xref: /freebsd/sys/kern/vfs_subr.c (revision c1cdf6a42f0d951ba720688dfc6ce07608b02f6e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
37  */
38 
39 /*
40  * External virtual filesystem routines
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 #include "opt_watchdog.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/bio.h>
52 #include <sys/buf.h>
53 #include <sys/condvar.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/dirent.h>
57 #include <sys/event.h>
58 #include <sys/eventhandler.h>
59 #include <sys/extattr.h>
60 #include <sys/file.h>
61 #include <sys/fcntl.h>
62 #include <sys/jail.h>
63 #include <sys/kdb.h>
64 #include <sys/kernel.h>
65 #include <sys/kthread.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smp.h>
78 #include <sys/stat.h>
79 #include <sys/sysctl.h>
80 #include <sys/syslog.h>
81 #include <sys/vmmeter.h>
82 #include <sys/vnode.h>
83 #include <sys/watchdog.h>
84 
85 #include <machine/stdarg.h>
86 
87 #include <security/mac/mac_framework.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_extern.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_kern.h>
96 #include <vm/uma.h>
97 
98 #ifdef DDB
99 #include <ddb/ddb.h>
100 #endif
101 
102 static void	delmntque(struct vnode *vp);
103 static int	flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
104 		    int slpflag, int slptimeo);
105 static void	syncer_shutdown(void *arg, int howto);
106 static int	vtryrecycle(struct vnode *vp);
107 static void	v_init_counters(struct vnode *);
108 static void	v_incr_usecount(struct vnode *);
109 static void	v_incr_usecount_locked(struct vnode *);
110 static void	v_incr_devcount(struct vnode *);
111 static void	v_decr_devcount(struct vnode *);
112 static void	vgonel(struct vnode *);
113 static void	vfs_knllock(void *arg);
114 static void	vfs_knlunlock(void *arg);
115 static void	vfs_knl_assert_locked(void *arg);
116 static void	vfs_knl_assert_unlocked(void *arg);
117 static void	vnlru_return_batches(struct vfsops *mnt_op);
118 static void	destroy_vpollinfo(struct vpollinfo *vi);
119 
120 /*
121  * These fences are intended for cases where some synchronization is
122  * needed between access of v_iflags and lockless vnode refcount (v_holdcnt
123  * and v_usecount) updates.  Access to v_iflags is generally synchronized
124  * by the interlock, but we have some internal assertions that check vnode
125  * flags without acquiring the lock.  Thus, these fences are INVARIANTS-only
126  * for now.
127  */
128 #ifdef INVARIANTS
129 #define	VNODE_REFCOUNT_FENCE_ACQ()	atomic_thread_fence_acq()
130 #define	VNODE_REFCOUNT_FENCE_REL()	atomic_thread_fence_rel()
131 #else
132 #define	VNODE_REFCOUNT_FENCE_ACQ()
133 #define	VNODE_REFCOUNT_FENCE_REL()
134 #endif
135 
136 /*
137  * Number of vnodes in existence.  Increased whenever getnewvnode()
138  * allocates a new vnode, decreased in vdropl() for VI_DOOMED vnode.
139  */
140 static unsigned long	numvnodes;
141 
142 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
143     "Number of vnodes in existence");
144 
145 static counter_u64_t vnodes_created;
146 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
147     "Number of vnodes created by getnewvnode");
148 
149 static u_long mnt_free_list_batch = 128;
150 SYSCTL_ULONG(_vfs, OID_AUTO, mnt_free_list_batch, CTLFLAG_RW,
151     &mnt_free_list_batch, 0, "Limit of vnodes held on mnt's free list");
152 
153 /*
154  * Conversion tables for conversion from vnode types to inode formats
155  * and back.
156  */
157 enum vtype iftovt_tab[16] = {
158 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
159 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
160 };
161 int vttoif_tab[10] = {
162 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
163 	S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
164 };
165 
166 /*
167  * List of vnodes that are ready for recycling.
168  */
169 static TAILQ_HEAD(freelst, vnode) vnode_free_list;
170 
171 /*
172  * "Free" vnode target.  Free vnodes are rarely completely free, but are
173  * just ones that are cheap to recycle.  Usually they are for files which
174  * have been stat'd but not read; these usually have inode and namecache
175  * data attached to them.  This target is the preferred minimum size of a
176  * sub-cache consisting mostly of such files. The system balances the size
177  * of this sub-cache with its complement to try to prevent either from
178  * thrashing while the other is relatively inactive.  The targets express
179  * a preference for the best balance.
180  *
181  * "Above" this target there are 2 further targets (watermarks) related
182  * to recyling of free vnodes.  In the best-operating case, the cache is
183  * exactly full, the free list has size between vlowat and vhiwat above the
184  * free target, and recycling from it and normal use maintains this state.
185  * Sometimes the free list is below vlowat or even empty, but this state
186  * is even better for immediate use provided the cache is not full.
187  * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
188  * ones) to reach one of these states.  The watermarks are currently hard-
189  * coded as 4% and 9% of the available space higher.  These and the default
190  * of 25% for wantfreevnodes are too large if the memory size is large.
191  * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
192  * whenever vnlru_proc() becomes active.
193  */
194 static u_long wantfreevnodes;
195 SYSCTL_ULONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW,
196     &wantfreevnodes, 0, "Target for minimum number of \"free\" vnodes");
197 static u_long freevnodes;
198 SYSCTL_ULONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD,
199     &freevnodes, 0, "Number of \"free\" vnodes");
200 
201 static counter_u64_t recycles_count;
202 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, recycles, CTLFLAG_RD, &recycles_count,
203     "Number of vnodes recycled to meet vnode cache targets");
204 
205 /*
206  * Various variables used for debugging the new implementation of
207  * reassignbuf().
208  * XXX these are probably of (very) limited utility now.
209  */
210 static int reassignbufcalls;
211 SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0,
212     "Number of calls to reassignbuf");
213 
214 static counter_u64_t free_owe_inact;
215 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, free_owe_inact, CTLFLAG_RD, &free_owe_inact,
216     "Number of times free vnodes kept on active list due to VFS "
217     "owing inactivation");
218 
219 /* To keep more than one thread at a time from running vfs_getnewfsid */
220 static struct mtx mntid_mtx;
221 
222 /*
223  * Lock for any access to the following:
224  *	vnode_free_list
225  *	numvnodes
226  *	freevnodes
227  */
228 static struct mtx vnode_free_list_mtx;
229 
230 /* Publicly exported FS */
231 struct nfs_public nfs_pub;
232 
233 static uma_zone_t buf_trie_zone;
234 
235 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
236 static uma_zone_t vnode_zone;
237 static uma_zone_t vnodepoll_zone;
238 
239 /*
240  * The workitem queue.
241  *
242  * It is useful to delay writes of file data and filesystem metadata
243  * for tens of seconds so that quickly created and deleted files need
244  * not waste disk bandwidth being created and removed. To realize this,
245  * we append vnodes to a "workitem" queue. When running with a soft
246  * updates implementation, most pending metadata dependencies should
247  * not wait for more than a few seconds. Thus, mounted on block devices
248  * are delayed only about a half the time that file data is delayed.
249  * Similarly, directory updates are more critical, so are only delayed
250  * about a third the time that file data is delayed. Thus, there are
251  * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
252  * one each second (driven off the filesystem syncer process). The
253  * syncer_delayno variable indicates the next queue that is to be processed.
254  * Items that need to be processed soon are placed in this queue:
255  *
256  *	syncer_workitem_pending[syncer_delayno]
257  *
258  * A delay of fifteen seconds is done by placing the request fifteen
259  * entries later in the queue:
260  *
261  *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
262  *
263  */
264 static int syncer_delayno;
265 static long syncer_mask;
266 LIST_HEAD(synclist, bufobj);
267 static struct synclist *syncer_workitem_pending;
268 /*
269  * The sync_mtx protects:
270  *	bo->bo_synclist
271  *	sync_vnode_count
272  *	syncer_delayno
273  *	syncer_state
274  *	syncer_workitem_pending
275  *	syncer_worklist_len
276  *	rushjob
277  */
278 static struct mtx sync_mtx;
279 static struct cv sync_wakeup;
280 
281 #define SYNCER_MAXDELAY		32
282 static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
283 static int syncdelay = 30;		/* max time to delay syncing data */
284 static int filedelay = 30;		/* time to delay syncing files */
285 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
286     "Time to delay syncing files (in seconds)");
287 static int dirdelay = 29;		/* time to delay syncing directories */
288 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
289     "Time to delay syncing directories (in seconds)");
290 static int metadelay = 28;		/* time to delay syncing metadata */
291 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
292     "Time to delay syncing metadata (in seconds)");
293 static int rushjob;		/* number of slots to run ASAP */
294 static int stat_rush_requests;	/* number of times I/O speeded up */
295 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
296     "Number of times I/O speeded up (rush requests)");
297 
298 /*
299  * When shutting down the syncer, run it at four times normal speed.
300  */
301 #define SYNCER_SHUTDOWN_SPEEDUP		4
302 static int sync_vnode_count;
303 static int syncer_worklist_len;
304 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
305     syncer_state;
306 
307 /* Target for maximum number of vnodes. */
308 int desiredvnodes;
309 static int gapvnodes;		/* gap between wanted and desired */
310 static int vhiwat;		/* enough extras after expansion */
311 static int vlowat;		/* minimal extras before expansion */
312 static int vstir;		/* nonzero to stir non-free vnodes */
313 static volatile int vsmalltrigger = 8;	/* pref to keep if > this many pages */
314 
315 static int
316 sysctl_update_desiredvnodes(SYSCTL_HANDLER_ARGS)
317 {
318 	int error, old_desiredvnodes;
319 
320 	old_desiredvnodes = desiredvnodes;
321 	if ((error = sysctl_handle_int(oidp, arg1, arg2, req)) != 0)
322 		return (error);
323 	if (old_desiredvnodes != desiredvnodes) {
324 		wantfreevnodes = desiredvnodes / 4;
325 		/* XXX locking seems to be incomplete. */
326 		vfs_hash_changesize(desiredvnodes);
327 		cache_changesize(desiredvnodes);
328 	}
329 	return (0);
330 }
331 
332 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
333     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, &desiredvnodes, 0,
334     sysctl_update_desiredvnodes, "I", "Target for maximum number of vnodes");
335 SYSCTL_ULONG(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
336     &wantfreevnodes, 0, "Old name for vfs.wantfreevnodes (legacy)");
337 static int vnlru_nowhere;
338 SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
339     &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
340 
341 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
342 static int vnsz2log;
343 
344 /*
345  * Support for the bufobj clean & dirty pctrie.
346  */
347 static void *
348 buf_trie_alloc(struct pctrie *ptree)
349 {
350 
351 	return uma_zalloc(buf_trie_zone, M_NOWAIT);
352 }
353 
354 static void
355 buf_trie_free(struct pctrie *ptree, void *node)
356 {
357 
358 	uma_zfree(buf_trie_zone, node);
359 }
360 PCTRIE_DEFINE(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free);
361 
362 /*
363  * Initialize the vnode management data structures.
364  *
365  * Reevaluate the following cap on the number of vnodes after the physical
366  * memory size exceeds 512GB.  In the limit, as the physical memory size
367  * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
368  */
369 #ifndef	MAXVNODES_MAX
370 #define	MAXVNODES_MAX	(512 * 1024 * 1024 / 64)	/* 8M */
371 #endif
372 
373 /*
374  * Initialize a vnode as it first enters the zone.
375  */
376 static int
377 vnode_init(void *mem, int size, int flags)
378 {
379 	struct vnode *vp;
380 
381 	vp = mem;
382 	bzero(vp, size);
383 	/*
384 	 * Setup locks.
385 	 */
386 	vp->v_vnlock = &vp->v_lock;
387 	mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
388 	/*
389 	 * By default, don't allow shared locks unless filesystems opt-in.
390 	 */
391 	lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
392 	    LK_NOSHARE | LK_IS_VNODE);
393 	/*
394 	 * Initialize bufobj.
395 	 */
396 	bufobj_init(&vp->v_bufobj, vp);
397 	/*
398 	 * Initialize namecache.
399 	 */
400 	LIST_INIT(&vp->v_cache_src);
401 	TAILQ_INIT(&vp->v_cache_dst);
402 	/*
403 	 * Initialize rangelocks.
404 	 */
405 	rangelock_init(&vp->v_rl);
406 	return (0);
407 }
408 
409 /*
410  * Free a vnode when it is cleared from the zone.
411  */
412 static void
413 vnode_fini(void *mem, int size)
414 {
415 	struct vnode *vp;
416 	struct bufobj *bo;
417 
418 	vp = mem;
419 	rangelock_destroy(&vp->v_rl);
420 	lockdestroy(vp->v_vnlock);
421 	mtx_destroy(&vp->v_interlock);
422 	bo = &vp->v_bufobj;
423 	rw_destroy(BO_LOCKPTR(bo));
424 }
425 
426 /*
427  * Provide the size of NFS nclnode and NFS fh for calculation of the
428  * vnode memory consumption.  The size is specified directly to
429  * eliminate dependency on NFS-private header.
430  *
431  * Other filesystems may use bigger or smaller (like UFS and ZFS)
432  * private inode data, but the NFS-based estimation is ample enough.
433  * Still, we care about differences in the size between 64- and 32-bit
434  * platforms.
435  *
436  * Namecache structure size is heuristically
437  * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
438  */
439 #ifdef _LP64
440 #define	NFS_NCLNODE_SZ	(528 + 64)
441 #define	NC_SZ		148
442 #else
443 #define	NFS_NCLNODE_SZ	(360 + 32)
444 #define	NC_SZ		92
445 #endif
446 
447 static void
448 vntblinit(void *dummy __unused)
449 {
450 	u_int i;
451 	int physvnodes, virtvnodes;
452 
453 	/*
454 	 * Desiredvnodes is a function of the physical memory size and the
455 	 * kernel's heap size.  Generally speaking, it scales with the
456 	 * physical memory size.  The ratio of desiredvnodes to the physical
457 	 * memory size is 1:16 until desiredvnodes exceeds 98,304.
458 	 * Thereafter, the
459 	 * marginal ratio of desiredvnodes to the physical memory size is
460 	 * 1:64.  However, desiredvnodes is limited by the kernel's heap
461 	 * size.  The memory required by desiredvnodes vnodes and vm objects
462 	 * must not exceed 1/10th of the kernel's heap size.
463 	 */
464 	physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 64 +
465 	    3 * min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 64;
466 	virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
467 	    sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
468 	desiredvnodes = min(physvnodes, virtvnodes);
469 	if (desiredvnodes > MAXVNODES_MAX) {
470 		if (bootverbose)
471 			printf("Reducing kern.maxvnodes %d -> %d\n",
472 			    desiredvnodes, MAXVNODES_MAX);
473 		desiredvnodes = MAXVNODES_MAX;
474 	}
475 	wantfreevnodes = desiredvnodes / 4;
476 	mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
477 	TAILQ_INIT(&vnode_free_list);
478 	mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
479 	vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
480 	    vnode_init, vnode_fini, UMA_ALIGN_PTR, 0);
481 	vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
482 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
483 	/*
484 	 * Preallocate enough nodes to support one-per buf so that
485 	 * we can not fail an insert.  reassignbuf() callers can not
486 	 * tolerate the insertion failure.
487 	 */
488 	buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
489 	    NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
490 	    UMA_ZONE_NOFREE | UMA_ZONE_VM);
491 	uma_prealloc(buf_trie_zone, nbuf);
492 
493 	vnodes_created = counter_u64_alloc(M_WAITOK);
494 	recycles_count = counter_u64_alloc(M_WAITOK);
495 	free_owe_inact = counter_u64_alloc(M_WAITOK);
496 
497 	/*
498 	 * Initialize the filesystem syncer.
499 	 */
500 	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
501 	    &syncer_mask);
502 	syncer_maxdelay = syncer_mask + 1;
503 	mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
504 	cv_init(&sync_wakeup, "syncer");
505 	for (i = 1; i <= sizeof(struct vnode); i <<= 1)
506 		vnsz2log++;
507 	vnsz2log--;
508 }
509 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
510 
511 
512 /*
513  * Mark a mount point as busy. Used to synchronize access and to delay
514  * unmounting. Eventually, mountlist_mtx is not released on failure.
515  *
516  * vfs_busy() is a custom lock, it can block the caller.
517  * vfs_busy() only sleeps if the unmount is active on the mount point.
518  * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
519  * vnode belonging to mp.
520  *
521  * Lookup uses vfs_busy() to traverse mount points.
522  * root fs			var fs
523  * / vnode lock		A	/ vnode lock (/var)		D
524  * /var vnode lock	B	/log vnode lock(/var/log)	E
525  * vfs_busy lock	C	vfs_busy lock			F
526  *
527  * Within each file system, the lock order is C->A->B and F->D->E.
528  *
529  * When traversing across mounts, the system follows that lock order:
530  *
531  *        C->A->B
532  *              |
533  *              +->F->D->E
534  *
535  * The lookup() process for namei("/var") illustrates the process:
536  *  VOP_LOOKUP() obtains B while A is held
537  *  vfs_busy() obtains a shared lock on F while A and B are held
538  *  vput() releases lock on B
539  *  vput() releases lock on A
540  *  VFS_ROOT() obtains lock on D while shared lock on F is held
541  *  vfs_unbusy() releases shared lock on F
542  *  vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
543  *    Attempt to lock A (instead of vp_crossmp) while D is held would
544  *    violate the global order, causing deadlocks.
545  *
546  * dounmount() locks B while F is drained.
547  */
548 int
549 vfs_busy(struct mount *mp, int flags)
550 {
551 
552 	MPASS((flags & ~MBF_MASK) == 0);
553 	CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
554 
555 	MNT_ILOCK(mp);
556 	MNT_REF(mp);
557 	/*
558 	 * If mount point is currently being unmounted, sleep until the
559 	 * mount point fate is decided.  If thread doing the unmounting fails,
560 	 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
561 	 * that this mount point has survived the unmount attempt and vfs_busy
562 	 * should retry.  Otherwise the unmounter thread will set MNTK_REFEXPIRE
563 	 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
564 	 * about to be really destroyed.  vfs_busy needs to release its
565 	 * reference on the mount point in this case and return with ENOENT,
566 	 * telling the caller that mount mount it tried to busy is no longer
567 	 * valid.
568 	 */
569 	while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
570 		if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
571 			MNT_REL(mp);
572 			MNT_IUNLOCK(mp);
573 			CTR1(KTR_VFS, "%s: failed busying before sleeping",
574 			    __func__);
575 			return (ENOENT);
576 		}
577 		if (flags & MBF_MNTLSTLOCK)
578 			mtx_unlock(&mountlist_mtx);
579 		mp->mnt_kern_flag |= MNTK_MWAIT;
580 		msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
581 		if (flags & MBF_MNTLSTLOCK)
582 			mtx_lock(&mountlist_mtx);
583 		MNT_ILOCK(mp);
584 	}
585 	if (flags & MBF_MNTLSTLOCK)
586 		mtx_unlock(&mountlist_mtx);
587 	mp->mnt_lockref++;
588 	MNT_IUNLOCK(mp);
589 	return (0);
590 }
591 
592 /*
593  * Free a busy filesystem.
594  */
595 void
596 vfs_unbusy(struct mount *mp)
597 {
598 
599 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
600 	MNT_ILOCK(mp);
601 	MNT_REL(mp);
602 	KASSERT(mp->mnt_lockref > 0, ("negative mnt_lockref"));
603 	mp->mnt_lockref--;
604 	if (mp->mnt_lockref == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
605 		MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
606 		CTR1(KTR_VFS, "%s: waking up waiters", __func__);
607 		mp->mnt_kern_flag &= ~MNTK_DRAINING;
608 		wakeup(&mp->mnt_lockref);
609 	}
610 	MNT_IUNLOCK(mp);
611 }
612 
613 /*
614  * Lookup a mount point by filesystem identifier.
615  */
616 struct mount *
617 vfs_getvfs(fsid_t *fsid)
618 {
619 	struct mount *mp;
620 
621 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
622 	mtx_lock(&mountlist_mtx);
623 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
624 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
625 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
626 			vfs_ref(mp);
627 			mtx_unlock(&mountlist_mtx);
628 			return (mp);
629 		}
630 	}
631 	mtx_unlock(&mountlist_mtx);
632 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
633 	return ((struct mount *) 0);
634 }
635 
636 /*
637  * Lookup a mount point by filesystem identifier, busying it before
638  * returning.
639  *
640  * To avoid congestion on mountlist_mtx, implement simple direct-mapped
641  * cache for popular filesystem identifiers.  The cache is lockess, using
642  * the fact that struct mount's are never freed.  In worst case we may
643  * get pointer to unmounted or even different filesystem, so we have to
644  * check what we got, and go slow way if so.
645  */
646 struct mount *
647 vfs_busyfs(fsid_t *fsid)
648 {
649 #define	FSID_CACHE_SIZE	256
650 	typedef struct mount * volatile vmp_t;
651 	static vmp_t cache[FSID_CACHE_SIZE];
652 	struct mount *mp;
653 	int error;
654 	uint32_t hash;
655 
656 	CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
657 	hash = fsid->val[0] ^ fsid->val[1];
658 	hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
659 	mp = cache[hash];
660 	if (mp == NULL ||
661 	    mp->mnt_stat.f_fsid.val[0] != fsid->val[0] ||
662 	    mp->mnt_stat.f_fsid.val[1] != fsid->val[1])
663 		goto slow;
664 	if (vfs_busy(mp, 0) != 0) {
665 		cache[hash] = NULL;
666 		goto slow;
667 	}
668 	if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
669 	    mp->mnt_stat.f_fsid.val[1] == fsid->val[1])
670 		return (mp);
671 	else
672 	    vfs_unbusy(mp);
673 
674 slow:
675 	mtx_lock(&mountlist_mtx);
676 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
677 		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
678 		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
679 			error = vfs_busy(mp, MBF_MNTLSTLOCK);
680 			if (error) {
681 				cache[hash] = NULL;
682 				mtx_unlock(&mountlist_mtx);
683 				return (NULL);
684 			}
685 			cache[hash] = mp;
686 			return (mp);
687 		}
688 	}
689 	CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
690 	mtx_unlock(&mountlist_mtx);
691 	return ((struct mount *) 0);
692 }
693 
694 /*
695  * Check if a user can access privileged mount options.
696  */
697 int
698 vfs_suser(struct mount *mp, struct thread *td)
699 {
700 	int error;
701 
702 	if (jailed(td->td_ucred)) {
703 		/*
704 		 * If the jail of the calling thread lacks permission for
705 		 * this type of file system, deny immediately.
706 		 */
707 		if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
708 			return (EPERM);
709 
710 		/*
711 		 * If the file system was mounted outside the jail of the
712 		 * calling thread, deny immediately.
713 		 */
714 		if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
715 			return (EPERM);
716 	}
717 
718 	/*
719 	 * If file system supports delegated administration, we don't check
720 	 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
721 	 * by the file system itself.
722 	 * If this is not the user that did original mount, we check for
723 	 * the PRIV_VFS_MOUNT_OWNER privilege.
724 	 */
725 	if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
726 	    mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
727 		if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
728 			return (error);
729 	}
730 	return (0);
731 }
732 
733 /*
734  * Get a new unique fsid.  Try to make its val[0] unique, since this value
735  * will be used to create fake device numbers for stat().  Also try (but
736  * not so hard) make its val[0] unique mod 2^16, since some emulators only
737  * support 16-bit device numbers.  We end up with unique val[0]'s for the
738  * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
739  *
740  * Keep in mind that several mounts may be running in parallel.  Starting
741  * the search one past where the previous search terminated is both a
742  * micro-optimization and a defense against returning the same fsid to
743  * different mounts.
744  */
745 void
746 vfs_getnewfsid(struct mount *mp)
747 {
748 	static uint16_t mntid_base;
749 	struct mount *nmp;
750 	fsid_t tfsid;
751 	int mtype;
752 
753 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
754 	mtx_lock(&mntid_mtx);
755 	mtype = mp->mnt_vfc->vfc_typenum;
756 	tfsid.val[1] = mtype;
757 	mtype = (mtype & 0xFF) << 24;
758 	for (;;) {
759 		tfsid.val[0] = makedev(255,
760 		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
761 		mntid_base++;
762 		if ((nmp = vfs_getvfs(&tfsid)) == NULL)
763 			break;
764 		vfs_rel(nmp);
765 	}
766 	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
767 	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
768 	mtx_unlock(&mntid_mtx);
769 }
770 
771 /*
772  * Knob to control the precision of file timestamps:
773  *
774  *   0 = seconds only; nanoseconds zeroed.
