_dvp != ndp->ni_vp) 2751 VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc); 2752 if (!(flags & NDF_NO_DVP_RELE) && 2753 (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) { 2754 vrele(ndp->ni_dvp); 2755 ndp->ni_dvp = NULL; 2756 } 2757 if (!(flags & NDF_NO_VP_UNLOCK) && 2758 (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp) 2759 VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc); 2760 if (!(flags & NDF_NO_VP_RELE) && 2761 ndp->ni_vp) { 2762 vrele(ndp->ni_vp); 2763 ndp->ni_vp = NULL; 2764 } 2765 if (!(flags & NDF_NO_STARTDIR_RELE) && 2766 (ndp->ni_cnd.cn_flags & SAVESTART)) { 2767 vrele(ndp->ni_startdir); 2768 ndp->ni_startdir = NULL; 2769 } 2770 } 2771 2772 /* 2773 * Common file system object access control check routine. Accepts a 2774 * vnode's type, "mode", uid and gid, requested access mode, credentials, 2775 * and optional call-by-reference privused argument allowing vaccess() 2776 * to indicate to the caller whether privilege was used to satisfy the 2777 * request. Returns 0 on success, or an errno on failure. 2778 */ 2779 int 2780 vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused) 2781 enum vtype type; 2782 mode_t file_mode; 2783 uid_t file_uid; 2784 gid_t file_gid; 2785 mode_t acc_mode; 2786 struct ucred *cred; 2787 int *privused; 2788 { 2789 mode_t dac_granted; 2790 #ifdef CAPABILITIES 2791 mode_t cap_granted; 2792 #endif 2793 2794 /* 2795 * Look for a normal, non-privileged way to access the file/directory 2796 * as requested. If it exists, go with that. 2797 */ 2798 2799 if (privused != NULL) 2800 *privused = 0; 2801 2802 dac_granted = 0; 2803 2804 /* Check the owner. */ 2805 if (cred->cr_uid == file_uid) { 2806 dac_granted |= VADMIN; 2807 if (file_mode & S_IXUSR) 2808 dac_granted |= VEXEC; 2809 if (file_mode & S_IRUSR) 2810 dac_granted |= VREAD; 2811 if (file_mode & S_IWUSR) 2812 dac_granted |= VWRITE; 2813 2814 if ((acc_mode & dac_granted) == acc_mode) 2815 return (0); 2816 2817 goto privcheck; 2818 } 2819 2820 /* Otherwise, check the groups (first match) */ 2821 if (groupmember(file_gid, cred)) { 2822 if (file_mode & S_IXGRP) 2823 dac_granted |= VEXEC; 2824 if (file_mode & S_IRGRP) 2825 dac_granted |= VREAD; 2826 if (file_mode & S_IWGRP) 2827 dac_granted |= VWRITE; 2828 2829 if ((acc_mode & dac_granted) == acc_mode) 2830 return (0); 2831 2832 goto privcheck; 2833 } 2834 2835 /* Otherwise, check everyone else. */ 2836 if (file_mode & S_IXOTH) 2837 dac_granted |= VEXEC; 2838 if (file_mode & S_IROTH) 2839 dac_granted |= VREAD; 2840 if (file_mode & S_IWOTH) 2841 dac_granted |= VWRITE; 2842 if ((acc_mode & dac_granted) == acc_mode) 2843 return (0); 2844 2845 privcheck: 2846 if (!suser_xxx(cred, NULL, PRISON_ROOT)) { 2847 /* XXX audit: privilege used */ 2848 if (privused != NULL) 2849 *privused = 1; 2850 return (0); 2851 } 2852 2853 #ifdef CAPABILITIES 2854 /* 2855 * Build a capability mask to determine if the set of capabilities 2856 * satisfies the requirements when combined with the granted mask 2857 * from above. 2858 * For each capability, if the capability is required, bitwise 2859 * or the request type onto the cap_granted mask. 2860 */ 2861 cap_granted = 0; 2862 if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) && 2863 !cap_check_xxx(cred, NULL, CAP_DAC_EXECUTE, PRISON_ROOT)) 2864 cap_granted |= VEXEC; 2865 2866 if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) && 2867 !cap_check_xxx(cred, NULL, CAP_DAC_READ_SEARCH, PRISON_ROOT)) 2868 cap_granted |= VREAD; 2869 2870 if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) && 2871 !cap_check_xxx(cred, NULL, CAP_DAC_WRITE, PRISON_ROOT)) 2872 cap_granted |= VWRITE; 2873 2874 if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) && 2875 !cap_check_xxx(cred, NULL, CAP_FOWNER, PRISON_ROOT)) 2876 cap_granted |= VADMIN; 2877 2878 if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) { 2879 /* XXX audit: privilege used */ 2880 if (privused != NULL) 2881 *privused = 1; 2882 return (0); 2883 } 2884 #endif 2885 2886 return ((acc_mode & VADMIN) ? EPERM : EACCES); 2887 } 2888 2889