775  *   1 = seconds and nanoseconds, accurate within 1/HZ.
776  *   2 = seconds and nanoseconds, truncated to microseconds.
777  * >=3 = seconds and nanoseconds, maximum precision.
778  */
779 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
780 
781 static int timestamp_precision = TSP_USEC;
782 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
783     &timestamp_precision, 0, "File timestamp precision (0: seconds, "
784     "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
785     "3+: sec + ns (max. precision))");
786 
787 /*
788  * Get a current timestamp.
789  */
790 void
791 vfs_timestamp(struct timespec *tsp)
792 {
793 	struct timeval tv;
794 
795 	switch (timestamp_precision) {
796 	case TSP_SEC:
797 		tsp->tv_sec = time_second;
798 		tsp->tv_nsec = 0;
799 		break;
800 	case TSP_HZ:
801 		getnanotime(tsp);
802 		break;
803 	case TSP_USEC:
804 		microtime(&tv);
805 		TIMEVAL_TO_TIMESPEC(&tv, tsp);
806 		break;
807 	case TSP_NSEC:
808 	default:
809 		nanotime(tsp);
810 		break;
811 	}
812 }
813 
814 /*
815  * Set vnode attributes to VNOVAL
816  */
817 void
818 vattr_null(struct vattr *vap)
819 {
820 
821 	vap->va_type = VNON;
822 	vap->va_size = VNOVAL;
823 	vap->va_bytes = VNOVAL;
824 	vap->va_mode = VNOVAL;
825 	vap->va_nlink = VNOVAL;
826 	vap->va_uid = VNOVAL;
827 	vap->va_gid = VNOVAL;
828 	vap->va_fsid = VNOVAL;
829 	vap->va_fileid = VNOVAL;
830 	vap->va_blocksize = VNOVAL;
831 	vap->va_rdev = VNOVAL;
832 	vap->va_atime.tv_sec = VNOVAL;
833 	vap->va_atime.tv_nsec = VNOVAL;
834 	vap->va_mtime.tv_sec = VNOVAL;
835 	vap->va_mtime.tv_nsec = VNOVAL;
836 	vap->va_ctime.tv_sec = VNOVAL;
837 	vap->va_ctime.tv_nsec = VNOVAL;
838 	vap->va_birthtime.tv_sec = VNOVAL;
839 	vap->va_birthtime.tv_nsec = VNOVAL;
840 	vap->va_flags = VNOVAL;
841 	vap->va_gen = VNOVAL;
842 	vap->va_vaflags = 0;
843 }
844 
845 /*
846  * This routine is called when we have too many vnodes.  It attempts
847  * to free <count> vnodes and will potentially free vnodes that still
848  * have VM backing store (VM backing store is typically the cause
849  * of a vnode blowout so we want to do this).  Therefore, this operation
850  * is not considered cheap.
851  *
852  * A number of conditions may prevent a vnode from being reclaimed.
853  * the buffer cache may have references on the vnode, a directory
854  * vnode may still have references due to the namei cache representing
855  * underlying files, or the vnode may be in active use.   It is not
856  * desirable to reuse such vnodes.  These conditions may cause the
857  * number of vnodes to reach some minimum value regardless of what
858  * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
859  */
860 static int
861 vlrureclaim(struct mount *mp, int reclaim_nc_src, int trigger)
862 {
863 	struct vnode *vp;
864 	int count, done, target;
865 
866 	done = 0;
867 	vn_start_write(NULL, &mp, V_WAIT);
868 	MNT_ILOCK(mp);
869 	count = mp->mnt_nvnodelistsize;
870 	target = count * (int64_t)gapvnodes / imax(desiredvnodes, 1);
871 	target = target / 10 + 1;
872 	while (count != 0 && done < target) {
873 		vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
874 		while (vp != NULL && vp->v_type == VMARKER)
875 			vp = TAILQ_NEXT(vp, v_nmntvnodes);
876 		if (vp == NULL)
877 			break;
878 		/*
879 		 * XXX LRU is completely broken for non-free vnodes.  First
880 		 * by calling here in mountpoint order, then by moving
881 		 * unselected vnodes to the end here, and most grossly by
882 		 * removing the vlruvp() function that was supposed to
883 		 * maintain the order.  (This function was born broken
884 		 * since syncer problems prevented it doing anything.)  The
885 		 * order is closer to LRC (C = Created).
886 		 *
887 		 * LRU reclaiming of vnodes seems to have last worked in
888 		 * FreeBSD-3 where LRU wasn't mentioned under any spelling.
889 		 * Then there was no hold count, and inactive vnodes were
890 		 * simply put on the free list in LRU order.  The separate
891 		 * lists also break LRU.  We prefer to reclaim from the
892 		 * free list for technical reasons.  This tends to thrash
893 		 * the free list to keep very unrecently used held vnodes.
894 		 * The problem is mitigated by keeping the free list large.
895 		 */
896 		TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
897 		TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
898 		--count;
899 		if (!VI_TRYLOCK(vp))
900 			goto next_iter;
901 		/*
902 		 * If it's been deconstructed already, it's still
903 		 * referenced, or it exceeds the trigger, skip it.
904 		 * Also skip free vnodes.  We are trying to make space
905 		 * to expand the free list, not reduce it.
906 		 */
907 		if (vp->v_usecount ||
908 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
909 		    ((vp->v_iflag & VI_FREE) != 0) ||
910 		    (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
911 		    vp->v_object->resident_page_count > trigger)) {
912 			VI_UNLOCK(vp);
913 			goto next_iter;
914 		}
915 		MNT_IUNLOCK(mp);
916 		vholdl(vp);
917 		if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT)) {
918 			vdrop(vp);
919 			goto next_iter_mntunlocked;
920 		}
921 		VI_LOCK(vp);
922 		/*
923 		 * v_usecount may have been bumped after VOP_LOCK() dropped
924 		 * the vnode interlock and before it was locked again.
925 		 *
926 		 * It is not necessary to recheck VI_DOOMED because it can
927 		 * only be set by another thread that holds both the vnode
928 		 * lock and vnode interlock.  If another thread has the
929 		 * vnode lock before we get to VOP_LOCK() and obtains the
930 		 * vnode interlock after VOP_LOCK() drops the vnode
931 		 * interlock, the other thread will be unable to drop the
932 		 * vnode lock before our VOP_LOCK() call fails.
933 		 */
934 		if (vp->v_usecount ||
935 		    (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
936 		    (vp->v_iflag & VI_FREE) != 0 ||
937 		    (vp->v_object != NULL &&
938 		    vp->v_object->resident_page_count > trigger)) {
939 			VOP_UNLOCK(vp, LK_INTERLOCK);
940 			vdrop(vp);
941 			goto next_iter_mntunlocked;
942 		}
943 		KASSERT((vp->v_iflag & VI_DOOMED) == 0,
944 		    ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
945 		counter_u64_add(recycles_count, 1);
946 		vgonel(vp);
947 		VOP_UNLOCK(vp, 0);
948 		vdropl(vp);
949 		done++;
950 next_iter_mntunlocked:
951 		if (!should_yield())
952 			goto relock_mnt;
953 		goto yield;
954 next_iter:
955 		if (!should_yield())
956 			continue;
957 		MNT_IUNLOCK(mp);
958 yield:
959 		kern_yield(PRI_USER);
960 relock_mnt:
961 		MNT_ILOCK(mp);
962 	}
963 	MNT_IUNLOCK(mp);
964 	vn_finished_write(mp);
965 	return done;
966 }
967 
968 static int max_vnlru_free = 10000; /* limit on vnode free requests per call */
969 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_vnlru_free,
970     0,
971     "limit on vnode free requests per call to the vnlru_free routine");
972 
973 /*
974  * Attempt to reduce the free list by the requested amount.
975  */
976 static void
977 vnlru_free_locked(int count, struct vfsops *mnt_op)
978 {
979 	struct vnode *vp;
980 	struct mount *mp;
981 	bool tried_batches;
982 
983 	tried_batches = false;
984 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
985 	if (count > max_vnlru_free)
986 		count = max_vnlru_free;
987 	for (; count > 0; count--) {
988 		vp = TAILQ_FIRST(&vnode_free_list);
989 		/*
990 		 * The list can be modified while the free_list_mtx
991 		 * has been dropped and vp could be NULL here.
992 		 */
993 		if (vp == NULL) {
994 			if (tried_batches)
995 				break;
996 			mtx_unlock(&vnode_free_list_mtx);
997 			vnlru_return_batches(mnt_op);
998 			tried_batches = true;
999 			mtx_lock(&vnode_free_list_mtx);
1000 			continue;
1001 		}
1002 
1003 		VNASSERT(vp->v_op != NULL, vp,
1004 		    ("vnlru_free: vnode already reclaimed."));
1005 		KASSERT((vp->v_iflag & VI_FREE) != 0,
1006 		    ("Removing vnode not on freelist"));
1007 		KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1008 		    ("Mangling active vnode"));
1009 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
1010 
1011 		/*
1012 		 * Don't recycle if our vnode is from different type
1013 		 * of mount point.  Note that mp is type-safe, the
1014 		 * check does not reach unmapped address even if
1015 		 * vnode is reclaimed.
1016 		 * Don't recycle if we can't get the interlock without
1017 		 * blocking.
1018 		 */
1019 		if ((mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1020 		    mp->mnt_op != mnt_op) || !VI_TRYLOCK(vp)) {
1021 			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_actfreelist);
1022 			continue;
1023 		}
1024 		VNASSERT((vp->v_iflag & VI_FREE) != 0 && vp->v_holdcnt == 0,
1025 		    vp, ("vp inconsistent on freelist"));
1026 
1027 		/*
1028 		 * The clear of VI_FREE prevents activation of the
1029 		 * vnode.  There is no sense in putting the vnode on
1030 		 * the mount point active list, only to remove it
1031 		 * later during recycling.  Inline the relevant part
1032 		 * of vholdl(), to avoid triggering assertions or
1033 		 * activating.
1034 		 */
1035 		freevnodes--;
1036 		vp->v_iflag &= ~VI_FREE;
1037 		VNODE_REFCOUNT_FENCE_REL();
1038 		refcount_acquire(&vp->v_holdcnt);
1039 
1040 		mtx_unlock(&vnode_free_list_mtx);
1041 		VI_UNLOCK(vp);
1042 		vtryrecycle(vp);
1043 		/*
1044 		 * If the recycled succeeded this vdrop will actually free
1045 		 * the vnode.  If not it will simply place it back on
1046 		 * the free list.
1047 		 */
1048 		vdrop(vp);
1049 		mtx_lock(&vnode_free_list_mtx);
1050 	}
1051 }
1052 
1053 void
1054 vnlru_free(int count, struct vfsops *mnt_op)
1055 {
1056 
1057 	mtx_lock(&vnode_free_list_mtx);
1058 	vnlru_free_locked(count, mnt_op);
1059 	mtx_unlock(&vnode_free_list_mtx);
1060 }
1061 
1062 
1063 /* XXX some names and initialization are bad for limits and watermarks. */
1064 static int
1065 vspace(void)
1066 {
1067 	int space;
1068 
1069 	gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1070 	vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1071 	vlowat = vhiwat / 2;
1072 	if (numvnodes > desiredvnodes)
1073 		return (0);
1074 	space = desiredvnodes - numvnodes;
1075 	if (freevnodes > wantfreevnodes)
1076 		space += freevnodes - wantfreevnodes;
1077 	return (space);
1078 }
1079 
1080 static void
1081 vnlru_return_batch_locked(struct mount *mp)
1082 {
1083 	struct vnode *vp;
1084 
1085 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
1086 
1087 	if (mp->mnt_tmpfreevnodelistsize == 0)
1088 		return;
1089 
1090 	TAILQ_FOREACH(vp, &mp->mnt_tmpfreevnodelist, v_actfreelist) {
1091 		VNASSERT((vp->v_mflag & VMP_TMPMNTFREELIST) != 0, vp,
1092 		    ("vnode without VMP_TMPMNTFREELIST on mnt_tmpfreevnodelist"));
1093 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
1094 	}
1095 	mtx_lock(&vnode_free_list_mtx);
1096 	TAILQ_CONCAT(&vnode_free_list, &mp->mnt_tmpfreevnodelist, v_actfreelist);
1097 	freevnodes += mp->mnt_tmpfreevnodelistsize;
1098 	mtx_unlock(&vnode_free_list_mtx);
1099 	mp->mnt_tmpfreevnodelistsize = 0;
1100 }
1101 
1102 static void
1103 vnlru_return_batch(struct mount *mp)
1104 {
1105 
1106 	mtx_lock(&mp->mnt_listmtx);
1107 	vnlru_return_batch_locked(mp);
1108 	mtx_unlock(&mp->mnt_listmtx);
1109 }
1110 
1111 static void
1112 vnlru_return_batches(struct vfsops *mnt_op)
1113 {
1114 	struct mount *mp, *nmp;
1115 	bool need_unbusy;
1116 
1117 	mtx_lock(&mountlist_mtx);
1118 	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1119 		need_unbusy = false;
1120 		if (mnt_op != NULL && mp->mnt_op != mnt_op)
1121 			goto next;
1122 		if (mp->mnt_tmpfreevnodelistsize == 0)
1123 			goto next;
1124 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK) == 0) {
1125 			vnlru_return_batch(mp);
1126 			need_unbusy = true;
1127 			mtx_lock(&mountlist_mtx);
1128 		}
1129 next:
1130 		nmp = TAILQ_NEXT(mp, mnt_list);
1131 		if (need_unbusy)
1132 			vfs_unbusy(mp);
1133 	}
1134 	mtx_unlock(&mountlist_mtx);
1135 }
1136 
1137 /*
1138  * Attempt to recycle vnodes in a context that is always safe to block.
1139  * Calling vlrurecycle() from the bowels of filesystem code has some
1140  * interesting deadlock problems.
1141  */
1142 static struct proc *vnlruproc;
1143 static int vnlruproc_sig;
1144 
1145 static void
1146 vnlru_proc(void)
1147 {
1148 	struct mount *mp, *nmp;
1149 	unsigned long onumvnodes;
1150 	int done, force, reclaim_nc_src, trigger, usevnodes;
1151 
1152 	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1153 	    SHUTDOWN_PRI_FIRST);
1154 
1155 	force = 0;
1156 	for (;;) {
1157 		kproc_suspend_check(vnlruproc);
1158 		mtx_lock(&vnode_free_list_mtx);
1159 		/*
1160 		 * If numvnodes is too large (due to desiredvnodes being
1161 		 * adjusted using its sysctl, or emergency growth), first
1162 		 * try to reduce it by discarding from the free list.
1163 		 */
1164 		if (numvnodes > desiredvnodes)
1165 			vnlru_free_locked(numvnodes - desiredvnodes, NULL);
1166 		/*
1167 		 * Sleep if the vnode cache is in a good state.  This is
1168 		 * when it is not over-full and has space for about a 4%
1169 		 * or 9% expansion (by growing its size or inexcessively
1170 		 * reducing its free list).  Otherwise, try to reclaim
1171 		 * space for a 10% expansion.
1172 		 */
1173 		if (vstir && force == 0) {
1174 			force = 1;
1175 			vstir = 0;
1176 		}
1177 		if (vspace() >= vlowat && force == 0) {
1178 			vnlruproc_sig = 0;
1179 			wakeup(&vnlruproc_sig);
1180 			msleep(vnlruproc, &vnode_free_list_mtx,
1181 			    PVFS|PDROP, "vlruwt", hz);
1182 			continue;
1183 		}
1184 		mtx_unlock(&vnode_free_list_mtx);
1185 		done = 0;
1186 		onumvnodes = numvnodes;
1187 		/*
1188 		 * Calculate parameters for recycling.  These are the same
1189 		 * throughout the loop to give some semblance of fairness.
1190 		 * The trigger point is to avoid recycling vnodes with lots
1191 		 * of resident pages.  We aren't trying to free memory; we
1192 		 * are trying to recycle or at least free vnodes.
1193 		 */
1194 		if (numvnodes <= desiredvnodes)
1195 			usevnodes = numvnodes - freevnodes;
1196 		else
1197 			usevnodes = numvnodes;
1198 		if (usevnodes <= 0)
1199 			usevnodes = 1;
1200 		/*
1201 		 * The trigger value is is chosen to give a conservatively
1202 		 * large value to ensure that it alone doesn't prevent
1203 		 * making progress.  The value can easily be so large that
1204 		 * it is effectively infinite in some congested and
1205 		 * misconfigured cases, and this is necessary.  Normally
1206 		 * it is about 8 to 100 (pages), which is quite large.
1207 		 */
1208 		trigger = vm_cnt.v_page_count * 2 / usevnodes;
1209 		if (force < 2)
1210 			trigger = vsmalltrigger;
1211 		reclaim_nc_src = force >= 3;
1212 		mtx_lock(&mountlist_mtx);
1213 		for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1214 			if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK)) {
1215 				nmp = TAILQ_NEXT(mp, mnt_list);
1216 				continue;
1217 			}
1218 			done += vlrureclaim(mp, reclaim_nc_src, trigger);
1219 			mtx_lock(&mountlist_mtx);
1220 			nmp = TAILQ_NEXT(mp, mnt_list);
1221 			vfs_unbusy(mp);
1222 		}
1223 		mtx_unlock(&mountlist_mtx);
1224 		if (onumvnodes > desiredvnodes && numvnodes <= desiredvnodes)
1225 			uma_reclaim();
1226 		if (done == 0) {
1227 			if (force == 0 || force == 1) {
1228 				force = 2;
1229 				continue;
1230 			}
1231 			if (force == 2) {
1232 				force = 3;
1233 				continue;
1234 			}
1235 			force = 0;
1236 			vnlru_nowhere++;
1237 			tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1238 		} else
1239 			kern_yield(PRI_USER);
1240 		/*
1241 		 * After becoming active to expand above low water, keep
1242 		 * active until above high water.
1243 		 */
1244 		force = vspace() < vhiwat;
1245 	}
1246 }
1247 
1248 static struct kproc_desc vnlru_kp = {
1249 	"vnlru",
1250 	vnlru_proc,
1251 	&vnlruproc
1252 };
1253 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1254     &vnlru_kp);
1255 
1256 /*
1257  * Routines having to do with the management of the vnode table.
1258  */
1259 
1260 /*
1261  * Try to recycle a freed vnode.  We abort if anyone picks up a reference
1262  * before we actually vgone().  This function must be called with the vnode
1263  * held to prevent the vnode from being returned to the free list midway
1264  * through vgone().
1265  */
1266 static int
1267 vtryrecycle(struct vnode *vp)
1268 {
1269 	struct mount *vnmp;
1270 
1271 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1272 	VNASSERT(vp->v_holdcnt, vp,
1273 	    ("vtryrecycle: Recycling vp %p without a reference.", vp));
1274 	/*
1275 	 * This vnode may found and locked via some other list, if so we
1276 	 * can't recycle it yet.
1277 	 */
1278 	if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1279 		CTR2(KTR_VFS,
1280 		    "%s: impossible to recycle, vp %p lock is already held",
1281 		    __func__, vp);
1282 		return (EWOULDBLOCK);
1283 	}
1284 	/*
1285 	 * Don't recycle if its filesystem is being suspended.
1286 	 */
1287 	if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1288 		VOP_UNLOCK(vp, 0);
1289 		CTR2(KTR_VFS,
1290 		    "%s: impossible to recycle, cannot start the write for %p",
1291 		    __func__, vp);
1292 		return (EBUSY);
1293 	}
1294 	/*
1295 	 * If we got this far, we need to acquire the interlock and see if
1296 	 * anyone picked up this vnode from another list.  If not, we will
1297 	 * mark it with DOOMED via vgonel() so that anyone who does find it
1298 	 * will skip over it.
1299 	 */
1300 	VI_LOCK(vp);
1301 	if (vp->v_usecount) {
1302 		VOP_UNLOCK(vp, LK_INTERLOCK);
1303 		vn_finished_write(vnmp);
1304 		CTR2(KTR_VFS,
1305 		    "%s: impossible to recycle, %p is already referenced",
1306 		    __func__, vp);
1307 		return (EBUSY);
1308 	}
1309 	if ((vp->v_iflag & VI_DOOMED) == 0) {
1310 		counter_u64_add(recycles_count, 1);
1311 		vgonel(vp);
1312 	}
1313 	VOP_UNLOCK(vp, LK_INTERLOCK);
1314 	vn_finished_write(vnmp);
1315 	return (0);
1316 }
1317 
1318 static void
1319 vcheckspace(void)
1320 {
1321 
1322 	if (vspace() < vlowat && vnlruproc_sig == 0) {
1323 		vnlruproc_sig = 1;
1324 		wakeup(vnlruproc);
1325 	}
1326 }
1327 
1328 /*
1329  * Wait if necessary for space for a new vnode.
1330  */
1331 static int
1332 getnewvnode_wait(int suspended)
1333 {
1334 
1335 	mtx_assert(&vnode_free_list_mtx, MA_OWNED);
1336 	if (numvnodes >= desiredvnodes) {
1337 		if (suspended) {
1338 			/*
1339 			 * The file system is being suspended.  We cannot
1340 			 * risk a deadlock here, so allow allocation of
1341 			 * another vnode even if this would give too many.
1342 			 */
1343 			return (0);
1344 		}
1345 		if (vnlruproc_sig == 0) {
1346 			vnlruproc_sig = 1;	/* avoid unnecessary wakeups */
1347 			wakeup(vnlruproc);
1348 		}
1349 		msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
1350 		    "vlruwk", hz);
1351 	}
1352 	/* Post-adjust like the pre-adjust in getnewvnode(). */
1353 	if (numvnodes + 1 > desiredvnodes && freevnodes > 1)
1354 		vnlru_free_locked(1, NULL);
1355 	return (numvnodes >= desiredvnodes ? ENFILE : 0);
1356 }
1357 
1358 /*
1359  * This hack is fragile, and probably not needed any more now that the
1360  * watermark handling works.
1361  */
1362 void
1363 getnewvnode_reserve(u_int count)
1364 {
1365 	struct thread *td;
1366 
1367 	/* Pre-adjust like the pre-adjust in getnewvnode(), with any count. */
1368 	/* XXX no longer so quick, but this part is not racy. */
1369 	mtx_lock(&vnode_free_list_mtx);
1370 	if (numvnodes + count > desiredvnodes && freevnodes > wantfreevnodes)
1371 		vnlru_free_locked(ulmin(numvnodes + count - desiredvnodes,
1372 		    freevnodes - wantfreevnodes), NULL);
1373 	mtx_unlock(&vnode_free_list_mtx);
1374 
1375 	td = curthread;
1376 	/* First try to be quick and racy. */
1377 	if (atomic_fetchadd_long(&numvnodes, count) + count <= desiredvnodes) {
1378 		td->td_vp_reserv += count;
1379 		vcheckspace();	/* XXX no longer so quick, but more racy */
1380 		return;
1381 	} else
1382 		atomic_subtract_long(&numvnodes, count);
1383 
1384 	mtx_lock(&vnode_free_list_mtx);
1385 	while (count > 0) {
1386 		if (getnewvnode_wait(0) == 0) {
1387 			count--;
1388 			td->td_vp_reserv++;
1389 			atomic_add_long(&numvnodes, 1);
1390 		}
1391 	}
1392 	vcheckspace();
1393 	mtx_unlock(&vnode_free_list_mtx);
1394 }
1395 
1396 /*
1397  * This hack is fragile, especially if desiredvnodes or wantvnodes are
1398  * misconfgured or changed significantly.  Reducing desiredvnodes below
1399  * the reserved amount should cause bizarre behaviour like reducing it
1400  * below the number of active vnodes -- the system will try to reduce
1401  * numvnodes to match, but should fail, so the subtraction below should
1402  * not overflow.
1403  */
1404 void
1405 getnewvnode_drop_reserve(void)
1406 {
1407 	struct thread *td;
1408 
1409 	td = curthread;
1410 	atomic_subtract_long(&numvnodes, td->td_vp_reserv);
1411 	td->td_vp_reserv = 0;
1412 }
1413 
1414 /*
1415  * Return the next vnode from the free list.
1416  */
1417 int
1418 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
1419     struct vnode **vpp)
1420 {
1421 	struct vnode *vp;
1422 	struct thread *td;
1423 	struct lock_object *lo;
1424 	static int cyclecount;
1425 	int error __unused;
1426 
1427 	CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
1428 	vp = NULL;
1429 	td = curthread;
1430 	if (td->td_vp_reserv > 0) {
1431 		td->td_vp_reserv -= 1;
1432 		goto alloc;
1433 	}
1434 	mtx_lock(&vnode_free_list_mtx);
1435 	if (numvnodes < desiredvnodes)
1436 		cyclecount = 0;
1437 	else if (cyclecount++ >= freevnodes) {
1438 		cyclecount = 0;
1439 		vstir = 1;
1440 	}
1441 	/*
1442 	 * Grow the vnode cache if it will not be above its target max
1443 	 * after growing.  Otherwise, if the free list is nonempty, try
1444 	 * to reclaim 1 item from it before growing the cache (possibly
1445 	 * above its target max if the reclamation failed or is delayed).
1446 	 * Otherwise, wait for some space.  In all cases, schedule
1447 	 * vnlru_proc() if we are getting short of space.  The watermarks
1448 	 * should be chosen so that we never wait or even reclaim from
1449 	 * the free list to below its target minimum.
1450 	 */
1451 	if (numvnodes + 1 <= desiredvnodes)
1452 		;
1453 	else if (freevnodes > 0)
1454 		vnlru_free_locked(1, NULL);
1455 	else {
1456 		error = getnewvnode_wait(mp != NULL && (mp->mnt_kern_flag &
1457 		    MNTK_SUSPEND));
1458 #if 0	/* XXX Not all VFS_VGET/ffs_vget callers check returns. */
1459 		if (error != 0) {
1460 			mtx_unlock(&vnode_free_list_mtx);
1461 			return (error);
1462 		}
1463 #endif
1464 	}
1465 	vcheckspace();
1466 	atomic_add_long(&numvnodes, 1);
1467 	mtx_unlock(&vnode_free_list_mtx);
1468 alloc:
1469 	counter_u64_add(vnodes_created, 1);
1470 	vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK);
1471 	/*
1472 	 * Locks are given the generic name "vnode" when created.
1473 	 * Follow the historic practice of using the filesystem
1474 	 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
1475 	 *
1476 	 * Locks live in a witness group keyed on their name. Thus,
1477 	 * when a lock is renamed, it must also move from the witness
1478 	 * group of its old name to the witness group of its new name.
1479 	 *
1480 	 * The change only needs to be made when the vnode moves
1481 	 * from one filesystem type to another. We ensure that each
1482 	 * filesystem use a single static name pointer for its tag so
1483 	 * that we can compare pointers rather than doing a strcmp().
1484 	 */
1485 	lo = &vp->v_vnlock->lock_object;
1486 	if (lo->lo_name != tag) {
1487 		lo->lo_name = tag;
1488 		WITNESS_DESTROY(lo);
1489 		WITNESS_INIT(lo, tag);
1490 	}
1491 	/*
1492 	 * By default, don't allow shared locks unless filesystems opt-in.
1493 	 */
1494 	vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
1495 	/*
1496 	 * Finalize various vnode identity bits.
1497 	 */
1498 	KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
1499 	KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
1500 	KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
1501 	vp->v_type = VNON;
1502 	vp->v_tag = tag;
1503 	vp->v_op = vops;
1504 	v_init_counters(vp);
1505 	vp->v_bufobj.bo_ops = &buf_ops_bio;
1506 #ifdef DIAGNOSTIC
1507 	if (mp == NULL && vops != &dead_vnodeops)
1508 		printf("NULL mp in getnewvnode(9), tag %s\n", tag);
1509 #endif
1510 #ifdef MAC
1511 	mac_vnode_init(vp);
1512 	if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
1513 		mac_vnode_associate_singlelabel(mp, vp);
1514 #endif
1515 	if (mp != NULL) {
1516 		vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
1517 		if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
1518 			vp->v_vflag |= VV_NOKNOTE;
1519 	}
1520 
1521 	/*
1522 	 * For the filesystems which do not use vfs_hash_insert(),
1523 	 * still initialize v_hash to have vfs_hash_index() useful.
1524 	 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
1525 	 * its own hashing.
1526 	 */
1527 	vp->v_hash = (uintptr_t)vp >> vnsz2log;
1528 
1529 	*vpp = vp;
1530 	return (0);
1531 }
1532 
1533 /*
1534  * Delete from old mount point vnode list, if on one.
1535  */
1536 static void
1537 delmntque(struct vnode *vp)
1538 {
1539 	struct mount *mp;
1540 	int active;
1541 
1542 	mp = vp->v_mount;
1543 	if (mp == NULL)
1544 		return;
1545 	MNT_ILOCK(mp);
1546 	VI_LOCK(vp);
1547 	KASSERT(mp->mnt_activevnodelistsize <= mp->mnt_nvnodelistsize,
1548 	    ("Active vnode list size %d > Vnode list size %d",
1549 	     mp->mnt_activevnodelistsize, mp->mnt_nvnodelistsize));
1550 	active = vp->v_iflag & VI_ACTIVE;
1551 	vp->v_iflag &= ~VI_ACTIVE;
1552 	if (active) {
1553 		mtx_lock(&mp->mnt_listmtx);
1554 		TAILQ_REMOVE(&mp->mnt_activevnodelist, vp, v_actfreelist);
1555 		mp->mnt_activevnodelistsize--;
1556 		mtx_unlock(&mp->mnt_listmtx);
1557 	}
1558 	vp->v_mount = NULL;
1559 	VI_UNLOCK(vp);
1560 	VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
1561 		("bad mount point vnode list size"));
1562 	TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1563 	mp->mnt_nvnodelistsize--;
1564 	MNT_REL(mp);
1565 	MNT_IUNLOCK(mp);
1566 }
1567 
1568 static void
1569 insmntque_stddtr(struct vnode *vp, void *dtr_arg)
1570 {
1571 
1572 	vp->v_data = NULL;
1573 	vp->v_op = &dead_vnodeops;
1574 	vgone(vp);
1575 	vput(vp);
1576 }
1577 
1578 /*
1579  * Insert into list of vnodes for the new mount point, if available.
1580  */
1581 int
1582 insmntque1(struct vnode *vp, struct mount *mp,
1583 	void (*dtr)(struct vnode *, void *), void *dtr_arg)
1584 {
1585 
1586 	KASSERT(vp->v_mount == NULL,
1587 		("insmntque: vnode already on per mount vnode list"));
1588 	VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
1589 	ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
1590 
1591 	/*
1592 	 * We acquire the vnode interlock early to ensure that the
1593 	 * vnode cannot be recycled by another process releasing a
1594 	 * holdcnt on it before we get it on both the vnode list
1595 	 * and the active vnode list. The mount mutex protects only
1596 	 * manipulation of the vnode list and the vnode freelist
1597 	 * mutex protects only manipulation of the active vnode list.
1598 	 * Hence the need to hold the vnode interlock throughout.
1599 	 */
1600 	MNT_ILOCK(mp);
1601 	VI_LOCK(vp);
1602 	if (((mp->mnt_kern_flag & MNTK_NOINSMNTQ) != 0 &&
1603 	    ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
1604 	    mp->mnt_nvnodelistsize == 0)) &&
1605 	    (vp->v_vflag & VV_FORCEINSMQ) == 0) {
1606 		VI_UNLOCK(vp);
1607 		MNT_IUNLOCK(mp);
1608 		if (dtr != NULL)
1609 			dtr(vp, dtr_arg);
1610 		return (EBUSY);
1611 	}
1612 	vp->v_mount = mp;
1613 	MNT_REF(mp);
1614 	TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
1615 	VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
1616 		("neg mount point vnode list size"));
1617 	mp->mnt_nvnodelistsize++;
1618 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
1619 	    ("Activating already active vnode"));
1620 	vp->v_iflag |= VI_ACTIVE;
1621 	mtx_lock(&mp->mnt_listmtx);
1622 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
1623 	mp->mnt_activevnodelistsize++;
1624 	mtx_unlock(&mp->mnt_listmtx);
1625 	VI_UNLOCK(vp);
1626 	MNT_IUNLOCK(mp);
1627 	return (0);
1628 }
1629 
1630 int
1631 insmntque(struct vnode *vp, struct mount *mp)
1632 {
1633 
1634 	return (insmntque1(vp, mp, insmntque_stddtr, NULL));
1635 }
1636 
1637 /*
1638  * Flush out and invalidate all buffers associated with a bufobj
1639  * Called with the underlying object locked.
1640  */
1641 int
1642 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
1643 {
1644 	int error;
1645 
1646 	BO_LOCK(bo);
1647 	if (flags & V_SAVE) {
1648 		error = bufobj_wwait(bo, slpflag, slptimeo);
1649 		if (error) {
1650 			BO_UNLOCK(bo);
1651 			return (error);
1652 		}
1653 		if (bo->bo_dirty.bv_cnt > 0) {
1654 			BO_UNLOCK(bo);
1655 			if ((error = BO_SYNC(bo, MNT_WAIT)) != 0)
1656 				return (error);
1657 			/*
1658 			 * XXX We could save a lock/unlock if this was only
1659 			 * enabled under INVARIANTS
1660 			 */
1661 			BO_LOCK(bo);
1662 			if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
1663 				panic("vinvalbuf: dirty bufs");
1664 		}
1665 	}
1666 	/*
1667 	 * If you alter this loop please notice that interlock is dropped and
1668 	 * reacquired in flushbuflist.  Special care is needed to ensure that
1669 	 * no race conditions occur from this.
1670 	 */
1671 	do {
1672 		error = flushbuflist(&bo->bo_clean,
1673 		    flags, bo, slpflag, slptimeo);
1674 		if (error == 0 && !(flags & V_CLEANONLY))
1675 			error = flushbuflist(&bo->bo_dirty,
1676 			    flags, bo, slpflag, slptimeo);
1677 		if (error != 0 && error != EAGAIN) {
1678 			BO_UNLOCK(bo);
1679 			return (error);
1680 		}
1681 	} while (error != 0);
1682 
1683 	/*
1684 	 * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
1685 	 * have write I/O in-progress but if there is a VM object then the
1686 	 * VM object can also have read-I/O in-progress.
1687 	 */
1688 	do {
1689 		bufobj_wwait(bo, 0, 0);
1690 		if ((flags & V_VMIO) == 0) {
1691 			BO_UNLOCK(bo);
1692 			if (bo->bo_object != NULL) {
1693 				VM_OBJECT_WLOCK(bo->bo_object);
1694 				vm_object_pip_wait(bo->bo_object, "bovlbx");
1695 				VM_OBJECT_WUNLOCK(bo->bo_object);
1696 			}
1697 			BO_LOCK(bo);
1698 		}
1699 	} while (bo->bo_numoutput > 0);
1700 	BO_UNLOCK(bo);
1701 
1702 	/*
1703 	 * Destroy the copy in the VM cache, too.
1704 	 */
1705 	if (bo->bo_object != NULL &&
1706 	    (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
1707 		VM_OBJECT_WLOCK(bo->bo_object);
1708 		vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
1709 		    OBJPR_CLEANONLY : 0);
1710 		VM_OBJECT_WUNLOCK(bo->bo_object);
1711 	}
1712 
1713 #ifdef INVARIANTS
1714 	BO_LOCK(bo);
1715 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
1716 	    V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
1717 	    bo->bo_clean.bv_cnt > 0))
1718 		panic("vinvalbuf: flush failed");
1719 	if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
1720 	    bo->bo_dirty.bv_cnt > 0)
1721 		panic("vinvalbuf: flush dirty failed");
1722 	BO_UNLOCK(bo);
1723 #endif
1724 	return (0);
1725 }
1726 
1727 /*
1728  * Flush out and invalidate all buffers associated with a vnode.
1729  * Called with the underlying object locked.
1730  */
1731 int
1732 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
1733 {
1734 
1735 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
1736 	ASSERT_VOP_LOCKED(vp, "vinvalbuf");
1737 	if (vp->v_object != NULL && vp->v_object->handle != vp)
1738 		return (0);
1739 	return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
1740 }
1741 
1742 /*
1743  * Flush out buffers on the specified list.
1744  *
1745  */
1746 static int
1747 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
1748     int slptimeo)
1749 {
1750 	struct buf *bp, *nbp;
1751 	int retval, error;
1752 	daddr_t lblkno;
1753 	b_xflags_t xflags;
1754 
1755 	ASSERT_BO_WLOCKED(bo);
1756 
1757 	retval = 0;
1758 	TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
1759 		if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
1760 		    ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
1761 			continue;
1762 		}
1763 		if (nbp != NULL) {
1764 			lblkno = nbp->b_lblkno;
1765 			xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
1766 		}
1767 		retval = EAGAIN;
1768 		error = BUF_TIMELOCK(bp,
1769 		    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
1770 		    "flushbuf", slpflag, slptimeo);
1771 		if (error) {
1772 			BO_LOCK(bo);
1773 			return (error != ENOLCK ? error : EAGAIN);
1774 		}
1775 		KASSERT(bp->b_bufobj == bo,
1776 		    ("bp %p wrong b_bufobj %p should be %p",
1777 		    bp, bp->b_bufobj, bo));
1778 		/*
1779 		 * XXX Since there are no node locks for NFS, I
1780 		 * believe there is a slight chance that a delayed
1781 		 * write will occur while sleeping just above, so
1782 		 * check for it.
1783 		 */
1784 		if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
1785 		    (flags & V_SAVE)) {
1786 			bremfree(bp);
1787 			bp->b_flags |= B_ASYNC;
1788 			bwrite(bp);
1789 			BO_LOCK(bo);
1790 			return (EAGAIN);	/* XXX: why not loop ? */
1791 		}
1792 		bremfree(bp);
1793 		bp->b_flags |= (B_INVAL | B_RELBUF);
1794 		bp->b_flags &= ~B_ASYNC;
1795 		brelse(bp);
1796 		BO_LOCK(bo);
1797 		if (nbp == NULL)
1798 			break;
1799 		nbp = gbincore(bo, lblkno);
1800 		if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
1801 		    != xflags)
1802 			break;			/* nbp invalid */
1803 	}
1804 	return (retval);
1805 }
1806 
1807 int
1808 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
1809 {
1810 	struct buf *bp;
1811 	int error;
1812 	daddr_t lblkno;
1813 
1814 	ASSERT_BO_LOCKED(bo);
1815 
1816 	for (lblkno = startn;;) {
1817 again:
1818 		bp = BUF_PCTRIE_LOOKUP_GE(&bufv->bv_root, lblkno);
1819 		if (bp == NULL || bp->b_lblkno >= endn ||
1820 		    bp->b_lblkno < startn)
1821 			break;
1822 		error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
1823 		    LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
1824 		if (error != 0) {
1825 			BO_RLOCK(bo);
1826 			if (error == ENOLCK)
1827 				goto again;
1828 			return (error);
1829 		}
1830 		KASSERT(bp->b_bufobj == bo,
1831 		    ("bp %p wrong b_bufobj %p should be %p",
1832 		    bp, bp->b_bufobj, bo));
1833 		lblkno = bp->b_lblkno + 1;
1834 		if ((bp->b_flags & B_MANAGED) == 0)
1835 			bremfree(bp);
1836 		bp->b_flags |= B_RELBUF;
1837 		/*
1838 		 * In the VMIO case, use the B_NOREUSE flag to hint that the
1839 		 * pages backing each buffer in the range are unlikely to be
1840 		 * reused.  Dirty buffers will have the hint applied once
1841 		 * they've been written.
1842 		 */
1843 		if (bp->b_vp->v_object != NULL)
1844 			bp->b_flags |= B_NOREUSE;
1845 		brelse(bp);
1846 		BO_RLOCK(bo);
1847 	}
1848 	return (0);
1849 }
1850 
1851 /*
1852  * Truncate a file's buffer and pages to a specified length.  This
1853  * is in lieu of the old vinvalbuf mechanism, which performed unneeded
1854  * sync activity.
1855  */
1856 int
1857 vtruncbuf(struct vnode *vp, struct ucred *cred, off_t length, int blksize)
1858 {
1859 	struct buf *bp, *nbp;
1860 	int anyfreed;
1861 	int trunclbn;
1862 	struct bufobj *bo;
1863 
1864 	CTR5(KTR_VFS, "%s: vp %p with cred %p and block %d:%ju", __func__,
1865 	    vp, cred, blksize, (uintmax_t)length);
1866 
1867 	/*
1868 	 * Round up to the *next* lbn.
1869 	 */
1870 	trunclbn = howmany(length, blksize);
1871 
1872 	ASSERT_VOP_LOCKED(vp, "vtruncbuf");
1873 restart:
1874 	bo = &vp->v_bufobj;
1875 	BO_LOCK(bo);
1876 	anyfreed = 1;
1877 	for (;anyfreed;) {
1878 		anyfreed = 0;
1879 		TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
1880 			if (bp->b_lblkno < trunclbn)
1881 				continue;
1882 			if (BUF_LOCK(bp,
1883 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1884 			    BO_LOCKPTR(bo)) == ENOLCK)
1885 				goto restart;
1886 
1887 			bremfree(bp);
1888 			bp->b_flags |= (B_INVAL | B_RELBUF);
1889 			bp->b_flags &= ~B_ASYNC;
1890 			brelse(bp);
1891 			anyfreed = 1;
1892 
1893 			BO_LOCK(bo);
1894 			if (nbp != NULL &&
1895 			    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
1896 			    (nbp->b_vp != vp) ||
1897 			    (nbp->b_flags & B_DELWRI))) {
1898 				BO_UNLOCK(bo);
1899 				goto restart;
1900 			}
1901 		}
1902 
1903 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1904 			if (bp->b_lblkno < trunclbn)
1905 				continue;
1906 			if (BUF_LOCK(bp,
1907 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1908 			    BO_LOCKPTR(bo)) == ENOLCK)
1909 				goto restart;
1910 			bremfree(bp);
1911 			bp->b_flags |= (B_INVAL | B_RELBUF);
1912 			bp->b_flags &= ~B_ASYNC;
1913 			brelse(bp);
1914 			anyfreed = 1;
1915 
1916 			BO_LOCK(bo);
1917 			if (nbp != NULL &&
1918 			    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
1919 			    (nbp->b_vp != vp) ||
1920 			    (nbp->b_flags & B_DELWRI) == 0)) {
1921 				BO_UNLOCK(bo);
1922 				goto restart;
1923 			}
1924 		}
1925 	}
1926 
1927 	if (length > 0) {
1928 restartsync:
1929 		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
1930 			if (bp->b_lblkno > 0)
1931 				continue;
1932 			/*
1933 			 * Since we hold the vnode lock this should only
1934 			 * fail if we're racing with the buf daemon.
1935 			 */
1936 			if (BUF_LOCK(bp,
1937 			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
1938 			    BO_LOCKPTR(bo)) == ENOLCK) {
1939 				goto restart;
1940 			}
1941 			VNASSERT((bp->b_flags & B_DELWRI), vp,
1942 			    ("buf(%p) on dirty queue without DELWRI", bp));
1943 
1944 			bremfree(bp);
1945 			bawrite(bp);
1946 			BO_LOCK(bo);
1947 			goto restartsync;
1948 		}
1949 	}
1950 
1951 	bufobj_wwait(bo, 0, 0);
1952 	BO_UNLOCK(bo);
1953 	vnode_pager_setsize(vp, length);
1954 
1955 	return (0);
1956 }
1957 
1958 static void
1959 buf_vlist_remove(struct buf *bp)
1960 {
1961 	struct bufv *bv;
1962 
1963 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1964 	ASSERT_BO_WLOCKED(bp->b_bufobj);
1965 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
1966 	    (BX_VNDIRTY|BX_VNCLEAN),
1967 	    ("buf_vlist_remove: Buf %p is on two lists", bp));
1968 	if (bp->b_xflags & BX_VNDIRTY)
1969 		bv = &bp->b_bufobj->bo_dirty;
1970 	else
1971 		bv = &bp->b_bufobj->bo_clean;
1972 	BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
1973 	TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
1974 	bv->bv_cnt--;
1975 	bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1976 }
1977 
1978 /*
1979  * Add the buffer to the sorted clean or dirty block list.
1980  *
1981  * NOTE: xflags is passed as a constant, optimizing this inline function!
1982  */
1983 static void
1984 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
1985 {
1986 	struct bufv *bv;
1987 	struct buf *n;
1988 	int error;
1989 
1990 	ASSERT_BO_WLOCKED(bo);
1991 	KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
1992 	    ("dead bo %p", bo));
1993 	KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
1994 	    ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
1995 	bp->b_xflags |= xflags;
1996 	if (xflags & BX_VNDIRTY)
1997 		bv = &bo->bo_dirty;
1998 	else
1999 		bv = &bo->bo_clean;
2000 
2001 	/*
2002 	 * Keep the list ordered.  Optimize empty list insertion.  Assume
2003 	 * we tend to grow at the tail so lookup_le should usually be cheaper
2004 	 * than _ge.
2005 	 */
2006 	if (bv->bv_cnt == 0 ||
2007 	    bp->b_lblkno > TAILQ_LAST(&bv->bv_hd, buflists)->b_lblkno)
2008 		TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
2009 	else if ((n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, bp->b_lblkno)) == NULL)
2010 		TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2011 	else
2012 		TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2013 	error = BUF_PCTRIE_INSERT(&bv->bv_root, bp);
2014 	if (error)
2015 		panic("buf_vlist_add:  Preallocated nodes insufficient.");
2016 	bv->bv_cnt++;
2017 }
2018 
2019 /*
2020  * Look up a buffer using the buffer tries.
2021  */
2022 struct buf *
2023 gbincore(struct bufobj *bo, daddr_t lblkno)
2024 {
2025 	struct buf *bp;
2026 
2027 	ASSERT_BO_LOCKED(bo);
2028 	bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2029 	if (bp != NULL)
2030 		return (bp);
2031 	return BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno);
2032 }
2033 
2034 /*
2035  * Associate a buffer with a vnode.
2036  */
2037 void
2038 bgetvp(struct vnode *vp, struct buf *bp)
2039 {
2040 	struct bufobj *bo;
2041 
2042 	bo = &vp->v_bufobj;
2043 	ASSERT_BO_WLOCKED(bo);
2044 	VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2045 
2046 	CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2047 	VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2048 	    ("bgetvp: bp already attached! %p", bp));
2049 
2050 	vhold(vp);
2051 	bp->b_vp = vp;
2052 	bp->b_bufobj = bo;
2053 	/*
2054 	 * Insert onto list for new vnode.
2055 	 */
2056 	buf_vlist_add(bp, bo, BX_VNCLEAN);
2057 }
2058 
2059 /*
2060  * Disassociate a buffer from a vnode.
2061  */
2062 void
2063 brelvp(struct buf *bp)
2064 {
2065 	struct bufobj *bo;
2066 	struct vnode *vp;
2067 
2068 	CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2069 	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2070 
2071 	/*
2072 	 * Delete from old vnode list, if on one.
2073 	 */
2074 	vp = bp->b_vp;		/* XXX */
2075 	bo = bp->b_bufobj;
2076 	BO_LOCK(bo);
2077 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2078 		buf_vlist_remove(bp);
2079 	else
2080 		panic("brelvp: Buffer %p not on queue.", bp);
2081 	if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2082 		bo->bo_flag &= ~BO_ONWORKLST;
2083 		mtx_lock(&sync_mtx);
2084 		LIST_REMOVE(bo, bo_synclist);
2085 		syncer_worklist_len--;
2086 		mtx_unlock(&sync_mtx);
2087 	}
2088 	bp->b_vp = NULL;
2089 	bp->b_bufobj = NULL;
2090 	BO_UNLOCK(bo);
2091 	vdrop(vp);
2092 }
2093 
2094 /*
2095  * Add an item to the syncer work queue.
2096  */
2097 static void
2098 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2099 {
2100 	int slot;
2101 
2102 	ASSERT_BO_WLOCKED(bo);
2103 
2104 	mtx_lock(&sync_mtx);
2105 	if (bo->bo_flag & BO_ONWORKLST)
2106 		LIST_REMOVE(bo, bo_synclist);
2107 	else {
2108 		bo->bo_flag |= BO_ONWORKLST;
2109 		syncer_worklist_len++;
2110 	}
2111 
2112 	if (delay > syncer_maxdelay - 2)
2113 		delay = syncer_maxdelay - 2;
2114 	slot = (syncer_delayno + delay) & syncer_mask;
2115 
2116 	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2117 	mtx_unlock(&sync_mtx);
2118 }
2119 
2120 static int
2121 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2122 {
2123 	int error, len;
2124 
2125 	mtx_lock(&sync_mtx);
2126 	len = syncer_worklist_len - sync_vnode_count;
2127 	mtx_unlock(&sync_mtx);
2128 	error = SYSCTL_OUT(req, &len, sizeof(len));
2129 	return (error);
2130 }
2131 
2132 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
2133     sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2134 
2135 static struct proc *updateproc;
2136 static void sched_sync(void);
2137 static struct kproc_desc up_kp = {
2138 	"syncer",
2139 	sched_sync,
2140 	&updateproc
2141 };
2142 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2143 
2144 static int
2145 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2146 {
2147 	struct vnode *vp;
2148 	struct mount *mp;
2149 
2150 	*bo = LIST_FIRST(slp);
2151 	if (*bo == NULL)
2152 		return (0);
2153 	vp = bo2vnode(*bo);
2154 	if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2155 		return (1);
2156 	/*
2157 	 * We use vhold in case the vnode does not
2158 	 * successfully sync.  vhold prevents the vnode from
2159 	 * going away when we unlock the sync_mtx so that
2160 	 * we can acquire the vnode interlock.
2161 	 */
2162 	vholdl(vp);
2163 	mtx_unlock(&sync_mtx);
2164 	VI_UNLOCK(vp);
2165 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2166 		vdrop(vp);
2167 		mtx_lock(&sync_mtx);
2168 		return (*bo == LIST_FIRST(slp));
2169 	}
2170 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2171 	(void) VOP_FSYNC(vp, MNT_LAZY, td);
2172 	VOP_UNLOCK(vp, 0);
2173 	vn_finished_write(mp);
2174 	BO_LOCK(*bo);
2175 	if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2176 		/*
2177 		 * Put us back on the worklist.  The worklist
2178 		 * routine will remove us from our current
2179 		 * position and then add us back in at a later
2180 		 * position.
2181 		 */
2182 		vn_syncer_add_to_worklist(*bo, syncdelay);
2183 	}
2184 	BO_UNLOCK(*bo);
2185 	vdrop(vp);
2186 	mtx_lock(&sync_mtx);
2187 	return (0);
2188 }
2189 
2190 static int first_printf = 1;
2191 
2192 /*
2193  * System filesystem synchronizer daemon.
2194  */
2195 static void
2196 sched_sync(void)
2197 {
2198 	struct synclist *next, *slp;
2199 	struct bufobj *bo;
2200 	long starttime;
2201 	struct thread *td = curthread;
2202 	int last_work_seen;
2203 	int net_worklist_len;
2204 	int syncer_final_iter;
2205 	int error;
2206 
2207 	last_work_seen = 0;
2208 	syncer_final_iter = 0;
2209 	syncer_state = SYNCER_RUNNING;
2210 	starttime = time_uptime;
2211 	td->td_pflags |= TDP_NORUNNINGBUF;
2212 
2213 	EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
2214 	    SHUTDOWN_PRI_LAST);
2215 
2216 	mtx_lock(&sync_mtx);
2217 	for (;;) {
2218 		if (syncer_state == SYNCER_FINAL_DELAY &&
2219 		    syncer_final_iter == 0) {
2220 			mtx_unlock(&sync_mtx);
2221 			kproc_suspend_check(td->td_proc);
2222 			mtx_lock(&sync_mtx);
2223 		}
2224 		net_worklist_len = syncer_worklist_len - sync_vnode_count;
2225 		if (syncer_state != SYNCER_RUNNING &&
2226 		    starttime != time_uptime) {
2227 			if (first_printf) {
2228 				printf("\nSyncing disks, vnodes remaining... ");
2229 				first_printf = 0;
2230 			}
2231 			printf("%d ", net_worklist_len);
2232 		}
2233 		starttime = time_uptime;
2234 
2235 		/*
2236 		 * Push files whose dirty time has expired.  Be careful
2237 		 * of interrupt race on slp queue.
2238 		 *
2239 		 * Skip over empty worklist slots when shutting down.
2240 		 */
2241 		do {
2242 			slp = &syncer_workitem_pending[syncer_delayno];
2243 			syncer_delayno += 1;
2244 			if (syncer_delayno == syncer_maxdelay)
2245 				syncer_delayno = 0;
2246 			next = &syncer_workitem_pending[syncer_delayno];
2247 			/*
2248 			 * If the worklist has wrapped since the
2249 			 * it was emptied of all but syncer vnodes,
2250 			 * switch to the FINAL_DELAY state and run
2251 			 * for one more second.
2252 			 */
2253 			if (syncer_state == SYNCER_SHUTTING_DOWN &&
2254 			    net_worklist_len == 0 &&
2255 			    last_work_seen == syncer_delayno) {
2256 				syncer_state = SYNCER_FINAL_DELAY;
2257 				syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
2258 			}
2259 		} while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
2260 		    syncer_worklist_len > 0);
2261 
2262 		/*
2263 		 * Keep track of the last time there was anything
2264 		 * on the worklist other than syncer vnodes.
2265 		 * Return to the SHUTTING_DOWN state if any
2266 		 * new work appears.
2267 		 */
2268 		if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
2269 			last_work_seen = syncer_delayno;
2270 		if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
2271 			syncer_state = SYNCER_SHUTTING_DOWN;
2272 		while (!LIST_EMPTY(slp)) {
2273 			error = sync_vnode(slp, &bo, td);
2274 			if (error == 1) {
2275 				LIST_REMOVE(bo, bo_synclist);
2276 				LIST_INSERT_HEAD(next, bo, bo_synclist);
2277 				continue;
2278 			}
2279 
2280 			if (first_printf == 0) {
2281 				/*
2282 				 * Drop the sync mutex, because some watchdog
2283 				 * drivers need to sleep while patting
2284 				 */
2285 				mtx_unlock(&sync_mtx);
2286 				wdog_kern_pat(WD_LASTVAL);
2287 				mtx_lock(&sync_mtx);
2288 			}
2289 
2290 		}
2291 		if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
2292 			syncer_final_iter--;
2293 		/*
2294 		 * The variable rushjob allows the kernel to speed up the
2295 		 * processing of the filesystem syncer process. A rushjob
2296 		 * value of N tells the filesystem syncer to process the next
2297 		 * N seconds worth of work on its queue ASAP. Currently rushjob
2298 		 * is used by the soft update code to speed up the filesystem
2299 		 * syncer process when the incore state is getting so far
2300 		 * ahead of the disk that the kernel memory pool is being
2301 		 * threatened with exhaustion.
2302 		 */
2303 		if (rushjob > 0) {
2304 			rushjob -= 1;
2305 			continue;
2306 		}
2307 		/*
2308 		 * Just sleep for a short period of time between
2309 		 * iterations when shutting down to allow some I/O
2310 		 * to happen.
2311 		 *
2312 		 * If it has taken us less than a second to process the
2313 		 * current work, then wait. Otherwise start right over
2314 		 * again. We can still lose time if any single round
2315 		 * takes more than two seconds, but it does not really
2316 		 * matter as we are just trying to generally pace the
2317 		 * filesystem activity.
2318 		 */
2319 		if (syncer_state != SYNCER_RUNNING ||
2320 		    time_uptime == starttime) {
2321 			thread_lock(td);
2322 			sched_prio(td, PPAUSE);
2323 			thread_unlock(td);
2324 		}
2325 		if (syncer_state != SYNCER_RUNNING)
2326 			cv_timedwait(&sync_wakeup, &sync_mtx,
2327 			    hz / SYNCER_SHUTDOWN_SPEEDUP);
2328 		else if (time_uptime == starttime)
2329 			cv_timedwait(&sync_wakeup, &sync_mtx, hz);
2330 	}
2331 }
2332 
2333 /*
2334  * Request the syncer daemon to speed up its work.
2335  * We never push it to speed up more than half of its
2336  * normal turn time, otherwise it could take over the cpu.
2337  */
2338 int
2339 speedup_syncer(void)
2340 {
2341 	int ret = 0;
2342 
2343 	mtx_lock(&sync_mtx);
2344 	if (rushjob < syncdelay / 2) {
2345 		rushjob += 1;
2346 		stat_rush_requests += 1;
2347 		ret = 1;
2348 	}
2349 	mtx_unlock(&sync_mtx);
2350 	cv_broadcast(&sync_wakeup);
2351 	return (ret);
2352 }
2353 
2354 /*
2355  * Tell the syncer to speed up its work and run though its work
2356  * list several times, then tell it to shut down.
2357  */
2358 static void
2359 syncer_shutdown(void *arg, int howto)
2360 {
2361 
2362 	if (howto & RB_NOSYNC)
2363 		return;
2364 	mtx_lock(&sync_mtx);
2365 	syncer_state = SYNCER_SHUTTING_DOWN;
2366 	rushjob = 0;
2367 	mtx_unlock(&sync_mtx);
2368 	cv_broadcast(&sync_wakeup);
2369 	kproc_shutdown(arg, howto);
2370 }
2371 
2372 void
2373 syncer_suspend(void)
2374 {
2375 
2376 	syncer_shutdown(updateproc, 0);
2377 }
2378 
2379 void
2380 syncer_resume(void)
2381 {
2382 
2383 	mtx_lock(&sync_mtx);
2384 	first_printf = 1;
2385 	syncer_state = SYNCER_RUNNING;
2386 	mtx_unlock(&sync_mtx);
2387 	cv_broadcast(&sync_wakeup);
2388 	kproc_resume(updateproc);
2389 }
2390 
2391 /*
2392  * Reassign a buffer from one vnode to another.
2393  * Used to assign file specific control information
2394  * (indirect blocks) to the vnode to which they belong.
2395  */
2396 void
2397 reassignbuf(struct buf *bp)
2398 {
2399 	struct vnode *vp;
2400 	struct bufobj *bo;
2401 	int delay;
2402 #ifdef INVARIANTS
2403 	struct bufv *bv;
2404 #endif
2405 
2406 	vp = bp->b_vp;
2407 	bo = bp->b_bufobj;
2408 	++reassignbufcalls;
2409 
2410 	CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
2411 	    bp, bp->b_vp, bp->b_flags);
2412 	/*
2413 	 * B_PAGING flagged buffers cannot be reassigned because their vp
2414 	 * is not fully linked in.
2415 	 */
2416 	if (bp->b_flags & B_PAGING)
2417 		panic("cannot reassign paging buffer");
2418 
2419 	/*
2420 	 * Delete from old vnode list, if on one.
2421 	 */
2422 	BO_LOCK(bo);
2423 	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2424 		buf_vlist_remove(bp);
2425 	else
2426 		panic("reassignbuf: Buffer %p not on queue.", bp);
2427 	/*
2428 	 * If dirty, put on list of dirty buffers; otherwise insert onto list
2429 	 * of clean buffers.
2430 	 */
2431 	if (bp->b_flags & B_DELWRI) {
2432 		if ((bo->bo_flag & BO_ONWORKLST) == 0) {
2433 			switch (vp->v_type) {
2434 			case VDIR:
2435 				delay = dirdelay;
2436 				break;
2437 			case VCHR:
2438 				delay = metadelay;
2439 				break;
2440 			default:
2441 				delay = filedelay;
2442 			}
2443 			vn_syncer_add_to_worklist(bo, delay);
2444 		}
2445 		buf_vlist_add(bp, bo, BX_VNDIRTY);
2446 	} else {
2447 		buf_vlist_add(bp, bo, BX_VNCLEAN);
2448 
2449 		if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2450 			mtx_lock(&sync_mtx);
2451 			LIST_REMOVE(bo, bo_synclist);
2452 			syncer_worklist_len--;
2453 			mtx_unlock(&sync_mtx);
2454 			bo->bo_flag &= ~BO_ONWORKLST;
2455 		}
2456 	}
2457 #ifdef INVARIANTS
2458 	bv = &bo->bo_clean;
2459 	bp = TAILQ_FIRST(&bv->bv_hd);
2460 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2461 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2462 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2463 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2464 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2465 	bv = &bo->bo_dirty;
2466 	bp = TAILQ_FIRST(&bv->bv_hd);
2467 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2468 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2469 	bp = TAILQ_LAST(&bv->bv_hd, buflists);
2470 	KASSERT(bp == NULL || bp->b_bufobj == bo,
2471 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2472 #endif
2473 	BO_UNLOCK(bo);
2474 }
2475 
2476 static void
2477 v_init_counters(struct vnode *vp)
2478 {
2479 
2480 	VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
2481 	    vp, ("%s called for an initialized vnode", __FUNCTION__));
2482 	ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
2483 
2484 	refcount_init(&vp->v_holdcnt, 1);
2485 	refcount_init(&vp->v_usecount, 1);
2486 }
2487 
2488 static void
2489 v_incr_usecount_locked(struct vnode *vp)
2490 {
2491 
2492 	ASSERT_VI_LOCKED(vp, __func__);
2493 	if ((vp->v_iflag & VI_OWEINACT) != 0) {
2494 		VNASSERT(vp->v_usecount == 0, vp,
2495 		    ("vnode with usecount and VI_OWEINACT set"));
2496 		vp->v_iflag &= ~VI_OWEINACT;
2497 	}
2498 	refcount_acquire(&vp->v_usecount);
2499 	v_incr_devcount(vp);
2500 }
2501 
2502 /*
2503  * Increment the use count on the vnode, taking care to reference
2504  * the driver's usecount if this is a chardev.
2505  */
2506 static void
2507 v_incr_usecount(struct vnode *vp)
2508 {
2509 
2510 	ASSERT_VI_UNLOCKED(vp, __func__);
2511 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2512 
2513 	if (vp->v_type != VCHR &&
2514 	    refcount_acquire_if_not_zero(&vp->v_usecount)) {
2515 		VNODE_REFCOUNT_FENCE_ACQ();
2516 		VNASSERT((vp->v_iflag & VI_OWEINACT) == 0, vp,
2517 		    ("vnode with usecount and VI_OWEINACT set"));
2518 	} else {
2519 		VI_LOCK(vp);
2520 		v_incr_usecount_locked(vp);
2521 		VI_UNLOCK(vp);
2522 	}
2523 }
2524 
2525 /*
2526  * Increment si_usecount of the associated device, if any.
2527  */
2528 static void
2529 v_incr_devcount(struct vnode *vp)
2530 {
2531 
2532 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2533 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2534 		dev_lock();
2535 		vp->v_rdev->si_usecount++;
2536 		dev_unlock();
2537 	}
2538 }
2539 
2540 /*
2541  * Decrement si_usecount of the associated device, if any.
2542  */
2543 static void
2544 v_decr_devcount(struct vnode *vp)
2545 {
2546 
2547 	ASSERT_VI_LOCKED(vp, __FUNCTION__);
2548 	if (vp->v_type == VCHR && vp->v_rdev != NULL) {
2549 		dev_lock();
2550 		vp->v_rdev->si_usecount--;
2551 		dev_unlock();
2552 	}
2553 }
2554 
2555 /*
2556  * Grab a particular vnode from the free list, increment its
2557  * reference count and lock it.  VI_DOOMED is set if the vnode
2558  * is being destroyed.  Only callers who specify LK_RETRY will
2559  * see doomed vnodes.  If inactive processing was delayed in
2560  * vput try to do it here.
2561  *
2562  * Notes on lockless counter manipulation:
2563  * _vhold, vputx and other routines make various decisions based
2564  * on either holdcnt or usecount being 0. As long as either counter
2565  * is not transitioning 0->1 nor 1->0, the manipulation can be done
2566  * with atomic operations. Otherwise the interlock is taken covering
2567  * both the atomic and additional actions.
2568  */
2569 int
2570 vget(struct vnode *vp, int flags, struct thread *td)
2571 {
2572 	int error, oweinact;
2573 
2574 	VNASSERT((flags & LK_TYPE_MASK) != 0, vp,
2575 	    ("vget: invalid lock operation"));
2576 
2577 	if ((flags & LK_INTERLOCK) != 0)
2578 		ASSERT_VI_LOCKED(vp, __func__);
2579 	else
2580 		ASSERT_VI_UNLOCKED(vp, __func__);
2581 	if ((flags & LK_VNHELD) != 0)
2582 		VNASSERT((vp->v_holdcnt > 0), vp,
2583 		    ("vget: LK_VNHELD passed but vnode not held"));
2584 
2585 	CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2586 
2587 	if ((flags & LK_VNHELD) == 0)
2588 		_vhold(vp, (flags & LK_INTERLOCK) != 0);
2589 
2590 	if ((error = vn_lock(vp, flags)) != 0) {
2591 		vdrop(vp);
2592 		CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
2593 		    vp);
2594 		return (error);
2595 	}
2596 	if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
2597 		panic("vget: vn_lock failed to return ENOENT\n");
2598 	/*
2599 	 * We don't guarantee that any particular close will
2600 	 * trigger inactive processing so just make a best effort
2601 	 * here at preventing a reference to a removed file.  If
2602 	 * we don't succeed no harm is done.
2603 	 *
2604 	 * Upgrade our holdcnt to a usecount.
2605 	 */
2606 	if (vp->v_type == VCHR ||
2607 	    !refcount_acquire_if_not_zero(&vp->v_usecount)) {
2608 		VI_LOCK(vp);
2609 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2610 			oweinact = 0;
2611 		} else {
2612 			oweinact = 1;
2613 			vp->v_iflag &= ~VI_OWEINACT;
2614 			VNODE_REFCOUNT_FENCE_REL();
2615 		}
2616 		refcount_acquire(&vp->v_usecount);
2617 		v_incr_devcount(vp);
2618 		if (oweinact && VOP_ISLOCKED(vp) == LK_EXCLUSIVE &&
2619 		    (flags & LK_NOWAIT) == 0)
2620 			vinactive(vp, td);
2621 		VI_UNLOCK(vp);
2622 	}
2623 	return (0);
2624 }
2625 
2626 /*
2627  * Increase the reference (use) and hold count of a vnode.
2628  * This will also remove the vnode from the free list if it is presently free.
2629  */
2630 void
2631 vref(struct vnode *vp)
2632 {
2633 
2634 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2635 	_vhold(vp, false);
2636 	v_incr_usecount(vp);
2637 }
2638 
2639 void
2640 vrefl(struct vnode *vp)
2641 {
2642 
2643 	ASSERT_VI_LOCKED(vp, __func__);
2644 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2645 	_vhold(vp, true);
2646 	v_incr_usecount_locked(vp);
2647 }
2648 
2649 void
2650 vrefact(struct vnode *vp)
2651 {
2652 
2653 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2654 	if (__predict_false(vp->v_type == VCHR)) {
2655 		VNASSERT(vp->v_holdcnt > 0 && vp->v_usecount > 0, vp,
2656 		    ("%s: wrong ref counts", __func__));
2657 		vref(vp);
2658 		return;
2659 	}
2660 #ifdef INVARIANTS
2661 	int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
2662 	VNASSERT(old > 0, vp, ("%s: wrong hold count", __func__));
2663 	old = atomic_fetchadd_int(&vp->v_usecount, 1);
2664 	VNASSERT(old > 0, vp, ("%s: wrong use count", __func__));
2665 #else
2666 	refcount_acquire(&vp->v_holdcnt);
2667 	refcount_acquire(&vp->v_usecount);
2668 #endif
2669 }
2670 
2671 /*
2672  * Return reference count of a vnode.
2673  *
2674  * The results of this call are only guaranteed when some mechanism is used to
2675  * stop other processes from gaining references to the vnode.  This may be the
2676  * case if the caller holds the only reference.  This is also useful when stale
2677  * data is acceptable as race conditions may be accounted for by some other
2678  * means.
2679  */
2680 int
2681 vrefcnt(struct vnode *vp)
2682 {
2683 
2684 	return (vp->v_usecount);
2685 }
2686 
2687 #define	VPUTX_VRELE	1
2688 #define	VPUTX_VPUT	2
2689 #define	VPUTX_VUNREF	3
2690 
2691 /*
2692  * Decrement the use and hold counts for a vnode.
2693  *
2694  * See an explanation near vget() as to why atomic operation is safe.
2695  */
2696 static void
2697 vputx(struct vnode *vp, int func)
2698 {
2699 	int error;
2700 
2701 	KASSERT(vp != NULL, ("vputx: null vp"));
2702 	if (func == VPUTX_VUNREF)
2703 		ASSERT_VOP_LOCKED(vp, "vunref");
2704 	else if (func == VPUTX_VPUT)
2705 		ASSERT_VOP_LOCKED(vp, "vput");
2706 	else
2707 		KASSERT(func == VPUTX_VRELE, ("vputx: wrong func"));
2708 	ASSERT_VI_UNLOCKED(vp, __func__);
2709 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2710 
2711 	if (vp->v_type != VCHR &&
2712 	    refcount_release_if_not_last(&vp->v_usecount)) {
2713 		if (func == VPUTX_VPUT)
2714 			VOP_UNLOCK(vp, 0);
2715 		vdrop(vp);
2716 		return;
2717 	}
2718 
2719 	VI_LOCK(vp);
2720 
2721 	/*
2722 	 * We want to hold the vnode until the inactive finishes to
2723 	 * prevent vgone() races.  We drop the use count here and the
2724 	 * hold count below when we're done.
2725 	 */
2726 	if (!refcount_release(&vp->v_usecount) ||
2727 	    (vp->v_iflag & VI_DOINGINACT)) {
2728 		if (func == VPUTX_VPUT)
2729 			VOP_UNLOCK(vp, 0);
2730 		v_decr_devcount(vp);
2731 		vdropl(vp);
2732 		return;
2733 	}
2734 
2735 	v_decr_devcount(vp);
2736 
2737 	error = 0;
2738 
2739 	if (vp->v_usecount != 0) {
2740 		vn_printf(vp, "vputx: usecount not zero for vnode ");
2741 		panic("vputx: usecount not zero");
2742 	}
2743 
2744 	CTR2(KTR_VFS, "%s: return vnode %p to the freelist", __func__, vp);
2745 
2746 	/*
2747 	 * We must call VOP_INACTIVE with the node locked. Mark
2748 	 * as VI_DOINGINACT to avoid recursion.
2749 	 */
2750 	vp->v_iflag |= VI_OWEINACT;
2751 	switch (func) {
2752 	case VPUTX_VRELE:
2753 		error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2754 		VI_LOCK(vp);
2755 		break;
2756 	case VPUTX_VPUT:
2757 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2758 			error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
2759 			    LK_NOWAIT);
2760 			VI_LOCK(vp);
2761 		}
2762 		break;
2763 	case VPUTX_VUNREF:
2764 		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
2765 			error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
2766 			VI_LOCK(vp);
2767 		}
2768 		break;
2769 	}
2770 	VNASSERT(vp->v_usecount == 0 || (vp->v_iflag & VI_OWEINACT) == 0, vp,
2771 	    ("vnode with usecount and VI_OWEINACT set"));
2772 	if (error == 0) {
2773 		if (vp->v_iflag & VI_OWEINACT)
2774 			vinactive(vp, curthread);
2775 		if (func != VPUTX_VUNREF)
2776 			VOP_UNLOCK(vp, 0);
2777 	}
2778 	vdropl(vp);
2779 }
2780 
2781 /*
2782  * Vnode put/release.
2783  * If count drops to zero, call inactive routine and return to freelist.
2784  */
2785 void
2786 vrele(struct vnode *vp)
2787 {
2788 
2789 	vputx(vp, VPUTX_VRELE);
2790 }
2791 
2792 /*
2793  * Release an already locked vnode.  This give the same effects as
2794  * unlock+vrele(), but takes less time and avoids releasing and
2795  * re-aquiring the lock (as vrele() acquires the lock internally.)
2796  */
2797 void
2798 vput(struct vnode *vp)
2799 {
2800 
2801 	vputx(vp, VPUTX_VPUT);
2802 }
2803 
2804 /*
2805  * Release an exclusively locked vnode. Do not unlock the vnode lock.
2806  */
2807 void
2808 vunref(struct vnode *vp)
2809 {
2810 
2811 	vputx(vp, VPUTX_VUNREF);
2812 }
2813 
2814 /*
2815  * Increase the hold count and activate if this is the first reference.
2816  */
2817 void
2818 _vhold(struct vnode *vp, bool locked)
2819 {
2820 	struct mount *mp;
2821 
2822 	if (locked)
2823 		ASSERT_VI_LOCKED(vp, __func__);
2824 	else
2825 		ASSERT_VI_UNLOCKED(vp, __func__);
2826 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2827 	if (!locked) {
2828 		if (refcount_acquire_if_not_zero(&vp->v_holdcnt)) {
2829 			VNODE_REFCOUNT_FENCE_ACQ();
2830 			VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2831 			    ("_vhold: vnode with holdcnt is free"));
2832 			return;
2833 		}
2834 		VI_LOCK(vp);
2835 	}
2836 	if ((vp->v_iflag & VI_FREE) == 0) {
2837 		refcount_acquire(&vp->v_holdcnt);
2838 		if (!locked)
2839 			VI_UNLOCK(vp);
2840 		return;
2841 	}
2842 	VNASSERT(vp->v_holdcnt == 0, vp,
2843 	    ("%s: wrong hold count", __func__));
2844 	VNASSERT(vp->v_op != NULL, vp,
2845 	    ("%s: vnode already reclaimed.", __func__));
2846 	/*
2847 	 * Remove a vnode from the free list, mark it as in use,
2848 	 * and put it on the active list.
2849 	 */
2850 	VNASSERT(vp->v_mount != NULL, vp,
2851 	    ("_vhold: vnode not on per mount vnode list"));
2852 	mp = vp->v_mount;
2853 	mtx_lock(&mp->mnt_listmtx);
2854 	if ((vp->v_mflag & VMP_TMPMNTFREELIST) != 0) {
2855 		TAILQ_REMOVE(&mp->mnt_tmpfreevnodelist, vp, v_actfreelist);
2856 		mp->mnt_tmpfreevnodelistsize--;
2857 		vp->v_mflag &= ~VMP_TMPMNTFREELIST;
2858 	} else {
2859 		mtx_lock(&vnode_free_list_mtx);
2860 		TAILQ_REMOVE(&vnode_free_list, vp, v_actfreelist);
2861 		freevnodes--;
2862 		mtx_unlock(&vnode_free_list_mtx);
2863 	}
2864 	KASSERT((vp->v_iflag & VI_ACTIVE) == 0,
2865 	    ("Activating already active vnode"));
2866 	vp->v_iflag &= ~VI_FREE;
2867 	vp->v_iflag |= VI_ACTIVE;
2868 	TAILQ_INSERT_HEAD(&mp->mnt_activevnodelist, vp, v_actfreelist);
2869 	mp->mnt_activevnodelistsize++;
2870 	mtx_unlock(&mp->mnt_listmtx);
2871 	refcount_acquire(&vp->v_holdcnt);
2872 	if (!locked)
2873 		VI_UNLOCK(vp);
2874 }
2875 
2876 /*
2877  * Drop the hold count of the vnode.  If this is the last reference to
2878  * the vnode we place it on the free list unless it has been vgone'd
2879  * (marked VI_DOOMED) in which case we will free it.
2880  *
2881  * Because the vnode vm object keeps a hold reference on the vnode if
2882  * there is at least one resident non-cached page, the vnode cannot
2883  * leave the active list without the page cleanup done.
2884  */
2885 void
2886 _vdrop(struct vnode *vp, bool locked)
2887 {
2888 	struct bufobj *bo;
2889 	struct mount *mp;
2890 	int active;
2891 
2892 	if (locked)
2893 		ASSERT_VI_LOCKED(vp, __func__);
2894 	else
2895 		ASSERT_VI_UNLOCKED(vp, __func__);
2896 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
2897 	if ((int)vp->v_holdcnt <= 0)
2898 		panic("vdrop: holdcnt %d", vp->v_holdcnt);
2899 	if (!locked) {
2900 		if (refcount_release_if_not_last(&vp->v_holdcnt))
2901 			return;
2902 		VI_LOCK(vp);
2903 	}
2904 	if (refcount_release(&vp->v_holdcnt) == 0) {
2905 		VI_UNLOCK(vp);
2906 		return;
2907 	}
2908 	if ((vp->v_iflag & VI_DOOMED) == 0) {
2909 		/*
2910 		 * Mark a vnode as free: remove it from its active list
2911 		 * and put it up for recycling on the freelist.
2912 		 */
2913 		VNASSERT(vp->v_op != NULL, vp,
2914 		    ("vdropl: vnode already reclaimed."));
2915 		VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2916 		    ("vnode already free"));
2917 		VNASSERT(vp->v_holdcnt == 0, vp,
2918 		    ("vdropl: freeing when we shouldn't"));
2919 		active = vp->v_iflag & VI_ACTIVE;
2920 		if ((vp->v_iflag & VI_OWEINACT) == 0) {
2921 			vp->v_iflag &= ~VI_ACTIVE;
2922 			mp = vp->v_mount;
2923 			if (mp != NULL) {
2924 				mtx_lock(&mp->mnt_listmtx);
2925 				if (active) {
2926 					TAILQ_REMOVE(&mp->mnt_activevnodelist,
2927 					    vp, v_actfreelist);
2928 					mp->mnt_activevnodelistsize--;
2929 				}
2930 				TAILQ_INSERT_TAIL(&mp->mnt_tmpfreevnodelist,
2931 				    vp, v_actfreelist);
2932 				mp->mnt_tmpfreevnodelistsize++;
2933 				vp->v_iflag |= VI_FREE;
2934 				vp->v_mflag |= VMP_TMPMNTFREELIST;
2935 				VI_UNLOCK(vp);
2936 				if (mp->mnt_tmpfreevnodelistsize >=
2937 				    mnt_free_list_batch)
2938 					vnlru_return_batch_locked(mp);
2939 				mtx_unlock(&mp->mnt_listmtx);
2940 			} else {
2941 				VNASSERT(active == 0, vp,
2942 				    ("vdropl: active vnode not on per mount "
2943 				    "vnode list"));
2944 				mtx_lock(&vnode_free_list_mtx);
2945 				TAILQ_INSERT_TAIL(&vnode_free_list, vp,
2946 				    v_actfreelist);
2947 				freevnodes++;
2948 				vp->v_iflag |= VI_FREE;
2949 				VI_UNLOCK(vp);
2950 				mtx_unlock(&vnode_free_list_mtx);
2951 			}
2952 		} else {
2953 			VI_UNLOCK(vp);
2954 			counter_u64_add(free_owe_inact, 1);
2955 		}
2956 		return;
2957 	}
2958 	/*
2959 	 * The vnode has been marked for destruction, so free it.
2960 	 *
2961 	 * The vnode will be returned to the zone where it will
2962 	 * normally remain until it is needed for another vnode. We
2963 	 * need to cleanup (or verify that the cleanup has already
2964 	 * been done) any residual data left from its current use
2965 	 * so as not to contaminate the freshly allocated vnode.
2966 	 */
2967 	CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2968 	atomic_subtract_long(&numvnodes, 1);
2969 	bo = &vp->v_bufobj;
2970 	VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
2971 	    ("cleaned vnode still on the free list."));
2972 	VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2973 	VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
2974 	VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2975 	VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2976 	VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2977 	VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2978 	VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2979 	    ("clean blk trie not empty"));
2980 	VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2981 	VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2982 	    ("dirty blk trie not empty"));
2983 	VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
2984 	VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
2985 	VNASSERT(vp->v_cache_dd == NULL, vp, ("vp has namecache for .."));
2986 	VNASSERT(TAILQ_EMPTY(&vp->v_rl.rl_waiters), vp,
2987 	    ("Dangling rangelock waiters"));
2988 	VI_UNLOCK(vp);
2989 #ifdef MAC
2990 	mac_vnode_destroy(vp);
2991 #endif
2992 	if (vp->v_pollinfo != NULL) {
2993 		destroy_vpollinfo(vp->v_pollinfo);
2994 		vp->v_pollinfo = NULL;
2995 	}
2996 #ifdef INVARIANTS
2997 	/* XXX Elsewhere we detect an already freed vnode via NULL v_op. */
2998 	vp->v_op = NULL;
2999 #endif
3000 	vp->v_mountedhere = NULL;
3001 	vp->v_unpcb = NULL;
3002 	vp->v_rdev = NULL;
3003 	vp->v_fifoinfo = NULL;
3004 	vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
3005 	vp->v_iflag = 0;
3006 	vp->v_vflag = 0;
3007 	bo->bo_flag = 0;
3008 	uma_zfree(vnode_zone, vp);
3009 }
3010 
3011 /*
3012  * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
3013  * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
3014  * OWEINACT tracks whether a vnode missed a call to inactive due to a
3015  * failed lock upgrade.
3016  */
3017 void
3018 vinactive(struct vnode *vp, struct thread *td)
3019 {
3020 	struct vm_object *obj;
3021 
3022 	ASSERT_VOP_ELOCKED(vp, "vinactive");
3023 	ASSERT_VI_LOCKED(vp, "vinactive");
3024 	VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
3025 	    ("vinactive: recursed on VI_DOINGINACT"));
3026 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3027 	vp->v_iflag |= VI_DOINGINACT;
3028 	vp->v_iflag &= ~VI_OWEINACT;
3029 	VI_UNLOCK(vp);
3030 	/*
3031 	 * Before moving off the active list, we must be sure that any
3032 	 * modified pages are converted into the vnode's dirty
3033 	 * buffers, since these will no longer be checked once the
3034 	 * vnode is on the inactive list.
3035 	 *
3036 	 * The write-out of the dirty pages is asynchronous.  At the
3037 	 * point that VOP_INACTIVE() is called, there could still be
3038 	 * pending I/O and dirty pages in the object.
3039 	 */
3040 	if ((obj = vp->v_object) != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
3041 	    (obj->flags & OBJ_MIGHTBEDIRTY) != 0) {
3042 		VM_OBJECT_WLOCK(obj);
3043 		vm_object_page_clean(obj, 0, 0, 0);
3044 		VM_OBJECT_WUNLOCK(obj);
3045 	}
3046 	VOP_INACTIVE(vp, td);
3047 	VI_LOCK(vp);
3048 	VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
3049 	    ("vinactive: lost VI_DOINGINACT"));
3050 	vp->v_iflag &= ~VI_DOINGINACT;
3051 }
3052 
3053 /*
3054  * Remove any vnodes in the vnode table belonging to mount point mp.
3055  *
3056  * If FORCECLOSE is not specified, there should not be any active ones,
3057  * return error if any are found (nb: this is a user error, not a
3058  * system error). If FORCECLOSE is specified, detach any active vnodes
3059  * that are found.
3060  *
3061  * If WRITECLOSE is set, only flush out regular file vnodes open for
3062  * writing.
3063  *
3064  * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
3065  *
3066  * `rootrefs' specifies the base reference count for the root vnode
3067  * of this filesystem. The root vnode is considered busy if its
3068  * v_usecount exceeds this value. On a successful return, vflush(, td)
3069  * will call vrele() on the root vnode exactly rootrefs times.
3070  * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
3071  * be zero.
3072  */
3073 #ifdef DIAGNOSTIC
3074 static int busyprt = 0;		/* print out busy vnodes */
3075 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
3076 #endif
3077 
3078 int
3079 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
3080 {
3081 	struct vnode *vp, *mvp, *rootvp = NULL;
3082 	struct vattr vattr;
3083 	int busy = 0, error;
3084 
3085 	CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
3086 	    rootrefs, flags);
3087 	if (rootrefs > 0) {
3088 		KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
3089 		    ("vflush: bad args"));
3090 		/*
3091 		 * Get the filesystem root vnode. We can vput() it
3092 		 * immediately, since with rootrefs > 0, it won't go away.
3093 		 */
3094 		if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
3095 			CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
3096 			    __func__, error);
3097 			return (error);
3098 		}
3099 		vput(rootvp);
3100 	}
3101 loop:
3102 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3103 		vholdl(vp);
3104 		error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
3105 		if (error) {
3106 			vdrop(vp);
3107 			MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3108 			goto loop;
3109 		}
3110 		/*
3111 		 * Skip over a vnodes marked VV_SYSTEM.
3112 		 */
3113 		if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
3114 			VOP_UNLOCK(vp, 0);
3115 			vdrop(vp);
3116 			continue;
3117 		}
3118 		/*
3119 		 * If WRITECLOSE is set, flush out unlinked but still open
3120 		 * files (even if open only for reading) and regular file
3121 		 * vnodes open for writing.
3122 		 */
3123 		if (flags & WRITECLOSE) {
3124 			if (vp->v_object != NULL) {
3125 				VM_OBJECT_WLOCK(vp->v_object);
3126 				vm_object_page_clean(vp->v_object, 0, 0, 0);
3127 				VM_OBJECT_WUNLOCK(vp->v_object);
3128 			}
3129 			error = VOP_FSYNC(vp, MNT_WAIT, td);
3130 			if (error != 0) {
3131 				VOP_UNLOCK(vp, 0);
3132 				vdrop(vp);
3133 				MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
3134 				return (error);
3135 			}
3136 			error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3137 			VI_LOCK(vp);
3138 
3139 			if ((vp->v_type == VNON ||
3140 			    (error == 0 && vattr.va_nlink > 0)) &&
3141 			    (vp->v_writecount == 0 || vp->v_type != VREG)) {
3142 				VOP_UNLOCK(vp, 0);
3143 				vdropl(vp);
3144 				continue;
3145 			}
3146 		} else
3147 			VI_LOCK(vp);
3148 		/*
3149 		 * With v_usecount == 0, all we need to do is clear out the
3150 		 * vnode data structures and we are done.
3151 		 *
3152 		 * If FORCECLOSE is set, forcibly close the vnode.
3153 		 */
3154 		if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
3155 			vgonel(vp);
3156 		} else {
3157 			busy++;
3158 #ifdef DIAGNOSTIC
3159 			if (busyprt)
3160 				vn_printf(vp, "vflush: busy vnode ");
3161 #endif
3162 		}
3163 		VOP_UNLOCK(vp, 0);
3164 		vdropl(vp);
3165 	}
3166 	if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
3167 		/*
3168 		 * If just the root vnode is busy, and if its refcount
3169 		 * is equal to `rootrefs', then go ahead and kill it.
3170 		 */
3171 		VI_LOCK(rootvp);
3172 		KASSERT(busy > 0, ("vflush: not busy"));
3173 		VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
3174 		    ("vflush: usecount %d < rootrefs %d",
3175 		     rootvp->v_usecount, rootrefs));
3176 		if (busy == 1 && rootvp->v_usecount == rootrefs) {
3177 			VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
3178 			vgone(rootvp);
3179 			VOP_UNLOCK(rootvp, 0);
3180 			busy = 0;
3181 		} else
3182 			VI_UNLOCK(rootvp);
3183 	}
3184 	if (busy) {
3185 		CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
3186 		    busy);
3187 		return (EBUSY);
3188 	}
3189 	for (; rootrefs > 0; rootrefs--)
3190 		vrele(rootvp);
3191 	return (0);
3192 }
3193 
3194 /*
3195  * Recycle an unused vnode to the front of the free list.
3196  */
3197 int
3198 vrecycle(struct vnode *vp)
3199 {
3200 	int recycled;
3201 
3202 	VI_LOCK(vp);
3203 	recycled = vrecyclel(vp);
3204 	VI_UNLOCK(vp);
3205 	return (recycled);
3206 }
3207 
3208 /*
3209  * vrecycle, with the vp interlock held.
3210  */
3211 int
3212 vrecyclel(struct vnode *vp)
3213 {
3214 	int recycled;
3215 
3216 	ASSERT_VOP_ELOCKED(vp, __func__);
3217 	ASSERT_VI_LOCKED(vp, __func__);
3218 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3219 	recycled = 0;
3220 	if (vp->v_usecount == 0) {
3221 		recycled = 1;
3222 		vgonel(vp);
3223 	}
3224 	return (recycled);
3225 }
3226 
3227 /*
3228  * Eliminate all activity associated with a vnode
3229  * in preparation for reuse.
3230  */
3231 void
3232 vgone(struct vnode *vp)
3233 {
3234 	VI_LOCK(vp);
3235 	vgonel(vp);
3236 	VI_UNLOCK(vp);
3237 }
3238 
3239 static void
3240 notify_lowervp_vfs_dummy(struct mount *mp __unused,
3241     struct vnode *lowervp __unused)
3242 {
3243 }
3244 
3245 /*
3246  * Notify upper mounts about reclaimed or unlinked vnode.
3247  */
3248 void
3249 vfs_notify_upper(struct vnode *vp, int event)
3250 {
3251 	static struct vfsops vgonel_vfsops = {
3252 		.vfs_reclaim_lowervp = notify_lowervp_vfs_dummy,
3253 		.vfs_unlink_lowervp = notify_lowervp_vfs_dummy,
3254 	};
3255 	struct mount *mp, *ump, *mmp;
3256 
3257 	mp = vp->v_mount;
3258 	if (mp == NULL)
3259 		return;
3260 
3261 	MNT_ILOCK(mp);
3262 	if (TAILQ_EMPTY(&mp->mnt_uppers))
3263 		goto unlock;
3264 	MNT_IUNLOCK(mp);
3265 	mmp = malloc(sizeof(struct mount), M_TEMP, M_WAITOK | M_ZERO);
3266 	mmp->mnt_op = &vgonel_vfsops;
3267 	mmp->mnt_kern_flag |= MNTK_MARKER;
3268 	MNT_ILOCK(mp);
3269 	mp->mnt_kern_flag |= MNTK_VGONE_UPPER;
3270 	for (ump = TAILQ_FIRST(&mp->mnt_uppers); ump != NULL;) {
3271 		if ((ump->mnt_kern_flag & MNTK_MARKER) != 0) {
3272 			ump = TAILQ_NEXT(ump, mnt_upper_link);
3273 			continue;
3274 		}
3275 		TAILQ_INSERT_AFTER(&mp->mnt_uppers, ump, mmp, mnt_upper_link);
3276 		MNT_IUNLOCK(mp);
3277 		switch (event) {
3278 		case VFS_NOTIFY_UPPER_RECLAIM:
3279 			VFS_RECLAIM_LOWERVP(ump, vp);
3280 			break;
3281 		case VFS_NOTIFY_UPPER_UNLINK:
3282 			VFS_UNLINK_LOWERVP(ump, vp);
3283 			break;
3284 		default:
3285 			KASSERT(0, ("invalid event %d", event));
3286 			break;
3287 		}
3288 		MNT_ILOCK(mp);
3289 		ump = TAILQ_NEXT(mmp, mnt_upper_link);
3290 		TAILQ_REMOVE(&mp->mnt_uppers, mmp, mnt_upper_link);
3291 	}
3292 	free(mmp, M_TEMP);
3293 	mp->mnt_kern_flag &= ~MNTK_VGONE_UPPER;
3294 	if ((mp->mnt_kern_flag & MNTK_VGONE_WAITER) != 0) {
3295 		mp->mnt_kern_flag &= ~MNTK_VGONE_WAITER;
3296 		wakeup(&mp->mnt_uppers);
3297 	}
3298 unlock:
3299 	MNT_IUNLOCK(mp);
3300 }
3301 
3302 /*
3303  * vgone, with the vp interlock held.
3304  */
3305 static void
3306 vgonel(struct vnode *vp)
3307 {
3308 	struct thread *td;
3309 	int oweinact;
3310 	int active;
3311 	struct mount *mp;
3312 
3313 	ASSERT_VOP_ELOCKED(vp, "vgonel");
3314 	ASSERT_VI_LOCKED(vp, "vgonel");
3315 	VNASSERT(vp->v_holdcnt, vp,
3316 	    ("vgonel: vp %p has no reference.", vp));
3317 	CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3318 	td = curthread;
3319 
3320 	/*
3321 	 * Don't vgonel if we're already doomed.
3322 	 */
3323 	if (vp->v_iflag & VI_DOOMED)
3324 		return;
3325 	vp->v_iflag |= VI_DOOMED;
3326 
3327 	/*
3328 	 * Check to see if the vnode is in use.  If so, we have to call
3329 	 * VOP_CLOSE() and VOP_INACTIVE().
3330 	 */
3331 	active = vp->v_usecount;
3332 	oweinact = (vp->v_iflag & VI_OWEINACT);
3333 	VI_UNLOCK(vp);
3334 	vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
3335 
3336 	/*
3337 	 * If purging an active vnode, it must be closed and
3338 	 * deactivated before being reclaimed.
3339 	 */
3340 	if (active)
3341 		VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
3342 	if (oweinact || active) {
3343 		VI_LOCK(vp);
3344 		if ((vp->v_iflag & VI_DOINGINACT) == 0)
3345 			vinactive(vp, td);
3346 		VI_UNLOCK(vp);
3347 	}
3348 	if (vp->v_type == VSOCK)
3349 		vfs_unp_reclaim(vp);
3350 
3351 	/*
3352 	 * Clean out any buffers associated with the vnode.
3353 	 * If the flush fails, just toss the buffers.
3354 	 */
3355 	mp = NULL;
3356 	if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
3357 		(void) vn_start_secondary_write(vp, &mp, V_WAIT);
3358 	if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
3359 		while (vinvalbuf(vp, 0, 0, 0) != 0)
3360 			;
3361 	}
3362 
3363 	BO_LOCK(&vp->v_bufobj);
3364 	KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
3365 	    vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
3366 	    TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
3367 	    vp->v_bufobj.bo_clean.bv_cnt == 0,
3368 	    ("vp %p bufobj not invalidated", vp));
3369 
3370 	/*
3371 	 * For VMIO bufobj, BO_DEAD is set in vm_object_terminate()
3372 	 * after the object's page queue is flushed.
3373 	 */
3374 	if (vp->v_bufobj.bo_object == NULL)
3375 		vp->v_bufobj.bo_flag |= BO_DEAD;
3376 	BO_UNLOCK(&vp->v_bufobj);
3377 
3378 	/*
3379 	 * Reclaim the vnode.
3380 	 */
3381 	if (VOP_RECLAIM(vp, td))
3382 		panic("vgone: cannot reclaim");
3383 	if (mp != NULL)
3384 		vn_finished_secondary_write(mp);
3385 	VNASSERT(vp->v_object == NULL, vp,
3386 	    ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
3387 	/*
3388 	 * Clear the advisory locks and wake up waiting threads.
3389 	 */
3390 	(void)VOP_ADVLOCKPURGE(vp);
3391 	vp->v_lockf = NULL;
3392 	/*
3393 	 * Delete from old mount point vnode list.
3394 	 */
3395 	delmntque(vp);
3396 	cache_purge(vp);
3397 	/*
3398 	 * Done with purge, reset to the standard lock and invalidate
3399 	 * the vnode.
3400 	 */
3401 	VI_LOCK(vp);
3402 	vp->v_vnlock = &vp->v_lock;
3403 	vp->v_op = &dead_vnodeops;
3404 	vp->v_tag = "none";
3405 	vp->v_type = VBAD;
3406 }
3407 
3408 /*
3409  * Calculate the total number of references to a special device.
3410  */
3411 int
3412 vcount(struct vnode *vp)
3413 {
3414 	int count;
3415 
3416 	dev_lock();
3417 	count = vp->v_rdev->si_usecount;
3418 	dev_unlock();
3419 	return (count);
3420 }
3421 
3422 /*
3423  * Same as above, but using the struct cdev *as argument
3424  */
3425 int
3426 count_dev(struct cdev *dev)
3427 {
3428 	int count;
3429 
3430 	dev_lock();
3431 	count = dev->si_usecount;
3432 	dev_unlock();
3433 	return(count);
3434 }
3435 
3436 /*
3437  * Print out a description of a vnode.
3438  */
3439 static char *typename[] =
3440 {"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
3441  "VMARKER"};
3442 
3443 void
3444 vn_printf(struct vnode *vp, const char *fmt, ...)
3445 {
3446 	va_list ap;
3447 	char buf[256], buf2[16];
3448 	u_long flags;
3449 
3450 	va_start(ap, fmt);
3451 	vprintf(fmt, ap);
3452 	va_end(ap);
3453 	printf("%p: ", (void *)vp);
3454 	printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
3455 	printf("    usecount %d, writecount %d, refcount %d",
3456 	    vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
3457 	switch (vp->v_type) {
3458 	case VDIR:
3459 		printf(" mountedhere %p\n", vp->v_mountedhere);
3460 		break;
3461 	case VCHR:
3462 		printf(" rdev %p\n", vp->v_rdev);
3463 		break;
3464 	case VSOCK:
3465 		printf(" socket %p\n", vp->v_unpcb);
3466 		break;
3467 	case VFIFO:
3468 		printf(" fifoinfo %p\n", vp->v_fifoinfo);
3469 		break;
3470 	default:
3471 		printf("\n");
3472 		break;
3473 	}
3474 	buf[0] = '\0';
3475 	buf[1] = '\0';
3476 	if (vp->v_vflag & VV_ROOT)
3477 		strlcat(buf, "|VV_ROOT", sizeof(buf));
3478 	if (vp->v_vflag & VV_ISTTY)
3479 		strlcat(buf, "|VV_ISTTY", sizeof(buf));
3480 	if (vp->v_vflag & VV_NOSYNC)
3481 		strlcat(buf, "|VV_NOSYNC", sizeof(buf));
3482 	if (vp->v_vflag & VV_ETERNALDEV)
3483 		strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
3484 	if (vp->v_vflag & VV_CACHEDLABEL)
3485 		strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
3486 	if (vp->v_vflag & VV_TEXT)
3487 		strlcat(buf, "|VV_TEXT", sizeof(buf));
3488 	if (vp->v_vflag & VV_COPYONWRITE)
3489 		strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
3490 	if (vp->v_vflag & VV_SYSTEM)
3491 		strlcat(buf, "|VV_SYSTEM", sizeof(buf));
3492 	if (vp->v_vflag & VV_PROCDEP)
3493 		strlcat(buf, "|VV_PROCDEP", sizeof(buf));
3494 	if (vp->v_vflag & VV_NOKNOTE)
3495 		strlcat(buf, "|VV_NOKNOTE", sizeof(buf));
3496 	if (vp->v_vflag & VV_DELETED)
3497 		strlcat(buf, "|VV_DELETED", sizeof(buf));
3498 	if (vp->v_vflag & VV_MD)
3499 		strlcat(buf, "|VV_MD", sizeof(buf));
3500 	if (vp->v_vflag & VV_FORCEINSMQ)
3501 		strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
3502 	flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
3503 	    VV_CACHEDLABEL | VV_TEXT | VV_COPYONWRITE | VV_SYSTEM | VV_PROCDEP |
3504 	    VV_NOKNOTE | VV_DELETED | VV_MD | VV_FORCEINSMQ);
3505 	if (flags != 0) {
3506 		snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
3507 		strlcat(buf, buf2, sizeof(buf));
3508 	}
3509 	if (vp->v_iflag & VI_MOUNT)
3510 		strlcat(buf, "|VI_MOUNT", sizeof(buf));
3511 	if (vp->v_iflag & VI_DOOMED)
3512 		strlcat(buf, "|VI_DOOMED", sizeof(buf));
3513 	if (vp->v_iflag & VI_FREE)
3514 		strlcat(buf, "|VI_FREE", sizeof(buf));
3515 	if (vp->v_iflag & VI_ACTIVE)
3516 		strlcat(buf, "|VI_ACTIVE", sizeof(buf));
3517 	if (vp->v_iflag & VI_DOINGINACT)
3518 		strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
3519 	if (vp->v_iflag & VI_OWEINACT)
3520 		strlcat(buf, "|VI_OWEINACT", sizeof(buf));
3521 	flags = vp->v_iflag & ~(VI_MOUNT | VI_DOOMED | VI_FREE |
3522 	    VI_ACTIVE | VI_DOINGINACT | VI_OWEINACT);
3523 	if (flags != 0) {
3524 		snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
3525 		strlcat(buf, buf2, sizeof(buf));
3526 	}
3527 	printf("    flags (%s)\n", buf + 1);
3528 	if (mtx_owned(VI_MTX(vp)))
3529 		printf(" VI_LOCKed");
3530 	if (vp->v_object != NULL)
3531 		printf("    v_object %p ref %d pages %d "
3532 		    "cleanbuf %d dirtybuf %d\n",
3533 		    vp->v_object, vp->v_object->ref_count,
3534 		    vp->v_object->resident_page_count,
3535 		    vp->v_bufobj.bo_clean.bv_cnt,
3536 		    vp->v_bufobj.bo_dirty.bv_cnt);
3537 	printf("    ");
3538 	lockmgr_printinfo(vp->v_vnlock);
3539 	if (vp->v_data != NULL)
3540 		VOP_PRINT(vp);
3541 }
3542 
3543 #ifdef DDB
3544 /*
3545  * List all of the locked vnodes in the system.
3546  * Called when debugging the kernel.
3547  */
3548 DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
3549 {
3550 	struct mount *mp;
3551 	struct vnode *vp;
3552 
3553 	/*
3554 	 * Note: because this is DDB, we can't obey the locking semantics
3555 	 * for these structures, which means we could catch an inconsistent
3556 	 * state and dereference a nasty pointer.  Not much to be done
3557 	 * about that.
3558 	 */
3559 	db_printf("Locked vnodes\n");
3560 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3561 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3562 			if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
3563 				vn_printf(vp, "vnode ");
3564 		}
3565 	}
3566 }
3567 
3568 /*
3569  * Show details about the given vnode.
3570  */
3571 DB_SHOW_COMMAND(vnode, db_show_vnode)
3572 {
3573 	struct vnode *vp;
3574 
3575 	if (!have_addr)
3576 		return;
3577 	vp = (struct vnode *)addr;
3578 	vn_printf(vp, "vnode ");
3579 }
3580 
3581 /*
3582  * Show details about the given mount point.
3583  */
3584 DB_SHOW_COMMAND(mount, db_show_mount)
3585 {
3586 	struct mount *mp;
3587 	struct vfsopt *opt;
3588 	struct statfs *sp;
3589 	struct vnode *vp;
3590 	char buf[512];
3591 	uint64_t mflags;
3592 	u_int flags;
3593 
3594 	if (!have_addr) {
3595 		/* No address given, print short info about all mount points. */
3596 		TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3597 			db_printf("%p %s on %s (%s)\n", mp,
3598 			    mp->mnt_stat.f_mntfromname,
3599 			    mp->mnt_stat.f_mntonname,
3600 			    mp->mnt_stat.f_fstypename);
3601 			if (db_pager_quit)
3602 				break;
3603 		}
3604 		db_printf("\nMore info: show mount <addr>\n");
3605 		return;
3606 	}
3607 
3608 	mp = (struct mount *)addr;
3609 	db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
3610 	    mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
3611 
3612 	buf[0] = '\0';
3613 	mflags = mp->mnt_flag;
3614 #define	MNT_FLAG(flag)	do {						\
3615 	if (mflags & (flag)) {						\
3616 		if (buf[0] != '\0')					\
3617 			strlcat(buf, ", ", sizeof(buf));		\
3618 		strlcat(buf, (#flag) + 4, sizeof(buf));			\
3619 		mflags &= ~(flag);					\
3620 	}								\
3621 } while (0)
3622 	MNT_FLAG(MNT_RDONLY);
3623 	MNT_FLAG(MNT_SYNCHRONOUS);
3624 	MNT_FLAG(MNT_NOEXEC);
3625 	MNT_FLAG(MNT_NOSUID);
3626 	MNT_FLAG(MNT_NFS4ACLS);
3627 	MNT_FLAG(MNT_UNION);
3628 	MNT_FLAG(MNT_ASYNC);
3629 	MNT_FLAG(MNT_SUIDDIR);
3630 	MNT_FLAG(MNT_SOFTDEP);
3631 	MNT_FLAG(MNT_NOSYMFOLLOW);
3632 	MNT_FLAG(MNT_GJOURNAL);
3633 	MNT_FLAG(MNT_MULTILABEL);
3634 	MNT_FLAG(MNT_ACLS);
3635 	MNT_FLAG(MNT_NOATIME);
3636 	MNT_FLAG(MNT_NOCLUSTERR);
3637 	MNT_FLAG(MNT_NOCLUSTERW);
3638 	MNT_FLAG(MNT_SUJ);
3639 	MNT_FLAG(MNT_EXRDONLY);
3640 	MNT_FLAG(MNT_EXPORTED);
3641 	MNT_FLAG(MNT_DEFEXPORTED);
3642 	MNT_FLAG(MNT_EXPORTANON);
3643 	MNT_FLAG(MNT_EXKERB);
3644 	MNT_FLAG(MNT_EXPUBLIC);
3645 	MNT_FLAG(MNT_LOCAL);
3646 	MNT_FLAG(MNT_QUOTA);
3647 	MNT_FLAG(MNT_ROOTFS);
3648 	MNT_FLAG(MNT_USER);
3649 	MNT_FLAG(MNT_IGNORE);
3650 	MNT_FLAG(MNT_UPDATE);
3651 	MNT_FLAG(MNT_DELEXPORT);
3652 	MNT_FLAG(MNT_RELOAD);
3653 	MNT_FLAG(MNT_FORCE);
3654 	MNT_FLAG(MNT_SNAPSHOT);
3655 	MNT_FLAG(MNT_BYFSID);
3656 #undef MNT_FLAG
3657 	if (mflags != 0) {
3658 		if (buf[0] != '\0')
3659 			strlcat(buf, ", ", sizeof(buf));
3660 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3661 		    "0x%016jx", mflags);
3662 	}
3663 	db_printf("    mnt_flag = %s\n", buf);
3664 
3665 	buf[0] = '\0';
3666 	flags = mp->mnt_kern_flag;
3667 #define	MNT_KERN_FLAG(flag)	do {					\
3668 	if (flags & (flag)) {						\
3669 		if (buf[0] != '\0')					\
3670 			strlcat(buf, ", ", sizeof(buf));		\
3671 		strlcat(buf, (#flag) + 5, sizeof(buf));			\
3672 		flags &= ~(flag);					\
3673 	}								\
3674 } while (0)
3675 	MNT_KERN_FLAG(MNTK_UNMOUNTF);
3676 	MNT_KERN_FLAG(MNTK_ASYNC);
3677 	MNT_KERN_FLAG(MNTK_SOFTDEP);
3678 	MNT_KERN_FLAG(MNTK_NOINSMNTQ);
3679 	MNT_KERN_FLAG(MNTK_DRAINING);
3680 	MNT_KERN_FLAG(MNTK_REFEXPIRE);
3681 	MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
3682 	MNT_KERN_FLAG(MNTK_SHARED_WRITES);
3683 	MNT_KERN_FLAG(MNTK_NO_IOPF);
3684 	MNT_KERN_FLAG(MNTK_VGONE_UPPER);
3685 	MNT_KERN_FLAG(MNTK_VGONE_WAITER);
3686 	MNT_KERN_FLAG(MNTK_LOOKUP_EXCL_DOTDOT);
3687 	MNT_KERN_FLAG(MNTK_MARKER);
3688 	MNT_KERN_FLAG(MNTK_USES_BCACHE);
3689 	MNT_KERN_FLAG(MNTK_NOASYNC);
3690 	MNT_KERN_FLAG(MNTK_UNMOUNT);
3691 	MNT_KERN_FLAG(MNTK_MWAIT);
3692 	MNT_KERN_FLAG(MNTK_SUSPEND);
3693 	MNT_KERN_FLAG(MNTK_SUSPEND2);
3694 	MNT_KERN_FLAG(MNTK_SUSPENDED);
3695 	MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
3696 	MNT_KERN_FLAG(MNTK_NOKNOTE);
3697 #undef MNT_KERN_FLAG
3698 	if (flags != 0) {
3699 		if (buf[0] != '\0')
3700 			strlcat(buf, ", ", sizeof(buf));
3701 		snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
3702 		    "0x%08x", flags);
3703 	}
3704 	db_printf("    mnt_kern_flag = %s\n", buf);
3705 
3706 	db_printf("    mnt_opt = ");
3707 	opt = TAILQ_FIRST(mp->mnt_opt);
3708 	if (opt != NULL) {
3709 		db_printf("%s", opt->name);
3710 		opt = TAILQ_NEXT(opt, link);
3711 		while (opt != NULL) {
3712 			db_printf(", %s", opt->name);
3713 			opt = TAILQ_NEXT(opt, link);
3714 		}
3715 	}
3716 	db_printf("\n");
3717 
3718 	sp = &mp->mnt_stat;
3719 	db_printf("    mnt_stat = { version=%u type=%u flags=0x%016jx "
3720 	    "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
3721 	    "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
3722 	    "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
3723 	    (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
3724 	    (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
3725 	    (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
3726 	    (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
3727 	    (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
3728 	    (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
3729 	    (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
3730 	    (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
3731 
3732 	db_printf("    mnt_cred = { uid=%u ruid=%u",
3733 	    (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
3734 	if (jailed(mp->mnt_cred))
3735 		db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
3736 	db_printf(" }\n");
3737 	db_printf("    mnt_ref = %d\n", mp->mnt_ref);
3738 	db_printf("    mnt_gen = %d\n", mp->mnt_gen);
3739 	db_printf("    mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
3740 	db_printf("    mnt_activevnodelistsize = %d\n",
3741 	    mp->mnt_activevnodelistsize);
3742 	db_printf("    mnt_writeopcount = %d\n", mp->mnt_writeopcount);
3743 	db_printf("    mnt_maxsymlinklen = %d\n", mp->mnt_maxsymlinklen);
3744 	db_printf("    mnt_iosize_max = %d\n", mp->mnt_iosize_max);
3745 	db_printf("    mnt_hashseed = %u\n", mp->mnt_hashseed);
3746 	db_printf("    mnt_lockref = %d\n", mp->mnt_lockref);
3747 	db_printf("    mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
3748 	db_printf("    mnt_secondary_accwrites = %d\n",
3749 	    mp->mnt_secondary_accwrites);
3750 	db_printf("    mnt_gjprovider = %s\n",
3751 	    mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
3752 
3753 	db_printf("\n\nList of active vnodes\n");
3754 	TAILQ_FOREACH(vp, &mp->mnt_activevnodelist, v_actfreelist) {
3755 		if (vp->v_type != VMARKER) {
3756 			vn_printf(vp, "vnode ");
3757 			if (db_pager_quit)
3758 				break;
3759 		}
3760 	}
3761 	db_printf("\n\nList of inactive vnodes\n");
3762 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3763 		if (vp->v_type != VMARKER && (vp->v_iflag & VI_ACTIVE) == 0) {
3764 			vn_printf(vp, "vnode ");
3765 			if (db_pager_quit)
3766 				break;
3767 		}
3768 	}
3769 }
3770 #endif	/* DDB */
3771 
3772 /*
3773  * Fill in a struct xvfsconf based on a struct vfsconf.
3774  */
3775 static int
3776 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
3777 {
3778 	struct xvfsconf xvfsp;
3779 
3780 	bzero(&xvfsp, sizeof(xvfsp));
3781 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3782 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3783 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3784 	xvfsp.vfc_flags = vfsp->vfc_flags;
3785 	/*
3786 	 * These are unused in userland, we keep them
3787 	 * to not break binary compatibility.
3788 	 */
3789 	xvfsp.vfc_vfsops = NULL;
3790 	xvfsp.vfc_next = NULL;
3791 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3792 }
3793 
3794 #ifdef COMPAT_FREEBSD32
3795 struct xvfsconf32 {
3796 	uint32_t	vfc_vfsops;
3797 	char		vfc_name[MFSNAMELEN];
3798 	int32_t		vfc_typenum;
3799 	int32_t		vfc_refcount;
3800 	int32_t		vfc_flags;
3801 	uint32_t	vfc_next;
3802 };
3803 
3804 static int
3805 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
3806 {
3807 	struct xvfsconf32 xvfsp;
3808 
3809 	bzero(&xvfsp, sizeof(xvfsp));
3810 	strcpy(xvfsp.vfc_name, vfsp->vfc_name);
3811 	xvfsp.vfc_typenum = vfsp->vfc_typenum;
3812 	xvfsp.vfc_refcount = vfsp->vfc_refcount;
3813 	xvfsp.vfc_flags = vfsp->vfc_flags;
3814 	return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
3815 }
3816 #endif
3817 
3818 /*
3819  * Top level filesystem related information gathering.
3820  */
3821 static int
3822 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
3823 {
3824 	struct vfsconf *vfsp;
3825 	int error;
3826 
3827 	error = 0;
3828 	vfsconf_slock();
3829 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3830 #ifdef COMPAT_FREEBSD32
3831 		if (req->flags & SCTL_MASK32)
3832 			error = vfsconf2x32(req, vfsp);
3833 		else
3834 #endif
3835 			error = vfsconf2x(req, vfsp);
3836 		if (error)
3837 			break;
3838 	}
3839 	vfsconf_sunlock();
3840 	return (error);
3841 }
3842 
3843 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
3844     CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
3845     "S,xvfsconf", "List of all configured filesystems");
3846 
3847 #ifndef BURN_BRIDGES
3848 static int	sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
3849 
3850 static int
3851 vfs_sysctl(SYSCTL_HANDLER_ARGS)
3852 {
3853 	int *name = (int *)arg1 - 1;	/* XXX */
3854 	u_int namelen = arg2 + 1;	/* XXX */
3855 	struct vfsconf *vfsp;
3856 
3857 	log(LOG_WARNING, "userland calling deprecated sysctl, "
3858 	    "please rebuild world\n");
3859 
3860 #if 1 || defined(COMPAT_PRELITE2)
3861 	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
3862 	if (namelen == 1)
3863 		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
3864 #endif
3865 
3866 	switch (name[1]) {
3867 	case VFS_MAXTYPENUM:
3868 		if (namelen != 2)
3869 			return (ENOTDIR);
3870 		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
3871 	case VFS_CONF:
3872 		if (namelen != 3)
3873 			return (ENOTDIR);	/* overloaded */
3874 		vfsconf_slock();
3875 		TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3876 			if (vfsp->vfc_typenum == name[2])
3877 				break;
3878 		}
3879 		vfsconf_sunlock();
3880 		if (vfsp == NULL)
3881 			return (EOPNOTSUPP);
3882 #ifdef COMPAT_FREEBSD32
3883 		if (req->flags & SCTL_MASK32)
3884 			return (vfsconf2x32(req, vfsp));
3885 		else
3886 #endif
3887 			return (vfsconf2x(req, vfsp));
3888 	}
3889 	return (EOPNOTSUPP);
3890 }
3891 
3892 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
3893     CTLFLAG_MPSAFE, vfs_sysctl,
3894     "Generic filesystem");
3895 
3896 #if 1 || defined(COMPAT_PRELITE2)
3897 
3898 static int
3899 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
3900 {
3901 	int error;
3902 	struct vfsconf *vfsp;
3903 	struct ovfsconf ovfs;
3904 
3905 	vfsconf_slock();
3906 	TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
3907 		bzero(&ovfs, sizeof(ovfs));
3908 		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
3909 		strcpy(ovfs.vfc_name, vfsp->vfc_name);
3910 		ovfs.vfc_index = vfsp->vfc_typenum;
3911 		ovfs.vfc_refcount = vfsp->vfc_refcount;
3912 		ovfs.vfc_flags = vfsp->vfc_flags;
3913 		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
3914 		if (error != 0) {
3915 			vfsconf_sunlock();
3916 			return (error);
3917 		}
3918 	}
3919 	vfsconf_sunlock();
3920 	return (0);
3921 }
3922 
3923 #endif /* 1 || COMPAT_PRELITE2 */
3924 #endif /* !BURN_BRIDGES */
3925 
3926 #define KINFO_VNODESLOP		10
3927 #ifdef notyet
3928 /*
3929  * Dump vnode list (via sysctl).
3930  */
3931 /* ARGSUSED */
3932 static int
3933 sysctl_vnode(SYSCTL_HANDLER_ARGS)
3934 {
3935 	struct xvnode *xvn;
3936 	struct mount *mp;
3937 	struct vnode *vp;
3938 	int error, len, n;
3939 
3940 	/*
3941 	 * Stale numvnodes access is not fatal here.
3942 	 */
3943 	req->lock = 0;
3944 	len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
3945 	if (!req->oldptr)
3946 		/* Make an estimate */
3947 		return (SYSCTL_OUT(req, 0, len));
3948 
3949 	error = sysctl_wire_old_buffer(req, 0);
3950 	if (error != 0)
3951 		return (error);
3952 	xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
3953 	n = 0;
3954 	mtx_lock(&mountlist_mtx);
3955 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3956 		if (vfs_busy(mp, MBF_NOWAIT | MBF_MNTLSTLOCK))
3957 			continue;
3958 		MNT_ILOCK(mp);
3959 		TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
3960 			if (n == len)
3961 				break;
3962 			vref(vp);
3963 			xvn[n].xv_size = sizeof *xvn;
3964 			xvn[n].xv_vnode = vp;
3965 			xvn[n].xv_id = 0;	/* XXX compat */
3966 #define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
3967 			XV_COPY(usecount);
3968 			XV_COPY(writecount);
3969 			XV_COPY(holdcnt);
3970 			XV_COPY(mount);
3971 			XV_COPY(numoutput);
3972 			XV_COPY(type);
3973 #undef XV_COPY
3974 			xvn[n].xv_flag = vp->v_vflag;
3975 
3976 			switch (vp->v_type) {
3977 			case VREG:
3978 			case VDIR:
3979 			case VLNK:
3980 				break;
3981 			case VBLK:
3982 			case VCHR:
3983 				if (vp->v_rdev == NULL) {
3984 					vrele(vp);
3985 					continue;
3986 				}
3987 				xvn[n].xv_dev = dev2udev(vp->v_rdev);
3988 				break;
3989 			case VSOCK:
3990 				xvn[n].xv_socket = vp->v_socket;
3991 				break;
3992 			case VFIFO:
3993 				xvn[n].xv_fifo = vp->v_fifoinfo;
3994 				break;
3995 			case VNON:
3996 			case VBAD:
3997 			default:
3998 				/* shouldn't happen? */
3999 				vrele(vp);
4000 				continue;
4001 			}
4002 			vrele(vp);
4003 			++n;
4004 		}
4005 		MNT_IUNLOCK(mp);
4006 		mtx_lock(&mountlist_mtx);
4007 		vfs_unbusy(mp);
4008 		if (n == len)
4009 			break;
4010 	}
4011 	mtx_unlock(&mountlist_mtx);
4012 
4013 	error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
4014 	free(xvn, M_TEMP);
4015 	return (error);
4016 }
4017 
4018 SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE | CTLFLAG_RD |
4019     CTLFLAG_MPSAFE, 0, 0, sysctl_vnode, "S,xvnode",
4020     "");
4021 #endif
4022 
4023 static void
4024 unmount_or_warn(struct mount *mp)
4025 {
4026 	int error;
4027 
4028 	error = dounmount(mp, MNT_FORCE, curthread);
4029 	if (error != 0) {
4030 		printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
4031 		if (error == EBUSY)
4032 			printf("BUSY)\n");
4033 		else
4034 			printf("%d)\n", error);
4035 	}
4036 }
4037 
4038 /*
4039  * Unmount all filesystems. The list is traversed in reverse order
4040  * of mounting to avoid dependencies.
4041  */
4042 void
4043 vfs_unmountall(void)
4044 {
4045 	struct mount *mp, *tmp;
4046 
4047 	CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
4048 
4049 	/*
4050 	 * Since this only runs when rebooting, it is not interlocked.
4051 	 */
4052 	TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
4053 		vfs_ref(mp);
4054 
4055 		/*
4056 		 * Forcibly unmounting "/dev" before "/" would prevent clean
4057 		 * unmount of the latter.
4058 		 */
4059 		if (mp == rootdevmp)
4060 			continue;
4061 
4062 		unmount_or_warn(mp);
4063 	}
4064 
4065 	if (rootdevmp != NULL)
4066 		unmount_or_warn(rootdevmp);
4067 }
4068 
4069 /*
4070  * perform msync on all vnodes under a mount point
4071  * the mount point must be locked.
4072  */
4073 void
4074 vfs_msync(struct mount *mp, int flags)
4075 {
4076 	struct vnode *vp, *mvp;
4077 	struct vm_object *obj;
4078 
4079 	CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
4080 
4081 	vnlru_return_batch(mp);
4082 
4083 	MNT_VNODE_FOREACH_ACTIVE(vp, mp, mvp) {
4084 		obj = vp->v_object;
4085 		if (obj != NULL && (obj->flags & OBJ_MIGHTBEDIRTY) != 0 &&
4086 		    (flags == MNT_WAIT || VOP_ISLOCKED(vp) == 0)) {
4087 			if (!vget(vp,
4088 			    LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
4089 			    curthread)) {
4090 				if (vp->v_vflag & VV_NOSYNC) {	/* unlinked */
4091 					vput(vp);
4092 					continue;
4093 				}
4094 
4095 				obj = vp->v_object;
4096 				if (obj != NULL) {
4097 					VM_OBJECT_WLOCK(obj);
4098 					vm_object_page_clean(obj, 0, 0,
4099 					    flags == MNT_WAIT ?
4100 					    OBJPC_SYNC : OBJPC_NOSYNC);
4101 					VM_OBJECT_WUNLOCK(obj);
4102 				}
4103 				vput(vp);
4104 			}
4105 		} else
4106 			VI_UNLOCK(vp);
4107 	}
4108 }
4109 
4110 static void
4111 destroy_vpollinfo_free(struct vpollinfo *vi)
4112 {
4113 
4114 	knlist_destroy(&vi->vpi_selinfo.si_note);
4115 	mtx_destroy(&vi->vpi_lock);
4116 	uma_zfree(vnodepoll_zone, vi);
4117 }
4118 
4119 static void
4120 destroy_vpollinfo(struct vpollinfo *vi)
4121 {
4122 
4123 	knlist_clear(&vi->vpi_selinfo.si_note, 1);
4124 	seldrain(&vi->vpi_selinfo);
4125 	destroy_vpollinfo_free(vi);
4126 }
4127 
4128 /*
4129  * Initialize per-vnode helper structure to hold poll-related state.
4130  */
4131 void
4132 v_addpollinfo(struct vnode *vp)
4133 {
4134 	struct vpollinfo *vi;
4135 
4136 	if (vp->v_pollinfo != NULL)
4137 		return;
4138 	vi = uma_zalloc(vnodepoll_zone, M_WAITOK | M_ZERO);
4139 	mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
4140 	knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
4141 	    vfs_knlunlock, vfs_knl_assert_locked, vfs_knl_assert_unlocked);
4142 	VI_LOCK(vp);
4143 	if (vp->v_pollinfo != NULL) {
4144 		VI_UNLOCK(vp);
4145 		destroy_vpollinfo_free(vi);
4146 		return;
4147 	}
4148 	vp->v_pollinfo = vi;
4149 	VI_UNLOCK(vp);
4150 }
4151 
4152 /*
4153  * Record a process's interest in events which might happen to
4154  * a vnode.  Because poll uses the historic select-style interface
4155  * internally, this routine serves as both the ``check for any
4156  * pending events'' and the ``record my interest in future events''
4157  * functions.  (These are done together, while the lock is held,
4158  * to avoid race conditions.)
4159  */
4160 int
4161 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
4162 {
4163 
4164 	v_addpollinfo(vp);
4165 	mtx_lock(&vp->v_pollinfo->vpi_lock);
4166 	if (vp->v_pollinfo->vpi_revents & events) {
4167 		/*
4168 		 * This leaves events we are not interested
4169 		 * in available for the other process which
4170 		 * which presumably had requested them
4171 		 * (otherwise they would never have been
4172 		 * recorded).
4173 		 */
4174 		events &= vp->v_pollinfo->vpi_revents;
4175 		vp->v_pollinfo->vpi_revents &= ~events;
4176 
4177 		mtx_unlock(&vp->v_pollinfo->vpi_lock);
4178 		return (events);
4179 	}
4180 	vp->v_pollinfo->vpi_events |= events;
4181 	selrecord(td, &vp->v_pollinfo->vpi_selinfo);
4182 	mtx_unlock(&vp->v_pollinfo->vpi_lock);
4183 	return (0);
4184 }
4185 
4186 /*
4187  * Routine to create and manage a filesystem syncer vnode.
4188  */
4189 #define sync_close ((int (*)(struct  vop_close_args *))nullop)
4190 static int	sync_fsync(struct  vop_fsync_args *);
4191 static int	sync_inactive(struct  vop_inactive_args *);
4192 static int	sync_reclaim(struct  vop_reclaim_args *);
4193 
4194 static struct vop_vector sync_vnodeops = {
4195 	.vop_bypass =	VOP_EOPNOTSUPP,
4196 	.vop_close =	sync_close,		/* close */
4197 	.vop_fsync =	sync_fsync,		/* fsync */
4198 	.vop_inactive =	sync_inactive,	/* inactive */
4199 	.vop_reclaim =	sync_reclaim,	/* reclaim */
4200 	.vop_lock1 =	vop_stdlock,	/* lock */
4201 	.vop_unlock =	vop_stdunlock,	/* unlock */
4202 	.vop_islocked =	vop_stdislocked,	/* islocked */
4203 };
4204 
4205 /*
4206  * Create a new filesystem syncer vnode for the specified mount point.
4207  */
4208 void
4209 vfs_allocate_syncvnode(struct mount *mp)
4210 {
4211 	struct vnode *vp;
4212 	struct bufobj *bo;
4213 	static long start, incr, next;
4214 	int error;
4215 
4216 	/* Allocate a new vnode */
4217 	error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
4218 	if (error != 0)
4219 		panic("vfs_allocate_syncvnode: getnewvnode() failed");
4220 	vp->v_type = VNON;
4221 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4222 	vp->v_vflag |= VV_FORCEINSMQ;
4223 	error = insmntque(vp, mp);
4224 	if (error != 0)
4225 		panic("vfs_allocate_syncvnode: insmntque() failed");
4226 	vp->v_vflag &= ~VV_FORCEINSMQ;
4227 	VOP_UNLOCK(vp, 0);
4228 	/*
4229 	 * Place the vnode onto the syncer worklist. We attempt to
4230 	 * scatter them about on the list so that they will go off
4231 	 * at evenly distributed times even if all the filesystems
4232 	 * are mounted at once.
4233 	 */
4234 	next += incr;
4235 	if (next == 0 || next > syncer_maxdelay) {
4236 		start /= 2;
4237 		incr /= 2;
4238 		if (start == 0) {
4239 			start = syncer_maxdelay / 2;
4240 			incr = syncer_maxdelay;
4241 		}
4242 		next = start;
4243 	}
4244 	bo = &vp->v_bufobj;
4245 	BO_LOCK(bo);
4246 	vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
4247 	/* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
4248 	mtx_lock(&sync_mtx);
4249 	sync_vnode_count++;
4250 	if (mp->mnt_syncer == NULL) {
4251 		mp->mnt_syncer = vp;
4252 		vp = NULL;
4253 	}
4254 	mtx_unlock(&sync_mtx);
4255 	BO_UNLOCK(bo);
4256 	if (vp != NULL) {
4257 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4258 		vgone(vp);
4259 		vput(vp);
4260 	}
4261 }
4262 
4263 void
4264 vfs_deallocate_syncvnode(struct mount *mp)
4265 {
4266 	struct vnode *vp;
4267 
4268 	mtx_lock(&sync_mtx);
4269 	vp = mp->mnt_syncer;
4270 	if (vp != NULL)
4271 		mp->mnt_syncer = NULL;
4272 	mtx_unlock(&sync_mtx);
4273 	if (vp != NULL)
4274 		vrele(vp);
4275 }
4276 
4277 /*
4278  * Do a lazy sync of the filesystem.
4279  */
4280 static int
4281 sync_fsync(struct vop_fsync_args *ap)
4282 {
4283 	struct vnode *syncvp = ap->a_vp;
4284 	struct mount *mp = syncvp->v_mount;
4285 	int error, save;
4286 	struct bufobj *bo;
4287 
4288 	/*
4289 	 * We only need to do something if this is a lazy evaluation.
4290 	 */
4291 	if (ap->a_waitfor != MNT_LAZY)
4292 		return (0);
4293 
4294 	/*
4295 	 * Move ourselves to the back of the sync list.
4296 	 */
4297 	bo = &syncvp->v_bufobj;
4298 	BO_LOCK(bo);
4299 	vn_syncer_add_to_worklist(bo, syncdelay);
4300 	BO_UNLOCK(bo);
4301 
4302 	/*
4303 	 * Walk the list of vnodes pushing all that are dirty and
4304 	 * not already on the sync list.
4305 	 */
4306 	if (vfs_busy(mp, MBF_NOWAIT) != 0)
4307 		return (0);
4308 	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
4309 		vfs_unbusy(mp);
4310 		return (0);
4311 	}
4312 	save = curthread_pflags_set(TDP_SYNCIO);
4313 	vfs_msync(mp, MNT_NOWAIT);
4314 	error = VFS_SYNC(mp, MNT_LAZY);
4315 	curthread_pflags_restore(save);
4316 	vn_finished_write(mp);
4317 	vfs_unbusy(mp);
4318 	return (error);
4319 }
4320 
4321 /*
4322  * The syncer vnode is no referenced.
4323  */
4324 static int
4325 sync_inactive(struct vop_inactive_args *ap)
4326 {
4327 
4328 	vgone(ap->a_vp);
4329 	return (0);
4330 }
4331 
4332 /*
4333  * The syncer vnode is no longer needed and is being decommissioned.
4334  *
4335  * Modifications to the worklist must be protected by sync_mtx.
4336  */
4337 static int
4338 sync_reclaim(struct vop_reclaim_args *ap)
4339 {
4340 	struct vnode *vp = ap->a_vp;
4341 	struct bufobj *bo;
4342 
4343 	bo = &vp->v_bufobj;
4344 	BO_LOCK(bo);
4345 	mtx_lock(&sync_mtx);
4346 	if (vp->v_mount->mnt_syncer == vp)
4347 		vp->v_mount->mnt_syncer = NULL;
4348 	if (bo->bo_flag & BO_ONWORKLST) {
4349 		LIST_REMOVE(bo, bo_synclist);
4350 		syncer_worklist_len--;
4351 		sync_vnode_count--;
4352 		bo->bo_flag &= ~BO_ONWORKLST;
4353 	}
4354 	mtx_unlock(&sync_mtx);
4355 	BO_UNLOCK(bo);
4356 
4357 	return (0);
4358 }
4359 
4360 /*
4361  * Check if vnode represents a disk device
4362  */
4363 int
4364 vn_isdisk(struct vnode *vp, int *errp)
4365 {
4366 	int error;
4367 
4368 	if (vp->v_type != VCHR) {
4369 		error = ENOTBLK;
4370 		goto out;
4371 	}
4372 	error = 0;
4373 	dev_lock();
4374 	if (vp->v_rdev == NULL)
4375 		error = ENXIO;
4376 	else if (vp->v_rdev->si_devsw == NULL)
4377 		error = ENXIO;
4378 	else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
4379 		error = ENOTBLK;
4380 	dev_unlock();
4381 out:
4382 	if (errp != NULL)
4383 		*errp = error;
4384 	return (error == 0);
4385 }
4386 
4387 /*
4388  * Common filesystem object access control check routine.  Accepts a
4389  * vnode's type, "mode", uid and gid, requested access mode, credentials,
4390  * and optional call-by-reference privused argument allowing vaccess()
4391  * to indicate to the caller whether privilege was used to satisfy the
4392  * request (obsoleted).  Returns 0 on success, or an errno on failure.
4393  */
4394 int
4395 vaccess(enum vtype type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
4396     accmode_t accmode, struct ucred *cred, int *privused)
4397 {
4398 	accmode_t dac_granted;
4399 	accmode_t priv_granted;
4400 
4401 	KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
4402 	    ("invalid bit in accmode"));
4403 	KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
4404 	    ("VAPPEND without VWRITE"));
4405 
4406 	/*
4407 	 * Look for a normal, non-privileged way to access the file/directory
4408 	 * as requested.  If it exists, go with that.
4409 	 */
4410 
4411 	if (privused != NULL)
4412 		*privused = 0;
4413 
4414 	dac_granted = 0;
4415 
4416 	/* Check the owner. */
4417 	if (cred->cr_uid == file_uid) {
4418 		dac_granted |= VADMIN;
4419 		if (file_mode & S_IXUSR)
4420 			dac_granted |= VEXEC;
4421 		if (file_mode & S_IRUSR)
4422 			dac_granted |= VREAD;
4423 		if (file_mode & S_IWUSR)
4424 			dac_granted |= (VWRITE | VAPPEND);
4425 
4426 		if ((accmode & dac_granted) == accmode)
4427 			return (0);
4428 
4429 		goto privcheck;
4430 	}
4431 
4432 	/* Otherwise, check the groups (first match) */
4433 	if (groupmember(file_gid, cred)) {
4434 		if (file_mode & S_IXGRP)
4435 			dac_granted |= VEXEC;
4436 		if (file_mode & S_IRGRP)
4437 			dac_granted |= VREAD;
4438 		if (file_mode & S_IWGRP)
4439 			dac_granted |= (VWRITE | VAPPEND);
4440 
4441 		if ((accmode & dac_granted) == accmode)
4442 			return (0);
4443 
4444 		goto privcheck;
4445 	}
4446 
4447 	/* Otherwise, check everyone else. */
4448 	if (file_mode & S_IXOTH)
4449 		dac_granted |= VEXEC;
4450 	if (file_mode & S_IROTH)
4451 		dac_granted |= VREAD;
4452 	if (file_mode & S_IWOTH)
4453 		dac_granted |= (VWRITE | VAPPEND);
4454 	if ((accmode & dac_granted) == accmode)
4455 		return (0);
4456 
4457 privcheck:
4458 	/*
4459 	 * Build a privilege mask to determine if the set of privileges
4460 	 * satisfies the requirements when combined with the granted mask
4461 	 * from above.  For each privilege, if the privilege is required,
4462 	 * bitwise or the request type onto the priv_granted mask.
4463 	 */
4464 	priv_granted = 0;
4465 
4466 	if (type == VDIR) {
4467 		/*
4468 		 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
4469 		 * requests, instead of PRIV_VFS_EXEC.
4470 		 */
4471 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4472 		    !priv_check_cred(cred, PRIV_VFS_LOOKUP, 0))
4473 			priv_granted |= VEXEC;
4474 	} else {
4475 		/*
4476 		 * Ensure that at least one execute bit is on. Otherwise,
4477 		 * a privileged user will always succeed, and we don't want
4478 		 * this to happen unless the file really is executable.
4479 		 */
4480 		if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
4481 		    (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
4482 		    !priv_check_cred(cred, PRIV_VFS_EXEC, 0))
4483 			priv_granted |= VEXEC;
4484 	}
4485 
4486 	if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
4487 	    !priv_check_cred(cred, PRIV_VFS_READ, 0))
4488 		priv_granted |= VREAD;
4489 
4490 	if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
4491 	    !priv_check_cred(cred, PRIV_VFS_WRITE, 0))
4492 		priv_granted |= (VWRITE | VAPPEND);
4493 
4494 	if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
4495 	    !priv_check_cred(cred, PRIV_VFS_ADMIN, 0))
4496 		priv_granted |= VADMIN;
4497 
4498 	if ((accmode & (priv_granted | dac_granted)) == accmode) {
4499 		/* XXX audit: privilege used */
4500 		if (privused != NULL)
4501 			*privused = 1;
4502 		return (0);
4503 	}
4504 
4505 	return ((accmode & VADMIN) ? EPERM : EACCES);
4506 }
4507 
4508 /*
4509  * Credential check based on process requesting service, and per-attribute
4510  * permissions.
4511  */
4512 int
4513 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
4514     struct thread *td, accmode_t accmode)
4515 {
4516 
4517 	/*
4518 	 * Kernel-invoked always succeeds.
4519 	 */
4520 	if (cred == NOCRED)
4521 		return (0);
4522 
4523 	/*
4524 	 * Do not allow privileged processes in jail to directly manipulate
4525 	 * system attributes.
4526 	 */
4527 	switch (attrnamespace) {
4528 	case EXTATTR_NAMESPACE_SYSTEM:
4529 		/* Potentially should be: return (EPERM); */
4530 		return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM, 0));
4531 	case EXTATTR_NAMESPACE_USER:
4532 		return (VOP_ACCESS(vp, accmode, cred, td));
4533 	default:
4534 		return (EPERM);
4535 	}
4536 }
4537 
4538 #ifdef DEBUG_VFS_LOCKS
4539 /*
4540  * This only exists to suppress warnings from unlocked specfs accesses.  It is
4541  * no longer ok to have an unlocked VFS.
4542  */
4543 #define	IGNORE_LOCK(vp) (panicstr != NULL || (vp) == NULL ||		\
4544 	(vp)->v_type == VCHR ||	(vp)->v_type == VBAD)
4545 
4546 int vfs_badlock_ddb = 1;	/* Drop into debugger on violation. */
4547 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0,
4548     "Drop into debugger on lock violation");
4549 
4550 int vfs_badlock_mutex = 1;	/* Check for interlock across VOPs. */
4551 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex,
4552     0, "Check for interlock across VOPs");
4553 
4554 int vfs_badlock_print = 1;	/* Print lock violations. */
4555 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print,
4556     0, "Print lock violations");
4557 
4558 int vfs_badlock_vnode = 1;	/* Print vnode details on lock violations. */
4559 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_vnode, CTLFLAG_RW, &vfs_badlock_vnode,
4560     0, "Print vnode details on lock violations");
4561 
4562 #ifdef KDB
4563 int vfs_badlock_backtrace = 1;	/* Print backtrace at lock violations. */
4564 SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW,
4565     &vfs_badlock_backtrace, 0, "Print backtrace at lock violations");
4566 #endif
4567 
4568 static void
4569 vfs_badlock(const char *msg, const char *str, struct vnode *vp)
4570 {
4571 
4572 #ifdef KDB
4573 	if (vfs_badlock_backtrace)
4574 		kdb_backtrace();
4575 #endif
4576 	if (vfs_badlock_vnode)
4577 		vn_printf(vp, "vnode ");
4578 	if (vfs_badlock_print)
4579 		printf("%s: %p %s\n", str, (void *)vp, msg);
4580 	if (vfs_badlock_ddb)
4581 		kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4582 }
4583 
4584 void
4585 assert_vi_locked(struct vnode *vp, const char *str)
4586 {
4587 
4588 	if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
4589 		vfs_badlock("interlock is not locked but should be", str, vp);
4590 }
4591 
4592 void
4593 assert_vi_unlocked(struct vnode *vp, const char *str)
4594 {
4595 
4596 	if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
4597 		vfs_badlock("interlock is locked but should not be", str, vp);
4598 }
4599 
4600 void
4601 assert_vop_locked(struct vnode *vp, const char *str)
4602 {
4603 	int locked;
4604 
4605 	if (!IGNORE_LOCK(vp)) {
4606 		locked = VOP_ISLOCKED(vp);
4607 		if (locked == 0 || locked == LK_EXCLOTHER)
4608 			vfs_badlock("is not locked but should be", str, vp);
4609 	}
4610 }
4611 
4612 void
4613 assert_vop_unlocked(struct vnode *vp, const char *str)
4614 {
4615 
4616 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
4617 		vfs_badlock("is locked but should not be", str, vp);
4618 }
4619 
4620 void
4621 assert_vop_elocked(struct vnode *vp, const char *str)
4622 {
4623 
4624 	if (!IGNORE_LOCK(vp) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE)
4625 		vfs_badlock("is not exclusive locked but should be", str, vp);
4626 }
4627 #endif /* DEBUG_VFS_LOCKS */
4628 
4629 void
4630 vop_rename_fail(struct vop_rename_args *ap)
4631 {
4632 
4633 	if (ap->a_tvp != NULL)
4634 		vput(ap->a_tvp);
4635 	if (ap->a_tdvp == ap->a_tvp)
4636 		vrele(ap->a_tdvp);
4637 	else
4638 		vput(ap->a_tdvp);
4639 	vrele(ap->a_fdvp);
4640 	vrele(ap->a_fvp);
4641 }
4642 
4643 void
4644 vop_rename_pre(void *ap)
4645 {
4646 	struct vop_rename_args *a = ap;
4647 
4648 #ifdef DEBUG_VFS_LOCKS
4649 	if (a->a_tvp)
4650 		ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
4651 	ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
4652 	ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
4653 	ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
4654 
4655 	/* Check the source (from). */
4656 	if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
4657 	    (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
4658 		ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
4659 	if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
4660 		ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
4661 
4662 	/* Check the target. */
4663 	if (a->a_tvp)
4664 		ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
4665 	ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
4666 #endif
4667 	if (a->a_tdvp != a->a_fdvp)
4668 		vhold(a->a_fdvp);
4669 	if (a->a_tvp != a->a_fvp)
4670 		vhold(a->a_fvp);
4671 	vhold(a->a_tdvp);
4672 	if (a->a_tvp)
4673 		vhold(a->a_tvp);
4674 }
4675 
4676 #ifdef DEBUG_VFS_LOCKS
4677 void
4678 vop_strategy_pre(void *ap)
4679 {
4680 	struct vop_strategy_args *a;
4681 	struct buf *bp;
4682 
4683 	a = ap;
4684 	bp = a->a_bp;
4685 
4686 	/*
4687 	 * Cluster ops lock their component buffers but not the IO container.
4688 	 */
4689 	if ((bp->b_flags & B_CLUSTER) != 0)
4690 		return;
4691 
4692 	if (panicstr == NULL && !BUF_ISLOCKED(bp)) {
4693 		if (vfs_badlock_print)
4694 			printf(
4695 			    "VOP_STRATEGY: bp is not locked but should be\n");
4696 		if (vfs_badlock_ddb)
4697 			kdb_enter(KDB_WHY_VFSLOCK, "lock violation");
4698 	}
4699 }
4700 
4701 void
4702 vop_lock_pre(void *ap)
4703 {
4704 	struct vop_lock1_args *a = ap;
4705 
4706 	if ((a->a_flags & LK_INTERLOCK) == 0)
4707 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4708 	else
4709 		ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
4710 }
4711 
4712 void
4713 vop_lock_post(void *ap, int rc)
4714 {
4715 	struct vop_lock1_args *a = ap;
4716 
4717 	ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
4718 	if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
4719 		ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
4720 }
4721 
4722 void
4723 vop_unlock_pre(void *ap)
4724 {
4725 	struct vop_unlock_args *a = ap;
4726 
4727 	if (a->a_flags & LK_INTERLOCK)
4728 		ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
4729 	ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
4730 }
4731 
4732 void
4733 vop_unlock_post(void *ap, int rc)
4734 {
4735 	struct vop_unlock_args *a = ap;
4736 
4737 	if (a->a_flags & LK_INTERLOCK)
4738 		ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
4739 }
4740 #endif
4741 
4742 void
4743 vop_create_post(void *ap, int rc)
4744 {
4745 	struct vop_create_args *a = ap;
4746 
4747 	if (!rc)
4748 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4749 }
4750 
4751 void
4752 vop_deleteextattr_post(void *ap, int rc)
4753 {
4754 	struct vop_deleteextattr_args *a = ap;
4755 
4756 	if (!rc)
4757 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4758 }
4759 
4760 void
4761 vop_link_post(void *ap, int rc)
4762 {
4763 	struct vop_link_args *a = ap;
4764 
4765 	if (!rc) {
4766 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK);
4767 		VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
4768 	}
4769 }
4770 
4771 void
4772 vop_mkdir_post(void *ap, int rc)
4773 {
4774 	struct vop_mkdir_args *a = ap;
4775 
4776 	if (!rc)
4777 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4778 }
4779 
4780 void
4781 vop_mknod_post(void *ap, int rc)
4782 {
4783 	struct vop_mknod_args *a = ap;
4784 
4785 	if (!rc)
4786 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4787 }
4788 
4789 void
4790 vop_reclaim_post(void *ap, int rc)
4791 {
4792 	struct vop_reclaim_args *a = ap;
4793 
4794 	if (!rc)
4795 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_REVOKE);
4796 }
4797 
4798 void
4799 vop_remove_post(void *ap, int rc)
4800 {
4801 	struct vop_remove_args *a = ap;
4802 
4803 	if (!rc) {
4804 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4805 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4806 	}
4807 }
4808 
4809 void
4810 vop_rename_post(void *ap, int rc)
4811 {
4812 	struct vop_rename_args *a = ap;
4813 	long hint;
4814 
4815 	if (!rc) {
4816 		hint = NOTE_WRITE;
4817 		if (a->a_fdvp == a->a_tdvp) {
4818 			if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
4819 				hint |= NOTE_LINK;
4820 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
4821 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
4822 		} else {
4823 			hint |= NOTE_EXTEND;
4824 			if (a->a_fvp->v_type == VDIR)
4825 				hint |= NOTE_LINK;
4826 			VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
4827 
4828 			if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
4829 			    a->a_tvp->v_type == VDIR)
4830 				hint &= ~NOTE_LINK;
4831 			VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
4832 		}
4833 
4834 		VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
4835 		if (a->a_tvp)
4836 			VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
4837 	}
4838 	if (a->a_tdvp != a->a_fdvp)
4839 		vdrop(a->a_fdvp);
4840 	if (a->a_tvp != a->a_fvp)
4841 		vdrop(a->a_fvp);
4842 	vdrop(a->a_tdvp);
4843 	if (a->a_tvp)
4844 		vdrop(a->a_tvp);
4845 }
4846 
4847 void
4848 vop_rmdir_post(void *ap, int rc)
4849 {
4850 	struct vop_rmdir_args *a = ap;
4851 
4852 	if (!rc) {
4853 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
4854 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
4855 	}
4856 }
4857 
4858 void
4859 vop_setattr_post(void *ap, int rc)
4860 {
4861 	struct vop_setattr_args *a = ap;
4862 
4863 	if (!rc)
4864 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4865 }
4866 
4867 void
4868 vop_setextattr_post(void *ap, int rc)
4869 {
4870 	struct vop_setextattr_args *a = ap;
4871 
4872 	if (!rc)
4873 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
4874 }
4875 
4876 void
4877 vop_symlink_post(void *ap, int rc)
4878 {
4879 	struct vop_symlink_args *a = ap;
4880 
4881 	if (!rc)
4882 		VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
4883 }
4884 
4885 void
4886 vop_open_post(void *ap, int rc)
4887 {
4888 	struct vop_open_args *a = ap;
4889 
4890 	if (!rc)
4891 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
4892 }
4893 
4894 void
4895 vop_close_post(void *ap, int rc)
4896 {
4897 	struct vop_close_args *a = ap;
4898 
4899 	if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
4900 	    (a->a_vp->v_iflag & VI_DOOMED) == 0)) {
4901 		VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
4902 		    NOTE_CLOSE_WRITE : NOTE_CLOSE);
4903 	}
4904 }
4905 
4906 void
4907 vop_read_post(void *ap, int rc)
4908 {
4909 	struct vop_read_args *a = ap;
4910 
4911 	if (!rc)
4912 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
4913 }
4914 
4915 void
4916 vop_readdir_post(void *ap, int rc)
4917 {
4918 	struct vop_readdir_args *a = ap;
4919 
4920 	if (!rc)
4921 		VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
4922 }
4923 
4924 static struct knlist fs_knlist;
4925 
4926 static void
4927 vfs_event_init(void *arg)
4928 {
4929 	knlist_init_mtx(&fs_knlist, NULL);
4930 }
4931 /* XXX - correct order? */
4932 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
4933 
4934 void
4935 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
4936 {
4937 
4938 	KNOTE_UNLOCKED(&fs_knlist, event);
4939 }
4940 
4941 static int	filt_fsattach(struct knote *kn);
4942 static void	filt_fsdetach(struct knote *kn);
4943 static int	filt_fsevent(struct knote *kn, long hint);
4944 
4945 struct filterops fs_filtops = {
4946 	.f_isfd = 0,
4947 	.f_attach = filt_fsattach,
4948 	.f_detach = filt_fsdetach,
4949 	.f_event = filt_fsevent
4950 };
4951 
4952 static int
4953 filt_fsattach(struct knote *kn)
4954 {
4955 
4956 	kn->kn_flags |= EV_CLEAR;
4957 	knlist_add(&fs_knlist, kn, 0);
4958 	return (0);
4959 }
4960 
4961 static void
4962 filt_fsdetach(struct knote *kn)
4963 {
4964 
4965 	knlist_remove(&fs_knlist, kn, 0);
4966 }
4967 
4968 static int
4969 filt_fsevent(struct knote *kn, long hint)
4970 {
4971 
4972 	kn->kn_fflags |= hint;
4973 	return (kn->kn_fflags != 0);
4974 }
4975 
4976 static int
4977 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
4978 {
4979 	struct vfsidctl vc;
4980 	int error;
4981 	struct mount *mp;
4982 
4983 	error = SYSCTL_IN(req, &vc, sizeof(vc));
4984 	if (error)
4985 		return (error);
4986 	if (vc.vc_vers != VFS_CTL_VERS1)
4987 		return (EINVAL);
4988 	mp = vfs_getvfs(&vc.vc_fsid);
4989 	if (mp == NULL)
4990 		return (ENOENT);
4991 	/* ensure that a specific sysctl goes to the right filesystem. */
4992 	if (strcmp(vc.vc_fstypename, "*") != 0 &&
4993 	    strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
4994 		vfs_rel(mp);
4995 		return (EINVAL);
4996 	}
4997 	VCTLTOREQ(&vc, req);
4998 	error = VFS_SYSCTL(mp, vc.vc_op, req);
4999 	vfs_rel(mp);
5000 	return (error);
5001 }
5002 
5003 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_WR,
5004     NULL, 0, sysctl_vfs_ctl, "",
5005     "Sysctl by fsid");
5006 
5007 /*
5008  * Function to initialize a va_filerev field sensibly.
5009  * XXX: Wouldn't a random number make a lot more sense ??
5010  */
5011 u_quad_t
5012 init_va_filerev(void)
5013 {
5014 	struct bintime bt;
5015 
5016 	getbinuptime(&bt);
5017 	return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
5018 }
5019 
5020 static int	filt_vfsread(struct knote *kn, long hint);
5021 static int	filt_vfswrite(struct knote *kn, long hint);
5022 static int	filt_vfsvnode(struct knote *kn, long hint);
5023 static void	filt_vfsdetach(struct knote *kn);
5024 static struct filterops vfsread_filtops = {
5025 	.f_isfd = 1,
5026 	.f_detach = filt_vfsdetach,
5027 	.f_event = filt_vfsread
5028 };
5029 static struct filterops vfswrite_filtops = {
5030 	.f_isfd = 1,
5031 	.f_detach = filt_vfsdetach,
5032 	.f_event = filt_vfswrite
5033 };
5034 static struct filterops vfsvnode_filtops = {
5035 	.f_isfd = 1,
5036 	.f_detach = filt_vfsdetach,
5037 	.f_event = filt_vfsvnode
5038 };
5039 
5040 static void
5041 vfs_knllock(void *arg)
5042 {
5043 	struct vnode *vp = arg;
5044 
5045 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5046 }
5047 
5048 static void
5049 vfs_knlunlock(void *arg)
5050 {
5051 	struct vnode *vp = arg;
5052 
5053 	VOP_UNLOCK(vp, 0);
5054 }
5055 
5056 static void
5057 vfs_knl_assert_locked(void *arg)
5058 {
5059 #ifdef DEBUG_VFS_LOCKS
5060 	struct vnode *vp = arg;
5061 
5062 	ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
5063 #endif
5064 }
5065 
5066 static void
5067 vfs_knl_assert_unlocked(void *arg)
5068 {
5069 #ifdef DEBUG_VFS_LOCKS
5070 	struct vnode *vp = arg;
5071 
5072 	ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
5073 #endif
5074 }
5075 
5076 int
5077 vfs_kqfilter(struct vop_kqfilter_args *ap)
5078 {
5079 	struct vnode *vp = ap->a_vp;
5080 	struct knote *kn = ap->a_kn;
5081 	struct knlist *knl;
5082 
5083 	switch (kn->kn_filter) {
5084 	case EVFILT_READ:
5085 		kn->kn_fop = &vfsread_filtops;
5086 		break;
5087 	case EVFILT_WRITE:
5088 		kn->kn_fop = &vfswrite_filtops;
5089 		break;
5090 	case EVFILT_VNODE:
5091 		kn->kn_fop = &vfsvnode_filtops;
5092 		break;
5093 	default:
5094 		return (EINVAL);
5095 	}
5096 
5097 	kn->kn_hook = (caddr_t)vp;
5098 
5099 	v_addpollinfo(vp);
5100 	if (vp->v_pollinfo == NULL)
5101 		return (ENOMEM);
5102 	knl = &vp->v_pollinfo->vpi_selinfo.si_note;
5103 	vhold(vp);
5104 	knlist_add(knl, kn, 0);
5105 
5106 	return (0);
5107 }
5108 
5109 /*
5110  * Detach knote from vnode
5111  */
5112 static void
5113 filt_vfsdetach(struct knote *kn)
5114 {
5115 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5116 
5117 	KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
5118 	knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
5119 	vdrop(vp);
5120 }
5121 
5122 /*ARGSUSED*/
5123 static int
5124 filt_vfsread(struct knote *kn, long hint)
5125 {
5126 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5127 	struct vattr va;
5128 	int res;
5129 
5130 	/*
5131 	 * filesystem is gone, so set the EOF flag and schedule
5132 	 * the knote for deletion.
5133 	 */
5134 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5135 		VI_LOCK(vp);
5136 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5137 		VI_UNLOCK(vp);
5138 		return (1);
5139 	}
5140 
5141 	if (VOP_GETATTR(vp, &va, curthread->td_ucred))
5142 		return (0);
5143 
5144 	VI_LOCK(vp);
5145 	kn->kn_data = va.va_size - kn->kn_fp->f_offset;
5146 	res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
5147 	VI_UNLOCK(vp);
5148 	return (res);
5149 }
5150 
5151 /*ARGSUSED*/
5152 static int
5153 filt_vfswrite(struct knote *kn, long hint)
5154 {
5155 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5156 
5157 	VI_LOCK(vp);
5158 
5159 	/*
5160 	 * filesystem is gone, so set the EOF flag and schedule
5161 	 * the knote for deletion.
5162 	 */
5163 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
5164 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
5165 
5166 	kn->kn_data = 0;
5167 	VI_UNLOCK(vp);
5168 	return (1);
5169 }
5170 
5171 static int
5172 filt_vfsvnode(struct knote *kn, long hint)
5173 {
5174 	struct vnode *vp = (struct vnode *)kn->kn_hook;
5175 	int res;
5176 
5177 	VI_LOCK(vp);
5178 	if (kn->kn_sfflags & hint)
5179 		kn->kn_fflags |= hint;
5180 	if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
5181 		kn->kn_flags |= EV_EOF;
5182 		VI_UNLOCK(vp);
5183 		return (1);
5184 	}
5185 	res = (kn->kn_fflags != 0);
5186 	VI_UNLOCK(vp);
5187 	return (res);
5188 }
5189 
5190 int
5191 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
5192 {
5193 	int error;
5194 
5195 	if (dp->d_reclen > ap->a_uio->uio_resid)
5196 		return (ENAMETOOLONG);
5197 	error = uiomove(dp, dp->d_reclen, ap->a_uio);
5198 	if (error) {
5199 		if (ap->a_ncookies != NULL) {
5200 			if (ap->a_cookies != NULL)
5201 				free(ap->a_cookies, M_TEMP);
5202 			ap->a_cookies = NULL;
5203 			*ap->a_ncookies = 0;
5204 		}
5205 		return (error);
5206 	}
5207 	if (ap->a_ncookies == NULL)
5208 		return (0);
5209 
5210 	KASSERT(ap->a_cookies,
5211 	    ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
5212 
5213 	*ap->a_cookies = realloc(*ap->a_cookies,
5214 	    (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
5215 	(*ap->a_cookies)[*ap->a_ncookies] = off;
5216 	*ap->a_ncookies += 1;
5217 	return (0);
5218 }
5219 
5220 /*
5221  * Mark for update the access time of the file if the filesystem
5222  * supports VOP_MARKATIME.  This functionality is used by execve and
5223  * mmap, so we want to avoid the I/O implied by directly setting
5224  * va_atime for the sake of efficiency.
5225  */
5226 void
5227 vfs_mark_atime(struct vnode *vp, struct ucred *cred)
5228 {
5229 	struct mount *mp;
5230 
5231 	mp = vp->v_mount;
5232 	ASSERT_VOP_LOCKED(vp, "vfs_mark_atime");
5233 	if (mp != NULL && (mp->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0)
5234 		(void)VOP_MARKATIME(vp);
5235 }
5236 
5237 /*
5238  * The purpose of this routine is to remove granularity from accmode_t,
5239  * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
5240  * VADMIN and VAPPEND.
5241  *
5242  * If it returns 0, the caller is supposed to continue with the usual
5243  * access checks using 'accmode' as modified by this routine.  If it
5244  * returns nonzero value, the caller is supposed to return that value
5245  * as errno.
5246  *
5247  * Note that after this routine runs, accmode may be zero.
5248  */
5249 int
5250 vfs_unixify_accmode(accmode_t *accmode)
5251 {
5252 	/*
5253 	 * There is no way to specify explicit "deny" rule using
5254 	 * file mode or POSIX.1e ACLs.
5255 	 */
5256 	if (*accmode & VEXPLICIT_DENY) {
5257 		*accmode = 0;
5258 		return (0);
5259 	}
5260 
5261 	/*
5262 	 * None of these can be translated into usual access bits.
5263 	 * Also, the common case for NFSv4 ACLs is to not contain
5264 	 * either of these bits. Caller should check for VWRITE
5265 	 * on the containing directory instead.
5266 	 */
5267 	if (*accmode & (VDELETE_CHILD | VDELETE))
5268 		return (EPERM);
5269 
5270 	if (*accmode & VADMIN_PERMS) {
5271 		*accmode &= ~VADMIN_PERMS;
5272 		*accmode |= VADMIN;
5273 	}
5274 
5275 	/*
5276 	 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
5277 	 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
5278 	 */
5279 	*accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
5280 
5281 	return (0);
5282 }
5283 
5284 /*
5285  * These are helper functions for filesystems to traverse all
5286  * their vnodes.  See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
5287  *
5288  * This interface replaces MNT_VNODE_FOREACH.
5289  */
5290 
5291 MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
5292 
5293 struct vnode *
5294 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
5295 {
5296 	struct vnode *vp;
5297 
5298 	if (should_yield())
5299 		kern_yield(PRI_USER);
5300 	MNT_ILOCK(mp);
5301 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5302 	for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
5303 	    vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
5304 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5305 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5306 			continue;
5307 		VI_LOCK(vp);
5308 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5309 			VI_UNLOCK(vp);
5310 			continue;
5311 		}
5312 		break;
5313 	}
5314 	if (vp == NULL) {
5315 		__mnt_vnode_markerfree_all(mvp, mp);
5316 		/* MNT_IUNLOCK(mp); -- done in above function */
5317 		mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
5318 		return (NULL);
5319 	}
5320 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5321 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5322 	MNT_IUNLOCK(mp);
5323 	return (vp);
5324 }
5325 
5326 struct vnode *
5327 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
5328 {
5329 	struct vnode *vp;
5330 
5331 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5332 	MNT_ILOCK(mp);
5333 	MNT_REF(mp);
5334 	(*mvp)->v_mount = mp;
5335 	(*mvp)->v_type = VMARKER;
5336 
5337 	TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
5338 		/* Allow a racy peek at VI_DOOMED to save a lock acquisition. */
5339 		if (vp->v_type == VMARKER || (vp->v_iflag & VI_DOOMED) != 0)
5340 			continue;
5341 		VI_LOCK(vp);
5342 		if ((vp->v_iflag & VI_DOOMED) != 0) {
5343 			VI_UNLOCK(vp);
5344 			continue;
5345 		}
5346 		break;
5347 	}
5348 	if (vp == NULL) {
5349 		MNT_REL(mp);
5350 		MNT_IUNLOCK(mp);
5351 		free(*mvp, M_VNODE_MARKER);
5352 		*mvp = NULL;
5353 		return (NULL);
5354 	}
5355 	TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
5356 	MNT_IUNLOCK(mp);
5357 	return (vp);
5358 }
5359 
5360 void
5361 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
5362 {
5363 
5364 	if (*mvp == NULL) {
5365 		MNT_IUNLOCK(mp);
5366 		return;
5367 	}
5368 
5369 	mtx_assert(MNT_MTX(mp), MA_OWNED);
5370 
5371 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5372 	TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
5373 	MNT_REL(mp);
5374 	MNT_IUNLOCK(mp);
5375 	free(*mvp, M_VNODE_MARKER);
5376 	*mvp = NULL;
5377 }
5378 
5379 /*
5380  * These are helper functions for filesystems to traverse their
5381  * active vnodes.  See MNT_VNODE_FOREACH_ACTIVE() in sys/mount.h
5382  */
5383 static void
5384 mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5385 {
5386 
5387 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5388 
5389 	MNT_ILOCK(mp);
5390 	MNT_REL(mp);
5391 	MNT_IUNLOCK(mp);
5392 	free(*mvp, M_VNODE_MARKER);
5393 	*mvp = NULL;
5394 }
5395 
5396 /*
5397  * Relock the mp mount vnode list lock with the vp vnode interlock in the
5398  * conventional lock order during mnt_vnode_next_active iteration.
5399  *
5400  * On entry, the mount vnode list lock is held and the vnode interlock is not.
5401  * The list lock is dropped and reacquired.  On success, both locks are held.
5402  * On failure, the mount vnode list lock is held but the vnode interlock is
5403  * not, and the procedure may have yielded.
5404  */
5405 static bool
5406 mnt_vnode_next_active_relock(struct vnode *mvp, struct mount *mp,
5407     struct vnode *vp)
5408 {
5409 	const struct vnode *tmp;
5410 	bool held, ret;
5411 
5412 	VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
5413 	    TAILQ_NEXT(mvp, v_actfreelist) != NULL, mvp,
5414 	    ("%s: bad marker", __func__));
5415 	VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
5416 	    ("%s: inappropriate vnode", __func__));
5417 	ASSERT_VI_UNLOCKED(vp, __func__);
5418 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5419 
5420 	ret = false;
5421 
5422 	TAILQ_REMOVE(&mp->mnt_activevnodelist, mvp, v_actfreelist);
5423 	TAILQ_INSERT_BEFORE(vp, mvp, v_actfreelist);
5424 
5425 	/*
5426 	 * Use a hold to prevent vp from disappearing while the mount vnode
5427 	 * list lock is dropped and reacquired.  Normally a hold would be
5428 	 * acquired with vhold(), but that might try to acquire the vnode
5429 	 * interlock, which would be a LOR with the mount vnode list lock.
5430 	 */
5431 	held = refcount_acquire_if_not_zero(&vp->v_holdcnt);
5432 	mtx_unlock(&mp->mnt_listmtx);
5433 	if (!held)
5434 		goto abort;
5435 	VI_LOCK(vp);
5436 	if (!refcount_release_if_not_last(&vp->v_holdcnt)) {
5437 		vdropl(vp);
5438 		goto abort;
5439 	}
5440 	mtx_lock(&mp->mnt_listmtx);
5441 
5442 	/*
5443 	 * Determine whether the vnode is still the next one after the marker,
5444 	 * excepting any other markers.  If the vnode has not been doomed by
5445 	 * vgone() then the hold should have ensured that it remained on the
5446 	 * active list.  If it has been doomed but is still on the active list,
5447 	 * don't abort, but rather skip over it (avoid spinning on doomed
5448 	 * vnodes).
5449 	 */
5450 	tmp = mvp;
5451 	do {
5452 		tmp = TAILQ_NEXT(tmp, v_actfreelist);
5453 	} while (tmp != NULL && tmp->v_type == VMARKER);
5454 	if (tmp != vp) {
5455 		mtx_unlock(&mp->mnt_listmtx);
5456 		VI_UNLOCK(vp);
5457 		goto abort;
5458 	}
5459 
5460 	ret = true;
5461 	goto out;
5462 abort:
5463 	maybe_yield();
5464 	mtx_lock(&mp->mnt_listmtx);
5465 out:
5466 	if (ret)
5467 		ASSERT_VI_LOCKED(vp, __func__);
5468 	else
5469 		ASSERT_VI_UNLOCKED(vp, __func__);
5470 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5471 	return (ret);
5472 }
5473 
5474 static struct vnode *
5475 mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5476 {
5477 	struct vnode *vp, *nvp;
5478 
5479 	mtx_assert(&mp->mnt_listmtx, MA_OWNED);
5480 	KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
5481 restart:
5482 	vp = TAILQ_NEXT(*mvp, v_actfreelist);
5483 	while (vp != NULL) {
5484 		if (vp->v_type == VMARKER) {
5485 			vp = TAILQ_NEXT(vp, v_actfreelist);
5486 			continue;
5487 		}
5488 		/*
5489 		 * Try-lock because this is the wrong lock order.  If that does
5490 		 * not succeed, drop the mount vnode list lock and try to
5491 		 * reacquire it and the vnode interlock in the right order.
5492 		 */
5493 		if (!VI_TRYLOCK(vp) &&
5494 		    !mnt_vnode_next_active_relock(*mvp, mp, vp))
5495 			goto restart;
5496 		KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
5497 		KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
5498 		    ("alien vnode on the active list %p %p", vp, mp));
5499 		if (vp->v_mount == mp && (vp->v_iflag & VI_DOOMED) == 0)
5500 			break;
5501 		nvp = TAILQ_NEXT(vp, v_actfreelist);
5502 		VI_UNLOCK(vp);
5503 		vp = nvp;
5504 	}
5505 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5506 
5507 	/* Check if we are done */
5508 	if (vp == NULL) {
5509 		mtx_unlock(&mp->mnt_listmtx);
5510 		mnt_vnode_markerfree_active(mvp, mp);
5511 		return (NULL);
5512 	}
5513 	TAILQ_INSERT_AFTER(&mp->mnt_activevnodelist, vp, *mvp, v_actfreelist);
5514 	mtx_unlock(&mp->mnt_listmtx);
5515 	ASSERT_VI_LOCKED(vp, "active iter");
5516 	KASSERT((vp->v_iflag & VI_ACTIVE) != 0, ("Non-active vp %p", vp));
5517 	return (vp);
5518 }
5519 
5520 struct vnode *
5521 __mnt_vnode_next_active(struct vnode **mvp, struct mount *mp)
5522 {
5523 
5524 	if (should_yield())
5525 		kern_yield(PRI_USER);
5526 	mtx_lock(&mp->mnt_listmtx);
5527 	return (mnt_vnode_next_active(mvp, mp));
5528 }
5529 
5530 struct vnode *
5531 __mnt_vnode_first_active(struct vnode **mvp, struct mount *mp)
5532 {
5533 	struct vnode *vp;
5534 
5535 	*mvp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
5536 	MNT_ILOCK(mp);
5537 	MNT_REF(mp);
5538 	MNT_IUNLOCK(mp);
5539 	(*mvp)->v_type = VMARKER;
5540 	(*mvp)->v_mount = mp;
5541 
5542 	mtx_lock(&mp->mnt_listmtx);
5543 	vp = TAILQ_FIRST(&mp->mnt_activevnodelist);
5544 	if (vp == NULL) {
5545 		mtx_unlock(&mp->mnt_listmtx);
5546 		mnt_vnode_markerfree_active(mvp, mp);
5547 		return (NULL);
5548 	}
5549 	TAILQ_INSERT_BEFORE(vp, *mvp, v_actfreelist);
5550 	return (mnt_vnode_next_active(mvp, mp));
5551 }
5552 
5553 void
5554 __mnt_vnode_markerfree_active(struct vnode **mvp, struct mount *mp)
5555 {
5556 
5557 	if (*mvp == NULL)
5558 		return;
5559 
5560 	mtx_lock(&mp->mnt_listmtx);
5561 	TAILQ_REMOVE(&mp->mnt_activevnodelist, *mvp, v_actfreelist);
5562 	mtx_unlock(&mp->mnt_listmtx);
5563 	mnt_vnode_markerfree_active(mvp, mp);
5564 }
5565